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Abstract—Despite the widespread adoption of software diversity in some industries, there is still 
controversy about its benefits for reliability, safety or security. We take the prospective of diversity as a 
risk reduction strategy, in face of the uncertainty about the dependability levels delivered by software 
development. We specifically consider the problem faced at the start of a project, when the assessment 
of potential benefits, however uncertain, must determine the decision whether to adopt diversity. Using 
probabilistic modelling, we discuss how different application areas require different measures of the 
effectiveness of diversity for reducing risk. Extreme values of achieved reliability, and especially, in 
some applications, the likelihood of delivering “effectively fault-free” programs, may be the dominant 
factor in this effect. Therefore, we cast our analysis in terms of the whole distribution of achieved 
probabilities of failure per demand, rather than averages, as usually done in past research. This 
analysis highlights possible and indeed frequent errors in generalizations from experiments, and 
identifies risk reduction effects that can be proved to derive from independent developments of diverse 
software versions. Last, we demonstrate that, despite the difficulty of predicting the actual advantages 
of specific practices for achieving diversity, the practice of “forcing” diversity by explicitly mandating 
diverse designs, development processes, etc., for different versions, rather than just ensuring separate 
development, is robust, in terms of worst-case effects, in the face of uncertainty about the reliability 
that the different methods will achieve in a specific project, a result with direct applicability to 
practice.  

Keywords- software diversity; multiple version software; software fault tolerance; forced diversity; 
diversity-seeking decisions; distribution of reliability; fault-freeness 

I. INTRODUCTION 
In fault-tolerant systems, the risk of design faults, replicated in the redundant 

components, causing common failures can be reduced by diversity among the redundant 
components. In the simplest case, two or more versions of these components are built 
independently, and connected in an architecture such that the system will perform 
correctly, or safely, if a certain quorum of them does. In addition to trying to ensure 
independence between the developments of the version, measures are usually applied for 
making the development processes and the designs of diverse programs as different as 
possible [1-4]. We will call these latter techniques, collectively, “forcing” diversity, and 
diversity obtained by just keeping the version developments separate, “unforced” 
diversity. 

Diversity is an established principle in some critical applications of computers, e.g. in 
nuclear safety and in aviation; the recent automotive safety standard ISO26262 [5] lists 
“diverse design” as “highly recommended” as a “Mechanism for error detection at the 
software architectural level” at ASIL D (the highest “Automotive Safety Integrity Level”). 
There have been extensive studies about its effectiveness, to address questions like: how 
much advantage can one expect from a redundant configuration using diversity, compared 
to a single program? However, the usefulness of software diversity is still a controversial 
topic in many forums. 

There are really two, quite distinct, decision problems with any technique for 
improving dependability: 

• deciding which techniques to apply, in which form. That is, predicting what results 
should we expect from applying the technique. The actual dependability of the 



final product is a priori uncertain, but do the likely results – e.g. the range of likely 
improvement – justify “betting” the cost of applying a specific technique (as an 
additional cost, or rather than spending on another dependability-enhancing 
technique – e.g., choosing between investing in massive extra V&V of a single 
program, or in multiple versions)? 

• once a product is finished, when assessing how dependable this specific product is, 
how can we use the fact that the technique was applied to improve our confidence 
in the product’s dependability, or reduce the cost of achieving this confidence? 

The two questions are obviously related. For critical applications, no developer would 
make important design choices without an expectation that the end client, and/or the 
regulators for the application sector, will accept them; the developer will generally try to 
make choices that will gain “credit” with these judges, e.g. choices recommended by 
safety-related standards. In the probabilistic assessment of the final product, if applying a 
rigorous Bayesian process a pre-development assessment would contribute to prior 
distributions, to be updated with detailed knowledge about the final product. However, this 
pre-development assessment can only be imprecise. Establishing a software development 
process, a set of techniques to apply, and a product architecture and even choosing the 
development team and organisation does not determine the exact level of dependability of 
the final product. There are known counterexamples to the hypotheses that additional 
dependability techniques always reduce bugs, improve dependability, or achieve the 
dependability levels they are meant to achieve [6, 7]. To be considered good for 
dependability, a software engineering technique should certainly deliver an improvement 
in the statistics of achieved dependability, but cannot reasonably be expected to deliver a 
specific level, or specific degree of improvement, at every use. 

Developers have to live with the impossibility of precise answers, “applying this 
technique, in this organization, will deliver this failure rate”, to the first question; but even 
rather imprecise answers will often be enough. For instance, knowing that a technique 
tends to achieve its intended result in 99 out of 100 products may be enough to justify the 
cost of using it, e.g. because the gamble is no worse than other business gambles; or 
because the extra cost of the 1 product in 100 that requires extra work to satisfy its 
customers can be subsidized by the successful ones.  

Here we address this first question: what reliability improvements will diversity 
deliver? As often with techniques for high reliability, an empirical, usefully precise answer 
is now unfeasible: there are not enough data. Even less feasible would be an empirically 
based answer for those “u-high reliability” products [8, 9], for which estimating the 
reliability of even one product with the desired precision is unfeasible, and which are one 
of the intended areas of application for diversity. We describe instead mathematical 
considerations that we believe useful for practitioners, although – obviously – 
mathematical truths can only be trusted to apply if the assumptions on which they are 
based are true. 

We aim to achieve various benefits: gaining clarity about the relationship between 
commonly used estimates of the benefits of diversity and the risk measure of actual 
interest; improving the methodological approach to analyzing experimental results in this 
area; and direct indications to help decisions about whether and how to apply diversity. 

For a start, how should one describe the range of improvement from diversity: which 
measures should one use?  A good way of framing the problems is that of the risk that the 
developer takes, and how much this risk is reduced by precautions like diversity. 
Uncertainty about what the development will produce naturally leads to seeing product 
development as a stochastic process, followed by operation, another stochastic process. 
One invests in dependability-enhancing techniques to reduce the probability of undesired 
events, e.g., of experiencing too many system failures in operation. 

