

City, University of London Institutional Repository

Citation: Kloukinas, C. & Spanoudakis, G. (2007). A pattern-driven framework for

monitoring security and dependability. Lecture Notes in Computer Science: Trust, Privacy
and Security in Digital Business, 4657, pp. 210-218. doi: 10.1007/978-3-540-74409-2_23

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2892/

Link to published version: https://doi.org/10.1007/978-3-540-74409-2_23

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Pattern-Driven Framework for Monitoring
Security and Dependability

Christos Kloukinas and George Spanoudakis

Department of Computing, The City University, London, EC1V 0HB, U.K.
Email: {C.Kloukinas,G.Spanoudakis}@soi.city.ac.uk

Abstract. In this paper we describe a framework that supports the
dynamic configuration, adaptation and monitoring of systems that need
to guarantee specific security and dependability (S&D) properties whilst
operating in distributed settings. The framework is based on patterns
providing abstract specifications of implementation solutions that can
be used by systems in order to achieve specific S&D properties. The
focus herein will be on the monitoring aspects of the framework which
allow it to adapt to violations of the S&D requirements and changes to
the current context.

1 Introduction

Ensuring security and dependability in systems which operate in highly
distributed environments and frequently changing contexts (e.g. chang-
ing networks and system deployment infrastructures), whilst maintaining
system interoperability and adaptability, is one of the major challenges
of current research in the area of security and dependability [1], where
systems need to adapt to dynamic changes in their context. This ne-
cessitates the incorporation of mechanisms that can monitor a system’s
operation and report violations of S&D requirements that would require
the deployment of alternative S&D mechanisms.

In this paper, we present a framework that is being developed as part
of the European research project SERENITY 1 to address the above chal-
lenges. This framework is driven by S&D patterns which specify reusable
architectural solutions for S&D requirements, the contextual conditions
under which these solutions are applicable, and rules that need to be
monitored at run-time to ensure that the implementation of the pattern
behaves correctly. The framework is responsible for selecting the patterns
which are appropriate for fulfilling the S&D requirements of a system
in specific operational contexts, as well as, activating and integrating
the implementations of these patterns with the system at runtime. The
1 http://www.serenity-project.org/motivations-&-objectives.php

http://www.serenity-project.org/motivations-&-objectives.php

framework can also monitor the execution of the system and the imple-
mentations of the S&D patterns, and take corrective actions if a violation
of rules or contextual conditions of the patterns is identified.

The general architecture and functions of this framework have been
introduced in [2]. Our focus in this paper is to describe the support that
the framework provides for system monitoring at run time and present
the use of the S&D patterns in monitoring and the mechanisms that the
framework incorporates to support this activity. The rest of this paper
is structured as follows. In section 2, we present an example of a system
which will be used throughout the paper to illustrate the operations of
the framework. In section 3, we present the general architecture of the
framework and discuss the S&D patterns and other artefacts which are
deployed during monitoring. In section 4, we discuss the monitoring life
cycle that is realised by the framework and how it is driven by the dynamic
selection, activation and deactivation of S&D patterns. In section 5, we
overview related work and, finally, in section 6 we give some concluding
remarks and outline plans for future work.

2 Motivating Example

faintness alert

prescription

System
Pharmacy

Terminal
e−Health
Patient

Doctor
e−Health
Terminal

Centre
Response
Emergency

diagnosis, prescription

as
si

st
an

ce
 r

eq
ue

st

Fig. 1. e-Healthcare system

The system that we use to illustrate the function of the S&D frame-
work that we describe in this paper is an e-healthcare system whose objec-
tive is to support the monitoring, assistance, and provision of medication

to patients who have been discharged from hospitals with critical medical
conditions [3]. In an operational scenario of this system, a patient does not
feel well and sends through his patient e-health terminal (PHT) a request
for assistance to the emergency response centre (ERC). To establish the
cause of the problem, ERC retrieves the patient’s medical record from its
internal database. From this record, ERC establishes that the patient’s
doctor is on vacation and contacts an alternative doctor D whose exper-
tise matches with the expertise of the patient’s doctor. Doctor D receives
this message on her doctor e-health terminal (DHT) and replies imme-
diately. ERC verifies D’s identity and sends the patient’s medical data
to DHT. D creates an electronic prescription on her DHT, sends it to
ERC, which subsequently forwards it to the pharmacy system (PhS) that
is closest to the patient’s location. The pharmacy delivers the medicines
to the patient, and PhS confirms the dispatch to the ERC.

