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Abstract Meeting multiple Quality of Service (QoS) re-
quirements is now an important factor for the success of
complex software systems. This paper presents a correct-by-
construction, automated, model-driven scheduler synthesis
approach for scheduling system tasks so as to meet multi-
ple QoS requirements. As a first step, it shows how soft-
ware engineers can meet deadlock-freedom and timeliness
requirements, in a manner that (i) does not over-provision
resources, (ii) does not require architectural changes to the
system, and that (iii) leaves enough degrees of freedom to
pursue further properties. The synthesis methodology directly
associates each scheduler with a specific pair of QoS prop-
erty and underlying platform execution model, so as to fa-
cilitate their validation and the understanding of the overall
system behaviour, required to meet further QoS properties.

The paper shows how the methodology is applied in prac-
tice and also presents the implementation infrastructure needed
for executing an application on top of common operating
systems, without requiring modifications of the operating
system.

CR Subject Classification D.2.2.a. CASE · D.2.4.e.
Model Checking · D.4.1. Process Management · D.4.7.e.
Real-time systems and embedded systems

1 Introduction

The importance of Quality of Service (QoS) and, in general
quantitative non-functional requirements, is increasing ev-
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ery day, as computer systems move far away from the sci-
entific and office applications of the past. Nowadays most
aspects of our lives depend on the correct behaviour of com-
puterised systems, which have a number of, sometimes quite
stringent, QoS requirements, e.g., computational power, mem-
ory size, power consumption, etc. Software engineers face
these QoS requirements in different application domains -
from mobile embedded systems running on batteries to big
server farms, like those of Google [6] and of Second Life,
whose avatars are estimated to consume “considerably more”
electricity than people at developing countries do [10]. As
sometimes these QoS requirements are conflicting, it be-
comes imperative to develop analysis methods that enable
software engineers to tackle complex systems and their mul-
tiple QoS requirements [15,21], without imposing artificial
constraints on either the design or the implementation.

One such type of requirement is real-time (R-T), sup-
ported by specialised OS’s like VxWorks and commodity
OS’s like Solaris, AIX or Linux, up to commercial, large-
scale Java VMs like Sun RTS and IBM WebSphere. From
embedded systems, such as the anti-lock breaking system
(ABS) in automobiles, to games and big distributed systems,
such as those responding to financial market events, soft-
ware engineers need to guarantee timeliness for the various
computational tasks. Some of these systems are mission crit-
ical - performing an action at an unsuitable time can lead to
a big financial loss, as is the case with the financial markets,
where “A common Wall Street belief is that for every mil-
lisecond an investment bank can beat the market, it has the
potential to earn an additional $100 million per year.” [9].
Even worse, others like the ABS are safety critical - an un-
timely computation can lead to loss of human life. For this
reason, R-T is one of the most important QoS requirements.
However, system design and validation remains a difficult
and error-prone task. Often, software engineers have to be
overly pessimistic in estimating the demands on system re-
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sources, which leads to systems that have fewer capabilities
and are more expensive than need be.

Classic scheduling analyses for R-T (e.g., RMA/EDF [31],
used with the PIP/PCP [37] synchronisation protocols), make
assumptions that are hardly realistic nowadays. Furthermore,
since they use only a very small part of the overall system
state, much detail is lost and additional resources are needed
for guaranteeing task timeliness, even though this is not re-
ally necessary. This is also true for extensions handling task
dependencies, such as HKL analysis [17]. For instance, [38]
reported that HKL-based analysis failed to schedule an auto-
mated vehicle control software safely, whereas an automata-
theoretic, tool-assisted Model-Driven Engineering (MDE)
framework succeeded [40].

Another problem is that it is not obvious how to extend
classic scheduling analyses, so as to easily meet other QoS
requirements such as memory minimisation or power con-
sumption, because these analyses are rigid. That is, they re-
move all possible choices in scheduling the tasks, demand-
ing either to fix task priorities according to their periods or
dynamically allocate priorities according to deadlines alone,
without taking into account other system aspects. By re-
moving all degrees of freedom in scheduling tasks, classic
scheduling analyses effectively require software engineers
to either restructure their system or to try to work against
the analysis method, by artificially changing some of the in-
puts it considers, e.g., the WCET or periodicity of a task.
Restructuring is not an easy task - not only because of the
transformation steps themselves but also because it is not
clear what the transformation goal should be for a given sys-
tem. Indeed, software engineers are called upon to correctly
identify which case among the massive (and ever-growing)
body of analysed systems better fits their own system [8].
Given that systems are becoming heterogeneous, trying to
continuously adapt the basic theory to accommodate each
and every new sub-case is a Sisyphean task - asking soft-
ware engineers to search among these cases for the one that
best matches their needs is simply unrealistic.

This picture calls for a more automated framework based
on a generic solution instead of a case-by-case one. Automa-
tion liberates software engineers from the pressure of mas-
tering a sophisticated and ever-expanding body of analyses,
allowing them to concentrate instead on designing the sys-
tem correctly and expressing its QoS requirements. From
the analysis tool vendor’s viewpoint, the applicability of a
generic solution means that the tool need not be constantly
extended each time research delivers another specialised anal-
ysis for some case that had not been considered so far. On
the contrary, tool evolution can be devoted now to improving
performance and usability.

An appealing approach in this direction is to automat-
ically synthesise a scheduler [1] for a model of the system
given in an automata-based formalism. This solution fits into

the more general paradigm of MDE [36], leading to systems
that are correct by construction, while greatly reducing the
effort required from software engineers. Due to the ongo-
ing advances in model-checking, this alternative is becom-
ing more and more interesting for real-world systems. Here,
we show how one can use it to perform a fine-grain analy-
sis of systems and implement these in a way guaranteeing
safety properties (i.e., deadlocks, deadlines) and that can fur-
thermore be easily extended to support other quality aspects
of the system (e.g., jitter, memory, energy). We show how
one can achieve these goals through a new methodology,
which increases the applicability and benefits of scheduler
synthesis [29]. Our system analysis and scheduler synthesis
methods do not make any assumptions on the tasks com-
prising the system, their periodicity (or lack thereof), their
synchronisation patterns, etc. Thus, they are easily appli-
cable to systems where classic scheduling analysis proves
to be problematic. Indeed, one of the main advantages of
scheduler synthesis is that the application does not need to
be restructured to facilitate the analysis and control of the
system, nor does it require software engineers to make error-
prone choices, such as where to enable PIP, that can lead to
problems like those faced by Mars Pathfinder [35].

Our methodology synthesises successive scheduler lay-
ers for guaranteeing different QoS requirements, by consid-
ering a number of system models and platform execution
policies. Thus, each synthesised scheduler is linked directly
to a specific QoS property and platform execution policy,
making it easier to understand and validate the schedulers
themselves, as well as the system behaviour under various
operational conditions.

In the following, we present our system and scheduler
architecture and a simple case study that we use to illustrate
the various notions introduced. Then we detail our approach
for modelling the QoS (here R-T) requirements of a system
and for synthesising a scheduler for it. We follow with an in-
depth presentation of our methodology for applying sched-
uler synthesis in practice, showing how one can do such a
task gradually, in order to better understand the resulting
schedulers, analyse the system under different assumption-
s/conditions and better tolerate the inherent state-explosion
problem at the same time. We then introduce a more com-
plex case study, on which we apply our scheduler synthesis
methodology. This is followed by the description of the im-
plementation of a library of synchronisation/communication
primitives, which allows the use of synthesised schedulers in
currently available OS’s, and a discussion on the robustness
of the synthesised schedulers. Finally, we compare our work
with other related approaches, before finishing with a con-
cluding discussion.
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Fig. 1 System architecture

2 Overall System Architecture

The overall system architecture we consider is depicted in
Fig. 1. The application code is instrumented so as to be able
to observe and control it. The instrumentation code keeps
track of the state of the application and intercepts applica-
tion requests for lower level mechanisms of interest for the
scheduler (e.g., synchronisation, communication). The in-
tercepted requests are redirected to a subsystem which is
responsible for controlling the system. This scheduler sub-
system uses a number of scheduler constraints, which are
application specific, to make a decision. These decisions are
about whether it should block the application requests, when
they may lead to an unsafe (or suboptimal) system state, or
forward them to the underlying OS. Finally, the OS primi-
tives are effectively our means to observe and interact with
the environment and the application.

This is a general system architecture for reactive sys-
tems and closed-loop control. In the RMA/PCP framework,
the “instrumented” synchronisation, etc. primitives use a set
of scheduler constraints that together form the RMA/PCP
priorities. In our context, the dynamic, application-specific
scheduling constraints are automatically synthesised from a
stopwatch automata model of the application and its envi-
ronment.

The primitives of interest for control are the synchro-
nisation by means of monitors (monitorEnter, monitor-
Exit) and the communication by means of condition vari-
ables through notification, broadcasting, waiting for a notifi-
cation and waiting for a notification until some timeout (no-
tify, notifyAll, wait, timed wait), with the well-known
POSIX [23] or Java [25] semantics. Finally, with waitFor-

Period periodic application tasks wait for the arrival of their
next period.

