A Bootstrap Estimate of the Predictive Distribution of Outstanding Claims for the Schnieper Model

Huijuan Liu and Richard Verrall

Key words
Bootstrapping; Claims Reserving; Schnieper model; IBNR and IBNER claims

Abstract
This paper considers the bootstrapping approach for measuring reserve uncertainty when applying the model of Schnieper for reserves which separate Incurred But Not Reported (IBNR) and Incurred But Not Enough Reserved (IBNER) claims. The Schnieper method has been explored in Liu and Verrall (2009), and the Mean Square Errors of Prediction (MSEP) derived. This paper takes this further by deriving the full predictive distribution, using bootstrapping. Numerical examples are provided and the MSEP from the bootstrapping approach are compared with those obtained analytically.
1 Introduction

The model of Schnieper (1991) separates out IBNR and IBNER claims, with the intention of providing better estimates of outstanding liabilities in cases when the over claims data are inherently volatile. Although Mack (1993) used some of the ideas from Schnieper, there has not been much attention paid to the original paper since it was published. However, Liu and Verrall (2009) have derived approximations to the Mean Square Errors of Prediction (MSEP) of the reserves and we believe that the method has the potential to be useful in practice. In this paper, we continue with the development of the statistical background for the original method by showing how the complete predictive distribution can be approximated using bootstrapping methods. This is a very important additional step to the theory derived in Liu and Verrall (2009), since the MSEP is of only limited value in the context of risk assessment and capital modelling. For a proper assessment of risk, and to use the model in the modern solvency setting, it is far better to use the predictive distribution. Also, a simulation approach is often used in this context, and bootstrapping has been found to be very convenient for this.

Section 2 gives a brief outline of the model of Schnieper. For more details, see Schnieper (1991) and Liu and Verrall (2009). In Section 3 of this paper, we show how to construct an appropriate resampling procedure for the Schnieper method, within a Generalised Linear Models (GLM) framework. Note that the bootstrapping is a general method, which can be applied to any fully defined model in order to obtain the sampling distribution for any statistic of interest. As was shown in England and Verrall (1999) and England (2002), it is straightforward to extend the bootstrapping procedure to enable an approximation to the predictive distribution to be obtained. This requires a final step to be added to the resampling method, which then simulates a future observation from the appropriate process distribution. A more complete discussion of bootstrapping methods can be found in England and Verrall (2006), which also contains a fuller review of the literature on bootstrapping for claims reserving in general. Note that the Schnieper method is a recursive method for claims reserving, and the appropriate background for this can be found in England and Verrall (2006). The paper by England and Verrall (1999), which first considered bootstrapping for the chain-ladder technique, was based on the over-dispersed Poisson model which is non-recursive. For ease of implementation, the detailed algorithm which can be used to obtain the bootstrap approximation to the predictive distribution for the Schnieper method is given in the Appendix. In section 4, we apply the bootstrap method to the data from Schnieper (1991) and show that the results are very close to the results for the analytical estimation error derived in Liu and Verrall (2009). This section also shows the full predictive distribution. Section 5 contains the conclusion.

2 The Schnieper Model

The idea behind the model of Schnieper (1991) is to separate a triangle of potentially volatile claims data into two separate triangles: a triangle of the IBNER claims and a triangle of the real INBR claims. In this way, the hope is that the separate triangles will prove easier to deal with and will provide better estimates of outstanding claims, and a better idea of the forces driving these. It is assumed that the data in the two triangles are independent, and we briefly describe the models used for each of these. For more details of these models, and of the estimation of the parameters and forecasts, see Schnieper (1991) and Liu and Verrall (2009).