3 Overview of the Framework

S&D Framework

S&D Configuration

Monitoring Rules

System Configurator

Monitoring Engine

External System

S&D Repository

Patterns
ImplementationsViolations

Required S&D Properties

Fig. 2. Architecture of the S&D framework

The generic architecture of the S&D framework is shown in Fig. 2. The
S&D configurator accepts as input the S&D configuration of an external
system and the S&D properties that this system wants to realise. Then
the S&D configurator selects an S&D pattern which can provide the re-
quired S&D properties and also selects a concrete implementation of this
S&D pattern which is applicable in the particular setting. Then the S&D
configurator sends the rules that need to be monitored for the specific
pattern and implementation to the monitoring engine, and activates the
implementation.

The monitoring engine (ME) gets the rules that should be monitored
and starts the monitoring activity. During this activity, the engine gets

events concerning the state of the external system and the selected im-
plementation from event captors and sends notifications of violations of
monitoring rules to the S&D configurator. S&D implementations include
operational runtime components that can be used to realise the S&D
properties of the pattern that they are associated with. They also include
event captors which provide the events required for checking the mon-
itoring rules of the S&D patterns. S&D implementations are activated
and deactivated dynamically by the S&D configurator through different
mechanisms depending on their type.

3.1 The Basic Artefacts

Requirements and Properties S&D requirements of systems are expressed
as S&D properties which need to hold. More specifically, a system pro-
vides the framework with a configuration file specifying: (i) the required
S&D properties, (ii) the part of the system’s architecture that each prop-
erty relates to, and (iii) the attack/fault model (afm - itself expressed
as an S&D property) under which the property should be guaranteed,
in an assume-guarantee type of reasoning: afma ⇒ propb. Using (i)-(iii),
the S&D framework can select an appropriate pattern for the relevant
property.

The properties and attack/fault models are represented abstractly
as keywords and their interdependencies as implications, e.g., propa ⇒
propb. By doing so, it is easy to dynamically check whether the as-
sumed attack/fault model is more constrained than that of a pattern,
i.e., afmsys ⇒ afmpat , and whether the property required by the system is
weaker than the property provided by the pattern, i.e., proppat ⇒ propsys .

Patterns A simplified 2 example of an S&D pattern (I&C) is shown in
Fig. 3. I&C provides two properties, integrity and confidentiality, under
any attack model. It contains monitoring rules for verifying the proper-
ties at runtime, assumptions which provide extra information about the
system behaviour, and contextual conditions under which the pattern is
applicable. Relation RequiresRulepat helps determine the subset of rules
which should be monitored, to avoid wasting resources if we do not need
all properties, while relation DependsOnpat indicates which assumptions
should be used when particular rules need to be monitored. Finally, the
pattern contains an architectural description of the offered solution, which

2 More details about the contents of S&D patterns and the scheme for describing them
can be found in [4].

describes its components, i.e., what the pattern provides for realising the
solution, the parameters, i.e., partially unknown components of the system
which will use the pattern, and the connectors which link these together
(shown as arrows).

Properties True ⇒ Confidentiality, True ⇒ Integrity

Parameters P1: { . . . }, P2: { . . . }
Components Encrypt1: { . . . }, Decrypt1: { . . . }, Filter : { . . . }

Architectural
Description Filter

Encrypt1

Decrypt1

P2P1

Rule1
Happens (e(id,Filter , P1,RES , X,Filter), t1,< (t1, t1)) ⇒
Happens (e(id, P1,Filter ,REQ , X,Filter), t2,< (t2, t1))

Rule2
Happens (e(id,Filter ,Encrypt1,REQ , X,Filter), t1,< (t1, t1)) ⇒
Happens (e(id,Encrypt1,Filter ,RES , X,Filter), t2,< (t1, t1 + T))

Rule3
Happens (e(id,Encrypt1, P2,REQ , X,Encrypt1), t1,< (t1, t1)) ⇒
HoldsAt (authorised(P2, P1), t1)

Assumption1

Happens (e(id, P1, X,RES , authorise(P2, result), P1), t1,< (t1, t1))
∧ result = True ⇒
Initiates (e(id, P1, X,RES , authorise(P2, result), P1), authorised(P2, P1), t1)

Context
Condition1

(CC1)

