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Abstract

We propose to model endogeneity bias using prior distributions of moment condi-
tions. The estimator can be obtained both as a method-of-moments estimator and in a
Ridge penalized regression framework. We show the estimator’s relation to a Bayesian
estimator.
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1 Introduction

A solution to the problem of endogeneity is to rely on exogenous information, i.e. instrumen-
tal variables (IV) (see e.g. Hausman , 1983; Angrist and Krueger , 2001) and proxy variables
(see e.g. Olley and Pakes , 1996; Levinsohn and Petrin , 2003; Wooldridge , 2002, 2009) de-
rived from additional exclusion restrictions or equations. In practice, the type of restriction
and the point identification strategy chosen determine the model to be used. Alternative
approaches are given in Rigobon (2003), Klein and Vella (2010), Chalak and White (2011),
and Lewbel (2012). However, in many empirical applications there is disagreement and con-
cern about the exclusion restrictions imposed. A related approach is to seek parameter set
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identification. The advantage of such methods is that they require weaker assumptions than
those needed for consistent point estimation of the parameter of interest.

This paper suggests an alternative strategy to deal with the endogeneity problem. We
propose the use of a prior distribution on the endogeneity bias when there is no availability
of additional information such as instrumental or proxy variables. By modeling bias, thus,
we mean to impose a prior distribution on the amount of endogeneity of the endogenous vari-
ables’ coefficient estimators and then compute the distribution of the associated parameters
of interest. This distribution reflects the researcher’s beliefs about endogeneity. The value
of our contribution does not only lie in the derived estimators but in the way it proposes
to think about endogeneity. In particular, it formalizes the use of prior knowledge about
unobservables and their relationship with observables to quantitatively assess the degree of
bias. The proposed estimators are constructed using the method-of-moments by imposing
the prior distribution of a misspecified moment condition, or equivalently, in a Ridge pe-
nalized regression framework, by only penalizing the endogenous variables’ coefficients. We
show the connection of our estimator with a Bayesian estimator.

The proposed methodology is related to recent developments in the literature. First, it
can be interpreted as in Altonji, Elder and Taber (2005a,b, 2008) as a strategy to extract
information from observables about the endogeneity bias. They construct an index of ob-
servables, which in combination of prior knowledge about the sign of the bias and a condition
on the relationship between included (observable) and excluded (non-observable) variables
can be used to identify the endogenous variable parameter. In a related work Kiviet (2011)
imposes the correlation between the endogenous variable and the innovations. In this case,
identification of the true parameters cannot be achieved, but the direction and magnitude
of the bias is analyzed instead. Second, the idea of using penalized regression to model
endogeneity was proposed by Galvao and Montes-Rojas (2010) in the context of dynamic
panel data models where the fixed-effects’ shrinkage reduces the dynamic panel bias.

2 Regression shrinking of endogenous covariates

Consider the following linear regression model,

yi = x1iβ1 + x2iβ2 + εi, i = 1, 2, ..., n, (1)

where x1i is a 1 × p1 vector, x2i is a 1 × p2 vector, β1 is a p1 × 1 vector, and β2 is a p2 × 1
vector. x1 contains p1 exogenous regressors and x2 contains p2 endogenous regressors. Let
x = (x1, x2) and β = (β1, β2)′. In matrix notation y = x1β1 + x2β2 + ε = xβ + ε where
y,x, ε are the corresponding n-dimensional vectors or matrices.

We consider the following assumptions:

Assumption 1. (yi, xi) is an i.i.d. random sample for i = 1, ..., n with yi = x1iβ1 +
x2iβ2 + εi.

Assumption 2. 1
n
x′1x1

p→ C1 (finite and non-singular), 1
n
x′1x2

p→ C12 (finite), 1
n
x′2M1x2

p→
V2·1 (finite and non-singular), and 1

n
x′1M2x1

p→ V1·2 (finite and non-singular), where Mj =
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Ipj − xj(x′jxj)−1x′j, j = 1, 2 are the orthogonal projections in least squares.

Assumption 3. For any i, E[x′1iεi] = 0 and E[x′2iεi] = B2, such that 1
n
x′1ε

p→ 0 and
1
n
x′2ε

p→ B2.

