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We derive an approximate analytic relation between the number of consistent heterotic Calabi-Yau 
compactifications of string theory with the exact charged matter content of the standard model of 
particle physics and the topological data of the internal manifold: the former scaling exponentially with 
the number of Kähler parameters. This is done by an estimate of the number of solutions to a set of 
Diophantine equations representing constraints satisfied by any consistent heterotic string vacuum with 
three chiral massless families, and has been computationally checked to hold for complete intersection 
Calabi-Yau threefolds (CICYs) with up to seven Kähler parameters. When extrapolated to the entire CICY 
list, the relation gives ∼1023 string theory standard models; for the class of Calabi-Yau hypersurfaces in 
toric varieties, it gives ∼10723 standard models.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction and summary

It is generally believed that string compactifications that have 
the exact charged matter content of the standard model of parti-
cle physics (and no other charged matter except moduli) are few 
in number. The purpose of this letter is to show that, although 
such compactifications may be rare and hard to find, their num-
ber is substantial. Admittedly, this bias has come in the past from 
the difficulty to construct phenomenologically viable compactifica-
tions. However, since the birth of string phenomenology in Ref. [1], 
from the advent of the first standard-like string model [2], to the 
first exact particle spectrum directly derived from a string com-
pactification [3–6], to the first result [7] from algorithmic heterotic 
compactification [8], until the comprehensive computer scan of 
Refs. [9–11,15], as well as the various statistical perspectives on 
the heterotic landscape [12,38] (cf. [13] in Type II and beyond 
[14]), there has been much progress.

While it can be specified at different levels of sophistication, for 
this letter a “string standard model” is a model with a massless 
spectrum which is exactly that of the minimally supersymmet-
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ric standard model (MSSM), plus any number of massless modes 
(moduli fields) uncharged under the standard model gauge group.

The general strategy of heterotic string phenomenology is to 
consider a smooth, compact Calabi-Yau threefold (CY), say X , with 
a non-trivial fundamental group �, together with a holomorphic, 
(poly-)stable vector bundle V over X , typically with structure 
group SU (5) or SU (4). Subsequently, a �-Wilson line can break 
the Grand Unified Theory (GUT) group, typically SU (5) or S O (10), 
to the MSSM group and the �-equivariant cohomology of V as well 
as its appropriate tensor powers correspond to the MSSM particles.

From an algorithmic point of view, one can (1) take manifolds 
X̃ from existing databases, most of which are simply connected, 
then search for discrete, freely acting symmetry groups � on X̃ , 
and consider the quotient X � X̃/� with fundamental group �; 
(2) construct and classify families of �-equivariant bundles V
on X , ensure stability, and then compute the relevant cohomology 
groups; and (3) scan through the results to look for exact MSSM 
particle content. Much of these can be implemented on a com-
puter.

The most extensively used databases of manifolds are the 
Complete Intersection Calabi-Yau three-folds (CICYs) embedded in 
products of projective spaces of around 8000 manifolds [16,17]
as well as the Kreuzer-Skarke (KS) dataset of Calabi-Yau hyper-
surfaces embedded in around half-billion four-dimensional toric 
varieties [18–20] (the actual number of Calabi-Yau will vastly ex-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ceed this number because of triangulations and a recent estimate 
was made in [21]). The comprehensive scan of [11] was performed 
on CICY manifolds with a number of Kähler parameters less than 
h1,1(X) = 6 and vector bundles constructed from sum of line bun-
dles. A total of about 35, 000 SU (5) heterotic line bundle models 
were found, all with the right field content to induce low-energy 
standard-like models.

It is obviously important to have a count of MSSM models 
expected within string theory. While ours is still a relatively un-
refined notion of the standard model, even counting at this level 
is not easy since it requires information on all vector bundles and 
their cohomology on CYs which is not available in any systematic 
form. An exception to this rule is the class of vector bundles that 
split into a sum of line bundles. Holomorphic line bundles are clas-
sified by their first Chern class, which can be expressed in terms 
of h1,1(X) integers. As such, line bundles can be enumerated.

Moreover, there is enough evidence that indicates the existence 
of analytic formulae for the ranks of line bundle valued cohomol-
ogy groups in terms of the line bundle integers [23–26]. Finally, 
line bundle sums offer an accessible window into the moduli space 
of non-abelian bundles [26–28]: if a line bundle sum corresponds 
to a standard-like model, then usually it can be deformed into non-
abelian bundles that also lead to standard-like models.

