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Abstract

In recessions, the number of defaulting firms rises. On top of this, the average amount
recovered on the bonds of defaulting firms tends to decrease. This paper proposes an econo-
metric model in which this joint time-variation in default rates and recovery rate distributions
is driven by an unobserved Markov chain, which we interpret as the “credit cycle”. This
model is shown to fit better than models in which this joint time-variation is driven by ob-
served macroeconomic variables. We use the model to quantitatively assess the importance
of allowing for systematic time-variation in recovery rates, which is often ignored in risk
management and pricing models.
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RMC 2008 at NUS, BIS Stress Testing Workshop, ESEM 2007, and the CEMAF/ ISCTE - Nova Credit Risk
Conference, and seminar participants at the New York Fed and at Brandeis, as well as two anonymous referees
for helpful comments. Max Bruche gratefully acknowledges support from the Spanish Ministry of Science
and Innovation (grant SEJ-2005-08875) and the Consolider-Ingenio 2010 Project “Consolidating Economics”.
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1. Introduction

It has been noted that default probabilities and default rates (i.e. the fraction of defaulting
firms in the economy) and average recovery rates are negatively correlated (see e.g. Altman
et al. (2005); Acharya et al. (2007)). Both variables also seem to be driven by the same com-
mon factor that is persistent over time and clearly related to the business cycle: in recessions
or industry downturns, default rates are high and recovery rates are low (Figure 1).

[Figure 1 about here.]

This paper attempts to empirically characterize the time-series behaviour of default prob-
abilities and recovery rates distributions using an econometric model in which both depend
on an unobserved two-state Markov chain.1 The estimated states correspond to bad times, in
which default probabilities are high and recovery rates are low, and good times, in which the
reverse is true, so that we can interpret this Markov chain as a “credit cycle”.

We can use the estimated model to characterize systematic credit risk. For example, we
can explore the effect of allowing for time-variation in recovery rate distributions on estimates
of credit risk. Whereas time-variation in default probabilities is almost always taken into
account when calculating loss distributions or pricing credit-risk sensitive instruments, it is
often assumed that recovery rates are either constant, or that recovery rates are independent
of default probabilities. Given the negative relationship between default probabilities and
recovery rates, this seems likely to be a bad idea. From the point of view of a holder of
a diversified portfolio of corporate bonds the fact that recovery rates are low precisely in
situations in which many companies default is important because the negative relationship
between recoveries and default probabilities amplifies the risk of the portfolio. Moreover, it
appears that these amplified losses tend to occur in recessions, i.e. in situations in which the
marginal utility of the representative investor is high (or the return on the market portfolio is
low); the behaviour of recovery rates therefore amplifies systematic risk. It is clear that this
will not only have implications for risk measurement, but also for pricing, although we will
not discuss pricing in depth in this paper.2 Here, we ask the following question: By how much

1Since the Markov chain is unobserved it creates (unconditional) dependence between defaults across firms,
and between defaults and recovery rates, and therefore also plays a similar role to a dynamic frailty variable.
Dynamic frailty variables have been used in the context of defaults e.g. by Duffie et al. (2006).

2One can conjecture, for instance, that model-implied prices of instruments that depend heavily on the
systematic component of credit risk such as senior tranches of CDOs would be greatly affected by whether or
not the model allows for systematic variation in recovery rates.
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do you underestimate risk if you ignore the negative relationship between recovery rates and
default probabilities?

Other issues that can be addressed in the context of our model are in what way time-
variations in default probabilities and recovery rate distributions relate to the business cycle,
and whether recoveries on bonds of different seniorities vary in the same way over the cycle.

Related questions have been addressed in the literature. The relationship between default
probabilities and the business cycle, for example, has already been documented by e.g. Nick-
ell et al. (2000), who estimate different rating transition matrices for periods of high, medium
and low GDP growth and find that default probabilities especially seem to be affected, or
Bangia et al. (2002), who estimate separate rating transition matrices for NBER recessions
and expansions, and find that economic capital of banks should be about 30% higher in re-
cessions. Using firm-level data, Bonfim (2009) and Carling et al. (2007), also report that
when looking for default risk, taking into account macroeconomic conditions substantially
improves the results. However, none of these papers consider recovery rates.

Altman et al. (2005) regress average recovery rates on default rates and macroeconomic
variables, and find that recovery rates and default rates are closely linked, and that macroe-
conomic variables become insignificant once default rates are included as explanatory vari-
ables.3 They suggest that this might be due to inelastic demand for defaulted securities; their
hypothesis is that typical investors in defaulted securities (vulture funds) have limited ca-
pacity, and as a result, the price of defaulted securities falls by a large amount when many
defaults occur. In related work Altman et al. (2001) also try to calculate by how much the
99% VaR increases when taking into account the negative relation between recovery rates and
default rates. On the basis of a static model which is unrelated to their regressions, into which
they substitute guessed parameter values, they claim that the 99% VaR for a representative
portfolio might increase from a percentage loss of about 3.8% to 4.9% when moving from
a model in which recovery rates are constant to one in which there is negative dependence
between recovery rates and default probabilities.

Acharya et al. (2007) take an argument by Shleifer and Vishny (1992) as a starting point:
Suppose an industry is in distress and firms in this industry default. If the assets of the
defaulting firms consist of industry-specific assets, the firms best able to put these assets to
good use might also be experiencing problems, and hence might be unable to buy the assets.

3Grunert and Weber (2009) obtain similar results using data on loans in Germany.
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This could lead to low prices of these assets, and hence low recovery values. In a sense, this
argument is similar to that proposed by Altman et al. (2005), except that here, the resale price
of real assets is depressed whereas in the case of Altman et al. (2005), the resale price of
financial assets (the defaulted bonds) is depressed. Acharya et al. (2007) find that especially
in industries in which assets are very industry-specific, industry distress is related to low
recoveries, providing evidence for the hypothesis of Shleifer and Vishny (1992). They argue
that their results should have implications for pricing; which will of course only be the case if
industry distress is associated with aggregate fluctuations such that industry credit risk has a
systematic (and hence priced) component. Unfortunately, they do not investigate implications
of their results for systematic risk.

Chava et al. (2008) propose a combined model of default probability and recovery rates
to model expected losses. In their specification, default arrivals are governed by a contin-
uous hazard that depends on observable firm-specific and economy-wide covariates and an
unobserved industry-specific and constant frailty variable. Probit-transformed recovery rates
are modelled as a linear function of possible covariates and an error. In this approach, the
dynamics of recovery rate distributions and their relation to default rates are driven by time-
variation in observed covariates, whereas in our approach, this time-variation is driven by the
unobserved Markov chain, i.e. we essentially exploit the persistence in the factor that seems
to be driving both recovery rate distributions and default rates.

