

City, University of London Institutional Repository

Citation: Spanoudakis, G. & Zisman, A. (2011). Designing and Adapting Service-based

Systems: A Service Discovery Framework. In: Service Engineering. (pp. 261-297). BERLIN:
SPRINGER-VERLAG. ISBN 978-3-7091-0414-9 doi: 10.1007/978-3-7091-0415-6_10

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/5169/

Link to published version: https://doi.org/10.1007/978-3-7091-0415-6_10

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Designing	 and	 Adapting	 Service-based	
Systems:	 A	 Service	 Discovery	 Framework1	

George Spanoudakis and Andrea Zisman

Abstract.
This chapter describes a service discovery framework that has been developed
within the EU 6th Framework projects SeCSE and Gredia. The framework sup-
ports design of service-based systems based on existing services and adaptation of
service based systems during their execution due to different situations. It assumes
services described from different perspectives and uses complex service discovery
queries specified in a XML-based language that we have developed. The work is
illustrated with the Cell Phone Operator case study.

1. Introduction

Service-based systems are defined as software systems that are composed of
services but may also use legacy code and/or software components to provide their
required functionality. The design of service-based systems has been recognized
as an important topic of research in which it is necessary to have methodologies,
techniques, and tools to support the development of such systems. Service integra-
tors, developers, and providers have collaborated to support not only the develop-
ment, but also the deployment and consumption of service-based systems. The de-
ployment and support for adaptation of service-based systems during execution
time has been recognized as necessary for these systems to continue to operate.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

George	 Spanoudakis	
City	 University	 London,	 Northampton	 Square,	 London,	 EC1V	 0HB,	 UK,	 e-‐mail:	
g.spanoudakis@soi.city.ac.uk	

Andrea	 Zisman	
City	 University	 London,	 Northampton	 Square,	 London,	 EC1V	 0HB,	 UK,	 e-‐mail:	
a.zisman@soi.city.ac.uk	

	

2	 George	 Spanoudakis	 and	 Andrea	 Zisman	 	

As an example, consider the Cell Phone Operator (CPO) case study being used
in this book. In this example the CPO system is composed of several services that
support different functional and non-functional aspects of the system (e.g., SMS
service, voice service, email service, pay-per-view movie service, mobile phone
number portability service, cost and time to use the various services). During the
design of this CPO service-based system, it is necessary to be able to identify
available services that can be used to support the functional and non-functional
aspects of the system, and to develop design models of the system based on the
characteristics of existing services. Once the CPO is deployed, it may be necessary
to replace a service during execution time of the system. For example, consider a
customer who moves countries for a while (change of context), and assume that
the time to retrieve a movie using the current pay-per-view movie service partici-
pating in the system becomes slow due to the new location of the customer. In this
case, it is necessary to identify a service that can replace the current pay-per-view
movie service and conforms to the requirements of the system.

In this chapter we present a service discovery framework supporting: (a) de-
sign of service-based systems based on existing services, and (b) adaptation of
service-based systems during their execution due to (i) unavailability or malfunc-
tioning of the services they deploy, (ii) changes in the context of services they de-
ploy or the service-based system environment, and/or (iii) emergence of new serv-
ices that are superior to the services already deployed in a service-based system.

The work underpinning the framework described in this chapter has been de-
veloped within the EU 6th Framework projects SeCSE [33] and Gredia [13]. Dif-
ferent parts and aspects of the framework have been published in several research
papers [24,25,37,38,39,40,54,55,57,58,59]. In this chapter, we present the latest
unified version of the framework and demonstrate how it can be applied to support
service-based system design and execution time adaptation illustrated by the case
study of cell phone operators used in this book.

