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Abstract
This paper proposes a system for multiple fundamental fre-
quency estimation of piano sounds using pitch candidate selec-
tion rules which employ spectral structure and temporal evolu-
tion. As a time-frequency representation, the Resonator Time-
Frequency Image of the input signal is employed, a noise sup-
pression model is used, and a spectral whitening procedure is
performed. In addition, a spectral flux-based onset detector is
employed in order to select the steady-state region of the pro-
duced sound. In the multiple-F0 estimation stage, tuning and in-
harmonicity parameters are extracted and a pitch salience func-
tion is proposed. Pitch presence tests are performed utilizing
information from the spectral structure of pitch candidates, aim-
ing to suppress errors occurring at multiples and sub-multiples
of the true pitches. A novel feature for the estimation of har-
monically related pitches is proposed, based on the common
amplitude modulation assumption. Experiments are performed
on the MAPS database using 8784 piano samples of classical,
jazz, and random chords with polyphony levels between 1 and
6. The proposed system is computationally inexpensive, be-
ing able to perform multiple-F0 estimation experiments in real-
time. Experimental results indicate that the proposed system
outperforms state-of-the-art approaches for the aforementioned
task in a statistically significant manner.
Index Terms: multiple-F0 estimation, resonator time-
frequency image, common amplitude modulation

1. Introduction
Multiple-F0 estimation in polyphonic music signals refersto
the accurate detection of concurrent notes over a short time
segment. It is the core problem in the development of auto-
matic transcription systems, which have applications in mu-
sic information retrieval, interactive computer systems,and au-
tomated musicological analysis [1, 9]. While the problem of
pitch estimation for monophonic music signals is considered
to be solved, the creation of a system able to accurately detect
harmonically-related F0s [16] without setting restrictions on the
degree of polyphony and the instrument type still remains an
open problem. For an overview on state-of-the-art multiple-F0
estimation systems the reader is referred to [4,9].

There are several approaches for multiple-F0 estimation of
music signals related to the current work. In [8], an iterative
spectral subtraction method with polyphony inference is pro-
posed, based on the principle that the envelope of harmonic
sounds tends to be smooth. A magnitude-warped power spec-
trum is used as a data representation and a moving average fil-
ter is employed for noise suppression. The system is able to

handle inharmonicity and experiments were performed on ran-
domly mixed samples from 30 musical instruments compiled
from 4 different sources. In [16], a method for jointly evaluating
multiple-F0 hypotheses is presented, which employs harmonic-
ity, spectral smoothness, and synchronicity assumptions -the
latter is based on the deviation of partials from their temporal
centroid. A score function combining the aforementioned crite-
ria is created and its parameters are optimized using an evolu-
tionary algorithm. Experiments were performed with mixtures
originating from the same sources as in [8].

A real-time polyphonic transcription system is proposed
in [17], which uses a first-order complex resonator filterbank
as a time-frequency representation, called the Resonator Time-
Frequency Image (RTFI). F0 candidates are selected according
to their pitch energy spectrum value and a set of rules is uti-
lized in order to cancel extra estimated pitches. These rules are
based on the number of harmonic components detected for each
pitch and the spectral irregularity measure, which measures the
concentrated energy around possibly overlapped partials from
harmonically-related F0s. Finally, a method for multiple-F0
estimation of piano sounds is developed in [5], which mod-
els the spectral envelope of pitches using a smooth autoregres-
sive model constrained by the spectral smoothness principle
and models the noise using a moving average model. A pitch
salience function that is able to handle tuning and inharmonic-
ity is proposed for initial candidate selection and the candidates
are refined using a likelihood function which is dependent on
the estimated spectral envelope and noise parameters. Experi-
ments were performed on a database called MAPS, which con-
tains real or synthesized recordings of isolated notes, musical
or random chords, as well as music pieces, which were pro-
duced by several piano types or using different recording con-
ditions. Results, compared with the method in [8], indicatethat
the proposed system is particularly able to yield good scores
when harmonically-related F0s are present.

