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Abstract

The costly lessons from global crisis in the past decade reinforce the importance as

well as challenges of risk management. This thesis explores several core concepts of

quantitative risk management and provides further insight.

We start with rating migration risk and propose a Mixture of Markov Chains

(MMC) model to account for stochastic business cycle e�ects in credit rating migra-

tion risk. The model shows superior in-sample estimation and out-of-sample predi-

cation than its rivals. Compared with the naive approach the economic application

suggests banks with MMC estimator will increase capital requirement in economic ex-

pansion and free up capital during recession hence it is aligned with Basel III macro-

prudential imitative by reducing the recession-vs-expansion gap in capital bu�ers.

Subsequently we move to the key concept of dependence by investigating the

importance of dynamic linkages between credit and equity markets. We propose a

�exible regime-switching copula model to explore the dynamics of dependence and

possible structure breaks with special consideration on tail dependence. The study

reveals a high-dependence regime that coincides with the recent �nancial crisis. The

backtesting results acknowledge the new model's superiority on out-of-sample VaR

forecasting over purely dynamic or static copula. It can serve to emphasise the rele-

vance for risk management of appropriately modeling complex dependence structures.

Finally we discuss the risk measures and how they a�ect the portfolio optimisation.

We contend that more successful portfolio management can be achieved by combining

extreme value analysis to describe downside tail risk and dynamic copulas to model

nonlinear dependence structures. Conditional Value-at-Risk is adopted as pertinent

measure of downside tail risk for portfolio optimisation. Using both realised portfo-

lio returns and a set of out-of-sample Monte Carlo experiments, our novel portfolio

strategy is confronted with the de facto mean-variance approach. The results suggest

that the MV approach produces suboptimal portfolios or a less desirable risk-return

tradeo�.



1
Introduction

Over the past two decades, �nancial markets have witnessed several large scale catas-

trophes. In the aftermath of the Asian crisis in 1997 and the Russian sovereign debt

crisis in 1998, the bursting of Dot-Com bubble during 2000-2001 caused the world

economy to plunge into a recession and the global markets, especially the internet

sector, to shrink with losses in excess of $5 trillion. A few years later, the burst

of the American housing bubble led to the subprime mortgage crisis during 2007 to

2008, which spread quickly and globally. In September 15, 2008, the shock collapse of

Lehman Brothers - the fourth largest investment bank in the USA with assets worth

$600 billion - became the symbolic start of the most dramatic �nancial disaster to

unfold since the Great Depression. The world economy was once again dragged into

deep recession. The e�ects of the ensuing European sovereign debt crisis still persist

and cast doubt over the prospect of global economic recovery.

Each of the aforementioned �nancial crises impinged heavily on the economy:

stock markets collapsed, �rms went bankrupt or were taken over, and the unemploy-

ment rate increased. Although there are ongoing debates on causes of crisis, people

have widely attributed them to various aspects such as a loosely regulated �nancial

sector, over-complicated �nancial products, poor public monetary policies, global-

1



ization and failure of risk controls. Against this backdrop the the need for better

�nancial risk management practices has emerged and has created new impetus for

the the quest for e�ective risk measurement techniques and stress testing procedures.

1.1 The Challenges of Risk Management

Whereas speci�c de�nitions of risk might vary, Charette (1990) claims that three

characteristics must be satis�ed: �rstly, there must exist a loss associated with a cer-

tain situation; secondly, there must be some uncertainty with respect to the eventual

outcome and �nally, some choice or decision of how to deal with the uncertainty and

potential for loss. The �rst two conditions are measurable, which in turn de�ne the

risk as the quanti�able likelihood of su�ering a loss. The third condition implies some

actions that can be deployed when a risk emerges. To accommodate such features,

Kloman (1990) de�nes the general essence of risk management as:

Risk management is a discipline for living with the possibility that future

events may cause adverse e�ects.

For �nancial institutions who make pro�ts from taking risks, risk management is

the code activity and is a central part of their day-to-day practices. It is the art

of making the tactical and strategic decisions to control risks. With the help of

advanced techniques and �nancial instruments risk management mitigates misfortune

and exploits desirable future opportunities. Therefore, it manages the direction and

the extent of exposure of risk and adjusts our risk-taking behavior in a sensible way.

Risk measurement is indispensable to support the management of risk. It is the task

of communicating and quantifying risk. It is obvious that some quantitative tools are

critical aids for supporting good risk management.

Although the second Basel Accord (Basel II) issued in 2004 by the Basel Com-

mittee on Banking Supervision, a regulatory body under the Bank of International

Settlements (BIS), broadly classi�es �nancial risks into three major categories: mar-

ket risk, the risk from movements in market prices; credit risk, the risk of not receiving
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contractual repayments often due to obligor's default and operational risk, the risk

of losses from inadequate business operation, the boundaries of the three types of

risks are not always clearly distinguished and one risk is often propagated from the

others. Under the Basel II framework there is a mandatory capital conservation

charge for banks in order to create a safeguard bu�er for their exposures sensitive to

credit risk, market risk and operational risk. Banks, especially the more sophisticated

institutions, are allowed to opt for their own risk assessment approaches, such as in-

ternal value-at-risk (VaR) models for market risk and internal-rating-based (IRB)

approaches for credit risk, in calculating capital requirements. The looming Basel III

framework aims to response to the de�ciencies in �nancial regulation revealed by the

late-2000s �nancial crisis by further strengthening bank capital requirements. It is

therefore expected that there will be an increasing demand for more rigorous quan-

titative risk modeling and stress testing tools across �nancial institutions in order to

maintain �nancial stability of the banking sector.

The calculation of risk capital charges requires the use of the pro�t-and-loss (P&L)

distribution, which is the distribution describing uncertainty of the changes in value

of a bank's portfolio over a speci�c time period. An appropriate measure of risk also

has to be determined. An obvious yet important challenge in quantitative risk man-

agement is presented by the multivariate nature of risk. We are generally interested in

some form of aggregate risk that depends on high-dimensional vectors of underlying

risk factors such as individual asset values in market risk or credit spreads and coun-

terpart default indicators in credit risk. A particular concern over our multivariate

modeling is the phenomenon of dependence between extreme outcomes, when many

risk factors experience simultaneous adverse moves. How to accurately describe these

individual risk factors and, more importantly, their dependence structure is a crucial

aspect of better risk assessment. Another challenge is the need to address unex-

pected extreme outcomes rather than expected average outcomes. New quantitative

risk management techniques therefore are required to go beyond the classical normal

model and attempt to capture the related phenomena of heavy tails and extreme

value clustering. Furthermore, in risk management, we are mainly concerned about

3



the probability of large losses and hence with the upper tail of the loss distribution.

However, the return distribution is quite likely to behave asymmetrically at the tails,

that is, the negative extreme return joint distribution could exhibit di�erent stylized

facts that the opposite tail. Thus, the central concern in modern risk management is

to have a measure of risk which can address the aforementioned properties of downside

(extreme) risk, yet is easy to understand and utilize.

1.2 Motivation and Objective of the Thesis

This thesis attempts to explore a range of quantitative risk management aspects like

credit rating migration, dependence structure between asset returns, extreme risk

measures and to provide insights on their impact on value-at-risk analysis, capital al-

location and portfolio optimization. The thesis is divided into three chapters focusing

on the aforementioned risk management topics. In this section, we summarize the

motivation and objectives of each chapter.

1.2.1 Credit rating migration and the business cycle

The Basel II Accord (2004) permitted banks and other �nancial institutions to use

their own internal models for calculating economic capital. The accurate estimation

of probability of defaults (PDs) and the probability of an obligor's change of credit-

worthiness together with the loss given default (LGD) and exposure at default (EAD)

play a vital role in calculating the risk of banks' loan books as well as determining

bank risk capital allocation. In Chapter 2 we delve into the issue of estimation of the

credit rating migration matrix, which gives the probabilities that an obligor's cred-

itworthiness will change (upgrade, downgrade or even default) over a speci�c time

horizon, with primary focus the accurate estimation of PDs.

The classical discrete-time cohort method, proposed by Jarrow et al. (1997), and

its continuous-time extension the hazard rate model, developed by Lando and Skode-

berg (2002), are both based on two assumptions that rating migrations are time-

homogeneous and follow a Markov chain process. However such strong assumptions
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have been questioned recently. Altman and Kao (1992) and Carty and Fons (1994)

�rstly document non-Markovian behavior like ratings momentum or ratings drift.

Those �upgrade then upgrade" and �downgrade then downgrade" feature of rating

migrations are also reported by Kavvathas (2001), Carling et al. (2002), Couderc and

Renault (2005), and Fuertes and Kalotychou (2007).

The time-homogeneity assumption has been questioned mainly because of the

presence of business cycles. Credit rating migrations are likely to be correlated with

macroeconomic factors and, in particular, it seems natural to expect an increase in

portfolio credit risk during economic downturns. Bangia et al. (2002) �nd that vari-

ation of migration probabilities is higher in contractions than they are on average,

supporting the existence of two distinct economic regimes. Hamilton and Cantor

(2004) document that within a rating class the hazard rates for default and other mi-

grations vary considerably over time. Du�e and Singleton (2003), Du�e et al. (2007)

document stronger correlation between macroeconomic and �rm characteristics with

the rating migrations for speculative grade issuers when economic activity shrinks.

The literature on transition matrix estimation that incorporates business cycle in-

formation is very limited (see Trueck (2008) for a review). Nickell et al. (2000) propose

an ordered probit model of credit migration probabilities conditional on exogenous

variables so as to investigate the dependence of ratings transition probabilities on dif-

ferent borrowers characteristics (e.g. industry or country domicile) and on the current

state of the economy. Their model is criticized in Wei (2003) because of requiring

large samples to obtain reliable estimates. Bangia et al. (2002) account for business

cycle e�ects in the discrete cohort-type migration estimator by dividing the ratings

data into two subsets in order to match the business cycle and estimate separately

expansion and contraction matrices (hereafter, this is referred to as naive business

cycle cohort estimator). Lando and Skodeberg (2002) deploy the non-parametric

Aalen-Johansen estimator that extends the cohort estimator to in�nitely short-time

intervals so as to allow for general time heterogeneity in the underlying continuous

Markov process. They note that, apart from its high computational costs, this ap-

proach does not yield signi�cantly di�erent estimates from the time-homogeneous
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hazard rate estimator for large data sets.

Against this backdrop, Chapter 2 aims to provide further insight into the credit

rating migration risk. We advocate a Mixture of Markov Chains (MMC) estimator

of rating migration risk which explicitly recognizes the stochastic business cycle. The

MMC estimator is compared with the naive cyclical counterpart and with classical

through-the-cycle estimators in three frameworks: statistical, forward-looking, and

economic. The analysis has important implications for the ongoing �nancial regula-

tory reforms and is in the light of the Basel III initiatives to improve the �nancial

sector's resilience to stress scenarios which calls for a reassessment of banks' credit

risk models and, particularly, of their dependence on business cycles. .

1.2.2 The dynamics of default risk dependency with equity

markets and the role of regimes

The global credit derivative market has grown dramatically over a short period of

time and expanded in volume from $300 billion in 1998 to $25.9 trillion at the end of

2011 according to statistics from the International Swaps and Derivatives Association

(ISDA). This is primarily attributed to the development of credit default swap (CDS)

indices. CDS is a �nancial contract to transfer risk from the protraction buyer to the

seller when credit events, usually default, happen. The spread of a CDS is a per-

centage of the notional annual amount the protection buyer must pay the protection

seller over the length of the contract thus it is considered, together with the credit

rating, as a good indicator of credit risk.

In the past decades a large body of literature has been devoted to investigating

the factors driving the credit spreads. Among them, the so-called structural modeling

approach has become popular among industry practitioners and academic researchers.

The model, inspired from the work of Black and Scholes (1973) and Merton (1974),

assumes that the value of the �rm follows a stochastic process and default occurs

when its value falls below its debts. The empirical literature argues in favor of the ex-

istence of a negative link between credit spreads and �rm's equity value, see Longsta�
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et al. (2003), Norden and Weber (2009), and positive relationship with �rm's equity

volatility, see Madan and Unal (2000), Blanco et al. (2005), and Zhang et al. (2009).

However, all the aforementioned studies focus on single-name (at �rm level) CDS

spreads, which are susceptible to liquidity criticisms. As responses, Bystrom (2006),

Alexander and Kaeck (2008) and Fung et al. (2008) study the comovement of CDS in-

dex with the underlying equity markets. However their models are based on the OLS

regression framework implying constant linear correlation and lacking consideration

of the dependence of extreme events. The number of studies on the linkages between

CDS indices and the equity market is very limited hence Chapter 3 of the thesis is

an attempt to enrich the literature in this �eld by providing a realistic description of

such features.

There is mounting evidence that the dependence between �nancial returns is non-

linear and time-varying (see Scheinkman and Lebaron (1989), Hsieh (1989),Longin

and Solnik (1995), Brooks (1996) and Ang and Chen (2002)), which has triggered a

quest for more �exible dependence structures that go beyond the linear correlation.

In particular, the comovement between assets tends to be stronger when �nancial

markets are more volatile and the dependence does not disappear even if returns take

extreme values. These properties of asymmetric dependence and tail dependence in-

validate the use of the conventional Pearson's linear correlation and the multivariate

normal distribution for the same reason. The recent �nancial crisis has also provided

vivid evidences of the aforementioned dependence features. Empirically Hull et al.

(2004b) and Zhang et al. (2009) both document the nonlinear relation between CDS

spreads and equity volatility in the Merton's framework. Increased linkages between

the credit and equity markets are an important source of systemic risk and for this

reason there is ongoing pressure from regulators, investors and rating agencies on

�nancial institutions to build appropriate models that allow measurement of the dif-

ferent risks faced. A crucial step in this process is modeling the temporal dynamics

in the dependency between the returns of di�erent asset classes.

To this end, we resort to the copula models as a better alternative to measuring

correlations. Copulas naturally have the capacity and enough �exibility to describe
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the non-normality in asset return distributions, e.g. nonlinear, asymmetric relation-

ships, and dependence in tails, which makes them a suitable vehicle for modeling

multivariate correlations. There is a bulk of empirical evidence supporting the use of

copula models as a more realistic characterization of the dependence between �nan-

cial returns (see Embrechts et al. (2002), Mashal and Zeevi (2002)). However these

models are typically static and not capable to e�ectively capture the dynamic aspects

of dependence between �nancial risks.

In Chapter 3 we follow Patton (2006) who extends the copula models into a

dynamic framework and we propose a regime-switching dynamic copula for modeling

to reveal the sudden changes in dependence between the European credit default

swap and the underlying equity market from a �low� (normal periods) to a �high�

(crisis periods) dependence regime. The regime-switching behavior is also explored

at the tails of the joint distribution. The regime-switching e�ects in the credit-equity

relationship are then assessed from a risk management viewpoint by means of Value-

at-Risk (VaR) backtesting. Thus this work may bene�t the empirical implication for

better risk management.

1.2.3 Downside extreme risk and its impact on portfolio opti-

mization

In the past decade we have witnessed a sequence of crises, 2007-2008 credit crunch,

2008-2010 automotive industry crisis, European sovereign-debt crisis since 2009 (see

Appendix 3.F for details), which have left tremendous marks on global �nancial mar-

kets. Such disasters have become more frequent in the recent years than ever. The

question emanating is whether current risk management frameworks can provide ad-

equate responses to such e�ect. If not, how can they be improved to better capture

the downside risk associated with these dangerous occurrences? These concerns may

challenge conventional ideas about portfolio construction.

Portfolio optimization is the art as well as science of balancing return against

risk. It is one of the most important tasks for risk managers, how they e�ciently
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allocate capital to assets in a portfolio to achieve maximum returns given speci�c

risks or equivalently to minimize risks for a given set of returns is always on the top

of their agenda. The conventional approach in modern portfolio theory, pioneered by

the path-breaking work of Markowitz (1952), measures risks as the portfolio standard

deviation, a measure of how much the returns deviate from the expected or mean

return, hence, it is also called mean variance (MV) framework.

The core assumption of this framework is that future asset returns are normally

distributed and thus, a portfolio is multivariate normal, or generally speaking the

multivariate elliptical. The statistical properties of normality posit that the mean

vector together with covariance matrix of returns fully describe their joint behavior

and variance alone determines the weight of the tails. However, there is considerable

evidence that asset return distributions are leptokurtic, fat-tailed, asymmetric and far

from normal. The thin tails of the normal distribution, implying a very low likelihood

for situations where all asset classes are falling signi�cantly in market crash scenarios,

may underestimate the true risk. In order to address this problem the literature has

turned towards introducing heavy-tailed distributions. However, one problem of these

�one-piece� models is that they use the same distribution function to characterize

both the tail and central behaviors which implicitly assumes the tails have the same

properties of the central part of the return distribution. Another issue is that �tting

a parametric distribution to data sometimes results in a model that agrees well with

the data in high density regions but poorly in areas of low density due to fewer

observations in the tails. Taking advantage of the latest advances in the statistical

area of Extreme Value Theory (EVT), in Chapter 4, we attempt to separate the

estimation of the tails of asset return distribution that characterizes the occurrence

of extreme events from the central part of the distribution. To this end, in Chapter 4

we resort the dynamic copula models in order to provide a more realistic description

of the dependence evolution and evaluate the economic gains of such approaches from

a portfolio construction viewpoint.

Another drawback of the conventional MV framework is that it takes the portfolio

standard deviation as the measure of portfolio risk. It implicitly assumes that in-
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vestors treat the desirable upside returns as same as the undesirable downside losses,

which is not true as investors are typically more concerned about potential losses

rather than gains especially during periods of crisis. The recent literature, Artzner

et al. (1999) and Rockafellar and Uryasev (2002), has proposed an alternative risk

measure, Conditional Value-at-Risk (CVaR), which has the attractive feature of fo-

cusing on the extent of downside losses in situations where things do get bad and

hence it is better aligned with the modern risk management outlook.

In Chapter 4 , we deploy EVT and dynamic copula models to better describe the

joint density function while considering non-normality, fat-tails and the clustering

of extreme events. We evaluate the properties of alternative portfolio optimization

strategies based on CVaR against the traditional mean-variance model. The perfor-

mance of the competing models is examined by a set of Monte Carlo out-of-sample

simulation experiments in order to address that the optimal portfolios hinge on the

assumptions made for the distribution of asset returns and their dependent structure,

as well as the choice of risk measure to focus on.

1.3 Layout of the Thesis

The remaining part of this thesis consists of three empirical essays regarding quan-

titative aspects of risk management. We start from the rating migration model in

Chapter 2, which describes the default probability or the probability of changes of

obligors' creditworthiness and is recognized as one of the core areas of risk modeling.

Then we move to another key area of portfolio risk management to study the depen-

dence structure of asset returns. Financial investors, especially institutional investors,

with large exposures on di�erent assets have to face risks from both the devaluation

of assets and that of the whole industry or economy. This raises questions about

how to accurately characterize the correlation among asset classes. To this end, we

resort to copula models in Chapter 3 to examine the dependence structure between

the CDS and equity markets. Following up, we examine the impact of appropriately

measuring downside extreme risk in a portfolio optimization framework in Chapter
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4.

Chapter 2 compares the two classical models known as cohort and hazard rate

approaches for estimations of credit migration probabilities and discusses their �aws

on dealing with cyclicality. A Mixture of Markov Chains (MMC) model is then pro-

posed to estimate rating migration risk that explicitly recognizes the stochastic evo-

lution of the economy between phases of the business cycle. The merits of the model

are gauged by both in-sample estimations and out-of-sample forecast evaluation. A

real-time leading indicator of business cycles is employed to generate out-of-sample

predictions of credit migration risk. A number of forecast error metrics is deployed

to compare the forecast accuracy of MMC model against more basic approaches. Fi-

nally, we investigate the economic relevance of capturing business cycles via our MMC

estimator by an application to economic capital attribution.

Chapter 3 investigates the dynamics of dependence between the credit market and

the corresponding equity market and the role of regime shifts in dependence during

crisis periods. To this end, we �rstly introduce the concept of copula and the its

properties and estimation methods. An ARMA-GARCH skew-t model is adopted to

�lter out stylized facts of �nancial index returns like leptokurtosis, asymmetry, heavy-

tails, auto-correlation and heteroskedasticity. Then a regime-switching (RS) dynamic

copula model is proposed to capture the dependence structure between iTraxx CDS

spreads and equity returns for marketwide and sectoral pairs. In-sample statistical

analysis reveals the relevance of the regimes at the center and at the tails of the joint

distribution. The suggested high dependence regimes coincide with the credit crunch

and the European sovereign debt crisis. Finally the superiority of the regime-switching

approach over purely dynamic or static copula is also underlined via out-of-sample

VaR backtesting relevant for risk management.

Chapter 4 focuses on modeling downside extreme risk and investigates the per-

formance of portfolio optimization strategies when di�erent measures of risk are con-

sidered. We start from ARMA-GARCH models with di�erent error terms for mod-

eling univariate time series. Tail distributions are characterized by Extreme Value

Theory. A dynamic t copula model is then employed to provide a realistic character-
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ization of the correlation evolution, especially the dependence at the tails. A set of

Monte Carlo out-of-sample simulation are deployed to compare the performance of

return-risk allocation under the mean-conditional value-at-risk strategy against the

traditional mean-variance approach.

Chapter 5 concludes the thesis by providing an overview of our research and a

summary of the results. Finally, the last section of the chapter suggests potential

directions for future research.
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2
Credit Rating Migration Risk and Business Cycles

2.1 Introduction

The Basel II Accord, issued in 2004 by the Basel Committee on Banking Supervision

(BCBS), permitted banks to use internal models to calculate capital requirements.

The old Basel I (1988) rules endorse a standardized risk-weighting approach to deter-

mine the capital needed for backing di�erent assets. Under the internal ratings-based

approach, encouraged by Basel II and Basel III, banks can use their �in-house� risk

models to predict for each asset in their portfolio the corresponding probability of

default (PD), exposure at default (EAD) and loss given default (LGD). The resulting

numbers are then plugged into a formula that assigns a risk weight.1

Historical credit ratings2 are the main inputs to classical estimation of credit

migration probabilities, of which default risk is a measure of special interest. The

late 2000s global �nancial crisis (GFC), which started with the collapse of the US

housing bubble, has prompted a lot of skepticism over agency ratings for not being

1The expected likelihood that �rms or sovereign borrowers will default in its contractual payments
is a crucial input not only to the assignment of economic capital but also to other risk management
applications such as portfolio risk analysis and the pricing of bonds or credit derivatives.

2A rating is an indication of creditworthiness.
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informative enough on the credit quality of structured debt obligations and for lacking

timeliness. A clear instance is the bipartisan investigation into the origins of the crisis

that led to the Levin and Coburn (2011) report of the U.S. Senate stating that:

the crisis was not a natural disaster, but the result of high risk, complex

�nancial products; undisclosed con�icts of interest; and the failure of reg-

ulators, the credit rating agencies, and the market itself to rein in the

excesses of Wall Street.

Recent studies suggest though that rating actions convey new information to the mar-

ketplace and trigger capital restructuring. Hill and Fa� (2010) and Fa� et al. (2007)

document signi�cant causality running from credit rating events to, respectively, in-

ternational equity markets and fund �ows. In a model to explain credit default swap

(CDS) prices, Batta (2011) �nds that ratings are signi�cant determinants of corporate

credit risk and impound relevant accounting variables such as earnings and leverage.

Kisgen (2009) documents that downgraded �rms reduce leverage by about 1.5%-2%

in the year following the rating change.

The recent GFC has also served as a stark reminder to the marketplace of the cru-

cial role of systematic stress testing of �nancial institutions' portfolios, particularly,

their lending books. In response to the regulatory de�ciencies thus revealed, Basel

III is seeking to achieve the broader macroprudential goal of protecting the bank-

ing sector from periods of excess credit growth by requesting longer horizon default

probabilities, downturn loss-given-default measures and improved calibration of risk

models (see Basel Committee on Banking Supervision (2011a)). The calibration of

models that translate credit ratings and/or market data into default probabilities has

direct implications for the determination of the risk-adjusted capital (i.e., core Tier

1 capital ratio) that banks need to hold to back their loans and safeguard solvency.

In this chapter we propose an approach to estimate credit rating migration risk that

controls for the business-cycle evolution during the relevant time horizon in order to

ensure adequate capital bu�ers both in good and bad times. The approach allows

the default risk associated with a given credit rating to change as the economy moves
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through di�erent points in the business cycle.

There is a body of research linking portfolio credit risk with macroeconomic fac-

tors showing, for instance, that default risk tends to increase during economic down-

turns. Figlewski et al. (2012) document that unemployment and real GDP growth

are strongly correlated with default risk. Stefanescu et al. (2009) develop a Bayesian

credit score model to capture the typical internal credit rating system of most major

banks and show that macroeconomic covariates such as the S&P500 returns have

good explanatory power. Thus point-in-time methodologies that account for business

cycles should provide more realistic credit risk measures than through-the-cycle mod-

els that smooth out transitory �uctuations (perceived as random noise) in economic

fundamentals.3

Some attempts have been made in the classical credit risk measurement litera-

ture to incorporate cyclicality. Nickell et al. (2000) subdivide the historical ratings

into those observed in `normal', `peak' and `trough' regimes according to real GDP

growth and deploys a discrete time (cohort) estimator of migration risk separately on

each subsample. This naive approach to accommodating cyclicality is also deployed

in several other studies although conditioning instead upon NBER-delineated expan-

sion and recession phases: Jafry and Schuermann (2004) and Bangia et al. (2002) in

a credit-portfolio stress testing context, Hanson and Schuermann (2006) in their sta-

tistical comparison of continuous time (hazard) versus discrete migration estimators,

and Frydman and Schuermann (2008) in a Markov mixture estimator that allows for

�rm heterogeneity. In e�ect, the naive estimator implicitly assumes that the current

economic conditions prevail throughout the prediction time horizon of interest. In

contrast, the estimator proposed in this chapter relaxes this assumption by allowing

the economy to evolve randomly between states of the business cycle during the risk

horizon. The importance of doing so is implicitly underlined by the Basel III require-

ment to use long term data horizons of at least one year to estimate probabilities of

3Rating agencies tend to adopt a through-the-cycle approach seeking to provide stable risk as-
sessments over the life of at least one business cycle. The survey by Cantor et al. (2007) re�ects
that whereas bond issuers tend to favor ratings stability, plan sponsors and fund managers/trustees
have a stronger preference for point-in-time accuracy.
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default.

This chapter contributes to the credit risk modeling literature as follows. It demon-

strates the advantages of using a Mixture of Markov Chains (MMC) model to estimate

rating migration risk that explicitly recognizes the stochastic evolution of the econ-

omy between phases of the business cycle. This is the �rst study that comprehensively

evaluates a MMC estimator against a naive counterpart that conditions determinis-

tically on the current economic conditions by assuming that they prevail throughout

the prediction time horizon, and against classical through-the-cycle estimators. It

also departs from the aforementioned studies, which consider economic dynamics in

credit risk modeling, by assessing the estimators in a strictly forward-looking sense.

More speci�cally, we exploit a real-time leading indicator of business cycles based on

a principal components methodology to generate out-of-sample predictions of credit

migration risk. Overall the horse race of estimators is carried out in three comple-

mentary ways: a simulation analysis of their in-sample statistical properties with

speci�c emphasis on accuracy, an out-of-sample forecasting exercise based on a range

of (a)symmetric loss functions, and an economic Value-at-Risk (VaR) analysis draw-

ing upon the CreditRisk+ risk management framework of Credit Suisse First Boston

(1997).

To preview our key results, the in-sample analysis reveals e�ciency gains in default

risk measures derived from the MMC model and more so during economic contraction

due to the paucity of ratings data. Acknowledging the risk that economic conditions

randomly evolve over the risk horizon is shown to improve the accuracy of out-of-

sample default probability predictions. This is clearly revealed through novel asym-

metric loss functions that attach a relatively high penalty to the under(over)prediction

of down(up)grade risk. Such accuracy gains of the MMC estimator vis-à-vis the naive

counterpart increase with the length of the forecast horizon. Both business cycle

estimators make an important di�erence for economic capital attribution since they

imply more prudent capital bu�ers than through-the-cycle estimators during contrac-

tion. However, the naive cyclical approach suggests relatively high (low) contraction

(expansion) risk-capital holdings. The MMC estimator of default risk implies about
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17% less capital in downturns than the naive estimator, which could be channeled into

lending to stimulate the real economy, while the suggested capital during expansions

exceeds by 6% that from the naive estimator. The MMC estimator notably reduces

the expansion-versus-recession gap in risk capital relative to the naive counterpart

and can be cast as an e�cient way to perform stress testing. This is an important

property because exaggerated cyclicality can fuel `irrational exuberance' and deepen

recessions by making lending too capital intensive, which is one of the main criticisms

of Basel II (see Gordy and Howells (2006)). Thus, relative to its competitors, the

MMC approach prescribes capital build-up in good times that banks can draw upon

in bad times and so it is more aligned with the Basel III macroprudential initiative

to dampen the procyclical transmission of risk and promote countercyclical capital

bu�ers.

This chapter is organized as follows. Section 2.2 below reviews the classical mi-

gration estimators. Section 2.3 presents the MMC hazard rate approach. The data

and empirical results are outlined in Section 2.4, and Section 2.5 concludes.

2.2 Classical Credit Migration Estimators

2.2.1 Rating process and transition probabilities

A credit rating is a �nancial indicator of an obligor's level of creditworthiness. Most

�rms issuing publicly traded debt are rated at least by one of the three major rating

agencies, Moody's, Standard & Poor's (S&P), and Fitch Ratings.4 Let the credit

rating of a �rm at time t be denoted R(t) ∈ S = {1, 2, · · · , K} where S is the rating

space with 1 and K−1 representing, respectively, the best and worst credit quality; K

represents default. For instance, the coarse S&P's rating system (AAA, AA, A, BBB,

BB, B, CCC) together with the default state D imply K = 8. The rating de�nitions

4Several papers examine the rating actions of the three agencies. For instance, Hill and Fa�
(2010) o�er evidence of stronger stock market reaction to S&P's rating changes than to those of
the other two agencies. Mählmann (2009) proposes a structural self-selection model to explain
the decision by �rms to seek a third `optional' rating from Fitch based on their borrowing costs.
Using survey research methods, Baker and Mansi (2002) �nd that issuers and institutional investors
perceive corporate bond ratings from Moody's and S&P as more accurate than those of Fitch.
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provided by the agencies are qualitative in nature which makes their mapping onto

speci�c quantitative risk measures crucial; Appendix 2.A provides summary S&P

de�nitions.

The goal is to estimate the transition or migration probabilities over horizon [t, t+

∆t] denoted

Q(∆t) ≡ Q(t, t+ ∆t) =


q11(∆t) q12(∆t) · · · q1K(∆t)

q21(∆t) q22(∆t) · · · q2K(∆t)
...

...
. . .

...

qK1(∆t) qK2(∆t) · · · qKK(∆t)

 , (2.1)

where qij(∆t) ≡ P [R(t + ∆t) = j|R(t) = i] ≥ 0,∀i, j ∈ S, is the chance that an

obligor rated i at time t is assigned rating j at t+∆t, hence
∑K

j=1 qij(∆t) = 1. The

Kth column contains the probabilities of default (PDs). Since default is treated as

an �absorbing� state, qKi(∆t) = 0 and qKK(∆t) = 1, implying that R(t) will settle to

the default steady-state in the limit as ∆t→∞.

As noted earlier, two assumptions typically underlie the rating migration process:

1. Markovian behavior. The probability of transition to a future state j only

depends on the current state and is independent of the rating history. Formally,

P [R(t+ ∆t) = j|R(t), R(t− 1), R(t− 2), · · · ] = P [R(t+ ∆t) = j|R(t)] ∀j ∈ S.

and thus the current rating contains all relevant information to predict future

ratings.5

2. Time homogeneity. For a given risk horizon of interest, ∆t, the transition

probabilities are time-constant meaning that they only depend on ∆t and thus

5Rating momentum or drift, �rst documented in Altman and Kao (1992) and Carty and Fons
(1994), is a prime counterexample to Markovian dynamics. In the same vein, Lando and Skode-
berg (2002) and Fuertes and Kalotychou (2007) show that a downgraded issuer is prone to further
subsequent downgrades.
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there is a family of matrices

Q(∆t) ≡ Q(t, t+ ∆t) = Q(t− k, t− k + ∆t) ∀k.

A stochastic process satisfying (1) is called a Markovian process. If its state space is

countable, it is called a Markov chain process. So a time-homogeneous Markov chain

satis�es

P [R(t+ ∆t) = j|R(t) = i] = P [R(t− k + ∆t) = j|R(t− k) = i] .

Hence, the n-year migration matrix is given by the nth power of the annual one,

Q(n) = Q(1)n.

Next we outline the two classical migration risk estimators known as cohort and

hazard rate approaches. Both build on the Markov and time-homogeneity assump-

tions but di�er mainly in that they are formulated in a discrete- and continuous-time

framework, respectively.

2.2.2 Cohort or discrete multinomial approach

Let Ni(t) denote the number of �rms that start year t at rating i and Nij(t, t + 1)

the subset of them that have migrated to rating j by year-beginning t + 1. Let

the migration frequency be denoted q̂ij(t, t + 1) =
Nij(t,t+1)

Ni(t)
in years t = 1, 2, ..., T .

Assuming a time-homogeneous Markov rating process, the maximum likelihood (ML)

estimator of the one-year credit migration risk is

q̂ij ≡ q̂ij(1) =
T∑
t=1

wi(t)q̂ij(t, t+ 1) =

∑T
t=1Nij(t, t+ 1)∑T

t=1Ni(t)
=
Nij

Ni

, (2.2)

where wi(t) = Ni(t)/
∑T

t=1Ni(t) are yearly weights. Thus q̂ij can be simply computed

as the total number of annual migrations from i to j divided by the total number of

obligors that were in grade i at the start of any sample year. Time-homogeneity is

called upon to obtain the n-year cohort migration matrix as Q̂(n) = Q̂
n
where Q̂ is
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obtained using Eq.(2.2). The major rating agencies routinely publish these migration

estimates for horizons ∆t = 1, 2, ..., 10 years.

One weakness of the cohort approach is that it neglects within-year rating tran-

sitions and rating duration information. For instance, if �rm X is rated AA on

01/01/1992, A on 03/09/1992 and AA on 31/12/1992, the cohort estimator would

consider its rating unchanged in year 1992. Thus this approach is very sensitive to

data sparsity which is especially typical of transitions from top ratings to default.

Another issue is that the discrete annual (or n-year) horizon of the baseline cohort

estimator is too rigid as more �exibility is needed to price payo�s occurring at arbi-

trary points in time. These shortcomings call for a continuous-type credit migration

estimator.

2.2.3 Hazard-rate or duration approach

Let the transition intensity or generator matrix of a continuous Markov chain be

denoted Λt ≡ {λij(t)}ij∈S where λij(t)i 6=j is the hazard rate function or intensity

representing the instantaneous transition rate at time t; the diagonal entries are

given by λii(t) ≡ λi(t) = −
∑

j 6=i λij(t). The probability of migration from rating i to

j over an arbitrarily small time horizon τ is given by

P [R(t+ τ) = j | R(t) = i] = λij(t)τ for i 6= j

Under time-homogeneity it follows that λij(t) = λij and its ML estimator is

λ̂ij =
Nij(0, T )∫ T
0
Yi(s)ds

for i 6= j (2.3)

where Nij(0, T ) is the total number of transitions from i to j observed over the sample

period, Yi(s) is the number of �rms rated i at time s and thus Di ≡
∫ T

0
Yi(s)ds

gives the rating duration or total time spent in state i by all sampled obligors. The
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transition risk matrix estimator is

Q̂(∆t) ≡ Q̂(t+ ∆t) = e(∆t)Λ̂ (2.4)

where the matrix exponential can be obtained via a Taylor-series expansion, e(∆t)Λ̂ =∑∞
k=0

[(∆t)Λ̂]k

k!
.

