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ABSTRACT

The nonequilibrium Keldysh formalism has been used to study the spin trans-

port effects found in magnetic multi-layered nanostructures. We formulate a

new methodology based on Landauer and show it to be in very good quali-

tative agreement with Keldysh. However, our theory provides more informa-

tion regarding the physics of these effects because it allows us to calculate the

contributions of individual electrons incident from either side of a junction

as well as the contributions within a single layer that are incident on and

reflected from an adjacent interface.

Chapter 1 provides a consolidated introduction to spintronics in magnetic

multilayer nanostructures (the key focus of this thesis) including phenom-

ena such as giant magnetoresistance (GMR), tunneling magnetoresistance

(TMR) and current induced switching of magnetization. We then describe

how to calculate the local charge and spin current in the direction perpen-

dicular to the layers of an arbitrary magnetic layer structure using the non-

nonequilibrium Keldysh formalism before introducing our Landauer approach

to investigating the transport of charge and spin current in these magnetic

multilayers using the simplest paraboilic band model for electrons in each

layer.
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In Chapter 2 we formulate our approach by defining the general solution

to the wave equation for a given layer in a system in terms of the angle by

which the spin polarization is rotated in-plane in that layer and the gen-

eralized wave vectors for each electron spin band. We determine a general

transfer matrix that enables us to solve explicitly the coefficients of the wave

functions in each layer of any general multi-layered system before defining

an expression for the in-plane and out-of-plane spin current components in

terms of these wave functions before detailing our Landauer formalism to

calculating the local spin current in a realistic system consisting of ferromag-

nets with a finite exchange splitting and appropriate boundary conditions.

We apply our formulated approach in Chapter 3 to a set of collinear

spin problems whereby the two magnetic layers in our general multilayer

junction (consisting of two ferromagnets separated by a non-magnetic spacer

layer) have their rotated magnetizations either ferromagnetically or anti-

ferromagnetically aligned (parallel/anti-parallel to the net magnetization).

Our analytical results provide the neccessary conditions for optimising tun-

neling magnetoresistance (TMR) and show how a ‘switching’ effect can be

used to control it. We achieve this by calculating analytically in the ferromag-

netic configuration the neccessary conditions to support a 100% transmission

success rate in one spin channel whilst making it very difficult for transmis-

sion to occur in the other spin channel. However, we show conclusively that

re-aligning the magnetization to the antiferromagnetic configuration under

the same conditions will make it very diffcult for transmission to occur in

either spin channel.
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In Chapter 4 we investigate the spin current in a general five layer junction

and show that a zero out-of-plane spin current in the nonmagnetic spacer ex-

ists only when perfect symmetry is introduced because the contribution from

the left cancels exactly the contribution from the right. We identify a number

of properties within the nonmagnetic layers and observe the effect of varying

the angle of rotated magnetization and width of the polarizing magnet on

the spin current components in the nonmagnetic layers.

In Chapter 5 we define the appropriate boundary conditions for our Lan-

dauer approach before investigating analytically the origin of out-of-plane

spin current in the nonmagnetic spacer in Chapter 6 by looking specifically

at an interface between a semi-infinite magnet and a semi-infinite nonmag-

net and obtaining qualitative insight into the out-of-plane spin current found

in a non-magnetic spacer sandwiched between two finite ferromagnets. In

this final chapter we also calculate numerically the effect of an additional in-

sulating barrier on our classical junction consisting of a nonmagnetic spacer

sandwiched between two ferromagnets. We compare our results for the charge

and spin current in the nonmagnetic spacer to those obtained previously us-

ing the Kelydysh formalism before showing for the first time the physical

dependence on multiple magnetic interfaces of the out-of-plane spin current

in a nonmagnetic spacer and how the out-of-plane spin current in the spacer

can be large even when the charge current and the in-plane spin current are

both negligibly small.





1. INTRODUCTION

1.1 Spintronics

The main topic of this thesis is concerned with spin electronics, or spintron-

ics. Spintronics is a relatively new research area which, unlike conventional

electronics, takes into consideration the spin of an electron. Spin is the term

used in quantum mechanics and particle physics to identify the intrinsic

form of angular momentum carried by individual particles. Spin is thereby

a purely quantum mechanical phenomenon with no counterpart in classical

mechanics. There are therefore two types of angular momentum in quan-

tum mechanics, orbital angular momentum which is the quantum-mechanical

counterpart to the classical notion of angular momentum and spin angular

momentum. Orbital angular momentum arises when a particle executes a ro-

tating or twisting trajectory, for example, when an electron orbits a nucleus.

The existence of spin angular momentum is inferred from experiments, such

as the Stern-Gerlach experiment, in which a beam of particles are passed

through an inhomogeneous magnetic field and observed in their deflection

to possess an intrinsic angular momentum that only takes certain quantized

values and cannot be accounted for by orbital angular momentum alone [1],

[2].
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The existence of an intrinsic spin angular momentum of electrons together

with the Coulomb interaction (electrostatic interaction between electrically

charged particles) has the consequence that in some materials the Coulomb

interaction favours energetically the parallel arrangement of electron spins,

which results in a net total spin angular momentum. With it there is the

associated net magnetic moment (magnetization). This occurs in magnetic

materials such as Iron, Nickel and Cobalt [3]. It follows that the spin state

of each individual electron in a magnetic material can be classified as having

a spin orientation parallel (up-spin) or anti-parallel (down-spin) to the net

magnetization. The spin state of electrons clearly affects the magnetic and

electronic properties of that material. However, the electron spin orientation

in a macroscopic material changes as the electron travels through the mate-

rial and, on average, has thus no effect on its transport properties such as

resistance. The distance over which the direction of the spin angular mo-

mentum is conserved is determined by the spin-dependent scattering and is

characterized by the so called spin diffusion length. There are several sources

of spin dependent scattering, the most important are magnetic impurities,

spin-orbit interaction and scattering from spin waves in a ferromagnet. The

spin diffusion length in most materials is of the order of tens or hundreds of

nanometers [4]. To exploit the existence of spin in electronics it is, therefore,

necessary to grow new materials (nanostructures) whose dimensions (in at

least one direction) are smaller than the spin diffusion length. This can be

achieved by growing very perfect layer structures in which the thicknesses of

the constituent layers are all smaller than the spin diffusion length. If such

layer structures contain magnetic layers they are called magnetic multilayers.
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A typical magnetic multilayer is shown schematically in Fig. 1.1 whereby a

series of magnets (M) and nonmagnets (NM) are connected to left and right

leads.

Fig. 1.1: Schematic picture of a magnetic multilayer nanostructure.

1.2 Magnetic multilayers

Magnetic multilayers pose great challenges both to experiment and theory.

Experimentally, they have to be grown with atomic control over the thick-

nesses of individual layers and with interfaces between the layers so perfect

that, ideally, the momentum of carriers parallel to the layers is conserved.

This is now possible for metallic magnetic multilayers which are the sub-

ject of this thesis. The restriction to metallic multilayers is for two reasons.

Firstly, research into properties of metallic magnetic multilayers is by far the

most advanced and the second reason is that currently they are the only

systems that can be used in spintronics. Multilayers based on magnetic

semiconductors are being studied extensively but, at present, their low Curie

temperature prevents their commercial application in spintronics.

Theoretically, magnetic multilayers are also challenging since they are in-
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herently inhomogeneous systems. However, for perfect epitaxial layers, the

inhomogeneity is only in one dimension and we shall see that such quasi-one-

dimensional inhomogeneity can be included in theory without any approxi-

mations.

The key feature that distinguishes magnetic multilayers from conventional

(macroscopic) magnets is the experimentally established fact that the trans-

port of charge is mediated in them by carriers whose spin remains conserved

across the whole thickness of the multilayer. In a conventional magnet the

spin of an individual charge carrier flips between its up (↑) and down (↓) spin

projections over a characteristic distance lsf (spin diffusion length) which is of

the order of several tens of nanometers. This is much shorter than the dimen-

sions of conventional electronics components. It follows that spin memory

is lost in macroscopic samples and, therefore, the spin angular momentum

plays no role in transport of charge. This is why for decades spin was ignored

by conventional semiconductor electronics. However, when an ultrathin layer

structure with a thickness smaller than lsf is prepared the spin “remembers”

its orientation across the whole thickness of the structure, which means that

carriers with different spin orientations do not mix and flow independently

as if in two separate wires connected in parallel [5]. If the multilayer contains

magnetic components, then the two spin channels are inequivalent. This is

because the numbers of charge carriers with ↑ and ↓ spin are unequal in a

ferromagnet and, even more importantly, ↑ and ↓ spin carriers see different

potentials at nonmagnet/magnet interfaces and are thus scattered there at

different rates.
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This has interesting and highly exploitable consequences. Because of

different scattering rates for ↑ and ↓ spin carriers at nonmagnet/magnet

interfaces the total resistance of a magnetic nanostructure depends on the

magnetic configuration of all its magnetic components. This in turn can be

altered by an applied magnetic field and, therefore, the resistance of a mag-

netic nanostructure can be changed by the applied field. The effect is known

as the giant magnetoresistance (GMR) since the relative change of the resis-

tance can be very large, of the order of 100%. When two magnetic electrodes

are separated by an insulating tunneling barrier a similar effect, called tun-

neling magnetoresistance (TMR), can occur. The GMR effect was discovered

about twenty years ago [6] and a large TMR effect was first observed in 1995

[7]. With the discovery of the GMR effect the era of spintronics had begun.

Both GMR and TMR effects have been thoroughly explored over the last

ten years and have found many applications. For example, the TMR effect is

now used to read information stored on a computer hard disc and TMR read-

ing heads (spin valves) are now fitted to all modern computers. The TMR

effect can also be used to store information using a process called magnetic

random access memory (MRAM) that is currently being developed. It is

now, therefore, well established that by altering the magnetic configuration

of a magnetic multilayer we can influence the charge current flowing in it.

However, it was recognized only much more recently [8] that, conversely, by

passing a strong charge current one can alter the magnetic state of a magnetic

multilayer. The structure in which this effect occurs consists of a left lead, a

thick left magnetic layer (polarizing magnet), a nonmagnetic metallic spacer
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layer, a thin second magnet (switching magnet) and a semi-infinite right lead.

It was proposed by Slonczewski [8] that the current passing through the left

magnetic layer becomes spin polarized and, therefore, the flow of charge from

the left magnetic layer to the right magnetic layer is accompanied by a flow

of spin. The flow of the spin angular momentum is called spin current. The

spin current is conserved in the nonmagnetic parts of the structure but the

spin of a carrier entering a ferromagnet can change its orientation provided

such a spin flip is compensated for by the corresponding change to the total

spin of the magnet so that the total angular momentum of the whole system

is conserved. It follows that spin current can be absorbed by the ferromagnet.

The rate of change of the total spin, given by the difference between the spin

current entering a magnet and that leaving the magnet, is equal to the torque

exerted on the magnetic moment of the ferromagnet. If the charge current,

and the associated spin current, is strong enough the spin-transfer torque

can cause total reversal of the magnetization. This effect is called current-

induced switching of magnetization. Quite apart from being fundamentally

interesting in its own right, current-induced switching of magnetization has

important potential applications since it is envisaged that it could be used

to write information in MRAM [9].

Even in the absence of charge current, i.e. when the magnetic multilayer

is in equilibrium, there is a flow of spin current between two magnetic lay-

ers separated by a nonmagnetic metallic spacer layer provided the magnetic

moments of the two magnets are not collinear. This leads to a static torque

being exerted by one magnet on the other and the effect is known as oscil-
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latory exchange coupling [10] between the two magnets since the sign of the

torque depends in an oscillatory manner on the thickness of the nonmagnetic

spacer. The oscillatory exchange coupling was discovered at the same time

as the GMR effect but a close link between this effect and current-induced

switching of magnetization was not made until very recently [11].

It can be seen that the four effects which effectively define the new area

of spintronics, i.e. GMR, TMR, oscillatory exchange coupling and current-

induced switching of magnetization all rely on the length of the magnetic

structure in at least one direction being shorter than the spin diffusion length

lsf . Since this is for most metals of the order of several tens of nanometers

[6], spintronics can only operate in nanoscale devices.

There is one feature that distinguishes the GMR from TMR, oscillatory

exchange coupling and current induced switching of magnetization. The

GMR is the only effect that is observed in two qualitatively different geome-

tries. In the first case, the current flows perpendicular to the layers (CPP)

geometry as shown in Fig. 1.2.
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Fig. 1.2: Schematic picture of CPP geometry.

The second more usual GMR geometry corresponds to the situation when

the current flows in plane of the layers (CIP) as shown in Fig. 1.3.

Fig. 1.3: Schematic picture of CIP geometry.

Since the lateral dimensions of the layer structure in the direction paral-

lel to the layers are macroscopic (often of the order of centimeters), the CIP

GMR always takes place in the diffusive limit (the elastic mean free path

is much shorter than the lateral dimensions of the layer structure). That
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means that a semi-classical description of the CIP GMR is appropriate. In

fact, the CIP GMR effect in a trilayer can be explained qualitatively using

a simple resistor model that applies to both CIP and CPP GMR as shown

in Fig. 1.4. In the ferromagnetic configuration of the trilayer, carriers with ↑

spin are weakly scattered both in the first and second ferromagnets whereas

the ↓ spin carriers are strongly scattered in both ferromagnetic layers. This

can be modelled by two small resistors in the ↑ spin channel and by two large

resistors in the ↓ spin channel in the equivalent resistor network shown in

Fig. 1.4a.

Fig. 1.4: Resistor model of CIP and CPP GMR.

Since the ↑ and ↓ spin channels are connected in parallel, the total resis-

tance of the trilayer in its ferromagnetic configuration is determined by the

low-resistance ↑ spin channel which shorts the high-resistance ↓ spin chan-

nel. It follows that the total resistance of the trilayer in its ferromagnetic

configuration is low. On the other hand, ↓ spin carriers in the antiferromag-

netic configuration are strongly scattered in the first ferromagnetic layer but
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weakly scattered in the second ferromagnetic layer. The ↑ spin carriers are

weakly scattered in the first ferromagnetic layer and strongly scattered in the

second. This is modelled in Fig. 1.4b by one large and one small resistor in

each spin channel. There is no shorting now and the total resistance in the

antiferromagnetic configuration is, therefore, much higher than that in the

ferromagnetic configuration. This simple physical model of the GMR effect

is believed to be qualitatively correct and is supported by more realistic cal-

culations based on the Boltzmann equation [12].

On the other hand, CPP GMR, TMR, oscillatory exchange coupling and

current induced switching of magnetization all take place in the CPP geom-

etry. They are thus inherently quantum effects and, consequently, require

quantum treatment of the transport of charge and spin current.

Yet another factor that distinguishes the CIP GMR from the rest is the

role of impurities. The CIP GMR can only occur in the presence of impuri-

ties or in the presence of roughness at the interfaces between magnetic and

nonmagnetic layers. The CPP GMR, TMR, oscillatory exchange coupling

and current induced switching of magnetization can all operate in perfect

samples providing reliable penetration, i.e. in the ballistic limit.

In this thesis we shall not consider impurities. It follows that we can treat

theoretically only the CPP geometry in which the effect of impurities can be

minimized in well grown experimental samples.
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There are several theoretical methods that have been developed to calcu-

late the transport of charge in magnetic multilayers. Initially, the standard

k-space Kubo formula has been generalised to real space so that it could be

applied to spatially inhomogeneous systems [13]. The Kubo formula has the

advantage that it can be formulated for a fully realistic electronic structure

of each layer in the magnetic multilayer.

Another method that has been used is the Landauer formula which pro-

vides a very physical insight into the transport of charge current in spatially

inhomogeneous systems [14]. It is relatively easy to formulate the Landauer

theory using a simple parabolic band description of the electronic structure

of individual layers. However, it is more difficult to generalise this approach

to a more realistic band structure since the Landauer formulation relies on

the calculation of the electron wave function in each layer. This is rela-

tively straightforward for a parabolic band approximation to the electronic

structure but much more difficult for a fully realistic description of the local

electronic structure.

The main aim of this thesis is to generalise the Landauer formulation

to include the transport of spin in magnetic multilayers. This has not been

done within the spin diffusive limit before and we shall see that the Lan-

dauer description of the transport of spin provides a very physical insight

that cannot be obtained by other methods. Our aim is to provide physical

insight into the behaviour of the spin current that flows through a magnetic

multilayer. This is important because the spin current vector determines
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the magnetic torque acting on the switching magnet in a junction in which

current-induced switching of magnetization was predicted by Slonczewski

[8]. Since our main motivation is to clarify physical processes that govern

current-induced switching of magnetization, we shall first review briefly the

switching effect itself. Throughout the thesis we shall be frequently compar-

ing our results with those obtained from the Keldysh theory of spin current

[15], [16], [17]. We shall, therefore, also briefly describe the Keldysh formula-

tion and discuss how it compares with the Landauer approach we adopt here.

1.3 Current-induced switching of magnetization

It is now well established that by altering the magnetic configuration of a

magnetic multilayer we can influence the charge current flowing in it. It was

pointed out by Slonczewski [8] that, conversely, by passing a strong charge

current one can alter the magnetic state of a magnetic multilayer. The layer

structure in which this effect is expected to occur is shown schematically in

Fig. 1.5
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Fig. 1.5: Schematic picture of a magnetic layer structure for current-induced

switching (magnetic layers are red, nonmagnetic layers are light blue).

Where p and m are unit vectors in the direction of the magnetization.

The structure consists of a left semi-infinite lead, a thick left magnetic layer

(polarizing magnet), a nonmagnetic metallic spacer layer, a thin second mag-

net (switching magnet) and a right semi-infinite lead. It is assumed that the

magnetization of the polarizing magnet is pinned (for example by a strong

anisotropy field) in a particular direction θ. Slonczewski argued that the

left magnet will then spin polarize the current passing through it and the

resultant spin current flowing through the spacer can be absorbed by the

switching magnet. The rate of change of the total spin, given by the dif-

ference between the spin current entering the switching magnet and that

leaving the magnet, is equal to the torque exerted on the magnetic moment

of the switching magnet. If the charge current, and the associated spin cur-

rent, is strong enough the spin-transfer torque can cause total reversal of the

switching magnet moment. This effect is called current-induced switching of

magnetization.



1. Introduction 38

On the most elementary level, one can simply assume that the polarizing

magnet produces a spin current that gets partially or fully absorbed by the

switching magnet and explore the consequences of the resultant torque acting

on the magnetization of the switching magnet. This can be done using a phe-

nomenological Landau-Lifshitz equation with an appropriate spin-transfer

torque term. To treat correctly the dynamics of current-induced switching of

magnetization, it is also necessary to include in the Landau-Lifshitz equation

the usual Gilbert damping term [18].