In this work, a system for multiple-F0 estimation of iso-
lated piano sounds which uses candidate selection and several
rule-based refinement steps is proposed. The RTFI is used as a
data representation [17], and preprocessing steps for noise sup-
pression, spectral whitening, and onset detection are utilized in
order to make the estimation system robust to noise and record-
ing conditions. A pitch salience function that is able to func-
tion in the log-frequency domain and utilizes tuning and in-
harmonicity estimation procedures is proposed and pitch can-
didates are selected according to their salience value. Theset of
candidates is refined using rules regarding the harmonic partial
sequence of the selected pitches and the temporal evolutionof
the partials, in order to minimize errors occurring at multiples



and sub-multiples of the actual F0s. For the spectral structure
rules, a more robust formulation of the spectral irregularity mea-
sure [17] is proposed, taking into account overlapping partials.
For the temporal evolution rules, a novel feature based on the
common amplitude modulation (CAM) assumption [11] is pro-
posed in order to suppress estimation errors in harmonically-
related F0 candidates. Experiments were performed on the
MAPS database [5] using over 8000 classical, jazz, and random
piano chords, produced by 9 different piano types and recording
conditions. Results indicate that the proposed system outper-
forms the state-of-the-art approaches developed in [5] and[8]
for the same experiment.

The remainder of the paper is as follows. In Section 2, the
preprocessing steps used in the proposed system are described.
The multiple frequency estimation system is detailed in Section
3. In Section 4 the employed dataset is presented, the experi-
mental procedure is described, and results are discussed. Con-
cluding remarks are drawn and future directions are pointedout
in Section 5.

2. Preprocessing
In this section, the preprocessing steps employed by the pro-
posed multiple-F0 estimation system are described. These steps
can also be seen in a diagram for the proposed system, which is
displayed in Figure 1.

2.1. Resonator Time-Frequency Image

Firstly, the overall loudness of the time-domain input signal
x[n] is normalized to 70dB level. As a time-frequency repre-
sentation, the RTFI was used [17]. The RTFI selects a first-
order complex resonator filter bank to implement a frequency-
dependent time-frequency analysis. It can be formulated as:

RTFI(t,ω) = s(t) ∗ IR(t, ω) (1)

where
IR(t, ω) = r(ω)e(−r(ω)+jω)t. (2)

s(t) stands for the input signal,IR(t, ω) is the impulse response
of the first-order complex resonator filter with oscillationfre-
quencyω andr(ω) is a decay factor which additionally sets the
frequency resolution.

For the specific experiments, a RTFI with constant-Q res-
olution is selected for the time-frequency analysis, due toits
suitability for music signal processing techniques, because the
inter-harmonic spacing is the same for all pitches. The time
interval between two successive frames is set to 40ms, which
is typical for multiple-F0 estimation approaches [9]. A sam-
pling rate of 44100Hz is considered for the input samples and
the centre frequency difference between two neighbouring fil-
ters is set to 10 cents (the number of bins per octaveb is set to
120). The frequency range is set from 27.5Hz (A0) to 12.5kHz
(which reaches up to the 3rd harmonic of C8). The employed
absolute value of the RTFI will be denoted asX[n, k], wheren
is the time frame andk the frequency bin.

2.2. Spectral Whitening and Noise Suppression

Spectral whitening is employed in order to flatten the dynamic
range of the RTFI bins. Here, a modified version of the real-
time adaptive whitening method proposed in [14] is applied.
Each band is scaled, taking into account the temporal evolution
of the signal, while the scaling factor is dependent only on past

frame values and the peak scaling value is exponentially decay-
ing. The following iterative algorithm is applied:

Y [n, k] =

{

max(|X[n, k]|, c, aY [n− 1, k]), n > 0

max(|X[n, k]|, c), n = 0

X[n, k] ←
X[n, k]

Y [n, k]
(3)

wherea is the peak scaling value andc is a floor parameter.
In addition, a noise suppression approach similar to the one

in [10] was employed, due to its computational efficiency. A
half-octave span (60 bins) moving median filter is computed
for X[n, k], resulting in noise estimateN [n, k]. Afterwards,
an additional moving median filterN ′[n, k] of the same span
is applied, but only including the RTFI bins whose amplitude
is less than the respective amplitude ofN [n, k]. This results
in making the noise estimateN ′[n, k] robust in the presence of
spectral peaks that could affect the noise estimateN [n, k].