The design of service-based systems in the framework is based on an iterative
service discovery process in which system designers can, whilst developing sys-
tem design models for a service based system, specify service discovery queries
representing functional and quality characteristics of services required for them,
and use them to locate services that could be used in the system. Once identified
and, subject to their approval by the designers, such services can be linked to the
system and used as remote components by it when the system comes to operation.
When designers decide to use a discovered service, its model is also automatically
integrated into the design model of the system and thus generating a new version
of the model. The new version of the design model may be used in further itera-
tions to specify other service requests, identify further candidate services, and pos-
sibly interconnect them to the design as well. During this process, it is also possi-
ble to realize that certain parts of the system cannot be fulfilled by available
services and, therefore, make alternative design decisions for the developing sys-
tem. Examples of these decisions are concerned with the use of existing legacy
code or components that could be statically linked to the system, or the implemen-
tation of new software code. This design process terminates either when new serv-

Designing	 and	 Adapting	 Service-‐based	 Systems:	 A	 Service	 Discovery	 Framework	 3	

ice requests derived from new versions of the models cannot identify services that
match the requests or at the discretion of the designer of the system.

Execution time adaptations of service-based systems are assisted by a pro-
active service discovery process in which services are identified in parallel to the
execution of the system using pre-subscribed complex queries and services. The
queries are identified and specified also prior to system deployment and are exe-
cuted at runtime under specific conditions that make necessary the adaptation of
the system. The queries locate alternative services for the ones already used by the
system, which are no longer appropriate. As it is the case in the design of service-
based systems, execution time service discovery can express combinations of
structural, behavioural and quality conditions that should be satisfied by candidate
services. In addition, they can also express context conditions (i.e., parametric
conditions about characteristics of the system, its environment and its participating
services that are, or could be deployed by the system, which can change frequently
and dynamically at execution time). Furthermore, the execution time discovery
queries supported by our framework can be executed in both pull and push modes.
The former mode provides a reactive response to a runtime problem that makes
the need for system adaptation necessary. The latter mode provides a means of
pro-active and continuous discovery process that runs in parallel with the system
aiming to identify appropriate substitute services for the ones already used by the
system when the need for replacing services suddenly arises.

The support for service-based system design has been developed in the SeCSE
project [33] to address challenges identified by industrial partners in the areas of
telecommunications, automotive, and software in the project. The support for ad-
aptation of service-based system has been developed in the GREDIA project [13]
to address challenges identified by industrial partners in the areas of media and
banking. These challenges point out the need to:
(i) Extract service discovery queries from design models of service-based sys-

tems specifying the functionality and quality properties of such systems;
(ii) Generate service discovery queries from characteristics of services that have

already been deployed in systems, but may need to be replaced;
(iii) Provide a query language to support both the expression of arbitrary logical

combinations of prioritised functional, non-functional, and contextual prop-
erties criteria for the required services, and similarity-based queries of the
form "find a service that is similar to service X";

(iv) Match efficiently service discovery queries against service specifications and
return services that may have varying degrees of match with the queries;

(v) Assist system designers to select services for a service-based system in cases
where the discovery process identifies more than one candidate service satis-
fying a query or services that do not satisfy a query entirely;

(vi) Integrate discovered services into an iterative design process in which serv-
ice-based systems design models may be re-formulated following the discov-
ery of services;

(vii) Support pro-active dynamic service discovery during execution time of a
service-based system.

The framework assumes services described from different perspectives by a set

4	 George	 Spanoudakis	 and	 Andrea	 Zisman	 	

of XML-based facets. These facets include (i) textual facets describing general in-
formation of the services in an XML format, (ii) structural facets describing opera-
tions of services with their data types using WSDL [53], (iii) behavioural facets
describing behavioural models of services in BPEL4WS [7], (iv) quality of service
facets describing non-functional aspects of services, and (v) context facets de-
scribing quality aspects of a service that change dynamically. The identification of
services based on distinct aspects provides a more accurate match between queries
and services and the consequent discovery of services with the required character-
istics, as opposed to techniques that are based only on keywords or interface as-
pects (e.g., WOOGLE [52] and UDDI [43]), which provide less precise match.
The discovery techniques that are used in the framework to assist with both the
design and adaptation of service-based systems are based on the computation of
distances between queries and the different types of service specifications.

The remainder of this chapter is structured as follows. Section 2 describes an
overview of the framework to support design and adaptation of service-based sys-
tems. Section 3 presents the query language used in the framework. Section 4 de-
scribes the matching process. Section 5 discusses the advantages, lessons learned,
and limitations of the work. Section 6 discusses related work on service discovery
and service-based system adaptation. Finally, section 7 provides concluding re-
marks and discussion of future work. The material presented in the chapter is illus-
trated with the cell phone operator case study.