However, the phenomenological approach leaves many questions unan-

swered. In particular, to understand and optimize the switching effect, we

need to know the magnitude and direction of the spin-transfer torque for any

specific combination of nonmagnetic and magnetic layer materials. We also

require the dependencies of the spin-transfer torque on the thicknesses of

both the nonmagnetic and magnetic layers. Finally, to describe correctly the

switching effect, we also need to know the detailed dependence of the spin-

transfer torque on the angle between the magnetizations of the polarizing

and switching magnets. To answer all these questions we need to calculate

microscopically the spin current entering and leaving the switching magnet,

i.e. the torque acting on it. The most direct microscopic approach is the

original calculation of Slonczewski [8] for a simple parabolic band model of a

magnetic multilayer. He calculated the spin current (torque) from the one-

electron wave functions assuming that the magnetizations of the polarizing

and switching magnets are kept at a given fixed angle. This type of calcu-

lation corresponds to a scattering experiment. An incoming electron with
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a given spin orientation (determined by the polarizing magnet) is scattered

off an exchange field of the switching magnet which is not parallel to the

spin orientation of the incident electron. Calculations based on this idea are

designed to tell us how much of the spin angular momentum of the incident

electron is absorbed by the switching magnet. The reaction of the switch-

ing magnet to the absorbed spin angular momentum is ignored at this stage

and is determined separately in a second independent calculation using the

phenomenological Landau-Lifshitz equation. In the way originally described

by Slonczewski the method was applicable without any approximations only

to ferromagnets with a very large exchange splitting of ↑ and ↓ spin bands.

On a more fundamental level, evaluating the spin current directly from one-

electron wave functions requires some justification since one also has to link

the current obtained from the spin current operator to an applied bias. The

extension of Slonczewski’s approach to an arbitrary magnetic multilayer and

the proper justification of his method using the generalisation of Landauer’s

formula to the case of spin current will be given in Section 2.4.

It is useful at this stage to discuss briefly the experimental verification of

Slonczewski’s idea. A typical junction in which current-induced switching is

studied experimentally [19] is shown schematically in Fig. 1.6.
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Fig. 1.6: Schematic picture of a junction in which current-induced switching is

studied experimentally.

The thickness of the polarizing magnet is 40nm, that of the switching

magnet is 2.5nm and the nonmagnetic spacer is 6nm thick. The materi-

als most commonly used for the two magnets and the spacer are Cobalt

and Copper, respectively. The junction cross section is approximately oval-

shaped and its diameter is only 130nm. A small diameter is necessary so that

the torque due to the Oersted field (auxiliary magnetic field) generated by a

charge current of 107 to 108A/cm2, required for current-induced switching,

is much smaller than the spin-transfer torque we are interested in.

We now review briefly the experimental set-up which is used to study

current-induced switching. The aim of most experiments is to determine the

orientation of the switching magnet moment as a function of the current
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(applied bias) in the junction. Discontinuities in such a dependence indicate

sudden jumps of the magnetization direction, i.e. current-induced switching.

The orientation of the switching magnet moment m relative to that of the po-

larizing magnet p, which is fixed, is determined by measuring the resistance

of the junction. Because of the GMR effect, the resistance of the junction

is higher when the magnetizations of the two magnets are antiparallel than

when they are parallel. In other words, what is observed are hysteresis loops

of resistance versus current. A typical experimental hysteresis loop of this

type [20] is reproduced in Fig. 1.7.
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Fig. 1.7: Resistance vs current hysteresis loop (after Grollier et al. [20]).

It can be seen from Fig. 1.7 that, for any given current, the switching

magnet moment is stationary (the junction resistance has a well defined
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value), i.e. the system is in a steady state. This holds true everywhere on

the hysteresis loop except for the two discontinuities where current-induced

switching occurs. The experiment thus clearly confirms the current-induced

switching of magnetization predicted theoretically by Slonczewski.

1.4 Nonequilibrium Keldysh formalism

Following [21] we now describe briefly how to calculate, using the non-

equilibrium Keldysh formalism, the local charge and spin currents flowing

in the direction perpendicular to the layers of an arbitrary magnetic layer

structure. We shall assume that the magnetic layer structure is sandwiched

between two reservoirs with a bias Vb applied between them to produce a

spin-polarized current. The structure we consider is shown schematically in

Fig. 1.8.
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Typically, the two reservoirs will be semi-infinite nonmagnetic leads and

the magnetic structure consists of a left magnet (FM) separated from the

right magnet by a nonmagnetic spacer layer (SP). The spacer layer may

be either a nonmagnetic metal or an insulator. Although this is the most

common situation, an arbitrary finite number of other layers (magnetic or

nonmagnetic) can be easily incorporated into the structure. The broken line

in Fig. 1.8 represents a cleavage plane separating the system into two inde-

pendent parts so that charge carriers cannot move between the two surface

planes labelled n − 1 and n. Our ability to cleave the whole system in this

way is essential for the implementation of the Keldysh formalism. This can-

not be easily done in the continuum model we shall adopt in the formulation

of the Landauer approach in Section 2.4. However, the separation of the sys-

tem into two independent parts is easily done within a discrete tight-binding

parameterization of the band structure by simply switching off the matrix

of hopping integrals tnν,n−1µ between atomic orbitals ν, µ localized in planes

n− 1 and n. We shall, therefore, adopt the tight-binding description in this

section. Each layer in the structure is therefore described by a tight-binding

model, in general multi-orbital with s, p, and d orbitals whose one-electron

parameters are fitted to first-principle bulk band structure. The Hamiltonian

is, therefore, of the form

H = H0 +Hint +Hanis (1.1)

where the one-electron hopping term H0 is given by

H0 =
∑
k‖σ

∑
mµ,nν

tmµ,nν(k‖)c†k‖mµσ
ck‖nνσ (1.2)

where c†k‖mµσ
creates an electron in a Bloch state, with in-plane wave vector
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k‖ and spin σ, formed from a given atomic orbital µ in plane m. Hint is an

on-site interaction between electrons in d orbitals which leads to an exchange

splitting of the bands in the ferromagnets and is neglected in the spacer and

lead. Finally, Hanis contains effective fields corresponding to uniaxial Hu

and easy-plane Hp anisotropies.

Using the equation of motion for the spin angular momentum operator,

it is straightforward to show within the tight-binding description [22] that

the operator for spin angular momentum current between planes n − 1 and

n is given by

jn−1 = − i
2

∑
k‖µν

t(k‖)nν,n−1µ(c†k‖nν↑
, c†k‖nν↓

)σ(ck‖n−1µ↑, ck‖n−1µ↓)
T

+h.c. (1.3)

Here, σ = (σx, σy, σz), where the components are Pauli matrices. Eq. 1.3

yields the charge current operator if 1
2
σ is replaced by a unit matrix multi-

plied by the electronic charge e/h̄, where e is the electronic charge (negative).

All currents flow in the direction of the y−axis, perpendicular to the layers,

and the components of the vector j correspond to transport of x, y, and z

components of spin.

To use the Keldysh formalism [15], [16], [17] to calculate the charge or

spin currents flowing between the planes n− 1 and n, we consider an initial

state at time τ = −∞ in which the hopping integral tnν,n−1µ between planes

n− 1 and n is switched off. Then both sides of the system are in equilibrium

but with different chemical potentials µL on the left and µR on the right,

where µL − µR = eVb. The interplane hopping is then turned on adiabati-
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cally and the system evolves to a steady state. The cleavage plane, across

which the hopping is initially switched off, may be taken in either the spacer

or in one of the magnets or in one of the leads.

In principle, the Keldysh method is valid for arbitrary bias Vb but here

we restrict ourselves to small bias corresponding to linear response which is

valid for metallic multilayers.

Following Keldysh [15], [16], we define a two-time matrix

G+
RL(τ, τ ′) = i < c†L(τ ′)cR(τ) > (1.4)

where R ≡ (n, ν, σ′) and L ≡ (n−1, µ, σ), and we suppress the k‖ label. The

thermal average in Eq. 1.4 is calculated for the steady state of the coupled

system. The matrix G+
RL has dimensions 2m× 2m where m is the number of

orbitals on each atomic site, and is written so that the m×m upper diagonal

block contains matrix elements between ↑ spin orbitals and the m×m lower

diagonal block relates to ↓ spin. 2m× 2m hopping matrices tLR and tRL are

written similarly and in this case only the diagonal blocks are nonzero. If

we denote tLR by t, then tRL = t†. We also generalize the definition of σ

so that its components are now direct products of the 2 × 2 Pauli matrices

σx, σy, σz and the m×m unit matrix. The thermal average of the spin current

operator, given by Eq. 1.3, may now be expressed as

< jn−1 >=
1

2

∑
k‖

Tr{[G+
RL(τ, τ)t−G+

LR(τ, τ)t†]σ} (1.5)

Introducing the Fourier transform G+(ω) of G+(τ, τ ′), which is a function of
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τ − τ ′, we have

< jn−1 >=
1

2

∑
k‖

∫
dω

2π
Tr{[G+

RL(ω)t−G+
LR(ω)t†]σ} (1.6)

Again, the charge current is given by Eq. 1.6 with 1
2
σ replaced by the unit

matrix multiplied by e/h̄.

Similarly, the total spin angular momentum on atomic planes on either

side of the cleavage plane, in the non-equilibrium state, is given by

< Sn−1 >= −1

2
ih̄
∑
k‖

∫
dω

2π
Tr{G+

LL(ω)σ} (1.7)

< Sn >= −1

2
ih̄
∑
k‖

∫
dω

2π
Tr{G+

RR(ω)σ} (1.8)

Following Keldysh [15], [16] we now write

G+
AB(ω) =

1

2
(FAB +Ga

AB −Gr
AB) (1.9)

where the suffices A and B are either R or L. FAB(ω) is the Fourier transform

of

FAB(τ, τ ′) = −i < [CA(τ), C†B(τ ′)] > (1.10)

and Ga, Gr are the usual advanced and retarded Green functions [23]. Note

that in References [16] and [17] the definitions of Ga and Gr are interchanged

and that in the Green function matrix defined by these authors G+ and G−

should be interchanged.
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Charge and spin current are related by Eqs. 1.6-1.8 to the quantities Ga,

Gr, and FAB. The latter are calculated for the coupled system by starting

with decoupled left and right systems, each in equilibrium, and turning on

the hopping between planes L and R as a perturbation. Hence, we express

Ga, Gr, and FAB in terms of retarded surface Green functions gL ≡ gLL,

gR ≡ gRR for the decoupled equilibrium system. It is then straightforward to

show [24] that the spin current between planes n − 1 and n can be written

as the sum < jn−1 >=< jn−1 >1 + < jn−1 >2, where the two contributions

to the spin current < jn >1 and < jn >2 are given by

< jn−1 >1=
1

4π

∑
k‖

∫
dω ReTr{(B − A)σ}[f(ω − µL) + f(ω − µR)]

(1.11)

< jn−1 >2=
1

2π

∑
k‖

∫
dω ReTr{[gLtABg†Rt

† − AB

+
1

2
(A+B)]σ}[f(ω − µL)− f(ω − µR)] (1.12)

Here, A = [1 − gRt†gLt]−1, B = [1 − g†Rt†g
†
Lt]
−1, and f(ω − µ) is the Fermi

function with chemical potential µ and µL−µR = eVb. In the linear-response

case of small bias which we are considering, the Fermi functions in Eq. 1.12

are expanded to first order in Vb. Hence the energy integral is avoided, be-

ing equivalent to multiplying the integrand by eVb and evaluating it at the

common zero-bias chemical potential µ0. Eq. 1.11 and 1.12 contain all the

information about the transport of spin and charge in the direction per-

pendicular to the layers of an arbitrary magnetic layer structure. The spin

current was evaluated from the above equations by Edwards et al [24]. for a
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single-orbital tight-binding band as well as for a more realistic multi-orbital

band structure. However, it is the results for a single-orbital band that are

most directly comparable with the results obtained from our generalised Lan-

dauer formula we derive in Section 2.4

1.5 The parabolic band model

In order to investigate the transport of charge current and spin current in

these magnetic multilayers, we shall use the simplest parabolic band model

for electrons in each layer. In nonmagnetic layers, the potential an elec-

tron sees is independent of its spin. On the other hand, in magnetic lay-

ers, electron-electron interaction results in a spin-dependant potential which

leads to an exchange splitting of electron bands. In other words, the bands

of electrons with spin parallel and antiparallel to a spin quantization axis

are shifted relative to one another by an energy ∆ which is called the ex-

change splitting. It follows that the potentials seen by electrons with spin

parallel to the spin quantization axis (↑ spin electrons) and anti-parallel to

the quantization axis (↓ spin electrons) satisfy V ↑ − V ↓ = ∆. This is shown

schematically in Fig. 1.9.
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Fig. 1.9: Schematic picture showing the exchange splitting of ↑ and ↓ spin electron

bands.

If we were to take a nonmagnetic metal A with a Fermi level (the highest

occupied energy level) a distance EA
f from a vacuum (zero energy level) and

a nonmagnetic metal B with a Fermi level a distance EB
f from zero (Fig. 1.10)

Fig. 1.10: Schematic picture showing the Fermi energy levels of two nonmagnetic

metals A and B.

and place them in contact, electrons will initially flow from A to B creat-

ing excess negative charge in B. This in turn creates a repulsion Coulomb
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potential which lifts the electron energy levels in metal B upwards until the

two Fermi energy levels are equal and a state of equilibrium is achieved.

This behaviour is in fact true for all layers in a multi-layered system in that

each band of electrons will flow throughout the system and achieve a com-

mon Fermi energy level. To further illustrate this schematic picture, we will

look at a hypothetical multilayer consisting of a magnetic layer sandwiched

between two nonmagnets as illustrated in Fig. 1.11.

Fig. 1.11: Band schematic of a magnet sandwiched between two nonmagnets.

From this picture, we can now represent this multilayer for each spin band

as a potential barrier or potential well. In this instance, an ↑ spin incident

electron flowing from the left of our system to the right will see a potential

well in its path and a ↓ spin incident electron will see a potential barrier as

illustrated in Fig. 1.12.
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Fig. 1.12: Potential well/barrier representation for each spin band.

1.6 Landauer’s approach

Landauer’s approach to calculating charge and spin transport is useful in

the sense that it divides such calculations into four individual scattering

problems. We can construct some desired magnetic nanostructure contained

between two reservoirs of electrons of all energies and emit a single electron

with spin orientation parallel (↑) or anti-parallel (↓) to the net magnetization.

This single electron will propagate through the system from the left reservoir

to the right and its influence on the charge current and spin transport ef-

fects throughout can be calculated. The total left to right moving effects will

therefore be the sum of ↑ and ↓ spin incident electrons from the left reservoir

and similarly, the total right to left moving effects will be given by the sum of

↑ and ↓ spin incident electrons from the right reservoir. The total effects are

then simply given by the difference between left and right. Finally, the sum

of all such propagating electrons can be converted into an energy integral to
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give a complete physical calculation. The ability to study total spin trans-

port effects more closely by looking at individual contributions will provide

greater insight into such effects. We will formulate our Landauer approach

in more detail in Section 2.4 by looking at a general system consisting of two

Ferromagnets separated by a nonmagnetic spacer layer.



2. GENERAL FORMULA AND METHODOLOGY

2.1 Spin wave functions

The wave function ψ for all positions and times is determined by solving

Schrödinger’s Equation (Eq. 2.1).

ih̄
dψ

dt
= Ĥψ (2.1)

Ĥ =
−h̄2

2m
∇2 + V (r) (2.2)

The kinetic and potential energies are transformed into the Hamiltonian, Ĥ,

which acts upon the wave function to generate the evolution of the wave

function in time and space. In our problem, there is a further dimension

to account for. The carriers of charge in metals are electrons and quantum

mechanics tells us that each electron has an internal angular momentum

called spin which can only have two values. These are usually referred to as

spin projections “up” (↑) or “down” (↓). In a magnetic metal such as Iron

the numbers of ↑ spin and ↓ spin electrons are unequal and, since there is

an elementary magnetic moment associated with each spin, a net magnetic

moment arises. We can account for this phenomenon analytically by allowing

the wave function to become two part for ↑ and ↓ spin

ψ(r, t) =

 ψ↑

ψ↓

 (2.3)
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The Hamiltonian, Ĥ, can then be written as a 2x2 matrix operator of the

form

Ĥ = T + V (2.4)

where

T =
−h̄2

2m

 ∇2 0

0 ∇2

 (2.5)

and V is a 2x2 matrix corresponding to the potential energy of the material

in the layer, given by

V =

 VNM 0

0 VNM

+ VX (2.6)

Here, VNM is the nonmagnetic potential of the layer and VX is a 2x2 matrix

corresponding to the spin potentials in the layer, given by

VX =
∆S

2

 1 0

0 −1

 (2.7)

∆S is the difference in ↑ and ↓ spin potentials such that the potentials for

the ↑ and ↓ spin orientations in magnetic layers are shifted by ∆S = V ↑S −V
↓
S

and the potential in nonmagnetic layers are spin independant where ∆S = 0.

We will need to account for magnetic layers in which the spin polariza-

tion is rotated in the yz − plane by an angle θ and thus the ↑ and ↓ spin
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potentials will be in the direction parallel/antiparallel to the magnetization

respectively, hence, we can take

VX̄ =
∆S

2

 cos θ sin θ

sin θ − cos θ

 (2.8)

Therefore, the time-independent Schrödinger equation, Eψ = Ĥψ, gives

Tψ + VNMψ + VX̄ψ − Eψ = 0 (2.9)

We can choose a unitary 2x2 matrix

S =

 cos θ
2

sin θ
2

− sin θ
2

cos θ
2

 (2.10)

such that VX̄ = S−1VXS, and multiply throughout Eq. 2.9 to obtain

STψ + SVNMψ + SVX̄ψ − SEψ = 0 (2.11)

Since T , E and VNM are diagonal, and S−1S = I, the identity matrix, this

is the same as

TSψ + VNMSψ + SVX̄(S−1S)ψ − ESψ = 0 (2.12)

which can be written as

T (Sψ) + VNM(Sψ) + SVX̄S
−1(Sψ)− E(Sψ) = 0 (2.13)

Here we note that since VX̄ = S−1VXS, it is also true that SVX̄S
−1 = VX

and hence we can write Eq. 2.9 for a new wave function φ = Sψ as

Tφ+ VNMφ+ VXφ− Eφ = 0 (2.14)
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which is equivalent to a system of two independent wave equations given by

−h̄2

2m
∇2φ↑ + (VNM +

∆S

2
− E)φ↑ = 0 (2.15a)

−h̄2

2m
∇2φ↓ + (VNM −

∆S

2
− E)φ↓ = 0 (2.15b)

The general solution for each can be written as

φ↑ = A↑ek
↑r +B↑e−k

↑r (2.16a)

φ↓ = A↓ek
↓r +B↓e−k

↓r (2.16b)

Where A↑, B↑, A↓ and B↓ are constants and k↑ and k↓ are the general-

ized wave vectors that can be either pure imaginary or real where k↑
2

=

2m
h̄2

(VNM + ∆S

2
− E) and k↓

2
= 2m

h̄2
(VNM − ∆S

2
− E).

Thus, since φ = Sψ, the original wave function ψ is given by ψ = S−1φ

or

ψ =

 ψ↑

ψ↓

 =

 cos θ
2

sin θ
2

− sin θ
2

cos θ
2

−1 φ↑

φ↓

 (2.17)

It should be noted that throughout this thesis we will always consider multi-

layered systems with constant potentials in each layer, i.e. the potential

in each layer is independent of the position in that layer, as illustrated in

Fig. 2.1.
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Fig. 2.1: Multi-layered system with constant potentials in either spin band and

angle of rotated magnetization in each layer.

Solving for ψ (Eq. 2.17) and converting to one-dimension given that we

are always sending electrons from either side along the x − axis, we obtain

the general solution (Eq. 2.18) to the wave equation for the ith layer in a

system in terms of θi, the angle by which the spin polarization is rotated

in-plane in that layer, and the generalized wave vectors k↑i and k↓i .