Happens (e(id1, Y, Z,REQ | RES , X,Filter), t1,< (t1, t1))
∧ (Y = Filter ∨ Z = Filter) ⇒
Happens (exec :e(id2, ME,Filter ,REQ , getCertificate(), ME), t2,< (t1, t1 + 1))
∧Happens (e(id3,Filter , ME,RES , getCertificate(cert), ME), t3,< (t2, t2 + T))
∧ valid(cert) = True

RequiresRulepat

{(Integrity, Rule1), (Confidentiality, Rule2),
(Confidentiality, Rule3), (Integrity, CC1)}

DependsOnpat {(Rule3, Assumption1)}

Fig. 3. A simplified pattern example of integrity and confidentiality

Rules, context conditions and assumptions are specified in Event Cal-
culus (EC) [5]. An event e(ID , sender , receiver , status, operation, source),
provides us with its source, that is the component from which the occur-
rence of the operation has been captured (may be different from either
sender or receiver), and their status, that is whether the operation is a
request (REQ) or a response (RES). Fluents are represented as relations
between objects of the general form: f(o1, · · · , on).

Rule1 in the I&C pattern describes an integrity constraint, where for
each response to an operation call that P1 receives from Filter , there
should be a matching earlier call of this operation that was sent from
P1 to Filter . Rule2 checks the (bounded) availability of Encrypt1, by

asking that Filter should respond to an operation X within T time units.
Rule3 checks if the recipient P2 of any message X from Encrypt1 is
authorised by P1 to receive messages at the time of dispatch of X. Finally,
the context condition (CC1) examines the validity of the certificate of
the pattern every time that an operation is called on/by Filter . If the
certificate has been revoked between any of these points, then the pattern
is no longer applicable and must be deactivated.

4 The Monitoring Lifecycle

The typical operational scenario of the S&D framework involves: (i) the
selection of a pattern that can provide the properties required by a sys-
tem, (ii) the activation of an appropriate implementation for it and the
monitoring of the pattern rules, and, (iii) the deactivation of the pattern
if it is no longer relevant to the external system of concern or cannot be
applied in the current context. In the following, we describe how the S&D
framework performs these activities.

Selection of Patterns Based on the system S&D configuration file, the
S&D framework searches its pattern repository, to identify patterns which
offer the required properties (RPropj), given the specific attack/fault
models (AFM i). More specifically, it computes the TolerableAttacks =
{afm : AFM i ⇒ afm} and ProvidedProperties = {prop : prop ⇒ RPropj}
and uses these to find the CandidatePatterns, which provide the prop-
erty afm ⇒ prop. Then the framework finds the RealisableCandidates
which have currently applicable implementations. At this stage, extra
constraints specified by the system configuration are used to sort the set
of realisable candidate patterns with respect to how closely they match
the user’s criteria, e.g. the maximum cost of the provided implementa-
tion, the identity of its provider, etc. Then, the closest match is considered
for the most difficult part of the search, i.e., selecting a pattern which is
architecturally compatible with the system. The problem of architectural
compatibility is ensuring that the system components which require a
property will be correctly assigned to the parameters of the pattern. This
architectural match is performed through architectural unification [6].
The selection process ends when the S&D framework has found an archi-
tecturally compatible pattern in the ordered set of RealisableCandidates.
In reference to the example of Fig. 1, we will assume that the configurator
has selected the pattern of Fig. 3 as a realisable candidate pattern, us-
ing the substitutions {P1 → ERC,P2 → DHT, X → assist(· · ·)}, where
assist(· · ·) is the operation that the ERC is calling on the DHT.

Activation of Patterns The activation of patterns by the S&D framework
has two major steps with respect to monitoring: (1) the activation of
monitoring rules by the monitoring engine, and (2) the attachment of the
event collectors to the system/pattern components in order to generate
the events required for monitoring.