Our model building experience for such (rank five) line bundle 
models on CICYs suggests that a significant number of consistent 
models with the correct chiral asymmetry will descend to stan-
dard models after dividing by the freely acting discrete symmetry 
group �. Moreover, by far the most frequent symmetry is Z2. 
This suggests that an indication of the number of standard models 
should be provided by counting the consistent upstairs line bundle 
models with chiral asymmetry 6, relevant for Z2 symmetries.

We start our analysis by outlining the constraints on the com-
pactification data that guarantee an exact MSSM spectrum. For a 
fixed manifold, most of these constraints take the form of Dio-
phantine equations and inequalities, where the unknown variables 
are the line bundle integers. For the class of CICY manifolds with 
less than six Kähler parameters this system was solved in Ref. [11]
by explicitly checking every possible line bundle sum. We augment 
this dataset of line bundle models with results for 7 new manifolds 
with h1,1(X) = 6, 7.

These scans suggest a simple rule: the number of line bundle 
models increases roughly by an order of magnitude with every 
increment of h1,1(X) by one. However, it is difficult to test this 
relation for larger values of h1,1(X) due to computer limitations. 
Instead, we estimate the number of solutions to the Diophantine 
system of constraints using a result from the mathematical litera-
ture [29]. For this to hold, we define a bound on the line bundle 
integers in terms of topological data of the manifold.

Finally, we come back to the empirical dataset of line bundles 
and correlate the number of solutions not only with h1,1(X), but 
also with a number of topological invariants, constructed from the 
intersection form and the second Chern class of the CY manifold, 
that display little variation with increasing h1,1(X). Extrapolating 
the multi-linear regression to the maximal value of h1,1(X) found 
in the CICY dataset, we estimate a total of NCICY � 1023 line bundle 
models (we owe the expression “a mole of models” to Tristan Hüb-
sch) while for the manifolds in the Kreuzer-Skarke list we expect 
NKS � 10723 line bundle models.

Acknowledgments. We are grateful to K. Dienes and T. Hübsch for 
valuable comments on the draft. AC and AL would like to thank 
the Mainz Institute for Theoretical Physics for hospitality during 
part of the completion of this project. AL is partially supported by 
the EPSRC network grant EP/N007158/1. YHH thanks STFC for grant 
ST/J00037X/1.
2. Counting line bundle MSSMs

The models of interest for our count have an exact MSSM 
particle content and are constructed from heterotic compactifica-
tions on a smooth, compact Calabi-Yau threefolds X endowed with 
slope-zero, poly-stable direct sums of line bundles. Let h denote 
the Picard number of X , h := h1,1(X), and choose an integral basis 
of H2(X) denoted by { J i}, where i = 1, . . . , h. In this basis, let the 
second Chern class of X be c2,i and the triple intersection num-
bers be dijk = ∫

X J i ∧ J j ∧ Jk . Line bundles L → X with first Chern 
class c1(L) = ki J i are denoted by L =OX (k). The reader is referred 
to Sec. 4 of Ref. [11] for further details on the constraints.

First, we focus on SU (5) bundles V for the following reason. 
From a group theoretic point of view [22], there are many ways 
to break the GUT group to the MSSM group using an appropriate 
discrete Wilson line, for example, the exact MSSM spectrum of [4]
was achieved with a Z3 × Z3 Wilson line from an S O (10) GUT 
group. However, CY manifolds X̃ with a large freely acting discrete 
symmetry group � are quite rare. This can be seen, for instance, 
from the complete classification of freely-acting [33] and residual 
[34,35] symmetries on all CICYs, or from the KS dataset of hyper-
surfaces in toric Fano fourfolds [30,32].

