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Abstract

We make use of quantile regression theory to obtain a combination of individual potentially-

biased VaR forecasts that is optimal because it meets by construction ex post the correct out-

of-sample conditional coverage criterion. This enables a Wald-type conditional quantile forecast

encompassing test for any finite set of competing (semi/non)parametric models which can be nested.

Two attractive properties of this backtesting approach are robustness to model risk and estimation

uncertainty. We deploy the techniques to confront inter-day and high frequency intra-day VaR

models for equity, FOREX, fixed income and commodity trading desks. Forecast combination of

both types of models is especially warranted for more extreme-tail risks. Overall our empirical

analysis supports the use of high frequency 5-minute price information for daily risk management.
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1 Introduction

Since the regulatory framework known as Basel II Accord (BCBS, 1996), the financial risk measure

known as Value-at-Risk (VaR) has gained increasing popularity as tool for controling the risk of

trading portfolios. Banks routinely compute VaR as a way to estimate the potential loss from adverse

market moves. On a daily basis, as part of their risk management activities, banks undertake VaR

calculations that are used for comparing risks across businesses and monitoring limits. The tail-risk

measures thus obtained are reported to senior management and regulators, and they feed regulatory

capital calculations. VaR is typically calculated using a 1-day time horizon and a 99% (or 95%)

confidence level. This means the bank would expect to incur losses exceeding the VaR prediction one

(or five) times in every 100 trading days, or about 2 to 3 (12 to 13) times a year. Basel II has promoted

the internal model-based approach but banks have to convince the regulator that their VaR model

is sound via so-called backtesting techniques. Significant progress has been made in the financial

econometrics literature making available a number of VaR estimation methods.

Despite the fact that semi-parametric and non-parametric VaR techniques have gained a lot of

ground, the parametric location-scale framework remains the most-widely used in the academic litera-

ture. In location-scale models, which require a distributional assumption for the standardized returns,

the VaR forecast is a blend of conditional mean and variance forecasts. Essentially the VaR is made

a linear function of the volatility. Although seemingly restrictive, this framework is quite popular be-

cause it is both tractable and flexible enough to accommodate diverse stylized facts of financial assets

such as the asymmetric impact of good and bad news on volatility and fat-tailedness. Surprisingly,

most of the risk management literature concerned with daily VaR prediction has neglected high fre-

quency intra-day information despite the significant theoretical progress witnessed in the last decade

regarding model-free “realized” volatility estimators constructed ex post from intra-day data (see, for

instance, Barndorff-Nielsen et al., 2008). Empirically, special efforts have been devoted to improve

the forecasts from GARCH models based on daily data. A good rationale for these efforts is that the
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squared close-to-close return is an extremely noisy estimator of ex post volatility.

Location-scale VaR models can easily make use of different information sets via the conditional

volatility component. This paper is concerned with two specific types of information, inter-day, which

is defined as daily-recorded closing, high and low prices, and intra-day that refers to high frequency

5-minute prices. Following existing studies, the inter-day data is exploited in a GARCH framework

whereas the intra-day data is put to work in an AR(FI)MA realized volatility framework; see Giot and

Laurent (2004), Clements et al. (2008), Angelidis and Degiannakis (2008), Shao et al. (2009), and

Brownlees and Gallo (2010) inter alios. Going one way or the other is not a trivial issue, in fact, the

literature has not reached yet any widely accepted conclusion. One attractive but unexplored avenue

is combining the merits of both inter-day models and intra-day models into a single VaR forecast.

Despite the acclaimed success of forecast combination in many contexts, this tool has been barely

utilized for tail risk (e.g., VaR) prediction where a plethora of modeling approaches are available which

can be bewildering for risk managers. Giacomini and Komunjer (2005) represents the first attempt

to combine quantile forecasts via a GMM estimation approach. They propose a conditional quantile

forecast encompassing (CQFE) test in an environment with non-vanishing estimation uncertainty

which, under suitable assumptions on the conditioning set, amounts to testing for correct out-of-sample

VaR specification. Such CQFE test serves as a VaR predictive ability test that is naturally immune

to model risk and estimation uncertainty and hence, it is superior to the usual statistical backtesting

that focuses on correct unconditional coverage and serial independence of the hits sequence.1 The

implementation of Giacomini and Komunjer’s (2005) approach is, however, not straightforward because

it requires the numerical estimation of parameters inside discontinuous moment conditions.

The contributions of the present paper are both theoretical and empirical. Regarding the former,

1The Basel II traffic light regulatory backtesting also suffers from model risk and estimation uncertainty. One instance

is the Daily Capital Charges or Market Risk Capital (MRC) measure which is set at the supremum of the last trading

day VaR and the average VaR over the past 60 trading days multiplied by a violation penalty factor (3 + k) from the

Basel Accord Penalty Zone. MRC serves as a conservative estimate of capital required to cover daily market risk that

corrects for past under-estimation of risk levels by the financial institution. We refer the reader to McAleer and da Veiga

(2008) and Chen et al. (2011) for further discussion and applications of the regulatory-based VaR evaluation framework.
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the first contribution is to enhance the literature by proposing an optimal conditional VaR forecast

combination method that builds on quantile regression (QR) theory. The method is optimal because

the combining weights are obtained by minimizing conditionally the ‘tick’ loss function that is implicit

in quantile forecasting problems. The optimality of the method, in turn, implies that the resulting VaR

forecast satisfies ex post out-of-sample the correct conditional coverage criterion. Our framework is

inspired by Engle and Manganelli’s (2004) CAViaR approach but differs from it in that the regressors

are VaR forecasts based on different location-scale models instead of lagged values of the unobserved

quantile of interest. In a sense, our method allows the risk manager to exploit different information

sets for setting trading-loss limits more easily than the CAViaR approach. The second theoretical

contribution is to deploy a tractable Wald-type conditional quantile forecast encompassing (CQFE)

test that also builds on quantile regression theory and compares the distance between the optimal

combined forecast and each of the individual VaR forecasts. The null hypothesis that one of the

individual VaR forecasts is undistinguishable from the optimal combined forecast implies also that

it encompasses the rest of competing VaR forecasts in the combination set and that it meets, by

construction, out-of-sample ex post the correct conditional coverage criterion.

At an empirical level, our contribution is to propose CQFE inference as a novel way of confronting

inter-day and intra-day models for downside tail risk prediction. To the best of our knowledge, we are

the first to develop an empirical exercise of this type. As highlighted by Granger (1989), the situation

where forecasts obtained from different information sets are combined is a particularly interesting and

potentially fruitful one because forecast combination lends itself as an effective (i.e. bias-correcting)

information pooling device. Since VaR measurement is quite sensitive to the scant data points that fall

in the sample distribution tails, forecast combination as a way of expanding the information set might

be particularly worthwhile. For illustration, we combine the daily forecasts obtained from two distinct

VaR models within the location-scale family: an inter-day Student t GJR-GARCH (GJR) model that

exploits the daily close-to-close return and high-low range and an intra-day ARFIMA realized volatility

model based on higher frequency 5-minute prices. Our goal is to formally assess whether GJR-based
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or ARFIMA-based forecasts subsume entirely the information content in the other for one-day-ahead

1% and 5% tail risk prediction. The techniques are illustrated in a univariate approach for individual

equity, FOREX, fixed income and commodity trading desks.

As noted earlier, although a few studies have somehow confronted inter-day and intra-day VaR

predictions, the evidence thus far is not entirely conclusive. For instance, in the context of data up

to year 2001 on the CAC40 index, S&P500 futures and the YEN/USD and DEM/USD currencies,

Giot and Laurent (2004) conclude that ARFIMA realized volatility-based VaR forecasts are unable

to beat those obtained from the skewed Student (skt) APARCH model. Angelidis and Degiannakis

(2008) illustrate for 1995-2003 data on the CAC40, DAX30 and FTSE100 indexes that the Gaussian

GJR model produces as accurate VaRs as an ARFIMA realized volatility specification. On the other

hand, observing the Shanghai Composite and Shenzhen Component indices over the period 2005-2007,

Shao et al. (2009) conclude that the ARFIMA realized volatility model outperforms the skt-APARCH

model. This mixed evidence may “hint” that neither inter-day nor intra-day based VaR forecasts

fully encompass each other. Information pooling via forecast combination may prove useful for bank

managers to control the discretion of their traders by setting optimal VaR limits on their portfolios.

