

Permanent City Research Online URL: http://openaccess.city.ac.uk/4127/

Copyright & reuse
City University London has developed City Research Online so that its users may access the research outputs of City University London's staff. Copyright © and Moral Rights for this paper are retained by the individual author(s) and/ or other copyright holders. All material in City Research Online is checked for eligibility for copyright before being made available in the live archive. URLs from City Research Online may be freely distributed and linked to from other web pages.

Versions of research
The version in City Research Online may differ from the final published version. Users are advised to check the Permanent City Research Online URL above for the status of the paper.

Enquiries
If you have any enquiries about any aspect of City Research Online, or if you wish to make contact with the author(s) of this paper, please email the team at publications@city.ac.uk.
Does community-based health insurance protect household assets?

Evidence from rural Burkina Faso, Africa

Divya Parmar, Steffen Reinhold, Aurélia Souares, Germain Savadogo, Rainer Sauerborn
Health financing through Community-based health insurance (CBHI)

Four major types of health financing

• Tax-based financing
 Taxes on financial transactions

• Social health insurance
 Workers, govt. employees etc

• Private health insurance
 E.g. CBHI

• Medical saving accounts
 Individual saving accounts

References: WHO

Source: www.concertation.org
Link between CBHI and household assets

(Livestock + household goods)

Illness in the HH

- No treatment
- Self-treatment
- Traditional Healer
- Health facility

Costs

Delay in treatment + Costs

Increase severity lower productivity

Increase lower earnings

Delay purchasing

HH assets

Livestock produce

sell

Health facility
Link between CBHI and household assets

(Livestock + household goods)

CBHI

Illness in the HH

- No treatment
- Self-treatment
- Traditional Healer
- Health facility

No treatment
Self-treatment
Traditional Healer
Health facility

Delay in treatment + Costs

Increase severity
lower productivity
lower earnings
delay purchasing

HH assets

Costs

Livestock produce

sell

sell

sell
Burkina Faso

- Population: 15.8 million
- GDP per capita (PPP): $1200
- Occupation: 90% engaged in subsistence agriculture
- Literacy: 30% (men), 15% (females)
- Life expectancy: 53 years
- Infant mortality rate: 85 /1000 live births

Reference: https://www.cia.gov
The CBHI scheme in Nouna

- Introduced in 2004
- 41 villages and Nouna town (i.e. 7762 households)
- Benefit package:
 Consultation fee, essential and generic drugs, lab tests, hospital stay, x-rays, emergency surgery, ambulance transport
- Unit of enrolment: household
- Premium: 1500 CFA (2.29€) adult, 500 CFA (0.76€) child p.a.
Data: Household Panel Survey (2004-07)

- 41 villages & Nouna town
- 15% of the population
 (Total population: 67,262)
- Panel survey
 (same households interviewed every year)
- Conducted every year

(0) Socio-demographic: ethnicity, religion, housing conditions, education...
(1) Socio-economic: ownership of livestock, goods...
(2) Self-reported morbidity: illness episodes, health-seeking behaviour...
(3) Preventive care
(4) Risk-sharing & perceptions on quality of health care
(5) CBHI: enrolment decisions, reasons for enrolling...
Model

$$HH \text{ assets}_{it+1} = Z_i \beta_1 + X_{it} \beta_2 + CBHI_{it} \beta_3 + u_i + \varepsilon_{it} + \delta_t$$

HH assets_{it+1}: ln(Monetary value of livestock and HH goods)

Z_i: observable time-invariant factors e.g. religion, education

X_{it}: observable time varying factors e.g. age, HH size, chronic

CBHI_{it}: number of insured people in the household

u_i: unobservable time-invariant factors e.g. ability

\varepsilon_{it}: household-specific time shock e.g. death in the household

\delta_t: year shocks
Models

1. Instrumental Variable (IV) Model

- Study area divided into 31 clusters
- CBHI offered randomly
 - 2004: 11 clusters
 - 2005: +9 clusters (11+9=20)
 - 2006: +11 clusters (20+11=31)