Using our approach, we find that a latent credit cycle describes default rates and recovery
rates relatively well. For instance, on the basis of a model that only uses bond seniority and
our latent cycle as explanatory variables, we calculate the out-of-sample rolling root mean
square error (RMSE) for predicted recovery rates in a similar manner to Chava et al. (2008)
(we use only past information to predict, whereas they use contemporaneous information
on their observed covariates). We obtain a value of 22.62%, which is similar to the lowest
RMSE of 22.88% that they achieve. This seems to indicate that an approach that utilizes the
persistence over time in aggregate recovery rates and default rates holds up well against one
based on observable covariates, although note that the datasets are not directly comparable.

We examine to which extent the latent “credit cycle” simply picks up macroeconomic
fluctuations by estimating versions of the model in which default probabilities and recovery
rate distributions also depend on macroeconomic and other economy-wide variables. We find
that macroeconomic variables in general are significant determinants of default probabilities
but not so for recovery rate distributions. However, the unobserved credit cycle variable is
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highly significant, whether or not macroeconomic variables are included, and the fit of the
model depends mainly on whether or not the unobserved credit cycle is included, and not on
whether or not macroeconomic variables are included. This indicates that recovery rates and
default rates are more tightly related to each other than to macroeconomic variables. Also, in
our model the beginning of the state with high default probabilities and low recoveries that
we interpret as a credit downturn precedes the start of a recession, and it can continue until
after the end of a recession. The average duration of a credit downturn is in the range of
3.8 years. In contrast, a typical estimate of the average duration of a recession would be in
the range of 4.1 to 4.7 quarters (Hamilton (1989)). It appears that the cyclicality in credit
variables is related to, but somewhat distinct from the macroeconomic cycle.

Given our estimated models, we can show that credit risk is much higher in a dynamic
model in which both default probabilities and recovery rates are allowed to vary, than in a
static model. For a well-diversified representative portfolio, the 99% VaR is a percentage
loss of about 3.4% in the dynamic case, as opposed to 2.4% in the static case. This increase
is due mainly to time-variation in default probabilities, however: In a model in which only
default probabilities vary over time, the 99% VaR is already about 3.3% (in contrast, in a
model in which only recovery rate distributions are allowed to vary over time, the 99% VaR
is about 2.3%, i.e. about equal to the VaR in the static case). This suggests that although
variation in recovery rate distributions over time does have an impact on systematic risk, this
impact is small relative to the importance of the time variation in default probabilities. Also,
in relative terms, it is much smaller than the impact suggested by the calculations of Altman
et al. (2001).

The rest of this paper is structured as follows: The model is presented in section 2. In
section 3 we describe the data set used. Section 4 discusses the various different versions of
the models we estimated and the estimation results, and section 5 explores the implications
for credit risk management. Finally, section 6 concludes.

2. The model

In terms of the data generating process, the model can be thought of as follows: Time
is discrete. In each period, the state of the credit cycle is determined by the evolution of
a two-state Markov chain. This implies that the dynamics of the state of the credit cycle
are parameterized by two probabilities, i.e the economy can either be in either state 1 or
state 0, and if the economy is in state 1 it will remain in this state with a probability p
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and move into state 0 in the next period with probability 1 − p. If it is in state 0, it will
remain in this state with probability q and move into state 1 with probability 1 − q. Given
the state of the credit cycle, the number of defaulting firms is then drawn using a state-
dependent default probability.4 For each defaulting firm, recovery rates are drawn from a
state-dependent recovery rate distribution.5

We assume that conditional on observable information and the unobserved state of the
credit cycle, defaults are independent, recoveries in different default events are independent
and the number of defaulting firms and recoveries are also independent. As a consequence,
unconditional dependence between default events (i.e. dependence when not conditioning
on the unobserved credit cycle) is driven entirely by the unobserved state of the credit cycle.
Intuitively, when the state of the credit cycle is not known, observing the default of company
A would make it more likely that the credit cycle is in a downturn, especially if we were to
observe a low recovery. This would increase the probability that we would attribute to seeing
company B default with a low recovery. The events of company A and company B defaulting
with low recovery are therefore not independent if we do not know the state of the credit
cycle. The credit cycle here plays a role very similar to a dynamic frailty variable; in the
context of defaults, dynamic frailty variables have been used previously e.g. by Duffie et al.
(2006).

In our case, we will be able to estimate the probability of being in either state of the
credit cycle by using either data on default rates, or data on recovery rates, or both, since both
default probabilities as well as recovery rate distributions vary with the cycle.

We make the following assumptions with respect to specific functional forms of default
probabilities and recovery rate distributions. Firstly, conditional on the state of the credit cy-
cle (and possibly other explanatory variables), the arrival of defaults is described by discrete
hazards of the form

λt = (1 + exp {γ0 + γ1ct + γ2Xt})−1 , (1)

where ct is the state of the cycle, a binary variable that is 0 or 1, and Xt represent other

4Note that our model of default probabilities is very similar to the model of Giampieri et al. (2005). They
do not model recovery rates, however.

5We do not impose the negative relationship between default rates and average recovery rates that is ap-
parent in the data as part of the model. This negative relationship does, however, emerge once the model is
estimated, which will allow us to label the state with high default rates and low recoveries, or low default rates
and high recoveries as a credit ‘downturn’ and ‘upturn’ respectively.
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variables that might or might not be included in various versions of the model - for example,
we might let hazards depend on log GDP growth.6,7 This functional form of the discrete
hazard has been used by Shumway (2001).

Secondly, we assume that the recovery rate yti for a default at time t of firm i is drawn
from a beta distribution. This distribution is well suited to modelling recoveries as it has
support [0, 1], is relatively flexible and requires only two parameters (which we call α and
β). It is in fact often used by rating agencies for this purpose (see e.g. Gupton and Stein
(2002)). We let the parameters of this beta distribution depend on the state of the cycle (ct)
and macroeconomic variables (Xt) as in the case of hazard rates, as well as the industry
sector of the firm (Zi) and the seniority of the instrument on which recovery is observed (S).
In order to ensure positivity of α, β, we choose an exponential specification:

αti = exp {δ0 + δ1ct + δ′2Zi + δ′3Zict + δ′4S + δ′5Sct + δ6Xt} (2)

βti = exp {ζ0 + ζ1ct + ζ ′2Zi + ζ ′3Zict + ζ ′4S + ζ ′5Sct + ζ6Xt} (3)

We obtain a likelihood function of the model as described in Appendix A by employing
a slightly modified version of the method proposed by Hamilton (1989).

3. Data

The recovery data and the information on the defaulting firms is extracted from the
Altman-NYU Salomon Center Corporate Bond Default Master Database. This data set con-
sists of more than 2,000 defaulted bonds of US firms from 1974 to 2005. Each entry in the
database lists the name of the issuer of the bond (this means that we can determine its indus-
try as described by its SIC code), the date of default, the price of this bond per 100 dollars of
face value one month after the default event, and a ‘bond category’.

The bond category is one of either Senior Secured, Senior Unsecured, Senior Subordi-
nated, Subordinated or Discount. Altman and Kishore (1996) and Altman et al. (2005) label
this bond category as ‘seniority’, and we will follow this convention here. It should be pointed

6Since we do not want to specify laws of motion for macroeconomic variables, we interpret the likelihood
estimates as partial likelihood estimates whenever these variables are included in the different versions of the
model.