The early proposals for software diversity did not attempt to quantify the advantages to 
be expected, but some claims were made that independent development of the versions 
would produce independence between their failures [10]. In the 1980s, an important 



experiment by Knight and Leveson [11] proved this wrong by showing a counter-example, 
and probabilistic models developed by Eckhardt and Lee [12] and Littlewood and Miller 
[13] explained this lack of independence as a general pattern. These models consider that 
there is uncertainty about both the reliability of the individual programs that can be 
combined into fault-tolerant systems, and about that of the fault-tolerant systems 
themselves. Their probabilities of failure are thus random variables. If we call qsingle the 
probability of failure per demand (pfd)1 of a program, and qpair the probability of common 
failure (i.e., of both versions in the system failing on the same demand) of a “1-out-of-2” 
pair of programs (the pair fails only if both programs fail2), Eckhardt's and Lee's result was 
about the expected values of these two random variables, and stated E(qpair)>(E(qsingle))2. If 
all pairs of versions failed independently, we would instead have E(qpair)=(E(qsingle))2. The 
result that E(qpair)>(E(qsingle))2 is explained by similarities between which demands are 
“difficult” for the developers of the diverse versions. Littlewood and Miller pointed out 
that it was possible for such similarities of “difficulty” not to exist, and actually this is the 
goal of the many ways that diversity is pursued [1, 4 ]. It is possible in principle not only 
to achieve E(qpair)=(E(qsingle))2 but even better results, with diverse versions usually having 
negatively correlated failures, even to the point of no two versions ever failing on the same 
demand, so that  E(qpair)=0. However, it is not feasible to tell a priori that the means 
applied to achieve diversity have been so successful, or even successful enough to achieve 
E(qpair)=(E(qsingle))2, and thus it would be prudent (pessimistically) to expect 
E(qpair)>(E(qsingle))2.  

Valuable as the insight from such models is, both to an assessor and in suggesting ways 
of making diversity more effective [14],[15], they do not go very far in addressing the 
developer’s decision problem. If for instance we were to combine two versions with 
qsingle=10-4 pfd into a 1-out-of-2 system, the inequality above leaves open a range of 
possibilities, from diversity being extremely useful (e.g., qpair=10-7), to it being useless 
(e.g., qpair=10-4).  

Several authors have tried to extrapolate from the results of experiments the size of 
likely gains in industrial use. We will discuss serious difficulties with such generalization. 
The problem is not just whether an experiment can be trusted to be representative of the 
industrial application about which we wish to learn. More importantly, it is unclear which 
measures of the effects of diversity in one experiment should be chosen as likely to hold in 
other projects. In looking at these results, it is easy to rely on intuitions that are only 
appropriate for simple distributions of the variables involved, like narrow bell-shaped 
curves; but in reality these distributions are likely to be discrete and irregular. Instead of 
trying to generalize from these data, we state purely mathematical results, that are true if 
the assumptions used are true. We use an example data set from an experiment just to 
illustrate these mathematical facts. 

 In the rest of this paper, we discuss these issues with reference to 1oo2 architectures, 
which despite their simplicity are widespread in practical applications, e.g. self-checking 
pairs in safety critical architectures or duplex servers with fail-silent elements. Section II 
proposes various measures of risk, applied to different environments, and introduces a 
number of probabilistic results, illustrated on the data from a well-known experiment on 
diverse software. Section III focuses on the effects of “forcing” diversity, introducing a 
useful theorem about its effect on the likelihood of achieving target levels of reliability. 
Section 0 sketches scenarios of how the statistics of the pfd distribution affect the gains 
from diversity and their predictability. Our conclusions follow in the last section.  

II. RISK AND DIVERSITY. AN EXAMPLE 
To illustrate the motivations of this paper, we take a set of experimental data and 

subject them to some new analyses. For this example we use the published numerical data 
                                                        

1  These models refer to “on demand” operation, where the probability of failure concerns a single call 
or “demand” on the system considered – the probability of interest is thus the pfd – although extensions to the 
continuous-time case are not problematic. We also use the “on demand” scenario.  

2  We will use the abbreviation 1oo2 for “1-out-of-2”.  



from Knight’s and Leveson’s widely cited experiment (which we will call “the KL 
experiment” for brevity), funded by NASA to check the conjecture that diverse software 
versions, independently developed for the same specification, would fail independently 
[11], a claim that if true would certainly support the usefulness of diversity. In this 
experiment, 27 program versions, required to recognize in a set of radar echoes the 
presence or absence of an incoming missile (the “launch interceptor” problem), were 
developed independently (9 versions developed at the University of Virginia (UVA) and 
18 at the University of California at Irvine (UCI)), and then tested on 1 million random test 
cases. The test results refuted with high confidence the conjecture that all software 
versions failed independently. Our calculations below use the published data [11]. 

If we look at how these results are interpreted by those quoting them, we see multiple 
viewpoints:  

• many (simplistically and wrongly) believe that the experiment proved software 
diversity useless, e.g.: “N-version programming rests on the assumption that 
software bugs in independently-implemented programs are random, statistically-
uncorrelated events. Otherwise, multiple versions are not effective at detecting 
errors [...] John Knight and Nancy Leveson famously debunked this assumption on 
which N-version programming rested”  
[http://leepike.wordpress.com/2009/04/27/n-version-programming-for-the-nth-
time/]; 

• some point out that the reported results showed the average frequency of common 
failures of two versions was about 60 times less than that of an individual version, 
a massive improvement, and roughly in line with measures in some other 
experiments; 

• some tried to extrapolate to the probability of masking all faults, discussing which 
specific features of the ‘‘launch interceptor’’ problem could enhance or reduce the 
benefits of diversity [16]; or reasoned about likely effects of diversity given more 
or less reliable versions, with a model based on the fault density of the versions 
[17]. 

We will not use the data to claim any general property of diversity, but to illustrate 
general mathematical facts, and some possibly surprising consequences, on a real example. 

A. Generalizations about pfd 
As Knight and Leveson themselves pointed out, all generalizations from a single 

experiment, or few experiments, are suspicious. First, one may doubt whether the 
conditions of the experiments are representative of those of the projects for which 
predictions are sought. Secondly, there is no theory for deciding what we should 
generalize, if we wished to do so. We are in the same situation as an aeronautical engineer 
would be who tried to predict an aircraft’s performance from wind tunnel tests on small 
scale models, without a theory about how the results scale up. For instance, in this 
experiment the average pfd of a version3 was 7.02×10-4 (4.33×10-4 for the UVA subset and 
8.37×10-4 for the UCI subset); for pairs formed from one version from each subset, the 
average pfd was 1.09×10-5. This could be seen as “30 times worse than independence” 
(i.e., than the product of the average pfds of the two subsets), or “64 times better than the 
average for a single version”. Such ratios are sometimes cited as indicative of the likely 
results of applying N-version programming; but they really only show that such results 
can be achieved (because they were, in the experiment). There is no theory to justify using 
them as a likely prediction, even as order-of-magnitude guidance. They certainly cannot 
both be given this status (be considered invariant characteristics of the technique), because 
this would be self-contradictory: the first makes the expected system pfd proportional to 

                                                        
3  When referring to measures of pfds in this experiment, we will use the “observed” pfd values, i.e., 

empirical frequencies of failures, unless otherwise noted. In assessing a safety-critical system, instead, one 
would want a pessimistic confidence bound. We will highlight which steps of reasoning are affected by 
choosing one or the other of these measures. 



the product of the versions’ expected pfds; the second to their average. If, as a thought 
experiment, we improve the processes producing the two versions in a system so that both 
have expected pfd 100 times better than the two subsets in this experiment, the expected 
pfd of the system would become 10-9 based on the first assumed invariant, or 10-7, based 
on the second. There is no clear theory to justify a choice between the two, or indeed a 
belief that either is the sought-for invariant.4 All experiments have shown diversity to 
improve average reliability in 1ooN systems. This is an invariant, because it can be 
mathematically proved to be, without empirical support. 