Our novel quantile regression-based framework confirms that, generally, for the 1% tail there

is no evidence of encompassing which calls for optimal combination of the intra-day and inter-day

models. Overall the equal-weights combined VaR forecast, a natural benchmark, appears suboptimal

out-of-sample in a correct conditional coverage sense. For the 5% tail risk, by contrast, ARFIMA

forecasts encompass GJR forecasts in various contexts and hence, the intra-day conditional VaR model

appears correctly specified out-of-sample. Thus our paper formally demonstrates through robust

CQFE inference that intra-day information is worthwhile to measure and control the daily risk of

trading portfolios. The rest of the paper unfolds as follows. Section 2 motivates our VaR modeling

and forecasting choices. Section 3 proposes a novel conditional quantile forecast encompassing test in

a quantile regression framework and Section 4 deploys it to analyze equity, FOREX, fixed income and

commodity VaR forecasts. Section 5 concludes.
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2 VaR Modeling and Forecasting

Despite the fact that VaR has unappealing properties (i.e., failure to meet subadditivity which makes

it a non-coherent risk measure)2 it is now established as the standard tool to measure and control the

risk of trading portfolios. Commercial banks routinely calculate the 1-day-ahead VaR of their ‘trading

book’ in order to quantify the mark-to-market loss that will not be exceeded during the day with a 99%

(or 95%) probability. Formally, the task is forecasting the α-quantile of the conditional distribution of

the return process, α = {0.01, 0.05}, given the sigma-algebra =t generated by information up to time

t, i.e. P (rt+1 ≤ V aRt+1,α|=t) = α, where V aRt+1,α ≡ F−1
t (α) is the inverse of the conditional return

distribution function.3 The literature has proposed various VaR approaches which, depending on the

assumptions made on the returns distribution and model dynamics, can be grouped as non-parametric

(e.g., historical simulation), semi-parametric (e.g., CAViaR) and parametric (e.g., location-scale).

A popular VaR approach assumes that the returns density belongs to a location-scale family

rt+1 = µt+1 + σt+1εt+1 (1)

where location µt+1 and scale σt+1 are =t-measurable functions, and εt+1 is an i.i.d. innovation

with zero-location unit-scale probability density Fε (see e.g., Kuester et al., 2006; Chernozhukov and

Umantsev, 2001). By assuming independence between σt+1 and εt+1, the conditional VaR process at

nominal coverage probability α can be expressed as follows

V aRt+1,α = µt+1 + σt+1F
−1
ε (α) (2)

with F−1
ε (α) the unconditional α-quantile of εt+1. This popular framework allows wide flexibility for

choosing the specific form of µt+1 and σt+1, and can accommodate many candidate probability distri-

2Subadditivity is a property of a mathematical function q(·) by which the value of the function at point A+B is less

or equal than the sum of the function’s values at points A and B, that is, q(A+B) ≤ q(A) + q(B).
3Implicitly, we are interested in long trading positions. For short trading, one would forecast instead the right-tail

risk of the distribution, i.e. the quantile F−1
t (1− α). Commercial banks are required to report VaR at confidence level

99% to regulators but most banks adopt the 95% level for internal backtesting. We consider both levels given that the

best VaR model among various competitors can depend on the specific quantile of choice, and may also be horizon- and

asset-specific (see, for instance, Guidolin and Timmermann, 2006).
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butions Fε. A notable example is the pioneering RiskMetrics methodology initiated by J.P.Morgan in

1993 where σt+1 can be cast as a specific Gaussian IGARCH type process. Departures from the latter

are often motivated by a desire to accommodate: i) asymmetry in the response of volatility to positive

and negative returns (e.g., GJR-GARCH or EGARCH models), ii) regime-switching nonlinearity in

µt+1 and/or σt+1 (e.g., MS-GARCH models), and iii) departures from Gaussianity, particularly, in the

form of fat-tailedness (e.g., Student t density commonly adopted by academics and practitioners).4

The semi-parametric VaR framework initiated by Engle and Manganelli (2004), known as con-

ditional autoregressive Value-at-Risk (CAViaR), consists of modeling directly the dynamics of the

α-quantile process, F−1
t (α), as a function of its own unobserved lagged values, F−1

t−j(α) and past ob-

served returns rt−j . This approach requires assumptions about the quantile dynamics but not about

the conditional return distribution. In a recent paper, Chen et al. (2011) propose range-based CAViaR

model extensions which are threshold nonlinear according to the daily-recorded high and low prices.

Our paper borrows elements from both of the above frameworks. On the one hand, and without

loss of generality, it adopts location-scale models to generate individual VaR forecasts that exploit

inter-day and intra-day data, respectively. On the other hand, the optimal VaR forecast combination

approach we put forward is linked to the CAViaR modeling approach in that we are deriving a quantile

measure in a linear regression framework as a function of other quantile measures as regressors.

The location-scale framework (2) lends itself as a feasible way of incorporating high-frequency (e.g.

5-minute) price information into daily VaRs through the so-called realized volatility. In this vein, our

paper builds upon the studies by Giot and Laurent (2004), Angelidis and Degiannakis (2008) and

Martens et al. (2009) on stock indices, Clements et al. (2008) on exchange rates and Brownlees and

Gallo (2010) on specific NYSE stocks. Like these (and other) VaR studies, we focus on VaR as a tool

to gauge market risk exposure, that is, to set loss limits for individual trading desks and, accordingly,

4Giot and Laurent (2004) stress the importance of acknowledging asymmetry in the conditional variance specification

together with departures from Gaussianity in the ex ante standardized returns distribution. Haas et al. (2004), Guidolin

and Timmermann (2006) and, more recently, Sajjad et al. (2008) advocate the use of Markov-switching GARCH (MS-

GARCH) models to obtain more accurate VaR predictions, particularly, for risks in the far tail (i.e. α = 0.01).
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the one-day-ahead forecast horizon is very short term (BCBS, 1996).

Our ultimate goal is to test formally whether it is worthwhile to exploit jointly two information

sets: i) daily-recorded close, high and low prices, and ii) higher frequency intra-day prices. The first

information set is mapped into a daily return, defined as close-to-close price differences rt ≡ log
pCt
pCt−1

,

and a daily volatility measure defined according to Parkinson’s (1980) range estimator

HLt =
1

4 log 2

[
log

pHt
pLt

]2

(3)

where t = 1, ..., T are sample days, 4 log 2 is a scaling factor, pHt and pLt are high and low prices,

respectively. Parkinson (1980) demonstrates that scaled daily highlow range is not only an unbiased

estimator of daily volatility but is 5 times more efficient than the squared daily close-to-close return.

The second higher frequency (5-minute) information set is mapped into a daily realized variance

computed as the sum of the M intra-day squared returns corresponding to equal-length intervals from

day open to close, R̃V t =
∑M

j=1 r
2
t,j . Under certain conditions, this estimator converges in probability

(as M → ∞) to the quadratic variation process QVt =
∫ t
t−1 σ

2(u)du +
∑

t−1<j≤t
κ2(j) which comprises

a continuous part (integrated variance) and a discontinuous part (jump variation).5 In markets with

no (or thin) trading during the so-called overnight period, the realized variance can underestimate

the latent QVt. To mitigate this problem, we incorporate the overnight ‘surprise’ using Hansen and

Lunde’s (2005) optimal weighting method which fares well in comparisons with alternative methods

(see Ahoniemi and Lanne, 2011). Thus our overnight-adjusted realized variance (RVt) estimator is

RVt = τ∗1 r
2
o,t + τ∗2

M∑
j=1

r2
t,j (4)

where ro,t is the overnight close-to-open return; τ∗1 and τ∗2 are the weights that solve the optimization

problem min
τ1,τ2

var(RVt), s.t. τ1η1 + τ2η2 = η0 where η1 ≡ E(r2
o,t), η2 ≡ E(R̃V t) and η0 ≡ E(QVt).