7Note that we do not include firm-specific determinants of default probabilities, although it would be pos-
sible to do so in this framework. This is due to limitations of our data, which we discuss in the next section.
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out, though, that it also appears to contain information on the presence or absence of collat-
eral (Senior Secured versus the other categories), and the type of coupon (Discount versus
the other categories), which we will take into account when interpreting results.

Typically, for a given firm and date, the database contains the prices of many bonds for a
given seniority class, so we need to aggregate. We do this by taking averages (weighted by
issue size).8

To abstract from having to model the dependence between recoveries on different senior-
ities for a single default event, we retain only the most senior recovery rate observation for
each default event.9

We also aggregate data across time into periods corresponding to calendar years.10 We
assume that a default of the same firm within twelve months of an initial default event (e.g.
in December and then March of the following year) represent a single default event.

We calculate the recovery rate as the post-default price divided by the face value. Some
of the recovery rates calculated in this way are larger than 1. This probably reflects the value
of coupons. We scale the recovery rates by a factor of .9 to ensure that our observations
lie in the support of the beta distribution. We could achieve the same effect by defining our
distribution to be a beta distribution over the support that equals the range of our actual data.

The data set does not contain information on the non-defaulting issuers that are implicitly
tracked. To calculate the likelihood of observing a given number of defaults in a given period
(cf. equation [4]), we need at least the total size of the population of firms from which the
defaults are drawn (or equivalently, the number of non-defaulting firms). Since the Altman
data provides comprehensive coverage of defaults of US corporate bond issuers, we use US
corporate bond issuer default rates provided by Moody’s to obtain this number.11 Dividing
the number of defaulting firms in each year in the Altman data by Moody’s (issuer-weighted)
default rate, we can obtain a number for the total population of firms under the assumption

8This is something commonly done in the literature. See for example Varma and Cantor (2005).
9In previous versions of this paper, we explored several ways of modelling this dependence. Different

assumptions on this dependence do not affect the conclusions of the paper, so for the sake of simplicity we do
not treat this here. Results are available from the authors on request.

10We have to aggregate to calendar years rather than quarters because our default rate data is annual. In
a lot of applications, e.g. the Basel II regulatory framework, the risk measures of interest are annual and not
quarterly.

11Note that Altman’s definition of default and Moody’s new definition of default coincide. In both cases,
default is one of the following events: a failure to pay (except if cured in a grace period), bankruptcy, or a
distressed exchange. The default rates that we have are based on Moody’s new definition of default.
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that both data sets track the same set of firms, or that both data sets exhibit the same default
rate.12 The available default rate data ranges from 1981 to 2005, so we lose observations
from periods 1974-1980. However, these years cover only 9 observations in the Altman data.

After all adjustments, we obtain a combined data set which is structured as follows: We
have 25 years of data. In each year, we know the size of the population of firms, and know
the subset of the firms which default. For each of our 898 default events, we observe one
recovery.13

In some of our specifications we let default probabilities and recovery rate distributions
depend on macroeconomic and economy-wide variables. We use GDP, investment growth,
and unemployment; the first two variables are extracted from NIPA tables, provided by the
Bureau of Economic Analysis of the United States, while unemployment data comes from the
Bureau of Labor Statistics of the U.S. Department of Labor. We also use annual returns of the
Standard & Poor’s 500 index, annual realized volatility of the Standard & Poor’s 500 index,
the VIX volatility index (all obtained from Yahoo Finance), the slope of the term structure
(the 10-year yield minus 2-year yield, obtained from the Federal Reserve website), corporate
bond spreads (Baa rate minus Aaa rate, obtained from the Federal Reserve website), and
NBER recessions as published by the NBER.

An important caveat of our analysis is related to the fact that we do not have firm-specific
information on the non-defaulting firms, which implies that we cannot estimate default prob-
abilities that depend on firm-specific information. This means that we can only make state-
ments about aggregate default risk. Since we have firm- and security-specific information
for defaulting firms, we can make some statements about specific recovery risk. The lack of
firm-specific information on non-defaulting firms, does, however, limit the extent to which
we can decompose the combined aggregate risk into its constituents.

4. Estimation results

In this section, we compare various estimated versions of the model across several dimen-
sions.

12Previous versions of this paper used Standard & Poor’s global issuer-weighted default rates, which are
calculated on the basis of defaults of both bond and loan issuers. The results on the basis of this data are similar.

13Tables with summary statistics are available at http://fmg.lse.ac.uk/∼max/recoveries.html
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Macroeconomic variables versus the cycle. We address the question of whether our “credit
cycle” is more or less useful than macroeconomic variables in explaining default rates and
recovery rates by comparing a completely static version of the model (Model 1) in which λt,
αti and βti do not vary (cf. equations [1],[2],[3]) with versions in which these parameters
are either functions of the unobserved credit cycle (Model 2) or macroeconomic variables
(Model 3), or both (Model 4). In order to check the fit of the different versions, we report
Akaike information criteria and the Bayesian information criteria in addition to the parameter
estimates in Table 1.

[Table 1 about here.]

It can be seen that introducing an unobserved credit cycle (Model 2) leads to a great
improvement in fit over a completely static model (Model 1) as measured in terms of the
information criteria. The coefficients on the cycle are highly significant. We also check the
recovery rate densities implied by the models using a method proposed by Diebold et al.
(1998). The basic idea is that applying the probability integral transform based on the pre-
dicted (filtered) distributions to the actual observations (the recovery rates in our case) should
yield an i.i.d.-uniform series (the PIT series) under the null hypothesis that the density fore-
casts are correct. The correlograms and QQ-plots of PIT series indicate that the model with
the unobserved credit cycle does a much better job at matching the time-variation in recovery
rate distributions.14

Including a macroeconomic variable instead of the cycle, in this case log GDP growth
(Model 3), also produces an improvement over the fit of the static model (Model 1), but it
can be seen that this improvement is much more modest. Although log GDP growth is a
significant determinant of default probabilities, it is not a significant determinant of recovery
rates. In terms of the BIC, which strongly favours more parsimonious models, the model
with constant and cycle (Model 2) fits even better than the model with constant, cycle and log
GDP growth (Model 4).

We also ask whether the cycle is necessary at all, and compare a model in which we have
only log GDP growth as an explanatory variable (Model 3) to one in which we have log GDP
growth and the cycle as explanatory variables (Model 4). Like Duffie et al. (2006) we can

14A more detailed description of how we apply this test as well as the corresponding plots are available on
request from the authors or at http://fmg.lse.ac.uk/∼max/recoveries.html
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calculate the Bayes factor, which is twice the difference in the log likelihood of the model
with the latent variable (Model 4 in this case) and the log likelihood of the model without
the latent variable (Model 3 in this case). This statistic is on the same scale as the likelihood
ratio test statistic, but has a Bayesian interpretation. Duffie et al. (2006) cite literature that
suggests that a Bayes Factor between 2 and 6 provides positive evidence for the model with
the latent variable, and a Bayes factor between 6 and 10 suggest strong evidence. Our Bayes
Factor is 267.81, which indicates very strong evidence in favor of the model that includes the
latent cycle.