ψ↑i = (A↑i e
k↑i x +B↑i e

−k↑i x) cos
θi
2
− (A↓i e

k↓i x +B↓i e
−k↓i x) sin

θi
2

(2.18a)

ψ↓i = (A↑i e
k↑i x +B↑i e

−k↑i x) sin
θi
2

+ (A↓i e
k↓i x +B↓i e

−k↓i x) cos
θi
2

(2.18b)

It follows from our multi-layered system that we can separate the variables

in Schrödinger’s Equation (Eq. 2.1) and introduce two components of the

generalized wave vector k↑,↓ = k↑,↓‖ +k↑,↓⊥ , where k⊥ and k‖ are the components

of the wave vector perpendicular (parallel) to the layers. Assuming that such
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separation of variables has been made, we shall always be solving a quasi-

one-dimensional problem in which the potential varies only in the direction

perpendicular to the layers and can be characterized by k⊥. Throughout

the thesis we shall assume this is the case and when the total spin (charge)

currents are required, an integration with respect to k‖ needs to be performed

so that the total energy for all motion paralell (E‖) and perpendicular (E⊥)

to the layers is kept constant and equal to the common Fermi energy Ef =

E‖ + E⊥. This will be mentioned whenever appropriate.

2.2 General transfer matrix

In this section we will derive a general transfer matrix that allows us to solve

for the unknown coefficients of the wave functions given by Eq. 2.18 in each

layer of a magnetic multilayer nanostructure.

The wave function ψ and its derivative must be continuous throughout

the junction. It is therefore true that ψi−1 = ψi and ψ′i−1 = ψ′i at x = xi.

This gives us the following system of equations


ψ↑i−1

ψ↓i−1

ψ↑
′

i−1

ψ↓
′

i−1


xi

=


ψ↑i

ψ↓i

ψ↑
′

i

ψ↓
′

i


xi

(2.19)

From this and the general solution (Eq. 2.18) we see that if we define ~Ai as
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the column vector

~Ai =


A↑i

B↑i

A↓i

B↓i


(2.20)

and Mi as the 4x4 matrix

Mi =


ek
↑
i xi cos θi

2
e−k

↑
i xi cos θi

2
−ek

↓
i xi sin θi

2
−e−k

↓
i xi sin θi

2

ek
↑
i xi sin θi

2
e−k

↑
i xi sin θi

2
ek
↓
i xi cos θi

2
e−k

↓
i xi cos θi

2

k↑i e
k↑i xi cos θi

2
−k↑i e−k

↑
i xi cos θi

2
−k↓i ek

↓
i xi sin θi

2
k↓i e
−k↓i xi sin θi

2

k↑i e
k↑i xi sin θi

2
−k↑i e−k

↑
i xi sin θi

2
k↓i e

k↓i xi cos θi
2
−k↓i e−k

↓
i xi cos θi

2


(2.21)

We have that Mi
~Ai = Mi−1

~Ai−1. Multiplying either side by the inverse ma-

trix M−1
i gives ~Ai = M−1

i Mi−1
~Ai−1. By simplifying M−1

i Mi−1, we can define

the transfer matrix across xi as MT
i such that ~Ai = MT

i
~Ai−1 where

MT
i =

1

2


ξ(k↑i , k

↑
i−1) cos θi−θi−1

2
ξ(k↑i , k

↓
i−1) sin θi−θi−1

2

−ξ(k↓i , k
↑
i−1) sin θi−θi−1

2
ξ(k↓i , k

↓
i−1) cos θi−θi−1

2

 (2.22)

and ξ(α, β) is a 2x2 matrix defined for all α, β by

ξ(α, β) =


e−xi(α−β)(1 + β

α
) e−xi(α+β)(1− β

α
)

exi(α+β)(1− β
α

) exi(α−β)(1 + β
α

)

 (2.23)
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We have now established a tool that allows us to solve explicitly the

coefficients of the wave functions at each layer of interest in any general multi-

layered system. These wave functions hold all the information of the system

and can be used to calculate a variety of quantum mechanical attributes

and phenomena. We will use this tool throughout the thesis to solve for

these wave functions and use them to calculate charge current, tunnelling

magnetoresistance (TMR), exchange coupling and the spin transport effects

in various magnetic multilayer nanostructures.

2.3 Spin current components

Now that we have the wave functions, we can calculate directly the spin cur-

rent at any point in a magnetic multilayer junction. It is known from the

equation of continuity [25] that the ordinary charge current, ~j, can be ob-

tained once the wave function, ψ, is known where ~j is given by the expression

~j =
−ih̄
2m
{(∇ψ)ψ∗ − (∇ψ∗)ψ} (2.24)

We can similarly derive expressions for the x, y and z components of the

spin current. The magnetic multilayers described in this thesis consist of

magnetic layers that have their spin angular momentum fixed parallel to a

spin quantization axis aligned with the z−axis. In such layers, the spin pre-

cesses about the direction of the magnetization in the magnet and since this

is in the z direction, the z component of the spin current is clearly conserved

and it is only the x and y components that precess. We make this choice of
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the direction of magnetization parallel to the z − axis so that we need not

consider the z component of the spin current when studying the transport of

spin throughout the layers as it is only the magnetic layers with rotated mag-

netization in which the z component of the spin current is not conservered.

We will therefore formulate expressions for the in-plane spin current (parallel

to the layers) and the out-of-plane spin current (perpendicular to the layers)

given by the x and y components respectively.

From Schrödinger’s Equation (Eq. 2.1), the two-part wave function ψ

(Eq. 2.3) and the Pauli matrices [27] or spin operators for each component

σx, σy and σz, we are able to deduce the following set of equations

ih̄
dψ

dt
= Ĥψ, Ĥ = T + V (2.25)

ψ =

 ψ↑

ψ↓

 , T =
−h̄2

2m

 ∇2 0

0 ∇2

 , V =

 V ↑ 0

0 V ↓

 (2.26)

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 (2.27)

In analogy with the derivation of ordinary charge current, we expect that

the x component of spin current, Jx, satisfies the equation of continuity

d

dt

[
ψ†σxψ

]
+∇.Jx = 0 (2.28)

where ψ† denotes the transpose of the conjugate of ψ
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d

dt

[
ψ†σxψ

]
=

d

dt

( ψ↑∗ ψ↓∗
) 0 1

1 0

 ψ↑

ψ↓

 =
d

dt

[
ψ↓∗ψ↑ + ψ↑∗ψ↓

]

=
dψ↓∗

dt
ψ↑ + ψ↓∗

dψ↑

dt
+
dψ↑∗

dt
ψ↓ + ψ↑∗

dψ↓

dt
(2.30)

From Schrödinger’s Equation we have that

dψ

dt
=

ih̄

2m
∇2ψ − i

h̄
V ψ (2.31)

Therefore

dψ∗

dt
=
−ih̄
2m
∇2ψ∗ +

i

h̄
V ψ∗ (2.32)

and so, by substitution
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d

dt

[
ψ†σxψ

]
=
−ih̄
2m
∇2ψ↓∗ψ↑ +

i

h̄
V ↓ψ↓∗ψ↑ +

ih̄

2m
∇2ψ↑ψ↓∗ − i

h̄
V ↑ψ↑ψ↓∗

− ih̄

2m
∇2ψ↑∗ψ↓ +

i

h̄
V ↑ψ↑∗ψ↓ +

ih̄

2m
∇2ψ↓ψ↑∗ − i

h̄
V ↓ψ↓ψ↑∗

=
−ih̄
2m

{
(∇2ψ↓∗)ψ↑ − ψ↓∗(∇2ψ↑) + (∇2ψ↑∗)ψ↓ − ψ↑∗(∇2ψ↓)

}
− i
h̄

(V ↑ − V ↓)(ψ↑ψ↓∗ − ψ↑∗ψ↓) (2.33)

Here we first look at a nonmagnetic layer whereby V ↑ = V ↓, removing the

last term of Eq. 2.33 to give

d

dt

[
ψ†σxψ

]
=
−ih̄
2m

{
(∇2ψ↓∗)ψ↑ − ψ↓∗(∇2ψ↑) + (∇2ψ↑∗)ψ↓ − ψ↑∗(∇2ψ↓)

}
(2.34)

Therefore, the equation of continuity is satisfied when the x component of

the spin current is given by

Jx =
ih̄

2m

{
(∇ψ↓∗)ψ↑ − ψ↓∗(∇ψ↑) + (∇ψ↑∗)ψ↓ − ψ↑∗(∇ψ↓)

}
(2.35)

This remains true in a magnetic layer, however, the equation of continuity

will include a further term involving the difference in ↑ and ↓ spin potentials.

This can be expected since the spin current is not conserved in the same way

as ordinary charge current. We are only interested however in Jx and so we

simply call this term Cx in our equation of continuity such that

d

dt

[
ψ†σxψ

]
+∇.Jx = Cx (2.36)
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Similarly, it can be shown for the y component that

d

dt

[
ψ†σyψ

]
+∇.Jy = Cy (2.37)

where

Jy =
h̄

2m

{
−(∇ψ↓∗)ψ↑ + ψ↓∗(∇ψ↑) + (∇ψ↑∗)ψ↓ − ψ↑∗(∇ψ↓)

}
(2.38)

We now note that by letting (∇ψ↓∗)ψ↑ = a and ψ↓∗(∇ψ↑) = b we have that

Jx =
ih̄

2m
{(a− a∗)− (b− b∗)} =

h̄

m
={b− a} (2.39)

Jy =
−h̄
2m
{(a+ a∗)− (b+ b∗)} =

h̄

m
<{b− a} (2.40)

where =,< denote the imaginary and real parts respectively. Substituting

back for a and b, we can define J (Eq. 2.41a) such that the in-plane (parallel)

and out-of-plane (perpendicular) spin current components, J‖ and J⊥, can

be obtained from the imaginary and reals parts of J respectively (Eq. 2.41b)

J =
h̄

m
{(∇ψ↑)ψ↓∗ − (∇ψ↓∗)ψ↑} (2.41a)

J‖ = ={J} and J⊥ = <{J} (2.41b)

2.4 Landauer formalism

In order to calculate the local spin current in a realistic system consisting

of ferromagnets with a finite exchange splitting, it is necessary to specify
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appropriate boundary conditions in the left and right leads such that we can

correctly match the wave functions across all interfaces. This was done pre-

viously by Landauer [5] in a similar problem involving charge current. He

showed that the conductance of a system sandwiched between two reservoirs

is given by its total quantum mechanical transmission coefficient, T . Since

the charge current is conserved throughout the system, the total transmission

coefficient therefore provides us with all the information there is about the

transport of charge. Similarly, if we are only interested in the spin current

due to a single interface between a nonmagnet and a magnet, the concept

of conductance remains valid and can be easily generalized to include spin

dependant scattering from the local exchange potential. However, since spin

current is not conserved, we need to calculate it locally within the structure.

To determine the local spin current without any approximations, the Lan-

dauer method needs to be applied to the whole magnetic layer structure as

was done previously by Camley [26]. We will use this approach by looking at

our general system consisting of two ferromagnets separated by a nonmag-

netic spacer layer. The left magnet (polarizing magnet) has its magnetization

rotated by angle θ in the yz−plane and the right magnet (switching magnet)

has its magnetization fixed parallel to the spin quantization axis (z − axis).

The magnets are then connected to left and right reservoirs by nonmagnetic

leads. An infinitesimal bias Vb is applied between the left and right reservoirs

so that their electron distributions are characterised by two Fermi functions

f(ω − µL) and f(ω − µR) with µL − µR = eVb. Since we assume that Vb

is infinitesimal, the one-electron states of the system can be calculated from

the Schrödinger Equation (Eq. 2.1) neglecting the effect of Vb. We classify
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the electron spin projections as ↑ or ↓, parallel or antiparallel respectively to

the global spin quantization axis (z − axis).

Fig. 2.2: Electrons of all energies ω up to µL (µR) and momenta k‖ parallel to the

layers are omitted from the left and right reservoirs.

Electrons of either spin orientation (↑, ↓) are incident on the system both

from the left and right reservoirs. In order to determine the spin current from

Eq. 2.41, we therefore need to solve four independent one-electron scattering

problems. The first problem corresponds to an ↑ spin electron incident from

the left which is partially reflected both to the ↑ spin and ↓ spin channels in

the left lead and partially transmitted to the ↑ spin and ↓ spin channels in

the right lead. Similarly, a ↓ spin electron incident from the left reservoir is

reflected and transmitted to both ↑ spin and ↓ spin channels in the left and

right leads respectively. Finally, both ↑ spin and ↓ spin electrons incident

from the right reservoir are similarly reflected and transmitted to both spin

channels in the right and left leads respectively.

If JLi (σ, ω, k‖) is the in- or out-of-plane spin current component (i =‖,⊥)

due to an electron of spin σ incident from the left reservoir with an energy
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ω and parallel wave vector k‖, and JRi (σ, ω, k‖) is the corresponding contri-

bution due to an electron incident from the right reservoir, we can write the

total spin current in any part of the structure by summing over the contri-

butions from all the electrons incident on the entire system as

J toti =
∑
k‖

∫
dω{f(ω − µL)[JLi (↑, ω, k‖) + JLi (↓, ω, k‖)]

+f(ω − µR)[JRi (↑, ω, k‖) + JRi (↓, ω, k‖)]} (2.42)

where J
L(R)
i = j

L(R)
i (dk⊥/dω) was used to convert the sum over k⊥ into an

energy integral where ω = h̄2

2m
(k2
‖ + k2

⊥). Using the identities Eq. 2.43 and

Eq. 2.44

fR = (1/2)[fR + fL] + (1/2)[fR − fL] (2.43)

fL = (1/2)[fR + fL]− (1/2)[fR − fL] (2.44)

where fL and fR denote the Fermi functions in the left and right reservoirs,

we can finally write the total spin current as Eq. 2.45

J toti =
∑
k‖,σ

∫
dω{[JLi (σ, ω, k‖) + JRi (σ, ω, k‖)](fL + fR)

+[JLi (σ, ω, k‖)− JRi (σ, ω, k‖)](fL − fR)} (2.45)
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This form of the Landauer (Eq. 2.45) is immediately useful for discussing

some general properties of the spin current. In the absence of bias, only the

terms proportional to the sum of the Fermi functions remain. It can be shown

that J tot‖ = 0 both in the spacer and in the leads. We also have J tot⊥ = 0 in

the leads but J tot⊥ 6= 0 in the spacer. The term J tot⊥ in the spacer determines

the oscillatory exchange coupling between the two ferromagnets. This thesis

is primarily concerned with that part of the spin current which couples to

fL−fR and hence vanishes in the absebce of bias. We call this the transport

spin current JT and we will later evaluate the transport spin current from

Eq. 2.45 throughout various magnetic multilayer junctions for the simple

parabolic band model using the transfer matrix method to determine the

electron wave functions in each layer of interest.



3. TUNNELING MAGNETORESISTANCE IN THE

TRILAYER

3.1 Reduction of the general formalism for collinear

configurations

We will first look at a set of collinear spin problems whereby the two magnetic

layers in our general multilayer junction (Fig. 2.2) have their rotated magneti-

zations either ferromagnetically or anti-ferromagnetically aligned (parallel/anti-

parallel to the net magnetization). The general formalisms for systems con-

sisting of layers with rotated spin angular momentum can be easily reduced

to these collinear spin problems simply by setting the angle of rotated mag-

netization θ = 0 in all layers that are ferromagnetically aligned and θ = π in

those that are anti-ferromagnetically aligned. We will then proceed to find

analytical conditions for optimising tunneling magnetoresistance (TMR) in

given systems and to show how a ‘switching’ effect can be used to control it.

Hence, the general wave functions (Eq. 2.18) for the ith layer are reduced
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to

ψ↑i = −A↓i ek
↓
i x −B↓i e−k

↓
i x (3.1a)

ψ↓i = A↑i e
k↑i x +B↑i e

−k↑i x (3.1b)

if parallel (θi = 0) and

ψ↑i = −A↑i ek
↑
i x −B↑i e−k

↑
i x (3.2a)

ψ↓i = −A↓i ek
↓
i x −B↓i e−k

↓
i x (3.2b)

if anti-parallel (θi = π).

The general transfer matrix (Eq. 2.22) for an interface between two layers

that are both aligned parallel to the spin quantization axis (z − axis) such

that 1
2
(θi − θi−1) = 0 reduces to

MT
i =

1

2


ξ(k↑i , k

↑
i−1) 0

0 ξ(k↓i , k
↓
i−1)

 (3.3)

Similarly, in the anti-ferromagnetic configuration, the general transfer

matrix for an interface between a layer aligned parallel to the spin quanti-

zation axis and a ferromagnet with magnetization rotated by π such that

1
2
(θi − θi−1) = ±π

2
reduces to
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MT
i =

1

2


0 ±ξ(k↑i , k

↓
i−1)

∓ξ(k↓i , k
↑
i−1) 0

 (3.4)

The transfer matrix for the ferromagnetically aligned system whereby

1
2
(θi − θi−1) = 0 shows that in this instance, the original 4x4 transfer matrix

(Eq. 2.22) is made up of two identical 2x2 matrix systems in terms of ↑ and

↓ spin potentials and so we need only solve a general 2x2 system of the form

~Ai = MT
i
~Ai−1 (3.5)

where

ψi = Aie
kix +Bie

−kix (3.6)

~Ai =

 Ai

Bi

 (3.7)

MT
i =


e−xi(ki−ki−1)(1 + ki−1

ki
) e−xi(ki+ki−1)(1− ki−1

ki
)

exi(ki+ki−1)(1− ki−1

ki
) exi(ki−ki−1)(1 + ki−1

ki
)

 (3.8)
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We can use this form of the transfer matrix (Eq. 3.8) to solve for the wave

functions in each layer of a general magnetic multilayer junction consisting

of n layers. The solution on the far left (semi-infinite lead) is of the form

ψ0 = A0e
k0x + B0e

−k0x where A0e
k0x corresponds to the incident wave and

B0e
−k0x, the reflected wave. Thus, we have that A0 = 1 and B0 = R, the

reflection coefficient. Similarly, in the right semi-infinite lead, we have that

An = T , the amplitude of the transmission coefficient, and Bn = 0, assuming

there are no incident electrons from the right of the junction.

We can use this form of the transfer matrix (Eq. 3.8) to solve for the wave

functions in each layer of a general magnetic multilayer junction consisting

of n layers. The solution on the far left (semi-infinite lead) is of the form

ψ0 = A0e
k0x + B0e

−k0x where A0e
k0x corresponds to the incident wave and

B0e
−k0x, the reflected wave. Thus, we have that A0 = 1 and B0 = R, the

reflection coefficient. Similarly, in the right semi-infinite lead, we have that

An = T , the amplitude of the transmission coefficient, and Bn = 0, assuming

there are no incident electrons from the right of the junction.

We can use this form of the transfer matrix (Eq. 3.8) to solve for the wave

functions in each layer of a general magnetic multilayer junction consisting

of n layers. The solution on the far left (semi-infinite lead) is of the form

ψ0 = A0e
k0x + B0e

−k0x where A0e
k0x corresponds to the incident wave and

B0e
−k0x, the reflected wave. Thus, we have that A0 = 1 and B0 = R, the

reflection coefficient. Similarly, in the right semi-infinite lead, we have that

An = T , the amplitude of the transmission coefficient, and Bn = 0, assuming

there are no incident electrons from the right of the junction.