One appealing feature of Eq.(2.4) is its �exibility to measure credit migration

risk over any arbitrary time horizon, ∆t. Moreover, it exploits rating transitions

that occur at any point in the sample as well as rating duration information. For

illustration, with reference to the example at the end of Section 2.2.2, the hazard-

rate estimator exploits the intermediate within-year migrations to/from A through

the transition intensities as expressed in Eq.(2.3). Furthermore, suppose that the

transition AAA → D is not observed but there are transitions AAA → BB and

BB → D. By contrast with the cohort measure, the hazard-rate PD estimate for

AAA-rated bonds is non-zero, albeit small, in line with economy theory since no bond

is default free.6

2.3 Business Cycles and Credit Migration Risk

In this section we present a Mixture of Markov Chains (MMC) estimator of credit

migration risk that accounts for the current (time t) economic phase while acknowl-

edging the stochastic business-cycle evolution over the migration horizon of interest

(t, t + ∆t). It mixes two time-homogeneous Markov chains, one that models the

ratings process and another that models the business cycle process. We focus the

exposition and ensuing analysis on two phases, expansion (E) and contraction (C),

but the estimator can be readily extended to more phases; Appendix 2.B presents the

6This is an important aspect implicitly recognized, for instance, by the S&P de�nitions which
state "For example, a corporate bond that is rated AA is viewed by S&P as having a higher credit
quality than a corporate bond with a BBB rating. But the AA rating isn't a guarantee that it
will not default, only that, in our opinion, it is less likely to default than the BBB bond." (Source:
www.standardandpoors.com).
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3-regime case.7 Let the following matrix characterize the economic evolution over a

one-period horizon

S(1) ≡ S(t, t+ 1) =

 θ 1− θ

1− φ φ

 , (2.5)

where θ is the probability that the next phase at t + 1 is an expansion conditional

on the time t phase being an expansion, and (1 − θ) is the probability of switching

to a contraction. The parameters in S are treated as exogenous and obtained in the

spirit of the hazard-rate approach via the corresponding transition intensity matrix

ΛS. For instance, if the baseline 1-period window is one quarter, the transition

intensity λ̂E,C can be computed as the number of E → C transitions over the entire

sample divided by the total duration of expansion phases in months; likewise for

λ̂C,E. The quarterly regime-switching matrix Eq.(2.5), simply called S, can then

be estimated as Ŝ = e3Λ̂S . Figure 2.3 characterizes for current (time t) expansion

the subsequent unfolding of the economy, or business-cycle dynamics, as a binomial

tree. Within each economic phase, expansion or contraction, the ratings evolution

follows another time-homogeneous Markov chain characterized, respectively, by the

conditional transition matrices QE and QC . These two matrices are estimated by

splitting the observed ratings into two subsets according to whether they have been

observed during expansion or contraction, and deploying the hazard-rate estimator

Eq.(2.4) separately on each.

7One could de�ne three regimes as expansion, `mild' recession and `severe' recession, where mild
and severe are quali�ed in terms of the time-length or severity measured, say, as the percentage
decrease in real GDP growth. Or one might identify `above', `below' and `full' capacity phases using
the Hodrick-Prescott �ltered real GDP.
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Figure 2.1: Business-Cycle Dynamics
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Notes: This �gure characterizes for current expansion at time t the subsequent unfolding of the

economy, or business-cycle dynamics, as a binomial tree. E denotes expansion and C denotes

contraction. The parameter θ(φ) denotes the probability that the next phase at t+j is an expansion

(contraction) conditional on the time t+ j − 1 phase being an expansion (contraction).

The mixture process is characterized by the following one-period transition matrix

M(t, t+ 1) =

 M 1 M 2

M 3 M 4

 ≡



Expansion Contraction

AAA · · · CCC D AAA · · · CCC D

E
x
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n
si
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AAA

...

CCC θQE (1− θ)QC

D

C
o
n
tr
a
ct
io
n

AAA

...

CCC (1− φ)QE φQC

D


(2.6)

all entries in Eq.(2.6), simply calledM ≡M(1), are non-negative and each row sums to

1. The probability that an i graded obligor at current time t, pertaining to economic

expansion, is downgraded to j at t + 1, also in expansion, is given by θqi,j,E. Given

current expansion, E(t), the one-period MMC transition matrix, QE(1) ≡ QE(t, t+1),

is calculated by adding the transition probabilities associated to the two possible
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business-cycle pathways, E(t)→ E(t+ 1) and E(t)→ C(t+ 1), as

QE(1) ≡M 1 +M 2 = X = θQE + (1− θ)QC . (2.7)

For a two-period horizon, as Figure 2.3 illustrates, there are four possible business-

cycle pathways which result in the MMC rating transition matrix for current expan-

sion

QE(2) ≡M 1X +M 2Y = FL′ =

θQEθQE + θQE(1− θ)QC + (1− θ)QC(1− φ)QE + (1− θ)QCφQC (2.8)

where Y ≡ QC(1) ≡M 3 +M 4 = (1−φ)QE+φQC is the one-period MMC transition

matrix conditional on current contraction, F ≡ (M 1 M 2), and L′ is the transpose of

(X Y). Over an n-period horizon, ∆t ≡ n, the ratings evolution will have 2n unique

pathways but the MMC migration matrix for current expansion can be fashioned in

an elegant closed-from solution as

QE(n) ≡ FMn−2L′. (2.9)

The MMC migration matrix for current contraction, denoted QC(n), is derived simi-

larly by de�ning instead F ≡ (M 3 M 4) in Eq.(2.9). The MMC approach implicitly

addresses to some extent two other issues beyond time-heterogeneity. One is cross-

sectional dependence in default rates across obligors due to common macroeconomic

conditions or systematic risk; the other is serial dependence (e.g., ratings drift or

non-Markovian behavior) induced by the cyclical behavior of latent macro factors.

A simpler way to embed business cycle e�ects in credit migration risk models is to

assume a deterministic business-cycle evolution, namely, that the economy remains

in the same (as the current or time t) phase throughout the horizon of interest t to

t+n.8 This naive estimator emerges as a particular case of the MMC hazard-rate es-

8Cyclicality is accounted for in this manner by Bangia et al. (2002) using the cohort estimator,
Jafry and Schuermann (2004) using the hazard-rate estimator, Hanson and Schuermann (2006) using
both estimators and Frydman and Schuermann (2008) using a Markov mixture estimator designed
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timator Eq.(2.9) by conceptualizing S as the identity matrix, i.e. assuming θ = φ = 1

in Eq.(2.5) which gives QE(1) = QE and QE(n) = Qn
E; likewise for QC(n).

2.4 Empirical Analysis

2.4.1 Data description

Our sample contains 7,514 US corporate bond rating histories over the 26-year period

01/01/1981 to 31/12/2006 from the S&P CreditPro 7.7 database. Like Altman and

Kao (1992) inter alios, we track the ratings of individual bond issues in order to

increase the number of observed migrations.9 Among the debt issues sampled, mainly

from large corporations, 2,218 are industrials, 1,677 utilities and 1,494 �nancials.

Figure 2.2 illustrates that the representation of �nancials over our sample period

initially experienced a gradual increase at the expense of industrials and utilities but

the relative proportions have remained roughly steady for over half of the sample.10

The S&P rating scale comprises 22 �ne categories but they are typically shrunk

into a coarse rating system which excludes the +/- modi�ers and has become the in-

dustry standard (8 rating categories plus default) .11 Each bond issue has experienced

more than 3 rating transitions over the sample period, a total of 1,166 bonds �nally

default and there are 4,202 Not Rated (NR) assignments in total.12 Transitions to

NR may be due to debt expiration, calling of the debt or failure to pay the required

fee to the rating agency. Following Altman and Kao (1992), Carty and Fons (1994)

to capture �rm heterogeneity.
9S&P maps individual issue ratings into issuer ratings through the implied long-term senior

unsecured rating.
10Ratings for sovereigns and municipals are not included. The industrial sector amalgamates

aerospace, automotive, capital goods, metal/forest and building products, homebuilders, healthcare,
chemicals, high technology, computers and o�ce equipment �rms. Energy and natural resources,
transportation and telecommunication companies are included in the utility sector. The �nancial

sector comprises �nancial institutions and insurance �rms. Other sectors include consumer service
(miscellaneous retailers) and leisure time/media �rms.

11The coarse classi�cation implies, for instance, that CCC+, CCC, CCC-, CC and C ratings are
grouped as CCC.

12Among the 3,933 issues whose rating is withdrawn (NR) at some point, 802 are re-rated, of
which 285 �nally default; 251 bond rating histories have at least 2 di�erent NR episodes. Only 5 of
the 1,166 issues that enter default are rated again but, since the default state is conceptualized as
absorbing, we discard their post-default rating history.
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Figure 2.2: Sectoral Breakdown of Bond Issues

Notes: This �gure plots the relative proportion of industrial, utility and �nancial bond issues rated

by Standard & Poor's on each year from 01/01/1981 to 31/12/2006.
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and Frydman and Schuermann (2008) inter alios, we keep NR as another �rating�

category in the sample. However, since rating migrations from/to NR do not provide

any information about the obligor's credit quality, they are not counted as upgrades

or downgrades. By incorporating new issues in the sample and discarding existing

ones after default, we allow the cross-section to vary over time. These considerations

help us to increase the sample size for each transition. The ratings are allocated into

two categories, respectively, those observed during economic expansion and contrac-

tion (or recession). Recession is conceptualized by the National Bureau of Economic

Research (NBER) as a signi�cant decline in US economic activity lasting more than

a few months, normally visible in real GDP, real income, employment, industrial pro-

duction, and wholesale-retail sales.13 There are three o�cial periods of recession in

our sample as identi�ed by the NBER dating: 1) the early 1980s recession linked to

the hike in oil prices after the late 70s energy crisis, 2) the early 1990s recession char-

acterized by decreases in industrial production and manufacturing-trade sales, 3) the

early 2000s recession following the collapse of the dotcom bubble, the 9/11 terrorist

attacks and accounting scandals like Enron. These three economic stress episodes

represent overall merely 11% of quarters in our 26-year sample period.

Table 2.1 reports for the entire sample and for the NBER expansion and contrac-

tion subsamples: i) total rating assignments, ii) rating duration in quarters, and iii)

proportion of up/downgrades. Most of the assignments are to the intermediate A,

BBB, BB or B ratings. A much lower percentage of the speculative or non-investment

grade (i.e., BB or below) rating assignments and durations pertain to �nancials than

to industrials/utilities whereas the opposite is true for the top-quality ratings; this

maybe because it is very di�cult to keep banks operating when a low credit rating has

damaged customers' trust.14 Downgrades are more likely than upgrades particularly

in contraction.

13The NBER Business Cycle Dating Committee has since 1978 delineated peak/trough months of
economic activity. We adopt the �rst day of the peak/trough month as the business cycle turning
point. See www.nber.com/cycles.

14For instance, 10.41% of the AA assignments correspond to industrials, 24.32% to utilities and
54.93% to �nancials. In contrast, 39.66% of the B assignments correspond to industrials, 17.83% to
utilities and 5.41% to �nancials.
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Figure 2.3: Upgrades, Downgrades, Defaults and Overall Economic Activity

Notes: This �gure shows the quarterly number of S&P's corporate bond rating upgrades, downgrades

and defaults alongside the real-time history of the Chicago Fed National Activity Index as a 3-

month moving average (CFNAI-MA3). Shaded areas indicate o�cial NBER-delineated contraction

episodes.

Figure 2.3 reports the quarterly evolution of upgrades, downgrades, and defaults

over the sample period. Shaded areas are NBER contraction quarters. The graph con-

�rms business cycle time-heterogeneity in the rating migration process by illustrating

that the number of downgrades (defaults) rises in contractions. The quarterly regime-

switching matrix Ŝ estimated via transition intensities (with duration in months) has

o�-diagonal entries 1− θ = 0.0276 and 1− φ = 0.241. Hence, if the economy is cur-

rently in expansion, the probability that it enters contraction over the next quarter

is 2.8% and the probability that it switches from contraction to expansion is 24.1%.

2.4.2 Cohort and hazard-rate migration risk

The �nest sampling interval adopted for tracking the ratings evolution is one quarter

so as to match the window length of the expansion/contraction switching probability
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matrix S. Hence, in the notation of Sections 2.2 and 2.3, the one-year horizon for the

migration matrices corresponds to ∆t ≡ n = 4, the two-year horizon to ∆t ≡ n = 8

and so forth. Thus the cohort estimator Eq.(2.2) is deployed on a quarterly basis,

giving Q̂, and the one-year migration matrix is computed as Q̂(4) = Q̂4. In the

hazard-rate framework, �rst, we deploy Eq.(2.3) to obtain the intensities or entries

of Λ̂, de�ned as rating transitions per quarter, and the one-year transition matrix is

given by Q̂(4) = e4Λ̂. Table 2.2 reports the one-year cohort and hazard rate migration

risk measures.15

As expected, both credit migration matrices are diagonally dominant implying rel-

atively large ratings stability over a one-year horizon. However, the diagonal entries

are smaller for speculative grade ratings than for investment grade ones, con�rm-

ing that low ratings are more volatile. Unsurprisingly also, the default likelihood

increases monotonically as credit quality deteriorates. Another commonality across

the two matrices is that the immediate o�-diagonal elements are generally larger for

downgrades than upgrades, e.g. the cohort probability for a BB issuer to attain BBB

next year is 5% whilst the chance of being downgraded to B is 7%. The estimates

essentially con�rm the stylized row monotonicity in rating migrations, i.e. the migra-

tion likelihood generally decreases the further away from the diagonal, re�ecting the

typical practice by S&P (and other rating agencies) of changing ratings in one-notch

steps. These �ndings are in line with the evidence in Nickell et al. (2000), Bangia

et al. (2002), Lando and Skodeberg (2002), and Fuertes and Kalotychou (2007).

The hazard-rate approach overcomes the cohort estimation pitfall of producing

zero default risk measures for AAA bonds in the absence of AAA → D sample

migrations. More speci�cally, the hazard-rate estimator suggests a non-zero, albeit

small, PD at 1.5bp for AAA bonds. The estimated PD for CCC bonds o�ers also an

interesting contrast: 28% (cohort) and 41% (hazard). On the other hand, the cohort

approach overestimates (relative to the hazard-rate method) the default probabilities

15In order to identify an appropriate truncation lag k for the Taylor-series expansion e(∆t)Λ̂ ≡∑∞
k=0

[4Λ̂]k

k! in (2.4), we follow Lö�er and Posch (2007) and compute the sum of the squared elements
of the kth summand. If this is smaller than 10−320 the series is truncated at that k, otherwise one
more summand is added.
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Table 2.2: One-Year Rating Transition Risk
AAA AA A BBB BB B CCC D NR

Panel I: Discrete Cohort estimator
Transition probabilities
AAA 89.861 5.910 0.348 0.058 0.174 0.000 0.000 0.000 3.650
AA 0.551 86.748 7.604 0.635 0.050 0.167 0.033 0.017 4.195
A 0.053 1.542 87.686 5.551 0.481 0.173 0.038 0.075 4.400
BBB 0.008 0.150 3.616 85.164 4.177 0.671 0.118 0.237 5.859
BB 0.033 0.066 0.231 5.504 77.456 6.987 0.703 0.989 8.842
B 0.000 0.056 0.139 0.250 4.971 75.693 3.951 4.674 10.266
CCC 0.000 0.000 0.380 0.285 1.139 8.444 48.767 27.799 13.188
D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000 0.000
NR 0.019 0.061 0.147 0.270 0.275 0.318 0.011 0.591 98.308

Panel II: Continuous Hazard-Rate estimator
Transition intensities
AAA -0.109 0.061 0.005 0.001 0.001 0.000 0.000 0.000 0.042
AA 0.006 -0.140 0.085 0.005 0.001 0.001 0.000 0.000 0.042
A 0.001 0.017 -0.134 0.064 0.004 0.002 0.000 0.000 0.048
BBB 0.000 0.002 0.040 -0.168 0.057 0.005 0.001 0.001 0.064
BB 0.000 0.001 0.003 0.057 -0.262 0.099 0.006 0.002 0.093
B 0.000 0.001 0.002 0.004 0.057 -0.288 0.086 0.023 0.117
CCC 0.000 0.000 0.005 0.007 0.011 0.131 -0.960 0.634 0.172
D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NR 0.000 0.001 0.002 0.003 0.004 0.005 0.000 0.007 -0.023

Transition probabilities
AAA 89.669 5.376 0.651 0.093 0.110 0.017 0.001 0.015 4.067
AA 0.559 86.994 7.416 0.695 0.082 0.080 0.013 0.020 4.131
A 0.067 1.467 87.630 5.525 0.466 0.162 0.008 0.022 4.654
BBB 0.017 0.180 3.429 84.815 4.601 0.630 0.063 0.099 6.166
BB 0.030 0.078 0.365 4.650 77.335 7.617 0.573 0.520 8.831
B 0.002 0.054 0.174 0.446 4.369 75.565 4.725 3.874 10.789
CCC 0.002 0.011 0.327 0.477 0.871 7.226 38.563 40.980 11.541
D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000 0.000
NR 0.024 0.078 0.199 0.318 0.366 0.438 0.024 0.710 97.842

Notes: This table presents the rating transition probabilities in percentage points obtained from

the discrete-time cohort estimator (Panel I) and continuous hazard-rate estimator (Panel II, second

exhibit). The �rst exhibit of Panel II reports the transition intensity or generator matrix that

represents the instantaneous rate of transition from one rating i to another rating j(i 6= j) expressed

as number of rating transitions per quarter. Full details of the computations are given in Sections

2.2.2 and 2.2.3 of the chapter.
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for middle ratings which is in line with the results in Jafry and Schuermann (2004),

Hanson and Schuermann (2006) and Fuertes and Kalotychou (2007). For instance,

the cohort PD estimate for BBB bonds is 23.7bp whereas the hazard-rate PD is 9.9bp.

This may be because longer durations in the middle `stepping stone' ratings (of which

downgrade drift is largely responsible) reduce the transition intensities and, in turn,

the hazard-rate transition probability estimates.

2.4.3 Business cycle-adjusted migration risk

We now compare the term structure of default probabilities implied by the naive and

MMC business-cycle estimators. The results are set out in Table 2.3. To ease the

comparison, Panel I reports also the estimates from the classical hazard-rate approach.

Panels II and III pertain, respectively, to the naive expansion and contraction matrices

Q̂E(n) and Q̂C(n) obtained as follows. The two intensity matrices Λ̂E and Λ̂C with

rating duration in quarters are computed, respectively, by deploying (2.3) on the

expansion and contraction rating subsamples. The naive business-cycle transition risk

for 1-year horizon is then given by Q̂E(4) = e4Λ̂E and Q̂C(4) = e4Λ̂C . Panels IV and

V show, respectively, the MMC migration matrices Q̂E(n) and Q̂C(n) obtained using

as inputs the quarterly matrices Ŝ, Q̂E ≡ Q̂E(1) = eΛ̂E and Q̂C ≡ Q̂C(1) = eΛ̂C .

Thus the 1-year PDs for current expansion in Panel IV are obtained from Q̂E(4), i.e.

Eq.(2.9) is deployed for n = 4 quarters.

Both the naive and MMC business-cycle estimators yield much higher default

risk in current contraction than in expansion. Intuitively, this means that a �rm

operating in a contracted economy at time t is more likely to default over the horizon

(t, t + ∆t) than another similarly rated �rm currently in expansion ceteris paribus.

Moreover, accounting for business cycles increases the default risk estimates relative

to the baseline hazard-rate approach, particularly, in contraction. For example, the 1-

year PD for a CCC issuer is 40.913% according to the classical hazard-rate estimator,

and increases to 54.988% (65.135%) with the MMC (naive) contraction estimator.

It is worth emphasizing that the term �naive� for the estimates shown in Panels

II-III refers to the implicit assumption that the economy remains in the same time t
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Table 2.3: Term Structure of Default Probabilities
1 Year 2 Year 3 Year 4 Year 5 Year
Panel I: Baseline Hazard-Rate estimator

AAA 0.015 0.060 0.136 0.242 0.379
AA 0.020 0.079 0.174 0.304 0.470
A 0.022 0.091 0.211 0.383 0.606
BBB 0.099 0.300 0.604 1.006 1.494
BB 0.520 1.513 2.825 4.311 5.863
B 3.874 8.811 13.441 17.396 20.678
CCC 40.980 57.096 63.804 66.829 68.386

Panel II: Naive Expansion estimator
AAA 0.017 0.069 0.155 0.276 0.432
AA 0.023 0.091 0.200 0.351 0.542
A 0.034 0.123 0.272 0.480 0.747
BBB 0.132 0.385 0.755 1.229 1.793
BB 0.666 1.828 3.300 4.922 6.586
B 4.314 9.545 14.301 18.287 21.547
CCC 40.903 56.554 62.886 65.719 67.196

Panel III: Naive Contraction estimator
AAA 0.626 2.292 4.709 7.635 10.875
AA 1.506 3.898 6.883 10.224 13.741
A 1.938 4.736 8.044 11.611 15.268
BBB 2.617 6.191 10.138 14.139 18.044
BB 8.700 15.982 21.805 26.539 30.540
B 18.015 30.343 37.819 42.685 46.243
CCC 65.135 76.518 79.317 80.630 81.618

Panel IV: MMC Expansion estimator
AAA 0.046 0.196 0.438 0.758 1.150
AA 0.108 0.358 0.710 1.143 1.651
A 0.145 0.463 0.906 1.450 2.081
BBB 0.282 0.843 1.598 2.494 3.495
BB 1.185 3.128 5.356 7.639 9.859
B 5.217 11.559 17.126 21.646 25.255
CCC 42.581 58.587 64.844 67.613 69.089

Panel V: MMC Contraction estimator
AAA 0.297 0.713 1.133 1.585 2.089
AA 0.775 1.387 1.942 2.518 3.143
A 1.013 1.750 2.408 3.090 3.827
BBB 1.404 2.437 3.381 4.362 5.406
BB 5.018 7.668 9.844 11.898 13.856
B 11.770 18.389 23.129 26.821 29.764
CCC 54.988 66.863 71.105 72.984 74.010

Notes: This table reports estimates of the probability that a �rm currently rated as indicated in the
�rst column (from AAA to CCC) enters default over a time horizon (t, t + ∆t) from 1 to 5 years.
Panel I corresponds to the hazard-rate estimator. Panels II and IV correspond, respectively, to the
naive and Mixture of Markov Chains (MMC) estimator conditional on current expansion. Panels III
and V correspond, respectively, to the naive and MMC estimator conditional on current contraction.
Full details of the computations are given in Section 2.2.3 and 2.3 of the chapter. All �gures are in
percentage points.
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conditions, expansion or contraction, throughout the horizon (t, t + ∆t). In reality,

the economy randomly alternates between business-cycle phases over time. By con-

trast, the MMC estimator not only takes into account the time t conditions but also

acknowledges the stochastic evolution of the business cycle. A comparison of Panels

II and IV reveals that the expansion PDs are too low (i.e., over-optimistic) for the

naive estimator relative to the MMC estimator, and vice versa (i.e. over-conservative)

in contraction. The 1-year naive PD estimates for AAA and AA when the economy

is currently in expansion are, respectively, 1.7bp and 2.3bp and increase to 4.6bp and

10.8bp with the MMC estimator; the latter, but not the former, are in line with the

3bp �oor imposed by the Basel II Accord on any PD estimate. Similarly for contrac-

tion, the 1-year PDs for AAA and AA are 29.7bp and 77.5bp according to the MMC

approach, halving those implied by the naive one. These contrasting results from the

two cyclical estimators, MMC and naive, are driven by the deterministic nature of

the latter which rules out the chance of economic regime-switching over the horizon

of interest; thus the naive PDs are, by construction, too high (low) for current con-

traction (expansion). The gap between the naive and MMC estimates is visibly larger

in contraction than in expansion. Historically the US economy has stayed longer in

expansion which, in turn, implies a smaller probability of switching from expansion

to contraction than vice versa (respectively, 1 − θ̂ = 2.8% and 1 − φ̂ = 24.1%, over

the entire sample period). Since the MMC estimator collapses to the naive one for

1−θ = 1−φ = 0 in Eq.(2.5), e�ectively, the gap between the two should be narrower

when conditioning on current expansion.

Figure 2.4 plots default risk estimates for CCC -rated issues over a time horizon of

up to 30 years. The discrepancy between the expansion and contraction PDs from the

MMC approach gradually starts to narrows down for large time horizons. This is intu-

itively plausible since, as time passes, the e�ect of the current economic regime starts

to dilute and the permanent component of default risk outweighs the temporary vari-

ations. This matches the evidence in Galbraith and Tkacz (2007) and Shcherbakova

(2008) that the additional information content of models conditional on macroeco-

nomic variables tends to decline as the forecast horizon increases. By contrast, the
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Figure 2.4: Term Structure of Default Probabilities for CCC bonds

Notes: This �gure shows the default probability for CCC bonds over a time horizon from 1 to 30

years. The �ve lines plotted correspond, as indicated in the legend, to the classical hazard-rate

estimator that ignores business cyclicality (Baseline), the naive estimator conditional on current

contraction (Naive Con) and expansion (Naive Exp), and the MMC estimator conditional on current

contraction (MMC Con) and expansion (MMC Exp).

gap between the expansion and contraction PDs implied by the naive estimator does

not dampen over time, in line with the fact that this simple approach implicitly as-

sumes that the economy stays put (i.e., the current state prevails) throughout the

estimation horizon. The upshot is that the expansion-versus-contraction PD di�eren-

tial implied by the naive estimator is in�ated relative to that of the MMC estimator

and more so as the time horizon lengthens.

Table 2.4 reports the 1-year default risk estimates for B and CCC corporate

bonds from existing studies in the literature together with ours. Although the data

sources and time spans di�er, two common �ndings across studies that deploy the

classical estimators (top panel) are: i) the default risk for CCC -rated issues sug-

gested by cohort estimates is typically lower than that implied by hazard-rate ones,

ii) for B -rated issues, however, the cohort estimator yields relatively higher PDs than
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the hazard-rate estimator because of relatively longer durations (time spent) in this

rating. Studies that incorporate business cycle information into the migration risk

estimation (bottom panel), consistently suggest lower annual default risk in expansion

than contraction.

Table 2.5 shows the entire 1-year migration matrix from the two business-cycle

approaches, naive and MMC. The upper o�-diagonal entries suggest that the chance

of a downgrade (to either neighbor or extreme ratings) is higher if the current phase

is contraction. The diagonal entries are larger for expansion than contraction in line

with a rise in ratings volatility when economic conditions deteriorate. Overall, the

contraction-versus-expansion gap in migration risk suggested by the naive estimator

is magni�ed relative to that implied by the MMC estimator.

Finally, we examine the robustness of the results per sector. Table 2.6 presents

the term structure of PDs for CCC bond issues from the classical hazard-rate model

and the MMC model separately for industrials, utilities and �nancials. The default

risk in the utility and �nancial sectors is lower than that in the overall economy

and vice versa for the industrial sector. Sector by sector, the PDs appear again

underestimated if the business cycle is ignored, particularly, in contraction. The long

term structure of PDs for CCC-rated issues in each of the three sectors (unreported,

to preserve space) is qualitatively similar to that shown in Figure 2.4 con�rming that

the di�erences between the MMC default risk in contraction and expansion trail o�

in the limit as ∆t → ∞. A feature of the diagonal entries in the sectoral MMC

matrices is that at low credit quality levels (BBB and below), ratings volatility

is higher for �nancials than industrials/utilities whereas the opposite holds at top

credit quality levels (A and above). This pattern is common across expansion and

contraction phases although somewhat stronger for the latter, e.g. the probability

of staying in rating B is 11.2 (expansion) and 12.5 (contraction) percentage points

higher for industrials than �nancials; Appendix 2.C reports the sectoral 1-year MMC

contraction matrices. The fact that lower-rated �nancials appear relatively more

volatile than industrials/utilities, mirrored in more frequent upgrades, may be linked

to bank bail-outs or `gambling for resurrection' strategies characterized by excessive
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Table 2.5: Rating Transition Matrices Conditional on the Economic State
AAA AA A BBB BB B CCC D NR

Panel I: Naive Expansion estimator
AAA 89.030 5.683 0.704 0.102 0.117 0.019 0.001 0.017 4.327
AA 0.595 86.196 7.827 0.767 0.076 0.095 0.014 0.023 4.407
A 0.071 1.555 86.912 5.786 0.517 0.188 0.009 0.034 4.927
BBB 0.019 0.193 3.618 83.970 4.695 0.683 0.077 0.132 6.614
BB 0.032 0.083 0.384 4.894 76.165 7.828 0.589 0.666 9.359
B 0.003 0.050 0.202 0.467 4.606 74.220 4.673 4.314 11.465
CCC 0.002 0.013 0.354 0.516 0.949 7.650 37.210 40.903 12.403
D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000 0.000
NR 0.026 0.083 0.207 0.338 0.386 0.463 0.028 0.751 97.719

Panel II: Naive Contraction estimator
AAA 56.194 14.169 6.214 2.091 0.301 0.106 0.012 0.626 20.286
AA 0.785 49.686 18.436 4.841 0.995 0.222 0.027 1.506 23.503
A 0.155 3.242 56.628 12.161 1.950 0.621 0.081 1.938 23.224
BBB 0.019 1.048 6.874 58.507 6.993 1.365 0.113 2.617 22.463
BB 0.009 0.228 1.970 6.205 46.317 6.926 0.865 8.700 28.780
B 0.007 0.137 0.643 1.803 3.136 44.912 4.201 18.015 27.147
CCC 0.004 0.036 0.110 0.557 0.811 2.275 15.696 65.135 15.376
D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000 0.000
NR 0.034 0.260 0.540 1.014 0.677 0.560 0.068 4.299 92.549

Panel III: MMC Expansion estimator
AAA 86.809 6.340 1.071 0.226 0.124 0.023 0.002 0.046 5.359
AA 0.611 83.679 8.647 1.037 0.135 0.101 0.015 0.108 5.668
A 0.077 1.684 84.858 6.259 0.613 0.217 0.014 0.145 6.133
BBB 0.018 0.254 3.854 82.264 4.872 0.730 0.078 0.282 7.649
BB 0.030 0.092 0.497 4.995 74.129 7.782 0.614 1.185 10.676
B 0.003 0.055 0.232 0.563 4.504 72.223 4.661 5.217 12.541
CCC 0.002 0.014 0.337 0.523 0.943 7.276 35.661 42.581 12.661
D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000 0.000
NR 0.026 0.095 0.228 0.383 0.405 0.469 0.030 0.973 97.390

Panel IV: MMC Contraction estimator
AAA 70.961 10.697 3.716 1.156 0.203 0.067 0.007 0.297 12.896
AA 0.711 65.902 14.057 2.997 0.577 0.163 0.019 0.775 14.798
A 0.120 2.548 70.218 9.425 1.313 0.435 0.048 1.013 14.880
BBB 0.019 0.677 5.499 70.022 6.051 1.082 0.095 1.404 15.152
BB 0.019 0.157 1.285 5.652 59.671 7.397 0.743 5.018 20.058
B 0.005 0.096 0.448 1.221 3.795 58.059 4.461 11.770 20.144
CCC 0.003 0.023 0.193 0.531 0.872 4.410 24.946 54.988 14.032
D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000 0.000
NR 0.030 0.181 0.387 0.705 0.549 0.524 0.049 2.627 94.948

Notes: This table presents the rating transition probabilities obtained using the naive business-cycle

estimator when the current economic phase is expansion (Panel I) or contraction (Panel II), and

the MMC business-cycle estimator when the current economic phase is expansion (Panel III) or

contraction (Panel IV). Full details of the computations are given in Section 2.3. All �gures are in

percentage points.
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Table 2.6: Default Rates for CCC Bonds per Sector
1 Year 2 Year 3 Year 4 Year 5 Year

Baseline Hazard-Rate estimator
Industrial 42.257 57.759 63.789 66.413 67.769
Utility 39.403 55.910 63.158 66.593 68.406
Financial 37.699 53.852 61.111 64.612 66.468
Overall 40.913 57.096 63.804 66.829 68.386

MMC Expansion estimator
Industrial 43.513 58.817 64.515 67.008 68.382
Utility 40.974 57.582 64.544 67.752 69.444
Financial 41.020 56.982 63.405 66.264 67.722
Overall 42.581 58.587 64.844 67.613 69.089

MMC Contraction estimator
Industrial 56.869 68.708 72.678 74.380 75.322
Utility 52.485 66.363 71.708 74.154 75.456
Financial 55.375 66.695 70.738 72.480 73.355
Overall 54.988 66.863 71.105 72.984 74.010

Notes: This table provides estimates of the probability that a �rm currently rated CCC enters

default over a time horizon (t, t+ ∆t) from 1 to 5 years. The top panel corresponds to the hazard-

rate estimator that ignores business cycles. The mid and bottom panels pertain, respectively, to the

MMC estimator conditional on current expansion and contraction. The labels in the �rst column

indicate that the estimates are based on the rating histories of �rms either in the industrial sector,

utility sector, �nancial sector or the entire sample.

risk-taking in�uenced by moral hazard; see Goodhart (2006). Through explicit or

implicit deposit insurance, banks on the road to insolvency can disguise the problem

by aggressively raising money through unsustainable high interest rates.

2.4.4 Empirical distribution of default rates

We now analyze the small-sample properties of the default risk estimators. Relative

accuracy is gauged by comparing con�dence intervals around the PD estimates as

a way of quantifying estimation error or noise. In order to assess the statistical

signi�cance of di�erences in the default risk measures, the PDs are re-estimated M

times using bootstrap (arti�cial) ratings samples.16 Each bootstrap sample has the

16A simple approach to calculate analytical con�dence intervals for the discrete cohort PDs, which
many studies such as Nickell et al. (2000) and Christensen et al. (2004) adopt, is through the binomial
distribution under the simplifying assumption that the ratings are independent over time and across
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same number of obligors (cross-section size N) as the original dataset and is obtained

as follows: a bond's entire rating history is randomly drawn with replacement so

as to preserve the serial (e.g. business cycle) dependence in ratings; N random

draws are thus made. This process is repeated M = 1, 000 times.17 This non-

parametric bootstrap approach where the unit of resampling is a realized bond-history

is advocated by Hanson and Schuermann (2006) and Lö�er and Posch (2007) to

circumvent having to choose a data generating process for the ratings.

The bootstrap simulation results for the classical cohort and hazard-rate PDs

over a 1-year horizon are set out in the top left panel of Table 2.7. The mean and

standard deviation of the PD estimates over replications are given, �rst, followed

by the 95% con�dence interval and the interval length. The bootstrapped intervals

for hazard-rate PDs are much tighter than those for cohort PDs, especially with top

ratings (e.g., about 16 times tighter for rating A). Our �ndings are in line with the

studies by Christensen et al. (2004) from Moody's 1987-1991 �rm ratings, Jafry and

Schuermann (2004) from S&P's 1981-2002 �rm ratings and Fuertes and Kalotychou

(2007) from Moody's 1981-2004 sovereign ratings, in suggesting that the hazard-rate

estimator is more e�cient (accurate) than the cohort one. Those studies opt instead

for a parametric bootstrap that uses a �tted Markov process as the basis for generating

arti�cial rating histories.

We further investigate the impact of controlling for cyclicality on the accuracy

of the PD estimates. We �rst focus on the naive estimator. The top middle and

right panels of Table 2.7 show that the mean naive PD over bootstrap replications is

markedly higher for current recession than for contraction. The con�dence intervals

of PDs in economic recession are around 16 to 80 times wider (investment grades)

and 2 to 14 times wider (junk grades) than in expansion. This accuracy loss stems

obligors. However, as discussed earlier, this is not a realistic assumption. To sidestep it and in order
to make the comparison across estimators more informative we employ bootstrapped con�dence sets
throughout.