B. Measures of risk and of risk reduction 
However, in interpreting the results of experiments, we should also ask whether the 

average pfd is indeed the measure of interest. We are interested in how the decision 
whether to apply diversity affects the (dependability-related) risk accepted in developing 
the system. We now discuss how the undesired event to be avoided differs between 
different application scenarios: its probability is what diversity mainly attempts to reduce, 
and thus the way we assess the risk reduction that can be achieved must also change 
between these scenarios. We reason about three types of undesired event: failures; the 
event of having a least one failure in a mission or operational lifetime; and the production 
of a system with pfd exceeding a required upper bound. 

The real-life random process in which the risk is incurred is as follows: if a 1oo2 
system is needed, two versions are developed or bought; they are combined into a system; 
the system is then operated, receiving a sequence of random demands, with probabilities 
defined by the operational profile under which it operates. Given this operational profile, 
the system has a certain pfd.  

The results of the development – the specific two programs developed, their pfds and 
the pfd of the resulting 1oo2 system – would vary from case to case, according to some 
probability distribution; therefore, in software engineering experiments numerous versions 
are developed, to obtain a sample from this distribution. The statistics of this sample are 
used to estimate the probabilities of various outcomes when developing a single 1oo2 
system. 

C. Measures of risk: expected pfd 
In the experiment just outlined, the mean pfd of a 1oo2 system from the population of 

versions produced estimates the probability of failure in a real-life “experiment” consisting 
of developing two versions (“randomly sampled” from the probability distributions 
describing the development processes for the two versions) and then testing the resulting 
1oo2 system on a single demand (“randomly sampled” from the operational profile 
assumed in the experiment). The mean pfd observed in an experiment with many versions 
produced, multiplied by a future number of demands, predicts the expected number of 
failures in operating the system over that many demands. If we do expect the system to fail 
a number of times in its lifetime, and given a cost per failure, the mean pfd determines the 
expected cumulative cost of failures (if faults are not corrected after each failure; cf [18] 
for a more general treatment). In this limited sense, the reduction in average pfd between 
the set of versions and the set of 1oo2 systems (built from these versions) is an indication 
of risk reduction – in the KL data, by a factor of about 60.  

D. Measures of risk: reliability 
However, diversity is typically used for safety critical systems with requirements like 

“[catastrophic failures must be] not anticipated to occur during the entire operational life 
of all aircraft of one type” [19]. Then, what really matters is the probability of surviving 
for the intended operational life without such failures – formally, a reliability function. 
How did diversity improve this in the KL experiment?  

                                                        
4  Readers may object that this weakness is common to most extrapolation from experiments in 

software engineering. We agree.  



Referring again to the real-life random process in which the risk is incurred, the risk 
that has to be controlled is that the one system developed fail in its lifetime. The systems 
that may be produced may exhibit a broad range of pfd values, from some that will fail 
almost certainly to some that will almost certainly not fail. To obtain the probability of no 
failures over the system’s life, we need to extend the thought experiment of the previous 
section to operating each system through future demands. If the i-th system, in the set of 
all possible systems, has pfd qi and probability pi of being developed, the probability of this 
i-th possible system surviving T demands (its reliability function) is  

 𝑅𝑖  (𝑇) =    (1 − 𝑞𝑖 �)𝑇   (1) 

The risk from the uncertain process of developing and then using a system is then the risk 
of the randomly selected system actually failing 

 1 − 𝑅  (𝑇) =   1 −  ∑ 𝑝𝑖(1 − 𝑞𝑖 �)𝑇𝑖       (2) 

This calculation for the KL data set, taking the sample as representing the whole 
population of possible versions, is shown in Figure 1. The solid lines represent the 
probability that a version, or a 1oo2 pair, randomly chosen from this set, operates without 
failures for T consecutive demands. In other words, they represent the average of the 
reliability functions of all individual versions. We also show that averaging in the wrong 
order would be misleading: the dashed lines represent the reliability that one would –
 wrongly – predict by assuming the average pfd: 7.02×10-4 for single-version systems and 
1.09×10-5 for diverse 1oo2 systems. 

 
Figure 1 Reliability curves (solid lines) for the set of programs developed in the Knigth-Leveson 
experiment. The dashed lines instead represent the reliability of a (non-existent) “average” version or 
“average” 1oo2 system. 

These curves illustrate some important mathematical facts, and provide a few empirical 
observations: 

• each version and system that could be developed has in principle different pfd. A 
reliability curve here does not represent the unknown reliability of the one system 
developed; it represents the gamble taken in developing a system through a process 
with inherently variable results, and then using this system.5 The graph compares 
this risk when developing a two-version system with the risk when developing a 
single-version system from the same development process; 

                                                        
5  The distribution that matters is that of the pfd of programs that reach the operational stage, that is, 

takes into account the stringent V&V process, with possible rejections and modifications, that precedes 
acceptance into service. In experiments this is typically simulated (and was in the KL experiment) by a 
preliminary acceptance testing phase for each version. A real-life developer has also the extra risk of 
producing a “dud” system that will not even pass the acceptance phase into operation, a generally low risk for 
specialized developers. This economic risk actually increases with diversity, everything else being equal; for 
the 1oo2 system to fail in operation, it is necessary that both versions fail, hence its advantage over a non-
diverse system; but for it to be accepted, in many regulatory regimes it would be necessary that both versions 
pass. Using diversity trades a reduction in safety risk against a – possibly mild– increase in project (financial) 
risk. 
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• given a system for which there is uncertainty about its pfd, assuming the average 
pfd (as though the actual system were a hypothetical, and non-existent, “average” 
system) always yields pessimistic reliability predictions [20], as shown here by the 
dashed lines; 

• indeed for the KL data, in the long run (for T tending to infinity), the hypothetical 
version or version pair with average pfd (dashed lines in Figure 1) will fail, with 
probability 1; in reality (solid lines in the figure), the probability of a randomly 
chosen version ever failing is 0.78, while that of a randomly chosen pair ever 
failing is 0.226: diversity increases the probability of never experiencing failures at 
all on a long system lifetime from (1-0.78) to (1-0.22), or, equivalently, reduces the 
risk of failures by a factor (0.78/0.22)=3.5; 