We can use this form of the transfer matrix (Eq. 3.8) to solve for the wave
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functions in each layer of a general magnetic multilayer junction consisting

of n layers. The solution on the far left (semi-infinite lead) is of the form

ψ0 = A0e
k0x + B0e

−k0x where A0e
k0x corresponds to the incident wave and

B0e
−k0x, the reflected wave. Thus, we have that A0 = 1 and B0 = R, the

reflection coefficient. Similarly, in the right semi-infinite lead, we have that

An = T , the amplitude of the transmission coefficient, and Bn = 0, assuming

there are no incident electrons from the right of the junction.

Substituting for ~Ai, M
T
i and ~Ai−1 in Eq. 3.5, we have

 T

0

 =

 An

Bn

 = MT
n

 An−1

Bn−1

 = MT
nM

T
n−1

 An−2

Bn−2



= MT
nM

T
n−1........M

T
1

 A0

B0

 = MT
nM

T
n−1........M

T
1

 1

R

 (3.9)

Therefore, by defining MTotal as the total transfer matrix across the entire

system from left to right, we have

 T

0

 = MTotal

 1

R

 (3.10)

where

MTotal = MT
nM

T
n−1........M

T
1 (3.11)
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Eq. 3.10 gives us two equations with two unknowns and so we can solve

explicitly for the transmission and reflection coefficients, T and R respec-

tively. By letting mij denote the element of MTotal in the ith row and jth

column, we have

R =
−m21

m22

(3.12)

T = m11 +m12R (3.13)

The transmission and reflection coefficients provide a great deal of insight

into the physical properties and quantum effects found in these collinearly

arranged magnetic multilayer junctions. As such, we are seeking conditions

that imply good tunneling magnetoresistance (TMR). That is to say, condi-

tions which assist the total transmission of a propagating particle from left

to right in our system. This can be sufficiently formulated from the modulus

square of the transmission coefficient, |T |2 = 1. Similarly, total transmission

implies zero reflection and so, we can initially check the conditions satisfying

R = 0. From the expressions for R and T (Eq. 3.12 and Eq. 3.13), we see

that since these coefficients are complex, we will need to satisfy the following

three conditions
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<{m21} = 0 (3.14)

={m21} = 0 (3.15)

<{m22} 6= 0 or ={m22} 6= 0 (3.16)

Eq. 3.14, Eq. 3.15 and Eq. 3.16 impose that both the real (<) and imag-

inary (=) parts of the numerator m21 of R (Eq. 3.12) are exactly zero under

the same conditions, whilst ensuring that this does not imply that the de-

nominator m22 of R is also zero. The latter restriction is sufficiently upheld

if either the real and/or imaginary parts of m22 are non-zero. We will use

these conditions throughout the remainder of this chapter to investigate an-

alytically the optimum conditions for supporting such tunneling effects in

various scattering problems resulting from the trilayer junction.

3.2 Collinear trilayer spin band configuration

We now have all the tools we need to jump straight in to a much stud-

ied tunneling problem, the trilayer. The trilayer is a magnetic multilayer

nanostructure consisting of a nonmagnetic spacer layer sandwiched between

two magnets. The two magnets are either ferromagnetically (parallel) or

antiferromagnetically (anti-parallel) aligned. The ferromagnetic configura-

tion has been shown experimentally to produce good transmission (resonant
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tunneling) versus the antiferromagnetic configuration which produces poor

transmission. This forms the basis of tunneling magnetoresistance (TMR).

Electrons under the right conditions can propagate through the system until

a ‘switching’ effect is enforced causing the anti-parallel configuration to occur

and hence reducing the tunneling effect. We will now explore the trilayer and

seek analytically the right conditions for TMR.

Fig. 3.1 shows the ↑ and ↓ spin band schematic for the ferromagneti-

cally aligned trilayer contained between left and right leads. Below this band

schematic is a potential well/barrier representation for both the ↑ and ↓ spin

bands. From this we can see that an ↑ spin electron moving across the sys-

tem from left to right will encounter a potential barrier sandwiched between

two potential wells, whereas a ↓ spin electron will simply encounter a single

potential barrier.
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Fig. 3.1: Schematic picture showing the ↑ and ↓ spin potentials of the ferromag-

netically aligned trilayer for each spin band.

Similarly, Fig. 3.2 shows the band schematic for the antiferromagnetic

configuration whereby the switching magnet on the right has had its spin an-

gular momentum reversed to an anti-parallel configuration. Here we see that

an ↑ spin electron moving across the system from left to right will encounter

a potential well followed by a potential barrier, whereas a ↓ spin electron will

now have a potential well proceeding the barrier in its path.
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Fig. 3.2: Schematic picture showing the ↑ and ↓ spin potentials of the antiferro-

magnetically aligned trilayer for each spin band.

In both of these collinear configurations (Fig. 3.1) and (Fig. 3.2), the ↑

and ↓ spin bands are matched in the left and right semi-infinite leads. Fur-

thermore we see from the potential well/barrier representations in each that

we have four individual scattering problems to investigate analytically using

the conditions derived in Sec. 3.1 for optimising the probability of resonant

tunnelling of individual electrons propagating from left to right.
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3.3 Potential barrier sandwiched between two potential wells

The first tunneling problem is for the ↑ spin incident electron in the ferromag-

netic configuration of a trilayer junction (Fig. 3.1) consisting of a potential

barrier sandwiched between two potential wells. We first look at an asym-

metric configuration with no matching of the potentials in the left and right

wells. This can be easily achieved by using different widths for each well as

illustrated in Fig. 3.3.

Fig. 3.3: Potential barrier sandwiched between a left well of width A and a right

well of width B.

Studying this general trilayer problem and solving for the total trans-

fer matrix (Eq. 3.11) for a single incident electron travelling with energy ε

from the left, we can determine the necessary conditions for zero reflection

in terms of the transfer matrix elements. In doing so, we see that the first

condition (Eq. 3.14) reduces to sinh(A−B) = 0, showing that it is necessary

for the wells to be of equal width and so we define the system as symmetric

as illustrated in Fig. 3.4.
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Fig. 3.4: Potential barrier sandwiched between left and potential right wells with

exact matching providing symmetry.

Here, the first condition (Eq. 3.14) is immediately satisfied. The second

condition (Eq. 3.15) shows that it is possible to impose zero reflection and

hence total transmission for the ferromagnetically aligned symmetric trilayer

junction by means of satisfying Eq. 3.17

sin[2(b− a)|k1|+ Γ] = ∆ (3.17)

where ∆ is given by

∆ =
(|k2

1|+ |k2
0|)(|k2

1|+ k2
2) tanh 2ak2

(|k2
1| − |k2

0|)
√

(|k2
1| − k2

2)2 tanh2 2ak2 + 4|k2
1|k2

2

(3.18)

and Γ is given by

tan Γ =
1

2

(
|k1|
k2

− k2

|k1|

)
tanh 2ak2 (3.19)
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Finally, we will also need to ensure that we satisfy the third condition

(Eq. 3.16) which reduces to Eq. 3.20

tanh 2ak2 6=
2k2

2(|k2
1| − |k2

0|)
2|k2

0|k2
2 + |k4

1|+ k4
2

(3.20)

From this see that we can indeed achieve full transmission of an ↑ spin

electron in the ferromagnetically aligned trilayer if the conditions given by

Eq. 3.17 and Eq. 3.20 are met. These conditions seem surprisingly easy to

satisfy since Eq. 3.18 shows ∆ to be a constant, however, we do need to

ensure that |∆| ≤ 1 since | sin[2(b − a)|k1| + Γ]| can never exceed one. This

makes a lot of sense since 2a is the width of the barrier. Therefore, for a very

narrow barrier, the factor tanh 2ak2 will be very small and these conditions

will be easily satisfied. Conversely, for a wide barrier, it would be impossible

to satisfy.

3.4 Single potential barrier

The next tunneling problem is for the ↓ spin incident electron in the ferro-

magnetic configuration of a trilayer junction (Fig. 3.1) consisting of a single

potential barrier as illustrated in Fig. 3.5
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Fig. 3.5: Single potential barrier.

Calculating the total transfer matrix (Eq. 3.11) in this instance for a

single electron travelling with energy ε from the left and solving for zero re-

flection by the potential barrier, we see from the first condition (Eq. 3.14)

that ak1 = 0. This can only be satisfied by having a barrier of width a = 0

and so this proves that full transmission is impossible. We can note however

that for a very thin barrier, the reflection coefficient will tend to zero and

hence the rate of transmission will improve and approach one.

3.5 Potential well adjacent to a potential barrier

The third tunneling problem is for the ↑ spin incident electron in the anti-

ferromagnetic configuration of a trilayer junction (Fig. 3.1) consisting of a

potential well adjacent to a potential barrier. In this instance the potential

well precedes the barrier as illustrated in Fig. 3.6
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Fig. 3.6: Potential well adjacent to a potential barrier

Calculating the total transfer matrix (Eq. 3.11) for a single electron trav-

elling with energy ε from the left and solving for zero reflection in the left

semi-infinite lead as before, we see from the first condition (Eq. 3.14) that

ak1 = inπ. This can be easily satisfied for all propagating waves in the left

polarizing magnet (potential well) of the form k1 = inπ
a

. However, the second

condition (Eq. 3.15) can only be satisfied if bk2 = 0. Similarly to the single

barrier problem, this proves conclusively that we can never achieve exactly

zero reflection, and hence total transmission, since we cannot have a system

whereby bk2 = 0. We can note however that by fitting an integer number of

wavelengths across the well, the reflection coefficient becomes proportional

to the width of the barrier b and so for a very thin barrier, we can come very

close to total transmission, however, we can never achieve exactly one.

This is exactly true for the fourth tunneling problem for the ↓ spin in-

cident electron in the antiferromagnetic configuration of a trilayer junction

(Fig. 3.2) consisting of a potential barrier that precedes an adjacent potential

well. We can fit an integer number of wavelengths across the right switching

magnet however we can only approach full transmission as the width of the
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barrier approaches zero.

Therefore, in conclusion for the collinear trilayer contained between left

and right leads, we have shown that in the ferromagnetic configuration, we

can indeed transmit ↑ spin electrons with a 100% success rate by develop-

ing a symmetric trilayer junction with exact matching in the ↑ spin band

of the left polarizing and right switching magnets and by fitting an integer

number of wavelengths across these magnetic layers. If we then introduce

a wide enough nonmagnetic spacer layer (potential barrier) sandwiched be-

tween the left and right ferromagnets, we can still allow for this 100% success

rate in the ↑ spin channel whilst making it very difficult for transmission to

occur in the ↓ spin channel. Additionally once the magnetization of the right

switching magnet has been realigned to the antiferromagnetic configuration

under the same conditions, the wide spacer layer will make it very difficult

for transmission to occur in either spin channel.

3.6 Resonant tunneling in a double barrier

Given the results we have obtained for the collinear trilayer, we will now

look at a final collinear tunneling problem based on the trilayer junction but

with exact matching between the non-magnetic spacer layer and the left and

right semi-infinite leads. In order to achieve this configuration, we adjust the

trilayer band schematic (Fig. 3.1) as shown in Fig. 3.7.
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Fig. 3.7: Schematic picture showing the ↑ and ↓ spin bands of the ferromagnetically

aligned trilayer with matching across the nonmagnetic spacer and the left

and right leads.

This configuration produces a new scattering problem in the ↑ spin chan-

nel consisting of two separated potential barriers as illustrated in Fig. 3.8.

Fig. 3.8: Two separated potential barriers.

Studying this general double barrier problem and solving for the total

transfer matrix (Eq. 3.11) for a single incident electron travelling with en-

ergy ε from the left, we can immediately determine, as for the general trilayer

problem, that the first necessary condition (Eq. 3.14) required for zero reflec-

tion reduces to sinh(a − b) = 0 showing that it is necessary for the barriers

to be of equal width in order to support total transmission and so we define
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the system as symmetric as illustrated in Fig. 3.9.

Fig. 3.9: Two separated potential barriers with exact matching providing symme-

try.

Here, like with the symmetric trilayer consisting of two matched potential

wells separated by a potential barrier, the first condition (Eq. 3.14) is imme-

diately satisfied. The second condition (Eq. 3.15) shows that it is possible

to impose zero reflection and hence total transmission for this double barrier

configuration by means of satisfying Eq. 3.21

tan 2a|k0| = Γ (3.21)

where,

Γ =
2(

|k0|
k1
− k1
|k0|

)
tanh (b− a)k1

(3.22)

In this case, the third condition (Eq. 3.16) is automatically satisfied by

Eq. 3.21 and so, this is in fact a sufficient condition that directly implies full
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transmission. This condition seems surprisingly easy to satisfy since Γ can

be any non-zero constant Γ0 and tan 2a|k0| can be any value between −∞

and +∞ as illustrated in Fig. 3.10.

Fig. 3.10: Schematic plot of Eq. 3.21 showing solutions at intersections with con-

stant Γ0.

In conclusion, we have seen that for a magnetic multilayer junction with

a collinear configuration and with matching across the layers such that an

incident electron propagating from the left will see a single potential barrier in

its path, the rate of transmission reduces as the width of the potential barrier

increases. More surprisingly, when introducing a second potential barrier, we

can achieve full transmission if the two potential barriers are identical and

we can fit an integer number of half wavelengths plus a constant across the

spacer separating them.



4. SPIN CURRENT COMPONENTS IN A FIVE LAYER

JUNCTION

4.1 Spin band configuration of a simple five layer junction

In Chapter 3 we looked at the tunneling effects in a ferromagnetic and anti-

ferromagnetic trilayer junction contained between left and right leads. In

fact, the theoretical approach to the trilayer typically consists of a nonmag-

netic spacer layer sandwiched between two semi-infinite ferromagnets, i.e.

there are no left and right leads. We will see in Chapter 5 why this approach

would not be entirely suitable when using our Landaur formalism but first we

will define a simple five layer junction analogous to our trilayer that includes

the left and right leads but with the magnetization in the left polarizing

magnet rotated by angle θ where θ 6= nπ as shown in Fig. 4.1.

Fig. 4.1: Schematic picture of a simple five layer junction.



4. Spin Current Components in a Five Layer Junction 89

The left polarizing magnet has its magnetization rotated by angle θ in the

yz − plane and the right magnet or switching magnet has its magnetization

fixed parallel to the spin quantization axis (z−axis). For simplicity, the two

magnets and the nonmagnetic spacer are all of fixed width a.

The large arrows represent the ↑ and ↓ spin incident electrons we will be

sending along the x − axis from the left and right with spin angular mo-

menta parallel (↑) and anti-parallel (↓) to the net magnetization of the right

switching magnet (parallel/anti-parallel to the z − axis).

In Sec. 2.4 we discussed that in order to calculate the local spin current in

a realistic system consisting of ferromagnets with a finite exchange splitting,

it is necessary to specify appropriate boundary conditions in the left and

right leads such that we can correctly match the wave functions across all

interfaces. As a result we have matched both the ↑ and ↓ spin bands in the

left and right leads with zero exchange splitting in each in order to create a

realistic physical picture whereby the left and right leads simulate left and

right reservoirs, this is shown schematically in Fig. 4.2.
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Fig. 4.2: Schematic picture showing the ↑ and ↓ spin bands of a simple five layer

junction.

Using the general solution (Eq. 2.18) to the wave equation ψi, we are

able to construct the wave functions in each layer of the five layer junction in

terms of the perpendicular components (k⊥) of the wave vectors k↓i and k↑i and

solve for the coefficients in each using the general transfer matrix (Eq. 2.22).

The wave functions and their coefficients can then be used to calculate the

local in- and out-of-plane spin current components for a single propagating

wave for each spin orientation in either direction using the expression for

J (Eq. 2.41). Finally, the total spin current components can be calculated

using our Landauer formalism (Eq. 2.45) to include all contributions from all

electrons incident on the entire system.

4.2 Spin current components and destructive interference

We will first calculate the in- and out-of-plane spin current components for

a single propagating wave (k⊥) and then for the sum over all k‖ throughout

the five layer junction defined in Sec. 4.1 whereby the ferromagnets are rep-

resented as two potential wells and the left and right lead potentials are the
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same as that of the nonmagnetic spacer layer as illustrated in Fig. 4.3.

 

Fig. 4.3: Five layer junction represented by two potential wells.

We have fixed the angle of rotated magnetization in the left polarizing

magnet to θ = 1.5, the width of the two ferromagnets and the spacer sep-

arating them is given by a = 18 and the energy of our incident electron is

given by ε = 0.5. The potentials in each layer are given by VNM = −1.0,

V ↑FM1 = −1.8, V ↓FM1 = −2.5, V ↑FM2 = −1.5 and V ↓FM2 = −2.6. The asymme-

try is introduced by not matching the potentials in either spin band between

the two ferromagnets.

The numerical results for the total in-plane spin current component (JT‖ )

calculated for a single k⊥ are illustrated in Fig. 4.4.
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Fig. 4.4: JT‖ , the total in-plane spin current component for incident electrons from

the left and right (single k⊥) as a function of x, the position in the

junction.

From Fig. 4.4, we see that the total in-plane spin current component in

the nonmagnetic leads and spacer layer are constant and join continuously

into the magnetic layers. The spin current is continuous at each interface

because of the continuity of the wave functions and their derivatives. In

the magnetic layers we see oscillations due to the precession of the electron

spin in the effective molecular field produced by the magnetization of the

magnet (analogous to the precessions in a conventional magnetic field). In

the switching magnet (right), these precessions are oscillating about the spin

quantization axis whilst in the polarizing magnet (left), we see them offset

due to the rotated magnetization in the yz − plane. The two periods ob-

served in the magnetic layers are brought about by functions of the sum and

difference of the wave vectors for each spin band, i.e. The short period is

given by a function of k↑ + k↓ and the long period is given by a function of

k↑ − k↓.
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The total spin current is given by the difference between the contribu-

tions from either side and our Landauer formalism allows us to calculate

these contributions separately. The total in-plane spin current contribution

due to incident electrons from the left reservoir (JL‖ ) calculated for a single

k⊥ and the total in-plane spin current contribution from the right are illus-

trated in Fig. 4.5 and Fig. 4.6 respectively.
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Fig. 4.5: JL‖ , the in-plane spin current component for incident electrons from the

left (single k⊥) as a function of x, the position in the junction.
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Fig. 4.6: JR‖ , the in-plane spin current component for incident electrons from the

right (single k⊥) as a function of x, the position in the junction.

Fig. 4.5 and Fig. 4.6 show that the in-plane contribution from the left

is equal in magnitude but opposite sign to the contribution from the right

throughout the junction, i.e. JL‖ = −JR‖ .

The numerical results for the total in-plane spin current component (JT‖ )

summed over all k‖ are illustrated in Fig. 4.7.



4. Spin Current Components in a Five Layer Junction 95

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Fig. 4.7: JT‖ , the total in-plane spin current component for incident electrons from

the left and right (sum over k‖) as a function of x, the position in the

junction.

From Fig. 4.7, we see that the in-plane spin current in the magnetic layers

decays as a function of the position in the magnet when summing over all

k‖ as opposed to the constant amplitude of the oscillations seen for a single

propagating wave (k⊥) shown in Fig. 4.4. This decay is due to the destruc-

tive interference of oscillations with different k⊥. Since k2
‖ + k2

⊥ = 2m
h̄
EF ,

we have that k⊥ is a rapidly varying function of k‖ and for all k‖ ≈ 0, k⊥

varies slowly such that the contribution survives as opposed to producing a

cancelling effect.