17This M choice follows from the fact that there is no evidence of non-normality in the empirical
distribution of PDs (e.g., the baseline hazard-rate PD density for BBB-rated bonds exhibits small
skewness and kurtosis at 0.290 and 3.017, ranging between 0.071-0.910 and 2.698-3.458, respectively,
for all ratings). Efron and Tibshirani (1997) show that M = 1, 000 bootstrap replications are
su�cient to obtain a good approximation in this context.
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from the relatively sparse set of rating migrations observed in contraction periods

since the sample entails 976 contraction days versus 8,520 expansion days.

Turning now attention to the MMC estimator, the mean PD over bootstrap repli-

cations is higher if the current phase is recession than if it is expansion, as with the

naive cyclical estimator. The con�dence bands for the MMC default rates are wider

in contraction than in expansion but notably less so than with the naive estimator;

around 5.9-7.4 times wider for investment grades and 1.6-4.5 times wider for junk

grades. The PDs from the MMC estimator for current contraction are notably more

accurate than those from the naive one; the con�dence band length is halved.18 Such

e�ciency gain is not observed in expansion which is not surprising given that the

expansion ratings subsample is much richer than the contraction one. The clear im-

provement in accuracy of the MMC estimator relative to the naive one in contraction

rationalizes the large gap between the MMC and naive estimates shown previously in

contraction also (c.f., Table 2.3 and Figure 2.4).

The bottom half of Table 2.7 summarizes to the distribution of the PD di�eren-

tial. For current contraction, the hazard-rate default risk estimates are signi�cantly

understated relative to the MMC ones. The question of whether the two business

cycle-adjusted models yield statistically di�erent PDs is addressed in the bottom

(middle and right) panels of Table 2.7. In line with the �ndings in Section 2.4.4,

the 95% con�dence bands suggest that the naive approach conditional on current ex-

pansion (contraction) signi�cantly under(over)estimates the PD relative to the MMC

approach.

One important message from this simulation analysis is that risk management

practices for economic capital attribution that build upon through-the-cycle (i.e.,

18The simulation results suggest that conditional on current expansion there is a gain in accuracy,
albeit overall very modest, in the naive versus the MMC estimator. This maybe because the latter
estimator is less parsimonious (more parameters) since it additionally controls for the fact that
the business cycle is stochastically evolving over time through the switching matrix S. The naive
estimator instead assumes that the economy remains in the same economic phase throughout the
migration horizon of interest. When the current phase is expansion, this assumption is relatively
mild since historically expansion has been more pervasive than contraction. Thus over the entire
sample the estimated probability of being in expansion over the next quarter given current expansion
is 97.2%.
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classical cohort or hazard) default risk estimates or upon those obtained by simply

splitting the sample into contraction and expansion ratings (i.e., naive business-cycle

approach) can su�er from various, bias and ine�ciency, distortions especially in eco-

nomic stress scenarios. This issue is further investigated in Section 2.4.6.

2.4.5 Out-of-sample forecast evaluation

In this section we conduct an out-of-sample prediction exercise to shed further light

on the relative merits of the MMC estimator. We choose as evaluation or holdout

period the last eight sample years (1999-2006) which amounts to one third of the

data. This is a sensible choice since, as illustrated in Figure 2.3, it comprises an

entire business cycle with both expansion and contraction phases. Akin to Frydman

and Schuermann (2008), Koopman et al. (2008) and Stefanescu et al. (2009), we

consider recursive estimation windows such that one year of ratings data is added at

each iteration, i.e. 1981-1998, 1981-1999 and so forth. Using the ratings information

in each window, 1- to 3-year migration matrix predictions are obtained according to

the risk models entertained in the chapter. For the sake of simplicity, most of the

methodological discussion focuses on the 1-year horizon.

In order to deploy the naive and MMC business-cycle estimators for prediction

purposes, the forecaster needs to acknowledge the prevailing economic conditions at

the current time point, namely, at the beginning (end) of the forecast horizon (estima-

tion window) referred to as time t. In the �rst iteration, the economic conditions on

year-end 1998 (i.e., last quarter of estimation window) are taken as the time t regime

and, accordingly, a forecast is generated conditional either on current expansion or

contraction for the migration risk over the subsequent 1-year horizon ending at t+1

(i.e., �rst out-of-sample year 1999) and so on.

With the naive approach, the ratings in a given estimation window ending at t are

classi�ed as `expansion' or `contraction', and two distinct forecasts are generated for

the migration risk over the horizon (t, t+1) which apply, respectively, when the time

t economic phase is either expansion or contraction. Thus the prevailing economic

conditions on year-end 1998 determine how the future migration risk over 1999 is
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forecasted, and so on. Likewise with the MMC approach but, in contrast with the

naive one, it does not assume that the current economic phase remains over the entire

forecast horizon. Instead the MMC estimator uses as input the time-varying (i.e., re-

cursively estimated) regime-switching matrix S, Eq.(2.5), that governs the stochastic

business-cycle evolution. To illustrate, since expansion prevails at the end of the �rst

estimation window (1998:Q4), the corresponding 1-year-ahead transition risk matrix

forecast incorporates the prediction that the economy will remain in expansion at the

end of 1999:Q1 with probability θ̂t and will switch to contraction with probability

(1− θ̂t); and so forth over the remaining quarters of the �rst out-of-sample year 1999

according to the Markov chain portrayed in Figure 2.3.

Our forecasts are out-of-sample in the sense that, say, the prediction of credit

migration risk over 1999 is based on data up to year-end 1998. But in order for

the predictions from the naive and MMC business cycle estimators to be strictly

forward-looking, we need real-time identi�cation of the prevailing economic condi-

tions at the point the forecasts are made (time t). For this purpose, we utilize the

Chicago Fed National Activity Index (CFNAI) or, more speci�cally, its three-month

moving average release denoted CFNAI-MA3. A practical problem with the NBER-

dating employed in our in-sample analysis, and in several related studies,19 is that the

announcement of a peak or trough (turning point) usually occurs many months after

the event. Therefore, the NBER-dating cannot be relied upon to identify the current

economic phase in a real-time framework. By contrast, the CFNAI-MA3, which is

released (toward the end of) each calendar month, has been designed as an objective

timely indicator of economic conditions.20

19For instance, see Bangia et al. (2002), Jafry and Schuermann (2004), Hanson and Schuermann
(2006) and Frydman and Schuermann (2008). The real GDP growth criterion employed in Nickell
et al. (2000) to classify the ratings sample into `normal', `peak' and `trough' su�ers from the same
time delay problem.

20The CFNAI was developed by Stock and Watson (1999) for in�ation forecasting purposes. It is
the �rst principal component (i.e., a weighted average) of 85 in�ation-adjusted economic indicators
drawn from four broad categories: 1) production and income (23 series), 2) (un)employment and
hours (24 series), 3) sales, orders, and inventories (23 series), 4) personal consumption and housing
(15 series). It is based on projections for about 1/3 of the 85 series and therefore its real-time release
is subject to subsequent revisions; however, due to its weighted-average nature the revision changes
are far smaller than those of the individual series. The CFNAI has been successfully adopted as
macroeconomic covariate in the credit rating model of Stefanescu et al. (2009) inter alios.
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We employ the real-time history of the CFNAI-MA3 to label the end (i.e., �nal

month) of each estimation window or current time t as expansion or contraction

according to the `o�cial' threshold rule: i) a CFNAI-MA3 value below -0.7 after

a period of economic expansion signals that a recession has begun, ii) conversely,

a CFNAI-MA3 value above -0.7 after a period of economic recession is taken as

suggestive that a recession has ended.21 Several studies have shown that this index

matches remarkably well the NBER-designated business cycles and can be used to

obtain good forecasts of in�ation and of overall economic activity; see Brave and

Butters (2010), Evans et al. (2002) and Stock and Watson (1999). Figure 2.3 plots

the real-time history of the CFNAI-MA3 and illustrates that the -0.7 threshold rule

yields a timely classi�cation of expansions and recessions that is virtually identical to

the lagged o�cial NBER chronology over our sample period.

Two distinct forecast evaluation approaches are adopted. First, the migration risk

predictions are compared with the `true' migration risk. A practical di�culty, also

common to the volatility forecasting literature, is that the variable being forecasted

is unobserved (latent) and a proxy is needed. Stefanescu et al. (2009) proxy the true

default risk by the observed yearly default frequencies (i.e., obtained by deploying the

discrete cohort estimator over each of the holdout sample years) but they acknowledge

a de�ciency of this proxy, namely, since top-rated bonds have experienced no direct

default over the sample period, their true default risk is unrealistically set to zero.

Koopman et al. (2008) adopt instead a hazard-rate type proxy for the true default

risk by deploying the non-parametric Aalen-Johansen estimator. In this same spirit,

we deploy the continuous hazard-rate estimator (Eq.(2.4)) over each out-of-sample

year (biennium or triennium) sequentially and the resulting measures are taken as

true 1-year (2-year or 3-year) migration risk denoted generically Qt+1.
22

21See www.chicagofed.org/cfnai. Berge and Jordà (2009) develop a routine using a receiver oper-
ating characteristics (ROC) curve that yields -0.8 as alternative threshold rule which places equal
weight on avoiding misclassifying a recession month as a non-recession month and a non-recession
month as a recession month. The -0.7 threshold put forward by Chicago Fed researchers places
marginally more weight on the second type of error.

22Although the Aalen-Johansen (AJ) estimator allows for time-heterogeneity, several studies have
shown that for large (cross-section) samples it does not produce signi�cantly di�erent estimates
nor e�ciency gains relative to the classical hazard-rate approach over short horizons, say, one to
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Several criteria are adopted to compare the K × K migration risk matrix pre-

dictions (Q̂t+1) and the `true' migration risk (Qt+1): the L1 and L2 Euclidean dis-

tances and asymmetric extensions thereof, and a singular value decomposition (SVD)

measure. For a given out-of-sample year (biennium or triennium) denoted t+1 the

element-by-element forecast error is given by êi,j,t+1 = q̂i,j,t+1 − qi,j,t+1 and the Eu-

clidean distance metrics are computed as

MAEL1 ≡ 1

K2

K∑
i=1

K∑
j=1

|êi,j,t+1|, (2.10)

and its counterpart MSEL2 that replaces the absolute errors by squared errors. Two

novel asymmetric criteria are considered in the present context to allow for asymme-

try in up/downgrades regarding the losses associated with over/underpredictions. A

prudential view on capital requirements may imply that, from the point of view of

regulators, underpredicting the probability of a downgrade is more worrisome than

overpredicting it; likewise, overpredictions regarding the probability of upgrades (or

of ratings stability) are less desirable than underpredictions. Accordingly, we seg-

ment the transition matrix as: i) upper diagonal elements (i.e., downgrades), and ii)

lower (upgrades) and diagonal (stability) elements. Since all absolute forecast errors

are less than unity, by taking their square root a heavier penalty is placed on them,

i.e.
√
|êt+1| > |êt+1|. We extend the Mean Mixed Error (MME) loss function in

Brailsford and Fa� (1996) so that underprediction (U) and overprediction (O) errors

corresponding to downgrades enter the loss function, respectively, in square root and

absolute form; and vice versa for upgrades/no rating changes, as follows

MME =
1

K2

[∑
t,i<j

√
|êUi,j,t+1|+

∑
t,i<j

|êOi,j,t+1|+
∑
t,i≥j

√
|êOi,j,t+1|+

∑
t,i≥j

|êUi,j,t+1|

]
. (2.11)

three years; the di�erence is much less signi�cant than the one between the cohort and hazard-
rate estimators (see Lando and Skodeberg (2002), Jafry and Schuermann (2004) and Fuertes and
Kalotychou (2007)). Jafry and Schuermann (2004) illustrate that whether the hazard-rate estimator
or the AJ approach is utilized makes little di�erence from the point of view of 1-year risk capital
attribution. Since our cross-section is very large and we deploy the hazard-rate estimator over each
out-of-sample year or biennium/triennium (with rating durations in quarters) the resulting `true'
migration risk matrices should be at worse as trustworthy as those obtained from the computationally
rather expensive AJ estimator.
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Moreover, theMSEL2 criterion lends itself to an asymmetric extension (with a spe-

ci�c focus on rating mobility) that we put forward where all the errors enter squared

but underpredictions are weighted more heavily than overpredictions for downgrades;

and vice versa for upgrades. Formally,

MSEasy
L2 =

[
wUI
∑
t,i<j

(êUi,j,t+1)2 + wOI
∑
t,i<j

(êOi,j,t+1)2

]
+

[
wUII

∑
t,i>j

(êUi,j,t+1)2 + wOII
∑
t,i>j

(êOi,j,t+1)2

]
(2.12)

with wUI > wOI , w
U
II < wOII and w

U
I + wOI + wUII + wOII = 1. We consider three weight

combinations: ( 3
10
, 2

10
, 2

10
, 3

10
), (2

6
, 1

6
, 1

6
, 2

6
) and ( 4

10
, 1

10
, 2

10
, 3

10
). The latter case amounts

to assuming a larger loss di�erential between underpredictions and overpredictions

for downgrades. Finally, we deploy the average of singular values metric proposed by

Jafry and Schuermann (2004) de�ned as

SV D ≡ 1

K

K∑
i=1

√
λi,t+1

(
Q̃
′
t+1Q̃t+1

)
, (2.13)

where λi,t+1(z) is the ith eigenvalue of z, and Q̃t+1 ≡ Qt+1 − I, with I denoting the

identity matrix.23 In this context, the prediction error |êt+1| is de�ned as the absolute

di�erence between the above SV D formula deployed on the forecasted migration risk

matrix and on the `true' migration matrix. Each of the forecast error metrics is

calculated as outlined above over every out-of-sample year t+1 and then averaged

out over t = 1, 2, ..., 8; likewise, over the 2- and 3-year periods.

Our second forecast evaluation approach, following Frydman and Schuermann

(2008), circumvents the di�culty of having to proxy the true migration risk. Forecast

ability is gauged by subtracting the forecasted probability of each rating transition

realized by the end of each out-of-sample year (biennium or triennium) from 1. For

instance, take a corporate bond which is rated BBB at the end of the �rst estimation

window (i.e. year-end 1998) and remains rated BBB at the end of the �rst out-of-

sample year (i.e. year-end 1999) and a second BBB bond that was instead rated AA

23By subtracting the identity matrix, the resulting migration matrix re�ects just mobility, that
is, the focus of the SV D metric (like MSEasyL1 which is computed from o�-diagonal elements) is the
dynamic part of Qt+1.
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at year-end 1999. Suppose that the 1-year migration risk matrix forecast for 1999

gives p̂BBB,t+1=0.93 as diagonal entry corresponding to BBB and p̂BBB,AA,t+1 = 0.42.

Hence, the forecast error for the �rst bond is small, namely, 1 − 0.93, but relatively

large for the second bond, 1 − 0.42. We deploy this approach and summarize the

resulting error over all corporate bonds using mean absolute and mean square error

metrics subsequently denoted, respectively, MAE1−p and MSE1−p.

The average forecast errors are summarized in Table 2.8 as percentage reduction

relative to a benchmark. A general message that comes across is that the naive

business-cycle estimator provides (from very little to) no forecast gains vis-à-vis the

classical hazard-rate estimator. By contrast, the MMC business-cycle estimator en-

tails improvements in out-of-sample forecasting performance relative to both bench-

marks, hazard-rate and naive cyclical estimator, and across all forecast horizons. For

instance, in terms of Mean Mixed Error (MME), the 1-year MMC migration risk

estimator a�ords a forecast error reduction of 4% vis-à-vis the naive cyclical estima-

tor and 5.48% vis-à-vis the through-the-cycle hazard rate estimator. Overall, with

all criteria and horizons, the MMC estimator provides forecast improvements rela-

tive to the naive counterpart ranging from 13.82% (SV D) to 3.97% (MAE1−p) for

the 1-year horizon, and from 59.35% (MSEL2) to 2.72% (MAE1−p) for the 3-year.

The out-of-sample forecast error reduction of the MMC cyclical estimator relative to

the hazard-rate benchmark falls between 0.58% (MAE1−p) and 12.34% (SV D) over

the 1- to 3-year horizons. The improvements in forecast accuracy a�orded by the

MMC estimator relative to the through-the-cycle hazard rate benchmark are gener-

ally more sizable on the basis of asymmetric loss functions than with the symmetric

ones (e.g. MSEasy
L2 versus MSEL2). Thus conditioning on the economic state be-

comes even more relevant according to novel �regulatory� oriented asymmetric loss

functions that attach a heavier penalty to underpredictions of rating downgrade risk

than to overpredictions and vice versa for upgrades.

The percentage forecast error reduction of the MMC estimator relative to the naive

counterpart is more noticeable as the horizon of interest increases, for instance, it more
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Table 2.8: Out-of-Sample Forecast Errors

Estimator
Bench-
mark

MAEL1 MSEL2 MME MSEasy
L2 SV D MAE1−p MSE1−p

1-year horizon
N.C. H.R. -8.50 -55.98 1.54 2.96 -1.71 -3.37 -9.41
MMC-C. H.R. 3.63 8.77 5.48 8.59 12.34 0.74 1.56

N.C. 11.17 41.51 4.00 5.80 13.82 3.97 10.03

2-year horizon
N.C. H.R. -40.75 -106.72 -3.64 -3.75 -64.65 -2.75 -20.91
MMC-C. H.R. 2.60 2.53 3.55 8.13 1.11 0.63 0.93

N.C. 30.80 52.85 6.93 11.45 39.94 3.29 18.06

3-year horizon
N.C. H.R. -51.01 -144.53 -8.09 -11.56 -84.20 -2.19 -24.66
MMC-C. H.R. 1.55 0.59 3.85 8.92 0.90 0.58 0.80

N.C. 34.81 59.35 11.05 18.36 46.20 2.72 20.43
Notes: This table shows the percentage reduction in the average out-of-sample forecast error of

each estimator (column 1) vis-à-vis a benchmark (col. 2); positive numbers denote a decrease in

average forecast error. MAEL1 , MME, MSEasyL2 and SV D, as formalized in (10), (11), (12) and

(13), respectively, are forecast error metrics that require `true' rating migration risk. MSEL2 is the

squared error version ofMAEL1 . H.R. refers to Hazard Rate. N.C. refers to Naive cyclical. MMC-C.

denotes MMC cyclical. The 1-year, 2-year and 3-year migration risk matrices obtained by applying

the continuous time hazard-rate estimator over each out-of-sample year (biennium or triennium)

are taken as `true' migration risk. MAE1−p and MSE1−p are Frydmann and Schuermann (2008)

evaluation metrics that are based on the forecasted probabilities of each actual transaction over the

out-of-sample period and do not require a `true' migration risk proxy. Naive cyclical and MMC

cyclical are the two estimators that account for the current economic conditions. Hazard rate is

the continuous through-the-cycle estimator. MSEasyL2 is based on weights ( 4
10 ,

1
10 ,

2
10 ,

3
10 ). The

out-of-sample period are the last 8 sample years.
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than trebles from 11.17% (1-year) to 34.81% (3-year) with theMAEL1 loss function.24

The intuition behind this pattern is that the naive estimator's implicit assumption

that the current economic conditions prevail over the entire forecast horizon becomes

less innocuous as the latter lengthens. This is important in the light of the new

Basel III Accord (under preparation) which states as one of its goals to increase the

mandatory time horizon for the estimation of default risk.25

2.4.6 Economic relevance: risk capital attribution

The Basel Committee requires banks to hold su�cient Tier 1 and Tier 2 capital to

cover unexpected credit losses over a 1-year horizon at the 99.9% con�dence level.

Accordingly, a bank failure should be observed only once in a thousand years. The

mean of the credit loss distribution is the expected loss associated with all possible

changes in credit quality over a target horizon which is covered by credit reserves,

while Value-at-Risk (VaR) is the quantile of the credit loss distribution which will

not be exceeded at a given probability level α. The unexpected loss, or discrepancy

between the α-th VaR measure and the expected credit loss, de�nes economic capital

at con�dence level α.26 We now compare the various rating migration measures

through the lens of risk capital attribution.

To this end, we utilize the popular CreditRisk+ model to derive the portfolio

default loss distribution over a 1-year horizon.27 In this model, obligors are classi�ed

24The reported MSEasyL2 are for weights ( 4
10 ,

1
10 ,

2
10 ,

3
10 ) but qualitatively similar results are

obtained for the other two sets of weights, e.g. the forecast error reduction of the MMC versus
naive estimator is 5.08% (1-year), 10.36% (2-year) and 17.92% (3-year) for ( 2

6 ,
1
6 ,

1
6 ,

2
6 ). Moreover,

when the focus is exclusively on default risk the same pattern is observed, e.g. the MSEL2 criteria
illustrates forecast gains of MMC versus naive of 5.54% (1-year), 14.24% (2-year) and 21.08% (3-
year).

25For a detailed exposition of the Basel III regulatory framework see
www.bis.org/bcbs/basel3.htm.

26The bank's risk manager faces the task of justifying that the estimated economic capital (based
on default risk estimates) re�ects the actual level of credit risk the institution is taking and to present
evidence to the regulators. VaR backtesting has become standard in this regard. Regulatory capital
acts as a constraint for banks in the sense that target capital ratios usually exceed regulatory
capital, the so called "headroom", for strategic reasons (e.g. to be able to take advantage of growth
opportunities), operational reasons (e.g. to avoid the direct and indirect costs of having to raise
capital at short notice) and to mitigate regulatory intervention; see Francis and Osborne (2012).

27For details see http://www.csfb.com/institutional/research/assets/creditrisk.zip
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into n independent sectors; a `sector' is a group of obligors under the in�uence of a

common systematic factor which induces default correlations. Each factor k = 1, ..., n

is assumed to be Gamma distributed with mean default intensity λk =
∑
j

θjkλj where

λj = −log(1− PDj) and volatility of default intensity σk =
∑
j

σPDj where PDj and

σPDj are, respectively, the mean and standard deviation of the jth obligor default

probability; each of the sector weights θjk represents the extent to which sector k

in�uences obligor j, so that
∑
k

θjk = 1.28 Hence, the model inputs needed to derive

the closed-form distribution of the portfolio losses are, for each obligor: the sector

weights (θjk), the loss given default (LGD), the exposure at default (EAD), the mean

probability of default (PD) and its volatility (σPD).

We build a �ctitious credit portfolio of 100 bonds and assign to each a random

initial rating j uniformly drawn from the space S = {AAA, ..., CCC}. PDj and σPDj

are taken from the bootstrap distributions set out in Table 2.7. The EAD for each

bond is randomly drawn from a uniform distribution with range $1 to $1m summing

to a total of $50,030,818 for the portfolio. All obligors pertain to the same sector (thus

n = 1 and θjk = θj = 1 for all j) and have full LGD. Table 2.9 reports the economic

risk capital estimates at con�dence levels α = {99.0%, 99.9%}. The risk capital

suggested by the baseline hazard rate estimator at $6.64m (99.0% level) and $8.25m

(99.9% level) is about 15% larger than that suggested by the less e�cient cohort

estimator; this con�rms the earlier evidence in Jafry and Schuermann (2004) that the

choice between a discrete-time or continuous-time estimator can matter substantially

for economic capital assessment.

At the 99.9% level, the naive business-cycle estimator suggests a risk capital of

$8.19m in expansion, a modest 0.7% decrease versus the classical hazard-rate esti-

mator; by contrast, there is a dramatic 70% increase for the required risk capital in

contraction. This asymmetry arises because the naive estimator implicitly assumes

that the same current economic conditions stay during the 1-year horizon. Histori-

28CreditRisk+ classi�es the obligors in each sector into i = 1, ...,m(k) sub-portfolios or bands of
similar exposure at default. The distribution of the number of default events in each exposure band
is treated as Poisson with mean equal to the expected number of defaults in each sub-portfolio over
one year. The default loss distribution for each sector is thus obtained by aggregating with weights
θik the individual sub-portfolio loss distributions.
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Table 2.9: Economic Capital Attribution for One-Year Risk Horizon
Cohort Hazard Naive(Exp) Naive(Con) MMC(Exp) MMC(Con)

99.0% level $5,467,943 $6,644,600 $6,600,314 $11,589,362 $7,038,285 $9,469,067
99.9% level $6,918,574 $8,250,077 $8,193,990 $13,774,556 $8,693,018 $11,416,857

Cohort
Hazard

Naı̈ve(Exp)
Hazard

Naı̈ve(Con)
Hazard

MMC(Exp)
Hazard

MMC(Con)
Hazard

99.0% level � 82.29% 99.33% 174.42% 105.92% 142.51%
99.9% level � 83.86% 99.32% 166.96% 105.37% 138.38%

MMC(Exp)
Naı̈ve(Exp)

MMC(Con)
Naı̈ve(Con)

Naı̈ve(Con)
Naı̈ve(Exp)

MMC(Con)
MMC(Exp)

99.0% level � � 106.64% 81.70% 175.59% 134.54%
99.9% level � � 106.09% 82.88% 168.11% 131.33%

Notes: This table shows the capital requirements implied by the rating migration risk measures ob-

tained from the two classical through-the-cycle estimators (cohort, hazard-rate) and the two cyclical

estimators (naive and MMC) which are inputs to the CreditRisk+ portfolio model of Credit Suisse

First Boston (CSFB, 1997). The hypothetical credit portfolio is made up of 100 bonds with random

exposure at default (EAD) ranging from $1 to $1m, and random initial rating. Cohort and Hazard

refers to the two classical through-the-cycle estimators. Exp denotes current economic expansion

and Con denotes current economic contraction. Rows 1 and 2 report the implied capital allocation

levels in US$. Rows 3 to 6 report relative capital allocation levels.

cally, expansions have been more pervasive than contractions and so the gap between

the hazard-rate and naive estimator is plausibly very modest in expansion. Although

the naive estimator we deploy is of continuous-time (hazard rate) type whereas that

in Bangia et al. (2002) builds on the discrete-time (cohort) framework, our analyzes

concur in suggesting that classical through-the-cycle approaches can greatly underes-

timate economic capital in contractions.

The 99.9% economic capital suggested by the MMC estimator in expansion (con-

traction) at $8.69m ($11.42m) represents an increase (decrease) of 6% (17%) vis-à-vis

the naive counterpart measure. The contraction risk capital is 1.7 times that in ex-

pansion according to the naive estimator but only 1.3 times larger according to the

MMC estimator. Thus the naive estimator underestimates risk capital in expansion

and substantially overestimates it in recession. In times of economic stress banks could

free up to 17% of capital by opting for the MMC business-cycle approach instead of

the naive counterpart. This may have important macroeconomic implications since

holding a large capital bu�er is costly for banks and impairs their ability to grant

credit. Excessive cyclicality in risk capital � a grievance of the naive cyclical estima-
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tor � may materialize, unfortunately, in less lending during a downturn or a �credit

crunch� period which could further aggravate the economic conditions. The more

contained cyclicality of the capital requirements associated with the MMC estimator

vis-à-vis the naive counterpart is attractive in the context of another of the new Basel

III reforms which seeks to dampen the procyclical ampli�cation of �nancial shocks.

2.5 Conclusions

The Basel Committee on Banking Supervision published in 2004 the Basel II Accord

that allows banks to use internal ratings-based models in deriving loan loss distri-

butions and credit risk-weights for their assets. Given that regulatory measures of

�nancial strength such as the Tier 1 capital ratio are expressed as core capital to total

risk-weighted assets, the choice of approach for estimating credit migration risk is a

key determinant of the capital that banks hold against unexpected losses. This chap-

ter enriches the literature by rigorously assessing the merit of accounting for economic

conditions in credit risk measurement. We advocate a Mixture of Markov Chains

(MMC) estimator of rating migration risk which explicitly recognizes the stochastic

business cycle. A particular case of the MMC estimator is the de facto naive cyclical

approach that conditions deterministically on economic phases by assuming that the

same conditions prevail throughout the prediction horizon. We compare the MMC

estimator with the naive cyclical counterpart and with classical through-the-cycle es-

timators in three di�erent frameworks. One is purely statistical and uses simulations

to assess the estimators' in-sample properties with emphasis on accuracy. The second

is a forward-looking framework that evaluates credit risk forecasts using conventional

and novel (a)symmetric loss functions. Third, we confront the capital requirements

implied by the di�erent estimators. The analysis is based on a 26-year sample of

Standard & Poor's US corporate bond ratings.

Ignoring business cycles signi�cantly understates default risk during economic

contraction. The MMC approach yields more reliable default risk measures than

the naive cyclical estimator, especially in contraction. The same conclusions are
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reached when the analysis is conducted at the sectoral level. In terms of out-of-

sample prediction, the performance of the MMC estimator is superior to that of the

naive counterpart and this is clearly revealed through novel asymmetric loss functions

which attach a relatively heavy penalty to under(over)predictions of down(up)grade

risk. These forecast accuracy gains become more prominent as the time horizon

lengthens.

An application to economic capital attribution via the CreditRisk+ model sug-

gests that the bu�ers prescribed by the MMC and naive cyclical approaches are higher

than those from classical through-the-cycle estimators, particularly in economic con-

traction. However, default risk during contraction (expansion) is statistically and eco-

nomically overestimated (underestimated) by the naive cyclical approach relative to

the MMC approach and more so for longer prediction horizons. The MMC estimator

here proposed, which can be seen as a way to perform stress testing, prescribes about

17% less capital holdings during downturns and 6% more capital in expansions than

the naive counterpart. The excess cyclicality in capital requirements associated to

the naive model would make lending very costly for banks in troubled times imposing

too great a cost on economic growth and potentially aggravating a contraction. Our

analysis has important implications for the ongoing �nancial regulatory reforms. The

properties of the MMC estimator here documented become quite relevant in the light

of the Basel III initiatives to lengthen the time horizon over which to measure credit

risk, and to promote countercyclical capital bu�ers in order to dampen procyclicality.

Thus by adopting more sophisticated models that account for the stochastic business

cycle, the banking system can serve better as shock absorber instead of transmitter

of risk to the broader economy.
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Appendix

2.A Standard & Poor's Rating De�nitions

Long-Term Issue Credit Ratings. Long-term ratings assigned to obligations with

an original maturity above 365 days which are based, in varying degrees, on S&P's

analysis of the following considerations: i) Likelihood of payment�capacity and will-

ingness of the obligor to meet its �nancial commitment on an obligation in accordance

with the terms of the obligation; ii) Nature and provisions of the obligation; iii) Pro-

tection a�orded by, and relative position of, the obligation in the event of bankruptcy,

reorganization, or other arrangement under the laws of bankruptcy and other laws

a�ecting creditors' rights. The general meaning of the main rating categories is:

AAA. The obligor has a extremely strong capacity to meet its �nancial commitment

on the obligation. Highest rating.

AA . Very strong capacity to meet �nancial commitments.

A. Strong capacity to meet �nancial commitments, but somewhat susceptible to

adverse economic conditions and changes in circumstances.

BBB. Adequate capacity to meet �nancial commitments, but more subject to adverse

economic conditions.

BB. Less vulnerable in the near-term but faces major ongoing uncertainties to adverse

business, �nancial and economic conditions.

B. More vulnerable to adverse business, �nancial and economic conditions but cur-

rently has the capacity to meet �nancial commitments.

CCC. Currently vulnerable and dependent on favorable business, �nancial and eco-

nomic conditions to meet �nancial commitments.

CC. Obligation currently highly vulnerable to non-payment.

C. Obligations that have payment arrears allowed by the terms of the documents, or

obligations of an issuer that is the subject of a bankruptcy petition or similar action

which have not experienced a payment default.

D. Payments of an obligation are not made on the date due even if the applicable
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grace period has not expired, unless S&P's believes that such payments will be made

during such grace period.

(Source: Standard & Poor's.)

2.B Three-Regime MMC Estimator

The ratings sample is divided into 3 subsamples referred to as expansion, contraction

and �normal� (intermediate) state. For each subsample, a one-year rating migration

matrix denoted, respectively, QE, QC and QN , is calculated using the continuous

hazard rate estimator (Eq.(2.4)).

• The regime-switching matrix is S =


α β (1− α− β)

δ µ (1− δ − µ)

η (1− η − ε) ε


• Assuming that the initial state is economic expansion, the mixture matrix is

M =


M 1 M 2 M 3

M 4 M 5 M 6

M 7 M 8 M 9

 =


αQE βQN (1− α− β)QC

δQE µQN (1− δ − µ)QC

ηQE (1− η − ε)QN εQC


• Let X, Y, Z, F, and L′ be de�ned as

X ≡M 1 +M 2 +M 3 = αQE + βQN + (1− α− β)QC

Y ≡M 4 +M 5 +M 6 = δQE + µQN + (1− δ − µ)QC

Z ≡M 7 +M 8 +M 9 = ηQE + (1− η − ε)QN + εQC

F ≡ (M 1 M 2 M 3) and L′ = (X Y Z)′

• The Markov-switching credit migration matrix over di�erent time horizons is

1-year horizon: QE(1) ≡ αQE + βQN + (1− α− β)QC = X

2-year horizon: QE(2) ≡M 1X +M 2Y +M 3Z = FL′

3-year horizon: QE(3) ≡ FML′

4-year horizon: QE(4) ≡ FM2L′
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...

n-year horizon: QE(n) ≡ FMn−2L′

If the initial state is �normal� then F ≡ (M 4 M 5 M 6) whereas for initial

economic contraction F ≡ (M 7 M 8 M 9).
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2.C Sectoral MMC Migration Risk During Contrac-

tion

AAA AA A BBB BB B CCC D NR
Industrials
AAA 68.252 13.577 6.576 0.939 0.611 0.103 0.008 0.253 9.682
AA 0.683 64.800 15.044 3.513 0.645 0.198 0.015 0.520 14.581
A 0.048 1.183 65.677 10.093 2.771 0.709 0.041 1.718 17.759
BBB 0.011 0.558 4.429 66.024 9.331 1.977 0.125 2.232 15.312
BB 0.009 0.181 0.816 4.638 61.760 8.825 0.530 4.046 19.192
B 0.009 0.030 0.232 0.963 3.689 59.774 3.561 10.091 21.652
CCC 0.004 0.011 0.080 1.008 1.724 4.764 24.978 56.869 11.316
D 0 0 0 0 0 0 0 100 0
NR 0.058 0.022 0.298 0.637 0.851 0.918 0.097 3.040 94.078

Utilities
AAA 64.985 6.120 5.801 3.068 0.144 0.027 0.002 0.197 19.655
AA 0.213 59.639 15.799 4.024 0.696 0.053 0.004 0.292 19.281
A 0.016 2.888 70.400 11.524 0.734 0.118 0.009 0.719 13.592
BBB 0.022 0.528 7.658 72.683 3.385 0.577 0.066 0.617 14.284
BB 0.045 0.110 2.022 10.859 59.339 4.690 0.468 5.068 17.398
B 0.003 0.043 0.604 1.750 4.133 59.519 5.777 12.754 15.418
CCC 0.001 0.008 0.573 0.269 0.364 6.424 30.077 52.485 9.799
D 0 0 0 0 0 0 0 100 0
NR 0.006 0.035 0.586 1.007 0.133 0.104 0.009 1.242 96.878

Financials
AAA 74.818 12.738 3.019 0.396 0.054 0.010 0.002 0.149 8.814
AA 1.192 72.759 11.638 2.181 0.159 0.024 0.014 0.985 11.047
A 0.049 3.215 73.056 6.807 0.625 0.092 0.016 0.509 15.631
BBB 0.018 1.410 5.207 65.253 6.465 0.856 0.200 1.733 18.857
BB 0.008 0.394 2.114 6.102 46.146 8.773 2.145 8.027 26.292
B 0.007 0.307 2.556 3.922 5.510 47.284 7.094 13.374 19.947
CCC 0.005 0.097 0.077 0.110 0.980 2.526 24.224 53.375 15.852
D 0 0 0 0 0 0 0 100 0
NR 0.049 0.844 0.569 0.289 0.041 0.110 0.016 0.728 97.356

Notes: This table reports the probability that an industrial, utility or �nancial �rm rated at time

t , as indicated in the �rst column, is rated at time t + ∆t where ∆t = 1 year, as indicated in the

�rst row. NR denotes Not Rated status. D indicates default. The MMC estimator assumes that

the economy is in contraction at time t and evolves stochastically over (t,t+ ∆t) . The counterpart

expansion matrices are qualitatively similar across the three sectors.
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3
Regime-Switching Dependence between Credit

Default Swap and Equity Markets

3.1 Introduction

Appropriately modeling the dependence structure of credit portfolios and systematic

risk factors is important for risk managers in order to set trading limits, for traders in

order to hedge the market risk of their credit positions and for pricing credit deriva-

tives. In particular, the use of models that acknowledge shifts in the relationship

between �nancial institutions' credit exposures and the underlying equity market can

be bene�cial towards the design of more adequate regulatory frameworks and reduce

systemic risks during stressed market conditions. Merton (1974)'s theory indirectly

suggests a link between credit derivative prices and equity prices. Firm-value struc-

tural models originating from Merton's theoretical framework rest on the fundamental

asset value process, namely, the default of a �rm is triggered when its value falls below

a certain threshold, which is commonly characterized as an increasing function of �rm

leverage and the volatility of its asset values. As asset value and volatility are latent,

the implementation of structural credit risk models for publicly-traded �rms relies on

the observable equity return and a volatility proxy (e.g., historical or implied), while
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the credit default swap (CDS) spread can be taken as a measure of �rm default risk.1

CDS spreads can be argued to provide more reliable signals on the default riskiness

of corporate borrowers than bond spreads as bond prices are often distorted by tax

and liquidity issues. CDS contracts are highly standardized and thus less likely to be

in�uenced by aspects of the contractual agreement such as seniority, coupon rates,

embedded options and guarantees. Moreover, the CDS spread does not hinge on the

choice of risk-free benchmark. Longsta� et al. (2005) found that liquidity factors

are a very important driver of bond yield spreads. Blanco et al. (2005) showed that

the CDS market leads the bond market in terms of short-run price discovery and

attribute it to the higher liquidity and trading volume of the CDS market which

makes it informationally more e�cient.2 The perception of the CDS premium as a

rather �direct� measure of default risk together with the rapid development of the CDS

market have spurred an enthusiastic debate over the determinants of CDS spreads

and, in particular, their sensitivity to structural factors such as equity volatility,

macro-variables, �rm-speci�c balance sheet information and credit ratings.