2.1 Scheduler Architecture

The architecture of the application-specific scheduling con-
straints themselves is depicted in Fig. 2. As shown there,
the application tasks make some request that is forwarded
to one of two scheduler stacks. The left scheduler stack is
responsible for electing some application task for execution,
whereas the right stack elects a task as a target for a pending
signal/notification. Both of these stacks have the same struc-
ture; they are effectively subdivided into three main lay-

Safe−Exec

Quality−Notif

Safe−Notif

Ready−Notif

Quality−Exec

Ready−Exec
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Qexec ⊆ Sexec Qnotif ⊆ Snotif

Fig. 2 Scheduler architecture

ers. The topmost scheduler layers (Ready-Exec, resp. Ready-
Notif ) identify application tasks which are eligible either for
execution (Rexec) or for notification (Rnotif ). They effec-
tively model in user-space the ready queue of the OS and
its waiting-for-notification object queues respectively. The
middle layers (Safe-Exec, resp. Safe-Notif ) are the most im-
portant in a critical system. They elect among the eligible
tasks those that will not lead the system to a bad state (task
sets Sexec and Snotif respectively). That is, the middle layers
are responsible for guaranteeing the safety properties of the
system (e.g., deadlock-freedom, meeting deadlines). Finally,
the lower layers (Quality-Exec, resp. Quality-Notif ) are re-
sponsible for imposing further constraints, which are needed
for guaranteeing other QoS system requirements, e.g., jitter
minimisation, energy consumption minimisation, etc. The
sets of safe tasks meeting these further quality constraints
(Qexec , resp.Qnotif ) form the final output of the application
dependent scheduler constraints subsystem. The scheduler
subsystem passes them to the OS, which chooses tasks for
execution, resp. notification, using some OS dependent rule.
From the point of view of the scheduler, the OS choice is
non-deterministic. It is exactly this non-determinism that al-
lows designers to easily explore further scheduling strategies
for the extra QoS requirements.

Our scheduler architecture has two different stacks for
execution and communication so as to explicitly control task
communication as well. This is an aspect which is usually
not considered by other approaches, since it is assumed that
the system designers have already solved all communication
problems. Nevertheless, we believe that, given its complex-
ity, the scheduler should explicitly cover this aspect as well.

The two scheduler stacks in Fig. 2 are exclusive iff we
are interested in deadlock-freedom, where notifications are
handled by the right stack alone. This is because the notified
task will not be executable, since it must reenter the monitor
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that is still occupied by the notifier. However, the left stack
needs to be given control after notifications when scheduling
for deadlines and other QoS, so as to ensure some hard to
meet deadline/constraint by preempting the notifying task.

2.1.1 Increasing System Quality

As aforementioned, the bottom Quality-Exec and Quality-
Notif layers of the scheduler, allow designers to easily ex-
periment with and introduce additional constraints for in-
creasing the quality of the system. Software engineers con-
trol the complexity of these layers directly and can employ
a best-effort policy or a more contract-like QoS one, where
specific bounds for certain values of the system state must
be guaranteed. In the latter case, the QoS policy must be ver-
ified as a safety policy, to ensure that the system will never
break its QoS contract.

A simple example of a (best-effort) quality policy is the
local minimisation of context switches (LMCS), in order to
speed-up the execution and (hopefully) minimise cache miss-
es/flushes and, thus, also energy consumption. This policy
can be implemented quite easily, by examining whether the
currently executing task, ti, is in the set Sexec of tasks which
are safe to execute next. If this is the case, then we can let
it continue its execution, by setting the set Qexec equal to
the singleton {ti}. Note, that LMCS differs from a non-
preemptive platform execution policy, since LMCS allows
preemption when the currently executing task is not in the
safe set.

3 A Simple System

This section introduces the simple system of Fig. 3, to be
used for illustrating the various notions through concrete ex-
amples. The system consists of the Writer, User and Re-
fresher tasks. The Writer produces values for variable V
continuously (e.g., by reading a sensor or retrieving a stock
price), which the periodic task User consumes. However,
User needs the values of V to be fresh, i.e., they must have
been produced recently and as such represent the current
state of the environment. For that, the Refresher task uses
an auxiliary variable L, to distinguish values of V that are
too old, from these that are fresh enough for User. It does
so by marking the current value of V as not fresh and then
doing a timed wait for 13 time units. If the Writer produces
a new value for V during that time, the freshness of V will
be true, otherwise it will be false.

There is a potential deadlock between Writer and Re-
fresher, as they obtain V and L in the opposite order, which
arises when the Writer is at state W2 and the Refresher at
state R3.

Refresher Writer User
U0

U1

U2 U6

U3

U4

U5

W1

W0

W2

W3

R0

W6

R1

W4

R2

W5

R3

R4

R6

R5

R7

L.monitorEnter

V.wait

[1,1] Fresh := ! Late

if ( ! Fresh)

L.notify

L.monitorExit

[2,3] write

L.monitorEnter

[1,1] Late := falseV.monitorEnter

L.timed wait (13)

[1,1] Late := true

V.notify

V.monitorExit

waitForPeriod (20)

V.monitorEnter

if (Fresh)

[2,2] copy value locally

V.monitorExit

[5,6] use

L.monitorExit

V.monitorExit

V.monitorEnter

Fig. 3 A simple three-task system
(Clock variables are omitted for readability – each computation is

annotated with its duration interval. )

4 System Modelling

This section presents our modelling of a system through
discrete-time stopwatch automata. Stopwatch automata al-
low for fine grain modelling, thus permitting us to synthesise
a flow-sensitive and not over-constraining scheduler, which
needs fewer resources to meet requirements. The discrete-
time stopwatch automata we are using are normal finite-
state automata, where certain variables serve as discrete time
clocks. The difference between the stopwatch automata we
use and the (discrete) timed automata of [2,20,3] is that we
can stop certain clocks (without resetting them) and restart
them later on. Thus, we can easily model preemption. The
difference with stopwatch automata [32,26,11] is that our
clocks take discrete and not continuous values. As a conse-
quence, reachability is decidable for discrete-time stopwatch
automata, while it is not in general for continuous-time [26,
19].

4.1 Application Modelling

As aforementioned, we consider that the application com-
prises a set of concurrently executing asynchronous tasks,
T = {ti}i∈I , where I is the set of task indexes. Tasks can
synchronise through monitors, communicate through condi-
tion variables, wait for their next period or perform a com-
putation.

Communication primitives must, by definition, be used
inside a critical section/monitor. So, in order to notify some
task that resource r has been modified, the notifying task
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R2

R2_Relock

R1

R1

R2

R3 R3

L.receiveNotifL.timed wait (13)

L.monitorEnter

[1,1] Late := true

[1,1] Late := true

∨ Timeout

; L.monitorExit

Fig. 4 Modelling of the wait primitive

must enter the monitor of r (r.monitorEnter), notify tasks
interested in events about this resource (r.notify/All) and
subsequently leave the monitor (r.monitorExit). Tasks in-
terested on events for resource r, must enter its monitor,
wait for an event (r.wait/timed wait), treat the event in
an application specific manner and then leave the monitor.
Note that wait primitives force waiting tasks out of the cor-
responding monitor, so as to allow notifying tasks to en-
ter it. So, wait primitives are modelled by two states (R2,
R2 Relock), as Fig. 4 shows using part of the Refresher’s
model from Fig. 3. The transition from the previous state to
the first one (R1→ R2) makes the task leave the monitor, af-
ter having executed the action the program was performing
there ([1,1] Late := true). The transition from the
first to the second wait states (R2 → R2 Relock) waits for a
notification (or a timeout if it is a timed wait). Once a task
is notified, it attempts to fire the transition from the second
wait state to the subsequent program state (R2 Relock →
R3), so as to reenter the monitor and continue its execution.

Each task uses two clocks to model time-related behaviour.
The first clock, SW i, models the duration of computations
of task ti and so is stopped when the computation is pre-
empted. SW i is also used when a task performs a timed -

wait, to measure the distance till the timeout. The second
clock, CPeriodic

i , measures the time remaining until the next
period (or deadline) of a task and is never stopped; it is only
reset at each new period.