2. Overview of the Framework

As discussed in Section 1, the framework supports design and adaptation of

service-based systems. Fig. 1 shows the overall architecture of our framework. As
shown in the figure, the main components of the framework are: (a) service re-
questor, (b) query processor, and (c) service registry intermediary. The frame-
work uses external service registries and is invoked by an external client applica-
tion. In order to support execution time adaptation of service-based systems, the
framework uses special servers and listeners to allow notification of changes in
services and application environment. The external client applications support the
creation of service requests to be executed for both design and execution time ad-
aptation. These service requests may contain structural, behavioural, quality, and
contextual characteristics.

The service requestor receives a service request from a client application. In
the case of adaptation of service-based systems, the service requestor also receives
context information about the services participating in a service-based system and
application environment. The service requestor prepares service queries to be eva-
luated, organises the results of a query, and returns these results to the client
application. To support adaptation, it also manages push query execution mode
subscriptions, receives information from listeners about services that become
available or about changes to existing services.

Designing	 and	 Adapting	 Service-‐based	 Systems:	 A	 Service	 Discovery	 Framework	 5	

Fig. 1: Architecture overview of the framework

The query processor is responsible to parse the different parts of a query and
evaluate these parts against service specifications in the various service registries.
As shown in the figure, the query processor is formed by three sub-components,
namely (i) structural, (ii) behavioural, and (iii) constraint matchmakers. Each of
these sub-components is responsible to evaluate a different part of a query.

The service registry intermediary supports the use of different service regis-
tries and the discovery of services stored in different types of registries. It provides
an interface to access services from various registries. The framework allows ac-
cessing services from registries organized as faceted structure, as proposed in the
SeCSE project [33]. More specifically, in the registries, a service is specified by a
set of XML-based facets, namely (i) textual facets, (ii) structural, (iii) behavioural,
(iv) quality of service, and (v) context facets.

To support adaptation of service-based systems, the framework uses service
and application context servers, and service listeners. The service and application
context servers allow the acquisition of context information about the services and
the application environment, respectively. Both context servers accept subscrip-
tions for specific types of context information from the service requester and send
updates when changes in the context of services and the application occur. The
service listener is responsible to send to the service requestor notifications about
new services that become available, or about changes in the descriptions of exist-
ing services. This information is extracted from external service registries through
polling. The notifications are based on subscriptions for specific types of informa-
tion that the service requester has made to the service listener.

The framework assumes constraints in a query to be contextual or non-
contextual. A contextual constraint is concerned with information that changes
dynamically during the operation of the service-based system and/or the services
that the system deploys, while non-contextual constraint is concerned with static
information related to structural, behavioural, and quality aspects of the services

6	 George	 Spanoudakis	 and	 Andrea	 Zisman	 	

and systems. The non-contextual constraints can be hard or soft. A hard constraint
must be satisfied by all discovered services for a query and are used to filter serv-
ices that do not comply with them. A soft constraint does not need to be satisfied
by all discovered services, but are used to rank candidate services for a query. The
contextual constraints are used in the case of adaptation of service-based systems.

The design process supported by the framework is iterative. The process uses
structural and behavioural design models of service-based systems (called SySM and
SyBM, respectively) to support discovery of services that can fulfill the models. The
identified services are used to reformulate the design models and trigger new service
discovery iterations. The behavioural models describe interactions between operations
of a service-based system that can be provided by web services, legacy systems, or
software components, while the structural models specify the types of the parameters
of operations in the behavioural models. In the framework, the structural and behav-
ioural design models are UML class and sequence diagrams, respectively.