The total in-plane spin current contribution due to incident electrons from

the left reservoir (JL‖ ) summed over all k‖ and the total in-plane spin current

contribution from the right are illustrated in Fig. 4.8 and Fig. 4.9 respectively.
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Fig. 4.8: JL‖ , the in-plane spin current component for incident electrons from the

left (sum over k‖) as a function of x, the position in the junction.

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

0.0227345 -0.0227345 -0.0051246 0.0051246 0.045469 -0.0102492 0 0

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Fig. 4.9: JR‖ , the in-plane spin current component for incident electrons from the

right (sum over k‖) as a function of x, the position in the junction.

Fig. 4.8 and Fig. 4.9 show that, as observed previously for a single k⊥, the

in-plane contribution from the left is equal in magnitude but opposite sign to

the contribution from the right throughout the junction after summing over

all k‖.
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The numerical results for the total out-of-plane spin current component

(JT⊥) calculated for a single k⊥ are illustrated in Fig. 4.10.
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Fig. 4.10: JT⊥ , the total out-of-plane spin current component for incident electrons

from the left and right (single k⊥) as a function of x, the position in the

junction.

From Fig. 4.10, we see that similarly to the in-plane spin current, the to-

tal out-of-plane spin current component in the nonmagnetic leads and spacer

layer are constant and join continuously into the magnetic layers where we see

oscillations due to the precession of the electron spin in the effective molec-

ular field. This spin precession in the left and right ferromagnets results in a

non-zero out-of-plane spin current component in the nonmagnetic spacer as

shown in Fig. 4.11.
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Fig. 4.11: JT⊥ , the constant non-zero out-of-plane spin current component for inci-

dent electrons from the left and right (single k⊥) as a function of x, the

position in the nonmagnetic spacer.

The total out-of-plane spin current contribution due to incident electrons

from the left reservoir (JL⊥) calculated for a single k⊥ and the total out-of-

plane spin current contribution from the right are illustrated in Fig. 4.12 and

Fig. 4.13 respectively.
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Fig. 4.12: JL⊥, the out-of-plane spin current component for incident electrons from

the left (single k⊥) as a function of x, the position in the junction.
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Fig. 4.13: JR⊥ , the out-of-plane spin current component for incident electrons from

the right (single k⊥) as a function of x, the position in the junction.

Fig. 4.12 and Fig. 4.13 show that the out-of-plane contribution from the

left is equal in magnitude but opposite sign to the contribution from the right

in the nonmagnetic semi-infinite leads.
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The numerical results for the total out-of-plane spin current component

(JT⊥) summed over all k‖ are illustrated in Fig. 4.14.
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Fig. 4.14: JT⊥ , the total out-of-plane spin current component for incident electrons

from the left and right (sum over k‖) as a function of x, the position in

the junction.

From Fig. 4.14, we see that the out-of-plane spin current in the magnetic

layers decays as a function of the position in the magnet when summing over

all k⊥ as opposed to the constant amplitude of the oscillations seen for a

single propagating wave (k⊥) shown in Fig. 4.10. Similarly to the in-plane

spin current, this decay is due to the destructive interference of oscillations

with different k⊥.

More surprisingly, we see that even after summing over all k‖, a non-zero

out-of-plane spin current component in the nonmagnetic spacer remains as

shown in Fig. 4.15.
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Fig. 4.15: JT⊥ , the constant non-zero out-of-plane spin current component for inci-

dent electrons from the left and right (sum over k‖) as a function of x,

the position in the nonmagnetic spacer.

The total out-of-plane spin current contribution due to incident electrons

from the left reservoir (JL⊥) summed over all k‖ and the total out-of-plane spin

current contribution from the right are illustrated in Fig. 4.16 and Fig. 4.17

respectively.
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Fig. 4.16: JL⊥, the out-of-plane spin current component for incident electrons from

the left (sum over k‖) as a function of x, the position in the junction.
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Fig. 4.17: JR⊥ , the out-of-plane spin current component for incident electrons from

the right (sum over k‖) as a function of x, the position in the junction.

Fig. 4.16 and Fig. 4.17 show that, as observed previously for a single k⊥,

the out-of-plane contribution from the left is equal in magnitude but opposite

sign to the contribution from the right in the nonmagnetic semi-infinite leads.
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We have seen that the in-plane spin current contribution from the left

is equal in magnitude but opposite sign to the contribution from the right

throughout the junction. As a result, the sum of the left and right in-plane

spin current component is exactly zero (JL‖ + JR‖ = 0). The sum of the left

and right out-of-plane spin current component summed over all k‖ is illus-

trated in Fig. 4.18.
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Fig. 4.18: JL⊥ + JR⊥ . The sum of the total out-of-plane spin current contributions

from the left and right as a function of x, the position in the junction.

Fig. 4.18 shows that the sum of the left and right out-of-plane spin cur-

rent in the left and right leads is exactly zero as expected however there is a

constant non-zero out-of-plane measure in the nonmagnetic spacer. In fact,

this is directly proportional to the interlayer exchange coupling found in the

spacer layer sandwiched between the two ferromagnets.
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4.3 Spin current with exact matching in the two ferromagnets

Here we introduce symmetry to the simple five layer junction defined in

Sec. 4.1 by matching the potentials in the ↑ and ↓ spin bands in the left and

right ferromagnets as illustrated in Fig. 4.19.

 

Fig. 4.19: Symmetric five layer junction represented by two matched potential

wells.

We have fixed the angle of rotated magnetization in the left polarizing

magnet to θ = 1.5, the width of the two ferromagnets and the spacer sep-

arating them is given by a = 18 and the energy of our incident electron is

given by ε = 0.5. The potentials in each layer are given by VNM = −1.0,

V ↑FM = −1.5 and V ↓FM = −2.5.

The numerical results for the total in-plane spin current component (JT‖ )

summed over all k‖ are illustrated in Fig. 4.20.
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Fig. 4.20: JT‖ , the total in-plane spin current component for incident electrons

from the left and right (sum over k‖) as a function of x, the position in

the symmetric junction.

The total in-plane spin current contribution due to incident electrons

from the left reservoir (JL‖ ) summed over all k‖ and the total in-plane spin

current contribution from the right are illustrated in Fig. 4.21 and Fig. 4.22

respectively.
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Fig. 4.21: JL‖ , the in-plane spin current component for incident electrons from the

left (sum over k‖) as a function of x, the position in the symmetric

junction.
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Fig. 4.22: JR‖ , the in-plane spin current component for incident electrons from the

right (sum over k‖) as a function of x, the position in the symmetric

junction.

Fig. 4.20, Fig. 4.21 and Fig. 4.22 shows very similar results for the in-

plane spin current component in the symmetric five layer junction to those

seen in the asymmetric system in Sec. 4.2.
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The numerical results for the total out-of-plane spin current component

(JT⊥) summed over all k‖ are illustrated in Fig. 4.23.
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Fig. 4.23: JT⊥ , the total out-of-plane spin current component for incident electrons

from the left and right (sum over k‖) as a function of x, the position in

the symmetric junction.

The total out-of-plane spin current contribution due to incident electrons

from the left reservoir (JL⊥) summed over all k‖ and the total out-of-plane spin

current contribution from the right are illustrated in Fig. 4.24 and Fig. 4.25

respectively.
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Fig. 4.24: JL⊥, the out-of-plane spin current component for incident electrons from

the left (sum over k‖) as a function of x, the position in the symmetric

junction.
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Fig. 4.25: JR⊥ , the out-of-plane spin current component for incident electrons from

the right (sum over k‖) as a function of x, the position in the symmetric

junction.

In contrast to the out-of-plane spin current seen in the asymmetric system

in Sec. 4.2, Fig. 4.23 shows a surprising antisymmetry in the two ferromag-

nets created when matching the potentials in both spin bands of the left and
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right ferromagnets and completing the symmetry of the five layer junction.

The total out-of-plane spin current in the right switching magnet is an exact

mirror image of that in the left polarizing magnet resulting in exactly zero

out-of-plane spin current in the spacer layer because the out-of-plane spin

current emerging in the spacer from the left cancels exactly the contribution

from the right.

This can be seen by the left and right contributions in Fig. 4.24 and

Fig. 4.25 and a closer look at the contribution to the out-of-plane spin cur-

rent in the spacer due to electrons incident from the left and right reservoirs,

as shown in Fig. 4.26 and Fig. 4.27 respectively.
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Fig. 4.26: JL⊥, the constant non-zero out-of-plane spin current component for inci-

dent electrons from the left (sum over k‖) as a function of x, the position

in the nonmagnetic spacer of the symmetric junction.
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Fig. 4.27: JR⊥ , the constant non-zero out-of-plane spin current component for in-

cident electrons from the right (sum over k‖) as a function of x, the

position in the nonmagnetic spacer of the symmetric junction.

The non-zero contribution from the left is exactly equal to the contribu-

tion from the right and so the total out-of-plane spin current in the spacer

of the symmetric five layer junction, given by JT⊥ = JL⊥ − JR⊥ , is exactly zero.

Finally, the sum of the left and right in-plane spin current component is

exactly zero (JL‖ + JR‖ = 0) throughout the junction as expected. The sum

of the left and right out-of-plane spin current component summed over all k‖

is illustrated in Fig. 4.28.
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Fig. 4.28: JL⊥ + JR⊥ . The sum of the total out-of-plane spin current contributions

from the left and right as a function of x, the position in the symmetric

junction.

Fig. 4.28 shows that the antisymmetry of the out-of-plane component

introduced by the matching of potentials in the ferromagnets means that the

contribution from the left (right) in the spacer layer is simply doubled and

hence there cannot be zero interlayer exchange coupling in the spacer unless

there is zero out-of-plane spin current contribution from the left (right).

4.4 Spin transport properties and interlayer exchange

coupling in the nonmagnetic spacer

From the numerical results discussed in Sec. 4.2 and Sec. 4.3, we have been

able to confirm the following properties in the left and right nonmagnetic

leads of a simple five layer junction (Fig. 4.1).

JL‖ + JR‖ = 0 (4.1)
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JL⊥ + JR⊥ = 0 (4.2)

In fact, the sum of the left and right spin current contributions is directly

proportional to the interlayer exchange coupling in the nonmagnetic spacer

sandwiched between the left and right ferromagnets and so it would be ex-

pected that these properties are true for both the in- and out-of-plane com-

ponents in the semi-infinite leads where there is no interlayer coupling. We

can also note that Property 4.1 has been observed to be true throughout the

five layer junction.

Using our general solution for the wave function ψi (Eq. 2.18) to con-

struct the wave functions in the left semi-infinite lead with propagating wave

k⊥ given by k↑ = k↓ = i |k|, we can solve for the expression for the in- and

out-of-plane spin current components (Eq. 2.41) in the left lead at x = 0 to

give

JLead = i2
h̄

m
|k| (A↑A↓∗ −B↑B↓∗) (4.3)

where A↑,↓ denote the transmission coefficients and B↑,↓ the reflection coef-

ficients in the left lead.

The total spin current from the left for incident electrons with spin ori-

entation σL ∈ (↑, ↓) is therefore given by
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JLLead = i2
h̄

m
|k|
∑
σL

(A↑A↓∗ −B↑B↓∗) (4.4)

When sending an ↑ spin electron from the left (σL =↑) we have that the

transmission coefficients are given by A↑ = 1 and A↓ = 0, similarly, when

sending a ↓ spin electron from the left (σL =↓) we have that the transmission

coefficients are given by A↑ = 0 and A↓ = 1. Therefore, the total spin current

from the left for incident electrons with spin orientation σL ∈ (↑, ↓) is given

in terms of the reflection coefficients alone (Eq. 4.5).

JLLead = −i2 h̄
m
|k|
∑
σL

B↑B↓∗ (4.5)

Similarly, when sending incident electrons from the right with spin orienta-

tion σR ∈ (↑, ↓), we have that the amplitude of the transmission coefficients

in the left lead are both zero and so the total spin current in the left lead

(from the right) for incident electrons with spin orientation σR ∈ (↑, ↓) is

also given in terms of the reflection coefficients alone (Eq. 4.6).

JRLead = −i2 h̄
m
|k|
∑
σR

B↑B↓∗ (4.6)

Furthermore, our numerical properties in the leads (Eq. 4.1 and Eq. 4.2) im-

ply that

JLLead + JRLead = 0 (4.7)



4. Spin Current Components in a Five Layer Junction 114

More specifically, from Eq. 4.5 and Eq. 4.5, we see that

∑
σL

B↑B↓∗ = −
∑
σR

B↑B↓∗ (4.8)

The total spin current in the left lead, JTLead = JLLead − JRLead, is therefore

given by twice the contribution from the left (Eq. 4.9).

JTLead = −i4 h̄
m
|k|
∑
σL

B↑B↓∗ (4.9)

In fact, it is easy to show that the total local spin current in any layer is

given by twice the contribution from the left less the sum of the left and

right contributions (Eq. 4.10).

JT = JL − JR = 2JL − (JL + JR) (4.10)

Since the sum of the left and right spin current (JL + JR) is directly propor-

tional to the interlayer exchange coupling in the nonmagnetic spacer layer,

we can introduce υ = JL + JR such that

JL + JR = υ ∝ Interlayer exchange coupling in the spacer (4.11)

JT = 2JL − υ ∝ Spin transport effects (4.12)
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We can note here that these properties (Eq. 4.11 and Eq. 4.12) are true in the

leads where there is no interlayer coupling (υ = 0) and the total spin current

has been shown to be exactly twice the contribution from the left (Eq. 4.9).

They also appear true in the nonmagnetic spacer where we have observed a

non-zero interlayer exchange coupling. In fact, from our numeric results, we

have been able to confirm the following properties in the nonmagnetic spacer

layer of the simple five layer junction.

JL‖ + JR‖ = 0 (4.13)

JL⊥ + JR⊥ 6= 0 (4.14)

We also have the following observation.

JL⊥
JR⊥
≥ 0 (4.15)

Property 4.13 is analogous to Property 4.1 in the leads in that this is in fact

true throughout the five layer junction. Property 4.14 and Observation 4.15

go hand in hand since Observation 4.15 implies that the out-of-plane spin

current contribution from the left has the same sign as the contribution from

the right and so there will be a non-zero interlayer exchange coupling in the

spacer if there is a non-zero contribution from either side. Furthermore, we

saw in Sec. 4.3 that by completing the symmetry by matching the potentials

in both spin bands in the left and right ferromagnets, these left and right
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contributions are the same and hence the total out-of-plane spin current com-

ponent in the nonmagnetic spacer layer is reduced to zero. As a result, we

can conclude that in order to see a non-zero out-of-plane spin current in the

nonmagnetic spacer of a five layer junction, we need to remove symmetry by

ensuring that the potentials in the two ferromagnets are not matched in at

least one spin band.

4.5 Angular dependence of spin current in the nonmagnetic

leads

We have seen previously in Section 4.4 that the in- and out-of-plane spin

current components in the leads of a five layer junction can be obtained by

calculating the spin current for incident electrons from one side of the junc-

tion since JL⊥ + JR⊥ = 0 and JL‖ + JR‖ = 0. We also saw that by introducing

symmetry by matching the potentials in the left and right ferromagnets, the

out-of-plane spin current in the nonmagnetic spacer would reduce to zero

however a non-zero measure would remain in the left and right leads.

We will now investigate the origin of the non-zero spin current compo-

nents in the left and right leads of the symmetric five layer junction (Fig. 4.1)

with matching in the left and right ferromagnets (Fig. 4.19) by calculating

the individual contributions of ↑ and ↓ spin electrons sent from either side of

the junction for a single propagating wave (k⊥). We will do this by looking

at the effect of the rotated magnetization in the polarizing magnet on the left

lead by varying the angle θ between 0 and π and calculating the spin current
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contributions for individual electrons with spin orientation parallel (J↑) and

anti-parallel (J↓) to the net magnetization of the switching magnet (z−axis).

The numerical results for the in-plane spin current in the left lead due

to individual electrons of either spin orientation incident from the left for

0 < θ < π are illustrated in Fig. 4.29.
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Fig. 4.29: JL↑‖ , JL↓‖ and JL‖ . The in-plane spin current in the left lead for ↑ and ↓

spin electrons incident from the left as a function of θ ∈ [0, π].

Fig. 4.29 shows that the contribution to the in-plane spin current in the

left lead due to an ↑ spin electron incident from the left (JL↑‖ ) is exactly zero

for θ = 0 since the rotated magnetization of the polarizing magnet is aligned

with that of the electron spin (z − axis) and the effect grows gradually as θ

increases to π
2

and is felt more strongly for θ > π
2

before converging rapidly

to zero as the anti-parallel configuration is achieved (θ = π). Conversely,

the contribution to the in-plane spin current in the left lead due to a ↓ spin
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electron incident from the left (JL↓‖ ) has a strong effect when θ < π
2

and

weaker effect for θ > π
2
. The magnitude of the ↑ spin electron contribution

is less than that of the ↓ spin electron since the ferromagnetic potentials are

lower in the ↓ spin band. Finally, we can note that both contributions are

of the same sign and the sum of these contributions gives the total in-plane

spin current contribution from the left for a single k⊥ given by JL‖ .

The numerical results for the in-plane spin current in the left lead due

to individual electrons of either spin orientation incident from the right for

0 < θ < π are illustrated in Fig. 4.30.
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Fig. 4.30: JR↑‖ , JR↓‖ and JR‖ . The in-plane spin current in the left lead for ↑ and ↓

spin electrons incident from the right as a function of θ ∈ [0, π].

Fig. 4.30 shows that the total in-plane spin current contribution from the

right for a single k⊥ given by JR‖ is equal but opposite sign to the total contri-

bution from the left as expected. Furthermore, we see that the contribution
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due to an ↑ spin electron incident from the right is equal but opposite sign

to the contribution of a ↓ spin electron incident from the left (and similarly

for a ↓ spin electron from the left and ↑ spin electron from the right).

The numerical results for the out-of-plane spin current in the left lead

due to individual electrons of either spin orientation incident from the left

for 0 < θ < π are illustrated in Fig. 4.31.
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Fig. 4.31: JL↑⊥ , JL↓⊥ and JL⊥. The out-of-plane spin current components in the left

lead for ↑ and ↓ spin electrons incident from the left as a function of

θ ∈ [0, π].

Fig. 4.31 shows that unlike the in-plane spin current, the out-of-plane

spin current contributions in the left lead due to an ↑ spin incident electron

is the opposite sign to the contribution due to a ↓ spin incident electron how-

ever the sum is non-zero and so there is a non-zero out-of-plane spin current

contribution from the left for a single k⊥ given by JL⊥.
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The numerical results for the out-of-plane spin current in the left lead

due to individual electrons of either spin orientation incident from the right

for 0 < θ < π are illustrated in Fig. 4.32.
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Fig. 4.32: JR↑⊥ , JR↓⊥ and JR⊥ . The out-of-plane spin current components in the

left lead for ↑ and ↓ electrons incident from the right as a function of

θ ∈ [0, π].

Fig. 4.32 shows that unlike the in-plane spin current, the out-of-plane

spin current contributions in the left lead due to ↑ and ↓ spin incident elec-

trons from either side are all different in magnitude however, the sum of the

contributions from either side are equal but opposite sign as expected.

The numerical results for the in-plane spin current in the right lead due

to individual electrons of either spin orientation incident from the left for

0 < θ < π are illustrated in Fig. 4.33.
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Fig. 4.33: JL↑‖ , JL↓‖ and JL‖ . The in-plane spin current in the right lead for ↑ and

↓ spin electrons incident from the left as a function of θ ∈ [0, π].