4.2 System State

The system state model comprises: (i) an abstract program
counter (PCi) for each of the application tasks; (ii) a stop-
watch (SW i) for each task; (iii) N periodic clocks (CPeriodic

i ),
for the N periodic tasks, taking values over the interval [0, Pi),
where Pi is the period of the task; (iv) N Boolean variables
(task Alarm), for dissociating the cases “start of period”
and “deadline/end of period”, since for some tasks we may
have Di = Pi (see section 7); (v) a variable (TExec) for
the currently executing task or IDLE when no task is ex-
ecuting; (vi) a 4-valued variable (mode) controlling which
of the SchedExec, SchedNotif, Timeout, or one of
the Application automata should execute in the current
step (these automata are described in the following section);
and (vii) the Boolean variables of the application guarding
waiting statements and branches, if we wish to model them.

mode
=
Timeout

Application

mode
=
Application

Schedulers
Only

mode∈ {SchedExec,SchedNotif}

Timeout

New tick,
check timeouts

No Timeouts,
let Application run

Re
-S

ch
ed

ul
e

Tim
eout(s) fired

Check
tim

eouts

Fig. 5 Model execution modes

ALARM timeout−−−−−→

/* change state
& pass control
to the scheduler */
mode:=SchedExec

¬ ALARM
appli
−−−−→

/* allow application
to run */
mode:=Application

Fig. 6 Timeout automaton

Example 1 For the system of Fig. 3, the variables are:
PCWriter ∈ {W0,W1,W2,W3,W4,W5,W6},
PCRefresher ∈ {R0,R1,R2,R3,R2 Relock,R4,R5,R6,R7},
PCUser ∈ {U0,U1,U2,U3,U6,U4,U5,U6 Relock},
SW Writer ∈ [0,6], SW Refresher ∈ [0,13],
SW User ∈ [0,6], CPeriodic

User ∈ [0,19],
User Alarm ∈ {false,true}, TExec ∈ {IDLE,Writer,Refresher,User},
mode ∈ {Sched-Exec/Notif,Timeout,Application},
Late ∈ {false,true}, Fresh ∈ {false,true} N

4.3 Model Structure and Execution Modes

The system model we construct is the parallel composition
of:

– The Timeout automaton which fires timeouts,
– the Execution and Notification Scheduler automata, and
– one automaton for each of the application tasks.

Application automata are derived from control-flow diagrams
describing the application tasks. These are annotated with
the timing constraints modelling the execution times of the
corresponding code. These models can also be extracted au-
tomatically from application code, as was done in [28] and
in [5] for annotated Java and C programs, respectively.

The system operates in three modes, as shown in Fig. 5.
In Timeoutmode the Timeout automaton (shown in Fig. 6)
is the only one enabled in the system. It can fire one or
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∨
i ti ∈ Rexec ∩ Sexec ∩Qexec

Choose ti−−−−−−−→ TExec := ti

Fig. 7 Execution Scheduler automaton

more timeouts (corresponding to a timed wait or wait-

ForPeriod expiring) if any is enabled currently. When a
timeout is fired, mode changes to “Schedulers Only” (where
mode = SchedExec), so that our scheduler can handle
it. If there is no timeout to be fired then the mode changes
to “Application” (where mode = Application). At this
mode, the automaton of the TExec application task becomes
enabled. If the TExec task needs to execute a time guarded
action (i.e., a computation), then it causes time to advance
by performing a tick (i.e., a time step). The tick action causes
all periodic clocks (CPeriodic

i ) to advance at the same time.
It also causes local stopwatches (SW i) to advance, if the re-
spective task is executing, i.e., TExec = ti, or if it is perform-
ing a timed wait. Ticks change mode back to Timeout,
so as to check for new timeouts. If, however, TExec needs to
perform an action which causes re-scheduling, then it passes
control back to the schedulers, i.e., mode becomes “Sched-
ulers Only” (mode ∈ {SchedExec,SchedNotif}). Ini-
tially mode is Timeout, for periodic tasks to start their first
period.

5 Scheduler Synthesis

This is essentially a two player game. For each scheduler
action (i.e., selection of an application task), there is a se-
quence of actions of its adversaries (i.e., timeout and appli-
cation automata), and so on. In this game, scheduler syn-
thesis amounts to finding a winning strategy for each state
where it is the turn of the scheduler to act, if any such strat-
egy exists indeed [4]. That is, whenever the scheduler is
called to perform a controllable action, it must have a plan
that informs it which future uncontrollable actions of its ad-
versaries it should render impossible, in order for the system
to remain in a safe state. Thus, the scheduler synthesis prob-
lem can briefly be stated as “for each control state, find the
environment actions that must be rendered impossible for
the system to always remain in a safe (optimal) state.” In
our case, we have two layers which are needed for guaran-
teeing safety - the top one (Ready-Exec & Ready-Notif ) and
the middle one (Safe-Exec & Safe-Notif ).

5.1 Synthesis of the Ready Task Layer

We synthesise the top layer through a simple static analy-
sis of the task control-flow graphs. This assigns to each of
the task states, N(t), the resources it holds and the ones

it wishes to lock, constructing two different sets for each
task: one stating when task t wants to lock a resource r,
WR(r, t), and another one stating when the task has the re-
source locked, LR(r, t):

WR(r, t) = {n ∈ N(t)

| ∃n1 ∈ N(t) . n
r.monitorEnter−−−−−−−−−−−−→ n1}

(1)

LR(r, t) = {n ∈ N(t) | ∃n1, n2 ∈ N(t)

. (n1
r.monitorEnter−−−−−−−−−−−−→ n2 →∗ n)

∧(6 ∃n3, n4 ∈ N(t). n2 →∗ n3 ∧ n4 →∗ n

∧n3
r.monitorExit−−−−−−−−−−−→ n4)}

(2)

States with a wait transition are expanded as in Fig. 4.
For the WR and LR sets, these are equivalent to a monitor-
Exit and then a monitorEnter on the resource. The i × j

sets produced, for the i program counters and j resources,
inform us whether a task is blocked or not, which is needed
for the top Ready-Exec and Ready-Notif scheduler layers.

Example 2 For the system of Fig. 3, these sets are:
WR(V, Writer) := {W0}, WR(L, Writer) := {W2},
LR(V, Writer) := {W1, W2, W3, W4, W5, W6},
LR(L, Writer) := {W3, W4, W5},
WR(V, Refresher) := {R3},
WR(L, Refresher) := {R0, R2 Relock},
LR(V, Refresher) := {R4, R5, R6},
LR(L, Refresher) := {R1, R3, R4, R5, R6, R7},
WR(V, User) := {U1, U6 Relock},
LR(V, User) := {U2, U3, U4}, WR(L, User) := LR(V, User) := ∅
Potential deadlocks are easily identified by considering the
intersection of the sets WR and LR. Indeed, there is a po-
tential deadlock at states (W2,R3,*) because we have that:
WR(L,Writer) ∩ LR(V,Writer) = {W2} and
WR(V,Refresher) ∩ LR(L,Refresher) = {R3} N

Of course one cannot be certain that potential deadlock
states identified through the WR and LR sets are real, until
they are shown to be reachable. Attempting to render them
unreachable by enclosing the corresponding critical regions
inside a new monitor (e.g., enclose each of R1-R7 and W0-
W6 inside a monitor on a new resource D) will certainly
remove any chance for that deadlock but will unnecessar-
ily decrease the degree of concurrency in the system, es-
pecially so if the deadlock is unreachable. In fact, for the
system of Fig. 3, such a solution is wrong. Indeed, variable
Fresh will never become true and User will never finish its
period (states U3, U4, and U5 are unreachable). The rea-
son for this is that whenever Refresher gains access to D,
it will set Fresh to false and remain in the monitor of D

while waiting, thus not allowing Writer to reset Fresh. This
is like a financial system ignoring all stock values as too old
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or a web server dropping all client requests. Thus, we can
see that this solution, advocated in [43] for its simplicity,
can break the application logic itself by removing too many
valid execution traces.

Nevertheless, sets WR and LR show which are the tasks
that cannot be involved in a deadlock, e.g., here the User
task.

5.2 Synthesis of the Safe Task Layer

The basic method for synthesising the Safe-Exec and Safe-
Notif scheduler layer, starts by first constructing the set of
reachable states and, thus, identifying the bad states. These
are the states where the application tasks are deadlocked, or
the states where some task has missed its deadline.

Having bad states means that the current set Sexec , of
tasks that are safe to execute at a state s, needs to be con-
strained. The only controllable actions that can be constrained
in the system are the transitions of the scheduler automata,
shown in Fig. 7. Sexec is initially true, thus accepting all
tasks in the setRexec as safe. Having obtained the bad states,
we do a backwards traversal of the state space starting from
the bad states, until we reach a state, s, which corresponds
to a controllable choice of one of the scheduler automata.
There, we identify the controllable transition a outgoing from
s which sets TExec to be task ta, effectively enabling the
path leading to a bad state, and create a new constraint for
the layer Safe-Exec at state s for the controllable transition
a. The constraint is constructed by changing the set Sexec to
be:

S ′
exec(s) := Sexec(s) \ {ta} (3)

If at some point we find that S ′
exec(s) becomes equal to the

empty set after constraining it, that is, if there is no safe task
to execute at state s, then we also mark the state s as bad and
continue the synthesis procedure.