2.3. Onset Detection

In order to select the steady-state area of the produced note(s),
a spectral flux-based onset detection procedure is applied.The
spectral fluxmeasures the magnitude changes in each frequency
bin which indicate the attack parts of new notes [2]. It can be
used effectively for onset detection of notes produced by per-
cussive instruments such as the piano, but its performance de-
creases for the detection of soft onsets [1]. For the RFTI, the
spectral flux using the L1 norm can be defined as:

SF [n] =
∑

k

HW (|X[n, k]| − |X[n − 1, k]|) (4)

whereHW (x) = x+|x|
2

is a half-wave rectifier. The resulting
onset strength signal is smoothed using a median filter with a3
sample span (120ms length), in order to remove spurious peaks.
Onsets are subsequently selected fromSF [n] by a selection of
local maxima, with a minimum peak distance of 120ms. Af-
terwards, the frames located between 100-300ms after the on-
set are selected as the steady-state region of the signal andare
averaged over time, in order to produce a robust spectral repre-
sentation of the produced notes.

3. Proposed System
The algorithm that was created for multiple-F0 estimation ex-
periments is described in this section. A diagram showing the
stages of the proposed system is displayed in Figure 1.

3.1. Salience Function Generation

In the linear frequency domain, considering a pitchp of a pi-
ano sound with fundamental frequencyf0p and inharmonicity
coefficientβp, partials are located at frequencies:

fhp = hf0p
√

1 + (h2 − 1)βp (5)

whereh ≥ 1 is the partial index [9, 13]. Consequently in the
log-frequency domain, considering a pitchp at bin k0p, over-
tones are located at bins:

khp = k0p +

⌈

b · log2(h) +
b

2
log2

(

1 + (h2 − 1)βp

)⌋

(6)

whereb = 120 refers to the number of bins per octave.
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Figure 1: Diagram for the proposed multiple fundamental frequency estimation system.

A pitch salience functions[p, dp, βp] operating in the log-
frequency domain is proposed, which indicates the strengthof
pitch candidates:

s[p, dp, βp] =

H
∑

h=1

max
mh

{

Z[khp + dp,mh]

}

(7)

where

Z[k,mh] =

√

X

[

k +

⌈

bmh +
b

2
log2(1 + (h2 − 1)β)

⌋]

(8)
and mh specifies a search range around overtone posi-
tions, belonging to the interval(ml

h,m
u
h), where ml

h =

⌈ log2(h−1)+(M−1) log2(h)
M

⌋, mu
h = ⌈ (M−1) log2(h)+log2(h+1)

M
⌋.

M is a factor controlling the width of the interval, which for
the current experiments was set to 60. The salience function
is applied to the averaged steady-state representation shown in
Section 2.3.

While the employed salience functions in the linear fre-
quency domain (ie. [10]) used a constant search space for each
overtone, the proposed log-frequency salience function sets the
search space to be inversely proportional to the partial index.
The number of considered overtonesH is set to 11 at maxi-
mum. Tuning is also considered [15], with a tuning deviation
dp ∈ [−4, . . . , 4] for each pitch (thus having a tuning search
space of 80 cents around the ideal tuning frequency). The range
of the inharmonicity coefficientβp is set between0 and5·10−4 ,
which is typical for piano notes [13].

In order to accurately estimate the tuning factor and the
inharmonicity coefficient for each pitch, a two-dimensional
maximization procedure using exhaustive search is appliedto
s[p, dp, βp] for each pitchp ∈ [21, . . . , 108] in the MIDI scale
with k0p = 10(p − 21) + 1 (corresponding to a note range
of A0-C8). This results in a pitch salience function estimate
s′[p], a tuning deviation vector and an inharmonicity coefficient
vector. Using the information extracted from the tuning and
inharmonicity estimation,, a harmonic partial sequenceV [p, h]
for each candidate pitch and its harmonics (which contains the
RTFI values at certain bin) is also stored for further processing.

3.2. Spectral Structure Rules

A set of rules examining the harmonic partial sequence structure
of each pitch candidate is applied, which is inspired by work
from [1, 17]. These rules aim to suppress peaks in the salience
function that occur at multiples and sub-multiples of the actual
fundamental frequencies. In the semitone space, these peaks
occur at±{12, 19, 24, 28, . . .} semitones from the actual pitch.

A first rule for suppressing salience function peaks is set-
ting a minimum number for partial detection inV [p, h], similar
to [1, 17]. If p < 47, at least three partials out of the first six
need to be present in the harmonic partial sequence (since there
may be a missing fundamental). Ifp ≥ 47, at least four par-
tials out of the first six should be detected. A second rule con-
cerns the salience value, which expresses the sum of the square
root of the partial sequence amplitudes. If the salience value is
below a minimum threshold (set to 0.2 using the development
set explained in Section 4.1), this peak is suppressed. Another
processing step in order to reduce processing time is the reduc-
tion of the number of pitch candidates [5], by selecting onlythe
pitches with the greater salience values. In the current experi-
ments, 10 candidate pitches are selected froms′[p].