• the average reliability over a set of programs (or a probability distribution of the 
pfd) is heavily influenced by the fraction of programs that have low enough pfd 
that they are very unlikely to fail over the number of demands of interest (and by 
those that are almost certain to fail): the tails of the distribution of system pfd 
matter; 

• the pfd of a 1oo2 system can be no greater than that of any of its components, as 
illustrated in Figure 2; 

• so, given any required upper bound on pfd, the probability of achieving it is greater 
for a 1oo2 (or, in general, 1ooN) system than for any of its component versions (cf 
Figure 3). Given any distribution of pfd for the individual versions, the distribution 
of pfd of 1oo2 systems obtained from them will be “compressed” towards lower 
values; 

• in particular, the worst-case probability of the pfd of a 1oo2 pair of independently 
developed versions exceeding a given value is the product of the probabilities of 
this value being exceeded by the two versions. Specifically, calling F the 
cumulative distribution function of a pfd, we have for a 1oo2 system built from 
versions A and B: 

 𝐹1𝑜𝑜2(𝑞) ≥ 1 − *1 − 𝐹𝐴(𝑞),*1 − 𝐹𝐵(𝑞),  (3)   

Intuitively, this equation says that any version with high pfd has a good chance of 
being paired with a version with lower pfd. In particular, any version with 
unusually high pfd (say a pfd that occurs with a small probability ε) is very likely 
to be paired with a lower-pfd version (since these occur with much higher 
probability, 1 - ε): any “thin, long tail” of high pfd values that is present in the 
distribution of pfd of individual programs will be much smaller in the distribution 
of pfd of 1oo2 systems. In (3), the limiting case of equality gives a worst-case, 
minimum assured improvement in risk. This worst-case improvement level due to 
diversity is illustrated by dashed lines in Figure 37   

                                                        
6  Readers may notice that these two numbers add up to 1. This is just a coincidence. Out of 27 

versions, 21 (7/9, or 0.777...) had observed pfd>0. The number of version pairs with observed pfd>0 
happened to be 36 out of 162 pairs (2/9). But as we discuss later, this latter fraction could have been 
anywhere between 0 and the product of the corresponding fractions of failing versions – 6 out of 9 UVA 
versions and 15 out of 18 UCI versions – for the two sets from which the versions were selected 
independently to form pairs: so, between 0 and (6/9)(15/18)=5/9. 

7  That diversity guarantees improved pfd is true for all 1-out-of-N systems; the larger the value of N, 
the greater the reduction in probability of high pfd. For a voted system, this is only true if the probability of a 
version exceeding that pfd is below a threshold: e.g., for a 2-out-of-3 system where all versions’ pfds have the 
same distribution, this threshold is 0.5. 



 
Figure 2 Possible relationships between non-null failure sets, FA and FB, of two versions A and B. A 
fifth case (e), in which FA and/or FB is the empty set, turns up frequently regarding observed failures 
in experiments. 

 
Figure 3 Cumulative distribution functions (cdfs) of the observed version pfds in the KL experiment. 
The dashed lines are pessimistic bounds for the cdfs of pfds of 1oo2 systems obtained from these 
versions (eq. (3)), both when combining two versions from the same “process” (university), and when 
“forcing” diversity by choosing one from each. The top solid line represents the distribution of 1oo2 
pfds actually observed in the experiment. All observed pfd values to the left of 10-6 are 0. 

• this worst case assumes that in every possible pair of versions, whenever the better 
version fails, the other one also fails on the same demand: the “unlucky” cases (c) 
or (d) in Figure 2. In reality, one hopes often to observe cases (a) or (b), which 
would yield higher reliability for the pair. Empirically in the KL experiment, for 
inter-university pairs the distribution of pfd was as the top solid line in Figure 3, 
indeed much better than the worst-case curve, also shown; 

• with this measure of risk, the risk reduction achieved varies with the ”projected 
lifetime” (here measured in number of demands). The reduction observed in this 
experiment is by a factor of 64 for one demand, as mentioned, of 50 over 100 
demands, 10 over 10,000 demands, and tends to 3.5 at infinity (Figure 1); 

• another factor to consider is “forced” diversity. The KL data concern 1oo2 systems 
made from “heterogeneous” pairs (one version produced at UCI and one at UVA). 
This is a very weak form of "forced" diversity. In industrial practice, much stronger 
measures are applied to "force" diversity, hoping to achieve lower probability of 
common failures [4]). We will study the role of forced diversity in Section III. 

We briefly discuss some assumptions made above: 

1) Role of probability of fault-freeness or very low pfd 
In Figure 1, the reliability tends to a non-zero asymptote due to a non-zero probability 

of the pfd being 0. Some may question the plausibility of pfd=0: software, they would 
maintain, always has bugs. But what matters here is simply having versions with low 
enough pfd to imply probability close to 0 of failures over the ”projected lifetime” 
(number of demands here; time, for continuously operating systems) of interest. We could 
call these “effectively fault-free” with reference to this ”projected lifetime”. For instance, 
if here we attributed to those versions that never failed a pfd that equals not the observed 
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frequency of failure, 0, but a one-sided 95% confidence bound on this probability, 3×10-6, 
then for what concerns the first few thousand demands, these versions would be 
“effectively fault-free”: Figure 1’s reliability function would not change significantly.8  

Achieving such low pfd values with non-negligible  probability is a plausible scenario 
for systems that are made simple by construction for the sake of safety, and developed 
according to stringent standards, and if one considers only those faults that are likely to 
endanger safety. Various authors have studied how to assess and exploit the probability of 
pfd=0 [21 , 22-25] towards demonstrating extremely high reliability for critical 
applications.  

If such low pfd values can be achieved with reasonable probabilities, it is then an 
important fact that the probability of achieving them in a diverse system is substantially 
higher than in the individual versions. E.g., if the requirement “not anticipated to occur 
during the entire operational life” is formalized as “the probability of occurrence over the 
operational life must not exceed 10%”, one way of ensuring this is to have at least 90% 
probability of a pfd equal to 0 or so low that it ensures practically certain survival over the 
operational life of the system. This goal may be challenging; however, if the system can be 
developed as a 1oo2 system with independently developed versions, that goal can be 
attained if we achieve 68% in each version; or if we achieve 46% per version in a 1oo3 
system; or 80% in a voted, 2-out-of-3 system; etc.9 These targets may or may not be 
attainable, but they are more so than the initial 90%. 

