

Permanent City Research Online URL: http://openaccess.city.ac.uk/4366/

Copyright & reuse
City University London has developed City Research Online so that its users may access the research outputs of City University London's staff. Copyright © and Moral Rights for this paper are retained by the individual author(s) and/ or other copyright holders. All material in City Research Online is checked for eligibility for copyright before being made available in the live archive. URLs from City Research Online may be freely distributed and linked to from other web pages.

 Versions of research
The version in City Research Online may differ from the final published version. Users are advised to check the Permanent City Research Online URL above for the status of the paper.

Enquiries
If you have any enquiries about any aspect of City Research Online, or if you wish to make contact with the author(s) of this paper, please email the team at publications@city.ac.uk.
Visualizing Time Series Predictability

Cagatay Turkay, Member, IEEE

Abstract—Predicting how temporally varying phenomena will evolve over time, or in other terms forecasting, is one of the fundamental tasks in time series analysis. Prediction has gained particular importance with the advent of real time data collection activities. Although there exist several sophisticated methodologies to predict time series, the success of a predictive analysis process remains mostly dependent on whether a particular phenomena is predictable. This paper introduces a methodology where visualizations coupled with a partition-based sampling strategy informs the analyst on the predictability of time series through the communication of prediction results applied on varying parts of data. We then discuss opportunities and research directions in supporting predictive tasks through visualization and interaction.

Index Terms—Time-series prediction, visual analytics, sampling

1 INTRODUCTION

Successfully predicting how phenomena varies over time is an intriguing goal that offers valuable insight for both researchers and businesses in several domains from climatology to medicine to economy [2]—which is evident by the vast amount of literature on this topic [4].

There have been several approaches to quantify the predictability of time series [5] and a number of measures have been suggested recently [7]. However, these methods often result in a single value that indicates the complexity of the process—signalling the difficulty in making predictions. Although such measures can be effective in capturing particular aspects of the data and give an overall idea on predictability, they do not provide insight on what makes a time-series hard to predict. A thorough understanding of where and why predictive methods fail or succeed will not only lead to better prediction results but also improve the understanding of the aspects that makes phenomena more predictable.

A mechanism to gain insight into how successful prediction methods operate is to evaluate the results of predictive analysis. One approach that is taken is the use of a hold-out strategy [10], where data points from the time series, mostly the most recent ones, are left out from the analysis and the predictions are done on the remaining data points. The results of the prediction are then compared to the initially held-out data points to arrive at a measure of prediction accuracy. Although this method have been applied as a standard approach, there has been little work done on how this process can be decoupled with visualization methods to best understand the predictability of time series.

In this paper, we introduce a methodology where we analyze the predictability of time-series through a three-stage process: partition, predict, and visualize. The methodology uses the hold-out sampling strategy that takes partitions from a time series which are then the input to a prediction algorithm. The predicted output is then compared against the rest of the data to evaluate how successful the prediction is. The comparisons are visualized together with the time-series to enable investigate where and why predictions fail or succeed. Unlike the conventional way of using this methodology, we suggest the use of visualization of multiple prediction results applied on parts of the data that are systematically varied.

2 VISUALIZING PREDICTABILITY

Our method starts with a phase where we use a sampling strategy that partitions the data and provides these partitions as inputs to a prediction algorithm. In the conventional use of this methodology, only the last few data points, i.e., most recent, are left out and the rest of the data is used as input to the data. Here, we present three different strategies to generate various partitions of the data as illustrated in Figure 1. In order to simplify the discussion, we refer to the part of the data that is input to the algorithm as the training partition and the rest as the evaluation partition.

In the first method, the size of the training partition is extended systematically from only covering a small portion of the oldest data points to covering all the points. This method provides an historic insight on how predictable the series have always been.

The second method is where the evaluation partition is moved over the data to trace the whole time series while keeping the extend of the training partition constant. This sampling strategy is suitable to detect where predictions fail or succeed and to investigate whether there is any systematic pattern that determines these behaviour.

The third option is where we systematically vary the extend of the partition while keeping the scope of mainly bound to the recent data points. This method informs the analyst on the extent the recent data points influence prediction results.

To formally define the above strategies, we denote the training part-

\begin{center}
\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Three different strategies to partition the data to be used as inputs to a prediction algorithm and to be used for evaluation purposes.}
\end{figure}
\end{center}
a time-series as the evaluation partition, one can evaluate whether the algorithms are suitable to make long-term or short-term forecasts, e.g., comparing a forecast for the last three data points vs. the last 20 for a series that consists of 100 data points.

A possible further research question is to investigate whether there exist patterns where predictions fail consistently and whether such patterns can be characterized further through the visualizations. Such an insight would require a systematic study of different patterns, possibly artificially generated, and identify how they manifest themselves in the visualizations.

An interesting future direction is to modify these methods to operate with data that update in real-time [3], i.e., streaming data such as stock market fluctuations. The predictions and the visualizations can be configured to update with the newly available data in the streams where the streaming data becomes the new evaluation partition.

4 Conclusion

Non-visual automated measures help analysts to make overall judgements on whether a phenomena is predictable, or whether a prediction is accurate. Although such measures can support experts in making decisions about analytical results, they often fall short to provide deep insight in why certain behaviour is observed. Exactly at this point, visualization has lots to offer where several alternative views of the same phenomena needs to be investigated to make insightful observations [9] or where visual summaries are needed to observe imperfections in computational results [11] or where visual guidance is needed to decide which statistical model to employ [1]. The method proposed in this paper exploits the strengths of visualization in making summaries and comparisons over these summaries. Being able to compare the output of how several different predictions perform over data partitions with different characteristics informs analysts to choose suitable prediction algorithms and suitable data that is predictable.

Acknowledgments

We would like to thank Germanos Pappas for the interesting discussions on this topic.

References