We also compare a version of Model 3 against a version of Model 4 with a frequentist test.
Note that under the null that the cycle is not necessary, some coefficients, and the transition
probabilities are not identified, which means that standard asymptotic results do not apply.
We therefore use the test proposed by Hansen (1992) (cf. also Hansen, 1996), where in both
models we drop some interactions terms for reasons of computational feasibility.15 The p-
value of the test statistic is 0.0029, which given the conservative nature of this test is very
strong evidence against the null that the cycle does not matter.

The picture looks very similar for the other macroeconomic and economy-wide vari-
ables that we considered (unemployment, investment, the slope of the nondefaultable term-
structure, the S&P 500 return, the realized volatility of the S&P 500 return, the VIX, an
NBER indicator, corporate bond spreads, and lagged default rates and lagged recovery rates
in the specification of default rates and recovery rate distributions respectively).16

We interpret this as saying that the default rate and recovery rates are much more tightly
related to each other than to macroeconomic variables; or that there is more information in
recovery rates about default rates, and vice versa, than there is information in e.g. log GDP
growth about default rates. These results are consistent with those of Altman et al. (2005).

We also calculate the out-of-sample RMSE of our recovery rate predictions in a similar
manner to the calculation performed by Chava et al. (2008), using the expected recovery rate
of Model 2 (we use only past information to predict, whereas they use contemporaneous in-
formation on their observed covariates). We estimate the model on the data up until 1996,

15The test requires restricted estimation at each point of a grid whose dimension depends on the number of
unidentified parameters. Through dropping interactions of the cycle with other variables in Model 4, we reduce
the dimensionality of the grid from 29 to 5. Following Hansen, for each transition probability we consider 10
values, and for each coefficient 20 values. We also drop interactions of log GDP growth with other variables in
Model 3 and Model 4 to speed up estimation for each point on the grid.

16We only report results for log GDP growth here, other results are available from the authors on request.
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predict the state of the credit cycle for 1997 given the information up until 1996, and calculate
the expected recovery rate under the model for each recovery rate observation in 1997, and
calculate the corresponding prediction error. We then roll the estimation forward, estimate
using data up until 1997, and predict recovery rates for 1998, and so on. The RMSE for
these out-of-sample predictions is 22.62%, which is similar to the lowest RMSE of 22.88%
obtained by Chava et al. (2008). Although these numbers are probably not directly compa-
rable since they are based on different datasets, it is still interesting that the relatively simple
Model 2 seems to do as well on the basis of past information as the more complicated models
proposed by Chava et al. (2008) based on contemporaneous information on many interesting
observed firm-specific, security-specific and economy-wide covariates.

To qualify how the dynamics of macroeconomic variables differ from the dynamics of
credit variables, we plot the smoothed (i.e. based on the full dataset) probabilities of being
in the state of the Markov chain which we label as a credit downturn over time and compare
these to NBER recession dates in Figure 2 (this state is associated with a higher default
probability and a lower mean recovery).17

As can be seen, we do not pick up the recession of 1981, probably because although
average recovery rates are very low for 1981, default rates are also very low in our data, and
we only have a single recovery observation for this year. It can be seen that the credit cycle as
measured by our Markov chain had two major downturns, around the recession of the early
90s and around 2001, but in each case, the credit downturn started before the recession, and
in the latter case ended after it.

[Figure 2 about here.]

To further investigate the difference in timings of credit and business cycle downturns,
we check whether one of the credit variables leads the business cycle by running bivariate
Granger causality test of default rates and log GDP growth, as well as average recovery rates
and log GDP growth. While there appears to be no Granger causality in either direction
between default rates and log GDP growth for our data, we find that average recovery rates at
lags of 1 year, or in terms of quarterly data at lags of 2 and 4 quarters strongly Granger-cause
log GDP growth.

17The procedure for calculating the smoothed probabilities is described in Appendix A.
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In the following, we drop macroeconomic explanatory variables from our specifications
and focus on models that contain only the credit cycle as a time-varying variable. This pro-
duces relatively parsimonious models that still manage to capture the dynamics of our credit-
related variables.18

Default Rates. In the static model (Model 1), the model-implied default probability is con-
stant at 2.10%. In one version of a model including a cycle (Model 2), the default probability
in downturns is 3.36% and 1.20% in upturns (these are similar in all models that include a
cycle).

To check the goodness of fit of the cycle-implied default rates, we regress observed default
rates on a constant and estimated default probabilities of Model 2. These estimated default
probabilities are obtained by mixing, for each period, the default probabilities of both states
where the weightings are the (smoothed) probabilities of being in one state or the other. Given
the coefficients of this regression we can test the default rate component of both the static and
dynamic model. The null hypothesis for the dynamic model (that Model 2 correctly captures
time-variation in default rates) is that the constant and the coefficient of the estimated default
probability are equal to zero and one respectively. The p-value associated with this restriction
is 0.9540, indicating that this null is not rejected.19 We also explicitly consider restricting the
coefficient of the estimated default probability to zero, and letting the constant be unrestricted.
This restriction would correspond to the static model (Model 1). The p-value associated with
this restriction is less than 10−5, indicating that the static model (Model 1) does not describe
the data well.

Seniority (bond category). We can examine the behaviour of recovery rate distributions for
different seniorities over the cycle on the basis of Model 2, where here we use the rather
broad definition of seniority used by Altman and Kishore (1996) and Altman et al. (2005),
i.e. their ‘bond category’ which also includes information on the presence of collateral and
coupons (see Section 3 for details).

We can distinguish two types of default events in our data, one for which we observe

18Note that this also has the effect of simplifying forecasting. In order to forecast from models that use
macroeconomic variables as covariates we would need to posit an appropriate law of motion for these variables,
an issue which we avoid here.

19The p-values are those of standard t-tests. In order to verify that these are appropriate, we bootstrapped
the t-statistics of the regression to confirm that they do indeed follow a t-distribution.
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only a single recovery associated with a given default event, and one for which we observe
multiple recoveries of different seniority classes associated with the default event. As we
have stated before, we only use the most senior recovery for estimating the model when we
observe more than one recovery for a given default event. However, we create a dummy
which is one in case we observe multiple recoveries for a default event, and interact this
dummy with the seniority dummies. The idea here is that seniority can mean different things
depending on the debt structure of the firm. For example, the recovery on a Senior Unsecured
bond might be higher in situations where we also observe recovery on a junior bond, since in
this case the first losses are taken by the holders of the junior bond; the junior bond performs
the role of a “junior debt cushion”.

[Table 2 about here.]