2) Independence between pfds  
While we believe that failures of two faulty versions are typically not independent, we 

assumed above that the pfds achieved in developing two versions are independent random 
variables; a scenario of independent developments. Studying diversity has made us wary of 
blanket assumptions of independence: we should examine this one carefully. “Independent 
developments” means that if we consider, for instance, the project that develops one of the 
two specific versions that will be used in this specific system – say, project A –the 
probability of this project achieving a certain version pfd is the same irrespective of 
exactly what value of pfd is achieved by project B, developing another version. This seems 
reasonable when both projects are in the past and we are buying from independent vendors 
that can prove the two products to have separate histories. With bespoke procurement, still 
if the developments are carefully isolated, the assumption would be easily believable with 
respect to the parts of the process that can be kept isolated (for instance, this independence 
would only be believable conditional on a specific set of high-level requirements10 [15]). 

To conclude the observations on this example, we cover two more viewpoints from 
which a system can be assessed. 

E. Measures of risk: risk of exceeding a required pfd 
In many applications, a reliability or safety requirement is stated simply as a pfd level 

that must not be exceeded. It makes sense to ask what this requirement means, in view of 
the uncertainty that affects any assessment [26]. Supposing that the requirement is for a 
pfd not exceeding 10-5, does it mean that the mean pfd should be 10-5 or lower? Or is this 

                                                        
8  This “few thousand demands” limit does not mean that these versions will later fail: they could have 

pfd=0. It is just an acknowledgment of the limits of statistical inference from any finite experiment. If fault-
free versions exist, they will indeed never fail. If they existed in a set of programs subjected to statistical 
testing on a finite number N of tests, we could never infer from testing that they are actually fault-free with 
certainty. We could however conclude that their pfd is so close to 0 that for predicting reliability over some 
number N’<N of future demands, they can be assumed 0 without substantial error. For a more complete 
study of “effective fault-freeness” see [21]. 

9  These numbers are obtained by solving the familiar formulas for the probability of failure of 
redundant systems with independent failures, applied to independent processes of version development rather 
than to the versions themselves. For the three scenarios listed, if the probability of a single version being too 
unreliable is pV, the probabilities of the system produced being too unreliable are respectively pV

2, pV
3, (3pV

2-
2pV

3).  
10  This independence is conditional on these requirements being set, not on their being correct. [15].  



interpreted as a (Bayesian) confidence bound – “the pfd should be 10-5 or lower with high 
probability” – and if so, what is this required high probability: 90%, 95%? 

For the KL data, the improvement in mean pfd has been quoted before; the effect of 
diversity on the probability of satisfying a certain bound on system pfd is fully described 
by the cdfs in the above plots; the gain varies with the bound chosen. This is evident in 
Figure 4, showing the reduction in the risk of producing a system that is too unreliable.11 . 

F. Probability of failure independence 
 Independence between failures of diverse versions is still frequently discussed or 
sometimes claimed. Indeed, being able to claim independence of failures would be 
extremely useful in assessment of a system: after paying for the separate assessment of the 
pfds of the diverse versions in it, the system pfd would come at no extra cost as a simple 
function of these pfds, and would be very good. But since independence is impossible to 
believe a priori, discussing the chances of achieving it is just like discussing the chances 
of achieving any other, arbitrarily chosen value of pfd. What matters is the pfd of the 
system delivered, not whether it is more or less than this arbitrary point. E.g., in the KL 
data, a mean 1oo2 pfd “30 times worse than independence” is a substantial improvement 
over a single version; in a system of two versions with pfd=10-6, it would deliver a quasi-
unbelievable system pfd of 3×10-11. Lack of independence is irrelevant. 

 

 
Figure 4 Reduction in risk of violating a requirement on pfd, in the KL data. Some curves shoot to 
infinity towards the right end of the plot because in this data sample no 1oo2 pair had pfd>0.000323: 
for required bounds greater than this value, the probability of failing to satisfy them is 0. 

However, if we did know what relationship to expect between the average true system 
pfd and that which would follow from failure independence, this knowledge would be 
useful. In the KL data, the former was much higher than the latter. 

A reasonable position, in view of the probabilistic models [14], is that a conservative 
assessor has no choice but to assume positive correlation between failures of the versions 
in a 1oo2 system. However, this does not mean that positive correlation is the norm or that 
achieving, or doing better than, independence of failures will be rare. In fact, in the KL 
data, “independence or better” between failures of two versions occurs often. The 
observed frequencies are in Table I. Only 2/9 of the pairs had positive observed 
correlation between failures12. All cases of negative correlation had disjoint failure sets: 
the two versions never failed together. These data show how misleading it may be to 

                                                        
11  One can choose to describe the reduction in risk of failure or the increase in chance of success. We 

show the former because it is the usual way of reasoning about small risks. Of course describing the increase 
in chance of success would show smaller increases. Reducing a probability of failure from – say 0.1 by a 
factor of 106 only increases the chances of success by a factor of roughly 1.1, from 0.9 to 0.999999. 

12  We note again that this table refers to observed frequencies of failures, as estimators of probabilities. 
Again, we are not doing hypothesis testing on probabilities of common failure: as some versions have 
individual failure rates in the order of 10-5, an experiment with 1 million test cases is still too small to 
discriminate with any confidence, if two such versions exhibit no common failures, between the hypotheses 
that the pfd for common failures is less or more than 10-10 (better or worse than independence). 
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reason on the basis of the means alone. Of course, we do not recommend that one assume 
similar frequencies to apply in general.  

TABLE I FAILURE CORRELATION IN 1OO2 PAIRS FROM KL EXPERIMENT 

class of failure correlation number of pairs in class % 
independent 72 44.44% 
positively correlated 36 22.22% 
negatively correlated 54 33.33% 

III. EFFECTS OF FORCED DIVERSITY 
We now study further, from the viewpoint of reducing risk, the common notion of the 

desirability of “forcing” diversity, i.e., choosing products with different designs, produced 
with different development methods and tools, rather than just products that were 
developed independently ("unforced" diversity in our terminology). The advantages one 
can hope to achieve by forcing diversity have two aspects: 

•  the diversity of process and designs may well have the result that the errors most likely 
to be made in developing the versions will be different; that these will cause faults that 
affect different demands; and thus that (with reference to Figure 2) cases (c) or (d) are 
less probable than cases (a) and (b), and within case (b), the intersection of the two 
failure sets is likely to be smaller (all in comparison with what these probabilities 
would be with "unforced" diversity). However all this is a plausible (possibly 
common) scenario of advantages; perhaps instead, in a specific project, the differences 
that we "force" have no effect on which errors are likely at all; or perhaps there is only 
one error that in the production of either version is likely enough to have an effect on 
risk, and scenarios (c) or (d) are the norm; 

•  more subtly, equation (3) indicates that even in the worst case just highlighted, there is 
a guaranteed worst-case level of stochastic improvement. This is present irrespective 
of whether the diversity is "forced" or "unforced". That is, whether the distributions 
FA(q) and FB(q) are identical or different does not affect the existence of this 
guaranteed advantage of a two-version system over the a single-version system; but 
we can show that it affects its size. 