There are empirical researches investigating variables in�uencing CDS spreads.

Norden and Weber (2009) discuss the link between changes in CDS spreads and stock

returns, while Madan and Unal (2000), Blanco et al. (2005), and Zhang et al. (2009)

also consider stock return volatility. It is intuitive that the drops of a �rm's mar-

ket value (proxied by its equity value) increase the probability of default. Similarly

hitting the default barrier becomes more likely if the �rm value �uctuates widely.

Ericsson et al. (2004) �nd that volatility and leverage alone explain a substantial

proportion of the variation in CDS premia. Yu (2006) is the �rst to document shifts

1Similar to traditional insurance policies, the seller of a CDS contract must compensate the buyer
if the underlying loan defaults. In return for this protection, the buyer is required to make �xed
periodic payments with prede�ned premium (or spread) to the seller. The spread of a CDS is the
annual amount the protection buyer must pay the protection seller over the length of the contract,
expressed as a percentage of the notional amount. In the event of default, the CDS buyer receives
compensation and the seller takes possession of the loan.

2The global CDS market grew dramatically over a short period of time with a volume expansion
from $300 billion in 1998 to $25.9 trillion at the end of 2011 according to the International Swaps
and Derivatives Association (ISDA). This signi�cant growth can be primarily attributed to the
development of CDS indices. The market has slowed down in recent years; between June 2011 and
the end of the year volumes in the CDS market declined by 12.5 percent, partly due to an increase
in central clearing, the e�ectiveness of netting and collateral, and portfolio compression.
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between �turbulent� and �calm� regimes in the dynamics of CDS spreads. A common

denominator to the above studies is that they focus on the determinants of single-

name CDS spreads which are notably less liquid than CDS indices.3 The launch

of broad-based CDS indices in 2001 by JP Morgan and Morgan Stanley marks a

new era in credit derivatives trading by o�ering more liquidity, tradability and trans-

parency. However, research into the dependence structure dynamics between CDS

index spreads and equity market indicators is still sparse. Bystrom (2008) �nds that

stock returns and stock market volatility are able to explain most of the variation

in iTraxx CDS spreads. Using Markov-switching regressions, Alexander and Kaeck

(2008) show that the determinants of CDS index spreads are regime-speci�c; implied

volatility is strongly related to CDS spreads in the high volatility regime while stock

returns play a bigger role in the tranquil regime.

While all of the aforementioned empirical studies implicitly rely on the conven-

tional linear Pearson correlation as dependence measure, �rm structural models in-

spired from Merton (1974) suggest that the marginal e�ect of a fall in equity value

is non-constant (as linear approaches would predict) but instead driven by �rm fun-

damentals such as leverage.4 Using an extension of Merton's model with realized

volatility and jumps, Zhang et al. (2009) provide evidence that the strength of the re-

lation between credit risk and equity value depends on the �rm's credit rating. They

document a nonlinear convex relation between CDS spreads and equity volatility.

Cao et al. (2010) �nd that the link between the CDS market and implied volatility

is stronger when CDS spreads are more volatile and credit ratings are lower. Empir-

ical studies have consistently suggested that credit spread predictions obtained from

Merton-type structural credit risk models underestimate historical credit spreads;

3CDS indices are pools of basic single-name CDSs providing protection against the basket of
entities in the index. The �rst two families of indices (iBoxx and Trac-x) merged in 2004 to form
the CDX in North America and iTraxx in Europe and Asia which comprise the most liquid single-
name CDSs. They were both acquired by Markit in 2007 which since then administrates both CDS
indices. Unlike single-name contracts, CDS index type contracts do not terminate after a credit
event but instead they continue with the defaulted entity removed and the contract value reduced.
For a comprehensive discussion of CDS index composition and performance, see Markit (2010).

4Zero correlation does not imply independence, it only rules out linear dependence.
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e.g., Jones et al. (1984), and Eom et al. (2004)5. This may partly stem from the fact

that the actual dependence structure of debt with equity has complex features that

linear correlation models fail to capture. Recent work supports this conjecture. Hull

et al. (2004a) show that theoretical CDS spreads implied from Merton's model using

equity value and volatility as inputs are nonlinearly related to historical CDS spreads.

Using adaptive nonparametric regressions, Giammarino and Barrieu (2009) provide

evidence that the relationship between iTraxx Europe CDS index returns and two

systematic factors, Euro Stoxx 50 returns and changes in the VStoxx 50 volatility

index, su�ered several structural changes between November 2004 and January 2008.

We extend recent research on the nonlinear relation between credit spreads and

tradable systematic risk factors by adopting copulas which represent a very versa-

tile framework to estimate multivariate distributions. Although copulas have been

employed in credit risk modeling before6, this is the �rst application of copula to

model nonlinearities and asymmetries in CDS-equity dependence. The main appeal

of the copula framework is that it facilitates separate modeling of the marginal dis-

tributions and the dependence and thus, a variety of dependence structures can be

captured with more �exibility and parsimony than in competing frameworks (e.g.,

multivariate GARCH). Patton (2006) introduces conditional or dynamic copulas to

portray time-varying dependence structures which represent an important improve-

ment upon the initial static copula models. The original dynamic copula framework

is extended by Christo�ersen et al. (2012) in order to accommodate asymmetries and

trends in time-varying cross-market dependence. Far less attention has been paid

to the possibility of regime-switching (RS) behavior in dependence structures. To

the best of our knowledge, the only few exceptions are Garcia and Tsafack (2011),

Chollete et al. (2009), Okimoto (2008) and Rodriguez (2007). One can argue though

that existing RS copula models have the limitation of assuming constant state-speci�c

dependence, i.e. a distinct static copula governs each regime, despite the fact that a

5An introduction of Merton's structural model and its extensions can be found in Appendix (3.A).
6Crook (2011) use copula to analyze the dependence of default rates in consumer loans, Das and

Geng (2006) focus on corporate debt default dependence while Hull and White (2006) confront the
task of credit-default option pricing using copula.
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given regime or state could linger on for years.

In this Chapter, we do not intend to extend the Merton's structural model to

determine the theoretical price of credit spreads. Instead, motivated by Merton's

theory and the predictions from subsequent �rm value structural models, we investi-

gate the empirical comovements between credit market and the corresponding equity

market indices. We provide both methodological and empirical contributions to the

literature. On the former, we propose �exibleMarkov-switching dynamic (autoregres-

sive) copulas which capture asymmetry in the form of �high� or crisis dependence and

�low� or normal dependence. Our models generalize existing Markov-switching static

copula by allowing for distinct mean reversion in dependence within each regime.

Empirically, we seek to provide a better understanding of the dynamic evolution

of dependence and tail dependence for the European credit market, proxied by the

iTraxx Europe CDS index, and two underlying systematic factors proxied by the Stoxx

equity index return and VStoxx implied volatility index, respectively. We carry out

a comprehensive in-sample statistical comparison of various copula models and draw

overall inferences on cross-market (i.e., CDS and equity) dependence at the center

and tails of the bivariate distributions. Given that CDS indices have become a very

important instrument for risk hedging and arbitrage trading and therefore, a key com-

ponent of institutional investors' portfolios, we assess the relevance of the proposed

Markov-switching dynamic copulas in the context of CDS-equity portfolios from a

risk management perspective.7 More speci�cally, the economic signi�cance of our

proposition is assessed through a Value at Risk (VaR) simulation to set 1-day-ahead

trading limits for CDS-equity portfolios.

We document various sudden changes in the dependence structure of CDS and

equity markets over the period from September 2005 to March 2011. The identi�ed

7CDS indices facilitate the transfer of marketwide or sectoral credit risk by institutional investors
like hedge funds and insurance companies, and by capital structure arbitrageurs who can now use
derivatives (CDS index options and futures) for managing the risk related to their CDS index
positions. Yu (2006) provides evidence of capital structure arbitrage opportunities in the CDS
market for industrials, i.e. it is possible to make pro�ts out of a trading strategy that exploits the
CDS mispricing error. The latter is de�ned as the di�erence between observed CDS market spreads
and predicted CDS spread predictions from a Merton-type structural model with inputs the observed
equity prices and information about the obligor's capital structure.
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transitions to the high dependence regime largely re�ect the onset of the automotive

industry and energy crises in 2005, the credit crunch in 2007 and the most recent

Greek and European sovereign debt crises in late 2009. The Markov-switching dy-

namic copula model reveals that, in crisis periods, shocks to dependence of CDS

spreads with market volatility have longer-lasting e�ects than shocks to dependence

of CDS spreads with market returns. Both in crisis and normal periods, changes in

CDS premia are more strongly linked with the evolution of equity returns than with

market volatility. The two distinct regimes of dependence are more clearly identi�ed

at sectoral than marketwide level. The proposed Markov-switching dynamic copula

models are supported over simpler nested copulas not only by conventional in-sample

statistical criteria but also by out-of-sample VaR forecast accuracy measures. Using

regulatory loss functions that take into account both the frequency and magnitude

of exceptions, the VaR simulation highlights the economic relevance of our copula

models by showing that they lead to more cautious 1-day-ahead trading limits. A

mismatch is documented between in-sample statistical �t and economic value of pre-

dictability regarding the choice of speci�c copula function; log-likelihood values and

Akaike Information Criteria support the Student's t copula but lower average regula-

tory losses are associated to the VaR forecasts from the asymmetrically-tailed Gumbel

copula.

Our �ndings have important implications. The proposed copula framework can

be useful towards the Basel III macroprudential goal of making the banking sec-

tor more resilient to stress conditions through enhanced risk coverage. One of the

reforms put forward by the Basel Committee on Banking Supervision (2011b) is

precisely about strengthening capital requirements for credit exposures arising from

banks credit derivatives such as CDS positions, and introducing stressed-VaR capital

requirements for the trading book. Our study suggests that copula models that explic-

itly parametrize sudden shifts in the dependence structure between credit exposures

and the equity market facilitate more conservative downside-risk measures. Hence,

our results point into a clear direction for improvement of stress testing platforms

and reduction of systemic risk. The copula framework proposed can be useful too
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for capital structure arbitrageurs that seek to exploit temporary deviations between

model-based CDS spread predictions and observed CDS market spreads.

The remainder of this chapter is organized as follows. Section 3.2 outlines the

methodology and Section 3.3 describes the data. Section 3.4 provides an in-sample

statistical comparison of copulas and inferences on CDS-equity dependence, followed

by an evaluation of the economic signi�cance of the Markov-switching dynamic copula

formulation proposed. Section 3.5 concludes. Technical details are con�ned to an

Appendix.

3.2 Copula Methodology

We begin by outlining the baseline theory of static and dynamic (or conditional)

copulas, before proposing regime-switching extensions. Without loss of generality,

the exposition is con�ned to a bivariate setting. We begin by presenting Sklar's

theorem and the marginal distribution model employed to characterize individual

asset returns. Next we turn attention to the copulas and their estimation approach.

Bold font denotes vectors and matrices, lowercase is used for probability density

function (pdf ) and uppercase for cumulative distribution function (cdf ). Finally, we

describes the data set.

3.2.1 Sklar's theorem and marginal processes

Let x1 and x2 denote the whitened and standardized returns of two �nancial assets

which are realizations of the random variables X1 and X2, respectively. A copula is

de�ned as follows.

De�nition (Copula). A function C : [0, 1]2 → [0, 1] is a copula if it satis�es (i)

C(u1, u2) = 0 for u1 = 0 or u2 = 0; (ii)
∑2

i=1

∑2
j=1 (−1)i+j C (u1 (i) , u2 (j)) ≥ 0

for all (u1 (i) , u2 (j)) in [0, 1]2 with u1 (1) < u1 (2) and u2 (1) < u2 (2) ; and (iii)

C(u1, 1) = u1, C(1, u2) = u2 for all u1, u2 in [0, 1].
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Sklar (1959)'s theorem expressed formally below provides the theoretical founda-

tion for copulas.

Theorem (Sklar). A joint cdf H (x1, x2) = P (X1 ≤ x1, X2 ≤ x2) of the random

variables X = (X1, X2) with respective marginal cdf F1 (x1) = P (X1 ≤ x1) and

F2 (x2) = P (X2 ≤ x2) can be written as

H (x1, x2) = C (F1 (x1) , F2 (x2)) (3.1)

where C is a copula. Given H, if F1 and F2 are continuous, then there exists a

unique C satisfying (3.1). Conversely, given C and the margins F1 (x1) , F2 (x2) then

the resulting C (F1 (x1) , F2 (x2)) is a joint cdf.

Copula is in essence a dependence function that maps two univariate pdf (or

margins) into a joint pdf.8 For continuous variables, the density c corresponding to

the copula C is given by

c (F1(x1), F2(x2)) =
∂2C (F1 (x1) , F2 (x2))

∂F1 (x1) ∂F2 (x2)
. (3.2)

The joint pdf denoted fX can be obtained as a function of the copula density as

fX (x1, x2) = c (F1 (x1) , F2 (x2))
2∏

n=1

fn (xn) , (3.3)

where fn (xn) is the margin or univariate pdf corresponding to Fn (xn) = un, n ∈

{1, 2}, which is distributed as Uniform(0, 1). The log-likelihood of the joint distri-

bution can be conveniently expressed as

L (θ,φ) =
T∑
t=1

log c (u1t, u2t;θ) +
2∑

n=1

T∑
t=1

log fn (xn;φn)

= LC (θ,φ) +
2∑

n=1

Ln (φn) , (3.4)

8A thorough exposition of copula theory can be found in Nelsen (2006) and �nancial applications
in Cherubini et al. (2004).
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where L (θ,φ) is the copula log-likelihood with φ = (φ1,φ2)′, and Ln (φn), n = 1, 2,

are the log-likelihoods of the margins. The vector θ gathers the copula parameters

that govern the dependence structure.

Let the random process rt denote the daily returns of a �nancial asset which can

be characterized by an autoregressive�moving-average (ARMA) model as follows

rt = a0 +

p∑
i=1

airt−i +

q∑
j=1

bjεt−j + εt (3.5)

where a0 is a constant; p and q are the order of autoregressive and moving average

processes respectively for the conditional mean. The error term εt can be splitted into

a stochastic part xt and a time-dependent standard deviation σt so that εt = σtxt. The

series σ2
t is characterized by Bollerslev (1986)'s generalized autoregressive conditional

heteroskedasticity (GARCH) model

σ2
t = c0 +

r∑
i=1

ciσ
2
t−i +

s∑
i=1

diε
2
t−i (3.6)

where c0 is a constant; r and s are the order of the GARCH and ARCH terms of

the conditional volatility process. The �ltered returns xt = εt/σt, t = 1, ..., T, follow

a strong white noise process with a zero mean and unit variance. In our empirical

work, we adopt Hansen (1994)'s skewed Student's t distribution xt
i.i.d.∼ skT (0, 1; ν, ζ),

with ν > 2 and ζ denoting the degrees of freedom (dof) and asymmetry parameters,

respectively. It has the pdf 9

f(x; ν, ζ) =


bc

(
1 + 1

ν−2

(
bz+a
1−ζ

)2
)− ν+1

2

, if z < −a
b

bc

(
1 + 1

ν−2

(
bz+a
1+ζ

)2
)− ν+1

2

, if z ≥ −a
b

(3.7)

where a = 4ζcν−2
ν−1

, b2 = 1+3ζ2−a2, c =
Γ( ν+1

2
)√

π(ν−2)Γ( ν
2

)
. The skewed Student's t distribu-

tion is quite general as it nests the Student's t distribution (ζ = 0) and the Gaussian

density (ζ = 0, ν →∞). Previous studies advocate this parametrization for the mar-

9There are other skewed Student's t distributions that the skewness is introduced in di�erent
ways, see Fernandez and Steel (1998) and Aas and Ha� (2006).
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gins as able to capture the autocorrelation, volatility clustering, skewness and heavy

tails exhibited typically by �nancial asset returns; see e.g. Jondeau and Rockinger

(2006) and Kuester et al. (2006). The latter study highlights, in particular, the ex-

cellent forecasting results from GARCH-type models based on the skewed Student's t

for Value-at-Risk applications. Equations (3.5)�(3.7) represent an ARMA-GARCH-

skT model. In our empirical work, we �x r = s = 1, and select the best p and q

among 1, 2, . . . , 10 by minimizing the Akaike Information Criterion (AIC). The model

parameters φn are estimated by quasi-maximum likelihood (QML). Uniform(0, 1)

margins denoted un = Fn (xn), n = 1, 2, can be obtained from each �ltered return

series via the probability integral transform. Once the vector u = (u1, u2)′ is formed,

the copula parameter vector can be estimated by maximizing the corresponding cop-

ula log-likelihood function LC (θ,φ). Further discussion on estimation can be found

below.

Copulas can be broadly grouped as elliptical (e.g., Gaussian and Student's t) and

Archimedean (e.g., Gumbel, Clayton and symmetrized Joy-Clayton denoted SJC).

Unlike the Gaussian copula which is solely parametrized by the linear Pearson's

correlation ρ, the Student's t copula can capture extreme return comovements via

the so-called tail dependence parameter which is determined by the dof parameter ν

alongside ρ; the smaller ν, the more prominent the tail dependence or clustering of

extreme returns. The key advantage of elliptical copulas is tractability since they can

be easily extended from bivariate to high-dimensional settings, but their main short-

coming is that they impose symmetry. Archimedean copulas can additionally capture

asymmetric tail dependence. Gumbel (Clayton) copula describes upper (lower) tail

dependence but, by rotation, the opposite tail can be modeled.10 The SJC copula

can model asymmetrically the dependence structure at both tails and hence, enables

tests of symmetry. See Appendix 3.C for further details on the copula functions.

The log-likelihood functions of the copulas can be found in Appendix (3.D). In early

�nancial applications, the above copulas were mainly deployed in static settings.

10Rotation is by 180◦ degrees, namely, the copulas are formulated on minus the random variables;
see Cherubini et al. (2004).
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3.2.2 Dynamic copulas

In a dynamic context the copula parameters are estimated conditionally (i.e., allowed

to time-vary) and so are the rank correlation and tail dependence measures implied

from them; see Appendix 3.C. Patton (2006) sets the foundations for time-varying

copulas by proving Sklar's theorem for conditional distributions, and suggests to allow

the generic copula dependence parameter θ evolves in ARMA fashion as follows

θt = Λ (ω + ϕθt−1 + ψΓt) (3.8)

which permits mean-reversion in dependence. The forcing variable Γt is de�ned as

Γt =


1
m

∑m
j=1 F

−1
1 (u1,t−j)F

−1
2 (u2,t−j) elliptical

1
m

∑m
j=1 | u1,t−j − u2,t−j | Archimedean

where F−1
n (un,t), n = 1, 2 is the inverse cdf of the margins and Λ (·) is the (modi�ed)

logistic or exponential function.11 We use m = 10 as in Patton (2006).

Engle (2002)'s dynamic conditional correlation (DCC) model inspired the copula

formulation12

Qt = (1− ϕ− ψ) Q̄+ ϕQt−1 + ψεt−1 · ε′t−1, ϕ+ ψ < 1; ϕ, ψ ∈ (0, 1) (3.9)

Rt = Q̃
−1

t QtQ̃
−1

t

where all matrices are 2×2 in our bivariate setting; Q̄ is the unconditional covariance

of εt = (ε1,t, ε2,t)
′ estimated as Q̄ = T−1

∑T
t=1 εtε

′
t with ε1,t ≡ F−1

1 (u1,t) and ε2,t ≡
11In the context of elliptical copulas, the dynamic parameter is the conventional correlation mea-

sure, θt = ρt, and Λ (y) = (1− e−y) (1 + e−y)
−1

is the modi�ed logistic transformation to ensure
ρt ∈ (−1, 1). In the Gumbel copula θt = ηt and Λ (y) = ey to ensure ηt ∈ (0,∞) as de�ned in Ap-
pendix 3.C. Once these dynamic parameters are estimated, they can be mapped into time-varying
rank-correlation and tail dependence measures, τ̂t and λ̂t, using the formula tabulated in Appendix
3.C. In the SJC copula, the parameter modeled in (3.8) is directly the upper tail dependence, θt = λUt
(or lower tail dependence θt = λLt ), and Λ (y) = (1 + e−y)

−1
is the logistic transformation to ensure

λUt , λ
L
t ∈ (0, 1).

12The popular DCC model put forward by Engle (2002) can be cast as a Gaussian DCC copula.
Jondeau and Rockinger (2006) model the dependence between international equity indices using
elliptical DCC copulas.
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F−1
2 (u2,t); Qt is the conditional covariance matrix; Q̃t is a diagonal matrix with

elements the square root of diag(Qt); and Rt is a correlation matrix with o�-diagonal

element ρt which (for elliptical copula) relates to Kendall's τt as shown in Appendix

3.C.

Both ARMA and DCC formulations have as common aspects: i) characterizing the

dependence dynamics as `autoregressive' type, and ii) nesting static copulas under the

restriction ϕ = ψ = 0. But they have di�erent merits. The DCC copula formulation

can be easily extended to multivariate contexts which is rather challenging with the

ARMA formulation. On the other hand, the DCC formulation is not straightforward

to apply to non-elliptical copulas; see Manner and Reznikova (2010), for further

comparative discussion.

3.2.3 Regime-switching dynamic copulas

We propose �exible Markov-switching (RS) copula models which accommodate dy-

namic dependence within each regime and hence, can capture regime-speci�c mean

reversion. This feature represents a distinction from conventional RS copulas where

a static copula function is assumed to govern each regime regardless of how long the

given state prevails. Extant studies typically associate the low dependence regime

with Gaussian copula which assumes zero tail dependence and the high dependence

regime with non-Gaussian copula that permits tail dependence. For instance, in the

RS copula formulated by Rodriguez (2007) and Okimoto (2008) the means, variances

and correlations switch together and each regime is dictated by a distinct static cop-

ula. In a similar vein, Chollete et al. (2009) and Garcia and Tsafack (2011) deploy

RS dependence models which are parametrized by static Gaussian copula in the nor-

mal regime regime and a mixture of static elliptical/Archimedean copulas in another

regime.

In order to outline our regime-switching (RS) copula framework, let St be a state

variable that dictates the prevailing regime. The joint distribution of X1t and X2t
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conditional on being in regime s is de�ned as

(X1t, X2t | X1,t−1, X2,t−1;St = s) ∼ CSt
t

(
u1t, u2t | u1,t−1, u2,t−1;θStt

)
with s ∈ {H,L} where H denotes the high dependence regime and L the low depen-

dence regime. The random variable St follows a Markov chain of order one charac-

terized by the transition probability matrix

π =

 πHH 1− πHH
1− πLL πLL

 (3.10)

where πHH and πLL are the so-called staying probabilities, namely, πHH (πLL) is the

probability of being in the high (low) dependence regime at time t conditional on

being in the same regime at t− 1.

First, we propose a regime-switching ARMA copula where the dependence struc-

ture evolves as follows

θStt = Λ
(
ωSt + ϕθ

St−1

t−1 + ψΓt

)
(3.11)

in each regime, with Γt and Λ(·) de�ned as in Section 3.2.2. We call this novel

formulation RS-ARMA to distinguish it from conventional RS formulations where a

static copula governs each regime.

Second, we propose a regime-switching DCC (RS-DCC) dependence model where

the time-varying copula function that governs each regime is of DCC type, formalized

as13

QSt
t =

(
1− ϕSt − ψSt

)
Q̄ + ϕStQ

St−1

t−1 + ψStεt−1 · ε′t−1, ϕSt + ψSt < 1; ϕSt , ψSt ∈ (0, 1)

(3.12)

RSt
t =

(
Q̃St
t

)−1

Qt

(
Q̃St
t

)−1

with QSt
t the auxiliary matrix driving the rank correlation dynamics.

13The RS-DCC copula can be seen as a generalization of Billio and Caporin (2005)'s regime-
switching DCC model.
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In our empirical analysis below, the RS-ARMA and RS-DCC models employ the

same copula function (e.g., Gumbel) for all regimes but allow for time-variation (mean

reversion) in dependence and tail dependence within each regime. Put di�erently, the

RS-ARMA and RS-DCC copulas are �exible enough to capture abrupt increases (de-

creases) in dependence as �nancial markets enter crisis (tranquil) regimes without

imposing the restriction of static within-regime dependence. If there is only one

regime (i.e., πHH = πLL = 1) the RS-ARMA and RS-DCC copula collapse, respec-

tively, to dynamic ARMA and DCC copulas formalized as Eq. (3.8) and Eq. (3.9),

respectively. Conventional RS copulas collapse instead to static copulas.

3.2.4 Estimation of copula parameters

We employ canonical maximum likelihood (CML) estimation to obtain the copula

parameters. CML is similar in spirit to the inference functions for margins (IFM)

method where the parameters of the marginal distributions are separated from each

other and from those of the copula, and then multi-step ML estimation is applied.

In the �rst step, the parameters of the margins are estimated via univariate ML. In

the second step, we estimate by ML the parameters of the copula conditional on the

step-one margins.14 One main advantage of CML (versus IFM) is that, by exploiting

the observed empirical distributions, it avoids having to specify a priori the margins.

More speci�cally, CML relies on the concept of empirical marginal transformation

which approximates an unknown parametric margin with the (uniform) empirical

distribution function û1t = F̂1(x1t) = 1
T

∑T
t=1 1{X1t≤x1t}, and likewise for û2t = F̂2(x2t),

where (x1t, x2t) , t = 1, . . . , T , are the �ltered returns. The CML estimator of the

14Two-step estimation yields asymptotically e�cient and multivariate normal parameters√
T
(
θ̂IFM − θ0

)
→ N

(
0,V−1 (θ0)

)
where V (θ0) = H−1M

(
H−1

)′
is the Godambe Information

Matrix de�ned as the covariance matrix of a parameter vector's estimation error when the distri-

bution is non-Gaussian. Given the score function g(θ) =
(
∂LX1

∂θ1
,
∂LX2

∂θ2
, ∂LC∂θC

)
, then the expectation

of the log-likelihood Hessian, H−1 = E
(
∂g(θ)
∂θ

)
, and the covariance of the log likelihood scores,

M = E
(
g (θ) g (θ)

′)
, can be evaluated numerically at the optimum.
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copula parameters is de�ned as

θ̂ ≡ arg max
θ

T∑
t=1

LC
(
c
(
û1t = F̂1 (x1t) , û2t = F̂2 (x2t)

)
,θ
)

which amounts to a ML estimator conditional on the empirical margins.15

Estimation of the RS copula parameters requires inferences on the probabilistic

evolution of the state variable St. Probability estimates based on information up to

time t are called ��ltered probabilities� and those based on full-sample information

are �smoothed probabilities�. Our estimation approach builds on Hamilton (1989)'s

�ltering algorithm and Kim (1994)'s smoothing algorithm; see Appendix 3.E.

3.3 Data description

Our analysis is based on daily midpoint closing CDS spread quotes at 5-year maturity

from Bloomberg on three indices: Markit iTraxx Europe, Markit iTraxx Europe Sub-

ordinated Financials (SubFin) and Markit iTraxx Europe Autos (Auto). As tradeable

systematic equity factors we employ, respectively, the Dow Jones Stoxx Europe 600

index, which comprises the 600 largest market capitalized companies in Europe, the

Stoxx Europe 600 Financials index and the Stoxx Europe 600 Automobiles & Parts

index. We focus on the cost of insuring against default on automotive companies'

debt as this sector has been severely hit by the recent �nancial crisis; see 2000s crisis

timeline in Appendix 3.F. Finally, we employ the option-implied Dow Jones Euro

VStoxx 50 index as proxy for the unobservable asset volatility. Implied volatility

is based on market prices of options on the Dow Jones Stoxx Europe 50 and is a

forward-looking volatility indicator as it re�ects traders' expectations about future

movements of the underlying equity index. The time period is September 9, 2005 to

15Since CML makes no a priori assumption on the parametric form of the margins, it provides
superior �t to IFM when the margins are mispeci�ed. Another estimation approach is Exact Maxi-

mum Likelihood (EML) which provides the parameters of the copula and the margins simultaneously
by maximizing the full likelihood. This is computationally rather burdensome. For a detailed com-
parison of EML, IFM and CML, see Cherubini et al. (2004).
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March 11, 2011 making a total of T = 1, 380 days.16

Figure 3.1 plots for each index the daily prices (Panel A) and daily logarithmic

returns (Panel B). CDS and VStoxx indices move in tandem while Stoxx indices move

in the opposite direction. September 2007 marks the start of a steady downward trend

in equity prices, attaining the lowest level in 2009, coupled with increased volatility

and a steady rise in default risk premiums. Table 3.1 provides summary statistics.

CDS SubFin has the highest mean return of 0.17%. Both Figure 1 and Table 1 reveal

that CDS indices are notably more volatile than equity indices, and CDS Auto is by

and large the most volatile. The Jarque-Bera test con�rms that daily returns are non-

Gaussian. The Ljung-Box Q test and Engle's ARCH LM test provide strong evidence,

respectively, of serial dependence and heteroskedasticity in daily returns. Both the

correlation parameter ρ and Kendall's rank correlation parameter τ suggest that

CDS returns are negatively (positively) associated with equity returns (volatility),

in line with Merton (1974)'s model predictions: i) growth in �rm value reduces the

probability of default, and ii) higher equity volatility implies a larger probability that

the value of assets drops below the level of liabilities, triggering default.

Table 3.2 reports parameter estimates and diagnostics of the (margins) ARMA-

GARCH-skT models. The dof parameter ν of the skT density �tted to the standard-

ized residuals reveals substantial leptokurtosis; CDS index returns show fatter tails

than the underlying Stoxx and VStoxx index returns. The asymmetry coe�cient ζ

of the skT residual distribution is signi�cant for VStoxx, Stoxx, Stoxx Fin and CDS

SubFin index returns. The Kolmogorov�Smirnov (KS) test, with p-values reported in

16Markit iTraxx Europe comprises the 125 equally-weighted most liquid names in the European
market. iTraxx SubFin is composed of the 25 most liquid CDS names on subordinated debt issued
by companies, e.g. ABN, Aegon, Allianz, AVIVA, AXA, Barclays, Deutsche Bank, Swiss Re, RBS,
Zurich, and iTraxx Auto comprises the 10 most liquid CDS names in the automotive industry, BMW,
Volvo, Michelin, Continental, DaimlerChrysler, GKN, Peugeot, Renault, Valeo, Volkswagen. Markit
iTraxx indices trade at 3, 5, 7 and 10-year maturities and are reviewed every 6 months in March and
September to form a new series (for each maturity) that re�ects changes in liquidity as determined
by polls of the leading CDS dealers while the old series continues trading; we use Markit Series
4 which was introduced in September 2005. Index trading for 5-year maturity is the most liquid.
Markit calculates the o�cial mid-day (11am GMT) and closing (4pm GMT) levels for iTraxx indices
on a daily basis. Stoxx Europe 600 Financials contains 23 out of the 25 entities that conform the
iTraxx SubFin, while Stoxx Europe 600 Automobiles & Parts includes 9 out of the 10 entities in
iTraxx Autos. Stoxx Europe 600 includes all of the 125 �rms in the iTraxx Europe index. Stoxx
and VStoxx closing prices are downloaded from www.stoxx.com.
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Figure 3.1: Daily Time Series Plots of CDS and Equity Indices
Panel A: Levels
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The top graphs plot the daily levels of European equity market indices (Stoxx, Stoxx Auto, Stoxx

Fin and Vstoxx) and CDS indices with all series normalized to start at 100. The bottom graphs plot

the daily logarithmic returns.
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Table 3.1: Descriptive Statistics of Daily Returns

Vstoxx Stoxx
Stoxx Stoxx CDS CDS CDS
Auto Fin Europe Auto SubFin

Mean 0.038 -0.005 0.024 -0.036 0.068 0.043 0.166
Median -0.577 0.067 0.057 0.019 -0.193 -0.021 -0.057

Maximum 32.767 9.410 40.817 14.666 41.745 199.212 47.500
Minimum -24.919 -7.930 -35.427 -10.179 -40.297 -177.407 -43.987
Std. Dev. 5.878 1.419 2.699 2.042 7.074 13.327 8.266
Skewness 0.899 -0.053 3.192 0.303 0.394 2.610 0.343
Kurtosis 6.432 9.741 97.591 10.081 11.520 106.320 10.418

Number of obs. 1381 1381 1381 1381 1381 1381 1381

Jarque-Bera test 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Ljung-Box(10) test 0.035 0.000 0.000 0.008 0.000 0.000 0.000

ARCH(10) test 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Pearson linear correlation ρ :
Vstoxx - - - - 0.362 0.148 0.302
Stoxx - - - - -0.366 -0.157 -0.345

Kendall's rank correlation τ
Vstoxx - - - - 0.304 0.214 0.226
Stoxx - - - - -0.352 -0.256 -0.274

Notes: The table presents summary statistics of the logarithmic daily returns expressed in percentage

for the volatility (VStoxx) index, equity (Stoxx) indices, and CDS (iTraxx) indices. p-values are

reported for the tests. The reported correlation between CDS and Stoxx are for matched Stoxx

Europe 600 marketwide, Auto or Financial Services indices.
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Panel B of Table 3.2, cannot refute the null hypothesis that the residuals conform to

a skT distribution. The standardized ARMA-GARCH-skT residuals, xt, t = 1, ..., T ,

are mapped into Uniform(0,1) observations, via the probability integral transform;

the resulting residual series ût = F̂ (xt), t = 1, ..., T , are then inputs for copula es-

timation. In order to establish further the goodness-of-�t of the margins, following

Diebold et al. (1998) and Patton (2006) we apply the Ljung-Box Q test to various

moments (ût − ū)m, m ∈ {1, 2, 3, 4}. The results reported in Panel B suggest that

there is no remaining serial dependence.