We calculate the average recoveries implied by our estimates for different seniority classes
for all types of events in Table 2. We can see for example that in default events where recovery
is observed only on a single bond, senior unsecured bonds have a higher recovery in upturns
on average (47.3%), they have very similar (low) recoveries to bonds of all other seniorities
in downturns (31.6%). Similarly to e.g. Acharya et al. (2007), we also find that this effect
is more pronounced for senior securities. Acharya et al. (2007) also provide evidence that in
their data, the effect is not present if the debt is secured. Comparing our estimated recoveries
on Senior Secured bonds and Senior Unsecured bonds in both states of the cycle, we find that
in our data, senior debt is more strongly affected by a credit downturn if it is secured. The
difference in results might be due to differences in the definition of secured debt, or due to
differences between industry distress as defined by Acharya et al. (2007) and the credit cycle
as defined here.

Lastly, one would expect that a “junior debt cushion” in a given default event matters
especially for Senior Unsecured bonds, since in this case, all bonds share the same collat-
eral and any losses are first borne by the junior bond(s). Conversely, for a Senior Secured
bond the existence of a “junior debt cushion” should matter less, since in this case, the Se-
nior Secured bond has bond-specific collateral. Surprisingly, the existence of a “junior debt
cushion” seems to matters (in upturns) for secured debt, but not for unsecured debt; we can
see that Senior Secured bonds recover more in upturns in situations in which a junior bond
exists (74.1% versus 55.9% in upturns), whereas the recoveries on Senior Unsecured bonds
are not really affected by whether or not a junior bond exists. To check that this is a feature
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of the data and not an artifact of any modeling assumption, we also regress recoveries of
Senior Secured bonds on a constant and a dummy that is one if a cushion exists (a recovery
is observed on another bond). For our data the estimated coefficients are 39.1% and 11.6%
on the constant and on the dummy respectively, implying that recoveries on Senior Secured
bonds are 39.1% on average if no cushion exists, and 50.7% on average when some type of
cushion does exist. The coefficient on the dummy is also significant at 1%. This does appear
to be a feature of the data.

Industry. Lastly, we also consider the industry of the issuer as an additional explanatory
variable for αti and βti. Since for some industries, we have a very low number of recov-
ery and default observations in upturns, we aggregate industries into three groups: Group
A: Financials, Leisure, Transportation, Utilities; Group B: Consumer, Energy, Manufactur-
ing, Others; and Group C: Construction, Mining, Services, Telecoms. For our data, these
groupings roughly correspond to industries with high, medium and low mean recovery rates
respectively.20 All industry groups show recovery rate distributions that vary over the cy-
cle. In terms of the AIC, the model with industry groupings is slightly better than the model
that only relies on the credit cycle (Model 2) or the model that relies on the credit cycle and
macroeconomic explanatory variables (Model 4). In terms of the BIC, which strongly favours
more parsimonious models, the model that only relies on the credit cycle (Model 2) still is
the best model.

5. Implications for risk management

Altman et al. (2005) cite previous work (Altman et al., 2001) that states that allowing for
dependence between default rates and recovery rates produces a 99% VaR of a percentage
loss of about 4.9% for a representative portfolio, whereas the VaR which is calculated on
the basis of a model that assumes no dependence between default rates and recovery rates is
around 3.8%. In relative terms, this is an increase of around 29% in the VaR. These number
are based on a very simple static model into which they substitute guessed parameter values.
We are in a position to compare the VaR calculated when assuming recovery rate distributions
are either static or time varying, but on the basis of an estimated model.

20The groupings were chosen to minimize the LR statistic of a test that restricts the coefficients on industry
dummies to be the same within these groupings, i.e. to choose the most likely grouping given the data. The
p-value of the likelihood ratio test for the given groupings is 10%.

15



We calculate (by simulation of 50,000 paths) the one-year loss distribution of a hypo-
thetical portfolio of 500 senior unsecured bonds, issued by 500 separate issuers that are rep-
resentative of the firms in our dataset. We compare the 99% VaR assuming that the bonds
in the portfolio are either well described by a static model (Model 1) or by dynamic model
which includes the credit cycle as an explanatory variable, where we look at a version of the
model in which both default probabilities and recovery rates are functions of the credit cycle
(Model 2), and a version in which only default probabilities are a function of the credit cycle
and recovery rate distributions are static (Model 2a), and only recovery rate distributions are
a function of the credit cycle and default probabilities are static (Model 2b). This allows us
to examine the impact on risk calculations of ignoring the time-variation either in recovery
rate distributions or in default probabilities.

Note that when estimating the models, the identification of the state can come either
through recovery rates, or through the default rate, or through both. If we assume that re-
covery rate distributions vary, but default probabilities are constant over the cycle, the state
is identified only through the time-variation in recovery rate distributions. Intuitively, this
is the case because the number of defaults (or the default rate) in this case does not con-
tain information about the state of the cycle (for a mathematical argument, see Appendix B).
Conversely, if we assume that default probabilities vary with the cycle, but recoveries do not,
then the state is identified only via the variation in the number of defaults (the default rate).
When we estimate Models 2, 2a and 2b, the smoothed probabilities of being in either state as
well as the transition probabilities vary very little across the models, even though identifica-
tion is coming through different subsets of the variables. This reflects the close link between
recovery rates and default rates evident e.g. in Figure 1.

Once the models are estimated, we can simulate from them. For this we have to choose
the probability that we attach to being in a credit downturn today. We examine cases with this
probability being equal to one (we know that we are in a downturn today), zero (we know that
we are in an upturn today) and 33.5%, which corresponds to the unconditional probability of
being in a downturn, given our estimated transition probabilities, i.e. under the assumption
that we have no information on the current state of the cycle. The 99% VaRs calculated in
this fashion are in Table 3.

A representative loss density, the one implied by the dynamic model (Model 2) based on
the unconditional probability of being in a downturn is compared to the loss density implied
by the static model (Model 1) in Figure 3. The dynamic model loss density is bimodal, re-
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flecting the possibility of ending up either in an upturn with low default probabilities and high
recoveries, or ending up in a downturn, with high default probabilities and low recoveries.
As can be seen, the tail of the loss distribution implied by the dynamic model is much larger.

[Figure 3 about here.]

Table 3 shows that the 99% VaR ranges from a loss of 3.2% to a loss of 3.7% of the
portfolio assuming the world is dynamic as described in Model 2, versus a 2.4% loss on the
portfolio if we had assumed that the world is static as in Model 1. Even supposing that we are
in an upturn today, in which case losses over one year are likely to be smaller, the dynamic
model (Model 2) still produces a 99% VaR of 3.2%, which is larger than the VaR based on
the static model (Model 1). This is because in the dynamic model, even though we are in
an upturn today, we might go into a credit downturn tomorrow, with the associated higher
default rates and lower recoveries.

[Table 3 about here.]