We consider two forms for σt+1 in (2) which are broadly representative of much of the research in

this area; both of them are coupled with an AR(1) formulation, rt+1 = ρ0+ρ1rt+zt+1, so that ‘location’

5Alternatives include the realized bipower variation which converges in probability to the integrated variance (i.e.

excluding the jump component), and various kernel-based realized variance estimators proposed by Barndorff-Nielsen et

al. (2008) to mitigate market microstructure noise. See McAleer and Medeiros’ (2008) survey and references therein.
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is given by µt+1 ≡ ρ0 +ρ1rt. Our inter-day model belongs to the GARCH class that accommodates the

asymmetry known as leverage effect : past negative returns have a larger impact on current volatility

than positive returns of the same magnitude.6 Various reasonable candidates are the GJR-GARCH

(GJR), TGARCH, EGARCH and APARCH whose properties are amply discussed in Rodŕıguez and

Ruiz (2012). Following Angelidis and Degiannakis (2008) and Corrado and Truong (2008), we opt

for the GJR model of Glosten et al. (1993) enhanced with range information HLt as defined in (3).

This enhancement is motivated by the emphasis made in a number of recent papers on daily range

as very effective for out-of-sample financial risk prediction (e.g., Chen et al., 2011; Brownlees and

Gallo, 2010; Corrado and Truong, 2007; Brandt and Jones, 2006). In particular, Corrado and Truong

(2007) provide empirical evidence that the range-augmented GJR model produces similarly accurate

volatility forecasts as those stemming from high-quality implied volatility indexes and more accurate

ones than the baseline GJR model. Because the distribution of asset returns is admittedly fat-tailed

we work with standardized Student t innovations. Formally, our inter-day model is given by

ht = α0 + α1z
2
t−1 + β1ht−1 + γ1I

−
t−1z

2
t−1 + δHLt−1 (5)

with zt =
√
htεt and εt is an i.i.d. Student t(0, 1, υ) innovation where υ is the degrees of freedom

parameter that reflects fat-tailedness; I−t = 1 if zt < 0 and I−t = 0 otherwise; γ1 > 0 implies that large

negative returns increase the conditional volatility of returns more than past positive outcomes7. The

one-day-ahead long trading VaR is thus obtained by plugging in (2) the conditional mean and volatility

forecasts, µ̂t+1, and

√
ĥt+1, together with the α-quantile of the Student t(0, 1, υ) density where υ is

estimated on the basis of the information set available at time t. Each trading day t = R, ..., T − 1,

the parameter vector (ρ0, ρ1, α0, α1, β1, γ1, δ, υ)′ is updated using the most recent R−length rolling

estimation window in order to obtain a sequence of n = T −R out-of-sample forecasts.

6The volatility-feedback hypothesis put forward by Campbell and Hentschel (1992) states a slightly different asym-

metry where causality runs in the other direction: current positive shocks to volatility drive down future returns.
7In this augmented GJR model, the coefficient δ plays a role to ensure positivity and weak stationarity of the

conditional volatility process. A sufficient condition for positivity is α0 > 0, β1, γ1 ≥ 0, and α1z
2
t−1 + δHLt−1 ≥ 0 for all

t. A sufficient condition for weak stationarity is γ1 < 2(1− α1 − β1 − δ). The kurtosis expression is more involved than

in the baseline GJR model due both to the kurtosis of the range HLt−1 and the interaction of HLt−1 and z2t−1.
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Our second set of daily VaR predictions is constructed from 5-minute intra-daily prices through

the following long-memory ARFIMAX(0, d, 1) model for the essentially-Gaussian daily logRVt series8

(1− L)d(logRVt − ω0 − ω1rt−1 − ω2r
−
t−1) = (1 + θ1L)ut (6)

where ut is i.i.d. N(0, σ2
u); r−t = rt if rt < 0 and r−t = 0 otherwise. A parameter value ω2 <

0 is suggestive of the leverage effect. ARFIMAX models were initially developed by Granger and

Joyeux (1980) who provide a detailed account of their theoretical properties. Giot and Laurent (2004)

originally deploy (6) for VaR prediction and put forward the two-step approach that we adopt. In step

one, the conditional variance obtained by exact ML estimation of (6) under normality is transformed

into levels using the bias-corrected mapping R̂V t|t−1 = exp( ̂logRV t|t−1 + 0.5σ̂2
u), t = 1, ..., T . In step

two, the conditional mean and variance forecasts, µ̂t+1 and σ̂2
t+1, are obtained by QML estimation of

an AR(1) model for the daily returns assuming that the conditional heteroskedasticity is of ARFIMAX

type, i.e. rt+1 = ρ0 + ρ1rt +
√
σ2 · R̂V t|t−1 · εt where εt ∼ i.i.d. Student t(0, 1, υ). Out-of-sample VaR

forecasts are obtained by combining µ̂t+1, σ̂t+1, t = R, ..., T − 1, and a Student t(0, 1, υ) α-quantile

with υ estimated sequentially from the standardized returns as in the inter-daily framework.

3 Combining and Backtesting Competing VaR Forecasts

The benefits of combining forecasts from a number of preferably distinct methods have been repeatedly

demonstrated in diverse areas; see Clements and Hendry (2004) and Clemen (1989). Timmermann

(2006) provides a threefold rationale for why combined forecasts work well: they are less influenced

by possible misspecification of individual models; they average across differences in the way individual

forecasts are affected by structural breaks; and they exploit jointly the information contained in

each individual forecast. Information pooling can be especially fruitful for VaR because tail risk

measurement is very sensitive to the scant observations in the sample distribution tails.

8Other specifications that have been shown in the empirical finance literature to approximate well the long memory

properties of the realized volatility, namely, the hyperbolic decay of its autocorrelation function, are Corsi’s (2004)

Heterogeneous AutoRegressive (HAR) model and Ghysels et al.’s (2004) MIxed DAta Sampling (MIDAS) model. Both

of these specifications combine information sampled at different frequencies.
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3.1 Optimal Out-of-Sample VaR Forecast Combination

This section proposes a novel estimation technique for constructing optimal combinations of a finite

set of (potentially biased) out-of-sample VaR forecasts. For simplicity in the exposition and given that

our empirical application compares VaRs obtained from inter-day and intra-day models, without loss

of generality, we focus the theoretical discussion on bivariate combinations alongside a constant.

In what follows the subscript t for an α−quantile forecast q̂t or density function ft(·) indicates

conditioning on the information set available at time t, denoted =t. Consider q̂t ≡ (1, q̂1,t, q̂2,t)
′, t =

R, ..., T − 1, a sequence of vectors containing two competing out-of-sample V aRt+1,α forecasts, such

that corr(q̂1,t, q̂2,t) 6= 1. Let q̂c,t ≡ λ
′ · q̂t with λ ≡ (λ0, λ1, λ2)

′
denote a quantile forecast combination

that depends on the combination weights (λ1, λ2) corresponding to the individual forecasts (q̂1,t, q̂2,t),

and on an intercept term λ0 whose role is to correct for potential biases in the individual forecasts

induced by model misspecification. Nonlinear combinations of quantile forecasts can be entertained

in our framework. As in Giacomini and Komunjer (2005), we impose a linear structure q̂c,t ≡ λ0 +

λ1q̂1,t + λ2q̂2,t, but the combining framework is quite flexible in that the weights λ1 and λ2 are not

constrained to lie in (0, 1) nor to sum up to one.

Following standard practice, we assume that the decision-maker or forecast user adopts a loss

function that only depends on the forecast error. Let L denote an arbitrary loss function that maps

forecast errors into losses L : R→ R+. A combined forecast is generally said to be conditionally optimal

if it minimizes the expected loss L conditional on a given information set. The interest in optimally

combining conditional quantile forecasts leads us naturally to adopt the asymmetric (piecewise linear)

loss function ϕα(et+1) ≡ (α − 1(et+1 < 0))et+1 where the error is defined as et+1 ≡ rt+1 − q̂c,t and

1(·) is the indicator function; this so-called ‘tick’ or ‘check’ loss function penalizes (for the left tail)

negative errors or exceedances rt+1 < q̂c,t more heavily with weight (1− α) than positive errors with

weight α. The optimal forecast combination problem can be stated as

(λ∗0, λ
∗
1, λ
∗
2) ≡ arg min

(λ0,λ1,λ2)∈Λ
E[ϕα(rt+1 − q̂c,t)|=t] (7)
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with Λ ⊂ R3 a compact set. The above expected loss is conditional on the information set =t, and so it

fundamentally differs from the unconditional framework that underlies extant tests of equal predictive

ability; see Diebold and Mariano (1995), Corradi and Swanson (2002) or Clements et al. (2008).9 This

aspect will have implications for the interpretation of our encompassing test in Section 3.2.