3.4 Empirical Results

3.4.1 In-sample �t of static, dynamic and regime-switching

copulas

We begin this section with a preliminary discussion of the ability of Student's t, Gum-

bel and SJC copulas to predict in-sample the dependence between CDS returns and

tradeable systematic risk factors. We employ the di�erent formulations discussed in

Section 3.2: static, dynamic (ARMA and DCC), conventional regime-switching (RS)

which nests a static copula in each regime, and �nally the RS-ARMA and RS-DCC

that we propose. Table 3.3 shows the AIC and log-likelihood (LL) values of the com-

peting models. Student's t copulas, which account for tail dependence in a symmetric

way, attain higher LL and lower AIC than the competing Gumbel and SJC copulas,

irrespective of the formulation employed (static, dynamic or regime-switching).17 Al-

beit in purely static formulations, Student's t copula models have been shown to

succeed in previous competitions such as that conducted by Breymann et al. (2003)

to characterize dependence among FX spot returns. This can be partially attributed

17Table 3.3 presents the AIC of the best-�tted Gumbel copula among the various Gumbel copulas
considered (0◦, 90◦, 180◦and 270◦ rotated). The CDS-Stoxx dependence is best captured by the
90◦ Gumbel copula which focuses on lower tail dependence. The CDS-Vstoxx dependence is best
described by the 0◦ Gumbel (non-rotated) copula which models upper tail dependence. These
results mirror the evidence of asymmetry reported in Longin and Solnik (2001) suggesting that tails
that describe adverse movements are strongly dependent whereas the opposite tails are essentially
independent.

77



Table 3.2: Estimation Results for Marginal Models

Vstoxx Stoxx
Stoxx Stoxx CDS CDS CDS
Auto Fin Europe Auto SubFin

Panel A: ARMA-GARCH-skT model estimates

Conditional mean

Intercept 0.015 0.062∗∗ 0.107∗∗ 0.052∗ −0.166∗∗ −0.143∗∗ −0.300∗∗

(0.135) (0.025) (0.040) (0.028) (0.049) (0.049) (0.054)
AR1 - - - - 0.079∗∗ - -

- - - - (0.032) - -
Conditional variance

Intercept 1.685∗∗ 0.017∗∗ 0.058∗∗ 0.019∗∗ 0.075∗∗ 0.080∗ 0.070∗∗

(0.430) (0.007) (0.022) (0.009) (0.029) (0.047) (0.034)
ARCH1 0.092∗∗ 0.112∗∗ 0.115∗∗ 0.113∗∗ 0.171∗∗ 0.216∗∗ 0.167∗∗

(0.017) (0.021) (0.021) (0.021) (0.023) (0.028) (0.021)
GARCH1 0.858∗∗ 0.881∗∗ 0.876∗∗ 0.887∗∗ 0.829∗∗ 0.784∗∗ 0.833∗∗

(0.023) (0.019) (0.018) (0.019) (0.026) (0.036) (0.023)
ν 6.885 8.959 8.024 7.685 5.005 3.524 4.806

(1.206) (2.090) (1.949) (1.528) (0.485) (0.213) (0.436)
ζ 0.291∗∗ −0.112∗∗ −0.005 −0.047∗ 0.030 −0.029 −0.051∗∗

(0.039) (0.034) (0.008) (0.028) (0.026) (0.020) (0.023)

Panel B: Goodness-of-�t tests

1st Moment 0.242 0.873 0.611 0.551 0.606 0.934 0.194
2nd Moment 0.948 0.859 0.175 0.147 0.941 1.000 0.738
3rd Moment 1.000 0.998 0.613 0.980 0.999 1.000 0.621
4th Moment 1.000 1.000 0.999 0.860 1.000 1.000 0.996

K-S test 0.950 0.071 0.306 0.137 0.275 0.109 0.101

Notes: Panel A reports the parameter estimates for the conditional mean Eq. (3.5) and conditional

variance Eq. 3.6; ν and ζ are the degrees-of-freedom and asymmetry parameter of the skewed

Student's t (skT ) distribution for the innovations. Standard errors are in parentheses. ** and *

denote statistical signi�cance at the 5% and 10% levels, respectively. Panel B reports the p-value

of the Ljung-Box Q-test on the �rst four moments of the probability integral transformed series,

(ut− ū)m, m = {1, 2, 3, 4}, obtained from the standardized �ltered returns xt to assess the null that

the the transformed uniform, ut = F (xt), has no autocorrelation up to 10 lags. The bottom row

reports the p-value of the Kolmogorov-Smirnov test to assess the null hypothesis that xt is skewed

Student's t distributed.
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to the ability of the Student's t copula to �t well the central part of the joint dis-

tribution which more heavily contributes to the log-likelihood. Hence, for simplicity

of exposition a large part of the subsequent discussion in this section focuses on in-

ferences from the Student's t copula function. The dynamic formulation (ARMA or

DCC) clearly provides better in-sample �t than the static formulation, irrespective of

the underlying copula function employed. The regime-switching formulation further

enhances the copula's ability to describe the dependence structure of CDS-equity mar-

kets. Moreover, allowing the dependence structure to display short-memory within

each regime (RS-ARMA or RS-DCC) leads to the lowest AIC and largest LL among

the competing formulations.

Table 3.4 reports parameter estimates of static, dynamic and regime-switching

Student's t copulas. The correlation parameter ρ of the static copula suggests signif-

icantly negative dependence for all CDS and Stoxx pairs, and signi�cantly positive

dependence for all CDS and VStoxx pairs in line with Merton (1974)'s theory; a

�rm's likelihood of default is a decreasing function of asset value proxied by the mar-

ket value of its equity, and an increasing function of asset volatility proxied by the

volatility of its equity returns.18 The correlation parameter ρ in the static copula for-

mulation and (ρU , ρL)′ in the conventional RS copula reveal that, generally, changes

in CDS spreads are more strongly associated with changes in equity returns than with

changes in volatility. Furthermore, the CDS and equity return association is more

prominent in the SubFin sector than the Auto sector, in line with extant evidence

that structural credit risk models are more successful in explaining non-investment

grade spreads; see Eom et al. (2004) and Zhang et al. (2009).

The signi�cance of parameters ϕ and ψ in the dynamic ARMA and DCC formu-

lations bears out that rank correlations are time-varying. The persistence measure

ϕ + ψ inferred from the DCC copula suggests that the rank correlation of CDS and

equity markets is more persistent at sector level than marketwide; the largest persis-

18We tested the hypothesis of zero tail dependence by means of a likelihood ratio (LR) test for
H0 : 1/ν = 0 which is essentially a test for the restriction that the dof parameter ν is large enough
so that the Student's t copula e�ectively becomes the Gaussian. The hypothesis is rejected for all
pairs except CDS Auto and VStoxx. The AIC and LL criteria also favor the Student's t copula over
the Gaussian copula. Details are available from the authors upon request.
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Table 3.3: Goodness-of-Fit Measures for Competing Copula Models
Stoxx Vstoxx Stoxx Auto Vstoxx Stoxx Fin Vstoxx

CDS Europe CDS Europe CDS Auto CDS Auto CDS SubFin CDS SubFin
Static copulas

Student's t
(Static)

AIC −379.413 −255.125 −167.542 −121.169 −214.191 −140.361
LL 191.707 129.563 85.771 62.584 109.095 72.180

Gumbel
(Static)

AIC −362.281 −252.012 −166.509 −122.508 −218.837 −142.973
LL 182.140 127.006 84.255 62.254 110.418 72.487

SJC
(Static)

AIC −360.039 −244.581 −159.234 −120.913 −216.928 −141.240
LL 182.020 124.291 81.617 62.456 110.464 72.620

Regime-switching Static Copulas

Student's t
(RS)

AIC −404.514 −280.493 −193.126 −140.579 −223.487 −146.328
LL 207.257 145.247 101.563 75.289 116.744 78.164

Gumbel
(RS)

AIC −384.918 −268.826 −187.505 −131.069 −223.458 −143.875
LL 196.459 138.413 97.752 69.534 115.729 75.937

SJC
(RS)

AIC −381.162 −272.480 −184.326 −124.190 −222.882 −144.416
LL 196.581 142.240 98.163 68.095 117.441 78.208

Dynamic Copulas

Student's t
(DCC)

AIC −408.035 −287.043 −188.93 −145.561 −228.643 −149.081
LL 207.018 146.521 97.467 75.780 117.321 77.540

Student's t
(ARMA)

AIC −405.568 −287.440 −185.540 −141.770 −228.668 −147.691
LL 206.784 147.720 96.770 74.885 118.334 77.845

Gumbel
(ARMA)

AIC −382.284 −274.081 −180.170 −128.327 −223.250 −140.876
LL 194.142 140.040 93.083 67.163 114.625 73.438

SJC
(ARMA)

AIC −379.754 −276.367 −179.85 −121.389 −223.074 −145.683
LL 195.877 144.183 95.925 66.695 117.537 78.842

Regime-switching Dynamic Copulas

Student's t
(RS-DCC)

AIC −408.117 −287.094 −191.648 −141.984 −229.332 −148.110
LL 211.058 150.547 102.824 77.992 121.656 81.055

Student's t
(RS-ARMA)

AIC −414.242 −289.265 −192.315 −142.914 −230.319 −149.380
LL 214.121 151.623 103.158 78.457 122.160 81.690

Gumbel
(RS-ARMA)

AIC −392.916 −278.836 −188.819 −135.819 −226.447 −148.821
LL 202.458 145.418 100.410 73.909 119.224 80.411

SJC
(RS-ARMA)

AIC −385.553 −281.532 −176.162 −124.429 −226.349 −146.612
LL 202.776 150.766 98.081 72.214 123.175 83.306

Notes: This table reports the goodness-of-�t measures of Student's t , Gumbel and SJC copulas in a

static, regime-switching, dynamic and regime-switching dynamic formulation. AIC denotes Akaike

information criterion and LL denotes the optimized log-likelihood. The bold font is used to signify

the best case (largest LL or lowest AIC) within each panel.
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Table 3.4: Estimation Results for Static, Dynamic and RS Student's t Copula

Stoxx Vstoxx Stoxx Auto Vstoxx Stoxx Fin Vstoxx
CDS Europe CDS Europe CDS Auto CDS Auto CDS SubFin CDS SubFin

S
ta
ti
c ρ −0.495∗∗ 0.419∗∗ −0.347∗∗ 0.296∗∗ −0.381∗∗ 0.316∗∗

(0.021) (0.022) (0.024) (0.025) (0.023) (0.025)
ν 8.943 20.443 22.025 25.052 11.513 15.921

(1.953) (8.970) (10.737) (17.066) (3.747) (6.430)

R
S

ρH −0.679∗∗ 0.642∗∗ −0.610∗∗ 0.383∗∗ −0.551∗∗ 0.475∗∗

(0.033) (0.040) (0.050) (0.031) (0.048) (0.041)
ρL −0.273∗∗ 0.194∗∗ −0.214∗∗ 0.173∗∗ −0.267∗∗ 0.196∗∗

(0.098) (0.057) (0.045) (0.141) (0.054) (0.043)
ν 27.804 32.015 29.246 36.517 18.553 25.758

(26.691) (18.568) (16.734) (10.658) (9.558) (32.067)
πHH 0.969∗∗ 0.947∗∗ 0.981∗∗ 0.995∗∗ 0.991∗∗ 0.993∗∗

(0.020) (0.024) (0.096) (0.034) (0.065) (0.042)
πLL 0.966∗∗ 0.949∗∗ 0.992∗∗ 0.980∗∗ 0.995∗∗ 0.995∗∗

(0.032) (0.020) (0.045) (0.018) (0.031) (0.026)

D
C
C

ϕ 0.880∗∗ 0.829∗∗ 0.936∗∗ 0.940∗∗ 0.960∗∗ 0.972∗∗

(0.038) (0.030) (0.027) (0.026) (0.012) (0.011)
ψ 0.057∗∗ 0.078∗∗ 0.039∗∗ 0.034∗∗ 0.022∗∗ 0.015∗∗

(0.016) (0.015) (0.015) (0.013) (0.008) (0.006)
ν 10.299 29.609 22.854 39.324 13.465 18.122

(2.535) (23.391) (11.297) (21.525) (5.067) (8.562)

A
R
M
A

ω −0.087 0.297∗∗ −0.017 0.014 −0.002 0.010
(0.063) (0.141) (0.015) (0.010) (0.022) (0.011)

ϕ 1.809∗∗ 0.956∗ 1.941∗∗ 1.941∗∗ 2.030∗∗ 2.609∗∗

(0.192) (0.529) (0.073) (0.059) (0.090) (0.056)
ψ 0.211∗∗ 0.491∗∗ 0.105∗∗ 0.105∗∗ 0.082∗∗ 0.045∗∗

(0.067) (0.189) (0.043) (0.034) (0.033) (0.021)
ν 10.550 31.157 22.010 41.749 14.316 18.221

(2.680) (27.071) (10.203) (72.621) (5.600) (8.520)

R
S
-D
C
C

ϕH 0.346 0.646∗∗ 0.371 0.422 0.383 0.520
(0.245) (0.204) (0.301) (1.804) (2.164) (0.527)

ψH 0.011 0.350∗∗ 0.015 0.019 0.011 0.109
(0.031) (0.151) (0.096) (0.045) (0.014) (0.223)

ϕL 0.872∗∗ 0.841∗∗ 0.933∗∗ 0.950∗∗ 0.958∗∗ 0.971∗∗

(0.038) (0.040) (0.039) (0.022) (0.013) (0.013)
ψL 0.065∗∗ 0.069∗∗ 0.054∗ 0.040∗∗ 0.027∗∗ 0.017∗∗

(0.017) (0.022) (0.030) (0.013) (0.009) (0.007)
ν 10.682 35.068 32.453 46.957 14.115 19.162

(2.831) (17.996) (16.179) (7.457) (5.911) (9.233)
πHH 0.927∗∗ 0.933∗∗ 0.958∗∗ 0.978∗∗ 0.926∗∗ 0.941∗∗

(0.107) (0.066) (0.050) (0.014) (0.060) (0.065)
πLL 0.990∗∗ 0.997∗∗ 0.978∗∗ 0.956∗∗ 0.983∗∗ 0.994∗∗

(0.018) (0.006) (0.019) (0.034) (0.027) (0.007)

R
S
-A
R
M
A

ωH −1.839∗∗ 1.471∗∗ −0.194∗∗ 0.192∗ −1.548∗∗ 0.470
(0.616) (0.563) (0.055) (0.106) (0.361) (0.408)

ωL −0.076∗ 0.199∗ −0.002 0.050∗∗ −0.004 0.185
(0.043) (0.110) (0.008) (0.021) (0.026) (0.165)

ϕ 1.831∗∗ 1.224∗∗ 2.026∗∗ 1.488∗∗ 2.021∗∗ 1.056∗

(0.194) (0.579) (0.053) (0.585) (0.103) (0.605)
ψ 0.190∗∗ 0.399∗∗ 0.021 0.118∗ 0.078∗∗ 0.098

(0.066) (0.198) (0.017) (0.068) (0.035) (0.136)
ν 12.858 33.443 31.794 47.260 14.695 18.590

(3.958) (19.219) (16.295) (18.302) (7.019) (10.030)
πHH 0.900∗∗ 0.900∗∗ 0.979∗∗ 0.996∗∗ 0.901∗∗ 0.993∗∗

(0.064) (0.076) (0.014) (0.004) (0.088) (0.004)
πLL 0.996∗∗ 0.994∗∗ 0.993∗∗ 0.984∗∗ 0.998∗∗ 0.996∗∗

(0.004) (0.009) (0.004) (0.017) (0.003) (0.002)

Notes: This table gives the estimates of Student's t copula models in various formulations: static,
regime-switching static, two dynamic copulas (DCC and ARMA) and two regime-switching exten-
sions (RS-DCC and RS-ARMA). Superscript H (L) indicates the high (low) dependence regime. πHH
(πLL) is the probability of staying in the high (low) dependence regime. Numbers in parentheses
are standard errors. ** and * denote signi�cance at the 5% and 10% levels, respectively.
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tence at 0.982 (Stoxx) and 0.987 (VStoxx) corresponds to the subordinated �nancial

sector.

Turning attention to the regime-switching models, the probabilities πHH and πLL

consistently suggest slightly longer duration of the low dependence regime during

our sample period. The statistical signi�cance of two dependence regimes can be

tested by means of a LR test for the null hypothesis H0 :ωH = ωL which states

that the RS-ARMA copula has one regime, then becoming the ARMA copula. An

analogous LR test is formulated as H0 :ρH = ρL with the conventional RS copula,

then becoming the static copula. The traditional asymptotic theory for these LR test

statistics does not apply because of the nuisance parameter problem (i.e., unidenti�ed

parameters under the null such as the residual variance in each regime). However, the

conventional p-values are very small, all below 0.008, providing prima facie evidence

of regime-switching e�ects. Parameters ρH and ρL of the RS copula con�rm that both

in �crisis� and �normal� regimes the level of dependence is stronger for CDS returns

with equity returns than for CDS returns with equity volatility. Regarding the degree

of dependence persistence, we learn from the RS-DCC copula (parameters ϕ+ψ) that

in �crisis� regimes shocks to dependence between CDS returns and equity volatility

die more slowly than shocks to dependence between CDS returns and equity returns.

Figure 3.2 plots the smoothed probabilities of the high dependence regime in the

RS-ARMA copula.19 In both sectors, Auto and SubFin, the dependence between CDS

and equity markets enters a high or �crash� regime by late 2007 re�ecting the onset of

the credit crunch, and lingers on for about a year.20 Although the global credit crisis

originated from the huge losses of subprime CDS investment in the �nancial sector,

the automotive industry was badly by hit various illiquidity shocks, a sharp fall in

consumer con�dence and soaring oil prices; Appendix 3.F provides a snapshot of the

2000s crisis timeline. After a short pause, both sectors enter again the high depen-

dence regime by late 2009 possibly re�ecting the breakout of the European sovereign

19Inferences from the RS-DCC Student's t copula are qualitatively similar and therefore not
reported to save space.

20According to the Eurocoin indicator, the eurozone was in recession from March 2007 to February
2009. According to the NBER business cycle indicator, the US was in recession from December 2007
to June 2009.
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debt crisis. Fung et al. (2008) also document a signi�cant increase in dependence

between the US equity and CDS markets during the 2007 credit crunch on the basis

of linear vector autoregressions and common Pearson correlation coe�cients. Our

�ndings from �exible copula models extend their evidence to the European context.21

Altogether for the Auto and SubFin sectors, four transitions into the high depen-

dence regime are identi�ed in Figure 3.2. One in 2005 roughly coinciding with the

downgrade of two big players in the auto industry (Ford and GM), another in 2006

re�ecting the deterioration of the US housing market, a third entry in 2007 re�ecting

the credit crunch, and a fourth entry in 2009 concurrent with the European debt

crisis. The unsuccessful regime identi�cation in the marketwide CDS-equity copu-

las possibly re�ects the fact that diversi�cation, i.e. pooling of entities from diverse

sectors with di�erent timings of transition between high and low dependence states,

reduces the overall signal-to-noise ratio.

The Kendall's rank correlation τ inferred from various copula formulations is plot-

ted in Figure 3.3. Several observations can be made. First, the degree of dependence

clearly varies over time. Second, the RS and RS-ARMA copula suggest upward shifts

in dependence between CDS and equity markets at economically plausible time points.

For instance, the sudden downgrade by S&P's of two important car manufacturers,

GM and Ford, from BBB to BB in May 2005 and to B in December 2005 led to a

dramatic increase in CDS and equity dependence for the Auto and marketwide indices

which the ARMA copulas tend to smooth out. Crude oil prices reached historically

high levels of over $77 per barrel in July 2006 which pushed the CDS-Stoxx (Auto)

dependence to a high regime; again this pattern is better captured by the RS and

RS-ARMA copulas. For the SubFin CDS-equity pairs, the most dramatic increase in

dependence roughly occurs in late 2009 when a credit rating downgrade from A- to

BBB+ is announced by S&P's for Greece.

The tail dependence parameter λ inferred from the di�erent copula formulations

is plotted in Figure 3.4. We can see evidence of high and low tail-dependence regimes

21The relatively long high dependence regime identi�ed for CDS Auto and VStoxx is not surprising
given that the European auto sector has su�ered various setbacks in recent years, e.g. energy crisis
and sharp fall in consumer demand.
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which re�ect the presence of two di�erent CDS-equity bivariate distributions corre-

sponding, respectively, to crisis and normal episodes. The intuition behind this �nding

is that CDS spreads react more vigorously to `extreme' bad news in crises than in

normal periods, namely, the degree of tail dependence exacerbates during periods of

market stress. While the tail dependence estimates may seem small, they are broadly

aligned with those in Garcia and Tsafack (2011) for European equity-bond pairs and

with those in Jondeau and Rockinger (2006) for cross-country equity market pairs.

The high tail dependence regime is most apparent for CDS SubFin and Stoxx Fin re-

turns which may indicate that �nancials are particularly sensitive to extreme market

events. Regardless of the level of tail dependence, the graphs endorse the RS-ARMA

copula as more adequate for capturing sudden shifts in tail dependence and con�rm

the biases arising from the use of non-regime-switching copula, which tend to smooth

out the degree of dependence over time. The latter e�ectively implies overestimation

of the extent of dependence in normal periods and underestimation during crisis pe-

riods. The upshot is that using an implausible model of asset dependence that does

not permit sudden changes of regime or that constrains the within-regime dependence

to be constant could be costly from a risk management perspective. This question is

addressed in the next section.

3.4.2 Out-of-sample copula forecasts for risk management

The economic value of the proposed regime-switching dynamic copulas is demon-

strated via a Monte Carlo simulation to set 1-day-ahead Value at Risk (VaR) trading

limits for portfolios of equity and CDS instruments.22 Since the 1996 Market Risk

Amendment (MRA) to the Basel Accord, the VaR measure has played a central role

in regulatory capital assessments and remains one of the most common portfolio risk

control tools in banks and insurance �rms. The MRA stipulates that banks should

internally compute VaR on a daily basis for backtesting purposes although regulators

22In this chapter, we chose as evaluation method for the out-of-sample copula forecasts the eco-
nomic loss function implicit in VaR backtesting together with explicit regulatory-driven loss func-
tions. However, other purely statistical methods are feasible to compare the accuracy of out-of-
sample copula density forecasts; e.g., see Diks and van Dijk (2010).
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(usually, the central bank) requires 10-day-ahead VaR to be reported for establishing

the minimum capital requirement, possibly to mitigate the costs of too frequent mon-

itoring. The reason why the prescribed horizon for backtesting purposes is 1 day is

that it increases the number of observations; in 1-day VaR the number of observations

is 252 per year whereas with 2-week VaR it reduces to 26. By now the commercial

banking industry has settled on the 1-day horizon.

The 1-day-ahead VaR is an α-quantile prediction of the future portfolio pro�t and

loss (P/L) distribution. It provides a measure of the maximum future losses over a

time span [t, t+1], which can be formalized as

P
[
Rt+1 6 V aRα

t+1|It
]

= α (3.13)

where Rt+1 denotes the portfolio return on day t + 1, and It is the information set

available on day t. The nominal coverage 0 < α < 1 is typically set at 0.01 or 0.05

for long trading positions (i.e., left tail) meaning that the risk manager seeks a high

degree of statistical con�dence, 99% and 95%, respectively, that the portfolio loss on

trading day t+1 will not exceed the VaR extracted from information up to day t.

VaR can be estimated using various methods, ranging from non-parametric (sim-

ulation), semi-parametric (CAViaR) to fully parametric (location-scale) and optimal

combinations thereof; e.g., Kuester et al. (2006) and Fuertes and Olmo (2012). Large

banks and �nancial institutions require multivariate VaR models for capturing appro-

priately the asset dependence structure in their trading portfolios. We adopt a Monte

Carlo copula-based approach via the Cholesky decomposition of the correlation ma-

trix for simulating the portfolio value changes, or P/L distribution, and estimating

the VaR at any con�dence level; see Appendix 3.G.

Various backtesting methods can be used for assessing the accuracy of VaR fore-

casts. Let Ht+1 denote a hit or exception, namely, a day when the ex post portfolio

return falls below the out-of-sample VaR forecast (i.e., larger loss than the maximum
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loss anticipated). Formally, the hit sequence (0s or 1s) is given by

Ht+1 =

 1 if Rt+1 < V aRα
t+1

0 otherwise
,

Kupiec (1995)'s unconditional coverage (UC) test is designed to assess whether the

expected hit rate is equal to the nominal coverage rate, namely, the hypotheses are

H0 : E(Ht+1) = α versus HA : E(Ht+1) 6= α. Since the random variable Ht+1

is binomial, the expected probability of observing N exceptions over an evaluation

period of T1 trading days is (1− α)T1−N αN under H0. The corresponding likelihood

ratio statistic is

LRUC = −2 ln

(
(1− α)T1−N αN

(1− α̂)T1−N α̂N

)
asy∼ χ2

1 (3.14)

where α̂ = N
T1

is the observed hit rate. A weakness of this test is its unconditional na-

ture, i.e. it only �counts� hits but disregards how clustered they are. A well-speci�ed

risk management model should e�ciently exploit all the available information It so

that VaR exceptions are unpredictable, i.e.E(Ht+1|It) = E(Ht+1) = α.

Christo�ersen (1998)'s conditional coverage (CC) test overcomes this drawback.

Its aim is to assess whether the correct out-of-sample VaR speci�cation property,

E(Ht+1|It) = α is met. An implication of this property is that Ht+1 should be iid

binomial with mean α. Hence, this is essentially a test of the joint hypothesis of

correct unconditional coverage and independence of the hits via the LR statistic

LRCC = LRUC + LRInd = −2 ln

(
(1− α)T1−N αN

(1− π̂01)n00 π̂n01
01 (1− π̂11)n10 π̂n11

11

)
asy∼ χ2

2 (3.15)

where n10 denotes the number of transitions or instances when an exception occurred

on day t and not on day t−1 and π̂10 = n10

n10+n11
is the estimated probability of having

an exception on day t conditional on not having an exception on day t− 1. Thus the

test can detect if the probability of observing an exception, under the assumption of

independence, is equal to α which amounts to testing that π01 = π11 = α.

However, the condition of correct VaR speci�cation E(Ht+1|It) = α is stronger
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than what Christo�ersen (1998)'s CC test can detect. The out-of-sample hits Ht+1

should be uncorrelated with any variable in It, meaning that Ht+1 should be a com-

pletely unpredictable process. Christo�ersen (1998)'s test can only detect autocorre-

lation of order one because it is built upon a �rst-order Markov chain assumption for

the hits.

Engle and Manganelli (2004)'s dynamic quantile (DQ) test for conditional cov-

erage was developed to address this shortcoming. This is essentially a Wald test

for the overall signi�cance of a linear probability model H − α1 = Xβ + ε where

H − α1 with H = (Ht+1) the demeaned hit variable, 1 a vector of ones, X =(
Ht, ..., Ht−k, V aR

α
t+1

)′
the regressor vector, and β = (β1, ..., βk+2)′ the correspond-

ing slope coe�cients. . The null hypothesis is H0 : β = 0 and it can be tested using

the Wald type test statistic

DQ =
β̂
′
X ′Xβ̂

α(1− α)

asy∼ χ2
k+2. (3.16)

Below we employ k = 4 as in Kuester et al. (2006).

One drawback of these common backtesting approaches is that they cannot provide

a ranking of VaR models. According to the requirements of the Basel Committee on

Banking Supervision, the magnitude as well as the number of exceptions are a matter

of regulatory concern. The quadratic loss function suggested by Lopez (1998) takes

into account both aspects by adding a penalty based on the size of the exceptions

LQt+1 =

 1 +
(
Rt+1 − V aRα

t+1

)2
if Rt+1 < V aRα

t+1

0 otherwise
, (3.17)

and thus, larger tail losses get a disproportionately heavier penalty. However, the

above loss function can be subject to the criticism that squared monetary returns

lack �nancial intuition. Blanco and Ihle (1999) suggest focusing on the relative size
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of exceptions (percentage) via the loss function

L%
t+1 =


Rt+1−V aRαt+1

V aRαt+1
× 100 if Rt+1 < V aRα

t+1

0 otherwise
. (3.18)

The average losses L
Q

= 1
T1

∑T1
t=1 L

Q
t+1 and L

%
= 1

T1

∑T1
t=1 L

%
t+1 contain additional

information on how good the VaR model is for predicting tail behavior of the portfolio

P/L distribution. Therefore, they can rank those VaR models that pass the initial

backtesting stage according to their potential cost to the risk manager.

The out-of-sample or holdout period for the VaR forecast evaluation is March

11, 2010 to March 11, 2011 (last sample year, T1 = 256 days) which conforms with

the Basel committee recommendation of using an evaluation period of at least 250

business days. The exercise is conducted for the six (CDS-equity) portfolios studied in

the chapter at two nominal coverage levels α = {0.05, 0.01}. The simulation copula-

based VaR approach outlined in Appendix 3.G is deployed sequentially over a rolling

window of �xed-length (T0 = 1,124 days). Thus, the �rst estimation window runs

from September 10, 2005 to March 10, 2010 and the corresponding one-step-ahead

downside risk forecast V aRα
t+1 is for March 11, 2010. This rolling window approach to

generate VaR forecasts o�ers some "shield" for the simple static copula model against

changing market conditions. However, as the results below suggest, the dependence

forecasts obtained from models that explicitly capture regime-switching behavior are

able to adapt faster and more e�ectively to changing market conditions. Table 3.5

summarizes the performance of VaR forecasts stemming from various formulations

of the Student's t copula function. Since the two dynamic formulations, ARMA and

DCC, did not produce markedly di�erent results to save space we only report the

results for the former. The hit rate is above the desired nominal coverage α in all

four copula formulations but less so with RS-ARMA. For all portfolios, Kupiec's UC

test and Chisto�ersen's CC test are comfortably passed by the four copula-based

VaR models considered. In contrast, we observe various rejections of the relatively

tough Engle and Manganelli's DQ test, however, none of them is associated with the

91



RS-ARMA copula formulation. For the Stoxx-CDS portfolio, the null hypothesis of

correct VaR model speci�cation is rejected by the DQ test in the static, conventional

RS and dynamic ARMA copula formulations.

Taking into account now both the frequency and magnitude of exceptions, both

the quadratic loss function (3.17) and, more clearly, the percentage loss function

(3.18) con�rm that there is economic value in modeling CDS-equity portfolio risk

with regime-switching dynamic copula. For all portfolios, the largest reduction in

average out-of-sample losses relative to the static copula is attained by the RS-ARMA

copula which also improves upon the conventional RS copula. The economic bene�t of

�exibly modeling portfolio risk using regime-switching dynamic copula is most clearly

seen for the �nancial CDS-equity portfolios with a percentage loss reduction of over

40% and 70% for VaRs at the 0.05 and 0.01 nominal coverages, respectively.

The risk management exercise has thus far relied on the Student's t copula. We

now consider the Gumbel copula which also captures tail dependence but in an asym-

metric manner. Our subsequent VaR analysis is based on the Gumbel copula that

describes dependence on the �adverse� tail; i.e., large CDS returns together with low

equity returns or with high equity volatility. In the dynamic ARMA formulation,

the average level of tail dependence λt inferred from Gumbel copula is about 0.25

for the six CDS-equity pairs and is strongly signi�cant in each case whereas the tail

dependence inferred from Student's t copula is very low (order of magnitude 10−3).

This notable contrast is likely to have an impact on the VaR forecasts, that is, Gum-

bel copula forecasts can be expected to yield more conservative VaRs than Student's

t copula forecasts. Table 3.6 summarizes the VaR forecasting performance for the

Gumbel copula.

Like-for-like comparisons reveal that the Gumbel copula leads to a more reliable

risk management model than the Student's t copula. For all portfolios, the DQ

test is unable to reject the null hypothesis of correct VaR model speci�cation us-

ing the Gumbel copula, irrespective of whether it is formulated in a purely static,

dynamic or regime-switching framework. In line with our expectations based on the

tail dependence estimates, out-of-sample VaR forecasts from Gumbel copula are more
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Table 3.5: Value-at-Risk Portfolios of Stoxx and CDS Indices (Student's t copula)

Static t copula RS t copula ARMA t copula RS-ARMA t copula

5% VaR 1% VaR 5% VaR 1% VaR 5% VaR 1% VaR 5% VaR 1% VaR

Stoxx - CDS Europe
Total exceptions 6.61% 2.33% 6.61% 2.33% 6.61% 2.33% 6.23% 2.33%
LRUC test 0.257 0.067 0.257 0.067 0.257 0.067 0.384 0.067
LRCC test 0.486 0.158 0.486 0.158 0.146 0.158 0.642 0.158
DQ test 0.000 0.000 0.029 0.021 0.046 0.000 0.556 0.213
Quadratic loss 2.011 0.985 1.942 0.878 1.542 0.356 1.412 0.480
Percentage loss 6.493% 2.527% 5.76% 1.68% 4.531% 1.038% 4.469% 1.038%

Stoxx Auto - CDS Auto
Total exceptions 7.00% 1.95% 6.61% 1.56% 6.61% 1.95% 6.23% 1.56%
LRUC test 0.163 0.177 0.257 0.407 0.257 0.177 0.384 0.407
LRCC test 0.090 0.358 0.486 0.655 0.355 0.358 0.642 0.655
DQ test 0.090 0.145 0.267 0.892 0.149 0.323 0.836 0.558
Quadratic loss 1.789 0.539 1.860 0.548 1.963 0.576 1.743 0.448
Percentage loss 5.95% 1.68% 4.82% 1.44% 5.94% 1.52% 4.78% 1.40%

Stoxx Fin - CDS SubFin
Total exceptions 6.23% 1.56% 5.84% 1.95% 5.45% 1.56% 5.06% 1.56%
LRUC test 0.384 0.407 0.548 0.177 0.745 0.407 0.966 0.407
LRCC test 0.407 0.655 0.424 0.358 0.864 0.655 0.473 0.655
DQ test 0.246 0.833 0.248 0.646 0.883 0.800 0.868 0.439
Quadratic loss 1.305 0.386 1.233 0.368 1.204 0.215 1.129 0.126
Percentage loss 4.01% 1.00% 3.68% 0.78% 2.44% 0.38% 2.40% 0.28%

Vstoxx - CDS Europe
Total exceptions 5.45% 1.95% 5.06% 1.95% 5.06% 1.56% 5.06% 1.17%
LRUC test 0.745 0.177 0.966 0.177 0.966 0.407 0.966 0.793
LRCC test 0.399 0.358 0.473 0.358 0.871 0.655 0.473 0.921
DQ test 0.378 0.282 0.341 0.074 0.832 0.415 0.457 0.721
Quadratic loss 2.376 0.441 2.074 0.462 2.097 0.429 2.137 0.361
Percentage loss 3.53% 0.73% 3.04% 0.73% 3.17% 0.75% 3.03% 0.61%

Vstoxx - CDS Auto
Total exceptions 5.45% 1.95% 5.06% 1.17% 5.06% 1.17% 5.06% 1.17%
LRUC test 0.745 0.177 0.966 0.793 0.966 0.793 0.966 0.793
LRCC test 0.399 0.358 0.473 0.921 0.473 0.921 0.473 0.921
DQ test 0.783 0.001 0.358 0.934 0.319 0.996 0.779 0.979
Quadratic loss 2.578 0.355 2.544 0.459 3.761 1.352 3.246 0.981
Percentage loss 2.77% 0.70% 2.78% 0.62% 2.64% 0.68% 2.55% 0.60%

Vstoxx - CDS SubFin
Total exceptions 5.45% 1.17% 5.45% 1.17% 5.45% 1.17% 5.06% 1.17%
LRUC test 0.745 0.793 0.745 0.793 0.745 0.793 0.966 0.793
LRCC test 0.399 0.921 0.864 0.921 0.399 0.921 0.338 0.921
DQ test 0.468 0.997 0.769 0.990 0.417 0.992 0.399 0.977
Quadratic loss 1.822 0.559 1.259 0.237 1.689 0.422 0.823 0.252
Percentage loss 1.77% 0.42% 1.72% 0.36% 1.89% 0.39% 1.55% 0.30%

Notes: This table reports the results of the comparison of out-of-sample VaR forecasts based

on three Student's t copula formulations (static, dynamic and regime-switching) for portfolios of

Stoxx/Vstoxx and CDS indices. Total exceptions are percentage of days in out-of-sample period

when the actual portfolio loss exceeds the VaR forecast. p-values are reported for Kupiec's uncondi-

tional coverage (UC), Christo�ersen's conditional coverage (CC) and Engle & Manganelli's dynamic

quantile (DQ) tests. The quadratic and percentage losses reported are the out-of-sample averages

of Eq. (3.17) and Eq. (3.18), respectively.