Therefore, generically, it is expected that Calabi-Yau manifolds 
with a small fundamental group π1(X), should far exceed in num-
ber those with a large π1(X) (this should be contrasted with the 
relative paucity of Calabi-Yau manifolds of small Hodge numbers 
[36,37,39]). The smallest possible π1(X) that breaks the SU (5)

GUT group to the Standard Model gauge group is � = Z2 and 
this setup is expected to dominate. Now, in SU (5) (commutant 
of the SU (5) of the bundle in E8) GUTs, the 10 representation 
corresponds entirely to anti-families which we desire to be ab-
sent. Under the branching of E8 to SU (5), this corresponds to 
the condition that h2(X, V ) = 0, so that stability (implying that 
h0(X, V ) = h3(X, V ) = 0) in conjunction with the index theorem 
gives

−3|�| = ind(V ) =
3∑

i=0

hi(X, V ) = −h1(X, V ) . (1)

Thus, we impose ind(V ) = −h1(X, V ) = −6.
In summary, the counting problem can then be formulated as 

follows:

PROBLEM: What is the number N = N(h, c2,i, dijk) of rank five line 
bundle sums V = ⊕5

a=1La , where La = OX (ka) satisfying the fol-
lowing constraints:

E8 embedding: c1(V ) =
5∑

a=1
ki

a
!= 0 for all i = 1, . . . , h;

Anomaly cancellation:

c2,i(V ) = −1

2
dijk

∑
a

k j
akk

a

!≤ c2,i for all i = . . . ,h;

Supersymmetry/Zero Slope: there is a common solution ti to the 
vanishing slopes

μ(La) = dijkki
at j

atk
a

!= 0 for a = 1, . . . ,5

such that J = ti J i ∈ interior of the Kahler cone;
Particle generations: the chiral asymmetry is six, i.e.

ind(V ) = 1

6
dijk

∑
a

ki
ak j

akk
a

!= −6.
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Table 1
Number of models found in a computer scan for favourable CICYs with 4 ≤ h ≤ 7
for each h.

h = h1,1(X) 4 5 6 7

number of CYs 9 10 8 5
number of models 75 2949 36692 1428856
number, N̄ , of models per CY 8.3 294.9 4586.5 285771.0

Fig. 1. The logarithm of N̄ , the average number of models per CY, as a function of 
h = h1,1(X), taken from the data in Table 1. The red line is a linear fit to the data.

We emphasize that N is a function of the prescribed Hodge num-
ber h, the second Chern class c2,i , as well as the triple intersection 
numbers dijk of X .

2.1. Preliminary count

For the subset of favourable CICYs with h ≤ 6, the number N
was determined by the computer scan [11] and we have extended 
this scan to include manifolds for h1,1(X) = 7 as well as some non-
favourable manifold for h1,1 ≤ 7 which were previously discarded. 
The cumulative and average number of models found for each Pi-
card number h is summarised in Table 1. Note there are no viable 
models for h = 1, 2, 3 since the supersymmetry (slope zero) condi-
tions are too constraining for those cases.

A simple approach is to assume that the main dependence of N
is on h, and to neglect the possible effects of c2,i and dijk . The av-
erage number, N̄ = N̄(h) of models per CY as a function of h, taken 
from the last row of Table 1, has been plotted (logarithmically) in 
Fig. 1.

A linear fit to this data (which corresponds to the red line in 
Fig. 1) leads to

log(N̄(h)) � −5.0 + 1.5 h . (2)

The largest known Picard number of any CY threefold is hmax =
491, which appears within the KS data set, and the largest value 
within the CICY list is hCICY = 19. Using (2) to boldly extrapolate 
to those values we find

N̄(hCICY) � 1023 , N̄(hmax) � 10721 . (3)

Clearly, these numbers are quite dramatic, even if we restrict our-
selves to the CICYs. The predicted number of standard models even 
within this set is significantly larger than can be currently stored, 
let alone found by a scan. However, the method so far is quite 
crude and the extrapolation to large h adventurous. To see some 
of the problems, consider Fig. 2 which shows the number of mod-
els as a function of h for each CICY, rather than the average over 
all CICYs with the same h, as in Fig. 1. The variation within given 
h can be seen to be considerable - clear indication that there is a 
strong dependence of N on c2,i and dijk , in addition to h.
Fig. 2. The logarithm of N , the number of models for each of the CICY manifolds, as 
a function of h = h1,1(X).