Without loss of generality, we assume that the data are available in triangular form, indexed by accident year, \(i \), and development year, \(j \). The single triangle of data consists of the cumulative incurred claims, and are denoted by \(\{X_{ij} : 1 \leq i \leq n; 1 \leq j \leq n-i+1\} \):
\[
\begin{array}{cccc}
X_{11} & X_{12} & \ldots & X_{1n} \\
X_{21} & \ldots & X_{2,n-1} \\
\vdots \\
X_{n1} & \\
\end{array}
\]

It is assumed that the incremental incurred claims \((X_{ij} - X_{i,j-1})\) are the sum of incremental incurred from the old claims \((-D_y)\) and the new claims \((N_y)\). In other words, \(-D_y\) represents the change in the cumulative incurred claims for claims reported in previous development periods (IBNER data), and \(N_y\) is the new claims (IBNR claims) reported in development period \(j\). Thus, \(X_{ij} - X_{i,j-1} = -D_y + N_y\) and for cumulative claims: \(X_{ij} = X_{i,j-1} - D_y + N_y\).

Schnieper also assumes that a measure of the exposure, \(E_i\), is available for each accident year \(i\). In common with Schnieper (1991), we do not attempt to forecast beyond development year \(n\). We refer to cumulative claims at development year \(n\) as “Ultimate Claims”.

We define the information up to payment year \(k\) by \(H_k\) and the information up to development year \(k\) by \(F_k\), where

\[H_k = \{N_y, D_y : 1 \leq i, j \leq n; i + j - 1 \leq k\}\]

and \(F_k = \{N_y, D_y : 1 \leq i, j \leq n; j \leq k\}\).

\(F_k\) corresponds to \(B_k\) in Mack (1993).

The general model assumptions are given as follows:

Assumption 1: There exist constants \(\lambda_j\) and \(\delta_j\), such that for known exposure \(E_i\) we have that,

\[E[N_y|H_{i+j-2}] = E_i\lambda_j, \ 1 \leq i, j \leq n,\]

\[E[D_y|H_{i+j-2}] = X_{i,j-1}\delta_j, \ 1 \leq i \leq n, 2 \leq j \leq n.\]

Assumption 2: There exist constants \(\sigma_j^2\) and \(\tau_j^2\), such that

\[\text{Var}[N_y|H_{i+j-2}] = E_i\sigma_j^2, \ 1 \leq i, j \leq n\]

\[\text{Var}[D_y|H_{i+j-2}] = X_{i,j-1}\tau_j^2, \ 1 \leq i \leq n, 2 \leq j \leq n.\]
Assumption 3: Independence between accident years

As in Schnieper (1991), it is assumed that \(\{N_{ij}, D_{ij} : 1 \leq j \leq n \} \) are independent between accident years.

Assumption 4: Uncorrelatedness between development years

\(\{N_j \vert H_{i+j-2} : 1 \leq i, j \leq n \} \) and \(\{D_j \vert H_{i+j-2} : 1 \leq i \leq n, 2 \leq j \leq n \} \) are uncorrelated.

For a discussion of these assumptions, see Liu and Verrall (2009). Based on these assumptions, estimates of the parameters may be obtained, along with predictions of the development of future claims. This is a recursive method, and full details of the derivation of these estimates may be found in Schnieper (1991) and Liu and Verrall (2009). The estimates of the parameters in the mean are given by

\[
\hat{\lambda}_j = \frac{\sum_{i=1}^{n+1-j} N_{ij}}{\sum_{i=1}^{n+1-j} E_i}, \quad 1 \leq j \leq n.
\]

and

\[
\hat{\delta}_j = \frac{\sum_{i=1}^{n+1-j} D_{ij}}{\sum_{i=1}^{n+1-j} X_{i,j-1}}, \quad 2 \leq j \leq n.
\]

Also

\[
\hat{\sigma}_j^2 = \frac{1}{n-j} \sum_{i=1}^{n-j+1} \frac{1}{E_i} \left(N_{ij} - \hat{\lambda}_i E_i \right)^2, \quad 1 \leq j \leq n-1,
\]

and

\[
\hat{\tau}_j^2 = \frac{1}{n-j} \sum_{i=1}^{n-j+1} \frac{1}{X_{i,j-1}} \left(D_{ij} - \hat{\delta}_j X_{i,j-1} \right)^2, \quad 2 \leq j \leq n-1.
\]