Fig. 4.33 shows that the contribution to the in-plane spin current in the

right lead due to an ↑ spin electron incident from the left (JL↑‖ ) is stronger

than the contribution due to a ↓ spin incident electron from the left due to

the magnetization of the right switching magnet fixed parallel to the spin

quantization axis (z − axis).

The numerical results for the in-plane spin current in the right lead due

to individual electrons of either spin orientation incident from the right for

0 < θ < π are illustrated in Fig. 4.34.
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Fig. 4.34: JR↑‖ , JR↓‖ and JR‖ . The in-plane spin current in the right lead for ↑ and

↓ spin electrons incident from the right as a function of θ ∈ [0, π].

Fig. 4.34 shows that the total in-plane spin current contribution from

the right for a single k⊥ given by JR‖ is equal but opposite sign to the total

contribution from the left as expected however, the individual contributions

are more evenly distributed.

The numerical results for the out-of-plane spin current in the right lead

due to individual electrons of either spin orientation incident from the left

for 0 < θ < π are illustrated in Fig. 4.35.
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Fig. 4.35: JL↑⊥ , JL↓⊥ and JL⊥. The out-of-plane spin current components in the right

lead for ↑ and ↓ spin electrons incident from the left as a function of

θ ∈ [0, π].

Fig. 4.35 shows strong out-of-plane spin current contributions in the

spacer due to ↑ and ↓ spin incident electrons from the left due to the spin

transport effects caused by the spin precession at the interfaces of the two

ferromagnets however these individual contributions are opposite in sign and

so the overall contribution from the left (JL⊥) for a single k⊥ is reduced.

The numerical results for the out-of-plane spin current in the right lead

due to individual electrons of either spin orientation incident from the right

for 0 < θ < π are illustrated in Fig. 4.36.
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Fig. 4.36: JR↑⊥ , JR↓⊥ and JR⊥ . The out-of-plane spin current components in the

right lead for ↑ and ↓ electrons incident from the right as a function of

θ ∈ [0, π].

Fig. 4.36 shows much weaker contributions to the out-of-plane spin cur-

rent in the right lead for individual electrons in either spin band however

these contributions are of the same sign such that the sum JR⊥ = JR↑⊥ + JR↓⊥

is equal but opposite sign to the out-of-plane contribution from the left,

JR⊥ = −JL⊥, as expected.

We conclude that the out-of-plane spin current seen in the left and right

leads of the five layer junction originates from the individual spin precessions

in the left and right ferromagnets. These precessions result in oscillations

in the spin current components in the ferromagnets that therefore emerge in

general in the leads as non-zero.
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4.6 Angular dependence of spin current in the nonmagnetic

spacer

We have seen that the spin precession in the left and right ferromagnets of a

symmetric five layer junction give rise to non-zero spin current components

in the left and right leads and how the individual contributions of ↑ and ↓

spin electrons incident from the left and right reservoirs differ depending on

the magnetic configuration of the two ferromagnets in the junction.

We will now investigate the spin current components in the nonmagnetic

spacer of the symmetric five layer junction (Fig. 4.1) with matching in the

left and right ferromagnets (Fig. 4.19) by calculating the individual contri-

butions of ↑ and ↓ spin electrons sent from either side of the junction for a

single propagating wave (k⊥). We will do this by looking at the effect of the

rotated magnetization in the polarizing magnet on the left lead by varying

the angle θ between 0 and π and calculating the spin current contributions

for individual electrons with spin orientation parallel (J↑) and anti-parallel

(J↓) to the net magnetization of the switching magnet (z − axis).

The numerical results for the in-plane spin current in the spacer due

to individual electrons of either spin orientation incident from the left for

0 < θ < π are illustrated in Fig. 4.37.
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Fig. 4.37: JL↑‖ , JL↓‖ and JL‖ . The in-plane spin current in the spacer for ↑ and ↓

spin electrons incident from the left as a function of θ ∈ [0, π].

Fig. 4.37 shows that the contribution to the in-plane spin current in the

spacer due to an ↑ spin electron incident from the left (JL↑‖ ) is exactly zero

for θ = 0 since the rotated magnetization of the polarizing magnet is aligned

with that of the electron spin (z − axis) and the effect is strongest when

θ < π
2
. Similarly, the contribution to the in-plane spin current in the spacer

due to a ↓ spin electron incident from the left (JL↓‖ ) has a stronger effect

when θ > π
2
. The magnitude of the ↑ spin electron contribution is less than

that of the ↓ spin electron since the ferromagnetic potentials are lower in the

↓ spin band. Finally, we can note that both contributions are of the same

sign and the sum of these contributions gives the total in-plane spin current

contribution from the left for a single k⊥ given by JL‖ .

The numerical results for the in-plane spin current in the spacer due

to individual electrons of either spin orientation incident from the right for
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0 < θ < π are illustrated in Fig. 4.38.
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Fig. 4.38: JR↑‖ , JR↓‖ and JR‖ . The in-plane spin current in the spacer for ↑ and ↓

spin electrons incident from the right as a function of θ ∈ [0, π].

Fig. 4.38 shows that the total in-plane spin current contribution from

the right for a single k⊥ given by JR‖ is equal but opposite sign to the total

contribution from the left as expected. However, we see that the individual

contributions due to ↑ and ↓ spin electrons incident from the right differ from

those individual contributions from the left.

The numerical results for the out-of-plane spin current in the spacer due

to individual electrons of either spin orientation incident from the left for

0 < θ < π are illustrated in Fig. 4.39.
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Fig. 4.39: JL↑⊥ , JL↓⊥ and JL⊥. The out-of-plane spin current components in the

spacer for ↑ and ↓ spin electrons incident from the left as a function of

θ ∈ [0, π].

Fig. 4.39 shows strong out-of-plane spin current contributions in the right

lead due to ↑ and ↓ spin incident electrons from the left due to the spin

transport effects caused by the spin precession at the interfaces of the two

ferromagnets however these individual contributions are opposite in sign and

so the overall contribution from the left (JL⊥) for a single k⊥ is reduced.

The numerical results for the out-of-plane spin current in the spacer due

to individual electrons of either spin orientation incident from the right for

0 < θ < π are illustrated in Fig. 4.40.
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Fig. 4.40: JR↑⊥ , JR↓⊥ and JR⊥ . The out-of-plane spin current components in the

spacer for ↑ and ↓ electrons incident from the right as a function of

θ ∈ [0, π].

Fig. 4.40 shows much weaker contributions to the out-of-plane spin cur-

rent in the spacer for individual electrons in either spin band incident from

the right however these contributions are of the same sign such that the sum

JR⊥ = JR↑⊥ + JR↓⊥ is proportional to the out-of-plane contribution from the

left and so the total out-of-plane spin current in the spacer for a single k⊥

is approximately zero and we have already seen that the sum over all k‖ will

be exactly zero given the symmetry of the junction.

We conclude that the out-of-plane spin current seen in the nonmagnetic

spacer of the five layer junction originates from the individual spin preces-

sions in the left and right ferromagnets emerging in the spacer however, the

contribution of ↑ spin electrons strongly oppose the contributions of ↓ spin

electrons. We will later investigate more closely this cancelling effect in the

nonmagnetic spacer.
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4.7 Spin current at the interfaces of the polarizing magnet as

a function of polarizing magnet width

Here we investigate the effect on the spin current at the interface of the left

lead and the left ferromagnet (polarizing magnet) when varying the width

ωa of the polarizing magnet and compare it with the spin current found in-

side the polarizing magnet for a fixed width ωna. We will also run the same

comparison at the interface of the polarizing magnet and the nonmagnetic

spacer layer.

We first redefine the five layer junction as a dimensionless system con-

sisting of a semi-infinite left lead up to x0 = L (a large starting value

on the x − axis). A finite ferromagnet of thickness ωa between x0 = L

and x1 = L + ωa, a spacer of width ta located between x1 = L + ωa

and x2 = L + (ω + t)a and the switching magnet of width a between

x2 = L+ (ω + t)a and x3 = L+ (ω + t+ 1)a as illustrated in Fig. 4.41.
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Fig. 4.41: Schematic picture of a simple five layer junction with ↑ and ↓ spin

electrons incident from the left and right semi-infinite leads.

The idea is that a is the fundamental length scale in the problem and

by varying t and/or ω, we can vary spacer thickness and polarizing magnet

thickness. As before, the exchange potential of the left (polarizing) magnet

is rotated by angle θ in the yz − plane whilst that of the right (switching)

magnet is always in the direction of the z − axis. We will match the poten-

tials in the ↑ and ↓ spin bands of the two ferromagnets (Fig. 4.42) however

we can note that the symmetry will be broken for all ω 6= 1.

 

Fig. 4.42: Five layer junction represented by two matched potential wells.

The numerical results for the total in-plane spin current component due

to incident electrons from the left and right for all k‖ calculated in the left
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lead at x0 = L as a function of ω ∈ [ω0, ωn], the varying width of the polar-

izing magnet, are illustrated in Fig. 4.43.
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Fig. 4.43: JT‖ , the total in-plane spin current component for incident electrons

from the left and right (sum over k‖), calculated in the left lead as a

function of the width ωa of the polarizing magnet.

Fig. 4.43 further illustrates the two periods observed previously in the

magnetic layers brought about by functions of the sum and difference of the

wave vectors for each spin band, i.e. The short period is given by a function

of k↑ + k↓ and the long period is given by a function of k↑ − k↓. We also

see large oscillations for a thin polarizing magnet however as the thickness of

the magnet increases, these oscillations reduce and the in-plane spin current

converges to a constant value. This is expected since the contributions due

to the many reflections in all layers will be high for a thin polarizing magnet

however for a large polarizing magnet, there will be little contribution from

the right and we have already shown that the spin current components in

the left lead arise from the reflection coefficients in that layer.
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The numerical results for the total in-plane spin current component due

to incident electrons from the left and right for all k‖ calculated in the polar-

izing magnet as a function of x ∈ [L,L+ ωna], the position in the polarizing

magnet of fixed width ωna, are illustrated in Fig. 4.44.
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Fig. 4.44: JT‖ , the total in-plane spin current component for incident electrons from

the left and right (sum over k‖), calculated throughout the polarizing

magnet of fixed width ωna.

Fig. 4.44 does not show many oscillations throughout the polarizing mag-

net since the magnet is fixed at a large width given by ωna and so there is

little contribution from the many transmissions/reflections throughout the

junction as expected. This is comparable to Fig. 4.43 whereby the short

period vanishes as we approach a thick polarizing magnet.

The numerical results for the total out-of-plane spin current component

due to incident electrons from the left and right for all k‖ calculated in the

left lead at x0 = L as a function of ω ∈ [ω0, ωn], the varying width of the
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polarizing magnet, are illustrated in Fig. 4.45.
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Fig. 4.45: JT⊥ , the total out-of-plane spin current component for incident electrons

from the left and right (sum over k‖), calculated in the left lead as a

function of the width ωa of the polarizing magnet.

Fig. 4.45 shows an out-of-plane spin current in the left lead resulting from

the oscillations due to the spin precessions in the polarizing magnet however

as the thickness of the magnet increases, the out-of-plane spin current con-

verges to zero. This is expected since the contributions due to the many

reflections in all layers will be high for a thin polarizing magnet however for

a large polarizing magnet, there will be little contribution from the right.

The numerical results for the total out-of-plane spin current component

due to incident electrons from the left and right for all k‖ calculated in the

polarizing magnet as a function of x ∈ [L,L + ωna], the position in the po-

larizing magnet of fixed width ωna, are illustrated in Fig. 4.46.
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Fig. 4.46: JT⊥ , the total out-of-plane spin current component for incident electrons

from the left and right (sum over k‖), calculated throughout the polar-

izing magnet of fixed width ωna.

Fig. 4.46 shows some interference near the left and right interfaces of the

polarizing magnet since the magnet is fixed at a large width given by ωna and

so the interference is reduced within the magnet. We can also note that the

amplitude of the oscillations of the out-of-plane spin current in the polarizing

magnet increases along the x − axis as we approach the interface with the

nonmagnetic spacer due to the contributions of the many reflections in the

layers to the right of the thick polarizing magnet. These oscillations give rise

to a non-zero measure of out-of-plane spin current in the nonmagnetic spacer

(right interface).

We will investigate the origin of out-of-plane spin current in the nonmag-

netic spacer in Chapter 6 by looking specifically at an interface between a

semi-infinite magnet and a semi-infinite nonmagnet and obtaining qualita-

tive insight into the out-of-plane spin current found in a non-magnetic spacer
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sandwiched between two finite ferromagnets. First, we will define appropri-

ate boundary conditions that will furthur clarify the interference observered

at these interfaces.



5. LANDAUER BOUNDARY CONDITIONS

5.1 Limit of a semi-infinite potential step

We mentioned in Chapter 4 that our Landauer formalism may not be en-

tirely appropriate when studying the typical trilayer junction whereby the

nonmagnetic spacer layer is sandwiched between two semi-infinite ferromag-

nets. The reasoning being that without the left and right leads, we may not

be able to set appropriate boundary conditions that simulate the Landauer

reservoirs. Furthermore, the results for a single propagating wave (k⊥) in the

limit of a finite ferromagnet would never approach those of a semi-infinite

ferromagnet. To illustrate this, we will look at a single interface representing

a semi-infinite potential step as shown schematically in Fig. 5.1.

Fig. 5.1: Schematic picture of a single semi-infinite potential step.

The incident electrons travelling above the potential step from the left

will be partially reflected and the wave functions in the semi-infinite step
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would oscillate with a constant amplitude resulting from the interference at

the interface. In the case of a dual interface system consisting of a finite po-

tential step of width a, the interference in the potential step would arise from

both interfaces and since the amplitude is constant, this would not disappear

in the limit a→∞ as shown schematically in Fig. 5.2.

Fig. 5.2: Schematic picture of a single finite potential step in the limit a→∞.

The sum over all k‖ would remove this due to the destructive interference

which would destroy the interactions between the two interfaces.

5.2 Five layer junction approximation to the classical trilayer

with semi-infinite ferromagnets

Here we look at the classical trilayer junction consisting of two semi-infinite

ferromagnets separated by a nonmagnetic spacer layer as shown schemati-

cally in Fig. 5.3.
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Fig. 5.3: Schematic picture of the classical theoretical trilayer junction (two semi-

infinite magnets separated by a nonmagnetic spacer).

We shall consider the situation where the left and right semi-infinite fer-

romagnets are treated as potential wells with exact matching in the ↑ and

↓ spin bands such that the system is completely symmetric as illustrated in

Fig. 5.4 below.

 

Fig. 5.4: Classical trilayer represented by two semi-infinite potential wells with

exact matching in both spin bands.

It is assumed in this case that this provides a more physical representa-

tion of the left and right identical Landauer reservoirs.

We will calculate the spin current components throughout the trilayer
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and compare these to an approximation of the trilayer using the five layer

model whereby the width L of both ferromagnets are large (L → ∞) how-

ever the left and right leads are maintained as shown schematically in Fig. 5.5.

Fig. 5.5: Schematic picture of two semi-infinite magnets separated by a nonmag-

netic spacer with left and right leads.

We will choose our parameters in line with the classical trilayer such that

the potentials are matched accordingly as illustrated in Fig. 5.6 below.

 

Fig. 5.6: Five layer approximation to the classical trilayer represented by two large

potential wells with exact matching in both spin bands.

We have seen in Sec. 5.1 that it is necessary to look at the total sum over

all k‖ since for a single propagating wave, the finite ferromagnets in the five
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layer junction can never be equivalent to the semi-infinite ferromagnets of

the classical trilayer junction since electrons travelling above the potential of

the spacer layer will always experience interference from the left and right

interfaces and this will never disappear no matter how wide we make the

finite ferromagnets. We will therefore calculate the sum over all k‖ such that

the destructive interference causes the interactions of the two interfaces to

decay in the limit of the large ferromagnets.

Finally, since we are calculating the spin current components seen in

perfectly symmetric junctions, it is sufficient to simply calculate the contri-

butions from the right of the junction by sending electrons along the x−axis

from the right with spin angular momenta parallel (↑) and anti-parallel (↓)

to the net magnetization of the right switching magnet (parallel/anti-parallel

to the z−axis) in order to obtain a complete picture of the total spin current

components as shown in our earlier results for a symmetric five layer junction

(Sec. 4.3).

Fig. 5.7 shows the numerical results for the total in-plane spin current

summed over all k‖ as a function of x, the position in a central region of the

infinite classical trilayer junction with exact matching of the left and right

semi-infinite ferromagnets. It also shows the comparative results in the same

region of the symmetric five layer junction.
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Fig. 5.7: The total in-plane spin current (JT‖ ) as a function of x, the position

spanning the interfaces of the spacer in the classical trilayer junction (3

Layer) as well as the comparative results for the five layer approximation

(5 Layer).

Similarly, Fig. 5.8 shows the numerical results for the total out-of-plane

spin current summed over all k‖ as a function of x, the position in a central

region of the infinite classical trilayer junction with exact matching of the left

and right semi-infinite ferromagnets. It also shows the comparative results

in the same region of the symmetric five layer junction.
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Fig. 5.8: The total out-of-plane spin current (JT⊥) as a function of x, the position

spanning the interfaces of the spacer in the classical trilayer junction (3

Layer) as well as the comparative results for the five layer approximation

(5 Layer).

The results illustrated in Fig. 5.7 and Fig. 5.8 show that using the Lan-

dauer formalism to study the five layer junction with large ferromagnets

provides a good approximation to the classical trilayer junction with semi-

infinite ferromagnets and no leads when the two Landauer reservoirs are

identical and we calculate the total spin current components (sum over k‖)

in order to minimise the differences created by the additional interfaces in-

troduced by the five layer junction. However, it should be noted that at

individual k-points the trilayer with semi-infinite magnets can give physi-

cally incorrect results. The origin of this is due to the fact that Landauer

boundary conditions are incompatible with magnetic leads [29]. Neverthe-

less when integrated over k‖ the results for a trilayer seem to be physically

reasonable.



6. OUT-OF-PLANE SPIN CURRENT IN THE

NONMAGNETIC SPACER

6.1 Origin of out-of-plane spin current

The results on spin current presented in Chapter 4 clearly demonstrate that

an “anomalous” out-of-plane spin current exists in a magnetic configuration

in which the magnetizations of the polarizing and switching magnets both

lie in the y, z − plane (Fig. 6.1). In this situation one might naively expect

that the spin current is also polarized in the y, z − plane and there cannot

be an out-of-plane component J⊥.

Fig. 6.1: Magnetic nanostructure showing the magnetizations of the polarizing and

switching magnets and the resulting in- and out-of-plane spin current

components in the nonmagnetic spacer.

The existence of the out-of-plane spin current component has, therefore,
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been questioned, in particular, since it did not seem to appear in some early

calculations [8]. These early calculations were for junctions with identical

polarizing and switching magnets, in which case we have already shown that

it is simply the symmetry of the junction which prevents a non-zero out-

of-plane spin current to appear in the nonmagnetic spacer layer. When the

symmetry of the junction is broken, the out-of-plane spin current in the non-

magnetic spacer layer is always non-zero. Given this somewhat controversial

nature of the out-of-plane spin current, it is important to investigate how it

may arise.