Spectral flatnessis another descriptor that can be used for
the elimination of errors occurring in subharmonic positions [5].
In the proposed system, the flatness of the first 6 partials of a
harmonic sequence is used:

F l[p] =

6

√

∏6
h=1 V [p, h]

∑
6

h=1
V [p,h]

6

(9)

The ratio of the geometric mean ofV to its arithmetic mean
gives a measure of smoothness; a high value ofF l[p] indicates
a smooth partial sequence, while a lower value indicates fluc-
tuations in the partial values, which could indicate the presence
of a falsely detected pitch occurring in a sub-harmonic position.
For the current experiments, the lowerF l[p] threshold for sup-
pressing pitch candidates was set to 0.1 after experimentation
using the development set, as described in subsection 4.1.

In order to suppress candidate pitches occurring at multi-
ples of the true fundamental frequency, a modified version of



thespectral irregularitymeasure formulated in [17] is proposed.
Considering a pitch candidate with fundamental frequencyf0
and another candidate with fundamental frequencylf0, l > 1,
spectral irregularity is defined as:

SI [p, l] =

3
∑

h=1

V [p, hl]−
V [p, hl − 1] + V [p, hl + 1]

2
(10)

The spectral irregularity is tested on pairs of harmonically-
related candidate F0s (wheref1 = lf0). A high value of
SI [p, l] indicates the presence of the higher pitch with funda-
mental frequencylf0, which is attributed to the higher energy
of the shared partials between the two pitches compared to the
energy of the neighbouring partials off0.

In this work, theSI is modified in order to make it more
robust against overlapping partials that are caused by non-
harmonically related F0s [16]. Given the current set of can-
didate pitches froms′[p], the overlapping partials from non-
harmonically related F0s are detected as in [16] and smoothed
according to thespectral smoothnessassumption, which states
that the spectral envelope of harmonic sounds should form
a smooth contour [8]. For each overlapping partialV [p, h],
an interpolated valueVinterp[p, h] is estimated by perform-
ing linear interpolation using its neighbouring partials.Af-
terwards, the smoothed partial amplitudeV ′[p, h] is given by
min(V [p, h], Vinterp[p, h]), as in [8]. The proposed spectral ir-
regularity measure, which now takes the form of a ratio for in
order to take into account the decreasing amplitude of higher
partials, is thus formed as:

SI ′[p, l] =
3

∑

h=1

2 · V ′[p, hl]

V ′[p, hl − 1] + V ′[p, hl + 1]
(11)

For each pair of harmonically-related F0s (candidate pitches
that have a pitch distance of±{12, 19, 24, 28, . . .}) that are
present ins′[p] , the existence of the higher pitch is determined
by the value ofSI ′ (for the current experiments, a threshold of
1.2 was set using the development set).

3.3. Temporal Evolution Rules

Although theSI and the spectral smoothness assumption are
able to suppress some harmonic errors, additional information
needs to be exploited in order to produce more accurate esti-
mates in the case of harmonically-related F0s. In [16], tempo-
ral information was employed for multiple-F0 estimation using
the synchoronicity criterion as a part of the F0 hypothesis score
function. There, it is stated that the temporal centroid fora har-
monic partial sequence should be the same for all partials. Thus,
partials deviating from their global temporal centroid indicates
an invalid F0 hypothesis. Here, we use thecommon amplitude
modulation(CAM) assumption [6, 11] in order to test the pres-
ence of a higher pitch in the case of harmonically-related F0s.
CAM assumes that the partial amplitudes of a harmonic source
are correlated over time and has been used in the past for note
separation given a ground truth of F0 estimates [11]. Thus, the
presence of an additional source that overlaps certain partials
(eg. in the case of an octave where even partials are overlapped)
causes the correlation between non-overlapped partials and the
overlapped partials to decrease.