The first-order condition corresponding to (7) is given by

E[g(λ∗; rt+1, q̂t)|=t] = 0, (8)

with g(λ∗; rt+1, q̂t) = (α− 1(rt+1 < λ∗0 + λ∗1q̂1,t + λ∗2q̂2,t)) q̂t. Next we make the following assumption:

Assumption A.1 (Information set). The conditional density function of rt+1 defined as ft(rt+1) ≡

f(rt+1|=t) satisfies that ft(rt+1) = f(rt+1|q̂t) for all y ∈ R and t = R, . . . , T − 1.

This assumption amounts to saying that the information contained in =t can be encapsulated in

the vector of forecasts q̂t.
10 Under assumption A.1, the above first-order condition becomes

E[α− 1(rt+1 < q̂c,t)|q̂t] = 0. (9)

We can recast the optimal weight estimation problem in terms of the quantile regression (QR) model

rt+1 = λ0 + λ1q̂1,t + λ2q̂2,t + εt+1 (10)

where εt+1 is an iid error process with finite variance and F−1
ε (α) = 0. The essence of equations

(9)-(10) is to state that the optimal α-quantile combination is the linear combination of quantiles q̂1,t

and q̂2,t, given by the weights (λ0, λ1, λ2), that minimizes the conditional expected ‘tick’ loss over Λ.

This leads to a very tractable weight estimation procedure that builds on QR theory. In particular,

we rely on Koenker and Xiao’s (2006) theoretical setup in the context of conditional autoregressions

9Moreover, such tests are not valid for nested models or when the VaRs are obtained semi- or non-parametrically.
10This type of assumption on the conditioning information set is standard in the forecasting time-series literature.

More specifically, it has been adopted by Su and Xiao (2008) for parameter stability testing in the context of quantile

regressions, and by Giacomini and Komunjer (2005) for quantile forecast evaluation.
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for quantiles of stationary and β−mixing processes. Accordingly, the weight estimates are

λ̂∗
′
n ≡ (λ̂∗0n, λ̂

∗
1n, λ̂

∗
2n) ≡ arg min

λ∈Λ

1

n

T−1∑
t=R

ϕα(rt+1 − (λ0 + λ1q̂1,t + λ2q̂2,t)), (11)

Equations (10) and (11) can be seen as an extension to a quantile context of the typical linear regression

setup where the optimal combined forecast is the conditional mean, that is, the expected value of

rt+1 given the individual mean forecasts; the loss function L(et+1) ≡ e2
t+1 is quadratic and hence,

the minimization criterion is the mean square error (MSE) instead of (11). Under suitable regularity

conditions, Koenker and Xiao (2006; Theorem 3.1) establish the statistical consistency and asymptotic

distribution of QR parameter estimates. Accordingly, in the present setting we have

√
n(λ̂∗n − λ∗)

d→ N(0,ΣQR), (12)

with ΣQR ≡ α(1 − α)Ω−1
1 Ω0Ω−1

1 where Ω0 ≡ E [q̂tq̂
′
t], Ω1 ≡ E

[
ft(λ

∗′ q̂t)q̂tq̂
′
t

]
and ft(λ

∗′ q̂t) is the

conditional density function of rt+1 evaluated at the optimal conditional quantile combination. Tim-

mermann (2006) discusses GMM estimation methods for optimal forecast combinations based on loss

functions of general form. Focusing also on the out-of-sample ‘tick’ loss function, Giacomini and

Komunjer (2005) make use of GMM theory to obtain the weight estimates for optimal conditional

quantile forecast combination. Their weights estimator λ̃∗n is defined as

(λ̃∗0n, λ̃
∗
1n, λ̃

∗
2n) ≡ min

λ∈Λ
gn(λ; rt+1, q̂t)

′Ŝ−1
n gn(λ; rt+1, q̂t) (13)

with gn(λ; rt+1, q̂t) ≡ 1
n

T−1∑
t=R

g(λ; rt+1, q̂t), and Ŝn the empirical version of S ≡ E[g(λ; rt+1, q̂t)g(λ; rt+1, q̂t)
′].

Under assumption A.1, it can be shown that our QR estimator λ̂∗n and Giacomini and Komunjer’s

(2005) GMM estimator λ̃∗n are asymptotically equivalent. The limiting properties of the latter are

√
n(λ̃∗n − λ∗)

d→ N(0,ΣGMM ), (14)

where λ̃∗n ≡ (λ̃∗0n, λ̃
∗
1n, λ̃

∗
2n)′ is the solution of (13) and ΣGMM ≡ (Ω1S

−1Ω1)−1 with Ω1 as defined

above. By applying the Law of Iterated Expectations conditional on q̂t, we observe that S = α(1−α)Ω0

and hence, both QR and GMM estimation methods are equivalent in terms of asymptotic efficiency.
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The main difference between them lies in their finite sample properties and practical implementation.

Regarding the latter, the QR-based optimal forecast combination we propose builds on standard kernel

density estimation methods. By contrast, GMM is technically more challenging: the search for the

minimum is computationally more intensive and depends heavily on the initial conditions provided;

the method also requires several iterations to achieve an efficient estimator. Moreover, the specific

approach put forward by Giacomini and Komunjer (2005) hinges on the choice of a parameter τ that

suitably smooths the sample moment function gn(·) in order to estimate the matrix Ω1.

The weight estimates that define the optimal forecast combination are a combination of in-sample

information =t, used to obtain the individual forecasts q̂1t and q̂2t, and out-of-sample information

{rt+1}T−1
t=P . Therefore the resulting optimal combined VaR forecast is not a fair competitor to the

individual VaR forecasts. However, it provides the basis for a conditional quantile forecast encom-

passing (CQFE) test that serves for backtesting analysis because it can detect which of two (or more)

competing VaR models meets ex post the correct conditional coverage criterion out-of-sample.11

3.2 A Test for Correct Out-of-Sample VaR Specification

A correctly specified α-th conditional VaR model of an asset or portfolio returns rt satisfies that

P (rt+1 ≤ V aRt+1,α | =t) = α, almost surely (a.s.), α ∈ (0, 1), ∀t ∈ Z. (15)

This conditional moment restriction has been used in various theoretical papers (Christoffersen et al.,

2001; Engle and Manganelli, 2004; Gourieroux and Jasiak, 2006; Koenker and Xiao, 2006).

However, condition (15) is not what is usually backtested in practice. Most backtesting approaches

focus instead on assessing some of the implications of criterion (15) rather than the criterion itself.

More specifically, a VaR model is typically considered adequate iff the out-of-sample hits or ex-

ceedances associated with the VaR forecasts, defined as It+1,α ≡ 1(rt+1 ≤ V aRt+1,α), exhibit both

correct unconditional coverage, E[It+1,α] = α, and serial independence. Condition (15) is sufficient

11The optimal weight estimation approach (11) exploits the entire out-of-sample period and hence, we obtain a single

weights vector as opposed to time-varying weights. Nevertheless, our optimal weight combination framework would be

deployed in real time over out-of-sample windows that are rolled forward day by day so the weights evolve accordingly.
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(but not necessary) for the correct unconditional coverage and independence properties to be fulfilled.

There is a large class of VaR models which are misspecified in the sense that they do not satisfy (15)

but nevertheless they yield an i.i.d. sequence of out-of-sample hits with correct unconditional coverage;

this mismatch is known as model misspecification or model risk in the VaR literature. Escanciano and

Olmo (2011) circumvent the bias induced by the latter in the context, for instance, of Kupiec’s (2005)

unconditional coverage test statistic by deriving the correct asymptotic variance in the presence of

model risk (and estimation uncertainty); a block-bootstrap is suggested as a feasible alternative in

cases when the adjusted variance is too cumbersome to estimate in practice.