Let β̂o = (β̂o
1 , β̂

o
2)′ be the ordinary least squares (OLS) estimator. Simple OLS algebra

and asymptotic calculations show that

β̂o
1

p→ β1 − C−1
1 C12δ2,

β̂o
2

p→ β2 + δ2,

where δ2 = V −1
2·1 B2 is the OLS bias in estimating β2. The OLS estimator is derived from the

set of estimating equations

E[x′1ε] = 0,

E[x′2ε] = 0,

and thus the OLS bias is the result of misspecifying the second moment condition, i.e.
wrongly assuming x2 is exogenous, where in fact, E[x′2ε] = B2, for a general unknown B2. In
particular, consider the following modified moment condition V −1

2·1 E[x′2ε] = V −1
2·1 B2 = δ2 and

let δ2 = Λβ2, where Λ is a p2 × p2 diagonal matrix diag{λ1, λ2, ..., λp2}. In many empirical
applications the signs of β2, δ2 and C12 are known, and then the sign of the elements in Λ are
also known. Note that Λβ2 has the role of δ2 above and the greater a parameter λj is, the
greater the endogeneity problem in xj is, for j = 1, 2, ..., p2. Λ can be seen as a proportional
endogeneity tolerance parameter.

This paper focuses on estimators that impose prior information about δ2 or Λ, derived
through the moment conditions

E[x′1ε] = 0,

V −1
2·1 E[x′2ε] = Λβ2.

For convenience we maintain the terminology of exogenous and endogenous variables. Nev-
ertheless, this could be redefined for the researcher convenience.

The moment conditions can be replaced by the following estimating equations:

x′1(y − x1β1 − x2β2) = 0, (2a)

(x′2M1x2)−1 (x′2(y − x1β1 − x2β2)) = Λβ2. (2b)

The solution to this problem, if (Ip2 + Λ) is non singular, is

β̂Λ
1 = β̂o

1 + (x′1x1)−1(x′1x2)Λ(Ip2 + Λ)−1β̂o
2 ,

β̂Λ
2 = (Ip2 + Λ)−1β̂o

2 .

Let β̂Λ = (β̂Λ
1 , β̂

Λ
2 )′, one can notice that for this case,

β̂Λ
1

p→ β1 − C−1
1 C12δ2 + C−1

1 C12(Ip2 + Λ)−1(Λβ2 − δ2),

β̂Λ
2

p→ (Ip2 + Λ)−1(β2 + δ2).
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The proposed estimator β̂Λ also arises as a solution to a penalized Ridge regression version
of model (1), where {λ1, λ2, ..., λp2} are penalties that apply to the p2 endogenous regressors

only. In this framework β̂Λ is obtained as

β̂λ = argminβ

n∑
i=1

(yi − xiβ)2 + (x′2M1x2)

p2∑
j=1

λjβ
2
2j. (3)

Interpreting Λ as a penalty parameter allows for applications to other contexts in which
our ignorance and lack of identification about some parameters determine that their estima-
tion involves a burden for the desirable properties of the full model. Note that for the Ridge
regression method, the λjs are assumed to be non-negative, and thus they are interpreted
as shrinkage parameters, that is, larger values of λ shrinks the corresponding parameter
estimates towards zero. However, for our purposes we could consider λ >< 0 in order to
account for different types of bias.

One important case in (3) is when Λ = diag{λ} and λ > 0 is the same positive scalar
for all endogenous variables. In this case, all endogenous variables regression parameters
are subject to the same penalty, that is, they shrink according to λ. This is the case of
Galvao and Montes-Rojas (2010) where all fixed-effects parameters are reduced in a similar
fashion. There are two important special cases of the above method. First, the model with
no shrinkage, and secondly, the model that totally shrinks β2. In the former case, if λ = 0,
then β̂o is the standard OLS estimator where both x1 and x2 are used. In this case, the
endogeneity in x2 produces an endogeneity bias in the estimators of β1 and β2. In the second
case, if λ→∞, then β̂∞ is the estimator where only x1 is used and β2 is set to 0. This will
generate an omitted variable bias for the estimation of β1.

3 Imposing a prior on endogeneity

In practice the estimator above is infeasible because Λ (or δ2) is unknown and the parameters
cannot be identified. If Λ is known the parameters are point identified, while if Λ is known to
belong to a defined set the parameters are set identified by the range of the tuning parameter.
We propose a Bayesian estimator where we impose a prior on the tuning parameter and
compute the estimate of the parameters of interest based on the penalized regression. The
prior of the tuning parameter thus implicitly defines a weighted set for identification and
produces a posterior distribution for an estimator of β. As in a Bayesian context, the
properties of the derived estimator depends on how accurate the prior is.