So, the set of states where a task t is unsafe to execute
is:

Unsafe(t) = {s|t ∈ Rexec(s) ∧ ¬Sexec(s)} (4)

Example 3 This set is expressed as a predicate over model
variables. Table 1(a) shows the synthesised predicate Unsafe(
Refresher) for ensuring the timeliness property of User (i.e.,
its period is never violated). The constraints essentially for-
bid Refresher from executing when User is about to miss
its deadline (e.g., at U1 ∧ CPeriodic

User = 11), since Refresher
would consume computational resources and/or invalidate
the current value of V, in which case the User would need to
wait for a new fresh value to be produced. N

5.2.1 Partial State Observability

In reality, the scheduler cannot observe the full state of the
system. That is, the scheduler uses an observation function,
obs, presenting it with a partial view of the current system
state. Our default assumption is that the scheduler sees at
most the values of the task program counters, PCi, and those
of the clocks, i.e., SW i and CPeriodic

i , along with the value
of the last task that was executing, TExec. All other system
variables are hidden to it. The scheduler can observe these
variables only, so that the instrumentation of the application
will be minimal and easy to perform in practice, though sys-
tem designers are free to enlarge the observation set. So the
scheduler synthesis procedure really uses (5) and (6), rather
than(3) and(4):

S ′
exec(obs(s)) := Sexec(obs(s)) \ {ta} (5)

Unsafe(t) = {s|t ∈ Rexec(obs(s)) ∧ ¬Sexec(obs(s))} (6)

Example 4 Again for the system of Fig. 3, the constraints
we synthesise to render the system deadlock-free, once we
have applied the projection on the state variables are:

Unsafe(User) := FALSE (i.e., always safe)
Unsafe(Writer) := (PCWriter = W0) ∧ (PCRefresher =
R3)
Unsafe(Refresher) := (PCRefresher = R2 Relock)

∧ (PCWriter ∈ {W1,W2})

Table 1(b) shows timeliness constraints for Refresher,
when hiding clocks. N

A consequence of the partial state observability is that
the synthesised scheduler is not necessarily the maximal one.
This is because the scheduler may apply more constraints
than is absolutely required to some system state s, if these
constraints are needed by states that are equal to s modulo
the observation function.

5.2.2 Branching Bisimulation Equivalence Reduction

In order to render synthesis more tractable, we reduce our
models modulo the branching bisimulation equivalence (bbe)
reduction [41]. The bbe reduction eliminates actions we do
not wish to observe, called τ actions. Here, τ actions are
all the uncontrollable actions, i.e., those of the timeout and
the application automata. Indeed, since our scheduler can
only act whenever some controllable action is enabled, we
do not gain anything by storing uncontrollable ones. Com-
pared to other bisimulation reductions, bbe has the property
that it removes τ actions, only if doing so does not change
the branching structure of transition systems. Thus, the bbe-
reduced system is equivalent to the original with respect to
safety properties.
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Table 1 Refresher timeliness constraints

(a) Refresher constraints when observing clocks and allowing preemption

LET A = (PCUser=U5 ∧ CPeriodic
User =13)

IN (A ∧ (PCRefresher=R0 ∧ (PCWriter=W0)
∨ (PCWriter=W2 ∧ ((TExec=PCRefresher ∨ TExec=PCWriter)))
∨ (PCWriter=W6 ∧ TExec=PCWriter))

∨ (PCRefresher=R3 ∧ PCWriter=W0)

(b) Refresher constraints when not observing clocks

(PCRefresher=R7 ∧ PCUser=U1 ∧ PCWriter=W1 ∧ TExec=PCWriter)

The synthesised scheduler for the bbe-reduced system
will be exactly the same with the one we would have synthe-
sised for the non-reduced system. This is because in our ini-
tial parallel automata model, it is always the case that either
some state has outgoing τ transitions or transitions labelled
by some non-τ scheduler action a. Indeed, note that when
the mode variable equals SchedExec or SchedNotif
the current state has only non-τ transitions enabled (those
of the scheduler automata), while in modes Timeout and
Application we can only perform τ transitions. So, it is
never the case that a state, s, can do both a τ and an a transi-
tion, where a 6= τ . As a consequence, after the bbe reduction
on the initial state space graph, we obtain classes of equiva-
lence, where, if we can leave them with a transition a, then
we cannot leave them with a transition τ and vice versa.
So, the controllable equivalence classes are characterised
by their frontier, which is exactly the member states hav-
ing non-τ transitions. So, we define the frontier of a class, c,
of bbe-equivalent states as in (7), where enable() produces
the set of states enabling a particular transition. Note that the
frontier of an uncontrollable equivalence class is the empty
set, ∅:

frontier(c) = c ∩
⋂
a6=τ

enable(a) (7)

5.2.3 Synthesis Procedure

The synthesis procedure has three steps. First, the bbe re-
duction is applied. Then, scheduling constraints are synthe-
sised. This assigns to each branching bisimilar class c the set
Bad(c), i.e., the transitions the scheduler must not take in
that class for the system to stay safe. If a τ action is a mem-
ber of Bad(c) then the whole class c is marked as unsafe.
Otherwise, the constraints of c are assigned to its control-
lable member states, i.e., the states in c that have at least one
non-τ transition. This effectively computes the set Sexec . So,
for all s ∈ frontier(c), where Bad(s) = Bad(c):

S ′
exec(s) := Sexec(s) \ {ta|a ∈ Bad(s)} (8)

When using the observation function obs to project the states
of the frontier to the observable system variables, we may
cause classes to share projected states, i.e., there may be

two classes, say c and c′, such that obs(s) = obs(s′) for
some s ∈ frontier(c) and s′ ∈ frontier(c′), or, equivalently:
obs(frontier(c)) ∩ obs(frontier(c′)) 6= ∅.
This means that the scheduler cannot dissociate these states,
so each projected frontier state is assigned the union of all
the constraints of the bbe-equivalent classes it is a member
of:

S ′
exec(obs(s)) := Sexec(obs(s)) \ {ta|a ∈ Bad(obs(s)) (9)

Bad(obs(s)) = Bad({c|obs(s) ∈ obs(frontier(c))})(10)

6 A Methodology for Synthesis

Despite the bbe reduction, the size of the state space can
still be considerable. Therefore, it is imperative that synthe-
sis follows a methodology which reduces the state-space ex-
plosion problem. Another problem with scheduler synthesis
is that the resulting scheduling constraints can be difficult to
understand and relate to specific system properties.

Thus, the methodology for scheduler synthesis presented
herein has a dual purpose. First, it reduces the size of the
state space, by synthesising schedulers for successively more
detailed models. In this way, more complex models are only
considered when a safe scheduler has been synthesised al-
ready for a more constrained version of the model. Second,
this methodology also has as a purpose (and advantage) to
synthesise scheduler constraints that are more easily related
to a specific safety property and platform execution model.
So, it can be immediately identified which constraints are
needed for avoiding deadlocks due to resource synchronisa-
tion, which ones for meeting deadlines when computations
are not preemptable, etc. Thus, it is easier to understand the
constraints themselves, as well as, the behaviour of the dif-
ferent system tasks and their importance as far as each safety
property is concerned, leading to a better analysis of the sys-
tem under scrutiny. This is advantageous both for validating
the synthesised scheduling constraints and for discovering
ways to optimise the system further [27].

Our methodology for scheduler synthesis considers four
orthogonal aspects of the modelled system: (i) modelling of
time, (ii) platform execution model, (iii) scheduling policies
for overall system quality, and (iv) compositional analysis.
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We take advantage of these aspects by performing scheduler
synthesis in four major steps.

6.1 Abstraction of Time

First, we consider the issue of time, by examining the un-
timed model of the system and synthesising a scheduler to
guarantee the absence of deadlocks due to synchronisation.
For the case study of section 7, the reduction obtained is
97% of the full timed model (see line (2) of Table 3).

Example 5 Indeed, for the example of Fig. 3, the synthe-
sised constraints on the untimed model remove the dead-
locks due to the wrong synchronisation of Writer and Re-
fresher.

While the system cannot deadlock anymore, there are
still cases where User misses its period. Bad states repre-
senting these timeliness violations must be rendered unreach-
able through further constraints. Table 2 shows the results
from the various synthesis stages for achieving this (lines (3),
(5) and (7)), by synthesising 163 additional constraints. N

Finding and removing all deadlocks in the untimed model
means that the synchronisation protocols used are logically
correct. That is, no deadlocks will ever occur, even if com-
putation execution times have been wrongly estimated or
they change later on, by changing implementations, port-
ing to different hardware platforms, using more processors,
etc. This is particularly important for product families, since
there the timing information differs for each family mem-
ber [13].

Having found all the deadlocks in the untimed system,
we impose the synthesised Sexec and Snotif scheduler con-
straints upon the timed model, and search for timeliness con-
straints, so that all tasks will meet their deadlines.

6.2 Platform Execution Model

Again, we do not attack the full timed model immediately
but consider first a constrained version of it, where tasks
execute under a non-preemptive execution model. The non-
preemptive platform execution model reduces the state space
by removing all cases where an interrupt suspends a task
computation.