These are the estimates that are used when the bootstrap methodology is applied. Finally, the estimate of outstanding incurred claims in the original single triangle was derived by Schnieper. Note that \(\hat{E}[X_{i,k+1} \vert H_a] \) is the prediction of \(X_{i,k+1} \), and we use the notation of \(\hat{X}_{i,k+1} \) for this:

\[
\hat{E}[X_{i,k+1} \vert H_a] = \hat{X}_{i,k+1}.
\]

Then \(\hat{X}_{i,k+1} = (1 - \hat{\delta}_{k+1}) \hat{X}_{i,k+1} + E_{i,k+1} \). Note also that

\[
\hat{E}[X_{i,n-i+1} \vert H_n] = X_{i,n-i+1},
\]

and hence \(\hat{X}_{i,n-i+1} = X_{i,n-i+1} \) forms the starting point in this recursive formula.
3 Bootstrap Methodology

The Schnieper method presents an interesting exercise for bootstrapping in that there are two separate triangles that have to be resampled independently. This is different from most other applications of bootstrapping for claims reserving, when a single triangle is considered. In this section, we describe how the resampling procedure can be adapted to this novel situation, and in the Appendix we set out the algorithm in detail.

In order to apply the bootstrapping methodology, we require data which can be assumed to be independent and identically distributed (iid). Since the data themselves are not iid, we resample from the residuals rather than the raw data. Also, since the Schnieper method is based on recursive models, we use residuals of the ratios, \(\frac{N_y}{E_i} \) and \(\frac{D_y}{X_{i,j-1}} \), rather than the observed data, \(N_y \) and \(D_y \).

This has been discussed in detail in England and Verrall (2006). In order to calculate residuals (suitably normalized), we require the mean and variance of each of the ratios. Following Liu and Verrall (2009), the mean and variance assumptions for the Schnieper model are:

\[
E \left[\frac{N_y}{E_i} \middle| H_{i+j-2} \right] = \lambda_j \quad \text{and} \quad E \left[\frac{D_y}{X_{i,j-1}} \middle| H_{i+j-2} \right] = \delta_j,
\]

and

\[
Var \left[\frac{N_y}{E_i} \middle| H_{i+j-2} \right] = \frac{\sigma_j^2}{E_i} \quad \text{and} \quad Var \left[\frac{D_y}{X_{i,j-1}} \middle| H_{i+j-2} \right] = \frac{\tau_j^2}{X_{i,j-1}}.
\]

The idea of bootstrapping is to generate new triangles of data (“bootstrap samples”) which are representative of the underlying distributions of the estimates. When this has been done a reasonable number of times and the required results saved, the sampling properties may be estimated by simply looking at the properties of the bootstrap samples. So, for example, to obtain a bootstrap estimate of the estimation error of the overall reserve, we generate a reasonable number (in most cases we use 10,000) of new sets of data from the original data and estimate the reserve for each of these.

Corresponding to the two approximation approaches described in Liu and Verrall (2009), there are two procedures that can be used in the bootstrapping process. If the estimation variance approximation approach which is adopted by England and Verrall (2002) and Buchwalder et al (2006) is followed, the bootstrap estimate of the approximation is obtained by calculating the sample variance of the bootstrap reserves. However, if the approach of Mack (1993) is followed, the bootstrap estimate of the estimation variance is obtained by calculating the average squared difference between the bootstrap reserve estimate and the original reserve estimate. The rationale for the first approach is clear: we simply estimate the estimation variance by the variance of the bootstrap samples. The rationale for the second approach is that we require a bootstrap estimate of

\[
\left(\hat{X}_{i,m} - E \left[X_{i,m} \middle| H_i \right] \right)^2,
\]

and this can be obtained by looking at the average squared difference between the bootstrap value, \(X_{i,m}^B \) and \(\hat{X}_{i,m} \).

To include the process error, we add an extra simulation after each bootstrap, using the appropriate process distribution. This is the most straightforward way to include the process error, and more details can be found in England and Verrall (2006).
Let \(f_y = \frac{N_y}{E_i} \) and \(g_y = \frac{D_y}{X_{i,j-1}} \).