The activation of monitoring rules happens according to the following
steps, using the information that the I&C pattern has been selected for
both its properties SelectedForpat = {(Confidentiality , Integrity)}:
Computations Results

InitRulespat = CC pat ∪
{r : ∃prop ∈ SelectedForpat |
(prop, r) ∈ RequiresRulepat}

InitRulespat = {CC1,Rule1,Rule2,Rule3}

FinalRulespat = InitRulespat ∪⋃
r∈InitRulespat

DependsOnpat(r)
{CC1,Rule1,Rule2,Rule3,Assumption1}

ActiveRulespat =
substitute(FinalRulespat , substitutionlist)

substitutionlist = (P1 → ERC,
P2 → DHT, X → assist(· · ·)))

Once the monitoring rules of the selected pattern have been instanti-
ated and activated, the event collectors of the respective S&D implemen-
tation are activated. This process uses ActiveRulespat :
Computations Results/Comments

EventsOfInterestpat =⋃
r∈ActiveRulespat

Containspat(r)

EventsOfInterestpat = {
ev(id, ERC,Filter ,REQ , assist(· · ·),Filter),
ev(id,Filter , ERC,RES , assist(· · ·),Filter),
· · ·}

SourceOf pat(e) = c Filter (for all events)
Find the event collectors for each event e:
CollectedBy imp(SourceOf pat(e), e)

From the the configuration of the selected
S&D implementation

The monitoring engine checks the activated monitoring rules as de-
scribed in [7]. If a rule is violated, the engine logs the violation and per-
forms the control action which was specified in the system configuration,
if any, to notify the system. If the violated rule is part of the pattern’s
context conditions, then the framework configurator is notified in order
to deactivate the pattern and replace it with a new one.

Deactivation of patterns When a context condition is violated or when
the S&D requirements change, e.g., due to legal reasons, then the pattern
needs to be deactivated and replaced by another. Replacing a pattern en-
tails the deactivation of the monitoring rules and assumptions, the detach-
ment of the event collectors which collect the events for these rules and
the deactivation of its implementation. Even though the ActiveRulespat

are easy to deactivate, event collectors should only be deactivated if they
are not also being used by other implementations. Therefore, the S&D

configurator needs to identify the collectors which are used exclusively by
the current pattern and deactivated these only.

5 Related Work

The objective of the framework that we present in this paper is two-fold:
(a) to provide runtime support to external systems for the realisation
of specific S&D properties, presented in more detail in [2], and (b) to
monitor the effectiveness and adequacy of the support that it provides in
specific operational contexts. The approach that we advocate for (b) is
related to security monitoring systems, which can be distinguished into
firewalls and intrusion detection systems [8,9], intrusion prevention sys-
tems [10,11], and access control systems [12,13]. Firewalls control access
on packets entering or leaving local networks to protect them from ex-
ternal networks, thus do not consider the application layer and cannot
protect against internal threats or monitor general security properties.
Intrusion detection systems also aim to detect attacks at the network
layer based on models of expected user/system behaviour but do not al-
ways have the control capability to prevent attacks. A combination of
attack detection and prevention capabilities is provided by intrusion pre-
vention systems. Access control systems aim to restrict access to sensitive
information based on pre-assigned rights for accessing specific information
objects to different subjects (e.g. system component), the requester’s role
in an organisation (role based access control systems), or access policies
combining credentials of users with the context of the system (context
based access control). Such systems can monitor information access but
not other, more general, properties which are supported by our approach.
Furthermore, they cannot adapt and integrate complex security solutions
to running systems [1].

Our approach also relates to general purpose runtime monitoring sys-
tems, which focus on the verification of program behaviour against prop-
erties specified at some temporal logic or on requirements monitoring,
e.g. [14,15]. Many of the former systems focus on runtime verification
of Java code [16,17] where events record changes of internal program
variable values and/or invocations and returns of program methods. The
latter systems express requirements in some high level formal specifica-
tion language and subsequently assume the refinement and mapping of
these requirements onto patterns of events whose occurrence would indi-
cate their violation at run-time. This transformation is the responsibility
of system providers, e.g. [14].

The framework that we present in this paper can support the moni-
toring of general properties for software systems including security prop-
erties [18]. Its main difference from existing work is that monitoring is
driven by S&D patterns which define the rules that should be monitored
at different stages and contexts of a system’s operation, in order to ensure
specific security properties. Furthermore, the generation of events in this
framework is performed by pattern implementations and thus there is no
need for explicit code instrumentation or developing other types of event
emission methods.

6 Conclusions

In this paper, we described the monitoring-related aspects of a frame-
work [2] that supports the dynamic configuration, adaptation and moni-
toring of systems that need to guarantee specific security and dependabil-
ity properties whilst operating in distributed settings. The framework is
based on patterns [4] providing specifications of implementation solutions
that can be used by systems in order to achieve specific security and
dependability properties. Patterns identify contextual conditions which
need to hold in order to guarantee the effectiveness of the solutions that
they describe, and rules that should be monitored at runtime to check
that these conditions are satisfied and the offered solutions do indeed
comply with the required security and dependability properties.