2.2. Some theoretical considerations

While the computer scan gives a finite number of models in 
each case, it is actually not easy to prove that N is finite. A succinct 
argument was presented in Ref. [15] based on the moduli space 
metric

Gij = −3

(
κi j

κ
− 3

2

κiκ j

κ2

)
, (4)

where κ = dijktit jtk , κi = dijkt jtk and κi j = dijktk , with ti being the 
Kähler moduli. We note that the slope zero conditions can be ex-
pressed as κiki

a = 0 so that

0 ≤
∑

a

kT
a G ka = − 3

κ
dijk

∑
a

ki
ak j

atk = 6

κ
tic2,i(V )

≤ 6

κ
tic2,i(T X) ≤ 6

κ
|t| |c2,i(T X)| . (5)

Then, introducing the scale-invariant modified metric G̃ = κ
6|t| G , 

we get the bound∑
a

kT
a G̃ ka ≤ |c2,i(T X)| . (6)

This by itself does unfortunately not bound the vectors ka since 
the metric G̃ might become singular at the boundary of the Kähler 
cone. However, if we require that we stay in a “physical” region of 
the Kähler cone where all curve volumes to be greater than 1 (so 
that the supergravity approximation is valid) and the volume κ is 
bounded from above (so that we are not de-compactifying) then 
the eigenvalues of G̃ are bounded from below by a strictly positive 
number.

Eq. (6) then implies that the length 
∑

a |ka|2 is bounded from 
above and, hence, that there is only a finite number of possible in-
teger vectors ka . More quantitative statements depend very much 
on the specific example but what can be said is that the length of 
the k vectors is bounded by a radius R which roughly scales as

R ∼
(c2

d

)1/2
, (7)

where c2 and d are typical values of c2,i and dijk .
Apart from the slope zero conditions the constraints on the line 

bundles can be written as a system of Diophantine equations

5∑
a=1

ki
a

!= 0 , −1

2
dijk

∑
a

k j
akk

a
!= c2,i ,

1

6
dijk

∑
a

ki
ak j

akk
a

!= −6 , (8)
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Fig. 3. The logarithm of N from the computer scan of CICYs versus the “theoretical” 
upper bound xth , as defined in Eq. (9).

for i = 1, . . . , h. Here we have replaced the inequality in the 
anomaly condition with an equality, assuming that the bulk of the 
contribution comes from line bundles with the largest allowed in-
tegers. We can homogenise these equations (by introducing one 
additional coordinate) and think of them as a set of equations in 
Pn , where n = 5 h. Assuming they provide a complete intersection, 
Z , its dimension is given by m = n − 2 h − 1 = 3 h − 1.

Ref. [29] provides an upper bound for the number of rational 
points N Z (B) within a box of size B (where the size is measured 
by the maximum norm) on Z which is given by N Z (B) 
 Bm . Us-
ing the above radius R as an upper bound for B we find

N 
 R3h−1 ∼
( c2

d

)(3h−1)/2 =: xth . (9)

The comparison between this upper bound and the results from 
the computer scan on CICY manifolds is shown in Fig. 3. With all 
the data points well below the red line it is clear that Eq. (9) in-
deed provides an upper bound but it is equally obvious that this 
upper bound is rather weak. There are a number of possible rea-
sons for this. First, the result of Ref. [29] is only an upper bound 
(which, in addition, counts rational rather than integer points). 
Second, the radius R from Eq. (7) is a crude estimate and is, by 
itself, only an upper bound on the size B of the box considered in 
Ref. [29].

2.3. A more sophisticated count

Our count in §2.1, based on considering only the dependence 
of N on the Picard number h is clearly somewhat unrefined, while 
the theoretical upper bound xth from §2.2 is clearly too weak 
to allow for a meaningful extrapolation to larger values of h. In 
this subsection, we seek a more sophisticated equation for N as 
a function of h, c2,i and dijk , drawing inspiration from the above 
discussions.

There is an obvious difficulty of writing down even an ansatz 
for N as a function of c2,i and dijk: both of these quantities are 
basis-dependent (on a choice of integral basis J i for H2(X)), but 
N clearly cannot depend on such a choice of basis. This means 
we should think about basis-independent quantities which can be 
constructed from c2,i and dijk .

Unfortunately, both quantities have “all indices down” so there 
is no invariant which can be obtained by a simple contraction of 
indices, given that the only available metric, G from Eq. (4), is 
moduli-dependent. This problem has been encountered before, in 
the context of practical applications of Wall’s theorem, and a solu-
tion has been proposed in Ref. [17], p. 174.
Fig. 4. The logarithm of N from the computer scan of CICYs versus the quantity x in 
Eq. (12), where the constants Ai and Bi have been determined to provide the best 
fit.