Then the scaled Pearson residuals for the two triangles are given by:
\[
 r_{PS}\left(f_y, \hat{\lambda}_j, E_i, \hat{\sigma}_j\right) = \sqrt{E_i} \left(\frac{f_y - \hat{\lambda}_j}{\hat{\sigma}_j}\right) \quad \text{and} \quad r_{PS}\left(g_y, \hat{\delta}_j, X_{i,j-1}, \hat{\tau}_j\right) = \sqrt{X_{i,j-1}} \left(\frac{g_y - \hat{\delta}_j}{\hat{\tau}_j}\right).
\]

It is well known that a bias correction is required in the context of bootstrap estimation. In order to include this, these residuals are adjusted by multiplying by \(\frac{n-j}{n-j+1} \). This gives the adjusted residuals:
\[
 r_y = \sqrt{\frac{n-j}{n-j+1}} r_{PS}\left(f_y, \hat{\lambda}_j, E_i, \hat{\sigma}_j\right) \quad \text{and} \quad s_y = \sqrt{\frac{n-j}{n-j+1}} r_{PS}\left(g_y, \hat{\delta}_j, X_{i,j-1}, \hat{\tau}_j\right).
\]

These adjusted residuals are sampled, with replacement, to generate bootstrap samples of residuals, \(r_y^B \) and \(s_y^B \), for \(i = 1,2,\ldots,n; j = 1,2,\ldots,n-i+1 \). The triangles of pseudo data are then calculated by inverting the residual definition:
\[
 f_y^B = r_y^B \frac{\hat{\sigma}_j}{\sqrt{E_i}} + \hat{\lambda}_j \quad \text{and} \quad g_y^B = s_y^B \frac{\hat{\tau}_j}{\sqrt{X_{i,j-1}}} + \hat{\delta}_j.
\]

The appealing aspect of bootstrapping is that the calculations now only involve the simple spreadsheet operations used in the original method to calculate the loss reserves. In other words, they can be based on the original Schnieper paper, rather than involving any more complex statistical analysis similar to that in Liu and Verrall (2009). Thus, for each bootstrap sample, the bootstrap estimates of the parameters in the mean, \(\hat{\lambda}_j^B \) and \(\hat{\delta}_j^B \), are calculated using the usual weighted averages of the individual development factors. These are given in the following equations:
\[
 \hat{\lambda}_j^B = \frac{\sum_{i=1}^{n-j+1} f_y^B E_i}{\sum_{i=1}^{n-j+1} E_i} \quad \text{and} \quad \hat{\delta}_j^B = \frac{\sum_{i=1}^{n-j+1} g_y^B X_{i,j-1}}{\sum_{i=1}^{n-j+1} X_{i,j-1}}.
\]

Note that the observed data, \(X_{i,j-1} \), and the exposure \(E_i \) act as the weights here: it is not correct to use bootstrapped data for the weights.

The bootstrap estimates of the reserves for each row and the overall total can be obtained by applying the bootstrap values of the parameters, \(\hat{\lambda}_j^B \) and \(\hat{\delta}_j^B \), to the original formula of Schnieper for the outstanding incurred claims:
\[
 \hat{X}_{i,n-i+1+k} = \left(1 - \hat{\delta}_j^B \right) \hat{X}_{i,n-i+k} + E_i \hat{\lambda}_j^B \quad \text{for} \quad k = 1,2,\ldots,t - 1 \quad \text{(with the initial point} \quad \hat{X}_{i,0} = X_{i,0}).
\[
\hat{X}_{i,n-i+1} = X_{i,n-i+1}.
\]