Fig. 2: Design Process

Fig. 2 presents an overview of the iterative design process of the framework. As
shown in the figure, queries are specified in reference to the sequence diagrams in
SyBM and the classes and interfaces in SySM, and may include additional constraints
about the required services. These queries are generated by any client application that
is able to produce service discovery queries expressed as UML 2.0 models represented
in XMI (e.g., any CASE tool that supports UML 2.0 and representation of the models
in XMI). Details about the queries are presented in Section 3. The queries are passed
to the service requestor component to be executed (see Fig. 1). The candidate services
identified after the execution of queries by the query processor can be bound to the
SySM and SyBM models by the designers of the system. When this happens, SySM
and SyBM are re-formulated (e.g. by adding message data types and operations of
identified services) and their new versions can be used to specify further queries for
discovering additional services for other parts of the system. Queries may also be re-
formulated and re-executed when the identified services are not adequate. The process
can be terminated by the system designer at any time, when all the required services
have been discovered, or when it is clear that further queries would not be able to iden-
tify services that have a better match with the current design models. Queries may also
include hard and soft constraints expressed in an XML based language that we have
developed (See Section 3).

Designing	 and	 Adapting	 Service-‐based	 Systems:	 A	 Service	 Discovery	 Framework	 7	

The execution time adaptation process supported by the framework allows ser-
vices to be identified based on both pull and push modes of query execution. The
pull mode of query execution is performed to identify services (a) that are initially
bound to a service-based system and their replacement candidate services, (b) as a
first step in the push mode of query execution, (c) due to changes in the context of
an application environment, or (d) when a client application requests a service to
be discovered. The push mode of query execution is performed when the applica-
tion is running and a service needs to be replaced due to any of cases (i)-(iii)
described in Section 1. For the push mode of query execution, the framework as-
sumes a pro-active approach in which services are identified in parallel to the
execution of a service-based system based on subscriptions of application en-
vironment, services, and queries associated with these services, so that replace-
ment services can be identified, when notification of changes in services and ap-
plication environments are pushed to listeners. These notifications are supported
by service and application context servers and service listeners (see Fig. 1).

For both design and adaptation of service-based systems, the service discovery
technique is based on matching between a query and services executed in a two-
phase process. The first phase consists of a filtering phase and the second phase
consists of a ranking phase. In the filtering phase, hard constraints in a query are
evaluated against service specifications and candidate services that comply with
these constraints are identified. In the ranking phase, candidate services identified
in the filtering phase are matched against structural, behavioural, and soft con-
straints in a query based on the computation of distances.

During design of service-based systems, the ranking phase returns n-best serv-
ices for a query (n can be either specified in a query or is equal to ten by default).
The designer selects from these services the ones to be used in the system. During
adaptation of service-based systems, the ranking phase returns the best service for
a query that is used to replace a service in the service-based system. The computa-
tion of the distances differs during the design and adaptation phases. Details of the
computations and their differences are described in Section 4.

3. Query Language

In order to support service discovery queries in the framework, we have devel-

oped an XML-based language named SerDiQueL (Service Discovery Query Lan-
guage [59]). It allows the specification of structural, behavioural, quality, and con-
textual characteristics of services to be identified or of systems being developed.

Fig. 3 presents the overall XML schema of SerDiQueL. As shown in the fig-
ure, a query specified in the language (ServiceQuery) has three elements repre-
senting structural, behavioural, and constraint sub-queries. The division of a query
into these three sub-queries is to (i) allow the representation of these three types of
information, and (ii) support the representation of queries with arbitrary combina-
tions of these types of information. A ServiceQuery element also has a unique
identifier, a name, and one or more elements describing different parameters for a
query. A parameter element is defined by a name and a value. Examples of pa-
rameters that can be used in a query are: (a) name of the query, (b) type of the

8	 George	 Spanoudakis	 and	 Andrea	 Zisman	 	

query (e.g., static, in the case of design of service-based systems or dynamic, in
the case of adaptation of service-based systems), (c) mode of execution (push or
pull), (d) author of the query, and (e) number of services to be returned by a query.

	

	

	

	

	

	

	

Fig. 3: Overview schema of SerDiQueL

3.1. Structural Sub-query

The structural sub-query describes structural aspects of (i) a service-based sys-
tem being developed or (ii) a service participating in a running service-based sys-
tem that needs to be replaced.