6.2.1 Non-Preemption and Scheduler Synthesis

To better explain the benefits of examining the non-preemptive
execution model first, let us consider the example in Fig. 8.
As shown there, when imposing the non-preemptive execu-
tion model at state AB we are effectively cutting the branch
AB → B, where the scheduler chose to preempt the exe-
cution of task A with task B after the alarm. This kind of

Non-preemption

(III)

a1b0c1AC

TExec:=A

ac

a1b1c1

TExec:=A TExec:=B

a b
......

cuts this branch

(I)

(II)

C A AB

A B

TExec:=C

a2b0c1

a1b2c1a2b1c1

a1b0c2

alarm

Letters inside states denote tasks able to execute; vectors
beside the states show possible values of the task PCs.

Fig. 8 Preemption and state space size

reduction has a repercussion on the preemptive execution
model we will examine subsequently. The result of exam-
ining the non-preemptive case first, depends on the kind of
scheduler we will synthesise. If in the non-preemptive case
we find that there is a winning strategy at point (III) and
so we do not forbid branch AB → A, then adding preemp-
tion at the next stage will simply add branch AB → B. If,
however, branch AB → A in the non-preemptive model is
unsafe, then we will be obliged to constrain the system ear-
lier on (since now branch AB → B is not available). If we
needed to constrain the system at state AC, by cutting branch
AC→A and selecting branch AC→ C, then permitting pre-
emption later on would mean that the whole sub-graph after
branch AC→A will have been removed by the scheduler we
synthesised for the non-preemptive execution model. There-
fore, we have gained by being able to examine the inherent
non-determinism of the scheduler synthesis problem, with-
out being overwhelmed by the additional non-determinism
introduced by the interrupts.

Once we can safely schedule the system for a non-preemptive
execution model, we use the scheduling constraints to re-
duce even further the state space that we have to analyse,
when we permit preemption. Observed reductions with the
non-preemptive execution model and the bbe reduction ranged
around 95% of the preemptive, unconstrained timed model
(see lines (3) and (11) of Table 3).

The non-preemption of tasks is easily added to our mod-
els through the use of a quality-level policy that forbids the
schedulers from choosing a task for execution, when another
task is already in a state where it is computing:

Qexec(obs(s)) := {t | computes(t) (11)

∨(t ∈ Sexec(obs(s)) ∧ ¬∃t′ 6= t . computes(t′))}
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Example 6 For the system of Fig. 3, the bbe-reduced non-
preemptive system has 973 states (see line (3) of Table 2),
while the bbe-reduced preemptive one has 804 states (using
the constraints from the non-preemptive one, line (5)). N

It is still worthwhile to perform these separate synthesis
steps even when the gains in state reduction are not spec-
tacular, since it helps to understand the system behaviour
better.

We should note here that we cannot safely schedule all
systems when we do not allow tasks to be preempted. In-
deed, in eq. (11) we explicitly ignore the set of safe tasks
(Sexec) when some task is computing. For these systems we
will not obtain any scheduling constraints and, therefore,
will be obliged to examine the larger, unconstrained state
space of the timed model, corresponding to a preemptive
execution model.

6.3 Policies for Overall System Quality

Once we have synthesised a safe scheduler for deadlocks
and deadlines, we can compose it with other policies to fur-
ther constrain the set of safe states to those guaranteeing
other QoS system requirements, e.g., memory or energy con-
sumption, jitter minimisation, etc. Designers can balance be-
tween the execution time and extra memory needed by these
policies and the gains they offer to the overall system qual-
ity.

The aforementioned LMCS policy observes only the cur-
rent system state, while more complex policies may examine
application variables or the execution history. Such a policy,
which also observes an application variable, is the optimisa-
tion policy of eq (12), which favours User to proceed if the
current value is fresh. Multiple QoS policies can be applied
as is shown in lines (13)–(14) of Table 2, where the policy of
eq. (12) has been applied to the safe system of line (8) and
then the LMCS policy has been applied on top of it.

TExec :=


{User} when PCUser = U1 ∧ PCWriter = W0

∧User ∈ Sexec ∧ Fresh = true
{Writer} when PCUser = U1 ∧ PCWriter = W0

∧Writer ∈ Sexec ∧ Fresh = false
TExec otherwise

(12)

6.4 Compositional Synthesis

Finally, designers can partition the system and independently
synthesise constraints for subsystems. Then the synthesis al-
gorithm is applied again on the parallel composition of the

Table 2 Synthesis results for the system of Fig. 3

T/U: Timed/Untimed model, P/NP: Preemption/No-Preemption

Model kind States Red. Bad Constraints
Used/Prod.

Synthesis Steps for the system of Fig. 3.
(1) T P, no bbe 21730 0.00% 4 N/A

U 2293 89.45% 24 N/A
T NP, No Deadlocks 14009 35.53% 4 N/A
T NP, Safe 7023 67.68% 0 N/A
T P 13228 39.13% 1 N/A
T P, Safe 11222 48.35% 0 N/A
T P, Time Ind. 2762 87.29% 5 N/A
T P, Time Ind., Safe 2680 87.67% 0 N/A

Synthesis Steps for the system of Fig. 3, with bbe.
(2) U 279 98.72% 0 0 / 36
(3) T NP, No Deadlocks 973 95.52% 1 36 / 80
(4) T NP, Safe 574 97.36% 0 116 / 0
(5) T P 804 96.30% 1 116 / 47
(6) T P, Safe 702 96.77% 0 163 / 0
(7) T P, Time Ind. 282 98.70% 1 163 / 4
(8) T P, Time Ind., Safe 285 98.69% 0 167 / 0

System from line (8), with the LMCS QoS policy.
(9) Model of (8), with LMCS 1406 93.53% 0 167 / 0

(10) Model of (9), bbe 142 99.35% 0 167 / 0
System from line (8), with the QoS policy of eq. (12).

(11) (8) & eq. (12) 2665 87.74% 0 167 / 0
(12) Model of (11), bbe 285 98.69% 0 167 / 0

QoS policy of eq. (12) and then LMCS on system of (8) .
(13) (8) & eq. (12) & LMCS 1281 94.10% 0 167 / 0
(14) Model of (13), bbe 130 99.40% 0 167 / 0

Synthesis in one step, for preemption - compare with (6).
(15) T P, bbe 1338 93.84% 1 0 / 56

already constrained models, to obtain a scheduler guarantee-
ing the safety properties for the whole system.

Such a compositional synthesis allows designers to anal-
yse bigger systems. Sometimes even ignoring a single task
can make a great difference in the resulting state space - in
our case study we observed a reduction of 82% by doing so
(from 353730 down to 62137 states), see section 7.

Example 7 Table 2 shows the results of our methodology
for the system of Fig. 3. As shown in line (15), without our
methodology, one has to attack the full state space, which
contains 21730 states (1338 after the bbe reduction), and
will synthesise 56 constraints, instead of 167. N

Fewer constraints are synthesised without our method-
ology because the controller can be less conservative. That
is, it ignores deadlocks hidden by time relations and dead-
line misses that occur only under a non-preemptive execu-
tion policy. Even if one would consider this as an advantage
(we do not), there would still remain the problem of under-
standing why each constraint has been synthesised - to guard
against a deadlock, a missed deadline or both? On the con-
trary, our step-by-step synthesis approach solves this issue.
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C.notifyAll
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[0,1] read
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L.monitorEnter
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L.monitorExit

if ( ! T)
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C.notify
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Intervals are the min, max execution durations. Transitions
T 6→ T 7 T 9→ T 10 L 1→ L 2, P 5→ P 6, S 2→

S 3, and C 2→ C 3 are for sliced code.

Fig. 9 Control-flow graphs of the tasks of a robotic arm

7 Case Study: A Robotic Arm

In this section we consider a case study based on a robotic
arm system from [42], shown in Fig. 9. The arm takes ob-
jects from a conveyor belt, stores them temporarily in a buffer
shelf, and puts them into a basket. The arm is controlled by
tasks running on a single processor.

Fig. 9 shows the control-flow graphs of the tasks. Tra-
jectoryControl reads commands from a shared buffer
(C) and issues set-points (L) to the low-level arm Control-
ler. If there are no commands (modelled by the predicate
T) it holds, otherwise it reads the sensor value (S) and com-
putes a new set-point. Its execution time is between 5ms and
8ms. There are two motion executors, Lifter and Putter.
Lifter is activated periodically every 40ms. It commands
the arm to pick objects from the belt and place them into
the buffer shelf. Upon termination, it issues a command to
TrajectoryControl and activates Putter, sending it
commands for moving the object from the shelf to the bas-

ket (predicate P). Its execution time is between 4ms to 9ms.
Putter sends commands to move the object from the shelf
into the basket. Its execution time is between 4ms to 10ms.
The SensorReader task reads sensors every 24ms. Its
execution time is 1ms. Sensor readings are used by Tra-
jectoryControl. Controller is a periodic task with
a period of 16ms.