93



Table 3.6: Value-at-Risk Portfolios of Stoxx and CDS Indices (Gumbel Copula)

Static Gumbel RS Gumbel ARMA Gumbel RS-ARMA Gumbel

5% VaR 1% VaR 5% VaR 1% VaR 5% VaR 1% VaR 5% VaR 1% VaR

Stoxx - CDS Europe
Total exceptions 4.28% 1.56% 4.28% 1.56% 4.28% 1.56% 4.28% 1.56%
LRUC test 0.588 0.407 0.588 0.407 0.588 0.407 0.588 0.407
LRCC test 0.504 0.655 0.504 0.655 0.504 0.655 0.504 0.655
DQ test 0.600 0.595 0.608 0.609 0.621 0.620 0.667 0.648
Quadratic loss 1.254 0.452 1.250 0.447 1.245 0.436 1.227 0.432
Percentage loss 3.06% 0.94% 3.05% 0.92% 3.01% 0.90% 2.93% 0.88%

Stoxx Auto - CDS Auto
Total exceptions 4.67% 1.56% 4.67% 1.56% 4.28% 1.56% 3.89% 1.17%
LRUC test 0.806 0.407 0.806 0.407 0.588 0.407 0.397 0.793
LRCC test 0.512 0.655 0.512 0.655 0.504 0.655 0.447 0.921
DQ test 0.767 0.455 0.770 0.491 0.808 0.479 0.825 0.879
Quadratic loss 1.557 0.538 1.555 0.550 1.564 0.543 1.443 0.540
Percentage loss 3.54% 0.95% 3.49% 0.91% 3.53% 0.90% 3.35% 0.92%

Stoxx Fin - CDS SubFin
Total exceptions 5.06% 1.17% 4.28% 1.17% 4.67% 1.17% 4.28% 1.17%
LRUC test 0.966 0.793 0.588 0.407 0.806 0.793 0.588 0.793
LRCC test 0.871 0.921 0.644 0.921 0.792 0.921 0.644 0.921
DQ test 0.920 0.995 0.901 0.987 0.861 0.996 0.790 0.997
Quadratic loss 0.789 0.110 0.774 0.109 0.776 0.105 0.803 0.103
Percentage loss 1.95% 0.27% 1.91% 0.27% 1.94% 0.27% 1.89% 0.26%

Vstoxx - CDS Europe
Total exceptions 5.45% 1.95% 5.45% 1.95% 5.45% 1.95% 5.06% 1.56%
LRUC test 0.745 0.177 0.745 0.177 0.745 0.177 0.966 0.407
LRCC test 0.399 0.358 0.399 0.358 0.399 0.358 0.473 0.655
DQ test 0.414 0.123 0.422 0.130 0.422 0.128 0.821 0.260
Quadratic loss 1.681 0.316 1.609 0.299 1.638 0.300 1.641 0.301
Percentage loss 7.88% 2.94% 7.46% 2.53% 7.84% 2.92% 7.30% 2.38%

Vstoxx - CDS Auto
Total exceptions 5.45% 1.17% 5.45% 1.17% 4.28% 1.17% 4.28% 0.78%
LRUC test 0.745 0.793 0.745 0.793 0.588 0.793 0.588 0.710
LRCC test 0.399 0.921 0.399 0.921 0.504 0.921 0.504 0.911
DQ test 0.441 0.996 0.445 0.995 0.777 0.994 0.778 0.980
Quadratic loss 2.766 0.360 2.639 0.331 2.661 0.272 2.217 0.211
Percentage loss 2.44% 0.49% 2.39% 0.45% 2.18% 0.33% 1.80% 0.28%

Vstoxx - CDS SubFin
Total exceptions 5.45% 0.78% 5.06% 0.78% 5.06% 0.78% 5.06% 0.78%
LRUC test 0.745 0.710 0.966 0.710 0.966 0.710 0.966 0.710
LRCC test 0.864 0.911 0.871 0.911 0.871 0.911 0.871 0.911
DQ test 0.660 0.999 0.735 0.998 0.784 0.999 0.779 0.999
Quadratic loss 1.491 0.266 1.476 0.257 1.466 0.263 1.529 0.220
Percentage loss 1.56% 0.21% 1.54% 0.19% 1.51% 0.21% 1.46% 0.18%

Notes: See note to Table 3.5.
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conservative (higher) than those from Student's t copula. In fact, while the actual

coverage levels of the Student's t VaRs always exceeded the nominal levels (Table

3.5) those for Gumbel-based VaRs tend to be slightly below. Relatively, the average

out-of-sample losses in excess of VaR lessen in the Gumbel-based framework. Hence,

relaxing the assumption of symmetric tail dependence can improve risk management

practice. In this sense, our analysis is consistent with Okimoto (2008) who documents

for international (U.S. and U.K.) equity index portfolios that ignoring asymmetric

tail-dependence e�ects during bear market conditions tends to underestimate VaR.

Finally, we can see that when the underlying copula function of choice is Gumbel

the RS-ARMA formulation still remains superior to the static, dynamic and conven-

tional RS models, according to the average portfolio losses. Overall, it seems fair to

conclude that �exibly modeling the CDS-equity portfolio risk by allowing not only

for sudden regime-changes but also mean-reversion in dependence within each regime

can entail economic bene�ts from a risk management perspective.

3.5 Conclusion

Accurately describing the bivariate distribution of CDS and equity instruments is

of relevance to risk managers for setting VaR trading limits, to traders for hedging

the market risk of their CDS positions, and to regulators and economic policymakers

in order to set minimum capital levels. Sudden changes from a low or �normal�

dependence regime to a high or �crash� dependence regime can occur as a re�ection of

important systemic shocks. We propose �exible copula models that explicitly capture

regime-switching behavior and allow for mean-reversion in dependence within each

regime. By means of the proposed Markov-switching dynamic copulas and simpler

(nested) versions, we provide a comprehensive study of the dependence structure in

CDS-equity markets. The evaluation and comparison of copulas is conducted both

in-sample using common goodness-of-�t measures and out-of-sample using Value at

Risk (VaR) forecast accuracy measures.

The proposed models con�rm the presence of signi�cant negative comovement

95



between CDS returns and stock returns, and signi�cantly positive comovement be-

tween CDS returns and stock return volatility over the period from September 2005

to March 2011. They also indicate that asset dependence is time-varying and nonlin-

ear. Signi�cant regime-switching dependence is revealed not only in the central part

of the bivariate distributions but also in the tails; namely, low and high dependence

periods alternate over time. The latter broadly coincide with the automotive crisis,

the subprime mortgage crisis and the Greek and European sovereign debt crises. The

�ndings suggest that during periods of stress systematic factors play a stronger role as

drivers of default and volatility shocks have longer lasting e�ects than return shocks.

Inadequately modeling the bivariate distribution by ignoring the time-variation in

dependence within each regime or altogether neglecting regime-switching e�ects im-

plies too �smooth� rank correlation and tail dependence measures that under(over)-

estimate the comovement of CDS and equity markets in crisis (normal) periods.

Our assessment of the competing copula models in a risk-management exercise

leads to two main conclusions. First, neglecting regime-switching e�ects in depen-

dence can be costly because it tends to underestimate the maximum potential losses

of CDS-equity portfolios. Second, relaxing the assumption that the dependence struc-

ture remains constant within each regime can be bene�cial for improving the accu-

racy of out-of-sample VaR forecasts and producing smaller average regulatory losses.

Lastly, the study provides yet another example of a disconnect between in-sample �t

and out-of-sample predictability; namely, the Student's t copula function is strongly

supported by common in-sample statistical criteria but the Gumbel copula which fo-

cuses on the adverse tail leads to more conservative 1-day-ahead VaR trading limits.

These �ndings are relevant to institutional investors using CDS contracts to hedge

their equity holdings and for capital structure arbitrageurs, particularly, those pre-

dominantly exposed to �nancial and auto sectors. The �exible copula models pro-

posed could prove useful for banks in order to address recommendations from Basel

III to carry out more rigorous stress testing of the trading book. Our study o�ers

important insights into the regime-switching dependence dynamics of CDS spreads

and tradeable systematic risk factors. In this context, extending the �exible regime-
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switching copula models here proposed to ascribe a role to exogenous structural vari-

ables as drivers of the regime-transition may be an interesting avenue of further

research.

97



Appendix

3.A Merton's Structural Model and Extensions

Pioneered by Merton (1974) and Black and Scholes (1973), structural (or asset value)

model is one of the two primary classes of credit risk modeling approaches.23 It

assumes that at time t a �rm with risky assets At is �nanced by equity Et and

zero-coupon debt Dt of face value K maturing at time T > t: At = Et +Dt.

When the �rm's asset is valued more than its debt AT > K at time T , the debt

holders will be paid the full amount K and the shareholders' equity will be (AT −K).

On the other hand, when the �rm fails to repay (therefore defaults on) the debt at

T , the debt holders can only recover AT < K and the sharehodlers will get nothing.

The equity value at time T can be represented as an European call option on asset

At with strike price K maturing at T , ET = max (AT −K, 0). The asset value is

assumed to follow a geometric Brownian motion process, with risk-neutral dynamics

given

dAt = rAtdt+ σAAtdWt (3.19)

where r denotes the risk-free interest rate, σA is the volatility of asset's returns, and

Wt is a Brownian motion under the risk-neutral measure. Applying Black-Scholes

formula would give

Et = AtΦ (d1)−Ke−r(T−t)Φ (d2)

where d1 = 1
σA
√
T−t

[
ln
(
At
K

)
+
(
r + σA

2

)
(T − t)

]
, d2 = d1 − σA

√
T − t, and Φ (·) de-

notes the standard normal cdf. The probability of default at time T is given by

P (AT < K) = Φ (−d2).

A typical strategy of debt holders to protect themselves from the credit risk is

to long a put option Pt on At with strike K maturing at T . The put option will

be valued at (K − AT ) if AT < K, and worth nothing if AT > K. Purchasing the

put option guarantees that the credit risk of the loan is hedged completely as the

23The other one is the reduced form model.
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debt holder's payo� equals K at maturity no matter if the obligor defaults or not. It

therefore forms a risk-free position

Dt + Pt = Ke−r(T−t). (3.20)

The price of put option Pt is determined by applying Black-Scholes formula as

Pt = Ke−r(T−t)Φ (−d2)− AtΦ (−d1) . (3.21)

Taking account the credit risk spread (risk premium) s, the value of the risky bond is

Dt = Ke−(r+s)(T−t). (3.22)

Combining Eq.(3.20) � (3.22) gives a closed-form formula for the credit spread

s = − 1

T − t
ln

[
Φ (d2)− At

K
er(T−t)Φ (−d1)

]

where At
K
represents the �rm's leverage. Note that s depends only on At and σA which

is in line with the economic intuition. Their nonlinear relationship can be observed

from the below �gures.

Asset Value

C
re

di
t S

pr
ea

d

Aseet Value Volatility

C
re

di
t S

pr
ea

d

Many approaches have been proposed to improve the classical Merton's model.

The �rst passage model introduced by Black and Cox (1976) allows the �rm may
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default at any time before the debt maturity. Jones et al. (1984) suggest to introduce

stochastic interest rates to improve the model's performance. Longsta� and Schwartz

(1995) employ a Vasicek process for the interest rate, drt = (a− brt) dt + σtdW
(r)
t ,

while Kim et al. (1993) consider a CIR process, drt = (a− brt) dt+ σt
√
rtdW

(r)
t , and

Briys and De Varenne (1997) treat the interest rate following a generalized Vasicek

process, drt = (a (t)− b (t) rt) dt + σt (t) dW
(r)
t . By comparing the Merton's model

and its four extensions Eom et al. (2004) �nd substantial spread predication errors

that four models underestimate the spread observed from the market while the other

one overestimate it.

3.B Dependence Measures

Pearson linear correlation Let X1 and X2 denote two continuous random vari-

ables representing the returns of asset 1 and asset 2, respectively. Pearson correlation

ρ ∈ [−1, 1] is de�ned by

ρ =
Cov (X1, X2)√

V ar (X1)
√
V ar (X2)

where Cov (X1, X2) = E (X1, X2)− E (X1)E (X2) is the covariance, and V ar (X1) =

Cov (X1, X1) denotes the variance. ρ is an appropriate measure of dependence only

if the true joint distribution of the asset returns is elliptical, and it is scale invariant

only under strictly increasing linear transformations.

Kendall's τ rank correlation Kendall's τ ∈ [−1, 1] is a rank correlation measure

based on the concordance notion: two observation pairs (x1t, x2t) and (x1s, x2s) are

concordant if (x1t − x1s) (x2t − x2s) > 0 and discordant if (x1t − x1s) (x2t − x2s) < 0,

for t, s = 1, ..., T. The rank correlation of (X1, X2) is a measure of the probability of

concordance minus the probability of discordance as given by

τ =
#concordant pairs - #discordant pairs

1
2
T (T − 1)
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where T is the number of observations for x1 and x2, and the denominator indicates

the total number of pairs (x1t, x2t),(x1s, x2s). Kendall's τ is scale invariant under

strictly increasing (non)linear transformations.

Tail dependence Tail dependence λ ∈ [0, 1] measures the concordance in the tails,

or extreme values of two random variables, X1 and X2 , and is de�ned in terms of lim-

iting conditional probabilities of α−quantile exceedances as α→ 1. Formally, for two

positively correlated variables, upper tail dependence denoted λU is the probability

that X2 is above its α-quantile (X2,α) given that X1 is above its α-quantile (X1,α), i.e.

λU ≡ P(X2 > X2,α|X1 > X1,α), while lower tail dependence denoted λL is the prob-

ability that X2 is smaller than its (1− α)-quantile given that X1 is smaller than its

(1− α)-quantile, i.e. λL ≡ P(X2 6 X2,(1−α)|X1 6 X1,(1−α)). For two negatively corre-

lated variables, upper tail dependence is the probability that X2 is above its α-quantile

given that X1 is below its (1− α)-quantile, i.e. λU ≡ P(X2 > X2,α|X1 6 X1,(1−α)),

while lower tail dependence is the probability that X2 is below its (1− α)-quantile

given that X1 is above its α-quantile, i.e. λL ≡ P(X2 6 X2,(1−α)| X1 > X1,α). Like

the rank correlation, tail dependence depends only on the copula of X1 and X2 thus

the roles of X1and X2 are interchangeable.
24

3.C Static Copulas

Gaussian copula (elliptical) The bivariate Gaussian copula pdf can be written

as follows

c (u1, u2;θ = ρ) =
1√

1− ρ2
exp

(
−1

2
Ψ′
(
R−1 − I

)
Ψ

)
where R is the correlation matrix with o�-diagonal element the Pearson correlation

ρ, and Ψ = (Φ−1 (u1) ,Φ−1 (u2))
′
with Φ−1 the inverse of the univariate standardized

24For further discussion on dependence measures see Cherubini et al. (2004), Ch.3.1 or McNeil
et al. (2005) Ch. 5.2.

101



Gaussian cdf. Tail dependence is not captured.

Student's t copula (elliptical) The bivariate Student's t copula pdf can be writ-

ten as follows

c (u1, u2;θ = (ν, ρ)) =
1√

1− ρ2

Γ
(
ν+2

2

)
Γ
(
ν
2

)
Π2
i=1

(
1 + 1

ν

(
t−1
νi

(ui)
)2
) ν+1

2

(
Γ
(
ν+1

2

))2 (
1 + 1

ν
Ψ′R−1Ψ

) ν+2
2

whereR is the correlation matrix with ρ as o�-diagonal element, Ψ =
(
t−1
ν1

(u1) , t−1
ν2

(u2)
)′

and t−1
ν (u) is the inverse cdf of the Student's t with ν > 2 degrees of freedom. Stu-

dent's t copula captures tail dependence but imposes the restriction of upper and

lower tail symmetry. It converges to Gaussian copula as ν →∞.

Gumbel copula (Archimedean) The bivariate Gumbel copula pdf can be written

as follows:

c (u1, u2;θ = η) =
(log u1 log u2)e

η

u1u2

exp

−
[

2∑
n=1

(− log un)e
η+1

] 1
eη+1

eη +

[
2∑

n=1

(− log un)e
η+1

] 1
η+1
[

2∑
n=1

(− log un)e
η+1

]−2+ 1
η+1


where η ∈ [1,+∞). For positively correlated variables (e.g., CDS and VStoxx), the

Gumbel copula can capture upper tail dependence but 180◦-anticlockwise-rotated

(or survival) Gumbel can capture lower tail dependence. For negatively correlated

variables (e.g., CDS and Stoxx), the 90◦(270◦)-anticlockwise-rotated Gumbel copula

captures upper (lower) tail dependence.

102



SJC copula (Archimedean) The bivariate SJC copula pdf can be written as

follows:

c
(
u1, u2;θ = (λU , λL)

)
=

1

2

[
∂2

∂u1∂u2

CJC
(
u1, u2|λU , λL

)
+

∂2

∂u1∂u2

CJC
(
1− u1, 1− u2|λU , λL

)]
(3.23)

where

∂2

∂u1∂u2

CJC
(
u1, u2;θ = (λU , λL)

)
= A−B; (3.24)

A =
γκ
(
1− 1

Z1/γ

)−2+ 1
γ ·
(

1
γ
− 1
)
· (1− u1)κ−1 · (1− u2)κ−1

(1− (1− u1)κ)
1+γ · (1− (1− u2)κ)

1+γ · Z2+ 2
γ

;

B =
κ
(
1− 1

Z1/γ

)−2+ 1
γ ·
(

1
κ
− 1
)
· (1− u1)κ−1 · (1− u2)κ−1

(1− (1− u1)κ)
1+γ · (1− (1− u2)κ)

1+γ · Z2+ 2
γ

;

Z =
1

(1− (1− u1)κ)
γ +

1

(1− (1− u2)κ)
γ − 1,

and λU (λL) is the upper (lower) tail dependence. CJC is the cdf of the Joe-Clayton

copula as

CJC
(
u1, u2;θ = (λU , λL)

)
= 1−

1− 1[
1

(1−(1−u1)κ)γ
+ 1

(1−(1−u2)κ)γ
− 1
] 1
γ


1
κ

with κ = 1
log2(2−λU )

, γ = 1
log2 λ

L .

The following table summarizes how the rank correlation and tail dependence are

obtained:
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Copula Kendall's τ Lower tail dependence (λL) Upper tail dependence (λU)

Gaussian 2
π

arcsin ρ 0 0

Student's t 2
π

arcsin ρ 2tν+1

[
−
√
ν + 1

√
1−ρ√
1+ρ

]
2tν+1

[
−
√
ν + 1

√
1−ρ√
1+ρ

]
Gumbel 1− 1

η
- 2− 2

1
η

SJC - λL λU

Elliptical copulas permit both positive dependence (i.e., τ>0) and negative de-

pendence (i.e., τ<0). Rotating the Archimedean copulas by counterclockwise 90 and

270 degrees accommodates negative dependence, which is not possible with the stan-

dard non-rotated versions. In particular, the distribution functions C90◦and C270◦ of

a copula C rotated by counterclockwise 90 and 270 degrees, respectively, are given as

C90◦(u1, u2) = u2 − C(1− u1, u2) and C270◦(u1, u2) = u1 − C(u1, 1− u2).

3.D Log-likelihood Functions of Static Copulas

Copula parameters are estimated via maximum likelihood approaches. We list below

the log-likelihood functions of the copula functions used in this chapter.

Gaussian Copula (elliptical) The log-likelihood function is given by

LGaussian (R;u1, u2) = −1

2

T∑
t=1

(
log
(
1− ρ2

)
+ Ψ′t

(
R−1 − I

)
Ψt

)
. (3.25)

whereR is the correlation matrix with ρ as o�-diagonal element, Ψt = (Φ−1 (u1t) ,Φ
−1 (u2t))

and and Φ−1 (u) is the inverse cdf of the Gaussian.
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Student t Copula (elliptical) The log-likelihood function of the Student-t copula

is

LStudent−t (ρ, ν;u1, u2) =
T∑
t=1

log c (u1t, u2t; ν, ρ)

=
T∑
t=1

{
−1

2
log
(
1− ρ2

)
+ log Γ

(
ν + 2

2

)
+ log Γ

(ν
2

)
−2 log Γ

(
ν + 1

2

)
+
ν + 1

2

2∑
i=1

log

(
1 +

Ψ2
i

ν

)
−ν + 2

2
log

(
1 +

Ψ′R−1Ψ

ν

)}
= −1

2

T∑
t=1

log
(
1− ρ2

)
+ T log Γ

(
ν + 2

2

)
+ T log Γ

(ν
2

)
−2T log Γ

(
ν + 1

2

)
+
ν + 1

2

T∑
t=1

2∑
i=1

log

(
1 +

Ψ2
it

ν

)

−ν + 2

2

T∑
t=1

log

(
1 +

Ψ′tR
−1Ψt

ν

)
(3.26)

whereR is the correlation matrix with ρ as o�-diagonal element, Ψ =
(
t−1
ν1

(u1) , t−1
ν2

(u2)
)′

and t−1
ν (u) is the inverse cdf of the Student's t with ν > 2 degrees of freedom.

Gumbel Copula (Archimedean) The log-likelihood function of the Gumbel cop-

ula is

LGumbel(η;u1, u2) =
T∑
t=1

(log (f1) + log (f2) + log (f3) + log (f4) + log (f5)) (3.27)

where f1 = η−1, f2 = e−
x
η , f3 = x−2+ 1

η , f4 = 1
η

(x− 1) + 2,

f5 =
(
η
u1

(− log u1t)
η−1
)(

η
u2

(− log u2t)
η−1
)
and x = (− log u1t)

η + (− log u2t)
η.

SJC Copula (Archimedean) The log-likelihood function for estimating the pa-

rameters of the SJC copula is
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LSJC
(
λU , λL;u1, u2

)
=

T∑
t=1

log

{
∂2

∂u1∂u2

1

2

[
CJC

(
u1t, u2t|λU , λL

)
+CJC

(
1− u1t, 1− u2t|λU , λL

)
+ u1t + u2t − 1

]}
=

T∑
t=1

log

{
1

2

[
∂2

∂u1∂u2

CJC
(
u1t, u2t|λU , λL

)
+

∂2

∂u1∂u2

CJC
(
1− u1t, 1− u2t|λU , λL

)]}
. (3.28)

where the second derivatives are derived from Eq.(3.24).

3.E Estimation of Regime-Switching Copula

First, we follow the Hamilton (1989)'s �ltering algorithm to obtain P [St = s | It], the

�ltered probability of unobservable regime St given the available information set, via

a two-step process iterated from t = 1, . . . , T starting from an initial value at t = 0.

The parameters are estimated by ML. Next, we adopt Kim (1994)'s algorithm to

obtain the smoothed probabilities, P [St = s | IT ], or probabilities of each regime given

the full sample information set IT , starting from the last �ltered probability at t = T

as initial value and iterating backwards from t = T − 1 to t = 1.

The �ltering algorithm involves the following two sequential steps:

1. Inference about the current state given the past values of the observed variable

P [St = s | It−1] =
1∑

k=0

P [St = s | St−1 = k, It−1]P [St−1 = k | It−1]

where s = {0, 1} denotes regimes {H,L}, respectively; It = [u1t, u2t, It−1] is the

time t information set; and the migration probabilities P [St = s | St−1 = k, It−1]

are the entries of matrix π in Eq. (3.10).
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2. Filtering of St in order to generate future forecasts on the prevailing state

P [St = s | It] =
cStt (u1t, u2t | St = s, It−1)P [St = s | It−1]∑1
k=0 ct (u1t, u2t | St = k, It−1)P [St = k | It−1]

where cStt (·) is the pdf of RS-ARMA or RS-DCC copula models.

The log-likelihood function of the RS-copula is

L (u1, u2 | θ) = LC
(
θ, φ̂

)
+

2∑
i=1

LXi (φi)

=
T∑
t=1

log

(
2∑

St=1

cStt (u1t, u2t | St, It−1) Pr [St | It−1]

)

+
T∑
t=1

2∑
i=1

log (fXi (xi,t;φi,t)) .

The parameters can be estimated either by the IFM or CML methods.

Once the parameters are estimated and all �ltered probabilities P [St = s | It] for

s ∈ {0, 1} and t = 1, 2, . . . , T , are obtained, we follow Kim's algorithm to obtain the

smoothed probabilities

P [St = s | IT ] =
1∑

k=0

P [St+1 = s | St = k, It]P [St = s | It]P [St+1 = k | IT ]∑1
j=0 P [St+1 = s | St = k, It]P [St = k | It]

, t = T−1, ..., 1

starting from P [ST = s | IT ] and iterating backwards for t = T − 1, T − 2, . . . , 1.

3.F Timeline of late 2000s Crises

Credit Crunch

• July 10, 2007: S&P announces it may cut ratings on $12bn of subprime debt.

• August 9, 2007: ECB pumps 95bn euros into the banking system to improve

liquidity.

107



• October 1, 2007: UBS announces $3.4bn losses from sub-prime related in-

vestments.

• October 30, 2007: Merrill Lynch unveils $7.9bn exposure to bad debt.

• January 19, 2008: World Bank predicts slowdown of global economic growth

in 2008.

• January 21, 2008: Global stock markets su�er their largest fall since Septem-

ber 2001.

• February 17, 2008: UK government nationalizes Northern Rock.

• March 17, 2008: Wall Street's 5th largest bank, Bear Stearns, is acquired by

JP Morgan Chase.

• April 8, 2008: IMF warns that potential losses from the credit crunch could

reach $1tn.

• September 7, 2008: Large US mortgage lenders Fannie Mae and Freddie Mac

are nationalized.

• September 15, 2008: Lehman Brothers �les for Chapter 11 bankruptcy pro-

tection.

• September 16, 2008: US Fed announces $85bn rescue package for AIG.

• September 17, 2008: Lloyds TSB announces takeover of largest British mort-

gage lender HBOS.

• October 13, 2008: UK government announces ¿37bn injection to RBS, Lloyds

TSB and HBOS.

• November 6, 2008: Bank of England cuts base interest rate to lowest level

since 1955.
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Energy Crisis

• March 5, 2005: Crude oil prices rose to new highs above $50 per barrel (bbl).

• September 2005: US hurricane Katrina pushes gasoline prices to a record

high.

• August 11, 2005: Crude oil prices broke the psychological barrier of $60 bbl.

• July 13, 2006: Israeli attacks on Lebanon pushed crude oil prices to historical

highs above $78.40 bbl.

• October 19, 2007: US light crude rose to $90.02 bbl.

• March 5, 2008: OPEC accused the US of economic "mismanagement" re-

sponsible for oil prices.

• March 12, 2008: Oil prices surged above $110 bbl.

Automotive Industry Crisis

• May 5, 2005: S&P cut the debt ratings of GM and Ford to �junk� status.

• February 12, 2008: GM announced its operating loss was $2bn.

• October 7, 2008: SEAT cut production at its Martorell plant by 5%.

• November 20, 2008: PSA Peugeot Citroen predicts sales volumes would fall

by at least 10% in 2009, following a 17% drop in the current quarter.

• November 23, 2008: Jaguar Land Rover was seeking a $1.5bn loan from the

government.

• December 11, 2008: The Swedish government injected $3.5bn to rescue its

troubled auto markers, Volvo and Saab.

• December 19, 2008: US government said it would use up to $17.4bn to help

the big three US carmakers, General Motors, Ford and Chrysler.
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• December 20, 2008: GM and Chrysler receive CA$4bn government loans

from Canada and the province of Ontario.

• January 8, 2009: Nissan UK announced it was to shed 1200 jobs from its

factories in North East England.

• January 22, 2009: Fiat announces a 19% drop in revenues for 2008 Q3.

• February 11, 2009: PSA Peugeot Citroen announced it would cut 11,000 jobs

world wide.

• February 12, 2009: Renault announces a 78% drop in pro�ts for 2008.

• April 22, 2009: GM admits it will default on a $1bn bond debt payment due

in June.

• April 30, 2009: Chrysler �les for Chapter 11 bankruptcy protection.

• June 1, 2009: GM �les for Chapter 11 bankruptcy protection.

European sovereign debt crisis

• October 10, 2008: Fitch downgrades Iceland Sovereign debt from A+ to

BBB-.

• December 8, 2009: Fitch ratings agency downgraded Greece's credit rating

from A- to BBB+.

• April 23, 2010: Greek PM calls for eurozone-IMF rescue package. FTSE falls

more than 600p.

• May 18, 2010: Greece gets �rst bailout of $18bn from EFSF, IMF and bilateral

loans

• November 29, 2010: Ireland receives $113bn bailout from EU, IMF and EFSF

• January 5, 2010: S&P downgrades Iceland's rating to junk grade.

Sources: news.bbc.co.uk; www.reuters.com; www.bloomberg.com.
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3.G Copula VaR Simulation

The portfolio pro�t and loss (P/L) distribution is simulated using copula as follows:

1. Obtain the 2× 2 rank correlation matrix forecast
∑

using data up to day t. In

static copula, the o�-diagonal entry is τ̂t+1 = τ̂t = τ̂ . In dynamic copula, τ̂t+1

is the 1-day-ahead projection of the ARMA Eq. (3.8) or DCC Eq. (3.9). In

regime-switching copulas, the forecast hinges on the �ltered probabilities and es-

timated migration matrix π in Eq.(3.10) as τ̂t+1 = (P [St = H | It] ,P [St = L | It])

π
(
τ̂Ht+1, τ̂

L
t+1

)′
.

2. Simulate two independent standard normal random variates z = (z1, z2)′.

3. Simulate a random variate s from a χ2
ν̂ distribution, independent of z, where ν̂

is the degree-of-freedom estimated using data up to day t.

4. Form the vectors b = Az and c =
√
ν̂√
s
b where c=(c1, c2)′ and A is the Cholesky

decomposition of
∑
.

5. Determine the components (u1, u2) = (tν̂ (c1) , tν̂ (c2)) of copula where tν̂ is the

cdf of Student's t distribution with degrees-of-freedom parameter ν̂.

6. Obtain the standardized asset log-returns: Q = (q1, q2) =
(
F̂−1

1 (u1) , F̂−1
2 (u2)

)
,

where F̂−1
n is the inverse empirical cdf of standardized residuals,xn, n = 1, 2, of

the in-sample data.

7. Relocate and rescale the returns as (r1,t+1, r2,t+1) =
(
µ̂1,t+1 + q1

√
σ̂1,t+1,, µ̂2,t+1

+qj2
√
σ̂2,t+1

)
with µ̂t+1 and σ̂t+1 denoting ARMA-GARCH-skT forecasts of con-

ditional mean and variance made at t.

8. Obtain the 1-day-ahead P/L forecast of the equally-weighted portfolio as rt+1 =

0.5r1,t+1 + 0.5r2,t+1.

Repeat J = 100, 000 times the above steps to obtain the empirical or simulated

1-day-ahead P/L distribution {rt+1,j}Jj=1 from which any α-quantiles (VaR) can be

measured.
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4
An Extreme Risk Management Framework for

Portfolio optimization

4.1 Introduction

In Modern Portfolio Theory, pioneered byMarkowitz (1952), investment decisions are

a tradeo� between expected return and variance. The resulting mean-variance (MV)

portfolio optimization framework provides the investor with a set of portfolios along

the e�cient frontier that represent the best possible returns for a target variance or

the lowest variance for a given target return. By relying on this framework, investors

focus solely on the �rst two moments of the return distribution. Risk is solely de�ned

in terms of variance or how much the returns deviate from the expected or mean

return. But it is well known that variance is not a good measure of risk. Exclusive

reliance on the variance of the return distribution implies assuming Gaussianity. Thus

the MV strategy implicitly assumes symmetry, namely, it rewards attractive abnormal

pro�ts as much as it punishes undesirable acute losses. The common wisdom is

instead that investors are particularly concerned about downside risk. It is well known

also that �nancial returns are fat-tailed, leptokurtic and asymmetric. Investors who

infer that their portfolios are well diversi�ed under the Gaussian tenet can su�er
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catastrophic losses during �nancial market downturns.

As an e�ort to include investor preferences going beyond mean and variance in

portfolio selections, Baumol (1963) introduced Value-at-Risk (VaR) as alternative

risk measure. VaR gives the worst loss over a target horizon at a given con�dence

level. Since JP Morgan published its RiskMetrics Technical Document in 1994, VaR

has established itself as the most common risk management tool in industry but it

came in for severe criticism with the onset of the record �nancial losses of 2008 and

2009. Artzner et al. (1997, 1999) formalized the main properties that a coherent risk

measure must satisfy, and showed that VaR is not coherent because subadditivity is

not ful�lled for non-normal distributions. This means that the sum of the VaRs of

individual assets might be less than the portfolio VaR.1

An coherent risk measure known as Conditional VaR (CVaR) or expected short-

fall was popularized by Artzner et al. (1999) and is gaining prominence among banks

and regulators because it is more sensitive to the shape of the tail distribution in a

bell curve of potential losses.2 CVaR gives the expected total loss exceeding VaR.

Rockafellar and Uryasev (2000, 2002) and Andersson et al. (2001) introduced port-

folio optimization based on CVaR as relevant risk measure, namely, the mean-CVaR

(MCVaR) framework.3 (C)VaR of a portfolio can be estimated nonparametrically by

historical simulation or parametrically by a covariance approach. Historical simula-

tion (C)VaR simple requires estimating empirical quantiles based on available past

data but, unfortunately, it may be noisy due to sparsity of observations in the tails.

In the parametric framework, (C)VaR is directly a�ected by the assumptions made

with regard to the shape of the multivariate distribution that generates the portfolio

returns. Extreme value theory (EVT) can be useful tools in this context because it

focus only on modeling the tails of the portfolio return distribution without requiring

any assumptions on the high-density (central) part. EVT provides the distribution

1Subadditivity is a property of a mathematical function by which the value of the function at
point A + B is less or equal than the sum of the function's values at points A and B, that is,
q(A+B) ≤ q(A) + q(B). See Appendix 4.A

2It is also called Average Value at Risk (AVaR) or Expected Tail Loss (ETL).
3The Basel committee on Banking Supervision is recently encouraging banks to improve their

downside risk modeling, for instance, using stressed VaR or expected shortfall instead of VaR; see
Basel Committee on Banking Supervision (2012).