From the intersection form λ(α, β, γ ) := ∫
X α ∧ β ∧ γ ∈ Z≥0, 

completely symmetric in α, β, γ , the following invariants can be 
constructed:

	1 = gcd{λ(α,β,γ ) |α,β,γ ∈ H2(X,Z)}
	2 = gcd{λ(α,β,β) |α,β ∈ H2(X,Z)}
	3 = gcd{λ(α,α,α) |α ∈ H2(X,Z)} . (10)

Furthermore, combining the intersection form and c2 = c2(T X) we 
can define the form 
(α, β, γ , δ) = (λ(α, β, γ )c2(δ) + 3 permuta
tions) which gives rise to the invariants

	4 = gcd{
(α,β,γ , δ) |α,β,γ , δ ∈ H2(X,Z)}
	5 = gcd{
(α,β,γ ,γ ) |α,β,γ ∈ H2(X,Z)}
	6 = gcd{
(α,β,β,β) |α,β ∈ H2(X,Z)}
	7 = gcd{
(α,α,α,α) |α ∈ H2(X,Z)} . (11)

Ref. [17] also provides a practical way of computing these invari-
ants which involves a scan over only a finite subset of H2(X, Z), 
so that they can be worked out from dijk and c2,i .

Combining the approaches of §2.1 and §2.2 and using invariants 
	i=1,...,7 a plausible ansatz for x := log N is

x =
7∑

i=1

(Ai + Bi h) log 	i , (12)

where Ai and Bi are constants to be determined by regression. Us-
ing the data from the CICY scan, together with the Hodge numbers 
h and the invariants 	i for each CICY involved, the best fit values 
of Ai and Bi are

(Ai) � (12.2,0,11.6,−3.5,−11.7,1.6,1.8)

(Bi) � (−2.3,0,−1.9,0.9,2.0,−0.7,0.2) .
(13)

The comparison of this fit with the data is provided in Fig. 4. 
Each point corresponds to a CICY with x is the value computed 
from the RHS of Eq. (12), using the values in (13) for Ai , Bi and 
log(N) is the value of standard models on this CICY found by the 
computer scan. The red line is the diagonal, log(N) = x, which rep-
resents a perfect fit. It seems from Eq (13) that x depends most 
heavily on 	1,3,5 as the corresponding coefficients dominate in 
magnitude. Examining these, we see that they essentially come 
from the basic intersection form (including the self-intersection), 
which is after all our most fundamental topological quantity.
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It turns out that the invariants 	i show relatively little variation 
with increasing Picard number h. If we insert typical values for 
these quantities, together with hCICY = 19 and hmax = 491 into the 
above fit result the extrapolated numbers become

N(hCICY) � 1023 , N(hmax) � 10723 , (14)

which is not too far away from the earlier result (3).

3. Conclusions

The fit illustrated in Fig. 4 looks rather convincing and we be-
lieve that an extrapolation to large h = h1,1 is trustworthy (since 
the invariants 	i show little variation relative to h), as long as 
the underlying model-building assumptions continue to be satis-
fied for large h. We believe that this is the case for the CICY dataset 
and, hence, the number of � 1023 standard models within this set 
should be taken seriously.

The extrapolation to hmax = 491, the maximal known Picard 
number of any CY, is more questionable. Some of the model build-
ing assumptions made here have not yet been checked for the KS 
set, and there are even indications that they may not be satisfied. 
First, it is not clear that the KS set contains manifolds that ad-
mit freely-acting symmetries with the same frequency as CICYs. 
The only systematic checks carried out for low h1,1 where the fre-
quency of symmetries is lower than the CICYs [30]. No information 
is available for large h1,1 yet.

Another generic feature of CICY models is the frequent absence 
of large numbers of vector-like pairs, so that checking the index 
was sufficient to guarantee the correct spectrum for a significant 
fraction of the models. It is not clear that this feature persists for 
constructions based on other CY manifolds. In fact, the results of 
Ref. [31] suggest that the presence of phenomenologically prob-
lematic numbers of vector-like pairs might be a generic feature of 
some other CY constructions. Again, no definite statement on this 
is available for the KS set.

In summary, the number of � 10723 standard models for the 
extrapolation to h1,1 = 491 should be viewed with considerable 
caution. However, the extrapolation to h1,1 = 19, the maximal Pi-
card number in the CICY set has to be taken seriously and leads to 
� 1023 standard models. Even this number, almost certainly a con-
servative lower bound, is frighteningly large and beyond current 
computer storage and systematic search.
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