Bootstrapping only addresses the estimation error for the model. If the aim of the exercise is to obtain a bootstrap estimate of the estimation error, then this is all that is needed. However, for claims reserving purposes, we also require the prediction error and the full predictive distribution of the reserves. To obtain these, it is necessary to include the process error, using the process distributions. The most straightforward option here, since we are only specifying the first two moments, is to use normal distributions for both \(N_{ij} \) and \(D_{ij} \). (Note that it would be possible to use other models, such as the over-dispersed Poisson distribution.) Thus, the final step in the process to obtain simulations of the loss reserves suitable for calculating prediction errors and the predictive distribution is to simulate from these process distributions, using the bootstrap sample values for the means. In other words, for each triangle, we obtain simulated values of the incrementals, using the appropriate process distributions:

\[
\frac{N_{ij}}{E_i} H_{i+j-2} \sim \text{Normal}(\lambda_i^g, \frac{\sigma_i^2}{E_i}) \quad \text{and} \quad \frac{D_{ij}}{X_{i,j-1}} H_{i+j-2} \sim \text{Normal}(\delta_i^g, \frac{\tau_i^2}{X_{i,j-1}}).
\]

These simulated values are then inserted into the equation for the cumulative claims, \(X_{ij} = X_{i,j-1} - D_{ij} + N_{ij} \). Taking first differences gives the incremental claims which can be used for calculating the prediction errors and predictive distributions.

The algorithm bootstrapping Schnieper’s model is set out in the Appendix. In section 4, we provide illustrations of the bootstrapping method, and compare with the analytical results.

4 Illustration

In this section, we illustrate the results by applying the bootstrapping methodology to the data from Schnieper (1991). The results are compared with the analytical methods, as well as the bootstrap estimation of the prediction error using Mack's approximation.

The data used by Schnieper consisted of an IBNR triangle, \(X_{ij} \), and exposure, \(E_i \), which are shown in Table 1. Tables 2 and 3 show the more detailed data, consisting of the new claims, \(N_{ij} \), and the changes in the existing claims, \(-D_{ij} \). These data were taken from a practical motor third party liability excess-of-loss pricing problem.

Table 1. Cumulative IBNR \((X_{ij})\) and Exposure \((E_i)\) for both new and existing claims.

<table>
<thead>
<tr>
<th>Accident year</th>
<th>Dev year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.5</td>
<td>28.9</td>
<td>52.6</td>
<td>84.5</td>
<td>80.1</td>
<td>76.9</td>
<td>79.5</td>
<td>10,224</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.6</td>
<td>14.8</td>
<td>32.1</td>
<td>39.6</td>
<td>55.0</td>
<td>60.0</td>
<td></td>
<td>12,752</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13.8</td>
<td>42.4</td>
<td>36.3</td>
<td>53.3</td>
<td>96.5</td>
<td></td>
<td></td>
<td>14,875</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.9</td>
<td>14.0</td>
<td>32.5</td>
<td>46.9</td>
<td></td>
<td></td>
<td></td>
<td>17,365</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.9</td>
<td>9.8</td>
<td>52.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19,410</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.9</td>
<td>29.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17,617</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>19.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18,129</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Incremental incurred claims from new claims (N_{ij})

<table>
<thead>
<tr>
<th>Dev year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7.5</td>
<td>18.3</td>
<td>28.5</td>
<td>23.4</td>
<td>18.6</td>
<td>0.7</td>
<td>5.1</td>
</tr>
<tr>
<td>2</td>
<td>1.6</td>
<td>12.6</td>
<td>18.2</td>
<td>16.1</td>
<td>14</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13.8</td>
<td>22.7</td>
<td>4</td>
<td>12.4</td>
<td>12.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.9</td>
<td>9.7</td>
<td>16.4</td>
<td>11.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.9</td>
<td>6.9</td>
<td>37.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.9</td>
<td>27.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>19.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Incremental incurred claims from existing claims (D_{ij}).

<table>
<thead>
<tr>
<th>Dev year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-3.1</td>
<td>4.8</td>
<td>-8.5</td>
<td>23</td>
<td>3.9</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>-0.6</td>
<td>0.9</td>
<td>8.6</td>
<td>-1.4</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-5.9</td>
<td>10.1</td>
<td>-4.6</td>
<td>-31.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-1.4</td>
<td>-2.1</td>
<td>-2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 shows a comparison of the results using the analytical methods derived in Liu and Verrall (2009) and the bootstrap results. The bootstrap results were obtained using the estimation variance approximation approach which is adopted by England and Verrall (2002) and Buchwalder et al (2006), so that the bootstrap estimate of the approximation was obtained by calculating the sample variance of the bootstrap reserves.