113



of a variable conditionally upon its values exceeding a certain threshold and, not

surprisingly, it has excelled in out-of-sample VaR forecasting competitions; e.g., Gen-

cay and Selcuk (2004), Chan and Gray (2006) and Kuester et al. (2006). EVT has

been employed to calculate VaR since Embrechts et al. (1999), but it has been barely

utilized for portfolio optimization. To the best of our knowledge, the only exception

is Haque et al. (2007) where EVT is applied to the problem of optimizing bivariate

portfolios of U.S. and Mexican equity during the 1994 peso crisis.4

Another limitation of the MV framework is that by assuming that individual asset

returns are Gaussian, it immediately follows that portfolio returns are assumed multi-

variate Gaussian. Thus the return dependence structure is represented by the Pearson

(linear) correlation coe�cient which neglects important nonlinear features such as tail

dependence. Relying on the multivariate Gaussian distribution implies neglecting tail

dependence de�ned as the probability of extreme losses (e.g., large negative returns)

in one asset given that extreme losses had occurred in another asset. To cope with

this issue and give more realistic description of the fat tails, some exponential- and

polynomial-tail distributions have been suggested by researchers for portfolios with

di�erent asset classes, for example, Yu et al. (2009) introduce multivariate variance

gamma process; Hu (2009) propose a multivariate generalized hyperbolic distribution

(GHD) framework; Xiong and Idzorek (2011) optimize portfolio with a multivari-

ate Lévy stable distribution. Besides the high computational cost, all these studies

imply that the portfolio and its asset components must have the same distribution.

For example, if a portfolio follows a multivariate GHD process, then its marginal

distribution at asset level is the unvariate GHD.5

4Instead of minimizing CVaR, Haque et al. (2007) adopt the safety-�rst portfolio selection strat-
egy. The safety-�rst criterion is a risk management technique that allows an investor to select one
portfolio rather than another based on the criterion that the probability of the portfolio's return
falling below a minimum desired threshold is minimized.

5For example, generalized hyperbolic distribution can be represented as a normal mean-variance
mixture where the mixture variable is generalized inverse Gaussian distributed. The multivariate
GHD can be given as

f (x) = c

Kλ−0.5d

(√(
χ+ (x− µ)

′
Σ−1 (x− µ)

)
(ψ + γ′Σ−1γ)

)
exp

{
(x− µ)

′
Σ−1γ

}
(
χ+ (x− µ)

′
Σ−1 (x− µ)

)
(ψ + γ′Σ−1γ)

0.5d−λ
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Copula is a powerful approach to construct �exible multivariate joint distributions

that can reproduce various, possibly nonlinear, dependence structures between asset

returns. Built upon the Sklar (1959) theorem, a copula is essentially a function that

puts together unidimensional marginal distributions (or margins) to construct a mul-

tivariate distribution and its main bene�t versus canonical multivariate distributions

is that it is �exible enough to permit any margin. For example, Demarta and McNeil

(2005) construct the meta-t distributions, i.e. distributions with a Student's t copula

and univariate margins other than student t or the univariate t margins with di�erent

degrees of freedom. Shaw and Lee (2007) claim that both multivariate normal and

multivariate Student's t distribution are a special case of Gaussian and Student's t

copula respectively that the copulas have no requirement on the type or shape of

univariate margins. The empirical study by Breymann et al. (2003) shows that the

Student t copula is generally superior to the Gaussian copula when �tting �nancial

data for the reason that the Student's t-copula can capture better phenomenon of

dependent extreme values, which is often observed in �nancial data. In portfolio allo-

cation applications, Di Clemente and Romano (2004) advocate static copula models,

i.e. Gaussian copula, the Student t copula, the grouped t copula and the Clayton

copula, to capture tail dependence for optimal loan portfolio allocation in the MCVaR

framework and document that ignoring tail dependence leads to underestimating the

likelihood of extreme portfolio losses, a �nding con�rmed by Boubaker and Sghaier

(2012). Bai and Sun (2007) adopt multivariate Archimedean copula with constant

dependence for optimizing portfolio based on CVaR measures. While these studies

represent a signi�cant step forward in adopting copulas to characterize the multivari-

ate portfolio return distribution, their main limitation is that they focus on static (or

unconditional) formulations that do not allow for time variation in the dependence

structure among asset constituents. And yet there is ample evidence that the corre-

where the normalizing constant is c =
(
√
χψ)

−λ
ψλ(ψ+γ′Σ−1γ)

0.5d−λ

(2π)0.5d|Σ|0.5Kλ(
√
χψ)

, {λ, χ, ψ} are parameters of gener-
alized inverse Gaussian distribution, d is the rank of the covariance matrix Σ , Kλ is a modi�ed Bessel
function of the third kind with index λ, {µ,γ} are are parameter vectors of normal mean-variance
mixture distribution, and | · | denotes the determinant. After calibrating the GHD using in-sample
data, one can simulate a large number of scenarios and then optimize the portfolio allocation by
minimizing the chosen risk measure, e.g. variance or (C)VaR.
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lation between asset returns, both in the central part of their distribution and in the

tails, becomes stronger during crash episodes; e.g., see Patton (2006), Jondeau and

Rockinger (2006) and the empirical results from Chapter 3. Such realistic features

can be captured via dynamic or conditional copula models. However, no paper as yet

has suggested the application of this �exible multivariate modeling framework in the

empirical portfolio optimization literature.6

Our study contributes to the literature in two ways. First, we advocate a novel

modeling approach that combines extreme value analysis and dynamic copulas in

order to characterize the joint density function of portfolio assets. This allows us

to demonstrate the advantages of allowing for time-varying dependence structures

versus the static copula framework used thus far in the portfolio optimization liter-

ature. More speci�cally, we apply the EVT peaks-over-threshold approach to model

the tails of the marginal distributions of individual asset returns, and then build the

portfolio multivariate return density from those margins using dynamic copula. The

dynamic aspect of copula is relevant because it allows investors to capture increased

dependence in crisis periods. Second, we confront two portfolio optimization strate-

gies: the traditional MV approach that uses variance as the relevant risk measure,

and the MCVaR approach that relies instead on CVaR or expected shortfall. A set of

out-of-sample Monte Carlo experiments are conducted to simulate the two portfolio

optimization strategies assuming various data generating processes which include the

best in-sample-�tted GARCH-EVT-copula model. The analysis is based on credit

risk hedging portfolios formed by combining seven sectoral CDS indices. Such portfo-

lios allow institutional investors such as investment banks and hedge funds to hedge

their exposure to marketwide credit risk.

As a preview of our �ndings, we demonstrate empirically that the properties of

optimal portfolios hinge on how asset returns and their dependence structure are

modeled, as well as the choice of relevant risk measure to minimize. In particular,

two modeling decisions � the selection of distribution (Gaussian, Student's t or Gen-

6Boubaker and Sghaier (2012) allow for time-varying return dependence structures for portfolio
optimization in a rather ad hoc way that requires re-estimating static copula over di�erent blocks
of data of arbitrary length.
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eralized Error Distribution) to model individual returns and portfolio returns, and

the assumption of static versus dynamic (copula) dependence structures � are shown

to have a signi�cant impact on the e�cient frontier of portfolio optimization. Our

�ndings con�rm that MV models underestimate the risk of rare extreme losses and

thus can only generate suboptimal portfolios for a given target return compared to

the MCVaR approach. The simulations show that the MCVaR strategy facilitates a

more attractive risk-return tradeo� than the standard MV approach. Even though

portfolio managers may invest �e�ciently� on the basis of the MV model, they may

su�er catastrophically large losses. This makes the MCVaR framework very appeal-

ing. These �ndings have implications for risk hedgers and portfolio managers that

are seeking to allocate optimally their risk capitals to achieve the optimal risk-return

balance while minimizing the probability of severe tail losses.

The remainder of the paper is organized as follows. In Section 4.2, we introduce the

EVT-copula framework adopted to characterize the multivariate distribution of the

portfolio. Section 4.3 outlines the two optimization strategies based on the classical

MV approach and the MCVaR approach, respectively. Section 4.4 presents the data

and empirical results. Section 4.5 concludes.

4.2 GARCH-EVT-Copula Modeling of Portfolio Re-

turns

Portfolio optimization requires estimating the joint probability distribution of asset

returns and choosing a risk metric to focus upon. This section discusses the former

task while the issue of choosing a risk metric is discussed in Section 4.3. Essentially,

we advocate an approach where the portfolio density function is built in two steps.

First, by applying EVT special e�orts are aimed at modeling the lower tail of the

univariate return distributions. Second, the margins thus obtained are joined using

dynamic copula models that allow for time-variation in dependence structures and

nest static copula models.
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EVT is formulated for independent and identically distributed (iid) processes

but there is ample evidence for various asset classes that �nancial returns exhibit

autocorrelation and volatility clustering. The typical approach is to apply EVT to

appropriately ARMA-GARCH �ltered returns; e.g., Diebold et al. (2000) and McNeil

and Frey (2001). In what follows, uppercase F (·) denotes a cumulative distribution

function (cdf ) and lowercase f (·) denotes a probability density function (pdf ).

4.2.1 ARMA-GARCH �ltering of asset returns

Let {rt} , t = 1,...,T, denote daily logarithmic returns for an asset. We conceptualize

the underlying probability distribution as belonging to a location-scale family of the

form

rt = µt + εt = µt + σtxt

where location µt and scale σt are ARMA and GARCH processes, respectively. The

ARMA-GARCH model is

rt = a0 +

p∑
i=1

airt−i +

q∑
j=1

bjεt−j + εt (4.1)

σ2
t = c0 +

m∑
i=1

ciσ
2
t−i +

n∑
j=1

djε
2
t−j (4.2)

where the standardized (�ltered) returns xt ≡ rt−µt
σt

= εt
σt

are iid with zero-location

and unit-scale probability density f(x;θ). Various candidate distributions are con-

sidered in our analysis: Gaussian, Student's t, Generalized Error Distribution (GED),

and skewed versions thereof. The ARMA-GARCH model parameters are estimated

by Quasi Maximum Likelihood.

GED is a symmetric unimodal member of the exponential family with density

function given by

f (x;µ, β, κ) =
κe−

1
2 |x−µβ |

κ

21+ 1
κβΓ (κ−1)

. (4.3)

which is characterized by three parameters, location µ ∈ (−∞,+∞), scale β ∈ (0,∞)
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and shape κ ∈ (0,∞); and Γ (·) is the gamma function. Since GED is symmetric and

unimodal, both the median and the mean are given by µ. Compared with the Stu-

dent's t density, GED has a sharper peak at µ with the sharpness (and thickness of

tails) increasing as κ decreases. GED nests important distributions: for κ = 2, it

becomes the Gaussian distribution, N (µ, β2); for κ = 1, it becomes the Double Ex-

ponential or Laplace distribution, L (µ, 4β2); as κ→∞, it converges to the Uniform

distribution U (µ− β, µ+ β).

The central moments of GED are given by

E [(x− µ)n] =
1

21+ 1
κβΓ

(
1
κ

+ 1
) ∫ ∞
−∞

(x− µ)n e−
1
2 |x−µβ |

κ

dx. (4.4)

Symmetry implies zero odd (n = 1, 3, ...) moments. Even moments can be rewritten

as

E [(x− µ)n] =
2
n
κβn

Γ (κ−1)

∫ ∞
0

t
1
κ

(n+1)−1e−tdt.

= 2
n
κβn

Γ (κ−1 (n+ 1))

Γ (κ−1)
, n = 2, 4, ... (4.5)

Thus the variance and kurtosis are given by E
[
(x− µ)2] ≡ σ2 = 22κ−1

β2 Γ(3κ−1)
Γ(κ−1)

and

E
[
(x− µ)4] =

Γ(5κ−1)Γ(κ−1)
Γ2(3κ−1)

, respectively. The standardized GED density function

can be expressed as

f (z) = f

(
x− µ
σ

)
=

1

σ

κe−
1
2 |x−µσλ |

κ

λ21+κ−1Γ (κ−1)
(4.6)

where λ =
√

Γ(κ−1)

22/κΓ(3κ−1)
, and z has unit standard deviation V ar (z) = 1. The cdf is

given by as

F (z) = F

(
x− µ
σ

)
=

0.5
(
1 + Γ|c0z|κ (κ−1)

)
x > µ

0.5
(
1− Γ|c0z|κ (κ−1)

)
x < µ

(4.7)

where c0 =
√

Γ (3κ−1) /Γ (κ−1).
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Fernandez and Steel (1998) introduce asymmetry into unimodal densities (e.g.,

Gaussian, Student's t and GED) in an elegant manner by adding a skewness param-

eter ξ ∈ R+ as follows

f (x;θ, ξ) =
2

ξ + ξ−1

[
f (ξx)H (−x) + f

(
ξ−1x

)
H (x)

]
where θ is the parameter vector of the original density and is the additional skewness

parameter, and H (·) is the Heaviside function. The original density corresponds to

ξ = 1. The �rst two moments are given by

E[x] ≡ µ = M1

(
ξ − ξ−1

)
E
[
(x− µ)2] ≡ V ar (x) =

(
M2 −M2

1

) (
ξ2 + ξ−2

)
+ 2M2

1 −M2

where Mk = 2
∫∞

0
xkf (x) dx with k = 1, 2.

4.2.2 Extreme Value Theory

Analogous with the central limit theorem, where the normal distribution acts the limit

for the distribution of the mean of a large number i.i.d. random variables, the extreme

value theory investigates the limit distribution of the sample maximum. Empirical

models of �nancial returns based on distributional assumptions such as Gaussian,

Student's t and GED are often chosen based on their ability to �t data near the

mode given that only a few observations fall in the distribution tails by de�nition.

But e�ective risk management requires accurate estimation of the likelihood of rare

events that could trigger catastrophic losses. Extreme value theory can be useful

for this purpose because it is speci�cally aimed at modeling tail behavior without

requiring assumptions on the entire distribution, i.e. it provides a semi-parametric

model for the tails of distribution functions.7 Block maxima and peaks-over-threshold

7EVT was pioneered by Fisher and Tippett (1928) and Jenkinson (1955). Early applications of
EVT, dating back to the 1950s, were aimed at addressing environmental questions for insurance
analysis. It is rather more recently that EVT has been utilized in �nance; see Embrechts et al.
(1997) for a comprehensive review of �nancial applications.
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are the two main EVT modeling methodologies which we describe next.

Let {xt}, t = 1, .., T, denote an iid process with distribution F (x). The maxi-

mum of a block of n < T observations, called block maximum and denoted Mn =

max (x1, . . . , xn), follows asymptotically the probability distribution

P

[
Mn − bn
an

6 y

]
= F n (any + bn)→ G (y) , n→ +∞ (4.8)

as n → +∞ for all y ∈ R, where an > 0 and bn are appropriate constants, F n (·)

is F (·) raised to power of n, and G (·) is a non-degenerate distribution function.

According to the Extremal Types Theorem, the block maxima distribution G (·) must

be either Frechet, negative Weibull or Gumbel; these three distributions can be cast

as members of the Generalized Extreme Value (GEV) distribution with cdf given by

G (y) =


exp

{
−
(

1 + ξ y−µ
β

)−1/ξ
}

ξ 6= 0

exp
{
−e−

y−µ
β

}
ξ = 0

, (4.9)

where µ, β > 0 and ξ are location, scale and shape parameters, respectively. GED

becomes the Frechet distribution for ξ > 0, the negative Weibull distribution for

ξ < 0, and the Gumbel distribution for ξ = 0.

Let {xt − u} t = 1, .., T , denote the exceedances or peaks-over-threshold process

where xt > u and u denotes a threshold loss. The exceedances distribution can be

formalized as

Pr [xt − u 6 y | xt > u] =
F (y + u)− F (u)

1− F (u)
→ H (y) , t = 1, . . . , T.

According to the Pickands-Balkema-de-Haan Theorem, for a su�ciently large thresh-

old loss u, the exceedances distribution can be approximated by the Generalized
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Pareto Distribution (GPD) as8

H (y) =

1−
(

1 + ξ y
β

)−1/ξ

ξ 6= 0

1− exp
{
− y
β

}
ξ = 0

, (4.10)

where β > 0 and ξ are scale and shape parameters, respectively. GPD nests the

exponential distribution (ξ = 0), the heavy-tailed Pareto Type I distribution (ξ > 0)

and the short-tailed Pareto Type II distribution (ξ < 0).

In sum, asymptotic EVT suggests modeling either block maxima using a GEV dis-

tribution, or peaks-over-threshold using a GPD. However, the former approach makes

ine�cient use of data when many extreme observations occur intensively in a given

block of time, given that only one observation (i.e., block maximum) is recorded.9

In our empirical analysis below, we adopt the peaks-over-threshold approach to char-

acterize the behavior of (�ltered) return exceedances. The parameters of GPD are

estimated by maximizing the corresponding log-likelihood function

lnL(y1, . . . , yNu ; β, ξ) =
Nu∑
j=1

lnh (yj; β, ξ)

= −Nu ln β −
(

1 +
1

ξ

) Nu∑
j=1

ln

(
1 + ξ

yj
β

)

where Nu is the total number of observed exceedances yj ≡ xj−u for given threshold

u.

For �nancial applications with emphasis on the occurrence of extraordinary events,

McNeil and Frey (2001) highlight as main advantages of extreme value analysis that:

1) It builds upon a sound statistical theory and lends itself as a parametric mod-

eling approach for the tail distribution, 2) It circumvents the need for assumptions

regarding the entire return distribution, i.e. the central part of the distribution can

8See Balkema and de Haan (1974) and Pickands (1975).
9Take the problem of modeling the �heat wave� phenomenon as an example. Very high temper-

atures are often recorded over consecutive days in the summer. By focusing on block maxima, most
of those observations will be neglected and instead, irrelevant maximum temperatures recorded in
the winter will be included.
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be estimated empirically, and therefore model uncertainty is considerably reduced.

4.2.3 Dynamic Copula

Copula has become an increasingly popular approach to model dependence among

asset returns and this is mainly due to its �exibility. Multivariate distributions can be

nested as special cases of copulas. However, a problem of conventional copula models

is that they ignore the dynamics of dependence. Only recently, Sklar's theorem was

proven in the context of conditional distributions by Patton (2006) who then laid

the theoretical foundations for time-varying (or dynamic) copula. We follow Jondeau

and Rockinger (2006)'s dynamic copula formulation which is in the inspire from Engle

(2002) dynamic conditional covariance (DCC) model. The DCC type dynamic copula

model10 has been discussed in Section 3.2.2 of Chapter 3 and assume that the evolution

of the dependence structure of a k-dimensional portfolio in an elliptical copula (e.g.

Gaussian or Student's t11) is characterized by the following process:

Qt = (1− ϕ− ψ) Q̄+ ϕQt−1 + ψεt−1 · ε′t−1, ϕ+ ψ < 1; ϕ, ψ ∈ (0, 1) (4.11)

Rt = Q̃
−1

t QtQ̃
−1

t (4.12)

where Q̄ is the unconditional covariance of εt = (ε1,t, . . . , εk,t)
′ estimated by its sample

analogue Q̄ = T−1
∑T

t=1 εtε
′
t, where εi = F−1

i (ui) and u are the transformed stan-

dardized residuals via the empirical cdf transformation. Qt is the auxiliary matrix

driving the rank correlation dynamics. Q̃t is a k × k diagonal matrix with diagonal

elements the square root of those ofQt and Rt is a k×k rank correlation matrix. DCC

copulas have bee shown to be quite successful in model the dependence of �nancial

returns; see Jondeau and Rockinger (2006) and the discussion in Chapter 3.

10Considering the di�culty of applying ARMA fashion dynamic copula to high dimensional con-
texts, we only adopt the DCC dynamic copula in this empirical study.

11Appendix (4.B) outlines the pdf of the multi-dimensional Gaussian and Student's t copulas.
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4.3 Portfolio optimization Methods

One of the most important elements of Markowitz (1952)'s Modern Portfolio Theory

is the notion of e�cient frontier in the mean-variance space. A classical mean-

variance (MV) portfolio strategy consists of minimizing the portfolio risk, proxied by

the variance of the joint distribution, subject to a target portfolio return. Formally,

min
ω

V ar = min
ω
ω′Σω

subject to ω′µ = g

ω′I = 1

where Σ is the estimated covariance matrix of asset returns, µ is the estimated vector

of expected asset returns, I is a vector of ones, g is the a priori chosen portfolio

target return, and ω is the resulting optimal vector of weights. The e�cient frontier

is constructed by solving the problem for di�erent values of g.

Adopting the variance as portfolio risk measure has the advantage of compu-

tational simplicity, but it may lead to unsatisfactory outcomes for a risk manager

because it implicitly assumes symmetry or equal probabilities of losses and pro�ts,

and it underestimates the chance of rare adverse events. Partly in recognition of its

widespread use by banks, since 1996 the Basel Committee for banking supervision

began to state some of the risk management requirements in terms of percentiles,

namely, Value-at-Risk (VaR) of loss distributions. Current regulations impose cap-

ital requirements on banks and �nancial institutions proportional to the VaR of a

portfolio. VaR has established itself as the most popular risk metric for determin-

ing the largest size of losses in trading books at a given con�dence level. Thus, for

instance, 99% VaR is an estimate of the maximum portfolio loss which is exceeded

with 5% probability. However, an important shortcoming of VaR is that it is not

coherent because, for non-normal distributions, it fails to satisfy the subadditivity

property. VaR is thus inappropriate for portfolio optimization; see Appendix 4.A.

An alternative coherent risk metric proposed by Rockafellar and Uryasev (2000) is
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called Conditional Value at Risk (CVaR) or Expected Shortfall. CVaR is de�ned

as the expected loss exceeding VaR and thus it represents an upper bound for VaR.

Formally,

CV aRα ≡ E (−r > V aRα) , (4.13)

where V aRα denotes the maximum loss at con�dence level α ∈ (0, 1) typically chosen

at 0.99 or 0.95 and r denotes the portfolio loss. It follows from CV aRα ≥ V aRα that,

if the risk manager can control CVaR then he can control VaR but not the other way

round.

A thorny issue with CVaR is that it is di�cult to compute. Let r (ω,µ) be a

portfolio return function where ω and µ are vectors of weights and expected asset

returns, respectively. We can rewrite (4.13) as follows

CV aRα (ω) =
1

α

∫
−r(ω,µ)>V aRα(ω,µ)

r (ω,µ) f (µ) dµ

where f (µ) denotes the multivariate pdf of asset returns. Rockafellar and Uryasev

(2000) propose an alternative simpler function

Fα (ω, d) = d+
1

α

∫
−r(ω,µ)>d

(−r (ω,µ)− d) f (µ) dµ. (4.14)

and demonstrate that Fα (ω, d) is a convex function with respect to d, and that

VaR is a minimum point of this function with respect to d. So in the mean-CVaR

framework, where variance is replaced by CVaR as the relevant risk metric, the op-

timization problem becomes minω,d F
α (ω, d) = minω CV aR

α (ω). Rockafellar and

Uryasev (2000) and Andersson et al. (2001) suggest to approximate (4.14) by Monte

Carlo simulation as follows

Fα (ω, d) = d+
1

αN

N∑
i=1

(−r (ω,µi)− d)+ , (4.15)

where N denotes the number of replications, and z+ = max (0, z). This optimization
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can be approached as a linear programming problem

min
ω,z,d

d+
1

αN

N∑
i=1

zi (4.16)

subject to zi > −r (ω,µi)− d;

zi > 0;

ω′I = 1;

ω′µi = g.

where ω is the MCVaR optimal vector of weights.

4.4 Data and Empirical Results

4.4.1 Data description and preliminary statistics

We consider portfolios comprising seven iTraxx sectoral CDS Europe indices: Auto-

mobile (Auto), Consumers (Cons), Energy, Industrials (Inds), Telecommunications,

media and technology (TMT), Financials Senior (FinSnr) and Financials Subordi-

nated (FinSub). The observations from Bloomberg are daily midpoint index CDS

spread quotes over the period running from 20 September, 2005 to 11 March, 2011

(T = 1371 observations). All index spread quotes are based on �ve-year maturity

single-name CDS contracts which are typically the most liquid in the market.

Over the past two decades the global credit derivative market has seen extraordi-

nary growth and has provided ample trading opportunities for asset managers. Credit

derivatives and, in particular, CDS indices allow investors and speculators to monitor

the performance of the market and take credit positions without owning the under-

lying credit assets (loans or bonds). A portfolio consisting of sectoral CDS indices

would allow institutional investors to insure themselves against marketwide credit

risk. Moreover, should the correlation between sectoral index CDS returns be low it

would make such a portfolio desirable for diversi�cation purposes. The sample cor-

relations bear this out. On average the Pearson (linear) correlation is 0.214 ranging
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from a low of 0.040 between Cons and TMT to a high of 0.627 between SnrFin and

SubFin. Likewise, the average Kendall (nonlinear) rank correlation is 0.237 ranging

from a low of 0.162 for Inds and SubFin, to a high of 0.519 for SnrFin and SubFin.

Figure 4.1, Panel (a), plots the index CDS spreads normalized to a basis of 1.12 A

clear comovement of indices can be observed. A fast increase in CDS spreads for all

sectors begins to gather pace in mid-2007 when the US housing bubble bursts. CDS

spreads peak towards the end of 2008 following the disastrous collapse of Lehman

Brothers. Thereafter the spreads gradually decrease roughly to pre-Lehmann levels

until a second and third waves of dramatic increases in CDS spreads occurred dur-

ing 2010 and 2011, respectively, re�ecting the Greek and European sovereign debt

crises. Figure 4.1, Panel (b), plots the daily returns for the sectoral CDS indices.

All returns are calculated as logarithmic midpoint-to-midpoint spread quote ratios.

Heteroskedasticity is clearly apparent as volatility clustering is clearly visible.

Summary statistics for the daily returns series are reported in Table 4.1. FinSnr

CDS contracts have the largest mean return while Auto CDS contracts have the

lowest. TMT CDS contracts are the most volatile. All CDS return distributions show

heavy tails, particularly, Autos and Industrials stand out and also show relatively

large positive skewness. The Jarque-Bera test con�rms signi�cant departures from

non-normality for all sectoral CDS index returns.

Both the Ljung-Box Q test and Engle's ARCH LM test reject the null of no auto-

correlation for lags up to ten in returns and squared returns con�rming, respectively,

serial dependence and heteroskedasticity. Figure 4.2 displays quantile-to-quantile

(QQ) plots for CDS returns which represent the sample quantiles against theoretical

quantiles from a normal distribution. The plots are essentially symmetric around the

45◦ line (i.e., y = x) but the type of deviations observed at both extremes - left end

is below the line and right end is above the line - re�ect the strong fat-tailedness of

the CDS return distribution.

12The empirical analysis is performed using MATLAB 2012a.
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Figure 4.1: Sectoral iTraxx Europe Indices

(a) Relative Daily Index Mid-points
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(b) Daily Logarithmic Returns of CDS Spreads
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Notes: The top �gure plots the daily levels of iTraxx CDS indices with all series normalized to start

at 1. The bottom �gure plots the daily logarithmic returns.
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Table 4.1: Summary Statistics of Daily Logarithmic Return

Auto Cons Energy Inds TMT SnrFin SubFin

Mean 0.043 0.057 0.108 0.065 0.057 0.168 0.167
Median -0.009 -0.051 0.000 -0.097 0.000 -0.033 -0.055

Max 199.852 116.015 92.803 154.846 108.893 45.735 55.641
Min -104.745 -69.126 -64.028 -42.751 -96.817 -42.202 -43.987

Std. Dev. 10.801 8.388 8.293 7.930 12.436 7.996 8.358
Skewness 4.650 1.657 0.837 5.929 0.364 0.206 0.485
Kurtosis 114.039 42.502 21.604 115.302 20.623 10.079 11.149

Observation 1370 1370 1370 1370 1370 1370 1370

Jarque-Bera 708751 89702 19917 727951 17760 2870 3845
p-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Ljung-Box(10) 57.580 152.430 62.241 21.782 205.577 59.512 61.490
p-value 0.000 0.000 0.000 0.001 0.000 0.000 0.000

ARCH(10) 47.953 165.736 113.140 45.941 227.697 121.797 162.844
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes: This table presents summary statistics of the logarithmic daily return series (%) used over

period from 20 September, 2005 to 11 March, 2011.

Figure 4.2: QQ Plot of Normal Distribution
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Notes: This �gure displays the quantile-quantile plot of the sample quantiles versus theoretical

quantiles from a normal distribution.
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4.4.2 Joint probability density function

We begin by identifying appropriate lags for the ARMA-GARCH �lter, assuming

Gaussian innovations, in order to remove serial correlation and heteroskedasticity

in the CDS returns. The �ltered returns are essentially iid as borne out in the

autocorrelation functions plotted in Figure 4.3.

Using the lag orders thus identi�ed, we now compare the ARMA-GARCH model

under various assumptions for the innovations, Gaussian, Student's t , GED and their

skewed versions.13 The maximized log-likelihood value (LL), the Akaike Information

Criterion (AIC) and the Bayesian Information Criterion (BIC) are employed as gauge

of �t. As shown in Table 4.2, the best univariate return distributions or marginals are

achieved with GED. Unsurprisingly, the Gaussian distribution provides a very poor

�t. The parameter estimates of the best �t ARMA-GARCH-GED model are shown

in Table 4.3.14The GED tail-thickness parameter κ is signi�cantly below 2 for all CDS

indices implying heavier tails than the normal. The Ljung-Box Q(10) test and ARCH

LM(10) test indicate no serial correlation or volatility clustering, respectively, in the

�ltered returns.

The QQ plot is employed to visually check whether the �ltered returns come from

the GED distribution. Figure 4.4 shows the quantiles of empirical distribution against

the hypothesized GED distribution indicating that the central quantiles �t fairly well

in all return series. It can be seen that, while a fairly good �t is achieved in the

high-density (central) area for all �ltered returns, this is not so in the low-density

(tail) areas. The deviations at far-ends indicate that the tails may have di�erent

characteristics with the central areas of distribution and ignoring this fact by simply

using the same theoretical distribution to describe the whole sample may result in

misspeci�cation.

13The identi�ed ARMA lag orders are p = q = 0 for all sectors except Cons and SnrFin for which
p = 0, q = 1, and p = 2, q = 0, respectively. The identi�ed GARCH lag orders are m = n = 1
throughout.

14Although the skewed GED �ts the Auto and �nancial CDS index returns slightly better according
to the AIC, given the much higher computational costs of this distribution, it is reasonable to focus
on the GED throughout.
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Figure 4.3: Correlograms of ARMA-GARCH �ltered returns
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Table 4.2: Univariate Model Selection
Auto Cons Energy Inds TMT SnrFin SubFin

N
or
m
al LL -4488.55 -4098.73 -4380.40 -4126.77 -4515.24 -4248.02 -4162.53

AIC 8987.10 8207.47 8770.80 8261.53 9040.78 8508.05 8337.07
BIC 9013.21 8233.58 8796.92 8282.42 9066.59 8539.38 8368.40

S
k
ew

N
or
m
al LL -4498.16 -4096.97 -4424.82 -4112.46 -4554.16 -4247.68 -4164.53

AIC 9006.33 8205.95 8859.64 8234.91 9118.33 8509.35 8339.07
BIC 9032.44 8237.28 8885.75 8261.02 9144.44 8545.91 8365.18

S
tu
d
en
t'
s
t LL -4030.65 -3881.12 -4060.32 -3727.89 -4030.11 -4093.18 -4058.75

AIC 8071.30 7774.24 8132.65 7465.77 8076.21 8200.37 8131.49
BIC 8097.41 7805.58 8163.98 7491.89 8107.55 8236.93 8168.05

S
k
ew

S
tu
d
en
t'
st LL -4029.81 -3881.12 -4059.62 -3727.44 -4030.96 -4091.97 -4057.62

AIC 8070.62 7776.23 8133.24 7466.89 8075.92 8199.95 8127.26
BIC 8102.96 7812.79 8169.80 7498.22 8112.48 8241.73 8158.60

G
E
D LL -4004.18 -3844.70 -4005.89 -3708.94 -3866.20 -4089.02 -4048.21

AIC 8018.36 7701.40 8021.77 7427.88 7742.40 8192.05 8110.42
BIC 8044.47 7732.74 8047.88 7453.99 7768.52 8228.61 8146.98

S
k
ew

G
E
D LL -4004.48 -3844.70 -4005.91 -3708.92 -3887.20 -4086.18 -4046.24

AIC 8020.95 7703.40 8025.81 7429.85 7748.40 8188.37 8108.49

BIC 8052.29 7739.96 8062.37 7461.18 7784.96 8230.15 8150.27
Notes: This table compares �ve competing marginal distributions �tted to �ltered returns via three

statistical measures: log-likelihood (LL) value, Akaike Information Criterion (AIC) and Bayesian

Information Criterion (BIC) at the optimum. The bold numbers denote the best selection.
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Table 4.3: Estimated Parameters for ARMA-GARCH-GED model
Auto Cons Energy Inds TMT SnrFin SubFin

Conditional Mean Equation:
Intercept −0.103∗∗ −0.106∗∗ 0.000 −0.051∗∗ 0.000 −0.141∗∗ −0.286∗∗

(0.018) (0.009) (0.000) (0.008) (0.000) (0.014) (0.021)
AR1 - - - - - −0.026∗∗ -

- - - - - (0.001) -
AR2 - - - - - 0.061∗∗ -

- - - - - (0.001) -
MA1 - −0.044∗∗ - - - - -

- (0.000) - - - - -
Conditional Variance Equation:
Intercept 0.096 0.248 0.175 0.111 1.069 0.079∗ 0.080∗∗

(0.077) (0.255) (0.107) (0.097) (0.824) (0.041) (0.035)
ARCH1 0.152∗∗ 0.203∗∗ 0.137∗∗ 0.223∗∗ 0.161∗∗ 0.133∗∗ 0.155∗∗

(0.029) (0.072) (0.035) (0.050) (0.027) (0.030) (0.022)
GARCH1 0.847∗∗ 0.796∗∗ 0.862∗∗ 0.776∗∗ 0.839∗∗ 0.866∗∗ 0.844∗∗

(0.039) (0.091) (0.046) (0.064) (0.069) (0.031) (0.022)
κ 0.722∗∗ 0.782∗∗ 0.613∗∗ 0.789∗∗ 0.398∗∗ 0.952∗∗ 1.038∗∗

(0.065) (0.044) (0.055) (0.057) (0.075) (0.054) (0.064)

Ljung-Box test on standardized residuals:
Q(10) 0.772 0.061 0.176 0.920 0.053 0.054 0.057
Q(15) 0.952 0.338 0.095 0.704 0.062 0.072 0.073
Q(20) 0.773 0.361 0.059 0.097 0.059 0.076 0.129

Ljung-Box test on squared standardized residuals:
Q(10) 1.000 0.954 0.993 1.000 0.429 0.599 0.971
Q(15) 1.000 0.971 0.999 0.922 0.753 0.770 0.997
Q(20) 1.000 0.640 0.953 0.970 0.883 0.739 0.997

ARCH LM test:
ARCH(10) 0.948 0.920 0.676 0.860 0.067 0.363 0.930
ARCH(15) 0.997 0.952 0.951 0.993 0.135 0.651 0.983
ARCH(20) 1.000 0.963 0.992 1.000 0.434 0.786 0.994

Notes: The estimated parameters correspond to the ARMA-GARCH(1,1) return evolution process

with GED residuals according to Eq.(4.1), Eq.(4.2), and Eq.(4.6). κ denotes shape parameter of

GED. The Standard errors are in parentheses. ** and * denote statistical signi�cance at 5% and

10% con�dence level, respectively.
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Figure 4.4: QQ Plot of Generalized Error Distribution
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Notes: This �gure displays the quantile-quantile plot of the sample quantiles versus theoretical

quantiles from a General Error distribution.