To that end, tests are performed for each harmonically-
related F0 pair that is still present ins′[p], comparing partials
that are not overlapped by any non-harmonically related F0 can-
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Figure 2: Salience function stages for an E♭4-G4-B♭4-C5-D5
piano chord. From top to bottom, the figures represent (i) The
raw salience function (ii) The salience function after the spectral
structure rules have been applied (iii) The salience function after
the temporal evolution tests have been applied.

didate with the partial of the fundamental. The correlationco-
efficient is formed as:

Corr[p, h, l] =
Cov(X[n, kp,1], X[n, kp,hl])

√

Cov(X[n, kp,1])Cov(X[n, kp,hl])
(12)

wherekp,h indicates the frequency bin corresponding to theh-
th harmonic of pitchp, n denotes the RTFI frame number,l the
harmonic relation (eg. for octavesl = 2), andCov(·) stands for
the covariance measure. Tests are being taken for each pitchp
and harmonicshl, using the same steady-state area used in sub-
section 2.3 as a frame range. If there is at least one harmonic
where the correlation coefficient for a pitch is lower than a given
value (in the experiments it was set to 0.8), then the hypothesis
for the higher pitch presence is satisfied. In order to demonstrate
the various refinement steps used in the salience function, Fig-
ure 2 shows the three basic stages of the multiple-F0 estimation
system for a synthesized E♭4-G4-B♭4-C5-D5 piano chord.

4. Evaluation
4.1. Dataset

The proposed multiple-F0 estimation system was tested on the
MIDI Aligned Piano Sounds (MAPS) database [5]. It con-
tains real and synthesized recordings of isolated notes, musical
chords, random chords, and music pieces, produced by 9 real
and synthesized pianos in different recording conditions,con-
taining around 10000 sounds in total. Recordings are stereo,
sampled at 44100Hz, while MIDI files are provided as ground
truth. For the current experiments, classic, jazz, and randomly
generated chords (without any note progression) of polyphony
levels between 1 and 6 were employed, while the note range
was C2-B6, in order to match the experiments performed in [5].
Each recording lasts about 4 seconds. A development set using
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Figure 3: Multiple-F0 estimation results (in F-measure) with
unknown polyphony, organized according to the ground truth
polyphony levelL.

2 pianos (consisting of 1952 samples) is selected while the other
7 pianos (consisting of 6832 samples) are used as a test set.

4.2. Figures of Merit

In order to evaluate the results of the proposed multiple-F0es-
timation system, the recall, precision, and F-measure are used:

P =
tp

tp + fp
, R =

tp

tp + fn
, F =

2PR

P +R
(13)

wheretp is the number of correctly estimated pitches,fp is the
number of false pitch detections, andfn is the number of missed
pitches. A set orP,R, F is generated for each recording. By
varying the system parameters, precision/recall (P /R) curves
can be created by placingR values on the x-axis andP values
on the y-axis.

4.3. Results

The performance of the proposed multiple-F0 estimation sys-
tem compared with the results shown in [5] is shown in Figure
3, organized according to the polyphony level of the ground
truth (experiments were performed with unknown polyphony).
The mean F-measures for polyphony levelsL = 1, . . . , 6 are
87.84%, 87.44%, 90.62%, 88.76%, 87.52%, and 72.96% re-
spectively. It should be noted that the subset of polyphony level
6 consists only of 350 samples of random notes and not of clas-
sical and jazz chords. As far as precision is concerned, reported
rates are high for polyphony levels 2-6, ranging from 91.11%
to 95.83%. The lowest precision rate is 84.25% forL = 1,
where some overtones were erroneously considered as pitches.
Recall displays the opposite performance, reaching 96.42%for
one-note polyphony, and decreasing with the polyphony level,
reaching 87.31%, 88.46%, 85.45%, and 82.35%, and 62.11%
for levels 2-6.

Comparing the results with the system in [5] (where the re-
ported F-measures for the same polyphony levels were 93%,
93%, 88%, 80%, 75%, and 63%), it can be seen that the pro-
posed system yields improved results for polyphony levels 3-6,
while falling back in the one- and two-note polyphony case. The
best improvement is reported forL = 5, which is about 12.5%.
The algorithm in [5] follows the same pattern whenP andR are
concerned, reporting highP rates for all polyphony levels and
decreasingR rates as polyphony increases. Additional exper-

iments were performed in [5] using the iterative spectral sub-
traction algorithm proposed by Klapuri in [8], which reached
F-measures of about 85%, 91%, 91%, 85%, 81%, and 72% for
L = 1, . . . , 6, respectively. In this case, the proposed system
performs better forL = 1, 4, 5, 6, reporting the best improve-
ment (6.5%) for the 5-note polyphony case, while the worst per-
formance difference is about 3.5% forL = 2.

