
This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: http://openaccess.city.ac.uk/3405/

Link to published version:

Copyright and reuse: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.
Verifying Robust Frequency Domain Properties of Non Linear Oscillators using SMT

Hafiz ul Asad
City University London
EC1 0HB London,UK
Email: hafiz.ul-asad.1@city.ac.uk

Kevin D. Jones
City University London
EC1 0HB London,UK
Email: kevin.jones.1@city.ac.uk

Frederic Surre
City University London
EC1 0HB London,UK
Email: frederic.surre.1@city.ac.uk

Abstract—We present a novel mixed time and frequency domain approach to the formal verification of oscillators properties which are specified in the frequency domain. We use robust periodogram specification to specify the oscillator behaviour in the close vicinity of the limit cycle. Using SAT modulo ODE (SMO) for Bounded Model Checking (BMC) of the non-linear hybrid automata, we show that the oscillator hybrid timed traces satisfy frequency domain specifications.

I. INTRODUCTION

Significant time is spent, in the industry, verifying analog and mixed signal (AMS) circuits using SPICE simulations. Formal methods have been successfully used to verify digital circuits and could provide better solutions for more reliable, less time consuming AMS circuits design too.

This paper describes the formal verification of the frequency domain properties of a non-linear oscillator when it operates in the close proximity of its limit cycle. We propose a mixed time and frequency domain approach for this purpose, and show that the hybrid timed traces of an oscillator, robustly belongs to the frequency domain power spectral envelop specified as constraints on periodogram at harmonic frequencies. We model an oscillator circuit by the non-linear hybrid automaton and use the recent SMO technique for BMC of hybrid automata [1],[2], to compute the periodic invariant set (Limit Cycle). This limit cycle is verified against the robust frequency domain properties specification represented as constraints on its periodogram at frequencies of interest.

A survey of the recent formal Analog and Mixed Signal (AMS) verification approaches can be found in [4]. Frequency domain approaches have been limited to the small signal AC analysis of a more approximate linearized model around an equilibrium point [5],[6].

II. PRELIMINARIES

A. Non-linear Dynamical Systems as Hybrid Automata

Definition 1 (Non-linear Hybrid Automata)
A Non-linear Hybrid Automata [7] is a tuple,

\[H=(\text{Loc}, \text{Var}, \text{Flow}, \text{Inv}, \text{Trans}) \]

where,

- \text{Loc} is a finite set of locations.
- \text{Var} is a set of continuous variables, \(\text{Var}=\{x_1,x_2,\ldots,x_n\} \subset \mathbb{R}^n \).
- \text{Flow} is the set of vector fields, i.e. \(\text{Flow}(\ell) \) is an autonomous subsystem for each \(\ell \in \text{Loc} \) and is of the form,
 \[\dot{x} = f_{\ell}(x,u) \]
 \[f_{\ell} : D_{\ell}^n \times \mathcal{U}^m \rightarrow D_{\ell}^n \]
 is a non-linear but at least locally Lipschitz function of continuous vector \(x \in D_{\ell}^n \), and a non deterministic vector \(u \in \mathcal{U}^m \) of inputs and parameters.
- \text{Inv} is a constraint on the domain \(D_{\ell}^n \) of each location \(\ell \in \text{Loc} \),
 \[\text{Inv}(\ell) = l_{\ell}(x(t),u) \geq 0 \]
- \text{Trans} is a set of discrete transitions; Each transition \(\tau \in \text{Trans} \), is a tuple \(\tau = (\ell, \text{guard}_\tau, r_\tau, \ell') \); where \((\ell,\ell') \in \text{Loc} \) are the pre and post modes respectively, and \(\text{guard}_\tau \) is a switching conditions given by system of equations,
 \[\text{guard}_\tau = G_\tau(x(t),u) = 0 \]

here \(\text{guard}_\tau \subset D_{\ell}^n \in \mathcal{G} \), \(\mathcal{G} \) being the set of guards. When a guard condition is met, a discrete transition takes place. \(r_\tau \in \mathcal{R} \) is a reset, where for each \(\tau \in \text{Trans} \), it is a relation between elements of \(\text{guard}_\tau \) and elements of \(D_{\ell}^n \), i.e., \(r_\tau \subset \text{guard}_\tau \times D_{\ell}^n \). Here \(\mathcal{R} \) is the set of resets. We use \(D = \bigcup_\ell D_{\ell}^n \).