In what follows, we propose instead backtesting directly criterion (15) via a novel CQFE inference

approach; this represents a novel test for correct out-of-sample specification ex post. It builds upon the

first-order condition (8) and assumption A.1 that together imply that the optimal forecast combination

q̂c,t ≡ λ∗0 + λ∗1q̂1,t + λ∗2q̂2,t satisfies property (15) by construction. Intuitively, the latter is possible

because, in contrast to q̂1,t and q̂2,t, the optimally combined forecast q̂c,t is obtained by exploiting

both in-sample and out-of-sample information. Thus our test is similar in spirit to Giacomini and

Komunjer’s (2005) CQFE inference approach built around the following definition:

Definition 1 (Encompassing). Let q̂1,t and q̂2,t be two alternative forecasts of the V aRt+1,α quantile

of interest. Forecast q̂1,t encompasses forecast q̂2,t conditionally at time t = R, ..., T − 1 iff

E[ϕα(rt+1 − q̂1,t)|=t] = E[ϕα(rt+1 − q̂c,t)|=t]. (16)

The above definition departs from the classical encompassing literature in that it is based on conditional

expected losses as opposed to unconditional ones. The main hypotheses of interest, H10 : λ∗ = (0, 1, 0)′

against H1a : λ∗ 6= (0, 1, 0)′, and H20 : λ∗ = (0, 0, 1)′ against H2a : λ∗ 6= (0, 0, 1)′, correspond to testing,

respectively, whether q̂1,t encompasses q̂2,t, and whether q̂2,t encompasses q̂1,t, conditionally.

We propose the following Wald test statistics in a QR estimation framework:

ENC1 = n(λ̂′
∗
n − (0, 1, 0))Σ̂−1

n (λ̂∗n − (0, 1, 0)′), (17)

15



and

ENC2 = n(λ̂′
∗
n − (0, 0, 1))Σ̂−1

n (λ̂∗n − (0, 0, 1)′), (18)

where Σ̂n ≡ α(1− α)Ω̂−1
1,nΩ̂0,nΩ̂−1

1,n is the estimator of the covariance matrix ΣQR in (12) with Ω̂0,n ≡

1
n

T−1∑
t=R

q̂tq̂
′
t, Ω̂1,n ≡ 1

2nhn

T−1∑
t=R

1(|rt+1 − q̂c,t| ≤ hn)q̂tq̂
′
t, and hn = ν · n−1/3 with ν > 0 is a bandwidth

parameter satisfying that hn → 0 and nh2
n →∞ as n→∞. This kernel-type matrix estimator builds

upon the method proposed by Powell (1991) and applied by Angrist et al. (2006) inter alios; see also

Koenker (2005). It follows that ENCi
d→ χ2

3 under Hi0 and ENCi
d→ ∞ under Hia, i = 1, 2, as

n→∞. The finite-sample performance of these Wald tests mainly depends on the estimates of ΣQR;

this inference methodology is standard in the QR literature and hence, we do not pursue further a

more in-depth study of finite-sample size and power properties (see Koenker, 2005).

Akin to Giacomini and Komunjer’s (2005) CQFE test, our encompassing test for correct ex post

out-of-sample specification of the conditional VaR measure lets the out-of-sample size n go to infinity,

while the in-sample size R remains finite. The use of fixed or rolling (but not recursive) schemes to

obtain the VaR predictions q̂1,t and q̂2,t implies that estimation risk does not vanish asymptotically

as n→∞; thus the test naturally controls for the effect of parameter uncertainty. The latter implies

that general VaR modeling approaches are accommodated, e.g. parametric GARCH-based and semi-

parametric CAViaR, and that the encompassing test is also valid in the context of nested models.

We conclude this section with comments on the CQFE test interpretation. Inference on the con-

stant allows us to ascertain whether the individual forecasts are both unbiased (H00 : λ∗0 = 0) or there is

bias at least in one of them (H0a : λ∗0 6= 0). If only one of the two encompassing hypotheses is rejected,

say, H10, the implication is that q̂2,t encompasses q̂1,t and, in turn, the V aR2 model used to obtain

q̂2,t represents itself the optimal “combination” that meets the correct out-of-sample conditional VaR

specification criterion. When both hypotheses, H10 and H20, are rejected it is concluded that neither

competing model, V aR1 or V aR2, is correctly conditionally specified out-of-sample and hence, combi-

nation is beneficial. However, if the estimation results further indicate, say, that λ1 is insignificantly

different from zero but λ0 and λ2 are both significant, one can conclude that the bias-corrected V aR2
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model has correct conditional coverage out-of-sample. If none of the tests is rejected, the backtesting

is not informative enough (low signal-noise ratio) and so one could choose either model. Lastly, we

should stress that the dependence between individual VaR forecasts, which plays an important role in

the reliability of the ENCi test results, is captured by the covariance matrix Σ̂n.

4 Empirical Application

4.1 Data and Preliminary Statistics

We apply the outlined quantile combination methods and encompassing tests in a univariate fashion to

the problem of setting VaR limits for equity, FOREX, fixed income and commodity trading desks.12

We have 6 datasets comprising open, close, high and low prices sampled every day and 5-minute

sampled prices pertaining to a recent 14-year period ending 31/05/2011 that is currently available.

This allows us to make the forecasting task more challenging by examining how the risk models perform

during the recent global financial crisis (GFC) period. In particular, we choose 01/09/2008 as start

date for the holdout (or evaluation) period.13 The intra-day sampling frequency is 5 minutes.14

Three equity indices are chosen to cover different segments of the stock market: the S&P 500

index, by far the most common benchmark for funds (mutual funds, ETFs, pension funds) that

identify themselves as large cap; the Russell 2000 index which is the typical benchmark for funds

that categorize themselves as small cap; and the Nasdaq Composite which serves as indicator of the

12For the purpose of reporting the overall trading VaR of the financial institution one can either assume a known vector

of weights and model the time series of portfolio returns (univariate approach) or model the joint dynamics of the assets

contained in the overall trading portfolio (multivariate approach). The recommendations arising from the literature in

this regard lack consensus as yet. Whereas some papers endorse the univariate modeling approach (e.g., Brooks and

Persand, 2003; Bauwens et al., 2006; Christoffersen, 2009), others produce mixed evidence (McAleer and da Veiga, 2008)

or strongly support multivariate modeling (Santos et al., 2009). A distinctive aspect of the latter study is that it deals

with relatively large portfolios (of up to 81 assets) and allows for dynamic conditional correlation structures.
13September 2008 is an important landmark of the late 2000s GFC because several important events occurred during

this month, for instance: i) Fannie Mae and Freddie Mac, two U.S. government sponsored enterprises, owned or guaranteed

nearly $5 trillion in mortgage obligations at the time they were placed into conservatorship by the U.S. government in

September 7, ii) Lehman Brothers filed for Chapter 11 bankruptcy protection on September 15.
14The data source is Disk Trading http://www.is99.com/disktrading/. The 5-minute frequency is the most typical in

the literature because it appears short enough for the daily volatility dynamics to be picked up with reasonable accuracy

(small estimation error) and long enough for the adverse effects of market microstructure noise not to be excessive.
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performance of technology and growth stocks. The fact that the latter index considers non-U.S.

companies differentiates it further from the former two indices. The observations are available from

9:30-16:00 Eastern time (EST) which amounts to M = 78 five-minute intra-day intervals. Thus the

closing price on day t is defined as the last transaction price observed before 16:00, and the intra-day

‘closing’ price pct,j is similarly defined as the last seen tick before the jth 5-minute mark. The observed

opening price on day t is the first transaction price recorded after 9:30. The three equity samples span

the period from 12/11/1997 to 31/05/2011 (T = 3404 trading days).