Table 4 A Comparison of Bootstrap and Analytical Results

<table>
<thead>
<tr>
<th>Reserves</th>
<th>Prediction Errors</th>
<th>Prediction Errors %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>Bootstrap</td>
<td>Analytical</td>
</tr>
<tr>
<td>i=2</td>
<td>4.4</td>
<td>4.3</td>
</tr>
<tr>
<td>i=3</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>i=4</td>
<td>32.9</td>
<td>33.2</td>
</tr>
<tr>
<td>i=5</td>
<td>60.3</td>
<td>61.1</td>
</tr>
<tr>
<td>i=6</td>
<td>77.2</td>
<td>77.6</td>
</tr>
<tr>
<td>i=7</td>
<td>104.3</td>
<td>104.8</td>
</tr>
<tr>
<td>Overall Total</td>
<td>283.9</td>
<td>285.8</td>
</tr>
</tbody>
</table>

It can be seen that there is a good agreement between the analytical results and those obtained using bootstrapping (allowing for the fact that bootstrapping is a simulation-based method).
A major advantage of using bootstrapping over the analytical approach is that it is also possible to obtain a simulation of the predictive distribution. This is illustrated in Figure 1, which shows the predictive distribution of the overall reserve for the Schnieper method, smoothed using a Kernel smoother with bandwidth 50.

![Figure 1 Bootstrap Predictive Distribution of the Schnieper Overall Reserve](image)

As mentioned in section 3, there are two approximation approaches described in Liu and Verrall (2009), and Tables 5 and 6 compare the differences when following these two approaches. The column labeled E&V (2002) corresponds to the approach adopted by England and Verrall (2002) and Buchwalder et al (2006). The second column shows the results using the approach of Mack (1993). The first approach, the estimation error is approximated using the sample variance of the bootstrap reserves, and in the second approach, the bootstrap estimate of the estimation variance is obtained by calculating the average squared difference between the bootstrap reserve estimate and the original reserve estimate. In both cases, this is done before the sampling from the process distribution when estimating the estimation error.

Table 5
A Comparison of Bootstrap Estimation Errors

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i=2</td>
<td>6.929</td>
<td>6.938</td>
</tr>
<tr>
<td>i=3</td>
<td>10.040</td>
<td>10.061</td>
</tr>
<tr>
<td>i=4</td>
<td>16.183</td>
<td>16.384</td>
</tr>
<tr>
<td>i=5</td>
<td>23.689</td>
<td>23.883</td>
</tr>
<tr>
<td>i=6</td>
<td>23.629</td>
<td>23.897</td>
</tr>
<tr>
<td>i=7</td>
<td>27.677</td>
<td>27.976</td>
</tr>
<tr>
<td>Overall Total</td>
<td>98.017</td>
<td>99.020</td>
</tr>
</tbody>
</table>

Table 6
A Comparison of Bootstrap Prediction Errors

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i=2</td>
<td>9.361</td>
<td>9.266</td>
</tr>
<tr>
<td>i=3</td>
<td>14.399</td>
<td>14.330</td>
</tr>
<tr>
<td>i=4</td>
<td>31.414</td>
<td>31.735</td>
</tr>
<tr>
<td>i=5</td>
<td>43.017</td>
<td>43.333</td>
</tr>
<tr>
<td>i=6</td>
<td>45.553</td>
<td>45.598</td>
</tr>
<tr>
<td>i=7</td>
<td>51.490</td>
<td>51.817</td>
</tr>
<tr>
<td>Overall Total</td>
<td>122.893</td>
<td>124.116</td>
</tr>
</tbody>
</table>
5. Conclusion

This paper has shown how bootstrapping can be applied in the context of the Schnieper method of claims reserving. This is a novel application, because it involves bootstrapping two separate triangles. The illustration shows that it is possible to reproduce the MSEP of the analytical methods that were derived in Liu and Verrall (2009). The advantages of the bootstrapping approach are that it is straightforward to implement in a spreadsheet, and it is also possible to obtain the full predictive distribution. In the context of capital modeling and solvency, this is an important advantage.
References

Appendix

This Appendix provides the algorithm, step by step, which is needed in order to implement the bootstrap process described in section 2.