The Landauer formalism we have developed is the only approach that

allows us to investigate the physical origin of the out-of-plane spin current

and clarify its properties. The Landauer calculation of the spin current has

at least two great advantages over the Keldysh formalism [24] used previ-

ously. First of all, one can separate explicitly within the Landauer approach

the components of the spin current incident on and reflected from a mag-

net. Moreover, the contributions to the total spin current of the ↑ and ↓

spin electrons emitted from the left and right reservoirs can be determined

separately. Finally, in some simple cases the spin current can be calculated

analytically so that one can see explicitly how an out-of-plane spin current

component can arise.

We shall, therefore, begin with the simplest case of an interface between

a semi-infinite magnet and a semi-infinite nonmagnet which can be solved

analytically.
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6.2 Interface between a semi-infinite magnet and a

semi-infinite nonmagnet

Here we consider a single interface at x0 = 0 with a semi-infinite switching

magnet on the left with its magnetization rotated by angle θ in the y, z−plane

and a semi-infinite nonmagnet to the right as shown schematically in Fig. 6.2.

Fig. 6.2: Schematic picture of a single interface between a semi-infinite magnet

and a semi-infinite nonmagnet.

Initially, we will send ↑ spin electrons only from the right and nothing

from the left resulting in ↑ and ↓ spin electrons being transmitted across the

interface into the switching magnet and both ↑ and ↓ spin electrons being

reflected back into the nonmaget. It should be noted that by sending ↑ spin

electrons only from the nonmagnet into the magnet we assume implicitly that

the electron beam in the nonmagnet is spin-polarized in the “up” direction

(z−axis). We shall first investigate the consequences of such a configuration

and discuss later how it is related to our Landauer formulation for a general
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magnetic multilayer.

Using our definition of a column vector of coefficients ~Ai (Eq. 2.20) and

the transfer matrix MT
i (Eq. 2.22) such that ~Ai = MT

i
~Ai−1, we have for our

single interface problem that ~A1 = MT ~A0.

If we write the transfer matrix MT as a 4x4 matrix with elements mij

then we have


A↑1

1

A↓1

0


=


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44




0

B↑0

0

B↓0


(6.1)

giving us four simultaneous equations with four unknowns

A↑1 = m12B
↑
0 +m14B

↓
0 (6.2a)

1 = m22B
↑
0 +m24B

↓
0 (6.2b)

A↓1 = m32B
↑
0 +m34B

↓
0 (6.2c)

0 = m42B
↑
0 +m44B

↓
0 (6.2d)

Thus allowing us to solve for all unknown coefficients in terms of the ijth
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elements of the transfer matrix

A↑1 =
m12m44 −m14m42

m22m44 −m24m42

(6.3)

A↓1 =
m32m44 −m34m42

m22m44 −m24m42

(6.4)

B↑0 =
m44

m22m44 −m24m42

(6.5)

B↓0 =
−m42

m22m44 −m24m42

(6.6)

Substituting for k↑i , k
↓
i in our transfer matrix (Eq. 2.22) where k↑1 = k↓1 = k1,

we can deduce analytical expressions for the coefficients in both layers.

A↑1 =

(
k1 − k↑0
k1 + k↑0

)
cos2 θ

2
+

(
k1 − k↓0
k1 + k↓0

)
sin2 θ

2
(6.7)

A↓1 =

(
k1 − k↑0
k1 + k↑0

− k1 − k↓0
k1 + k↓0

)
sin

θ

2
cos

θ

2
(6.8)

B↑0 =
2k1 cos θ

2

k1 + k↑0
(6.9)

B↓0 =
−2k1 sin θ

2

k1 + k↓0
(6.10)

The expressions for the amplitude of the reflection coefficients in the non-

magnet (Eq. 6.7) and (Eq. 6.8) and transmission coefficients in the magnet
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(Eq. 6.9) and (Eq. 6.10) show immediately that when all wave functions are

propagating waves, we have that all k↑,↓i are imaginary resulting in entirely

real coefficients.

The next step is to calculate the spin current components in the nonmag-

net by substituting these coefficients into our general solution for the wave

functions ψ↑,↓i=1 (Eq. 2.18). Since the spin current is constant throughout the

nonmagnet we can calculate the spin current components in the nonmagnet

resulting from a single ↑ spin electron incident from the right (J↑R) by solving

for J (Eq. 2.41) at x = 0 to give

J↑R =
h̄

m
{A↑1A

↓∗
1 (k1 − k∗1)− A↓∗1 (k1 + k∗1)} (6.11)

From Eq. 6.11 we can see that for all k propagating we have k1 = i |k1| and

A↑1 = ±
∣∣∣A↑1∣∣∣ , A↓1 = ±

∣∣∣A↓1∣∣∣, i.e. real constants, and the above expression for

J↑R reduces to

J↑R = ±i2 h̄
m

∣∣∣k1A
↑
1A
↓
1

∣∣∣ (6.12)

The real part of Eq. 6.12 is zero and since the out-of-plane spin current com-

ponent is given by J⊥ = <{J} (Eq. 2.41b), there will be zero out-of-plane

spin current. If however, there is at least one wave function that is completely

reflected, the out-of-plane spin current in the nonmagnet will be non-zero.
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We can also note that by setting θ = 0, π, we have A↓1 = 0 ⇒ J↑R = 0

and hence there is zero in- and out-of-plane spin current in the nonmagnet

as expected.

Another observation can be made with regard to the potentials in the

magnet and nonmagnet. If we match the potential in the nonmagnet with

the potential of either spin band in the magnet, say k1 = k↑0, we have

J↑R =
h̄

m
{A↑1A

↓∗
1 (k1 − k∗1)− A↓∗1 (k1 + k∗1)}

= −i2 h̄
m
|k1|

∣∣∣∣∣k1 − k↓0
k1 + k↓0

∣∣∣∣∣
2

sin3 θ

2
cos

θ

2
(6.13)

Eq. 6.13 shows that the out-of-plane spin current vanishes regardless of

whether the wave functions of the other spin band (k↓0) are propagating or

not.

It is now necessary to give the correct physical interpretation of our results

obtained for a single interface between a semi-infinite magnet and a semi-

infinite nonmagnet. First of all we need to comment on our use of the terms

“in-plane” and “out-of-plane” spin current components. For these terms to

be meaningful, the plane in the spin space we refer to needs to be defined

such that the spin current at any point in a plane in the spin space flows with

components parallel (“in-plane”) and perpendicular (“out-of-plane”) to the

plane. For this we need to specify two vectors in the spin space which are

non-collinear. The first one is clearly in the direction of the magnetization of

the semi-infinite magnet. The only other vector in the spin space available is
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in the direction of the spin-polarized current of electrons in the nonmagnet,

i.e. the positive direction of the z − axis in our case. This implies that, in

reality, our “nonmagnet” plays the role analogous to that of a second magnet

or half-magnet whereby all ↓ electrons have been filtered out. It follows that

to be able to talk about an out-of-plane spin current we always need to have

two magnets with non-collinear magnetizations in our system.

Our results that an out-of-plane spin current reflected from a magnet is

non-zero, provided there is total reflection in at least one spin channel at

the interface, are only valid for a spin-polarized beam of electrons incident

on the magnet. It is, therefore, essential to investigate what happens when

we have a true nonmagnet with an equal probability of electrons having spin

polarization ↑ and ↓. This is precisely the situation assumed in the Landauer

reservoirs. It is therefore necessary to repeat the calculation described above

for electrons incident from a nonmagnet with an opposite spin polarization.

We could do this using the transfer matrix formalism described above but

we can also use another method which allows us to alter very simply the

direction of the spin polarization of the electrons incident on the magnet.

That is we can send from the nonmagnet (right), a beam of electrons with

spin polarization in an arbitrary direction and keep the direction of the mag-

netization of the magnet fixed in the positive direction of the z − axis.

We first need to find the spin wave function of an electron with spin ori-

entation in an arbitrary direction characterized by the polar angles θ and φ.
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6.3 Electrons with arbitrary spin polarization incident on a

magnet with fixed magnetization

Here we consider again a single interface at x0 = 0 with a semi-infinite mag-

net on the left and a semi-infinite nonmagnet on the right. This time we will

send from the nonmagnet (right), a beam of electrons with spin polarization

in an arbitrary direction allowing us to keep the direction of the magnetiza-

tion of the magnet fixed in the positive direction of the z − axis whilst the

electrons incident from the right nonmagnet have their spin polarization in

an arbitrary direction characterized by the polar angles θ in the yz − plane

and φ in the xz − plane as illustrated in Fig. 6.3.

Fig. 6.3: Schematic picture of a single interface between a semi-infinite magnet

and a semi-infinite nonmagnet with arbitrary spin polarization.

We will need to calculate the spin wave function in the nonmagnet by

first solving an eigenvalue problem given by

(~σ · ~n)χ = 1χ (6.14)
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where 1 is the eigenvalue of a state with a spin quantization axis in the di-

rection of the unit vector ~n given by

~n ≡ (sin θ cosφ, sin θ sinφ, cos θ) (6.15)

and ~σ denotes the spin operators for each component σx, σy and σz given by

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 (6.16)

Therefore he have from Eq. 6.15 and Eq. 6.16 that

~σ · ~n = sin θ cosφ

 0 1

1 0

+ sin θ sinφ

 0 −i

i 0

+ cos θ

 1 0

0 −1


(6.17)

By letting χ =

 α

β

, we have from Eq. 6.14 and Eq. 6.17

sin θ cosφ

 β

α

+ i sin θ sinφ

 −β
α

+ cos θ

 α

−β

 =

 α

β

(6.18)

This gives two simultaneous equations
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α (cos θ − 1) + β (sin θ cosφ− i sin θ sinφ) = 0 (6.19a)

α (sin θ cosφ+ i sin θ sinφ)− β (cos θ + 1) = 0 (6.19b)

Furthermore, since the determinant is zero for all θ and φ, we can solve for

the ratio α
β

to give

α

β
=

sin θ (cosφ− i sinφ)

1− cos θ
=

cos θ
2
e−i

φ
2

sin θ
2
ei
φ
2

(6.20)

Therefore we can choose

χ =

 α

β

 =

 cos θ
2
e−i

φ
2

sin θ
2
ei
φ
2

 (6.21)

Here we can note that for θ = φ = 0 we have α

β

 =

 1

0

 (6.22)

which is correct since the spin is in the direction of the z − axis.

We now need to solve for the wave function ψ↑,↓1 in the nonmagnet with

k1 propagating implying k1 = i |k1| giving
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ψ↑1 = αe−i|k1|x (6.23a)

ψ↓1 = βe−i|k1|x (6.23b)

Since the spin current is constant throughout the nonmagnet we can calcu-

late the spin current components in the nonmagnet resulting from a single ↑

spin electron incident from the right (J↑R) by solving for J (Eq. 2.41a) at x

= 0 to give

J↑R = −i h̄
m
|k1| sin θ (cosφ− i sinφ) (6.24)

Therefore, since the in- and out-of-plane spin current components are given

by J‖ = ={J} and J⊥ = <{J} respectively (Eq. 2.41b), we have

J‖ = − h̄
m
|k1| sin θ cosφ (6.25a)

J⊥ = − h̄
m
|k1| sin θ sinφ (6.25b)

We will look at a comparative configuration whereby the incident spin current

is in the yz − plane implying φ = 0 giving zero out-of-plane spin current as
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shown below

J‖ = − h̄
m
|k1| sin θ (6.26a)

J⊥ = 0 (6.26b)

We can also note that for θ = π
2

and φ = π
2
, the spin current is in the direction

of the x− axis and

J‖ = 0 (6.27a)

J⊥ = − h̄
m
|k1| (6.27b)

The next step is to match the wave functions at the interface directly. We

are not sending any electrons from the left and as we are interested in the

out-of-plane spin current in the nonmagnet, we will be looking at the case

of total reflection in both spin channels in the magnet giving k↑0 = |k↑0| and

k↓0 = |k↓0|. Therefore, the wave equations in the left magnet are given by

ψ↑0 = B↑0e
|k↑0 |x (6.28a)

ψ↓0 = B↓0e
|k↓0 |x (6.28b)

We will have α, β providing the incident wave from the right giving the
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following wave equations in the right nonmagnet

ψ↑1 = A↑1e
i|k1|x + αe−i|k1|x (6.29a)

ψ↓1 = A↓1e
i|k1|x + βe−i|k1|x (6.29b)

Here we note that B↑0 , B
↓
0 are exponentially decaying waves in the magnet

where x < 0 implying that |k↑0|, |k
↓
0| > 0 such that e|k

↑
0 |x, e|k

↓
0 |x are decaying in

the left magnet. And so matching these wave functions and their derivatives

at x = 0 we have four simultaneous equations

B↑0 = A↑1 + α (6.30a)

B↓0 = A↓1 + β (6.30b)

|k↑0|B
↑
0 = i|k1|(A↑1 − α) (6.30c)

|k↓0|B
↓
0 = i|k1|(A↓1 − β) (6.30d)

Solving for the amplitude of the reflection coefficients in the nonmagnet we

have

A↑1 =
α(i|k1|+ |k↑0|)
i|k1| − |k↑0|

(6.31)
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A↓1 =
β(i|k1|+ |k↓0|)
i|k1| − |k↓0|

(6.32)

Substituting into our expression for the spin current J (Eq. 2.41), we have

for a single ↑ spin electron incident from the right, (J↑R) given by

J↑R =
−4 h̄

m
|k1|2αβ∗(|k↑0| − |k

↓
0|)

(i|k1| − |k↑0|)(i|k1|+ |k↓0|)
(6.33)

We are interested in the spin current resulting from incident waves in the

yz − plane implying φ = 0 which reduces αβ∗ to sin θ
2

cos θ
2

giving

J↑R =
−2 h̄

m
|k1|2 sin θ(|k↑0| − |k

↓
0|)

(i|k1| − |k↑0|)(i|k1|+ |k↓0|)
(6.34)

Since we have total reflection in both spin channels and zero incident spin cur-

rent, Eq. 6.34 is an expression for the reflected spin current in the nonmagnet

and we can see immediately that the reflected spin current components for

electrons incident with spin orientations θ and (θ + π) have opposite signs.

Therefore, the unpolarized electrons incident from the Landauer reservoir

imply that for each electron with spin polarization θ there is also an electron

with spin in the opposite direction (θ+π). It follows that there is no reflected

in- or out-of-plane spin current flowing back to the reservoir. However, we

can now use our single interface results to discuss qualitatively what happens

at the interface between a nonmagnetic spacer and the second (switching)

magnet. In that case, electrons incident from the spacer on the switching
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magnet are spin polarized and we may assume, for simplicity, that the inci-

dent electrons are fully polarized in the θ direction in the yz−plane. We can

therefore use the result for the reflected spin current given above (Eq. 6.34).

We first consider the reflected in-plane spin current Jref‖ = ={J↑R}.

Jref‖ =
−2 h̄

m
|k1|3 sin θ(|k↑0| − |k

↓
0|)2

(|k1|2 + |k↑0|2)(|k1|2 + |k↓0|2)
(6.35)

Eq. 6.35 shows that the sign of Jref‖ is proportional to −2 h̄
m
|k1|3 sin θ. That

is to say the reflected in-plane spin current for electrons incident with spin

orientations θ and (θ + π) have opposite signs and tend to cancel. Further-

more, in the limit of a strongly reflecting interface, we have |k↑0| >> |k1| and

|k↓0| >> |k1|. In that case it is clear from Eq. 6.34 that the reflected in-plane

spin current contribution is reduced.

We now consider the reflected out-of-plane spin current Jref⊥ = <{J↑R}

given by the real part of Eq. 6.34.

Jref⊥ =
−2 h̄

m
|k1|2 sin θ(|k↑0| − |k

↓
0|)(|k1|2 + |k↑0k

↓
0|)

(|k1|2 + |k↑0|2)(|k1|2 + |k↓0|2)
(6.36)

Since the incident spin current is entirely polarized in the yz − plane there

is no incident out-of-plane spin current component and there is therefore no

compensation for the reflected out-of-plane spin current component given by

Eq. 6.36. It follows from this that J⊥ is always non-zero but can have either

positive or negative sign depending on the relative magnitudes of |k↑0| and
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|k↓0|. Furthermore, in the limit of a strongly reflecting interface, we do not

see the same reduction of out-of-plane spin current as seen for the in-plane

spin current.

In conclusion, these results for the single interface will be useful for un-

derstanding the behaviour of a general junction containing both polarizing

and switching magnets. However, we need to bear in mind that in such

a system there are multiple reflections from multiple interfaces. Since the

out-of-plane spin current component may be generated as a result of these

multiple reflections, the results seen for a single interface should only be used

as a qualitative guide.

6.4 Incident and reflected spin currents in a junction with an

insulating switching magnet

We have seen in Chapter 4 and indeed throughout this thesis a number of

interesting results when studying the spin current components in each layer

of a magnetic multi-layered junction consisting of a nonmagnetic spacer layer

with a finite polarizing magnet on the left and a finite switching magnet on

the right, all of which contained within left and right leads (Fig. 2.2).

For simplicity, these results have been demonstrated where possible using

a consistent configuration whereby the two ferromagnets have been treated

as potential wells in both the ↑ and ↓ spin bands (Fig. 4.2).
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There are of course many possible configurations to which our Landauer

formalism can be applied, each providing a new insight into the spin trans-

port effects seen throughout such junctions. When investigating the five layer

junction configured such that the finite ferromagnets are represented as po-

tential barriers, it can be observered that by varying the potentials in the

switching magnet, the in-plane spin current in the spacer decreases rapidly

when the potentials in the switching magnet are high. On the other hand,

the out-of-plane spin current did not seem to depend strongly on the heights

of this potential barrier representation of the switching magnet. This has

prompted me to investigate the situation when the potentials of both the ↑

and ↓ spin electrons in the switching magnet are so high that they represent

potential barriers through which electrons must tunnel into the right lead,

thus acting as an insulating switching magnet.

A simple way to demonstrate this result would be to redefine our five

layer junction (Fig. 4.41) such that the width p of the switching magnet can

be modified and the ↑ and ↓ spin potentials can remain fixed as illustrated

in Fig. 6.4.
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Fig. 6.4: Schematic picture of a simple five layer junction with ↑ and ↓ spin elec-

trons incident from the left and right semi-infinite leads.

We have removed the fundamental length scale, a, in the problem how-

ever, as before, the exchange potential of the left (polarizing) magnet is

rotated by angle θ in the yz−plane whilst that of the right (switching) mag-

net is always in the direction of the z−axis. We will match the potentials in

the ↑ and ↓ spin bands of the two ferromagnets (Fig. 6.5) however they are

now represented as two potential barriers as shown schematically in Fig. 6.5.

We can also note that the symmetry will be broken for all p 6= ω.

Fig. 6.5: Five layer junction represented by two matched potential barriers.

We have fixed the angle of rotated magnetization in the left polarizing

magnet to θ = 1.5, the width of the polarizing magnet and spacer is given
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by ω = t = 1 and the potentials in each layer are given by VNM = −1.0,

V ↑FM = 1.5 and V ↓FM = 2.5.

The numerical results for the total in-plane (JT‖ ) and out-of-plane (JT⊥)

spin current components summed over all k‖ calculated in the spacer at

x0 = L + ω as a function of p ∈ [p0, pn], the varying width of the switching

magnet with the width of the polarizing magnet and spacer fixed such that

p0 = ω = t, are illustrated in Fig. 6.6.
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Fig. 6.6: JT‖ and JT⊥ . The total in- and out-of-plane spin current components

(sum over k‖), calculated in the spacer as a function of the width of the

switching magnet, p ∈ [p0, pn].