B. Non-linear Hybrid Automata Verification Using SAT modulo ODE

Andreas et al. in [1], presented SMO technique for the non-linear hybrid automata verification. Essentially, it is a technique based on the BMC of the non-linear hybrid automata, encoded as a large number of constraints; involving boolean, linear and non-linear algebraic, and non-linear ODE constraints. Establishing reachability of a target region (interval), predicative encoding of the hybrid transition system is used, i.e.,

\[\Phi = DECL[0] \land \ldots \land DECL[N] \land Init[0] \land Trans[0,1] \land \ldots \land Trans[(N-1),N] \land Target[N] \]

This is a N-step unfolding of the transition system; where \(DECL[N] \) are the simple bounds on variables in the N-th
step. \(Init[0] \) is the predicate for initial conditions at the 0th step, \(Trans(N,N-1) \) is the transition relation between variables during N-th and (N-1)th step, and \(Target[N] \) is the instantiation of the target predicate at the N-th step.

C. Limit Cycles in Hybrid Systems

Here we introduce concepts of the limit sets, periodic orbits, and the limit cycles in hybrid automata. We define a map \(\Phi^H : \mathbb{R} \times D \rightarrow D \), which describes piecewise smooth flow over the hybrid domain \(D \).

Definition 2 (Hybrid Limit Sets).
A point \(z \in D \) is called an \(\omega \)-limit point of \(y \in D \) if there is a sequence \(t_n \rightarrow \infty \) for which, \(\lim_{n \rightarrow \infty} \Phi^H(t_n,y) = z \). The set of all such points of \(z \), is the hybrid \(\omega \)-limit set \(L^H_\omega(y) \).

Definition 3 (Hybrid periodic Orbits).
An orbit \(\eta \) is a closed periodic orbit if, for some \(x \in \eta \), it is not an equilibrium (i.e. \(\Phi^H(t,x) \neq x \)), and \(\Phi^H(T,t,x) = x \), for some smallest \(T \neq 0 \). \(T \) is called the fundamental period of \(\eta \). \(\eta \) belongs to multiple domains \(D_t \), then it is called a hybrid periodic orbit.

Definition 4 (Hybrid Limit cycle).
A closed hybrid orbit \(\eta \), is called a hybrid limit cycle if, \(\eta \in L^H_\omega(y) \) for some \(y \notin \eta \).

III. Frequency Domain Properties Specification of Hybrid Limit Cycle

This section introduces robust frequency domain properties specification of the hybrid limit cycle using periodogram based power spectral envelop.

A. Robust Specification of a Periodic Function in Frequency Domain

A scalar function \(g \) is periodic with period \(T \) if \(g(t) = g(t + nT) \), \(\forall t \in \mathbb{R} \) and \(\forall n \in \mathbb{Z} \). We denote by \(P \), the set of all functions, which apart from being \(T \) periodic, also have the property of square summability over a period \(T \), i.e., \(P \subset L^2[0,T] \). All such periodic functions \(g(t) \in P \) can be represented by the sum of an infinite number of \(T \)-periodic sinusoids as,

\[
g(t) = \sum_{k=0}^{\infty} (a_k \cos \omega_k t + b_k \sin \omega_k t)
\]

(4)

where \(\omega_k = 2\pi k/T \), \(a_k, b_k \in \mathbb{R} \). Instead of an infinite series representation of the periodic functions, we use notion of the almost periodic functions [8], which are represented by at most a countable number of sinusoids. We denote such set of almost periodic functions by \(AP \), and therefore \(g(t) \in P \) is represented by its approximation \(S_K(t) \in AP \),

\[
S_K(t) = \sum_{\omega_k \in \Omega_K} (a_k \cos \omega_k t + b_k \sin \omega_k t)
\]

(5)

where \(\Omega_K \) is the set of \(K \) frequencies. The finite series representation \(S_K(t) \) is the best approximation of \(g(t) \), and it has a least mean square error property. Let \(\varepsilon_K = \max ||g(t) - S_K(t)|| \) represent the maximum approximation error, then \(g(t) \) can be conservatively represented by \(S_K(t) - \varepsilon_K \leq g(t) \leq S_K(t) + \varepsilon_K \). The set \(F \) of all pairs \(\{(a_{0},b_{0}),...,(a_{k},b_{k})\} \), of the Fourier coefficients is called the frequency domain representation of a periodic function \(g(t) \). Instead of specifying a periodic function \(g(t) \) in the frequency domain in terms of the set \(F \), we use the periodogram specification which is defined below.

Definition 5 (Periodogram).
The energy content of a signal at each frequency \(\omega_k \) is called a periodogram, and is given by, \(\eta_k = (a^2_k + b^2_k) \). We denote by \(P = \{p_0, ..., p_K\} \), the set of all periodograms at frequencies \(\omega_k \in \Omega_K \).