L5

mode = Appl. ∧ TExec = Lifter ∧ SW Lifter < 1
⇒ Advance Running Clocks ; mode := Timeout

mode = Appl. ∧ TExec = Lifter ∧ SW Lifter < 8
⇒ Advance Running Clocks ; mode := Timeout

mode = Appl. ∧ TExec = Lifter ⇒ C.monitorEnter

mode = Appl. ∧ TExec = Lifter ⇒ C.notifyAll

mode = Appl. ∧ TExec = Lifter ∧ SW Lifter ≥ 4 ∧ SW Lifter ≤ 8

⇒ /* ask permission for locking C */
SW Lifter := 0 ; mode := SchedExec

mode = Appl. ∧ TExec = Lifter ∧ SW Lifter ≥ 0 ∧ SW Lifter ≤ 1

⇒ /* ask permission for notifying */
T := true ; P := true ; SW Lifter := 0 ; mode := SchedNotif

(Synchronised with the transition T0
α−→ T0

of the Timeout automaton, see Fig. 11)

mode = Appl. ∧ TExec = Lifter

⇒ /* ask permission for continuing */
C.monitorExit; mode := SchedExec

L0

L1

L2

L3

L4

mode = Appl. ∧ TExec = Lifter ∧ CPeriodic
Lifter 6= 0

⇒ Advance Running Clocks ; mode := Timeout

Fig. 10 Lifter’s automaton

7.1 Stopwatch Automata Model of the Robotic Arm

Fig. 10 shows Lifter’s stopwatch automaton model. Note
how the mode is changing - after each clock tick (e.g., L1

→ L1), which increases all running clocks/stopwatches, the
mode changes to Timeout, so that we can check for deadli-
nes/alarms. Mode changes to SchedExec before each mon-
itorEnter (L1 → L2), to ask the Execution scheduler for
permission to enter the monitor. It also changes to SchedExec
after each monitorExit (L5 → L0), to get permission for
continuing execution. Note finally, that before performing
the notifyAll at state L4, mode changed to SchedNotif,
so that the Notification scheduler stack can decide what task(s),
if any, should be notified.

Fig. 11 shows the part of the Timeout automaton which
is relative to Lifter. Transition T0

α−→ T0 is used when
Lifter is at its initial position and it should start a new pe-
riod. So, its guard checks that Lifter’s clock has a value
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mode = Timeout
∧ ¬ enabled(α)
∧ ¬ enabled(β)
⇒ mode := Appl.

T1
Deadlock State

mode = Timeout
∧ CPeriodic

Lifter mod 40 = 0
∧ Lifter Alarm ∧ Lifter = L0

⇒
Lifter := L1 ; SW Lifter := 0 ;
Lifter Alarm := false ;
mode := SchedExec

T0

αγ

δ
mode = Timeout
∧ (CPeriodic

Lifter mod 40 = 0)
∧ Lifter 6= L0
∧ Lifter Alarm ⇒ skip
/* Don’t change mode

so as to deadlock */

β

mode = Appl.
∧ TExec = IDLE

⇒
Advance Running Clocks ;
mode := Timeout;
Lifter Alarm := true

Fig. 11 Timeout automaton (Lifter’s part)

which is a multiple of its period. In this case, mode changes
to SchedExec so that the Execution scheduler can respond
to this “new task period” event. Transition T0

γ−→ T0 is used
when there is no deadline/period to be signalled; we simply
change mode back to Application to allow the applica-

tion to continue. Transition T0
δ−→ T0 is for the case where

the scheduler had selected the IDLE task to execute; we just
advance all running clocks/stopwatches (arming all alarms
as a byproduct), waiting for a timeout. Finally, transition T0
β−→ T1 is when Lifter misses its deadline. In this case we

move to a deadlock state and do not change mode; thus now
the whole system becomes deadlocked. The Boolean vari-
able Lifter Alarm is used to dissociate between the cases
CPeriodic

Lifter = 0 (start of period) and CPeriodic
Lifter = 40 (dead-

line). In the former case Lifter Alarm is false and thus the
deadlocking transition β is disabled, while in the latter case
Lifter Alarm is true and transition β is enabled. This vari-
able starts with a value of true, gets disabled at each new
period and automatically becomes enabled by each tick.

7.2 Applying Scheduler Synthesis

We decided to partition the application in two sub-systems,
one comprising 4 tasks, namely, Lifter, Putter, Sensor-
Reader, and TrajectoryControl, and another one con-
sisting solely of the Controller task. Table 3 shows the
results obtained when applying our methodology on the case
study. We started with the untimed model of the 4-task sys-
tem, so as to check for deadlock states (see line (2) of Ta-
ble 3). Not finding any, we used a non-preemptive execu-
tion policy to check the timed model of the system for states
where deadlines are missed (line (3)). Such states indeed ex-
ist and we synthesised 103 scheduler constraints for avoid-
ing them. In line (4) we see that when applying these con-
straints to the model, all deadline-miss states become un-
reachable (always assuming a non-preemptive task execu-
tion policy). Then, in line (5) we considered the timed model
of the system under a preemptive execution policy. In this
model, there are 15 more constraints we synthesise for avoid-
ing the states where we can miss some deadline. When adding
these 15 constraints to our scheduler we obtain a safe 4-

Table 3 Synthesis steps

Model kind States Red. Bad Constraints
Used/Prod.

Synthesis Steps for the 4-task system, i.e., no Controller.
(1) T P, no bbe 62137 0.00% 7 N/A

U, No Deadlocks 24597 60.41% 0 N/A
T NP, No Deadlocks 50139 19.31% 6 N/A
T NP, Safe 49054 21.06% 0 N/A
T P 61333 1.29% 4 N/A
T P, Safe 61051 1.75% 0 N/A
T P, Time Ind. 41574 33.09% 0 N/A
T P, Time Ind., Safe 41574 33.09% 0 N/A

Synthesis Steps for the 4-task system, with bbe reduction.
(2) U, No Deadlocks 1553 97.50% 0 0 / 0
(3) T NP, No Deadlocks 2645 95.74% 1 0 / 103
(4) T NP, Safe 2605 95.81% 0 103 / 0
(5) T P 2740 95.59% 1 103 / 15
(6) T P, Safe 2702 95.65% 0 118 / 0
(7) T P, Time Ind. 2610 95.80% 0 118 / 0
(8) T P, Time Ind., Safe 2610 95.80% 0 118 / 0

Synthesis Steps for the 5-task system.
(9) T P, no bbe 353730 0.00% 176 N/A

T NP, (4-task Safe) 260020 26.49% 85 N/A
T NP, Safe 239501 32.29% 0 N/A
T P 337032 4.72% 113 N/A
T P, Safe 325460 7.99% 0 N/A
T P, Time Ind. 123514 65.08% 174 N/A
T P, Time Ind., Safe 120449 65.95% 0 N/A

Synthesis Steps for the 5-task system, with bbe reduction.
(10) T NP, (4-task Safe) 17604 95.02% 1 118 / 2325
(11) T NP, Safe 16476 95.34% 0 2443 / 0
(12) T P 23013 93.49% 1 2443 / 976
(13) T P, Safe 21913 93.81% 0 3419 / 0
(14) T P, Time Ind. 12313 96.52% 1 3419 / 71
(15) T P, Time Ind., Safe 12428 96.49% 0 3490 / 0

System line (15), with the LMCS QoS policy.
(16) Before bbe 57003 83.89% 0 3431 / 0
(17) After bbe 7858 97.78% 0 3431 / 0

task system, under both a non-preemptive and a preemp-
tive execution policy, driven by a synthesised scheduler con-
sisting of 118 constraints in total, as shown in line (6). In
lines (7) and (8), we have attempted to synthesise constraints
for the deadlines, when the scheduler is not allowed to ob-
serve the clock values. As can be seen, no extra constraints
are needed, meaning that the 118-constraint scheduler from
line (5) is already independent of time when the clock valu-
ations are projected out of the constraints.

Having obtained a safe 4-task system, Controller is
added to it to analyse the complete system. In line (10) of
Table 3 we analysed the timed model of the system under
a non-preemptive execution policy. We used as a scheduler
the 118 constraints we had synthesised for the 4-task system,
see line (8). As we can see, there were indeed new bad states
where deadlines are missed and we synthesised 2325 con-
straints for avoiding them. Indeed, in line (11) where we ap-
plied these 2325 (plus 118 = 2443) constraints to the system,
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all deadline-miss states have become unreachable. Then, in
line (12), we examined the timed model under a preemptive
execution policy, synthesising 976 new constraints. Using
all the 3419 synthesised constraints, in line (13) we checked
that they safely scheduled the system and then in line (14)
we synthesised the final set of 71 constraints that are needed
for a time-independent scheduler. The resulting scheduler
(line (15)) has 3490 constraints, which keep the system in
a safe state under both a non-preemptive and a preemptive
execution policy, without observing the system clocks.