Our uncertainty on β2 (and δ2) is modeled by λ, the proportional endogeneity tuning
parameter. By modeling bias, thus, we mean to impose a prior distribution on δ2, the
amount of endogeneity, through the parameter λ, and then compute the distribution of the
associated parameters of interest. As an example, suppose that λ ∼ χ2

1, so that it has mean
equal to 1. Then δ2 is of the same magnitude as β2, that is, E[β̂o

2 ] = β2 + δ2 = 2β2.

The distribution of β̂λ = (β̂λ1 , β̂
λ
2 ) can then be obtained from the distribution of β̂o and

λ. Define h(β|y, x) as the density function of this estimator. A point estimate can be based
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on the mean (i.e. Eλ[β̂
λ]), median (i.e. Qβ̂λ(0.5), where Q(·) is the quantile function) or

any other statistic of interest such as mode. As a practical matter, h(.) can be simulated
by using the asymptotic normality of β̂o and the distribution of λ, which is assumed to be
independent of (y, x).

4 Connection with a Bayesian estimator

In order to see the connection of our estimator with a Bayesian estimator, consider the loss
function in a standard Ridge regression problem

L(β, λ) =
n∑
i=1

(yi − xiβ)2 + λ|β|2.

Consider now a Bayesian estimator based on assuming a Gaussian likelihood for ε ≡
y− xβ, p(y, x|β) where for simplicity the variance of ε is assumed to be known and equal to
1:

p(y, x|β, λ) ∝ exp

(
−1/2

n∑
i=1

(yi − xiβ)2

)
.

Now consider a prior on (β, λ) given by

p(β, λ) = φ(β; 0, 1/λ)g(λ) ∝ λg(λ)exp

(
−1

2
λ|β|2

)
,

where φ(.;m, v) is the Gaussian density function with mean m and variance v. Here β is
assumed to have a Gaussian prior and λ a density function g(λ). By Bayes theorem, the
posterior can be obtained by

p(β, λ|y, x) = p(y, x|β, λ)p(β, λ) ∝ λg(λ)exp

(
−1

2
L(β, λ)

)
.

Define yλ = [y
...0] and xλ = [x

...
√
λ], and note that β̂λ is the OLS estimator of a regression

of yλ on xλ. Then using (Zellner , 1971, p.66) results

p(β, λ|y, x) ∝ λg(λ)exp

(
−1

2

(
(yλ − xλβ̂λ)′(yλ − xλβ̂λ) + (β − β̂λ)′x′λxλ(β − β̂λ)

))
.

Note that for fixed λ, the maximum value of p(β, λ|y, x) corresponds to β = β̂λ. The pos-
terior distribution of β, p(β|y, x), requires integrating out λ which depends on the assumed
distribution g(.). Note that p(β|y, x) is different from h(β|y, x), the density function of our
estimator. In Figure 1, we illustrate this idea. Assume for simplicity that β is unidimen-
sional and consider a given joint posterior distribution of β and λ. For each β, p(β|y, x) is
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obtained by computing the mean over all possible values of λ. For instance, for β1, p(β1|y, x)
corresponds to the integration over λ along the vertical line at β1, and the same for β2 and
β3. However, h(β|y, x) is obtained by computing the mean over those values of λ for which
β = β̂λ, i.e. only those for which for a given λ it finds the maximum density. For β1 that
only corresponds to λ1, β2 to λ2 and β3 to λ3, as in the dashed line. Thus, the distribution
of our proposed estimator uses the most likely β for each λ.

[FIGURE 1 HERE]

5 Conclusions

This paper proposed a novel way of dealing with endogeneity bias when there is no additional
information such as instrumental or proxy variables. In particular, a prior is imposed on
the endogeneity bias and the resulting estimators can be constructed both as a method-of-
moments estimator or in a Ridge penalized regression framework.

Several extensions could be proposed for future research. First, the parameters model-
ing the endogeneity bias could depend on both prior information and observable variables.
Second, this model could be applied to the l1 penalization case using the asymptotic results
in Knight and Fu (2000), and could be extended to model selection with several endoge-
nous regressors. Third, the proposed model could be applied to forecasting where there is
uncertainty about some parameter values and prior information would be imposed.
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Figure 1: Bivariate posterior distribution of (β, λ)
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