To cater for parameter variations, temperature and uncertainty in initial conditions, we introduce the idea of robust periodogram specification.

Definition 6 (Robustness of Periodogram).
We specify \(P \) such that pairs of the Fourier series coefficients \((a_k, b_k)\) for all \(\omega_k \in \Omega_K \), result in the function \(S_K(t) \) (Eq. [8]), which is the approximate representation of the periodic function \(g(t) \) and satisfy the inequality constraint \(S_K(t) - \varepsilon_K \leq g(t) \leq S_K(t) + \varepsilon_K \). We say that \(P_k \in P \) has \(\varepsilon_k \) degree of robustness, if it can tolerate an \(\varepsilon_k \) amount of perturbation such that, \(\exists p_k \in P : p_k - \varepsilon_k \leq p_k \leq p_k + \varepsilon_k \).

B. Encoding Membership of the Limit Cycle in the Robust Power Spectral Envelop

Let \(\eta \) is a vector of scalar valued functions of time, \(\eta(t) := \{\eta_1(t),...,\eta_n(t)\} : \mathbb{R} \rightarrow D \). In other words, \(\eta_1(t) = \Phi^H_t(x); \forall x \in \eta \), i.e., \(\eta(t) \) represent the information about the hybrid limit cycle \(\eta \) at each time \(t \). We define a power spectral envelop \(H(\omega_k) : \Omega_K \rightarrow \mathbb{R}^+ \), which maps each discrete frequency \(\omega_k \in \Omega_K \) to a periodogram \(p_k \). The set \(AP_{\varepsilon_k} \) of all almost periodic functions belongs to the power spectral envelop \(H(\omega_k) \) with \(\varepsilon_k \) degree of robustness, if the Fourier series coefficients satisfy the following constraints [9].

\[
\begin{align*}
\forall k \in \mathbb{N}, (\omega_k > \omega_K) & \implies p_k = 0, \\
\forall k \in \mathbb{N}, H(\omega_k) - \varepsilon_k & \leq p_k \leq H(\omega_k) + \varepsilon_k, \text{ such that } 0 \leq \omega_k \leq \omega_K.
\end{align*}
\]

We require that for each \(S_{n,K}(t) \in cl(AP_{\varepsilon_k}) \), the scalar periodic orbit \(\eta_n(t) \) satisfies the constraint \(S_{n,K}(t) - \varepsilon_n \leq \eta_n(t) \leq S_{n,K}(t) + \varepsilon_n.K \). Here \(cl(AP_{\varepsilon_k}) \) denotes closure of \(AP_{\varepsilon_k} \). We encode this by introducing the following set of constraints for the vector \(\eta(t) \),

\[
\begin{align*}
\psi_1 & = \bigwedge_{n=1}^{N} \left\{ \bigwedge_{k=0}^{K} \left(H_n(\omega_k) - \varepsilon_n,k \leq p_{n,k} \leq H_n(\omega_k) + \varepsilon_n,k \right) \right\}, \\
\psi_2 & = \bigwedge_{n=1}^{N} \left\{ \forall t \in [t_{min},t_{max}] \right\}, \\
\left\{ S_{n,K}(t) = \sum_{k=0}^{K} (a_{n,k} \cos \omega_k t + b_{n,k} \sin \omega_k t) \right\},
\end{align*}
\]
\[\psi_3 = \bigwedge_{n=1}^{N} \left(\forall t \in [t_{\text{min}}, t_{\text{max}}] \left(S_{n,K}(t) - \varepsilon_{n,K} \leq \eta_n(t) \leq S_{n,K}(t) + \varepsilon_{n,K} \right) \right). \]

Here the first constraint \(\psi_1 \) puts upper and lower bounds on the periodograms at \(K \) frequencies in the presence of \(\varepsilon_{n,k} \) perturbation for \(N \) scalar periodic functions. The second constraint \(\psi_2 \) ensures that for all time \(t \) all the \(N \) periodic variables are approximated by \(K \) sinusoids. The last constraint \(\psi_3 \) conservatively over-approximate the periodic function \(\eta_n \) taking in to consideration the error generated by the almost approximate periodic function \(S_{n,K} \). The universal quantifications in the last two constraints are implicit, i.e. the BMC algorithm using SAT modulo ODE verify, whether there is any time instant \(t \), at which any of these constraints are violated.