We now first consider this worst-case improvement, from equation (3), in the chance of 
achieving a certain pfd. This matters for both the measures of risk considered in sections 
II.D and II.E, the former in view of how the probability of “effectively fault free” systems 
affects the lifetime risk of failure. We prove that forced diversity is a remarkably effective 
strategy over a broad range of scenarios. We then discuss what can be said about risk 
reductions outside the worst-case scenario. 

A. Forced diversity, worst-case distribution and probability of fault-
freeness 

We refer to previously described models of multiple-version programming [12 , 13]: 
two versions are sampled independently, from a “population of all possible versions”, 
according to a single probability distribution, in the case of “unforced” diversity, but 
according to two distributions, produced by the development processes A and B, in the 
case of “forced” diversity. 

As pointed out earlier, the probability of a 1oo2 system, with independent 
developments of the component versions, exceeding any given bound on pfd is at worst 
(i.e., at most) the product of the corresponding probabilities for the two processes (cf. 
equation (3) and cases c and d in Figure 2).  

With “forced” diversity, these two probability distributions (normally unknown, when 
one makes the choice between forced and unforced diversity) are different. Forced 
diversity is known to improve mean pfd under certain conditions of indifference between 
processes A and B [13]. We ask whether, without this assumption, it improves the 
probability of satisfying a bound on pfd. In view of the importance of “fault-free” or 
“effectively fault-free” systems, we study in what follows the probability of not exceeding 



the bound pfd=0: “fault-free” pairs, i.e., 1oo2 pairs in which at least one member is fault-
free. However, the proofs do not depend on which pfd bound one considers. 

We first introduce our notation. Without a policy of forced diversity, developers will 
have their own preferences and thus probabilities of choosing either process. We call α this 
“unforced” probability of developers choosing process A, so their probability of choosing 
process B will be (1-α).13 We call qA the probability of process A producing a faulty 
program, i.e., a program with pfd>0, qB the same probability for process B, and for 
convenience parameterize by setting: 

 𝑞𝐴 =   𝑘𝑞𝐵   (4) 

Without loss of generality, we assume !! ∈ [0, 1]!  : B is the "worse" process. The 
decision maker does not know k, which describes how well the two processes A and B 
perform on the current development; and α is also often unknown. With forced diversity, 
the probability of a randomly chosen pair being faulty is: 

 𝑞𝑓     =    𝑞𝐴𝑞𝐵 =   𝑘𝑞𝐵2   (5) 

while with unforced diversity, the probability of a randomly chosen pair being faulty is the 
probability of selecting a faulty program, squared:  

𝑞𝑢   = (𝛼𝑞𝐴   +  (1 − 𝛼)𝑞𝐵  )2 =     𝑞𝐵2(𝛼𝑘 +   1 − 𝛼)2  (6) 

Forced diversity guarantees better worst-case probability of fault-freeness than 
unforced diversity iff 𝑞𝑓   < 𝑞𝑢    . One can note that: 

•  if process A only produces fault-free programs (k=0), then qf=0, and thus unforced 
diversity can only be as good as forced diversity if developers always choose the 
“perfect” process A (α=1).  

•  If processes A and B give the same probability of fault-free programs (k=1), then 
unforced and forced diversity give the same probability of faulty pairs. 

•  In the general case, the decision maker may not know α or k and may be concerned 
that forcing diversity might make things worse. Indeed, if developers - left free to 
choose - tended to choose the “better” process A over process B often enough, the 
resulting frequency of pairs with at least one A program might guarantee a higher 
frequency of fault-free pairs than guaranteed by forced diversity, i.e., by requiring 
each pair to contain one A and one B program. Of course, for any given α < 1 , we 
have seen that as 𝑘 → 0  , forced diversity will eventually become the better choice.  

We measure the advantage of forced diversity via the ratio 𝑞𝑢 𝑞𝑓⁄  (so that a larger ratio 
indicates a larger advantage). Figure 5 shows plots of 𝑞𝑢 𝑞𝑓⁄   for a range of scenarios, 
which illustrate how forced diversity is a guarantee against surprises in the quality of one 
of the processes used.  

The more process B is “worse” than process A (the smaller k is), the more the gain 
from ensuring – by “forcing” diversity – that every pair contains an “A” version. The 
curves can be read as follows: if “unforced” developers have a 50-50 chance of choosing 
the process with the higher probability of faulty programs (process B), then forcing 
diversity always has an advantage over not forcing it; even more so if developers tend to 
choose the worse process, B, more frequently than the better process, A.  

                                                        
13  When selecting off-the-shelf products, “unforced” diversity amounts to choosing randomly among 

all those that appear to satisfy the requirements (functional requirements, required safety or quality 
certification, etc). If e.g. 10 such products are available, 7 of which were produced by process A, then if the 
customer chooses with uniform distribution, α=0.7; forced diversity means choosing separately one product 
from the 7 type A products, and another one from the 3 type B products. 



 
Figure 5. Ratio between worst-case probabilities of non-fault-free systems with unforced (qu) and 
forced (qf) diversity, for different values of i) the probability α of developers choosing the 
development process, A, that is better at producing fault-free programs; ii) the ratio k between the 
probabilities of faulty programs from process A and from process B. Points above the horizontal line 
qu/qf=1 indicate situations in which forced diversit gives better worst-case probability than unforced 
diversity. 

The plots also show that even if developers “favour” the better process, A (that is, if α 
> 0.5), forcing diversity has potentially large advantages, for ranges of values of α and k 
(or comparatively moderate disadvantages for other ranges). This is because if k is small –
 the “worse” process B is substantially worse than the “better” process A – then even a 
small risk (1-α)2 of ending up with a pair of versions from process B makes qu/qf >1: 
unforced diversity incurs a greater worst-case risk (of producing a system with pfd>0) than 
forcing every pair to contain one version from the “better” process and one from the 
“worse” process. The worse B is, the higher α must be for unforced diversity to “beat” 
forced diversity from this viewpoint.  