Fourth, we consider the US Dollar Index (USDX) which is a weighted geometric mean of the dollar’s

value vis-à-vis Euro (57.6% weight), Japanese Yen (13.6%), Pound sterling (11.9%), Canadian dollar

(9.1%), Swedish krona (4.2%), and Swiss franc (3.6%). The underlying spot rates are averages of bid-

ask quotes. Like for the above equity scenarios, we consider a portfolio consisting of a long position

in the index which can be easily achieved through ETFs. The FOREX market operates round-the-

clock (24 hr) and so we have M = 288 5-minute intervals for each of T = 3361 days spanning the

period from 16/04/1998 to 31/05/2011. As is standard practice, we take 21:00 GMT as the ‘closing’

time each day and remove all returns from Friday 21:05 GMT to Sunday 21:00 GMT, and the very

slow trading days around Christmas day (24th-26th December), New Year (31st December, 1st-2nd

January), Good Friday, Easter Monday, Memorial day, Labour day and Thanksgiving day.

In order to include bond (fixed income) trading desks in our tail-risk analysis, we gather prices

on 10-year US Treasury Notes futures contracts from 12/06/1997 to 31/05/2011. This choice obeys

the fact that the 10Y T-Note has become the most frequently quoted security when discussing the

performance of the U.S. government bond market and is widely thought to convey the market’s take

on long term macroeconomic expectations. The prices are for contracts traded on the open outcry

Chicago Board of Trade (CBOT) from 8:20-15:00 EST; thus M = 76 intraday 5-minute intervals.15

15The Chicago Mercantile Exchange (CME) acquired the CBOT in 2007. Although there is an electronic trading

system taking place nearly round-the-clock, we focus on the main open outcry CME trading hours like Giot and Laurent

(2004) and Žikĕs (2009), among others, who use price quotes for S&P500 futures contracts and WTI Crude Oil futures

contracts traded, respectively on the CME from 9:30-16:00 EST and the NYMEX from 9:00-15:00 EST, thus ignoring the

electronic trading hours. Flemming (1997) shows that the U.S. Treasury market behaves more like U.S. equity markets,
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Our final dataset consists of Gold futures prices over the period 03/12/1997 to 31/05/2011 (T =

3395 days). Our choice relates to the role of Gold as a key component of global monetary reserves

and also for currency hedging and trading (i.e. traditional safe haven). Our quotes pertain to the

open outcry CBOT from 8:20-13:30 EST (thus M = 58) and, like for the T-Notes futures, refer to the

nearest-to-maturity contract until the next contract becomes more active in terms of trading volume.

Figure 1 plots the three daily volatility series, squared returns (r2
t ), range volatility (HLt) and

realized volatility (RVt), as defined in Section 2. The graphs reflect clear episodes of heightened

turbulence in financial markets, particularly, in the final (initial) months of 2008 (2009) following the

effective nationalization of Fannie Mae and Freddie Mac on 07/09/2008 (owning about 1/2 of the $12

trillion US mortgage market) which sent waves of panic to home mortgage lenders and Wall Street,

and the filling for bankruptcy of Lehman Brothers one week afterwards. The big spike in the graph

for Gold in October 1999 mirrors an agreement by fifteen European central banks to limit sales which

pushed the price to a high of $338 per ounce. Other turmoil episodes borne out by the graphs are the

dotcom bubble (particularly, reflected in Nasdaq) which burst on March 2000 and was deflating at full

speed by 2001. Market jitters were felt, particularly, in the S&P 500 and Russell 2000 indices, following

an announcement on April 2010 that the Securities and Exchange Commission sues Goldman Sachs for

failing to disclose important information on one of their mortgage-backed CDOs in 2007 to the benefit

of John Paulson’s hedge fund. Descriptive statistics for the daily returns, squared returns, logHLt and

logRVt, set out in Table 1, confirm various stylized facts.16 The volatility autocorrelation function

shows a very slow (hyperbolic) declining rate, particularly, in the case of logRVt. Approximately

Gaussian properties are observed for both logHLt and logRVt. In line with the theoretical discussion

in Parkinson (1980), the scaled range is a rather efficient volatility measure whereas the squared return

with limited trading hours, than like the round the-clock FOREX market. Not only price volatility and trading volume

are highly concentrated during 8:30-15:00 EST but also over this period the U-shaped patterns of price volatility, trading

volume, and the bid-ask spread resemble those found in equity markets (but not in the FOREX market).
16Hansen and Lunde’s (2005) approach deployed on our data (except for USDX) to mitigate the overnight bias produced

weights that place disproportionately more importance on R̃V t than on the overnight return; e.g, τ∗1 = 0.181 and

τ∗2 = 1.022 for S&P 500 and τ∗1 = 0.322 and τ∗2 = 1.357 for Gold in equation (4). See also Ahoniemi and Lanne (2011).
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is very noisy. Returns are mildly skewed but highly kurtosed, and the positive skewness for Gold is

not an unusual phenomenon in commodity futures (e.g., see Rallis et al., 2012).

The estimation results and diagnostics for the models are set out in Table 2.17 For the USDX

and the 10Y T-Note volatility, the GJR model parameter γ1 suggests that there is no leverage effect

in line with previous studies (e.g., Giot and Laurent, 2004; Andersen et al., 2011; Rodriguez and

Ruiz, 2012). For equities, the significantly positive γ1 confirms the stylized fact that bad news lead to

higher subsequent volatility than good news. In the case of Gold, the significantly negative coefficient

γ1 reflects the so called ‘inverse leverage effect’ which stems from the distinctive influential forces on

commodity futures prices such as, for instance, supply (production) and demand imbalances, and the

interaction of hedgers and speculators. In fact, it is not uncommon to witness periods where both

equity and commodity markets experience extreme volatility but with prices falling in the former and

rising in the latter. The parameter ω2 in the ARFIMA equation mirrors the leverage findings from the

GJR model. The long-memory parameter d confirms the weak stationarity but slow autocorrelation

decay of logRVt; it is relatively high for equities but below 1/2 according to statistical tests.

Both frameworks suggest that there is considerable fat-tailedness in standardized returns (except

for the Russell index) as borne out by the dof parameter υ which justifies the Student t density for the

innovation process. The extremely high leptokurtosis (small υ) observed for Gold may be linked to

the occasional but very aggressive price swings that are characteristic of energy and metals (Füss et

al., 2010; Rallis et al., 2012). The Ljung-Box test applied to the standardized residuals in levels and

squares suggests that the models are reasonably well specified to capture the dynamics of returns.

17Model estimation and forecasting are carried out using the G@RCH 4.2 and ARFIMA 1.0 packages for Oxmetrics.

The reported GJR model estimates suggest that the conditional volatility process satisfies the weak stationarity condition

for all datasets. For equities, the parameter α1 is negative but very small and positivity of the conditional variance is

still guaranteed because the larger (in absolute value) positive δ coefficient of HLt−1 has an offsetting effect, namely, the

condition α̂1ẑ
2
t−1 + δ̂HLt−1 ≥ 0, where ẑt are residuals, is met for all t. Thus for equities the contribution of the lagged

range HLt−1 is larger than that of the lagged squared return innovation z2t .
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4.2 Encompassing test and optimal VaR combinations

We now discuss the empirical findings from the CQFE test deployed out-of-sample. The number of

observations n ranges from 692 days (equity) to 716 days (FOREX). Table 3 summarizes the results.

The top and bottom panels are for the 5% VaR and 1% VaR, respectively. Columns with the heading

fri% report the failure rate or percentage of days when the daily loss exceeds the VaR prediction;

i = 1, 2, c denote the GJR model, ARFIMAX model and optimally combined model, respectively.

We start by discussing the results from our QR weight estimation framework. For the 5% VaR,

it is observed in the case of Nasdaq and USDX that the ENC1 test rejects the null hypothesis of

conditional encompassing but ENC2 does not; this implies that the ARFIMA forecasts encompass

the GJR forecasts. Moreover, for the S&P 500 index the weight estimate on the GJR forecast is

not significantly different from zero suggesting that overall in three (out of six) cases the optimal

combination is the (bias-corrected) ARFIMA forecast. For Gold futures, the results are difficult to

interpret. Whereas the ENCi (i = 1, 2) tests point toward the encompassing of the ARFIMA forecast

by the GJR forecast, the optimal combination weights virtually suggest the opposite. This inconclusive

evidence may arise because the encompassing inference is contaminated by high dependence in the

individual forecasting errors which is reflected in the off-diagonal terms of the covariance matrix Σ̂QR

(see Timmermann, 2006). Only two cases, Russell 2000 and 10Y T-Notes, visibly call for forecast

combination since both ENCi (i = 1, 2) statistics reject the encompassing null hypothesis.