Based on the security and the dependability properties which are re-
quired by external systems, the framework can automatically select pat-
terns and concrete implementations, integrate them with the system, and
monitor the behaviour of the integrated entity to check the effectiveness
of the adopted solutions in it. The framework can also take certain control
actions when there are runtime violations of the monitored rules. These
actions may include the selection and activation of other patterns if the
current ones fail to meet the requirements, the activation of additional
monitoring activities, and the suspension of the system’s operation.

Currently, we are working on the introduction of mechanisms for de-
tecting potential threats to S&D requirements and the provision of de-
tailed diagnostic information for the detected violations of the S&D pat-
tern rules and contextual conditions. We are also looking onto mechanisms
for the effective distribution of rules onto different monitors in order to
optimise the monitoring performance of the framework.

References

1. Maña, A., et al.: Security engineering for ambient intelligence: A manifesto. In:
Integrating Security and Software Engineering: Advances and Future Vision. Idea
Group Publishing (2006) 244–270

2. Sanchez-Cid, F., et al.: Software engineering techniques applied to AmI: Security
patterns. In: Developing Ambient Intelligence: Proc. of the First Int. Conf. on
Ambient Intelligence Developments (AmID’06), Sophia-Antipolis, France, Springer
(2006)

3. Campadello, S., et al.: S&D requirements specification. Deliverable A7.D2.1,
SERENITY Project (2006) Available from http://www.serenity-forum.org.

4. Maña, A., et al.: Patterns and integration schemes languages. Deliverable A5.D2.1,
SERENITY Project (2006) Available from http://www.serenity-forum.org.

5. Shanahan, M.P.: The event calculus explained. In: Artificial Intelligence Today.
Volume 1600 of Lecture Notes in Artificial Intelligence. (1999) 409–430

6. Melton, R., Garlan, D.: Architectural Unification. In: Proceedings of CASCON’97,
Ontario, Canada (1997)

7. Spanoudakis, G., Mahbub, K.: Non intrusive monitoring of service based systems.
International Journal of Cooperative Information Systems 15 (2006) 325–358

8. Axelsson, S.: Intrusion detection systems: A survey and taxonomy. Technical
Report 99-15, Dept. of Computer Engineering, Chalmers Univ. (2000)

9. Hofmeyr, S.A., Forrest, S.: Architecture for an artificial immune system. Evolu-
tionary Computation 7 (2000) 1289–1296

10. Anagnostakis, K., et al.: Detecting targeted attacks using shadow honeypots. In:
Proc. of the 14th USENIX Security Symposium. (2005)

11. Labbe, K., et al.: A methodology for evaluation of host-based intrusion prevention
systems and its application. In: Proc. of the 7th IEEE Work. on Information
Assurance. (2006)

12. Corradi, A., et al.: Context-based access control management in ubiquitous envi-
ronments. In: Third IEEE Int. Symp. on Network Computing and Applications.
(2004) 253–260

13. Hulsebosch, J., et al.: Context sensitive access control. In: Proc. of the Tenth ACM
Symp. on Access Control Models and Technologies, SACMAT’05. (2005) 111–119

14. Robinson, W.: Monitoring software requirements using instrumented code. In:
Proc. of the Hawaii Int. Conf. on Systems Sciences, Hawaii, USA (2002)

15. Feather, M., et al.: Reconciling system requirements and runtime behaviour. In:
Proc. of 9th Int. Work. on Software Specification & Design. (1998)

16. Kannan, S., et al.: Runtime monitoring and steering based on formal specifica-
tions. In: Workshop on Modeling Software System Structures in a Fastly Moving
Scenario. (2000)

17. Kim, M., et al.: Java-MaC: a runtime assurance tool for Java programs. Electr.
Notes in Theoretical Computer Science 55 (2001)

18. Spanoudakis, G., Kloukinas, C., Androutsopoulos, K.: Towards security monitor-
ing patterns. In: ACM Symposium on Applied Computing (SAC07) - Track on
Software Verification. Volume 2., Seoul, Korea, ACM (2007) 1518–1525

http://www.serenity-forum.org
http://www.serenity-forum.org

	A Pattern-Driven Framework for Monitoring Security and Dependability

