

City Research Online

City, University of London Institutional Repository

Citation: Parmar, D., Steffen, R., Souares, A., Savadogo, G. & Sauerborn, R. (2011). Does community-based health insurance protect household assets?: evidence from rural Africa. Paper presented at the 8th World Congress on Health Economics, 10-07-2011 - 13-07-2011, Toronto, Canada.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4127/

Link to published version:

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk/

Nouna Research Centre Burkina Faso

Heidelberg, Germany

Does community-based health insurance protect household assets? Evidence from rural Burkina Faso, Africa

<u>Divya Parmar</u>, Steffen Reinhold, Aurélia Souares, Germain Savadogo, Rainer Sauerborn

Health financing through Community-based health insurance (CBHI)

Four major types of health financing

- Tax-based financing
 Taxes on financial transactions
- Social health insurance
 Workers, govt. employees etc
- Private health insurance
 E.g. CBHI
- Medical saving accounts
 Individual saving accounts

Increase in the # of CBHI Schemes in West Africa

References: WHO Source: www.concertation.org

Link between CBHI and household assets

(Livestock + household goods)

Link between CBHI and household assets

(Livestock + household goods)

Burkina Faso

Population: 15.8 million

• GDP per capita (PPP): \$1200

Occupation: 90% engaged in subsistance agriculture

• Literacy: 30% (men), 15%(females)

• Life expectancy: 53 years

Infant mortality rate: 85 /1000 live
 births

Reference: https://www.cia.gov

The CBHI scheme in Nouna

- Introduced in 2004
- 41 villages and Nouna town (i.e. 7762 households)
- Benefit package:
 Consultation fee, essential and generic drugs, lab tests, hospital stay, x-rays, emergency surgery, ambulance transport
- Unit of enrolment: household
- Premium: 1500 CFA (2.29€) adult500 CFA (0.76€) child p.a.

Data: Household Panel Survey (2004-07)

- 41 villages & Nouna town
- 15% of the population(Total population:67,262)
- Panel survey(same households interviewed every year)
- Conducted every year
- (0) Socio-demographic: ethnicity, religion, housing conditions, education...
- (1) Socio-economic: ownership of livestock, goods...
- (2) Self-reported morbidity: illness episodes, health-seeking behaviour...
- (3) Preventive care
- (4) Risk-sharing & perceptions on quality of health care
- (5) CBHI: enrolment decisions, reasons for enrolling...

Model

Reverse causality

HH assets_{it+1} =
$$Z_i$$
. $\beta_1 + X_{it}$. $\beta_2 + CBHI_{it}$. $\beta_3 + u_i + \varepsilon_{it} + \delta_t$

Selection bias

HH assets_{it+1}:In(Monetary value of livestock and HH goods)

Z_i: observable time-invariant factors e.g. religion, education

X_{it}: observable time varying factors e.g. age, HH size, chronic

CBHI_{it}: number of insured people in the household

u_i: unobservable time-invariant factors e.g. ability

 ε_{it} : household-specific time shock e.g. death in the household

 δ_{t} : year shocks

Models

1. Instrumental Variable (IV) Model

- Study area divided into 31 clusters
- CBHI offered randomly
 - 2004: 11 clusters
 - 2005: +9 clusters (11+9=20)
 - 2006: +11 clusters (20+11=31)

 $(Exclusion \ restriction) \\ \times \\ \\ Eligibility \\ (Relevance) \\ \\ CBHI \longrightarrow HH \ assets$

Controls for both selection bias + reverse causation

2. Fixed Effects (FE) Model

- Entire period: 2004-2007
- Does not control for 2-way causality

Controls for selection bias only due to time constant variables e.g. ethnicity, religion

Descriptive statistics

Results: Instrumental Variable (IV) 2004-2005

Variables	Co-efficient	Robust SE	P-value
СВНІ	0.220	0.121	0.070
Literate 24	0.273	0.082	0.001
Male	-0.374	0.106	0.000
Year_2005	-0.192	0.035	0.000
No. of clusters		31	
No. of observations		1,588	
Angrist-Pischke 1 st stage chi ²		17.33 (p=0.00)	
Angrist-Pischke 1 st stage F statistic		16.47 (p	p=0.00) f relev

Notes:

- 1. Only variables significant at 10% significant or less are shown here
- 2. Model controls for
 - -Household head characteristics: Ethnicity, Literate, Gender, Age, Occupation
 - -Household characteristics: Size, Chronic, Eligible
 - -Village characteristics: Town, Literacy, Water source, Distance, Health facility
 - -Year dummies

Results: Fixed Effects (FE) 2004-2007

Variables	Co-efficient	Robust SE	P-value
CBHI	0.009	0.005	0.082
Size	-0.125	0.049	0.010
Year_2005	-0.157	0.027	0.000
Year_2006	-0.085	0.031	0.006
Year_2007	0.124	0.034	0.000
No. of clusters		890	
No. of observations		3,144	

Notes:

- 1. Only variables significant at 10% significant or less are shown here
- 2. Only time varying variables are included
 - -Household head characteristics: Age
 - -Household characteristics: Size, Chronic
 - -Village characteristics: Town, Water source, Distance
 - -Year dummies

Conclusion

Both models: CBHI protects household assets

HH assets and CBHI enrolment

Main Conclusions

- CBHI has the potential to protect household assets
- CBHI, in some circumstances, can also increase household assets by breaking the cycle of ill health and poverty – poverty reduction tool
- Depends on local context the scheme, benefit package, quality of care, trust....
- Shift from small-scale CBHI towards universal SHI?
- CBHI an interim solution
- Sustainability?

Thank you

Divya Parmar
Parmar@uni-heidelberg.de
Institute of Public Health
Heidelberg University
Germany