For the 1% VaR, there is more evidence calling for combination: in 4 out of 6 cases (S&P 500, Rus-

sell, T-Notes and Gold) both ENCi tests plainly reject suggesting that neither forecast encompasses

its competitor. With the remaining two datasets, the evidence is suggestive of encompassing. For the

Nasdaq portfolio, the GJR-based 1% tail risk forecast is statistically not different from the optimal

one, whereas for the USDX portfolio the ARFIMA 1% tail risk forecast emerges as optimal. Thus

the overall findings differ for the two quantiles under consideration, 5% and 1%. In particular, the

merit of combining inter-day and intra-day information becomes more apparent as one moves further
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inside the tail. This may be linked to the fact that reliably forecasting extreme quantiles is challenging

because of the scant data points that fall in the corresponding sample distribution tails and hence,

information pooling through forecast combination becomes more crucial.

The ENCe test in Table 3 corresponds to the null hypothesis that the simple combination of VaR

forecasts q̂e,t = 1
2(q̂1,t + q̂2,t) is optimal, that is, it meets the correct conditional coverage condition,

i.e. He0 : λ∗ = (0, 0.5, 0.5)′ against Hea : λ∗ 6= (0, 0.5, 0.5)′.18 Focusing on the 6 cases (2 for 5% VaR

and 4 for 1% VaR) where no evidence of encompassing was found, the optimal combining weights are

significantly different from (0, 0.5, 0.5)′ so the test rejects He0. Indirectly, this suggests that the benefits

from freely-estimating the combining weights versus fixing them a priori at (0, 0.5, 0.5) outweigh the

noise contamination arising from the high correlation between the VaR forecasts being combined.

The optimal QR weight estimates λ̂∗n in Table 3 deserve some attention. They are obtained us-

ing (11) and their standard errors are the square root of the diagonal entries of Σ̂n divided by
√
n.

Following Koenker’s (2005) recommendation, our bandwidth parameter is hn = νn−1/3 with ν = 1;

the results hardly vary for alternative ν.19 Despite the fact that the first two columns fri%, i = 1, 2

show often that both individual VaR models underestimate the risk exposure, the optimal VaR fore-

cast combination can plausibly be convex or non-convex because the intercept plays a bias-correcting

role.20 We observe that for the 10Y T-Notes the ARFIMAX forecast has a large positive contribution

(λ̂∗2n > 1) whereas, on the contrary, the GJR forecast has a negative weight (λ̂∗1n < 0). The former

acts as a correction towards making the combined VaR forecast more conservative than the individual

V aRARFIMAX forecast; in fact, the size of the weight represents an over-correction which is compen-

sated by the negative weight on the V aRGJR forecast. Lastly, a noteworthy result is that the rejection

rate of the optimally combined forecast (frc%) is virtually identical to the nominal coverage; this is

18This test is motivated by the empirical forecasting literature which has shown in diverse scenarios, other than VaR,

that the simple equal-weight combination is rather effective in out-of-sample evaluations (e.g. Patton and Sheppard,

2009) even though weight estimates from optimal combination methods often do not bear it out.
19We also considered values ν = {0.5, 3}. Detailed results are available from the authors upon request.
20In the present context that combines individual GJR-based and ARFIMA-based quantile forecasts, denoted q̂1t and

q̂2t, the expression ‘convexity’ refers to a linear combination such that λ̂∗1n > 0, λ̂∗2n > 0 and λ̂∗1n + λ̂∗2n = 1.
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to be expected because, by construction, the optimally combined forecast satisfies condition (15) ex

post and, in turn, the correct unconditional coverage and iid properties are met.

For completeness, we also report in the right-hand-side of Table 3 the counterpart results from

Giacomini and Komunjer’s (2005) GMM weight estimation framework. We use τ = {0.006, 0.01, 0.05}

as smoothing parameter values; the first two are adopted in Giacomini and Komunjer (2005) whereas

the third one may conform better with our out-of-sample size n at about 700 days; the outcome is

very close in all three cases and Table 3 pertains to τ = 0.01. Two striking aspects of these results

are: i) weight estimation noise as suggested by the standard errors is generally larger than in the

QR framework, ii) overall the results are less informative. The encompassing of either individual

5% VaR forecast cannot be falsified for Nasdaq, USDX and 10Y T-Notes, i.e. neither H10 nor H20

are rejected, suggesting that both the GJR-based and ARFIMAX-based tail risk models are correctly

specified out-of-sample. There are another five similar inconclusive cases for the 1% VaR. At the same

time, there is virtually no statistical evidence against the optimality of the equal-weight combination.

Thus the CQFE test is not helpful in these eight cases since it cannot discriminate in terms of correct

out-of-sample VaR specification, criterion (15), between the GJR and ARFIMAX forecasts. Ambigu-

ous CQFE inference together with relatively large standard errors of the optimal combining weights

indirectly suggests that the GMM approach may necessitate in this quantile context greater out-of-

sample sizes, n, to produce reliable CQFE inference. In fact, the simulations conducted in Giacomini

and Komunjer’s (2005) to infer acceptable levels for the smoothing parameter τ are based on large

n = {1000, 2500, 5000} in relation to those typically employed in the empirical forecasting literature.

Figure 2 plots individual 5% VaR forecasts alongside optimal combined forecasts.21 In all cases,

the predicted downside risk is far greater in the earlier part of the out-of-sample period (September

2008 to March 2009) that represents the peak of the late 2000s GFC. For the S&P 500, Nasdaq

and FOREX portfolios, the graphs confirm that the ARFIMAX forecasts are closer to the optimal

QR-based combination than the GJR forecasts. The remaining graphs are less revealing.

21The graphs for the 1% VaR are qualitatively similar and are available from the authors upon request.
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5 Conclusions

A distinctive theoretical aspect of this paper is that it extends the forecast combination and encom-

passing regression literature to a quantile context. Building on Giacomini and Komunjer’s (2005)

conditional quantile forecast encompassing (CQFE) test, which is GMM-based and necessitates ap-

propriate smoothing of the ‘check’ loss function, we propose CQFE inference that builds instead on

standard quantile regression (QR) theory. The implementation of our novel CQFE test requires the

estimation of a combined VaR forecast that is optimal because it meets ex post, by construction, the

correct out-of-sample conditional VaR coverage criterion. The CQFE test here proposed controls for

model risk and estimation uncertainty and is quite general in that it can be applied to any number

of VaR forecasts obtained from different (semi/non) parametric approaches, including nested models.

Thus the CQFE test serves as a more robust backtesting approach than the unconditional coverage

and independence backtesting typically adopted by banks and regulators.

At an empirical level, the main novelty of the paper is to propose conditional quantile forecast

combination as an effective device to confront and pool inter-daily and intra-daily information. The

empirical analysis is grounded in two VaR models from the location-scale family, namely, the individual

quantile forecasts are obtained from an asymmetric GJR-GARCH (GJR) model that exploits daily-

recorded closing, high and low prices, and from an asymmetric ARFIMAX realized volatility model

that exploits higher frequency 5-minute prices. The techniques are illustrated in a univariate fashion

on six datasets that pertain to equity, FOREX, fixed income and commodity trading desks.

Overall the QR-based inference suggests that, especially, for far-tail risks (1% VaR) the contest

between inter-daily and intra-daily models is quite tight and calls for optimal quantile forecast com-

bination. The simple equal-weights forecast combination is strongly rejected as optimal. For the less

extreme tail risk (5% VaR), the intra-day ARFIMA forecasts encompass inter-day GJR forecasts in

various cases despite the fact that the GJR model is helped along with range (high minus low) price

information. The FOREX portfolio analysis stands out by unambiguously endorsing the ARFIMA-
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based tail risk predictions at both the 1% and 5% nominal coverage levels. Our findings based on

two well-known inter-day and intra-day models alongside novel CQFE tests indicate that it is worth-

while to consider high frequency intra-day information to set daily VaR limits for different trading

desks. Extending our quantile forecast encompassing and optimal combination framework to the entire

predictive density is an interesting avenue for further research.
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Table 1. Descriptive statistics for daily return and volatility data.