The structural sub-queries for case (i) use elements in SySM and SyBM design
models of the system (see Section 2) together with a UML 2.0 profile [25] that we
have developed, and it is represented as XMI documents. The profile defines a set
of stereotypes for different types of UML elements such as messages in sequence
diagrams, or operations and classes defining the types of arguments in the mes-
sages in the class diagrams. For example, messages in a sequence diagram may be
stereotyped as: (1) query messages representing service operations needed in iden-
tified services; (2) context messages representing additional constraints for the
query messages (e.g. if a context message has a parameter p1 with the same name
as a parameter p2 of a query message, then the type of p1 should be taken as the
type of p2); (3) bound messages representing concrete service operations that have
been discovered in previous query executions.

In order to express a query for a service-based system being developed, system
designers select an interaction from the SyBM model of the system and specify
the messages in the interaction that need to be realized by service operations that
are to be discovered (query messages). The designers can also specify the context
messages to impose additional constraints in a query. All messages in an interac-
tion that are not stereotyped are treated as messages irrelevant to the discovery

Designing	 and	 Adapting	 Service-‐based	 Systems:	 A	 Service	 Discovery	 Framework	 9	

process. Based on the selected interactions and messages, structural sub-queries
for a service-based system under development are automatically generated from
the class (SySM) and sequence (SyBM) diagrams.

The description of structural aspects of a service-based system is based on de-
sign models of these systems and supports the representation of operations being
searched in different services together with the representation of the input and
output parameters of these operations and their respective data types. This is im-
portant to assist with the matching of structural aspects of the systems with struc-
tural aspects of available services. Moreover, it supports the development of a
service-based system based on the characteristics of available services instead of
on requirements that may never be able to be fulfilled by existing services.

As an example of the specification of a query for case (i), consider part of the
behavioural and structural design models of a Cell Phone Operator (CPO) system
from the case study used in the book shown in Figures 4 and 5, respectively. As
shown in Fig. 4, the system allows the provision of SMS, voice, and email mes-
sages; request for movies; and payment of these various services by a user of the
CPO. Consider a designer of this service-based system that wants to identify a
service that can provide request and payment of movies. In this case, a designer
wants to find service operations that can provide implementations of the messages

payMovie(phone:PhoneNumber, quantity:Integer):Boolean and
retrieveMovie(phone:PhoneNumber, info:MovieInfo):MovieStream

as specified in the diagram shown in Fig.	 4. The designer creates a query
as a copy of the sequence diagram and attaches the query message stereo-
type to these messages (<<asd_query_message>>). The classes repre-
senting the data types of the parameters of the two query messages, and
all the classes that are directly or transitively related to them, are auto-
matically identified and put together to formulate the structural part of
the query. These classes are shown in

Fig. 5.
The structural sub-queries for case (ii) are represented by the WSDL specifica-

tion of the service to be replaced. In this case, SerDiQueL supports a complete
representation of the structural aspects of a service to be identified as interface de-
scriptions. In the framework, structural sub-queries for a service that needs to be
replaced during execution time are automatically generated based on the notifica-
tion that a service became malfunctioning, unavailable, or there were changes in
the characteristics of the service or in the context of the application environment.

As an example, consider the CPO service-based system described above. As-
sume service SMovie that was found during design time of the system and bound to
the system. Consider SMovie with operations

payment(phone:Number, serviceType:String, amount:Integer):Boolean and
getMovie(phone:Number, title:String, director:String, language:String):Movie

Suppose a user of the CPO service-based system has moved from London to
Shanghai for two months. Consider that the time to retrieve movies using service
SMovie from Shanghai is very slow and, therefore, due to change of context, another
service that provides movies via cell phones with a better performance needs to be

10	 George	 Spanoudakis	 and	 Andrea	 Zisman	 	

identified and replaced in the service-based system. In this case, the structural sub-
query is the WSDL specification of SMovie.

Fig.	 4: Behavioural model of CPO service-based system

Fig. 5: Structural model of CPO service-based system	

The reasons for using UML models enhanced with our UML profile specified
in XMI to represent structural sub-queries during design of service-based systems
are because (a) UML is the de facto standard for designing software systems and can
effectively support the design of service-based systems [10,12], and (b) UML has the
expressive power to represent the design models of service-based systems since it can
represent modeling of software services, legacy code and software components in a

Designing	 and	 Adapting	 Service-‐based	 Systems:	 A	 Service	 Discovery	 Framework	 11	

system. The use of WSDL to represent structural sub-queries in the case of execu-
tion time adaptation of service-based systems is due to its wide acceptance as a
service interface description language. In addition, during execution time of serv-
ice-based systems, any replacement service that might be identified for an existing
service in a system needs to conform to the interface of the existing service.