How much of this extra risk in the dynamic model is due to the variation in recovery rates,
though? Assuming that recovery rates are drawn independently from distributions that do not
vary over time, or that recovery rates are static parameters is very common in pricing and
risk management applications. We therefore also calculate the loss distribution on the basis
of Model 2a, which assumes that recovery rate distributions are constant, but that default
probabilities vary with the credit cycle. The 99% VaR produced by this Model 2a ranges from
3.0% to 3.4%, which is only slightly lower than the VaR produced by the fully dynamic model
(Model 2). Suppose we focus on the case in which we assume that the probability of being in
an upturn initially is equal to the unconditional probability of being in an upturn. Going from
a model in which both default probabilities and recovery rate distributions are static to one in
which default probabilities and recovery rate distributions vary with the cycle increases the
VaR by a factor of 1.42 or by 42%. We can decompose this increase by comparing VaRs
of Model 1, 2 and 2a. We can see that of these 42%, 37% are due to letting the default
probabilities vary, and only about 5% are due to the additional amplification effect of letting
recovery rates vary over the cycle as well. Although not negligible, it is smaller than the 29%
suggested by the calculations of Altman et al. (2001).21

21If we focus on the case in which we assume that that we are in a downturn, the amplification effect is
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Conversely, we can estimate a model in which default probabilities are constant, but re-
covery rate distributions vary over the cycle (Model 2b). The VaR that this model produces
is essentially the same VaR of the static model, indicating again that the variation in default
probabilities over the cycle has a larger impact on losses than the variation in recovery rate
distributions.

For different seniorities, or looking at the model that includes industry group dummies
the picture looks very similar, so we do not report the corresponding VaRs here. Essentially,
it appears that although the time-variation in recovery rate distributions does amplify losses,
quantitatively speaking, having about 3-4 times the number of defaulting firms in downturns
is more important than losing an extra 15% or so per default in downturns.

We can also phrase this point in the context of the expected loss on a portfolio (for this,
we do not even need our estimated models). Altman et al. (2001) suggest the following nu-
merical example: Suppose that the default probability in upturns is rU = 2% and the default
probability in downturns is rD = 10%, and the loss given default (1 minus the recovery rate)
is a constant LU = 30% in upturns and a constant LD = 70% in downturns. Assume the
probability of being in an upturn is 1/2.

The expected loss for a large portfolio, calculated using the assumption that there is no
relationship between loss given default and default probability would be

expected loss = E[L]× E[r] = 6%× 50% = 3%.

Of course, expected loss and default probability are related here through the state of the cycle.
Taking this into account, we have

expected loss = E[L× r] = LU × rU ×
1

2
+ LD × rD ×

1

2

=
1

2
× 30%× 0.02 +×70%× 0.1 = 3.8%

The difference is E[L × r] − E[L] × E[r] = 80bp. We could calculate this on the basis of
our estimated models, but note that this difference is just the covariance of L and r, E[Lr]−
E[L]E[r] = Cov(L, r). If the annual default rate is a reasonable estimator of the annual
default probability, and the annual average recovery rate is a reasonable estimator of 1 minus
the annual loss given default, then the sample covariance between these two quantities in our

larger, but still not as large as the one suggested by Altman et al. (2001). The VaR increases by 54.2% in going
from Model 1 to Model 2, of which 12.5% are due to letting recovery rates vary.
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data can be interpreted as an estimator of this difference in expected losses. This covariance
is 6bp (rather than 80bp, as suggested by the above calculation) in our data. This indicates
that the amplification effect of recovery rates on expected loss is relatively small.

6. Conclusions

This paper proposes and estimates an econometric model of the systematic time-variation
in recovery rate distributions and default probabilities. On the basis of our estimated model,
we can state that the time-variation in recovery rate distributions does amplify risk, but that
this effect is much smaller than the contribution of the time variation in default probabilities
to systematic risk. We also present evidence that indicates that default rates and recovery
rates are more tightly related to each other than to macroeconomic variables, and that credit
downturns seem to be only imperfectly aligned with recessions; they start before recessions
and last longer. The different phases of the business and the credit cycle seem to be par-
ticularly evident in recovery rates - average recovery rates actually Granger-cause log GDP
growth in our data set.

The results here also suggest some interesting avenues for future research. For exam-
ple, a closer examination of the quantitative importance of the effect of recovery rates on
prices would appear to be important. Also, a drawback of our dataset is that it contains no
firm-specific information on non-defaulting firms, which limits the extent to which we can
decompose the time-variation in default probabilities. The methodology proposed here, how-
ever, could easily be extended to such datasets. This would allow examining not only the
systematic time-variation in credit risk, but also any possible relationship between recovery
risk and firm-specific default probabilities over time, which could yield important insights.
In addition, we have to limit ourselves to market recoveries of bonds. It would probably be
of particular interest to banks to repeat the exercise with data that can say something about
losses on loan portfolios, i.e. with data on ultimate recoveries of loans. Finally, the differ-
ent phases of the credit cycle and the business cycle which are particularly apparent in the
lead-lag relationship between recovery rates and GDP growth warrant further theoretical and
empirical attention.
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Appendix

A. The likelihood function

Let ct be the unobservable state of the cycle (our Markov chain). Also, let p be the
probability of remaining in state ct = 1, and q the probability of remaining in state ct = 0.22

Let dt be the number of defaulted firms observed in period t. Firms are indexed by i. We
denote the recovery observed for a default event at t of firm i as yti. We collect the recoveries
on all default events at t into a vector which we call Yt.

It is easy to see that the number of defaulting firms dt conditional on the state ct of
the cycle in any period (and the variables that influence hazards, Xt) will be binomially
distributed, given that we have assumed that firms default independently conditional on this
information. The conditional default probability here is the discrete hazard described above.
We can write

Pr(dt|ct) =

(
Nt

dt

)
λdt
t (1− λt)Nt−dt , (4)

where Nt is the number of firms in the population at time t, and

λt = (1 + exp {γ0 + γ1ct + γ2Xt})−1 . (5)

This probability is also to be interpreted as being conditional on Xt and Nt, which is not
explicit in the above notation.

For each default at t associated with firm i, we observe a yti. The density of yti conditional
on the state is

g(yti|ct) =
1

B(αti, βti)
(yti)

αti−1(1− yti)βti−1, (6)

where

αti = exp {δ0 + δ1ct + δ′2Zi + δ′3Zict + δ′4S + δ′5Sct + δ6Xt} (7)

βti = exp {ζ0 + ζ1ct + ζ ′2Zi + ζ ′3Zict + ζ ′4S + ζ ′5Sct + ζ6Xt} (8)

Putting recoveries and the number of defaults together, it is then easy to see that condi-
tional on the state, the density associated with observing a given number of defaulting firms

22In our estimated models, ct = 0 will correspond to a state with high default probabilities and low recoveries
which we label as a ‘credit downturn’ and ct = 1 to a state with low default probabilities and high recoveries
which we label a ‘credit upturn’, but we do not impose this in the structure of the model.
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dt and associated recoveries Yt in time period t is given by

f(Yt, dt|ct) =

(
Nt

dt

)
λNt
t (1− λt)Nt−dt

dt∏
i=1

g(yit|ct), (9)

where the understanding is that the last product is 1 if dt = 0.
The density of the data observed in period t, not conditional on the state, but conditioned

on past information Ωt−1 can be written as

f(Yt, dt|Ωt−1) =f(Yt, dt|ct = 1) Pr(ct = 1|Ωt−1)+

+ f(Yt, dt|ct = 0) Pr(ct = 0|Ωt−1).
(10)