In other words, forced diversity tolerates undesired outcomes – choices of development 
process or design that happen to perform badly on a specific project – that we cannot 
predict and avoid. It is true that this protection has a possible “flip side”: if we knew that 
developers “wisely” tend to prefer process A, that produces fewer faulty versions, then not 
forcing diversity could be advantageous; but we would need to know that developers' 
preferences are commensurate to the actual difference between the two processes. The 
required preference level is obtained by solving the equation 

 𝑞𝑢 = 𝑞f   (7) 

with the results that unforced diversity yields better worst-case probability of fault-free 
pairs than forced diversity if developers choose the “better” process A with probability: 

𝛼 >
−1 + √𝑘
𝑘 − 1

= )1 + √𝑘*
−1
=    ,1 + -qA qB⁄ 2

−1
  (8) 

For instance, if process B produces faulty versions with probability 10 times lower than 
process A (k= qA/qB =0.1), Figure 5 shows that for α=0.7, forced diversity is still the better 
choice (qu/qf >1). That is, if developers choose the better process A 70% of the time, this is 
still not enough to make unforced diversity superior; from (8), we can calculate that for 
qA/qB =0.1, the minimum required “preference” for process A is α=0.76. Another way of 
reading the equations and plots is: if developers use the “better” process A with probability 



α=0.7, we see that the curve labelled α=0.7 reaches the value 1 for k=0.2. This tells us that 
α=0.7 only makes “unforced” diversity superior (in terms of worst-case risk of system 
pfd>0) if process B is no more than “5 times worse” than process A: qB <5 qA.  

We also note the asymmetry of the consequences of developers “preferring” one or the 
other process: strong preferences for A, the “better” process, make the worst-case for 
forced diversity mildly worse than for unforced diversity (see the minima on the curves for 
α<0.5); strong preferences for B, the “worse” process, make the worst case for unforced 
diversity radically worse than for forced diversity. So, the desirability of forcing diversity 
(from this viewpoint of worst-case improvement in the risk of producing a faulty system) 
seems a remarkably robust property, over a broad range of situations (the values of α and 
k, generally unknown). Of course, in the extreme case α=1 (any system developed 
contains two versions from the “better” process A, unless we “force” each to include one 
version from process B), qu/qf =1/k<1. We discuss this scenario in the next section. 

Last, we recall that these results apply for any bound on pfd, that is, not only for the 
case of fault-freeness or “effective fault freeness” for a given lifetime (or mission) number 
of demands, but for the whole curve of worst-case cdf. In other words, these results hold if 
by qA, qB, qu and qf we designate not probabilities of certain pfds not exceeding 0, but 
probabilities of their not exceeding any specific bound of interest (for instance, one 
required as the maximum acceptable pfd for an application). Recall that this is a worst case 
in that the advantage proved for forced diversity if inequality (8) holds will apply, even if 
the intended main advantage of forced diversity – that of “diversifying faults”, making 
cases (c) and (d) in Figure 2 less likely than with “unforced” diversity – failed to 
materialize in a specific project. If inequality (8) holds, for the probabilities qA and qB of 
the two processes producing versions that exceed the required bound on pfd, all the 
equations and graphs in this section apply to the worst-case probability of diverse pairs of 
versions exceeding that bound, and “forcing” diversity is still the preferred choice unless 
the developers “preferred” the “better” process with the probability given by (8). 

B. Departures from the worst case 
The discussion above concerns how forcing diversity affects a pessimistic bound on 

the probability of satisfying any given requirement on the pfd (and therefore also 
pessimistic bounds on lifetime reliability). The actual pfd achieved cannot be worse, but 
may often be better than this: the pessimistic bound assumes case (c) or (d) in Figure 2, 
but the goal pursued via “forced diversity” is to avoid common failure points as far as 
possible, making case (a), or at worst (b), the likely outcomes (if both versions have 
faults). Indeed, in the KL data, for instance, 1/3 of the inter-university pairs (or 3/5 of 
those with two faulty programs) exhibit behavior (a), and this produces the top cdf curve 
in Figure 3, substantially better than the worst case. 

So, a conclusion about forced diversity is that if it were to achieve its primary goal 
(making case (a) of Figure 2 the most likely case) it is to be preferred to unforced 
diversity. If it failed in this primary goal, it would still deliver, as shown in the previous 
section, protection against the risk that one of the two processes happens to be especially 
ineffective at achieving low pfd for this project. The system designer should always, it 
seems, choose to force diversity.   

A dilemma arises in the special case of knowing (or, more realistically, having strong 
evidence about) which process has the lower risk of high version pfd – which one is 
process A. Should one still choose to combine a version from the “better” process with 
one from a “worse” process? This gives a hope of high probability of case (a), disjoint 
failure sets. By contrast, combining instead two versions from process A (we can see this 
as “unforced diversity” with α=1) would reduce by a factor k the worst-case risk of a high 
pfd: a tempting, seemingly risk-averse choice if one is unsure about the effectiveness of 
the ways of “forcing” diversity available for the current project, and suspected that k may 
be small.  

We have no mathematical theory to predict the magnitude of the departure from the 
worst case. The insight from probabilistic models [13 , 27] is simply that it depends on 



whether the different processes share some area of “high-difficulty” (and frequently 
occurring) demands for the application being developed. 

“Unforced” diversity data for the KL experiment are not published; we give just one 
example from another, recent set of empirical data [28] from programs developed in an 
open programming context.  

 
TABLE II COUNTS OF FAILURE-FREE AND FAULTY PROGRAMS (WITH PFD ≤ 0.01) AND 1OO2 PAIRS FOR THE FACTOVISORS 

PROBLEM: 
 COMPARING “FORCED” AND “UNFORCED” DIVERSITY 

    unforced forced 
 

C Pascal 
1oo2 pairs made up of 
a failure-free and a 
faulty program  

9,504 1,686 

Failure-free 
single programs 172 26 

1oo2 pairs made up of 
two failure-free 
programs 

19,701 4,472 

Faulty single 
programs 45 3 1oo2 pairs made up of 

two faulty programs 1,176 135 

Total count of 
single programs 217 29 Total count of 1oo2 

pairs 30,381 6,293 

 
One of the many scenarios analyzed concerns diversity between programs in C and 

Pascal that solve a mathematical problem called Factovisors. Table II gives data about 
failure-free and faulty single programs (among those with pfd≤0.01). Here, α=0.118, and 
k=0.499;  these values make the advantage of forced diversity qu/qf  =1.8044 (cf the 
topmost curve in Figure 5). In detail, the pessimistic bound analysis (III.A) gives worst-
case probabilities of a randomly chosen pair being faulty, given unforced and given 
forced diversity, qu=0.0387 (1,176 pairs out of 30,381), and qf =0.0215 (135/6,293). The 
actual, lower observed values were: qu=0.0232 (705/30,381); qf =0.0162 (102/6,293) 
because only a fraction of 1oo2 pairs made of two faulty programs failed themselves 
(Table II). One may note that while the ratio of the worst-case values would be qu/qf 
=1.8044, that of the observed values gives a smaller gain, 1.4317: it so happened that 
unforced diversity resulted in a higher fraction of failure-free 1oo2 pairs made up of 
faulty programs (case (a) from Figure 2):~40% (471/1,176), than the corresponding value 
with forced diversity: ~24% (33/135). 