Fig. 6.6 shows exactly zero out-of-plane spin current at p0 which is ex-

pected since p0 = ω = t and hence we have complete symmetry. As the

width of the switching magnet increases, the out-of-plane spin current in-

creases and converges to a constant. On the other hand, the in-plane spin

current component exists in the completely symmetric configuration however
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it converges rapidly to zero as the thickness of the switching magnet increases.

It is interesting to analyse this case by examining separately the contri-

butions to the spin current components of electrons incident on and reflected

from the switching magnet. We should not confuse this with sending indi-

vidual electrons from the left (right) reservoir as done previously. In fact, it

should be noted that it is sufficient to consider only the electrons emitted

from the left reservoir since the electrons emitted from the right reservoirs

are almost entirely reflected from the right (switching) magnet back to the

right reservoir as the width of the switching magnet approaches pn. They,

therefore, do not reach the left (polarising) magnet and have thus only a

negligible effect on the spin current in the spacer.

We will therefore calculate the total spin current components in the non-

magnetic spacer and seek to extract these incident (and reflected) contribu-

tions on the switching magnet directly from the wave functions within the

spacer.

The wave functions ψ↑,↓ in the spacer are always a linear combination of

the waves moving from left to right and those moving from right to left. This

is the case even when we are sending electrons only from a single (left/right)

reservoir. We can therefore isolate within the Landauer approach the contri-

butions to the spin current components coming from the electrons incident

on the switching magnet and those reflected from the switching magnet. This

can be seen directly in our original formulation of the general solution for the
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wave function ψi (Eq. 2.18) and the expression for the in- and out-of-plane

spin current components (Eq. 2.41).

We can construct the wave functions in the spacer layer with propagating

waves k⊥ given by k↑ = k↓ = i |k| and solve for the expression for the spin

current components (Eq. 2.41) in the spacer. Given that the spin current is

constant in the spacer, we can choose x = 0 to give

JSpacer = i2
h̄

m
|k| (A↑A↓∗ −B↑B↓∗) (6.37)

where A↑,↓ denote the transmission coefficients (incident on the switching

magnet) and B↑,↓ the reflection coefficients (reflected from the switching mag-

net) in the spacer.

The total spin current for all incident electrons with spin orientation

σ ∈ (↑, ↓) is therefore given by

JTSpacer = i2
h̄

m
|k|
∑
σ

(A↑A↓∗ −B↑B↓∗) (6.38)

The numerical results for the contributions to the total in-plane spin cur-

rent component (JT‖ ) summed over all k‖ due to the electrons in the spacer

that are incident on the switching magnet (given by J inc‖ ) and those that are

reflected by the switching magnet back into the spacer (given by Jref‖ ), cal-

culated in the spacer at x0 = L+ ω as a function of p ∈ [p0, pn], the varying
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width of the switching magnet with the width of the polarizing magnet and

spacer fixed such that p0 = ω = t, are illustrated in Fig. 6.7.
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Fig. 6.7: J inc‖ , Jref‖ and JT‖ . The total in-plane spin current (sum over k‖) sepa-

rated into the contributions due to the incident and reflected electrons

within the spacer, calculated in the spacer as a function of the width of

the switching magnet, p ∈ [p0, pn].

Fig. 6.7 shows that the incident and reflected in-plane spin currents are

always of opposite sign. Moreover, as the width p of the switching magnet

(potential barrier) increases, the magnitude of the reflected contribution of

the in-plane spin current approaches the magnitude of the incident contri-

bution. It follows that the total in-plane spin current tends to zero as the

transparency of the switching magnet potential barrier decreases.

The physical interpretation of these results is that the incident and re-

flected in-plane spin current contributions interfere destructively. This is

analogous to the behaviour of the ordinary charge current. The charge cur-
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rent associated with electrons tunneling through a potential barrier decreases

exponentially with the barrier height (width). Since the charge current is con-

served everywhere, the low value of the charge current on the right of the

potential barrier, which must be equal to the total charge current flowing on

the left of the barrier, can only be explained by the destructive interference

of electron waves incident on and reflected from the barrier. The in-plane

spin current thus behaves just like the charge current.

We shall see that the behaviour of the out-of-plane spin current is quite

different. The numerical results for the contributions to the total out-of-

plane spin current component (JT⊥) summed over all k‖ due to the electrons

in the spacer that are incident on the switching magnet (given by J inc⊥ ) and

those that are reflected by the switching magnet back into the spacer (given

by Jref⊥ ), calculated in the spacer at x0 = L+ ω as a function of p ∈ [p0, pn],

the varying width of the switching magnet with the width of the polarizing

magnet and spacer fixed such that p0 = ω = t, are illustrated in Fig. 6.8.
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Fig. 6.8: J inc⊥ , Jref⊥ and JT⊥ . The total out-of-plane spin current (sum over k‖) sep-

arated into the contributions due to the incident and reflected electrons

within the spacer, calculated in the spacer as a function of the width of

the switching magnet, p ∈ [p0, pn].

Fig. 6.8 shows that, in contrast to the in-plane spin current, the reflected

contribution of the out-of-plane spin current does not cancel the incident

contribution. It follows that the total out-of-plane spin current in the spacer

layer tends to saturate to a finite nonzero value as the switching magnet po-

tential barrier width increases. These results can be understood qualitatively

as follows.

When the switching magnet potential barrier is very high (wide), the

incident electrons are almost totally reflected. The incident and reflected

electron waves thus tend to form standing waves in the nonmagnetic spacer

layer. Unlike propagating waves, standing waves have real wave functions.

We note that the in-plane spin current is given by the imaginary part of our

expression for the spin current components (see Eq. 2.41 of Sec. 2.3) while
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the out-of-plane spin current is given by the real part of the same expression.

It is, therefore, clear that the in-plane spin current vanishes for a high (wide)

switching magnet potential barrier but the out-of-plane spin current remains

finite.

These results are interesting and potentially important since they show

that the out-of-plane spin current can be large even when the charge current

and the in-plane spin current are both negligibly small. However, in real

systems we cannot manipulate the height (width) of the switching magnet

potential barrier since they are given for any specific material combination

of the spacer and switching magnet. In fact, the switching magnet potential

barrier is not high for fully metallic junctions studied experimentally.

This problem was bypassed by Autes et al. [28] who proposed to include

in a metallic magnetic junction an additional insulating layer inserted after

the switching magnet. They showed using the Keldysh formalism that even

in the presence of a high insulating barrier after the switching magnet, the

out-of-plane spin current in the nonmagnetic spacer layer remains finite.

In the next section we shall analyse such a modified six-layer junction

using our Landauer formalism. This allows us to explain the results obtained

within the Keldysh formalism in terms of the incident and reflected spin

currents.
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6.5 Junction with an insulating barrier

Here we introduce a 6th layer acting as an insulating barrier on the right side

of the junction as shown schematically in Fig. 6.9.

Fig. 6.9: Schematic picture of a six layer junction with ↑ and ↓ spin electrons

incident from the left and right semi-infinite leads.

We now have a dimensionless system consisting of a semi-infinite left lead

up to x0 = L (a large starting value on the x-axis). A finite ferromagnet of

thickness ωa between x0 = L and x1 = L+ ωa, a spacer of width ta located

between x1 = L+ωa and x2 = L+(ω+ t)a, the switching magnet of width a

between x2 = L+ (ω+ t)a and x3 = L+ (ω+ t+ 1)a and the additional non-

magnetic metallic insulating barrier of width sa between x3 = L+(ω+t+1)a

and x3 = L+ (ω + t+ 1 + s)a.

As before, the exchange potential of the left magnet is rotated by angle θ

in the yz− plane whilst that of the right magnet is always in the z-direction

(θ = 0). We will match the potentials in the ↑ and ↓ spin bands of the two

ferromagnets, thus producing two identical potential barriers in each spin

channel and include a third, larger potential barrier representing the insula-
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tor as shown schematically in Fig. 6.10.

 

Fig. 6.10: Six layer junction represented by two matched potential barriers (mag-

nets) followed by a third potential barrier (insulator).

We will first reproduce the results obtained for a single-orbital tight-

binding band using the Keldysh formalism [24]. The dependences of the

in-plane, out-of-plane and charge currents on the width of the insulating

barrier are shown in Fig. 6.11.
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Fig. 6.11: Keldysh spin (charge) current as a function of the width of the insulating

barrier (taken from [28]).

It can be seen that the in-plane spin current and charge current decrease

exponentially with the barrier width but the out-of-plane spin current satu-

rates to a finite value. This behaviour is reminiscent of the behaviour of the

spin current in a junction with an insulating switching magnet discussed in

the previous section.

We shall now apply to the six layer junction shown in Fig. 6.9 our Lan-

dauer formalism. We have fixed the angle of rotated magnetization in the

left polarizing magnet to θ = 1.5, the widths of the two ferromagnets and

spacer are given by a = ω = t = 1 and the potentials in each layer are given
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by VNM = −1.0, V ↑FM = 1.0, V ↓FM = 2.0 and VINS = 30.0.

The dependences of the total in-plane (JT‖ ) and out-of-plane (JT⊥) spin

currents on the insulating barrier width (sa), together with the correspond-

ing results for the ordinary charge current (Jc), are shown in Fig. 6.12.
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Fig. 6.12: JT‖ , JT⊥ and Jc. The total in- and out-of-plane spin current components

(sum over k‖), calculated in the spacer as a function of the width of the

insulating layer, s ∈ [s0, sn], along with the corresponding results for

the charge current.

Not surprisingly the behaviour of all the currents shown in Fig. 6.12

is qualitatively the same as the corresponding results obtained within the

Keldysh formalism. In our case, we have started at s0 = 0, such that the

insulating layer vanishes and we are left with the completely symmetric five

layer junction and so we have exactly zero out-of-plane spin current in the

spacer. As the width of the insulating layer increases, we see the same be-

haviour observed both in our earlier results for the insulating switching mag-
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net (Sec. 6.4) and in the Keldysh results for the insulating barrier (Fig. 6.11).

We now examine the behaviour of the spin current contributions incident

on and reflected from the switching magnet. As in the previous section,

Fig. 6.13 shows the dependence of the incident and reflected in-plane spin

currents on the insulating barrier width, sa.
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Fig. 6.13: J inc‖ , Jref‖ and JT‖ . The total in-plane spin current (sum over k‖) sepa-

rated into the contributions due to the incident and reflected electrons

within the spacer, calculated in the spacer as a function of the width of

the insulating layer, s ∈ [s0, sn].

Similarly, Fig. 6.14 shows the dependence of the incident and reflected

out-of-plane spin currents on the insulating barrier width, sa.
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Fig. 6.14: J inc⊥ , Jref⊥ and JT⊥ . The total out-of-plane spin current (sum over k‖)

separated into the contributions due to the incident and reflected elec-

trons within the spacer, calculated in the spacer as a function of the

width of the insulating layer, s ∈ [s0, sn].

We find again that the incident and reflected in-plane spin currents (Fig. 6.13)

tend to compensate one another, which results in a vanishing total in-plane

spin current. On the other hand, there is no such compensation for the

out-of-plane spin current (Fig. 6.14) and that is the reason why it saturates

to a finite value with an increasing insulating barrier width. The physical

explanation of the behaviour of the in-plane and out-of-plane spin currents

in terms of standing waves which form in the nonmagnetic spacer is qualita-

tively the same as that already given in Sec. 6.4.

We conclude this section by stating that our Landauer formalism provides

a solid physical underpinning of the rather surprising and seemingly improb-

able results obtained by Autes et al. [28] within the rigorous but physically

non-transparent Keldysh formalism.



7. CONCLUSIONS

In this thesis we formulated a methodology based on Landauer’s theory of

transport of spin that allowed us to study the spin transport effects found

in magnetic multi-layered junctions using a more comprehensive approach

than those taken previously. It allowed us to calculate the total spin current

throughout the magnetic and non-magnetic metallic layers of various multi-

layered junctions in order to verify qualitatively the results found before

using the nonequilibrium Keldysh formulation. More importantly, we were

able to deconstruct these results into individual scattering problems allowing

us to see how the spin current comprises of the many contributions due to

incident and reflected electrons moving from left to right and right to left in

each layer of the junction and thus providing additional information about

the physics of the spin transport that cannot be obtained from Keldysh alone.

We showed that there is zero out-of-plane spin current in the nonmagnetic

spacer layer sandwiched between two ferromagnets with a non-zero angle of

rotated magnetisation (in-plane) between the two magnets only when per-

fect symmetry is introduced because the contribution from the left cancels

exactly the contribution from the right. As a result, we identified that by

not matching the potentials in the left polarizing magnet with those of the

right switching magnet in either the ↑ or ↓ spin band, we would introduce a
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difference between the contributions from the left and right and hence obtain

non-zero out-of-plane spin current in the spacer.

We deduced symmetry properties in the left and right semi-infinite leads

of a general multi-layered junction showing that the contribution from the

left is equal but opposite in sign to that from the right and concluded that

the out-of-plane spin current seen in the left and right leads of the five layer

junction originates from the individual spin precessions in the left and right

ferromagnets. These precessions result in oscillations in the spin current

components in the ferromagnets that therefore emerge in general in the leads

as non-zero.

We identified the limits within the Landauer approach when studying

theoretical junctions consisting of semi-infinite ferromagnets (classical tri-

layer). The results for a single propagating wave (k⊥) in the limit of a finite

ferromagnet would never approach those of a semi-infinite ferromagnet due

to the interferences from both interfaces of the finite magnet. We showed

that the total spin current given by the sum over all k‖ would remove this

limitation due to the destructive interference causing the oscillations found in

the ferromagnets to decay and thus destroying the interactions between the

two interfaces. Using this result we were able to provide a reasonable approx-

imation using our realistic five layer junction with left and right Landauer

reservoirs (leads) and finite ferromagnets to the classical trilayer junction in

which the left and right ferromagnets are semi-infinite. However, we note

that at individual k-points the trilayer with semi-infinite magnets can give
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physically incorrect results.

We used the Landauer formalism we had developed to investigate the

physical origin of the out-of-plane spin current by calculating analytically

the spin current components found in a simple junction consisting of a single

interface between a semi-infinite magnet and a semi-infinite nonmagnet. It

followed from the two non-collinear vectors defining the spin space given by

the direction of the magnetization of the semi-infinite magnet and the di-

rection of the spin-polarized current of electrons in the nonmagnet that the

nonmagnet was in fact acting as a second magnet or half-magnet whereby all

↓ electrons had been filtered out and thus, we concluded that in order to talk

about an out-of-plane spin current we will always need to have two magnets

with non-collinear magnetizations in our system. We then introduced an ar-

bitrary spin polarization in the semi-infinite nonmagnet in order to simulate

the situation assumed in the Landauer reservoirs and obtained qualitative

insight into the existence of out-of-plane spin current in a realistic nonmag-

net. This could be extended to the interface between a nonmagnetic spacer

and the second (switching) magnet. In that case, electrons incident from the

spacer on the switching magnet are spin polarized and so our analytical ex-

pressions showed qualitatively that the reflected in-plane spin current tends

to cancel the incoming contribution, however, the reflected out-of-plane spin

current would not be cancelled in this way since there is no incoming out-of-

plane contribution due to the fact that the incident spin current is entirely

polarized in-plane. Our calculations clearly demonstrated that one needs a

minimum of two interfaces with magnetic layers in order to obtain a non-
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zero out-of-plane spin current in the nonmagnetic spacer. Hence all theories

that do not treat all the interfaces rigorously are fundamentally incapable of

describing correctly the out-of-plane spin current.

When investigating a five layer junction whereby the two ferromagnets

were represented as potential barriers, we saw that the in-plane spin cur-

rent in the nonmagnetic spacer would decrease to zero as the potential in

the right switching magnet increased. The out-of-plane spin current in the

spacer proved to be less dependant on the magnitude of the switching mag-

net potential step. The results for this situation whereby the right switching

magnet was acting as an insulating barrier prompted us to investigate a junc-

tion with realistic ferromagnets and an additional nonmagnetic layer on the

right acting as the insulating barrier. Our results were qualitatively the same

as those obtained previously for a single-orbital tightbinding band using the

Keldysh formalism. The in-plane spin current and ordinary charge current

in the spacer both converge to zero whilst the out-of-plane spin current con-

verges to a non-zero constant as the potential (width) of the insulating layer

increases. Our Landauer formalism allowed us for the first time to sepa-

rate the contributions to the spin current components in the spacer due to

electrons incident on and reflected from the switching magnet. This showed

conclusively that the incident and reflected in-plane spin currents are al-

ways of opposite sign. Moreover, as the potential of the insulating barrier

increases, the magnitude of the reflected contribution of the in-plane spin

current approaches the magnitude of the incident contribution producing a

cancelling effect. The physical interpretation of these results is based on the
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destructive interference of the incident and reflected in-plane spin current

contributions. This is analogous to the behaviour of the ordinary charge

current. The charge current associated with electrons tunneling through

a potential barrier decreases exponentially with the barrier height (width).

Since the charge current is conserved everywhere, the low value of the charge

current on the right of the potential barrier, which must be equal to the total

charge current flowing on the left of the barrier, can only be explained by the

destructive interference of electron waves incident on and reflected from the

barrier. The in-plane spin current thus behaves just like the charge current.

In contrast, when investigating the out-of-plane spin current in the spacer,

we found that the incident and reflected contributions are equal and con-

stant once the potential of the insulating barrier increases beyond a potential

threshold and thus we do not see a cancelling effect. The physical interpre-

tation in this case is qualitatively the same as in the case of the insulating

switching magnet. The incident electrons are almost totally reflected by the

switching magnet back into the nonmagnetic spacer and so the incident and

reflected electron waves thus tend to form standing waves in the spacer layer.

Unlike propagating waves, standing waves have real wave functions. When

calculating the spin current, the in- and out-of-plane spin current components

are obtained in our formalism by the imaginary and real parts of the same

expression respectively and so it is, therefore, clear that the in-plane spin

current in the spacer vanishes in the presence of a large switching magnet

potential barrier or insulating layer, however, the out-of-plane spin current

remains finite. These results are interesting and potentially important since
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they show that the out-of-plane spin current in the nonmagnetic spacer can

be large even when the charge current and the in-plane spin current are both

negligibly small.

Future research into the application of this finite out-of-plane spin current

in the spacer in the presence of an insulating barrier is pertinent to our

result that the in-plane spin current vanishes due to a cancellation between

the contributions within the layer that are incident on and reflected from

the adjacent interface. Our ability to separate such contributions using our

Landauer formalism and indeed the ability to calculate the contributions of

individual electrons incident from either side of a junction has afforded us a

tool that provides far greater physical insight into the spin transport effects

in any magnetic multi-layered junction than those used previously. This tool

has led us to the analytical result that the out-of-plane spin current in a semi-

infinite non-magnet adjacent to a semi-infinite magnet is non-zero if there

is at least one wave function that is completely reflected back into the non-

magnet, a result that can potentially be exploited in a number of physical

applications that therefore requires further investigation. This also provides

motivation to solve analytically a junction consisting of two interfaces to

gain more concrete physical insight into the origin of a non-zero out-of-plane

spin current in a non-magnetic spacer sandwiched between two semi-infinite

ferromagnets to those he have already obtained qualitatively. Furthermore,

our formulation is not limited to the five layer junction studied throughout

this thesis and can therefore be used to investigate junctions consisting of

many layers such as a domain wall.
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