Note that given our assumptions, the past information Ωt−1 is not relevant for the conditional
density of Yt, dt. Since the state is not observed, we need a way of deriving the filtered (and
smoothed) probabilities of being in either state. Obviously,

Pr(ct = 1|Ωt−1) = p · Pr(ct−1 = 1|Ωt−1) + (1− q) · Pr(ct−1 = 0|Ωt−1), (11)

where we used the notation defined previously, p = Pr(ct = 1|ct−1 = 1,Ωt−1), the proba-
bility of remaining in state 1, and (1 − q) = Pr(ct = 1|ct−1 = 0,Ωt−1), the probability of
moving from state 0 to state 1. We can rearrange [11] to obtain

Pr(ct = 1|Ωt−1) = (1− q) + (p+ q − 1) Pr(ct−1 = 1|Ωt−1) (12)

The probability Pr(ct−1 = 1|Ωt−1) can be obtained via a recursive application of Bayes’ rule:

Pr(ct−1 = 1|Ωt−1) =
f(Yt−1, dt−1|ct−1 = 1) Pr(ct−1 = 1|Ωt−2)

f(Yt−1, dt−1|Ωt−2)
. (13)

Note that there is information in recoveries Yt and dt, about the state, i.e. identification of the
state is obtained through both the number of defaults and recoveries.

We now have all elements to maximize our log likelihood function

L =
T∑
t=1

log f(Yt, dt|Ωt−1), (14)

which is a partial likelihood since we omit specifying the law of motion of Xt and Nt.
For a given parameter vector, the likelihood can therefore be calculated recursively, given

some suitable initial conditions, e.g. the unconditional probabilities of being in each state
implied by the transition matrix.
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Once we have our estimated parameters, we can also calculate smoothed probabilities
of being in each state at any period in time. Smoothed probabilities are those probabilities
obtained from the whole sample of data. The expression for these probabilities is as follows:

Pr(ct = 1|ΩT ) = Pr(ct = 1|Ωt)×
f(Yt+1, dt+1|ct = 1)

f(Yt+1, dt+1|Ωt)
×

× f(Yt+2, dt+2|ct = 1)

f(Yt+2, dt+2|Ωt+1)
× · · · × f(YT , dT |ct = 1)

f(YT , dT |ΩT−1)

(15)
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B. Identification of the state of the cycle

The state of the cycle is identified only via variables that depend on it, in the following
sense:

1. When default probabilities are independent of the cycle and recovery rates are not, the
filtered and smoothed probabilities of being in either state only depend directly on the
recoveries.

2. When recoveries are independent of the cycle and default probabilities are not, the
filtered and smoothed probabilities of being in either state only depend directly on the
number of defaults.

To see that this is the case, suppose first that all values of recoveries yit do not depend
on the cycle, i.e. g(yit|ct) = g(yit), but that the number of defaults dt does. We need to
show that in the recursive calculation of the probabilities of the state of the cycle, yit does not
enter. The prediction step, i.e. calculating Pr(ct = 1|Ωt−1) from Pr(ct−1 = 1|Ωt−1) works as
before and does not involve any data (see [12]). The filtering step, i.e. the step involving the
calculation of Pr(ct−1 = 1|Ωt−1) is now slightly simpler:

As before, we define Yt = {yit}. First note that

f(Yt−1, dt−1|ct−1) = f(Yt−1|dt−1, ct−1)f(dt−1|ct−1) = f(Yt−1|ct−1)f(dt−1|ct−1)

because the value of recoveries and the number of defaults are independent conditional on
the cycle as before. Additionally, if the yit now do not depend on the cycle, we know that
f(Yt|ct) = f(Yt), and we can write

f(Yt−1, dt−1|ct−1) = f(Yt−1)f(dt−1|ct−1). (16)

and
f(Yt−1, dt−1|ct−1 = 1) = f(Yt−1)f(dt−1|ct−1 = 1). (17)

Combining the previous equations with [10] indicates that for the given case, we can write
f(Yt−1, dt−1|Ωt−2) as

f(Yt−1, dt−1|Ωt−2)

=f(Yt−1) {f(dt−1|ct−1 = 1) Pr(ct−1 = 1|Ωt−2)

+f(dt−1|ct−1 = 0) Pr(ct−1 = 0|Ωt−2)} .

=f(Yt−1)f(dt−1|Ωt−2). (18)
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Inserting both [17] and [18] into our original equation for the filtering step, i.e. [13], we
obtain

Pr(ct−1 = 1|Ωt−1) =

=
f(Yt−1, dt−1|ct−1 = 1) Pr(ct−1 = 1|Ωt−2)

f(Yt−1, dt−1|Ωt−2)

=
f(Yt−1)f(dt−1|ct−1 = 1) Pr(ct−1 = 1|Ωt−2)

f(Yt−1)f(dt−1|Ωt−2)

=
f(dt−1|ct−1 = 1) Pr(ct−1 = 1|Ωt−2)

f(dt−1|Ωt−2)
.

(19)

Neither the calculation of Pr(ct−1|Ωt−1), nor the calculation of Pr(ct|Ωt−1) involves recovery
rates directly.

In the converse case where default rates are not a function of the credit cycle, but recovery
rates are, an equivalent argument will show that the filtering algorithm does not use the default
rates.

Intuitively, if either recovery rates or default rates are independent of the cycle, they do
not contain information about it - and they are therefore not useful in deducing the probability
of being in either state of the credit cycle.

24



[Table 4 about here.]
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Figure 1. Historical default rates and average recovery rates
Historical default rates (fraction of defaulting firms) against time (from Moody’s) and average re-
covery rates from the Altman data (see Section 3).
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Figure 2. Probabilities of being in the credit downturn versus NBER
recessions (annual)
Annual smoothed probability of being in a credit downturn as estimated on the basis of the version
of the model that only uses the unobserved credit cycle as an explanatory variable. This is contrasted
with NBER recessions (grey areas).
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Figure 3. Loss Densities
One-year Loss densities implied by a static model (Model 1) and a dynamic model (Model 2) for a
portfolio of 500 senior unsecured bonds issued by 500 different issuers. The initial probability of
being in an upturn is assumed to be equal to the unconditional probability.
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Table 1
Parameter estimates

Parameter estimates and measures of fit for various models that differ in the combination of variables that influence the hazard rate λ
and the two parameters of the beta distribution α and β. Note that with the specification of Shumway (2001), a positive coefficient on a
explanatory variable for λ implies that λ falls when the variable rises. sen2, sen3, sen4, sen5 are seniority dummies for Senior Unsecured,
Senior Subordinated, Subordinated and Discount respectively, mult is a dummy that is one for observations corresponding to default
events for which we observe multiple recoveries, cycle is the unobserved credit cycle, and macro is log GDP growth (versions with other
macroeconomic variables are omitted). ∗ denotes individual significance at 5%.