To improve how well the marginal models characterize the CDS index returns at

the tails, we resort to EVT and deploy the peaks-over-threshold modeling approach

described in Section 4.2.2. Setting a left (right) tail threshold at the 5th (95th)

quantile15 of the �ltered returns enables about 70 exceedances at each tail to estimate

the GPD parameters. The threshold values and GPD parameter estimates are set

out in Table 4.4.

The shape parameter ξ is signi�cantly positive suggesting that the tails of �ltered

returns conform to a heavy-tailed Pareto Type I distribution. Moreover, the GPD

parameters di�er at the upper and lower tails which indicates asymmetry. TheWelch's

t-test rejects the null hypothesis of symmetry in the scale parameter H0 : βU = βL at

the 5% or 1% in all but one case (Energy) and in the shape parameter H0 : ξU = ξL

in all cases at the 1% level. By comparing the empirical cdf of the tails to the �tted

cdf in Figure 4.5 we can conclude that the estimated GPD �ts quite well the �ltered

15A rule of thumb of determining u outlined by Hull and White (2006) is that u should be
approximately equal to the 5th (95th) percentage of the empirical distribution. Here We follow
McNeil and Frey (2001).
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Table 4.4: Estimates of EVT Model of Upper and Lower Tail Behavior

Auto Cons Energy Inds TMT SnrFin SubFin

uL −1.819 −1.706 −1.768 −1.892 −1.413 −1.681 −1.740
ξL 0.262∗ 0.085 0.288∗ 0.150 0.326∗∗ 0.187∗∗ 0.021

(0.145) (0.137) (0.147) (0.141) (0.153) (0.074) (0.142)
βL 0.857∗∗ 0.833∗∗ 0.723∗∗ 0.838∗∗ 0.741∗∗ 0.801∗∗ 0.731∗∗

(0.174) (0.153) (0.136) (0.156) (0.142) (0.153) (0.138)

uU 1.655 1.755 1.592 1.640 1.527 1.678 1.794
ξU 0.511∗∗ 0.385∗∗ 0.479∗∗ 0.590∗∗ 0.190 0.072 0.201

(0.158) (0.172) (0.188) (0.198) (0.180) (0.142) (0.126)
βU 0.555∗∗ 0.686∗∗ 0.694∗∗ 0.629∗∗ 1.070∗∗ 0.856∗∗ 0.619∗∗

(0.107) (0.141) (0.151) (0.139) (0.232) (0.161) (0.108)
Notes: This table reports the estimated parameters of GPD �tted to approximated i.i.d. residuals

obtained from the ARMA-GARCH �lter with GED innovations. uL(uU ) denotes the threshold at

the 5% (95%) quantile of the empirical distribution of the residuals. ξ and β denote the scale and

shape parameter of GPD from Eq.(4.10) respectively. Subscripts (U/L) indicate the upper/lower

tail. Standard errors are in parentheses. ** and * denote statistical signi�cance at 5% and 10%

con�dence level, respectively.

returns.

Thus far we have devoted all modeling e�orts to the �rst stage which is aimed at

obtaining each univariate or marginal CDS index return distribution. The second-

stage is aimed at characterizing the portfolio multivariate return distribution. For this

purpose, we resort to copula functions whose inputs are the standardized residuals

of the marginal models transformed to uniformly distributed observations via the

integral transform. The estimation method is a semiparametric cdf transformation

which can be thought of as a modi�cation of the Canonical Maximum Likelihood

(CML) method: the high-density (central) area of the margins is transformed via the

non-parametric empirical cdf while the low-density (tail) areas are transformed via the

parametric GPD cdf obtained at the �rst stage. Comparing with the standard CML

method, our approach provides a further �exibility for capturing fat tails observed in

practice. Since there is ample evidence that the degree of dependence among �nancial

asset returns is not constant over time but instead it increases during crash periods,

we implement the copulas both in a static and dynamic (DCC) framework. Four
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Table 4.5: Estimation Result of Copula Models
Static-t DCC-t Static-Gaussian DCC-Gaussian

ν 5.524∗∗ 5.966∗∗ - -
(0.341) (0.369) - -

ψ - 0.064∗∗ - 0.054∗∗

- (0.009) - (0.008)
ϕ - 0.855∗∗ - 0.857∗∗

- (0.294) - (0.031)

LL 1424.921 1635.285 1066.612 1317.927
AIC −2847.944 −3264.569 −2131.224 −2631.854

Notes: This table presents the estimated parameters of copula models, i.e. Gaussian and Student's

t , with two di�erent dependence structures, i.e. static and DCC-type dynamic copula via Eq.(4.11).

Standard errors are in parentheses. AIC denotes Akaike information criterion and LL denotes the

log-likelihood. ** and * denote statistical signi�cation at 5% and 10% con�dence level, respectively.

copula models are thus considered: Gaussian and Student's t in two formulations,

static and dynamic. Table 4.5 sets out the results.

Gaussian copulas underperform Student's t copulas irrespective of the formula-

tion, static or dynamic, as borne out by lower LL and higher AIC values. This can be

attributed to the fact that Gaussian copulas characterize the multivariate distribu-

tion tails poorly and, in particular, they neglect tail dependence. A likelihood ratio

test of the hypothesis H0 : 1/ν = 0 is strongly signi�cant at the 1% level implying

that the Student's t copula is not statistically equivalent to the Gaussian. Both LL

and AIC favor the dynamic copula formulation rather than the static which is further

corroborated by the statistical signi�cance of the DCC copula parameters ϕ and ψ

in Eq. (4.11). A likelihood ratio test rejects the hypothesis H0 : ϕ+ ψ = 1 implying

that the pairwise rank correlations are stationary.

In sum, for the univariate marginals the best �t is provided by the ARMA-

GARCH-GED-EVT model and for the multivariate distribution by DCC Student's t

copula. A portfolio manager uses a model estimated with information available up

to time t in order to forecast (i.e., form an expectation regarding) asset returns at

time t+1, and then deploys either the MV strategy or MCVaR strategy to optimally

allocate her money into a portfolio at the close of day t (or open of day t+1). At
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the end of day t+1 she can evaluate the realized daily return of the portfolio thus

formed. But what will happen if her model wrongly assumes that the distribution

is Gaussian or Student's t? Or wrongly assumes that the joint density is a Gaussian

copula instead of a Student's t copula? Or the model wrongly ignores the dependence

(or time-variation) in asset return dependence? Next section is aimed at addressing

these questions.

4.4.3 Performance of portfolio optimization strategies

To gain some insights into the properties of the proposed MCVaR optimization

methodology compared with the traditional MV approach, we conduct a set of Monte

Carlo simulation experiments. We �rstly draw N=10,000 uniform distributed inde-

pendent random numbers and introduce dependence into them via the in-sample

estimated static or dynamic copulas. Next in order for these random numbers to

mimic the properties of the sample observations as much as possible, we transform

them by inverting the cdf , namely, applying the interpolation method to invert the

empirical cdf and the inverse distribution function for the Generalized Pareto cdf .

Finally, each series of random numbers are used to �t univariate (marginal) ARMA-

GARCH models from which one-day-ahead returns are predicted. See Appendix 4.C

for further details.

4.4.3.1 One-step-ahead forecasts using the entire sample

We begin by assuming that the portfolio manager employs the overall best in-sample

model, namely GARCH-GED-EVT models for the margins together with a DCC-

t copula for the multivariate distribution, in order to simulate the returns. The

models are calibrated in-sample using the full sample of index CDS returns and the

portfolio optimization approach is then deployed based on the expected or one-day-

ahead predicted (ex ante) returns for March 12, 2011. For simplicity, short-selling is

not allowed. The resulting curves are shown in the �mean return versus 5% CVaR�

space (or mean-CVaR space for short) in Figure 4.6. One curve is the MV e�cient
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Figure 4.6: Optimal Portfolio E�cient Frontier at 5% Con�dence Level
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Notes: This graph shows the e�cient frontiers generated by the MCVaR (solid line) and the MV

(dash line) models with risk measure CVaR at 5% con�dence level. The stars denote the individual

index in the return-CVaR space. Auto has the lowest return and highest CVaR and is far beyond

the range of the graph. The diamond denotes the equal-weight portfolio.

frontier (dash line) and the other curve is the MCVaR e�cient frontier (solid line).16

The stars in Figure 4.6 denote the individual CDS index constituents in the return-

CVaR space. It is clear that both the MV and the MCVaR portfolio allocation strate-

gies make investors better o� than the naive one (diamond) that invests equally in

each CDS index and can only generate a negative return with high tail risk. For each

return level, the MV optimized portfolio has larger CVaR than the MCVaR optimized

portfolio which, in turn, implies that investors who follow the mean-variance strategy

are more vulnerable to extreme tail-event losses. As we move upwards alongside the

return-CVaR e�cient frontiers, the MV and MCVaR optimized portfolios become

closer and eventually coincide because all portfolios converge to the single-asset port-

folio (Cons CDS index in our setting) with the largest return. The �ndings are in line

16Since the e�cient frontier of MV is originally in the mean-variance space while that of MCVaR
is in the mean-CVaR space, in order to make the two directly comparable we map the former onto
the same mean-CVaR space. To do this, using the simulated returns at time t+1 we obtain the
optimal weights of portfolios on the MV e�cient frontier and then calculate the 5% CVaR of the
thus simulated optimal portfolios.
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Figure 4.7: Portfolio Optimal Frontier: Con�dence Level of CVaR
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Notes: This graph shows the e�cient frontiers generated by the MCVaR (solid line) and the MV

(dash line) models with risk measure CVaR at 10% (in green), 5% (in blue) and 1% (in red) con�dence

levels.

with the extant evidence suggesting that a MV-optimal portfolio is �near optimal� in

a CVaR sense; see Krokhmal et al. (2002).

We then explore the impact on portfolio allocation of choosing di�erent con�dence

levels α ∈ {0.99, 0.95, 0.90} for the tail risk measure CVaR. The portfolio manager

switches from α = 0.90 to α = 0.99 if she is concerned with more extreme losses. The

results are shown in Figure 4.7. The graph con�rms that the di�erence in the MV

and MCVaR e�cient frontiers magni�es as α increases.

Next we investigate the impact of making di�erent distributional assumptions

regarding the margins. In particular, we presume that the portfolio manager resorts

to Gaussian, Student's t or GED assumptions in the in-sample modeling exercise to

construct expected (or forecasted) returns at t+1. The results reported in Figure 4.8

reveal clear di�erences in the three MCVaR e�cient frontiers.

For a given return level, the 95% CVaRs of optimized portfolios lie in ascending

order for the Gaussian, GED and Student's t marginal models. Since GED provides

the best data �t, as shown in Section 4.4.2, the analysis suggests that investors who

optimize their portfolios wrongly assuming a Gaussian distribution may su�er large
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Figure 4.8: Optimal Portfolio E�cient Frontier at 5% Con�dence Level: Distribution
Comparison
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Notes: This graph compares the e�cient frontiers generated by the MCVaR models with di�erent

margin distributions, e.g. Gaussian (blue line), Student's t (red line), and GED (green line), with

risk measure CVaR at 5% con�dence level.

141



tail-event losses. This is because the Gaussian distribution portrays short tails and

hence, underpredicts the true downside tail risk. In contrast, the Student's t distri-

bution (red line) has polynomial tails and it is heavier-tailed than GED. Therefore,

when the true distribution is GED, the optimized portfolio under the assumption of

Student's t margins will instead overestimate the 95% CVaR, as Figure 4.8 illustrates.

4.4.3.2 Performance of realized portfolios with optimal weights

We then extend the simulation analysis conducted in Section 4.4.3.1 by iterating

the simulations over rolling windows of one year (250 days) in order to gauge the

potential of the two portfolio construction strategies for real risk management. The

methodology in similar to that employed in Gaivoronski and P�ug (2005), but instead

of forecasted one-day-ahead return we incorporate realized returns in our exercise.

Speci�cally, over each rolling window of �xed length (1,118 days), the portfolio

manager calibrates her model in-sample, e.g. the �rst window spans the period from

September 20, 2005 to March 11, 2010 and the ARMA-GARCH models with Gaussian

or GED innovations and EVT for univariate margins and the static/dynamic DCC

Gaussian or Student's t copula models for joint density17 (totally eight combinations)

are estimated. She then uses it to simulate one-day-ahead returns, e.g. the �rst

out-of-sample day on March 12, 2010, following the algorithm described in Appendix

4.C. The exercise is repeated N=10,000 times, i.e. generating N scenarios, and those

forcasted returns are used to generate the MV and MCVaR e�cient frontiers. It

re�ects the portfolio manager's judgments on the optimal portfolio allocation at the

end of each window. The optimal weights at the minimum risk level, i.e. those in

the left end of the frontier, associated with the observed returns of the sectoral CDS

index constituents are then used to calculate the portfolio's realized returns. As a

result, she collects 250 days of portfolio's realized returns under di�erent investment

strategies from March 12, 2010 to March 11, 2011.

17In order to avoid too many modeling approaches which makes the reporting of results cumber-
some, we constrain the comparison of distributional assumptions for the marginal models to the
Gaussian (in the spirit of the mean-variance framework) and the GED that provides the best data
�t.
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The statistics reported in Table 4.6 include the mean, standard deviation, α-VaR

and α-CVaR, for α = 0.95, of the realized optimal portfolios under the MV or MC-

VaR strategies over the out-of-sample period. It is apparent that at the minimum

risk level the mean returns of MCVaR portfolios are slightly higher than those of

MV portfolios. Similarly, the lower standard deviation and 95% CVaR suggest that

the MCVaR portfolios are relatively less risky. Furthermore, the superior return-risk

tradeo� associated with the optimal MCVaR portfolios is robust regardless of the

choice of in-sample model, i.e. in seven out of eight in-sample models we can ob-

serve higher return-risk ratios of the MCVaR portfolios than those associated with

the MV portfolios.18 For instance, for portfolios modeled assuming GED margins

and dynamic Student's t copula dependence, we obtain return-risk ratios of 2.395%

(mean/standard deviation) and 1.291% (mean/CVaR) for the MV optimal portfolio,

whereas the corresponding ratios for MCVaR portfolios are 2.574% and 1.396% re-

spectively. We �nd that the in-sample model does not seem to play an important

role here as for a given model speci�cation the MCVaR strategy can generate more

attractive returns than the MV approach does at the same risk level. Since the MC-

VaR strategy aims to avoid extreme large losses, it in turn reduces the volatility of

portfolio returns and produces a better return-risk tradeo� as expected.

Regarding the impact of the assumptions made in simulating the one-day-ahead

returns, we �nd that the resulting optimized realized portfolios using GED margins

have higher return-risk ratios than when Gaussian margins are assumed. Since GED

has heavier tails than the Gaussian, this implies that the MCVaR strategy becomes

more e�cient in asset allocation when the heavier tails are introduced. The copula

dependence structure assumed is another key aspect. When the portfolio multivariate

distribution is characterized by a Student's t copula the resulting return-(C)VaR

frontier is shifted to the left relative to that obtained using a Gaussian copula, which

18There is one exception, the portfolio with GED margins and DCC Gaussian copula for which
the return-risk ratio is lower for standard deviation and VaR but higher for CVaR. But the later
metric is gaining prominence among bank risk managers who are seeking to avoid catastrophic losses
because it is more sensitive than VaR (and standard deviation) to the shape of the tail distribution in
a bell curve of potential losses. Reassuringly, the return-CVaR ratio con�rms a better performance
of the MCVaR model than the MV model throughout.
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Table 4.6: Statistics of Realized Optimal Portfolio Returns
MV return

risk
MCVaR return

risk
MV return

risk
MCVaR return

risk

GED Margins Gaussian Margins
Static Gaussian Copula

Mean 0.125 - 0.131 - 0.079 - 0.104 -
Std Dev 8.469 1.474 8.404 1.557 8.071 0.977 7.724 1.351

V aR5% 8.072 1.546 8.106 1.614 7.393 1.067 7.505 1.391

CV aR5% 14.334 0.871 14.027 0.933 13.157 0.600 12.903 0.809

Static t Copula
Mean 0.136 - 0.137 - 0.108 - 0.120 -
Std Dev 8.440 1.617 8.405 1.632 8.456 1.277 8.144 1.473

V aR5% 8.956 1.524 8.059 1.702 7.715 1.400 7.634 1.572

CV aR5% 14.630 0.933 14.597 0.940 13.336 0.810 12.941 0.927

DCC Gaussian Copula
Mean 0.141 - 0.140 - 0.104 - 0.125 -
Std Dev 6.891 2.044 6.861 2.041 6.759 1.532 6.705 1.863

V aR5% 8.343 1.689 8.604 1.627 7.967 1.300 7.897 1.582

CV aR5% 13.240 1.064 12.866 1.088 12.369 0.837 12.319 1.014

DCC t Copula
Mean 0.176 - 0.188 - 0.120 - 0.135 -
Std Dev 7.350 2.395 7.299 2.574 7.229 1.662 7.219 1.865

V aR5% 8.327 2.114 8.564 2.193 7.524 1.597 7.371 1.827

CV aR5% 13.636 1.291 13.453 1.396 13.028 0.922 12.959 1.039
Notes: This table presents the statistics of realized optimal portfolio based on the MV and MCVaR

strategies with risk measure of CVaR at 5% con�dence level over 12 March, 2010 to 11 March, 2011.

All realized portfolio at t+1 are constructed based on the optimal asset weighs of the minimum risk

MV and MCVaR portfolios with simulated returns (N = 10, 000) at t+1 where t+1 denotes the day

point over 12 March, 2010 to 11 March, 2011. The simulations are based on the models calibrated

in-sample with 250 rolling windows. Two innovation distribution, i.e. Gaussian and GED, and

two copulas, i.e. Gaussian and Student's t , in static and dynamic DCC settings are considered for

the in-sample models. Mean, Std Dev, V aR5% and CV aR5% denote the expected mean, standard

deviation, VaR and CVaR at 5% level of realized portfolios. All �gures denote percentage.
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stems from the fact that the latter ignores the tail dependence. Moreover, adopting

dynamic copulas as opposed to static copulas enhances the mean realized returns

and return-risk ratios of the optimized portfolios. For example, the mean return

(return-CVaR ratio) of optimized MCVaR portfolios via DCC t copulas is 0.188%

(1.396%) compared with 0.131% (0.940%) using static t copulas. Comparing with

static/constant parameter copulas, a crucial advantage of dynamic copulas is that

their conditional (up to current time t information) speci�cation makes them more

able to re�ect changes in dependence structure among assets so that the portfolio

manager can quickly adjust her assets allocation to avoid large risks. To sum up,

an accurate description of the portfolio's multivariate return distribution which, in

turn, hinges on a good characterization of the marginal distributions has an impact

on portfolio optimization.

4.5 Conclusion

Even though there is ample consensus that asset returns deviate from the Gaussian

assumption and have time-varying and nonlinear interdependence features such as

tail dependence, many �nancial applications still rely on simple models that overlook

these stylized facts and, as a result, underestimate the probability of catastrophic

losses. The focus of this study is portfolio optimization. We advocate the combination

of a heavy-tailed ARMA-GARCH �lter and an EVT peaks-over-threshold approach

to model the univariate marginal distributions, and a dynamic Student's t copula

model to obtain a �exible multivariate portfolio return distribution that accommo-

dates time-varying tail dependence. Portfolios thus characterized are simulated to

investigate the performance of two allocation strategies, the classical mean-variance

strategy that represents the cornerstone of modern portfolio theory and the mean-

CVaR strategy that relies on conditional Value-at-Risk (or expected shortfall) as

relevant risk measure. The analysis is based on both out-of-sample forecasted returns

and realized returns.

The �ndings suggest that mean-CVaR optimized portfolios o�er a more attrac-
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tive return-risk tradeo� than mean-variance optimized portfolios. The discrepancy

between the two optimization strategies increases with the con�dence level associ-

ated to the CVaR measure. We show that portfolio management is in�uenced by the

asset return distributions (margins) and the dependence structure (multivariate dis-

tribution) assumed in the one-day-ahead returns simulations. The superiority of the

mean-CVaR optimized portfolio relative to the mean-variance optimized portfolio is

more strongly revealed when we introduce in the Monte Carlo simulation of one-day-

ahead returns the heavy tailedness of asset return distributions and the dynamic tail

dependence in portfolio returns. An important implication arising out of these con-

clusions is that risk managers are more capable of averting catastrophic losses while

maintaining the same desired return level if they rely on the mean-CVaR portfolio

allocation approach instead of the classical mean-variance strategy.
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Appendix

4.A Coherent Risk Measures

Artzner et al. (1999) advocated that good risk measures need to have below list of

properties.

Theorem (Risk Measure). Consider a set of random variables X. A function g :

X → R ∪ {+∞} is called a risk measure is it satis�es:

(i) Monotonous: if A 6 B, A,B ∈ X then g (A) 6 g (B) ;

(ii) Subadditive: if A,B,A+B ∈ X then g (A+B) 6 g (A) + g (B) ;

(iii) Positively homogeneous: if A ∈ X,α > 0 then g (αA) = αg (A) ;

(iv) Translation invariant: if A ∈ X,α ∈ R then g (A+ α) = g (A)− α.

VaR satis�es all but subadditivity. In other words it might be possible to have a

portfolio with higher VaR than the sum of the individual VaR of portfolio components.

4.B Multivariate Elliptical Copula

Gaussian copula A n-dimensional Gaussian copula is equivalent to the multivari-

ate Gaussian joint function with cdf :

C (u1, u2, . . . , un;R) = ΦR

(
Φ−1 (u1) ,Φ−1 (u2) , . . . ,Φ−1 (un)

)
where Φ−1 (u) denotes the inverse of the Gaussian cdf and R is the correlation matrix.

The pdf of this is

c (Φ (x1) ,Φ (x2) , . . . ,Φ (xn) ;R) =
fGa (x1, x2, . . . , xn)∏n

i=1 f
Ga
i (xi)

=

1

(2π)
n
2 |R|

1
2

exp
{
−1

2
X ′ (R−1 − I)X

}
∏n

i=1
1√
2π

exp
{
−1

2
x2
i

}
where fGa denotes the pdf of multivariate Gaussian and fGai is the marginal Gaussian

density. If we make u = Φ (x) and Ψ = (Φ−1 (u1) ,Φ−1 (u2) , . . . ,Φ−1 (un))
′
then the
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above equation can be written as

c (u1, u2, . . . , un;R) =
1

| R | 12
exp

{
−1

2
Ψ′
(
R−1 − I

)
Ψ

}
.

Student-t copula A n-dimensional Student's t copula C is a n-dimensional dis-

tribution function on [0, 1]n with standard uniform marginal distributions and cdf as

follows

C (u1, u2, . . . , un; ν,R) = TR,ν
(
t−1
ν (u1) , t−1

ν (u2) , . . . , t−1
ν (un)

)
=

∫ t−1
ν (u1)

−∞
· · ·
∫ t−1

ν (un)

−∞

Γ
(
ν+n

2

)
Γ
(
ν
2

)√
(πν)n det (R)

(
1 +

X ′R−1X

ν

)− ν+n
n

dx

where t−1
ν (u) denotes the inverse of the Student's t cdf, ν is the degree of freedom

and R is the correlation matrix. The corresponding pdf can be derived as

c (u1, u2, . . . , un; ν,R) =
f t (x1, x2, . . . , xn)∏n

i=1 f
t
i (xi)

= | R |−
1
2

Γ
(
ν+n

2

)
Γ
(
ν
2

) [
Γ
(
ν
2

)
Γ
(
ν+1

2

)]n (1 + 1
ν
Ψ′R−1Ψ

)− ν+n
n

Π2
i=1

(
1 + 1

ν
Ψ2
i

)− ν+1
2

where Ψ =
(
t−1
ν1

(u1) , t−1
ν2

(u2) , . . . , t−1
νn (un)

)′
.

4.C Monte Carlo simulation for 1-day-ahead returns

The empirical distribution of 1-day-ahead returns is obtained as follows:

1. Find the Cholesky decomposition AK×K of the forecasted rank correlation ma-

trix R̂t+1 with 1s in the diagonal and with pairwise 1-day-ahead Kendall's rank

correlations as o�-diagonal elements from a copula model estimated using in-

sample data for the K-asset portfolio.

2. Simulate K independent standard normal random variates z = (z1, . . . , zK)′.

3. Form the vector b = Az where b=(b1, . . . , bK)′are dependent random variables
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with dependence introduced through the matrix A obtained in Step 1.

4. Determine the components (u1, . . . , uk) = (Φ (b1) , . . . ,Φ (bK)) of Gaussian cop-

ula where Φ is the normal cdf. The components of Student's t copula are

obtained as (u1, . . . , uK) = (tν̂ (c1) , . . . , tν̂ (cK)) where tν̂ is the Student's t cdf

with ν̂ degrees of freedom estimated in sample and (c1, . . . , cK)′ =
√
ν√
s
b where s

is a random variable simulated from a χ2
ν̂ distribution and s is independent of

z.

5. Obtain the standardized asset returns (q1, . . . , qK) =
(
F̂−1

1 (u1) , . . . , F̂−1
K (uK)

)
,

where F̂−1
k is either the inverse empirical cdf of standardized residuals for the

high-density (or central) area or the inverse GPD cdf of the in-sample data xk,

k ∈ {1, . . . , K}, for the tails.

6. Rescale and relocate the standardized returns by using the ARMA-GARCH

forecasts of conditional mean or location µ̂t+1 and conditional variance or scale

σ̂t+1 based on the in-sample data as (r1,t+1, . . . , rK,t+1) =
(
µ̂1,t+1 + q1

√
σ̂1,t+1,, . . . ,

µ̂K,t+1 + qK
√
σ̂K,t+1

)
.

7. Repeat N = 10, 000 times the above steps 1 to 6 to obtain the empirical (sim-

ulated) distribution of one-day-ahead returns {r1n,t+1, . . . , rKn,t+1}Nn=1 for each

of the K assets.
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5
Conclusions and Suggestions for Future Research

This chapter summarizes the entire thesis and o�ers suggestions for future research.

The main subject of this thesis was to provide further insight into some important

topics of modern risk management practice by deploying advanced quantitative tech-

niques.

5.1 Concluding Remarks

As one of the code activities of banks, Basel Accords � Basel I (1988), Basel II (2004)

and the looming Basel III (2011) � have changed and are still changing the way that

banks address the management of risk. Under the Basel Accord frameworks banks

are required to hold adequate risk-sensitive minimum capital in order to safeguard

its solvency and overall economic stability. As a response to the recent global �nan-

cial catastrophes, the crisis-driven Basel III aims to make the banking sector more

resilient to stress market conditions. This thesis grouped with three empirical studies

provides the economic relevance to the Basel III's macroprudential goal from three

directions: in Chapter 2, we proposed a MMC model of credit rating migration to

promote countercyclical capital bu�ers in order to dampen procyclicality; in Chapter
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3, a �exible regime switching copula model is developed for more accurately char-

acterizing portfolio dependence. The regime-switching dynamic dependence enable

more realistic stress testing scenarios with important implications for the determina-

tion of bank capital levels; in Chapter 4, we advocate a novel EVT-dynamic copula

MCVaR approach to reduce portfolio's large downside risk for improving its e�ciency

and resilience to extreme market environment. The detailed �ndings of each chapter

are set out below.

5.1.1 Business-cycle adjusted credit migration for calculating

capital requirement

In Chapter 2 we explored the concept of credit rating migration which plays a key role

in calculating the risk of banks' loan books as well as determining banks' risk capital

allocation under the Basel framework. We �rstly briefed the two classical estima-

tion approaches, the discrete-time cohort method and its continuous-time extension,

the hazard rate model, that both assume rating migrations are time-homogeneous

and follow a Markov chain process. We then loosened the strong assumption by

allowing time-heterogeneity so that our advocated MMC model of credit rating mi-

gration explicitly recognized the stochastic evolution of business cycles. We examined

the performance of the MMC estimator against the naive cyclical counterpart and the

classical through-the-cycle estimators in three di�erent frameworks: the purely statis-

tical framework with emphasis on in-sample estimation accuracy; the forward-looking

framework evaluating forecast ability through loss functions; and the economic im-

plication of capital attribution.

The analysis was based on 26-years of S&P marketwide and sectoral rating data

and concluded that the MMC approach yields more reliable default risk measures

than the naive cyclical estimator does, especially in economy contraction. The fore-

cast accuracy gains of the MMC estimator over its naive counterpart become more

prominent as the time horizon lengthens. The economic application revealed that

MMC and naive cyclical approaches both suggest a higher level of bu�er than those
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from classical through-the-cycle estimators to against risks in economic contraction,

but it was statistically and economically overestimated by the naive estimator com-

pared with the MMC approach. We also found banks using the MMC estimator

would counter-cyclically increase capital by 6% during economic expansion and free

up to 17% capital for lending during downturns compared to the naive estimator.

Thus, the MMC estimator is well aligned with the Basel III macroprudential ini-

tiative to dampen procyclicality by reducing the recession-versus-expansion gap in

capital bu�ers.

5.1.2 Regime switching copula for characterizing CDS-equity

dependence

Chapter 3 investigated the key concern of risk management � the dependence � in the

context of dynamic linkages between credit risk swap index and the corresponding eq-

uity market. The accurate measurement of the dependence between the two markets

is of importance to risk managers for setting trading limits, or traders for hedging the

market risk of their credit portfolio positions, or policymakers to set capital rules in

stressed market conditions. It is also closely relevant to the Basel II Accord and new

Basel III Accord for better calculation of risk capital requirements of credit portfolios.

In this chapter we proposed a time-varying regime switching copula model, whose

parameters are allowed not just to conditionally depend on historical return comove-

ments but also to vary between regimes, in order to investigate the importance of

various dynamic patterns in the dependencies between the iTraxx CDS market and

the underlying stock market return and volatility. The regime-switching copula model

was compared with purely dynamic and static copula models. Using daily data for

both marketwide and sectoral indices from the two markets, we found the CDS mar-

ket is negatively correlated with stock return and positively correlated with stock

return volatility. We also documented asymmetric behavior, namely, a regime of high

dependence during "crisis" periods characterized by extreme adverse comovements in

the two markets alternates with a regime of low dependence during more "normal"
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periods. The high dependence regime coincides with the credit crunch and the Euro-

pean sovereign debt crisis. In-sample statistical analysis reveals the relevance of the

regimes at the center and at the tails of the joint distribution. Ignoring such e�ects

is shown to lead to underestimation of dependence in periods of crisis.

An economic evaluation framework was also deployed to examine the performance

of the aforementioned copula models by determining whether they could produce

accurate VaR estimates via Monte Carlo simulations. The superiority of the regime-

switching approach over purely dynamic or static copula is underlined via out-of-

sample VaR backtesting relevant for risk management. Our results have important

implications for banks' in-house calculations of capital requirements and point into a

clear direction for improvement of banks' stress testing platforms.

5.1.3 Downside extreme risk for portfolio optimization

Chapter 4 studied the impact of the choice of risk measure on optimal portfolio

selection with a focus on downside extreme risks. The lessons from the recent �nancial

crisis indicate that some undesirable extreme events, which are naturally rare, at

the far-end tails will largely contribute to the potential losses, therefore a good risk

management framework should control for such events.

In this chapter we advocated a hybrid method, combining a heavy-tailed GARCH

�lter with an EVT approach for providing more realistic descriptions of stylized facts

such as leptokurtosis, asymmetry, auto-correlation and heteroskedasticity of univari-

ate asset returns. A dynamic t copula model was then employed to glue these assets

in a portfolio setting and to provide timely explorations of the correlation evolution

especially the dependence at tails. We optimized risk portfolio with CVaR, which only

concerns the downside losses, as the alternative risk measure versus the conventional

standard deviation measure of the old-school Markowitz's mean-variance framework.

To investigate the performance of the two portfolio allocation approaches, i.e. MV and

MCVaR, a set of Monte Carlo out-of-sample simulation experiments was conducted.

The results suggested the traditional MV approach can only produce suboptimal

protection against extreme losses thus it should not be solely used, especially when
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prevention of large downside risk is a central concern. The performance of portfolio

optimization is jointly determined by the assumption of the asset return distribution,

the dependent structure and the choice of risk measures. It implies that a more

realistic model with the ability to give better description on the asset components and

their comovements can always bene�t making proper decision of portfolio selection.

Finally the horse-racing experiment of risk-return allocation on realized portfolios

provided evidence that MCVaR models incorporating heavy tails in asset level and

tail dependence in portfolio level can signi�cantly increase the performance of portfolio

optimization. We concluded that models taking care of the non-normality that we

observed in the real-world may reduce the portfolio's large downside risk, improve its

e�ciency and resilience to extreme market environment, therefore it has meaningful

empirical implications for risk hedging and portfolio investments.

5.2 Further Research

In the �nal section of this thesis, we list below a couple of possible directions for

future extensions.

One of the potential limitations of the MMCmethod developed in Chapter 2 is that

we implicitly assumed the regime-depended rating migration process is immediately

triggered upon the change of business cycle. But these two Markov process might not

work simultaneously, namely there might be some lag reaction of one process relative

to the other. Thus, a reasonable extension to cope with this limitation would be

to identify such lag e�ects before employing the MMC model. Another interesting

extension would be some attempts to add non-Markovian features, such as rating

momentum, on the current time heterogeneity content. But one can expect that the

problem setting would de�nitely become more complicated.

One of the potential weaknesses of the models proposed in the Chapter 3 is the

highly computational complexity. Since the models involve a large number of parame-

ters, it takes average 2.5 minutes for calibration which is about �fteen (two hundreds)
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times longer than that for dynamic (static) copulas.1 But this speed could be no-

tably shortened by either rewriting our MATLAB code in C/C++, or rewriting some

of the functions in C/C++ and calling them from MATLAB. Secondly, as we have

mentioned in the Chapter 3, one of the challenges the dynamic copula models face is

how to extend them to a high-dimensional setting. It is straightforward for DCC-type

copulas, but is not clear for ARMA-type copulas. Another limitation of the methods

employed here is that we implicitly assume the dependence structure is identical for

all pairs within the portfolio and they enter the high dependence regime simultane-

ously. For instance, the pair dependencies of A-B, B-C and C-A in a three asset (A,

B and C) portfolio are assumed to be described by the same copula function. In real

life we might need a more �exible model to allow for di�erent dependence patterns.

For example, the pair of A-B can be characterized by a Student's t copula, whereas

a Clayton copula is for the pair of B-C and each of them has individual parameters

to control the timing of entering the high dependence regime. It is the idea of the

so-called regime-switching Vine copula proposed very recently, but still limited in the

static context. Hence it will be interesting to introduce dynamics somehow to the

Vine copulas.

Finally, the high computational cost once again becomes one of disadvantages of

the methods proposed in Chapter 4. The computational complexity increases rapidly

when the new risk measure, i.e. CVaR, is employed or when the size of samples and

portfolio components becomes large. The computational burden may be eased by

deploying the smoothing algorithms developed by Alexander et al. (2006) and Zhu

et al. (2009) that their approaches are shown to be computationally signi�cantly more

e�cient than the linear programming method for the CVaR optimization problem.

Secondly, the Chapter can be extended to allow investors to have multiple holding

periods and have no short-selling restrictions. The extended model should be able

to answer how the portfolio allocation strategy should be constructed to re�ect in-

vestor's predication on the market's long-term or the short-term behavior. Another

1The results are based on our programs running with MATLAB 2010b on an Intel Core i3-380M
laptop. The optimization function fmincon took 83% of the overall computational time in order to
�nd a global minimum value.
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possible avenue of future work inspired by extreme value theory may be to model the

dependence of extreme events separately from that at the center of the joint distribu-

tion. Very recently a small number of pioneering studies has started working on this

area by using the method of extreme value copula. This �eld is still at the very early

stages of development and, of course, only con�ned to a static setting. Hence, it will

be interesting to extend this idea into a dynamic framework and delve into whether

such an approach would bene�t risk management.
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