3.2. Behavioural Sub-query

The behavioural sub-queries need to allow the specification of the (1) exis-
tence of a required functionality, or a sequence of required functionalities, in a
service specification; (2) order in which the required functionalities should be
executed by a service; (3) dependencies between functionalities (e.g. the function-
ality realized by an operation always requires the existence of the functionality of
another operation); (4) pre-conditions; and (5) loops concerning execution of cer-
tain functionalities.

Fig. 6 shows a graphical representation of the SerDiQueL’s XML schema for
specifying behavioural sub-queries. As shown in the figure, a behavioural sub-
query is defined as (a) a single condition, a negated condition, or a conjunction of
conditions, or (b) a sequence of expressions separated by logical operators. A be-
havioural sub-query also specifies requires elements.

Requires elements are used to describe the service operations that need to exist
in service specifications. Every query must describe one or more required service
operations, represented by MemberDescription elements in the query (MemberDe-
scription elements can be used in various conditions and expressions in a query).
A member element has three attributes, namely (a) ID, indicating a unique identi-
fier for the member within a query; (b) opName, specifying the name of a query
message (design phase) or of an operation (adaptation phase) described in the
structural sub-query; and (c) synchronous, indicating if the service operation needs
to be executed in a synchronous or asynchronous mode. The parameters and re-
spective data types of the operations are specified in the structural sub-queries.

The existence of requires elements in service specifications is verified as an
initial step during the execution of a behavioural sub-query rather than during the
evaluation of the conditions and expressions of the query that uses these elements.
This optimizes the query execution process as there is no need to evaluate any
condition or expression that refers to a non-existing requires element.

A condition is defined as a GuaranteedMember, OccursBefore, OccursAfter,
Sequence, or Loop element. A GuaranteedMember represents a member element
(e.g., a service operation) that needs to occur in all possible traces of execution in
a service. This element references requires, sequence, or loop elements. OccursBe-
fore and OccursAfter elements represent the order of occurrence of two member
elements (e.g., Member1 and Member2). Note that in some cases we may require
OccursBefore(m1,m2) whilst in other cases we may require OccursAfter(m1,m2),
or even need to differentiate an OccurBefore condition by attributes such as im-
mediate. Hence both OccursBefore and OccursAfter elements are needed. Fur-
thermore, they have two boolean attributes, namely: (a) attribute immediate, speci-

12	 George	 Spanoudakis	 and	 Andrea	 Zisman	 	

fying if two members need to occur in direct sequence or if there can be other
member elements in between them, and (b) attribute guaranteed, specifying if the
two members need to occur in all possible traces of execution in a service. A Se-
quence element defines two or more members that must occur in a service in the
order represented in the sequence. It has an identifier attribute that can be used by
the GuaranteedMember, OccursBefore, OccursAfter, Sequence, and Loop ele-
ments. A Loop element specifies a sequence that is executed several times.

	

Fig. 6: XML Schema for behavioural sub-query
<tnsb:BehaviourQuery>
 <tnsb:Requires>
 <tnsb:MemberDescription ID="pay" opName="payMovie" syn-
chrounous="true”/>
 <tnsb:MemberDescription ID="retrieve" opName="retrieveMovie"
synchrounous="true" />
 </tnsb:Requires>
 <tnsb:Expression>
 <tnsb:Condition>
 <tnsb:OccursBefore immediate'"false"
 guaranteed="false">
 <tnsb:Member1 IDREF="pay" />
 <tnsb:Member2 IDREF="retrieve" />
 </tnsb:OccursBefore>
 </tnsb:Condition>
 </tnsb:Expression>
</tnsb:BehaviourQuery>

Fig. 7: Example of behavioural sub-query in SerDiQueL

In behavioural sub-queries, expressions are defined as sequences of requires
elements, conjunctions or disjunctions of conditions, or nested expressions con-
nected by logical operators AND and OR. The definition of requires elements
within an expression (E1) enables the specification of queries in which the non-
existence of requires elements in a service should not invalidate its selection, if

Designing	 and	 Adapting	 Service-‐based	 Systems:	 A	 Service	 Discovery	 Framework	 13	

other expressions in the sub-query that are disjointed with expression E1 (i.e., ex-
pressions connected to E1 by logical operator OR) are satisfied by the service.