Mean StDev Skew Kurt Min Max ACF1 ACF5 Q20 (p-value)

S&P 500

rt 0.0116 1.3309 -0.1377 9.9481 -9.4819 10.771 -0.069 -0.034 83.115 (0.00)

r2t 1.7709 5.2965 10.777 172.34 0.0000 116.02 0.187 0.330 4596.7 (0.00)

logHLt -1.3019 1.1672 0.2458 3.2227 -4.5460 3.0255 0.570 0.544 17876 (0.00)

logRVt -0.1657 1.0538 0.4680 3.5301 -3.0380 4.1504 0.736 0.671 26060 (0.00)

Russell

rt 0.0204 1.5864 -0.2868 7.3629 -12.578 8.7865 -0.035 -0.037 64.783 (0.00)

r2t 2.5162 6.3400 9.5534 156.69 0.0000 158.20 0.277 0.331 5606.3 (0.00)

logHLt -1.0388 1.1386 0.1649 3.2985 -4.4097 3.3200 0.528 0.469 13049 (0.00)

logRVt -0.1443 1.1102 0.2009 3.5498 -3.6690 4.1355 0.658 0.593 20497(0.00)

Nasdaq

rt 0.0179 1.8212 -0.0070 7.1797 -10.207 13.232 -0.023 -0.024 70.738 (0.00)

r2t 3.3161 8.2444 8.0388 105.99 0.0000 175.09 0.207 0.245 3078.8 (0.00)

logHLt -0.8347 1.1883 0.1949 2.8697 -4.5104 3.6691 0.642 0.594 21670 (0.00)

logRVt 0.3433 1.1827 0.3144 2.9255 -3.0617 4.6993 0.804 0.718 24225(0.00)

USDX

rt -0.0049 0.6590 -0.2775 4.3368 -3.0516 2.4193 0.063 0.008 13.706 (0.85)

r2t 0.4337 0.7937 4.7349 36.860 0.0000 9.3124 0.129 0.070 523.83 (0.00)

logHLt -1.9503 0.8710 0.0396 3.1375 -5.0518 0.6938 0.454 0.277 5057.6 (0.00)

logRVt -0.8613 0.6796 0.3127 3.5508 -3.1346 1.4571 0.641 0.544 12892 (0.00)

10Y T-Notes

rt 0.0054 0.4238 -0.2189 5.9109 -2.3694 3.5163 -0.003 -0.005 33.311 (0.03)

r2t 0.1915 0.4376 11.059 245.64 0.0000 12.364 0.090 0.103 449.44 (0.00)

logHLt -3.4765 1.0421 -0.0824 3.2074 -6.8621 0.7472 0.277 0.321 4752.1 (0.00)

logRVt -2.1023 0.9397 0.3054 3.5066 -5.3819 2.2575 0.458 0.403 7462.5 (0.00)

Gold

rt 0.0475 1.1381 0.2116 10.159 -7.3642 11.452 0.014 0.036 49.446 (0.00)

r2t 1.2972 3.9287 16.575 441.34 0.0000 131.14 0.204 0.121 593.32 (0.00)

logHLt -1.6352 1.0831 0.1814 3.0887 -4.5856 2.7007 0.413 0.384 7788.4 (0.00)

logRVt -0.0331 0.9287 0.3450 3.5456 -3.0847 4.0269 0.630 0.502 14275 (0.00)

rt are daily log close-to-close returns, HLt is the intraday high-low price range volatility, RV is the

realized variance defined as the daily integrated sum of intraday (5min) squared returns, adjusted

to include the overnight return using Hansen and Lunde’s (2005) approach. ACF is autocorrelation

function. Qk is the Ljung-Box test. Returns are in percentages throughout the analysis. All samples

end May 2011. Start date is November 1997 for equities (T=3404 days), April 1998 for US$ index

(USDX; T=3361), September 1998 for T-Notes (T=3134) and December 1997 for gold (T=3395).
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Table 2. Conditional volatility model estimates and diagnostics.

S&P500 Russell Nasdaq USDX 10Y T-Notes Gold

Panel A: Student GJR-GARCH model

α0 0.050 (0.012) 0.119 (0.020) 0.081 (0.017) 0.014 (0.005) 0.003 (0.002) 0.042 (0.040)

α1 -0.007 (0.008) -0.008 (0.011) -0.002 (0.010) 0.021 (0.007) 0.041 (0.009) 0.055 (0.021)

β1 0.937 (0.008) 0.888 (0.013) 0.927 (0.009) 0.957 (0.009) 0.958 (0.007) 0.956 (0.015)

γ1 0.150 (0.013) 0.150 (0.018) 0.105 (0.013) -0.001 (0.008) -0.010 (0.010) -0.052 (0.025)

δ 0.015 (0.004) 0.031 (0.007) 0.029 (0.007) 0.003 (0.001) 0.004 (0.002) 0.014 (0.018)

υ 10.689 (1.564) 50.471 (29.774) 17.487 (3.762) 13.292 (2.788) 10.012 (1.518) 5.660 (0.536)

Q20 25.410 [0.186] 28.161 [0.106] 21.050 (0.394) 11.325 [0.937] 26.621 (0.146) 31.256 (0.052)

Q2
20 24.643 [0.215] 28.264 [0.103] 17.280 (0.635) 26.491 [0.150] 12.319 (0.905) 33.477 (0.030)

Panel B: ARFIMAX model

ω0 -0.595 (0.022) -0.595 (0.025) -0.155 (0.026) -1.309 (0.020) -1.041 (0.030) -0.351 (0.021)

ω1 0.356 (0.021) 0.299 (0.020) 0.302 (0.017) 0.065 (0.039) 0.179 (0.073) 0.394 (0.022)

ω2 -0.943 (0.033) -0.790 (0.032) -0.779 (0.028) -0.091 (0.067) -0.372 (0.128) 0.792 (0.037)

θ1 -0.540 (0.013) -0.550 (0.015) -0.207 (0.024) -0.233 (0.033) -0.397 (0.045) -0.399 (0.037)

d 0.496 (0.005) 0.493 (0.009) 0.488 (0.013) 0.449 (0.024) 0.424 (0.035) 0.457 (0.029)

υ 10.621 (1.531) 47.623 26.436 18.336 (4.128) 15.276 (3.923) 10.549 (1.672) 6.085 (0.591)

Q20 25.384 [0.187] 24.783 [0.210] 20.557 [0.424] 11.229 [0.940] 25.006 [0.201] 30.929 [0.056]

Q2
20 23.734 [0.254] 24.665 [0.215] 16.893 [0.660] 33.450 [0.030] 12.777 [0.887] 19.494 [0.490]

σ2
u 0.513 0.626 0.539 0.253 0.635 0.523

Panels A and B correspond to equations (5) and (6), respectively. Standard errors are reported in paren-

theses. Q20 and Q2
20 are the Ljung-Box test statistics (p-values in square brackets) for the demeaned and

standardized returns and their squares, respectively, according to an AR(1) model and the pertinent con-

ditional volatility specification. All datasets end on 31 May 2011 and begin as noted in Table 1.
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Figure 1. Daily  volatility measures.   The  graphs depict  the dynamics of  the daily  squared  logarithmic  close‐to‐close  return,  realized  variance  (RV)  and 
intraday high‐low range volatility (HL) over the entire 14‐year sample period ending 31 May 2011. 
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Figure 2. Out‐of‐sample 5% VaR forecasts.  The graphs depict the dynamics of the individual inter‐day (GJR‐GARCH) and intra‐day (ARFIMAX) VaR forecasts 
and the optimally combined forecasts using the QR and GMM frameworks. The out‐of‐sample period starts 1 September 2008 and ends 31 May 2011.  
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