 

IV. DISCUSSION: EFFECTS OF THE DISTRIBUTION OF PFD 
The example data that we used show but one of a broad range of possible scenarios. 

We briefly discuss alternative scenarios about the distribution of the pfd values of single 
versions and pairs. Any such distribution will be a set of discrete probability masses 
rather than a continuous distribution, because there are only a finite number of possible 
demands (any possible demand is a long digital number of finite length, because for any 
digital system the number of input bits, the memory size and the lifetime are finite). In 
practice this distribution might well approximate a continuous one, or, at the other 
extreme, be reduced to a few discrete probability masses. If the distribution is very 
sparse, the effects of diversity may well be especially dramatic. If we think of the process 
that generates faults in each version and thus this probability distribution, we can identify 
a range of possibilities between two extreme scenarios [27]: 

• complex, good quality product scenario: many faults are possible, with low but 
non-negligible probability of being present, each with a modest contribution to pfd. 
Then, both versions are almost certain to be faulty, but it is unlikely that they share 
many faults. This scenario is plausible for complex, mature, commercial quality 
software, and some evidence for it has been observed in off-the-shelf DBMS 
products, and in operating systems from the viewpoint of security flaws [29, 30]. 
Thanks to the central limit theorem, the distribution of pfd for these products would 
resemble a continuous, bell-shaped, unimodal distribution, and the pfd for 1oo2 
systems made from them would be similar, but narrower and shifted towards 



pfd=0. With “forced diversity” (e.g. if the two versions belong to different product 
families from different vendors) it is possible that although many likely faults are 
common to the two versions, many are not, and it may well happen that 
E(qpair)<(E(qsingle))2; 

• simple, likely ultra-reliable product scenario: very high quality production 
processes make fault-freeness  achievable with non-negligible probability; very 
few faults are practically possible. The distribution of pfd for the versions produced 
is made up of very few discrete probability masses (one of them for pfd=0). 
Combining two such versions produces another discrete distribution, and what 
shape this distribution happens to take is unpredictable: it depends on the effects of 
the individual faults on pfd and how many of these “least unlikely” faults are the 
same for the two versions. 

V. CONCLUSIONS 
If we accept that software reliability techniques are a form of protection against the 

variability of the software production process – a way of controlling the risk of an 
individual development resulting in an inadequate product – we need to assess their effect 
on the distribution of results achieved. We have moved a first step in this direction, 
regarding software diversity.  

Decisions about whether to use, and how to pursue, diversity are generally driven by 
consensus within an industrial sector, or by judgment, or educated intuition. A proper 
description of how the various measures one may consider are related to the risk measure 
of interest will help to shape this judgment and intuition. To this end, we have shown a 
number of mathematical results, and some empirical facts, that go beyond, and often 
contradict, frequently voiced intuition.  

Our summary of this paper’s contributions and conclusions includes: 

• different application require different measures of development risk, which imply 
quantitatively different benefits from diversity. Identifying this range of different 
risk measures, appropriate for different scenarios of use, is useful and in particular 
can avoid some wrong extrapolations from published results of experiment as 
guidance to achievable risk reduction; 

• extrapolation from experimental results must be taken with extreme caution, but 
some experimental results are actually instances of mathematical truths that one 
can trust to hold without empirical demonstration whenever certain sufficient 
conditions hold; 

• when the requirement is a low probability of a system ever failing, the measure of 
interest is a reliability function rather than a reliability parameter (pfd); 

• we have shown some aspects of how diversity reduces risk. Among these, the 
probability of fault-free or “effectively fault-free” programs or pairs may have 
great importance towards the likely reliability of the system; and diversity radically 
“shrinks” the low-reliability tails of the distribution of system pfd; 

• “forcing” diversity is a more robust strategy than usually acknowledged. Its 
primary goal is “diversifying faults” (making it likely that any failures of the 
diverse versions in a system are mutually exclusive, as in Figure 2a). Even in the 
worst-case scenario that it does not succeed in this, it improves the chances of 
meeting a bound on the pfd of a 1oo2 system (including a bound of pfd=0), for a 
broad range of scenarios. This advantage in worst-case results holds if developers 
choose between a better and a worse process with 50-50 probability; but even, 
counterintuitively, in a range of scenarios in which they choose the better process 
more often than the worse process; 

• the actual (not worst case) effects of forcing diversity cannot be predicted from 
existing models. 



The models we have used give insight with practical consequences. They allow “what 
if” analyses to compare options before developing a system. They do not predict 
dependability figures for a specific system: one could not now estimate parameter values, 
and derive such system-specific predictions with any confidence. Whether this may 
become feasible after extensive empirical experience remains to be seen: there is now no 
indication that some uniform pattern will emerge from empirical data. 

On a related note, we have been asked whether our “mathematical facts” could be 
validated for a specific real-world project. But the single data point provided by one 
project cannot validate or reject a probabilistic prediction, no matter whether generated by 
theorems or by extrapolating from empirical data. The advantage of theorems is that they 
can be trusted without empirical validation, provided that their assumptions (here, for most 
results, independence between development processes and true 1-out-of-2 behavior of the 
architecture) hold. 

The details of our mathematical results depend on the specific architecture (1-out-of-2) 
examined. We expect that most results will extend rather directly to 1-out-of-N systems; 
and many observations, e.g. about the importance of the probability of “effectively fault-
free” versions and systems, are valid in general. On the other hand, K-out-of-N systems, 
e.g. a triple modular redundant, 2-out-of-3 voted system, will require more complex 
models.  

We have not considered the problem of assessing the reliability of a specific system. 
Our results are about probability distributions over the possible outcomes of a 
development project, important for decision before and during development. For the client 
adopting one product, instead, or the regulator approving it, what matters is the 
dependability of that one product. Especially with critical applications, one wants high 
confidence that sufficient dependability has been achieved. Although, with stringent 
dependability requirements, acquiring this confidence may be difficult [8, 9], about the 
finished product the client or regulator can rely on detailed specific evidence. They can 
examine the finished product itself and, perhaps most importantly, they can run 
operational testing. The risk reduction considerations we have discussed may contribute to 
form prior probability distributions that an assessor combines with new evidence, possibly 
exploiting techniques for simplifying their combinations with the results of testing [21, 25 
, 31, 32]. 
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