Controls for both selection bias + reverse causation

2. Fixed Effects (FE) Model

- Does not control for 2-way causality

Controls for selection bias only due to time constant variables e.g. ethnicity, religion
RESULTS
Descriptive statistics

HH assets and CBHI enrolment
2004-2007

Mean value of HH assets (CFA)
Enrolment rate

Drought & locust invasion
High prices
Subsidy to poor

N=835 N=782 N=776 N=751

2004 2005 2006 2007
Results: Instrumental Variable (IV)
2004-2005

<table>
<thead>
<tr>
<th>Variables</th>
<th>Co-efficient</th>
<th>Robust SE</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBHI</td>
<td>0.220</td>
<td>0.121</td>
<td>0.070</td>
</tr>
<tr>
<td>Literate</td>
<td>0.273</td>
<td>0.082</td>
<td>0.001</td>
</tr>
<tr>
<td>Male</td>
<td>-0.374</td>
<td>0.106</td>
<td>0.000</td>
</tr>
<tr>
<td>Year_2005</td>
<td>-0.192</td>
<td>0.035</td>
<td>0.000</td>
</tr>
</tbody>
</table>

- **No. of clusters**: 31
- **No. of observations**: 1,588

Angrist-Pischke 1st stage chi2: 17.33 (p=0.00)

Angrist-Pischke 1st stage F statistic: 16.47 (p=0.00) \(\text{ iv is relevant}\)

Notes:
1. Only variables significant at 10% significant or less are shown here
2. Model controls for
 - Household head characteristics: Ethnicity, Literate, Gender, Age, Occupation
 - Household characteristics: Size, Chronic, Eligible
 - Village characteristics: Town, Literacy, Water source, Distance, Health facility
 - Year dummies
Results: Fixed Effects (FE) 2004-2007

<table>
<thead>
<tr>
<th>Variables</th>
<th>Co-efficient</th>
<th>Robust SE</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBHI</td>
<td>0.009</td>
<td>0.005</td>
<td>0.082</td>
</tr>
<tr>
<td>Size</td>
<td>-0.125</td>
<td>0.049</td>
<td>0.010</td>
</tr>
<tr>
<td>Year_2005</td>
<td>-0.157</td>
<td>0.027</td>
<td>0.000</td>
</tr>
<tr>
<td>Year_2006</td>
<td>-0.085</td>
<td>0.031</td>
<td>0.006</td>
</tr>
<tr>
<td>Year_2007</td>
<td>0.124</td>
<td>0.034</td>
<td>0.000</td>
</tr>
</tbody>
</table>

No. of clusters 890
No. of observations 3,144

Notes:
1. Only variables significant at 10% significant or less are shown here
2. Only time varying variables are included
 - Household head characteristics: Age
 - Household characteristics: Size, Chronic
 - Village characteristics: Town, Water source, Distance
 - Year dummies
Conclusion

Both models: CBHI protects household assets

HH assets and CBHI enrolment
2004-2007

<table>
<thead>
<tr>
<th>Year</th>
<th>N</th>
<th>Mean value of HH assets (CFA)</th>
<th>Enrolment rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>835</td>
<td>45,000</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>782</td>
<td>50,000</td>
<td>3%</td>
</tr>
<tr>
<td>2006</td>
<td>776</td>
<td>55,000</td>
<td>4%</td>
</tr>
<tr>
<td>2007</td>
<td>751</td>
<td>60,000</td>
<td>5%</td>
</tr>
</tbody>
</table>

IV: 24.6% | **FE: 1%**
Main Conclusions

• CBHI has the potential to protect household assets
• CBHI, in some circumstances, can also increase household assets by breaking the cycle of ill health and poverty – poverty reduction tool
• Depends on local context – the scheme, benefit package, quality of care, trust....
• Shift from small-scale CBHI towards universal SHI?
• CBHI - an interim solution
• Sustainability?
Thank you

Divya Parmar
Parmar@uni-heidelberg.de
Institute of Public Health
Heidelberg University
Germany