During the design of service-based systems, the interaction and sequence of
messages selected by the system designers from the SyBM model (stereotyped
query messages and context messages) are represented in SerDiQueL’s behav-
ioural sub-query. In order to illustrate, consider the messages pay-
Movie(phone:PhoneNumber,quantity:Integer):Boolean and retrieve-
Movie(phone:PhoneNumber, info:MovieInfo):MovieStream from the example in
Section 3.1. Fig. 7 shows the description of this behavioural sub-query in Ser-
DiQueL. As shown in the figure, the Requires elements specify the requirement
for the existence of operations payMovie and retrieveMovie, and the OccursBefore
element defines the order of these two operations. Similar and more complex be-
havioural sub-queries can be specified for the execution time adaptation of serv-
ice-based systems. These cases are not shown here due to space limitations.
	
3.3. Constraint Sub-query

A constraint sub-query describes different types of additional conditions,
which must be fulfilled by a service-based system or by its participating services.
These additional conditions may include (a) quality aspects, (b) contextual as-
pects, or (c) extra structural and behavioural aspects that cannot be represented in
the structural and behavioural sub-queries. Examples of these additional condi-
tions are the specification of the time or cost to execute a certain operation in a
service, the receiver of a message, or the provider of a service.

As described in Section 2, a constraint can be classified as contextual or non-
contextual. The non-contextual constraints in a sub-query can be evaluated against
any type of service specification (facet) in the service registries. The contextual
constraints are evaluated against context facets. These context facets are associ-
ated with services and describe context information of the operations in these serv-
ices. Context information is specified as context operations that are executed at
run-time. The framework assumes the existence of context services that provide
context information (see details in Section 4).

A constraint sub-query is defined as a single logical expression, a negated
logical expression, or a conjunction or disjunction of two or more logical expres-
sions, combined by logical operators. A constraint sub-query has four attributes,
namely (a) name, specifying a description of the constraint; (b) type, indicating
whether the constraint is hard or soft; (c) weight, specifying a weight in the range
of [0.0, 1.0]; and (d) contextual, a boolean attribute indicating whether the con-
straint is contextual or non-contextual. The weight is used to represent prioritisa-
tions of the parameters in a query for soft constraints. If the value of the attribute
contextual is true, the query may contain ContextOperand elements.

A logical expression is defined as a condition, or logical combination of condi-
tions, over elements or attributes of service specifications (for non-contextual con-
straints) or over context aspects of service operations (for contextual constraints).
A condition can be negated and is defined as a relational operation (equalTo,

14	 George	 Spanoudakis	 and	 Andrea	 Zisman	 	

notEqualTo, lessThan, greaterThan, lessThanEqualTo, greaterThanEqualTo,
notEqualTo) between two operands, which can be non-contextual, contextual,
constants, or arithmetic expressions.

A non-context operand (see element NonContextOperand) has two attributes:
(a) facetName, specifying the name of the service specification and (b) facetType,
specifying the type of the service specifications to which the constraint will be
evaluated. The operand contains an XPath expression indicating elements and at-
tributes in the service specification referenced in facetName attribute. The con-
straints can be specified against any element or attribute of a facet in the registries.

A contextual operand (element ContextOperand) specifies operations that will
provide context information at runtime. More specifically, a contextual operand
describes the semantic category of context operations instead of the signature of
the operation represented by sub-element ContextCategory. This is due to the fact
that context operations may have different signatures across different services. A
contextual operand is defined by (a) attribute serviceOperationName, specifying
the name of the service operation associated with the contextual operand, and (b)
attribute serviceID, specifying the identifier of a service that provides the opera-
tion. The value of attribute serviceID is specified when the context operand
provides the specification of a context operation of a known service. This is
normally the case when the context operation is associated with a service-based
system for which the value of a context aspect of the system needs to be
dynamically identified during the evaluation of a query (e.g., location of a mobile
device application). In this case, attribute serviceID refers to the service-based
system itself. Otherwise, the value of serviceID is specified as “any”.