C. Membership as BMC Target Predicate

We determine the membership of the hybrid timed traces in the robust power spectral envelop by incorporating the additional set of constraints \(\psi_1, \psi_2, \psi_3 \), in the BMC algorithm discussed in section II.B. The initial conditions to the BMC is given in the form of a box \(B_{\text{initial}} \) (Considering two dimensional system). Apart from the BMC ODE constraints, we add the set of constraints \(\psi_1, \psi_2, \psi_3 \), for each scalar variable \(x_n \) to the BMC algorithm. In the ‘Target’ of the BMC algorithm, we introduce the following predicate, i.e.,

\[\neg(\text{time} > 0 \land \text{time} \leq t_{\text{max}} \land x_n \in B_{\text{initial}}) \lor \neg(\|\eta_n(t) - x_n(t)\| \leq \sigma) \]

This target predicate is actually a disjunction of two predicates. The predicate \(\neg(\text{time} > 0 \land \text{time} \leq t_{\text{max}} \land x_n \in B_{\text{initial}}) \), ensures that starting in the box \(B_{\text{initial}} \), the trajectories would return back to the same box before the maximum time limit is elapsed. A satisfiable valuation of this predicate is a counterexample of the periodicity property. The second predicate \(\neg(\|\eta_n(t) - x_n(t)\| \leq \sigma) \), ensures that for all the time, the distance of the hybrid timed traces from the possible time domain periodic trajectories obtained from the frequency domain specification, must be less than a user defined error. A satisfiable valuation of this predicate indicates the violation of the frequency domain specification implicitly.

IV. EXPERIMENTAL EVALUATION

A. Evaluation Methodology

We have used Tunnel diode Oscillator (TDO) and Voltage Controlled Oscillator (VCO) benchmarks for the evaluation of our proposed methodology Figs. [10],[11]. Equations Eq. [6] and Eq. [7] represent the non-linear ODE model of the TDO, where \(I_D(V_d) \) is the non-linear model of the tunnel diode. Mathematical model of VCO is given in Eqs. [8],[9],[10] where \(I_{DS}(V_{DS},V_{DS}) \) is the Schichman-Hodges PMOS model [11]. For TDO we have used parameters, \(C = 1 nF \pm 2\% \), \(L = 1 mH \pm 2\% \), \(R = 0.2 Ohm \) and \(V_{in} \in [0.35, 0.36] \). Similarly, for VCO we have set, \(C = 3.43nF \pm 2\% \), \(L = 2.85mH \pm 2\% \), \(V_{str} = 0 \) and \(V_{DD} \in [1.8, 1.85] \). We have used the SMO solver iSAT-ODE [1], to exercise BMC formulations of the non-linear hybrid automata, and Matlab [12] to compute periodogram specifications. We have used a 2.6 GHZ Intel(R) Core(TM) i5 machine with 4 GB of memory for all the experiments.

\[\dot{V}_{d} = \frac{1}{C}(-I_d(V_d) + I_L) \]
\[\dot{I}_L = \frac{1}{L}(-V_d + I_L \cdot R + V_{in}) \]

\[\dot{V}_{D1} = -\frac{1}{C}(I_{DS1}(V_{D2} - V_{DD}, V_{D1} - V_{DD}) + I_{L1}) \]
\[\dot{V}_{D2} = -\frac{1}{C}(I_{DS2}(V_{D1} - V_{DD}, V_{D2} - V_{DD}) + I_b - I_{L1}) \]
\[\dot{I}_{L1} = \frac{1}{2L}(V_{D1} - V_{D2} - R(2I_{L1} - I_b)) \]

B. Results

Based on the non-linear diode and PMOS models in [10],[11], we got the non-linear hybrid automaton of TDO and VCO Fig. [2]. Simulation traces are shown in Fig. [3a] whereas periodogram specifications for these traces are in Fig. [3a], [13] for TDO and VCO respectively. Here we have only shown specification for the fundamental frequency of the variables (\(V_d \) for TDO, and \(VD1 \) for VCO). The upper and lower bounds on these periodograms have been found based on the designer judgement, i.e., we chose random values in the parameter spaces and correspondingly varied the “power spectral envelop” and arrived at these bounds. Taking \(V_d \in [0.55, 0.58] \), \(I_L = 0.0 \) as the initial conditions for the state variables, we model checked the TDO hybrid automaton for eight unwindings of the BMC formula Tab. [11a]. Similarly for VCO, we considered initial conditions \(VD1 \in [-1.5, -1.4]\) volts, \(VD2 \in [-0.9, -0.8]\) volts, \(I_L = 0.06mA \) and obtained the BMC results for eight unwindings of the formula Tab. [11b]
V. CONCLUSION

In this paper we have presented a novel mixed time and frequency domain approach to verify frequency domain properties of oscillators when they operate in the close vicinity of the limit cycle.

REFERENCES