Finally, lines (16) and (17) apply the LMCS quality pol-
icy to the system of line (15), whose effect is to halve the
number of states of the safe system. This shows that the pre-
emptive, time-independent scheduler synthesised at line (15)
does not over-constrain the system, thus allowing designers
to effectively attack further quality properties.

8 Scheduler Implementation

Once we have synthesised a scheduler we need to integrate
it with the code of the application and the underlying OS.
Time-independent schedulers can be easily implemented us-
ing widely available OS primitives, i.e., a preemptive, pri-
ority based FIFO scheduling policy, notify, notifyAll,
wait and timed wait on condition variables, and mutexes
without priority inheritance. Time-dependent schedulers need
in addition alarms and response time timers, if the dead-
lines on the computations have been transformed to response
times. Such timers are available in almost all OS’s. If, how-
ever, deadlines refer to execution times, then we need timers
capable of measuring the exact execution time of compu-
tations, even in the presence of preemptions, which are not
widely available. For exactly this reason, our methodology
produces time-independent schedulers at the last stage - to
avoid requiring extremely reliable and precise timers. In fact,
we also developed a version of our control subsystem for
supporting synthesised schedulers on FAST-OS, the propri-
etary POSIX-compliant OS of Thalès Airborne Systems, for
the PowerPC architecture. Unlike most OS’s, FAST-OS does
not allow direct setting/observation of timers at all. In the
following, we present the core implementation of time-independent
schedulers.

The generated code consists of two parts - the appli-
cation code and the control subsystem (U Scheduler).
The application code is instrumented to call U Scheduler
when an application thread executes one of monitorEnter,
monitorExit, notify, notifyAll, wait, timed wait or
waitForPeriod. In its turn, U Scheduler evaluates the
application-specific synthesised scheduling constraints cor-
responding to the different scheduler layers. The control sub-
system is implemented as an accompanying library.

Our library uses a single mutex (sched mx) and pro-
vides to each application thread a unique condition variable.

1 int interrupted_task = IDLE;
2
3 void U_Scheduler(int tc, bool in_notify, timespec &deadline) {
4 bool finished = true, level_super = false;
5 int tn, i;
6 // tc is the current thread (tcurrent) & tn the next one (tnext)
7 do {
8 // calculate Ready, Safe & Quality sets
9 tn = Synthesized_Constraints(THREADS_TABLE);

10 if (tn != tc) {
11 if (in_notify) {
12 if (-1 != tn) { // -1 means no thread is waiting
13 // tnext has priority BLOCKED so it cannot preempt tcurrent

14 notify(THREADS_TABLE[tn].cv);
15 }
16 } else { // ! in_notify
17 if (!level_super) interrupted_task = tc;
18 U_Set_Priority(tn, EXECUTING);
19 THREADS_TABLE[tn].PC = THREADS_TABLE[tn].PC Notif;
20 notify(THREADS_TABLE[tn].cv);
21
22 if (NULL == deadline){// Not a waitTimed or waitForPeriod
23 // Release sched mx here
24 wait(THREADS_TABLE[tc].cv, sched_mx);
25 // Here I have been signaled
26 } else { // NULL != deadline
27 U_Set_Priority(tc, INTERRUPT);//Release sched mx
28 timed_wait(THREADS_TABLE[tc].cv, sched_mx, deadline);
29 /* Here I have been signaled or I have timed-out.
30 Must re-schedule to be safe, if I timed-out. */
31 if (THREADS_TABLE[tc].PC != THREADS_TABLE[tc].PC Notif) {
32 finished = false;
33 THREADS_TABLE[tc].PC = THREADS_TABLE[tc].PC Timeout;
34 }
35 level_super = true ; deadline = NULL;
36 }
37 }
38 }
39 } while (! finished);
40 if (level_super) {
41 U_Set_Priority(tc, EXECUTING);
42 U_Set_Priority(interrupted_task, BLOCKED);
43 interrupted_task = tc;
44 }
45 }

46 void U_monitorEnter(obj o, int tc, int curr_pos, int next_pos) {
47 lock(sched_mx);
48 THREADS_TABLE[tc].PC = curr_pos;
49 U_Scheduler(tc, false, NULL);
50 lock(o.mutex); // We lock the object once we’ve got permission
51 THREADS_TABLE[tc].PC = next_pos;
52 unlock(sched_mx);
53 }

54 void U_monitorExit(obj o, int tc, int curr_pos, int next_pos) {
55 lock(sched_mx);
56 THREADS_TABLE[tc].PC = curr_pos;
57 unlock(o.mutex);// Unlock the object before calling U_Scheduler
58 THREADS_TABLE[tc].PC = next_pos;
59 U_Scheduler(tc, false, NULL);
60 unlock(sched_mx);
61 }

Fig. 12 Pseudo-code of the application scheduler

Table 4 Timing primitives under eCos (results in µs)

Primitive Min Avg. Max Avg.-Dev.
Synthesised Constraints 0.00 0.66 4.00 0.45
Context Switch 0.00 0.77 1.00 0.35
Trylock (unlocked) 0.00 0.69 2.00 0.47
Unlock (locked) 0.00 0.75 3.00 0.47

These condition variables are all associated with the afore-
mentioned mutex (a capability which exists in POSIX but not
in Java). This construct is used simply for simulating the dis-
abling of interrupts and can be used when our code needs to
run in user space. Finally, we use three different priority lev-
els, namely, BLOCKED, EXECUTING & INTERRUPT (from
lowest to highest) and the SCHED FIFO POSIX scheduling
policy.

Fig. 12 shows the pseudo-code of the implementation.
Before calling U Scheduler, our monitorEnter locks sched mx
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and updates the application task’s position to be the same as
in the model (lines 47–48). U Scheduler calls Synthesized -
Constraints (generated by the synthesis tool) in line 9,
passing it the current task PC’s. If the thread to be exe-
cuted next (tnext ) is different from the current one (tcurrent )
and tcurrent is not doing a notification, tnext ’s priority is set
to EXECUTING (line 18), the condition variable (cv tnext ) of
tnext is notified in line 20 and we finish by having tcurrent

wait on its own condition variable, cv tcurrent , in line 24. This
final action releases sched mx just before blocking, thus
allowing the notified thread tnext to resume execution. If
tnext is the same as tcurrent , then the application scheduler
returns normally and tcurrent unlocks sched mx.

The algorithm changes somewhat when calling the ap-
plication scheduler through a timed wait or a waitForPe-
riod. In this case, we also pass to our scheduler the time that
the current thread should wait. The scheduler then performs
a timed wait on cv tcurrent

in line 28, using as timeout the
absolute deadline argument, instead of doing a simple wait.
It also increases the priority of tcurrent to INTERRUPT just
before performing the timed wait (line 27), so that tcurrent

gets the CPU when it timeouts. When tcurrent timeouts, it
re-evaluates the scheduler predicates (line 32), so as to find
out if it is indeed safe to continue execution. Before calling
U Scheduler, functions U timed wait/U wait (not shown
in Fig. 12) set field PC Notif to the label of to the internal
state of the wait, where the thread has been notified but has
not yet re-acquired the mutex of the object on which it was
waiting. Similarly,functions U timed wait/U wait for -
period set field PC Timeout to the label of the internal
state of the timed wait, or the label of the first statement
after a new period.

We have successfully executed our implementation over
two different combinations of hardware architecture and em-
bedded OS’s, namely an Intel Pentium II (333MHz) running
eCos over Linux and a PowerPC simulator with FAST-OS.
Experiments with eCos showed that the execution time of
the synthesised predicates (i.e., function Synthesized -
Constraints) is comparable to the execution time of lock-
ing an (unlocked) mutex, having a WCET in the order of
4µs. Table 4 gives the results of our experiments under eCos.
Experiments were run 1000 times on a 330 MHz Pentium II,
where eCos was using the synthetic Linux hardware archi-
tecture, e.g., running over Linux as a user process. eCos
had the highest real-time priority in SCHED FIFO schedul-
ing policy, thus running uninterrupted by all other processes.
In addition, all memory pages of the eCos process were
locked in RAM, so as to avoid paging from the OS.

The implementation pseudo-code shown in Fig. 12 refers
to a POSIX-API implementation of this library. This imple-
mentation had to support FAST-OS that does not allow ac-
cess to alarms. This is why timeouts (for U timed wait/U wait-

ForPeriod) were implemented with the timed wait primi-

tive. We also have a non-POSIX implementation over eCos
that uses OS alarms and alarm handlers directly, giving us
finer control over timeout events, since these are now treated
by high priority interrupt handlers. In this way we can sup-
port deadline and period miss handlers as proposed by RTSJ [34].

9 Scheduler Robustness

Synthesised schedulers can be intolerable to wrong estima-
tion of computation WCET’s. In fact, a computation should
not finish earlier than its BCET either; in both cases the sys-
tem enters a state that was not in the model used to synthe-
sise the scheduler. Since this state was not explored during
synthesis, the scheduler does not have a strategy for it and
thus can take an unsafe action. It should be noted that by un-
safe we mean to an action leading to a deadline miss, since
deadlocks have been eliminated using the untimed model of
the system, thus the deadlock-safety synthesised constraints
are not sensitive to timing errors (indeed, our scheduler syn-
thesis methodology is explicitly meant to guard against such
a situation).