1. Calculate the link ratios and the variances of the link ratios for true IBNR and IBNER run-off triangles as \(f_{ij} = \frac{N_{ij}}{E_i} \) and \(g_{ij} = \frac{D_{ij}}{X_{i,j-1}} \). Note that the variances, \(\sigma^2_j \) and \(\tau^2_j \), remain unchanged throughout: they are not recalculated from the bootstrap samples.

2. Calculate the scaled Pearson residuals:

\[
\hat{r}_{ij} = \frac{\sqrt{E_i} (f_{ij} - \hat{\lambda}_j)}{\hat{\sigma}_j} \quad \text{and} \quad \hat{s}_{ij} = \frac{\sqrt{X_{i,j-1}} (g_{ij} - \hat{\delta}_j)}{\hat{\tau}_j}
\]

3. Adjust these two groups of scaled Pearson residuals by multiplying by \(\sqrt{\frac{n-j}{n-j+1}} \) to correct the bootstrap bias:

\[
r_g = \sqrt{\frac{n-j}{n-j+1}} \hat{r}_{ij} \quad \text{and} \quad s_g = \sqrt{\frac{n-j}{n-j+1}} \hat{s}_{ij}
\]

Start the iterative loop to be repeated \(N \) times (\(N \geq 1000 \)).

4. Set \(B = 1 \).

5. Randomly draw, with replacement, from the constructed residual run-off triangles, denoted as \(R = \{r_{ij}, i = 1, \ldots, n; j = 1, \ldots, n-i+1\} \) and \(S = \{s_{ij}, i = 1, \ldots, n; j = 1, \ldots, n-i+1\} \), respectively. Denote the bootstrap residuals as \(\hat{r}_b \) and \(\hat{s}_b \), \(i = 1, 2, \ldots, n; j = 1, 2, \ldots, n-i+1 \), so that two pseudo samples of the Pearson residuals for true IBNR and IBNER claims are created and denoted as \(R^b = \{r_{ij}^b, i = 1, \ldots, n; j = 1, \ldots, n-i+1\} \) and \(S^b = \{s_{ij}^b, i = 1, \ldots, n; j = 1, \ldots, n-i+1\} \).

6. Calculate the bootstrap link ratios of the true IBNR and IBNER, \(f_{ij}^b \) and \(g_{ij}^b \) using equations (3) and (4).

7. Calculate the \(N_{ij} \) - weighted and \(D_{ij} \) - weighted average bootstrap development factors for the true IBNR and IBNER, \(\lambda_j^b \) and \(\delta_j^b \), using equations (1) and (2), respectively.

8. Simulate a future payment for each cell in the lower triangle for both true IBNR and IBNER claims, respectively, from the process distribution with the mean calculated from step 7.

\[
\frac{N_{ij}}{E_i} H_{i,j-2} \sim \text{Normal}(\lambda_j^b, \sigma^2_j) \quad \text{for the true IBNR claims}
\]

and

\[
\frac{D_{ij}}{X_{i,j-1}} H_{i,j-2} \sim \text{Normal}(\delta_j^b, \tau^2_j) \quad \text{for the future IBNER claims}
\]

9. Calculate the simulated cumulative claims, using \(X_{ij} = X_{i,j-1} - D_{ij} + N_{ij} \), and incremental claims
by taking first differences.

10. Sum the simulated incremental claims in the future triangle by origin year to give the origin year reserves. Sum these to obtain the overall reserve.

11. Store the results, set $B = B + 1$ and return to step 5 (the start of the iterative loop) until $B = N$.