M1 M2 M3 M4
DEFAULT RATES λ λ λ λ
constant 3.84∗ 3.36∗ 3.45∗ 3.11∗

cycle 1.05∗ 0.87∗

macro 13.42∗ 10.37∗

RECOVERY RATES α β α β α β α β
constant 0.40∗ 1.00∗ 0.47∗ 1.40∗ 0.33∗ 1.13∗ 0.39∗ 1.38∗

sen2 0.04 0.15 -0.06 -0.06 -0.04 0.06 0.05 0.11
sen3 -0.18 -0.00 -0.26 -0.28 -0.30∗ -0.13 -0.27 -0.25
sen4 0.33 0.38∗ 0.00 -0.09 0.26 0.31 -0.11 -0.48
sen5 -0.32 0.46 -0.25 0.43 -0.48 0.31 -0.31 0.38
mult -0.22 -0.56∗ -0.27 -0.53∗ -0.41 -0.72∗ -0.39 -0.68∗

mult×sen2 -0.21 -0.26 -0.24 -0.39 -0.24 -0.29 -0.46 -0.50
mult×sen3 -0.14 -0.07 -0.26 -0.14 -0.21 -0.08 -0.49 -0.26
cycle 0.48∗ -0.46 0.52∗ -0.41
cycle×sen2 -0.07 0.24 -0.34 0.16
cycle×sen3 -0.29 0.20 -0.35 0.10
cycle×sen4 0.11 0.71 0.11 1.13∗

cycle×sen5 -0.63 -0.46 -0.77 -0.59
cycle×mult 0.69 0.27 0.49 0.23
cycle×mult×sen2 0.03 0.16 0.33 0.36
cycle×mult×sen3 0.47 0.37 0.79 0.60
macro 6.40 -1.39 3.80 1.69
macro×mult 3.52 1.65 3.15 1.44
TRANSITION PROB.
p 0.8699 0.8060
q 0.7338 0.6411
MEASURES OF FIT

Log Likelihood 27.722 191.588 65.225 199.132
AIC -20.43 -309.18 -86.45 -314.26
BIC 0.0681 -0.1465 0.0213 -0.1255
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Table 2
Implied Mean Recoveries

Implied mean recoveries in percent for Model 2, by state of the credit cycle (upturn or downturn),
bond category (ranging from Senior Secured to Discount), and by number of recovery observations
per default event. “Single rec.” means events for which recovery is observed only on a single bond,
“Multiple rec.” means recoveries on the senior bond in default events for which several recoveries
are observed. Note that here, we follow the convention of Altman and Kishore (1996) in labeling the
bond category as ‘seniority’.

Upturn Downturn

Single rec.

Sen. Sec. 55.9 31.6
Sen. Unsec. 47.3 31.6
Sen. Sub. 43.1 32.0
Sub. 42.2 33.6
Discount 33.6 18.6

Multiple rec.
Sen. Sec. 74.1 37.7
Sen. Unsec. 66.6 41.2
Sen. Sub. 61.2 35.3
Sub.∗ - -

∗We have no observations for which we observe several recoveries, and the recovery on a Subordi-
nated bond is the recovery on the most ‘senior’ bond.
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Table 3
Value-at-Risk

One-year 99% VaRs for hypothetical portfolios of 500 senior unsecured bonds (issued by 500 differ-
ent issuers) based on a static and two dynamic models. In the dynamic models, default probabilities
depend on the cycle, and recovery rate distributions may or may not depend on the cycle. For these
models, we calculate loss distributions assuming that the probability of being in a downturn initially
are 0 (“upturn”), equal to the unconditional probability (“uncond.”), or equal to 1 (“downturn”).

MODEL SPECIFICATIONS

Model 1 Model 2 Model 2a Model 2b
Explanatory variables for λ (default probability)

constant constant constant constant
cycle cycle

Explanatory variables for α,β (recovery rates)
constant constant constant constant

cycle cycle
seniority seniority seniority seniority

Init. state ANNUAL 99%-VAR
upturn 2.4% 3.2% 3.0% 2.2%
uncond. 2.4% 3.4% 3.3% 2.3%
downturn 2.4% 3.7% 3.4% 2.6%

35



Table 4
Parameter estimates (2)

Parameter estimates and measures of fit for various models that differ in the combination of variables that influence the hazard rate λ
and the two parameters of the beta distribution α and β. Note that with the specification of Shumway (2001), a positive coefficient on a
explanatory variable for λ implies that λ falls when the variable rises. sen2, sen3, sen4, sen5 are seniority dummies for Senior Unsecured,
Senior Subordinated, Subordinated and Discount respectively, mult is a dummy that is one for observations corresponding to default events
for which we observe multiple recoveries, cycle is the unobserved credit cycle, and lagged def. rate and rec. rates are the previous annual
default rate and mean recovery rate respectively. indB and indC are dummies corresponding to industry groups B and C. ∗ denotes individual
significance at 5%.

M2a M2b M5 M6
DEFAULT RATES λ λ λ λ
constant 3.36∗ 3.85∗ 3.36∗ 3.41∗

cycle 1.04∗ 1.05∗ 1.03∗

lagged def. rate -1.20
RECOVERY RATES α β α β α β α β
constant 0.40∗ 1.00∗ 0.52∗ 1.48∗ 0.34∗ 1.15∗ 0.38 1.53∗

sen2 0.04 0.15 -0.02 0.10 -0.06 -0.09 -0.07 -0.07
sen3 -0.18 0.00 -0.16 -0.02 -0.35∗ -0.40∗ -0.30 -0.32
sen4 0.34 0.38∗ 0.54 1.11∗ 0.06 0.01 -0.04 -0.11
sen5 -0.32 0.47 -0.23 0.32 -0.32 0.19 -0.23 0.45
mult -0.22 -0.56∗ -0.39 -0.54 -0.29 -0.49 -0.26 -0.56
mult×sen2 -0.21 -0.26 0.00 0.03 -0.18 -0.35 -0.25 -0.40
mult×sen3 -0.14 -0.08 -0.72 -0.57 -0.28 -0.17 -0.22 -0.05
lagged rec. rate 0.37 -0.40
cycle 0.18 -0.65∗ 0.48∗ -0.44 0.55 -0.63
cycle×sen2 0.08 0.15 -0.15 0.13 -0.01 0.29
cycle×sen3 -0.25 -0.01 -0.26 0.25 -0.20 0.26
cycle×sen4 -0.46 -0.56 -0.09 0.41 0.20 0.79
cycle×sen5 -0.5 -0.16 -0.46 -0.14 -0.72 -0.61
cycle×mult 0.67 0.31 0.65 0.20 0.73 0.35
cycle×mult×sen2 -0.49 -0.42 0.06 0.22 -0.03 0.10
cycle×mult×sen3 0.76 0.80 0.52 0.42 0.34 0.20
cycle×lagged rec. rate -0.39 0.44
indB 0.29∗ 0.43∗

indC 0.09 0.40∗

TRANSITION PROB.
p 0.8487 0.9523 0.8742 0.8232
q 0.7872 0.7634 0.7432 0.6443
MEASURES OF FIT

Log Likelihood 131.726 91.214 202.032 193.003
AIC -221.45 -110.43 -322.06 -302.01
BIC -0.1344 0.0695 -0.1395 -0.1118
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