The simplest solution for BCET is to impose it for each
computation, by idling. This, however, implies that we ei-
ther use a non-preemptive execution model, or that we have
execution time timers so that we know how long the com-
putation has executed. Unfortunately, such timers are not
currently supported by many OS’s. Instead of imposing the
BCET, we can explicitly verify whether the synthesised sched-
uler tolerates wrong estimations of it. To do so, we need to
apply our synthesised scheduler to a model where all BCET’s
are substituted by zero, thus exploring all possible cases of
early completion of computations. If we do not need to syn-
thesise any new constraints for keeping the system in a safe
state, then our scheduler tolerates all the cases where a com-
putation finishes earlier than expected. Otherwise, we can
use the additional constraints synthesised in this step to ren-
der it safe anew. This step should evidently be performed
last, since we need to explore a much bigger state space. In
addition, by considering the question of tolerance to BCET
estimations last, we can better identify the constraints which
are needed explicitly for this case and keep them separate
from the constraints needed for the case where our assump-
tions hold.

There are two different manners to establish tolerance of
the scheduler to wrong estimations of the WCET of com-
putations, similar to those for the BCET. If the OS sup-
ports execution time timers then we need do no further anal-
ysis. Indeed, it suffices to set alarms on these timers for
the case where a computation exceeds its WCET. Other-
wise, we need to translate each WCET into a worst case
response time (WCRT) by taking into account all possible
preemptions of this computation by other computations. In
the state space graph we identify the WCRT as the longest
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path for each computation. Having done this, we need to ver-
ify again the model, using now the interval [BCRT=BCET,
WCRT] as the execution time of a computation (since the
underlying OS does not allow us to differentiate between
execution and response time). The synthesised scheduler for
this model can then be implemented along with watchdogs
which guard against computations exceeding their WCRT.
At the same time, we need to change the behaviour of the
task stopwatches in the model so that they are no longer
stopped when computations are preempted (otherwise we
will be comparing execution versus response time). Another
way of achieving this is by adding new clocks so as to be
able to measure the preemption time of tasks in the model
but then complexity goes up.

If the model using response times cannot be scheduled
safely, then we need an OS with execution time timers, or a
non-preemptive execution model to render the WCRT equal
to the WCET. If this results in an unacceptably constrained
system, we can break up computations to introduce explicit
preemption points by introducing synchronisation constructs
on new task-local objects. Thus, the deadlock-freedom of
the system continues to hold (since the new objects are lo-
cal) and the scheduler has additional points where it can ex-
ert control.

10 Related Work

Our methodology for building application-driven schedulers
follows the controller synthesis paradigm [46] and builds
upon [1,4]. Controller synthesis for timed automata was also
considered in [22], where the problem is reduced to the un-
timed framework of [46] using the region graph construc-
tion that results in state space explosion. [45] considers the
more general setting of linear hybrid automata and presents
a semi-decision procedure. The approach of [30] is also sim-
ilar to ours since it uses an automata-based formalism (after
translation from ACSR) but it relies on a different algorithm,
based on weak bisimulation, and does not propose a par-
ticular scheduler architecture or implementation. A sched-
uler synthesis tool has also been described in [33]. It dif-
fers from ours in two major aspects: (i) it computes static
cyclic schedules by sequencing events in a fixed time frame,
whereas our algorithm produces dynamic (and not necessar-
ily cyclic) schedules for an unbounded time frame; and (ii)
it is restricted to deterministic execution times, while we can
handle non-deterministic ones.

Task inter-dependencies due to resources are not consid-
ered in [24], though applications are allowed to have het-
erogeneous task types. The advantage of our method is the
handling of larger models than if we had tried to attack the
original timed version of the model at once. In addition,
following our method designers can better understand the
behaviour of a system, since we successively drive them

through: (i) states which cause a deadlock later on; and, (ii)
states where a system is overloaded (and, thus, task preemp-
tion is needed). Our method can be applied to applications
comprising any mix of periodic, aperiodic, etc. tasks sharing
resources and communicating through condition variables.

A disadvantage of our method is that we must build the
entire state space before synthesising a scheduler. It could
be possible to adapt to our setting the on-the-fly synthesis
algorithm proposed in [39]. Concerning state-space explo-
sion, it is interesting to note Wang et al. [43], who synthesise
controllers for deadlock-freedom, using structural character-
istics of Petri net models of the programs. This approach
scales easily to very large programs, since it does not ex-
plore the full state space. It is similar to using the sets of task
states where they hold or want to hold a resource, to identify
potential deadlocks. Apart from the fact that not all potential
deadlocks are real, the main problem with [43] is the solu-
tion advocated - to add extra locks to render deadlocks im-
possible. As we have shown at the end of section 5.1, this so-
lution is rather Procrustean, since it greatly over-constrains
the valid execution traces and can break the application logic
(even in non-R-T systems). In fact, this is a problem that is
shared by all approaches, the RMA family included - it is not
known what are the repercussions of the constraints they im-
pose on other properties of the system. Our methodology is
best poised to deal with this problem for two reasons. First,
by attempting to synthesise the maximal controller, it applies
as few constraints as possible, so when it does change the ap-
plication logic it is because that is the only possible way for
safely controlling the system. Second, since our methodol-
ogy builds on model checking, software engineers can easily
verify whether the synthesised scheduler respects basic ap-
plication properties, which is not supported by the approach
of [43] or these based on RMA-type analyses.

Our approach fits into the schedule carrying code paradigm
proposed for Giotto [18]. However, our solution is based on
controller synthesis, while [18] relies on RMA/EDF, thus
suffering their problems. Also, the Giotto compiler must be
extended for each different scheduling theory, while our com-
pilation infrastructure remains unchanged.

Several have considered quality requirements for rate-
monotonic scheduling. For instance, [14] proposes a tech-
nique for reducing the number of preemptions, but at the
cost of eventually having to increase the number of tasks
by splitting some of the original ones. Flexible scheduling
techniques [15] consider the problem of scheduling together
hard and so-called soft real-time tasks that are characterised
by quality-of-service demands. However, they do not cope
with quality requirements of hard real-time tasks, which our
approach handles easily. Then, [12] handles hard deadlines
together with specific quality properties, but only for video
encoding/decoding. Besides, the major problem with such
approaches is that each QoS property has to be tackled in-
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dividually with a new algorithm and/or run-time system. In
contrast, our methodology is able to handle QoS require-
ments by specifying the appropriate constraints at the Quality-
Exec and Quality-Notif layers and possibly enriching the
model, while the controller synthesis algorithm and the con-
troller subsystem do not change.

Finally, compared to MDE approaches like [8] that are
based on classic scheduling analyses, the general applicabil-
ity of scheduler synthesis means that analysis tools do not
need to be extended for each new system case that gets anal-
ysed.

11 Conclusions

Scheduling system tasks so as to meet multiple QoS require-
ments is an extremely difficult but at the same time very im-
portant task. We have introduced a correct-by-construction
approach (based on scheduler synthesis) to achieve this, fo-
cusing as a start on meeting the most basic (i.e., deadlock
freedom) and the most critical (i.e., timeliness) requirements,
while showing how further QoS properties can be easily
achieved as well (e.g., the reduction of context switches).

Our scheduler architecture and scheduler synthesis method-
ology allows to break the synthesised schedulers into differ-
ent parts, each representing some particular safety property
and platform execution mode. This helps software engineers
better understand the schedulers themselves and to get a bet-
ter understanding of the behaviour and importance of the
different tasks. Another advantage is that schedulers can be
synthesised for larger systems by doing the synthesis suc-
cessively, each time using a more detailed model of the sys-
tem, after having applied to it the schedulers synthesised in
previous steps.

Our approach does not impose restrictions on the type
of tasks nor does it require that the system is restructured
simply to facilitate analysis and control.

We have also performed a prototype validation of our
scheduler synthesis methodology by using two OS’s (eCos
and FAST-OS). On top of these we can execute an appli-
cation controlled by a synthesised scheduler, through the
use of a library we have developed to support application-
specific synthesised schedulers. We have developed two ver-
sions of this library: one POSIX compliant (which works
unchanged in both FAST-OS and eCos) that we have de-
scribed herein, and a non-POSIX one that uses OS alarms
and alarm handlers directly (for eCos). Our approach has
been first integrated in an industry-strength RTSJ-compliant
compilation infrastructure and run-time environment [28]:
the model extraction and synthesis steps were interfaced with
the Java-to-C TurboJ compilation chain [44] and our con-
troller subsystem was part of the Expresso executive [16].
More recently, it was used as part of an MDE framework for

real-time embedded systems comprising the formal, model-
transformation and code-generation tool Jahuel [5] and STMi-
croelectronics’s FlexCC2 compilation technology [7].
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