In terms of a general comparison between the 3 systems,
a weighted F-measure was used, weighting the variousF for
polyphony levels 1-6 with their respective set size, since the
global F-measure was not reported in [5]. For the proposed
system, the actual globalF is 87.48%. For the algorithm in [5],
the estimated globalF is 83.70%, while for the algorithm of [8]
used in [5], it is 85.25%.

Concerning the statistical significance of the proposed
method’s performance compared to the methods in [5, 8], the
recognizer comparison technique described in [7] was em-
ployed. The number of pitch estimation errors of the two meth-
ods is assumed to be distributed according to the binomial law.
The error rate of the proposed method isp̂1 = 0.1252, while
the average error rate of the two methods in [5] isp̂2 = 0.1630
and p̂3 = 0.1475. Taking into account that the test set size
S = 6832 and considering 95% confidence (α = 0.05), it can
be seen that̂p2− p̂1 ≥ zα

√

2p̂/S, wherezα can be determined
from tables of the Normal law (z0.05 = 1.65) andp̂ = p̂1+p̂2

2
.

Likewise, it can be seen that̂p3 − p̂1 ≥ zα
√

2p̂/S, where in
this time p̂ = p̂1+p̂3

2
. This indicates that the performance of

the proposed multiple-F0 method is significantly better when
compared with the methods in [5,8].

Another issue for comparison is the matter of computa-
tional complexity, where the algorithm in [5] being reported to
require a process time of about 150×real time, while the pro-
posed system is able to estimate pitches faster than real time
(implemented in Matlab), with the bottleneck being the RTFI
computation; all other processes are almost negligible regarding
computation time. This makes the proposed approach attractive
as a potential application for automatic polyphonic music tran-
scription.

In [5], additional results are reported using a subset of
97 recordings which only contains octaves. The system in
[5] yielded an F-measure of 81%, while the algorithm in [8]
reached 77%. Here, the reported meanFoct is 84.59%, with
Poct = 90.59% andRoct = 84.12%. The improved perfor-
mance of the proposed system on octave detection could be at-
tributed to the octave presence tests that were performed using
theSI measure as well as on the temporal evolution tests using
the partial correlation. In contrast, the method in [5] usesthe
smoothness of the partial envelope as a pitch presence indica-
tion, which is not sufficient for detecting octaves. Additional
insight to the performance of the octave detection experiments
is given in the form of aP /R curve with varyingSI ′ in Figure
4. WhenSI ′ = 0.25, Foct reaches a value of 87.59%, while
when using theSI ′ threshold for the whole system theFoct

drops about 4%. When the value ofSI ′ reaches 5, the recall
drops to 50%, which indicates that only the lower pitches of the
octaves are selected.

5. Conclusions
In this work, a system for multiple fundamental frequency es-
timation of piano sounds was proposed. The constant-Q res-
onator time-frequency image was selected as a mid-level data
representation, while techniques for noise suppression, spec-
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tral whitening, and onset detection were employed in order to
make the subsequent analysis robust. A log-frequency salience
function was proposed, being able to handle tuning and inhar-
monicity estimation, while pitch candidates were selectedand
refined according to a set of rules based on spectral characteris-
tics. A novel procedure for suppressing errors by harmonically-
related F0s was proposed, using the common amplitude mod-
ulation assumption, which takes the form of partial correlation
tests. Experiments were performed on a large dataset of piano
recordings containing samples that were created using different
sources and recording conditions. The system reports increased
pitch estimation performance when compared to state-of-the-
art approaches. Statistical significance tests were carried out in
order to verify the proposed method’s superiority. In addition,
the system was able to address the octave detection problem by
employing tests on harmonically-related F0s.

In the future, experiments will be performed on datasets
consisting of various instrument types, such as the 30 instru-
ment random mixtures dataset used in [8]. To that end, au-
tomatic adaptation of the proposed system parameters accord-
ing to the spectral envelope shape and the partial evolutionof
the produced notes is necessary. It should be noted that, al-
though the method can be extended in order to cover several
instrument types, the detection of notes produced by extremely
inharmonic instruments such as marimba or vibraphone can-
not be supported by the current system. In addition, a robust
onset detection algorithm will be developed in order to accu-
rately detect soft onsets produced by pitched non-percussive
instruments. More emphasis will also be given to the matter
of correctly estimating the pitch of complex combinations of
harmonically-related notes, which still remains an open prob-
lem in the literature. Finally, the multiple-F0 estimationalgo-
rithm will be incorporated into an automated music transcrip-
tion system.
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