A ContextCategory element represents the semantic category of an operation,
instead of its actual signature. It is defined as a relation between two categories
(Category1 and Category2). These categories can be either a reference to a docu-
ment or a constant. A document category (element Document) has an attribute
type indicating if the document is an ontology or a context facet, and contains an
XPath expression referencing elements in the document. In the case of an ontol-
ogy document, an attribute with the URL indicating the location of the ontology
that describes the context operation is used. The language can support different
ontologies for describing context operation categories since it does not make any
assumption of the structure and meaning of the ontologies used, apart from the
fact that the ontologies need to be described in XML. A context category in a
query is evaluated against context facets of candidate services. This evaluation
verifies if a candidate service has a context operation with semantic category that
satisfies the categories in a query.

Arithmetic expressions define computations over the values of elements or at-
tributes in service specifications or context information. They are defined as a se-
quence of arithmetic operands or other nested arithmetic expressions connected by
arithmetic operators. The arithmetic operators are: addition, subtraction, multipli-
cation, and division operators. The operands can be contextual, non-contextual,
constants, or functions. A function supports the execution of a complex computa-
tion over a series of arguments. The results of these computations are numerical
values that can be used as an operand in an arithmetic expression.

Designing	 and	 Adapting	 Service-‐based	 Systems:	 A	 Service	 Discovery	 Framework	 15	

<tnsa:ConstraintQuery name="C1" contextual="true"
 type="SOFT" weight="0.5">
 <tnsa:LogicalExpression>
 <tnsa:Condition relation="LESS-THAN-EQUAL-TO">
 <tnsa:Operand1>
 <tnsa:ContextOperand serviceOperationName="getMovie"
 serviceID="any">
 <tnsa:ContextCategory relation="EQUAL-TO">
 <tnsa:Category1>
 <tnsa:Document location="http://eg.org/CoDAMoS_Extended.xml"
 type="ONTOLOGY">string(/owl:Class/@rdf:ID)
 </tnsa:Document></tnsa:Category1>
 <tnsa:Category2>
 <tnsa:Constant type="STRING">GREDIA_RELATIVE_TIME
 </tnsa:Constant> </tnsa:Category2>
 </tnsa:ContextCategory> </tnsa:ContextOperand> </tnsa:Operand1>
 <tnsa:Operand2>
 <tnsa:Constant type="STRING">SECONDS-60</tnsa:Constant>
 </tnsa:Operand2>
 </tnsa:Condition></tnsa:LogicalExpression>
 <LogicalOperator>AND </LogicalOperator>
 <tnsa:LogicalExpression>
 <tnsa:Condition relation=" EQUAL-TO">
 <tnsa:Operand1>
 <tnsa:ContextOperand serviceOperationName="getMovie"
 serviceID="any">
 <tnsa:ContextCategory relation="EQUAL-TO">
 <tnsa:Category1>
 <tnsa:Document location="http://eg.org/CoDAMoS_Extended.xml"
 type="ONTOLOGY">string(/owl:Class/@rdf:ID)
 </tnsa:Document></tnsa:Category1>
 <tnsa:Category2>
 <tnsa:Constant type="STRING"> GREDIA_LOCATION
 </tnsa:Constant> </tnsa:Category2>
 </tnsa:ContextCategory></tnsa:ContextOperand></tnsa:Operand1>
 <tnsa:Operand2>
 <tnsa:Constant type="STRING">Shanghai
 </tnsa:Constant></tnsa:Operand2>
 </tnsa:Condition></tnsa:LogicalExpression>
</tnsa:ConstraintQuery>

Fig. 8: Example of constraint sub-query

In order to illustrate, consider the replacement of service SMovie in the CPO
service-based system. Assume a contextual constraint specifying that the time to
receive a requested movie while in Shanghai should not be more than 60 seconds.
Fig. 8 shows this constraint in SerDiQueL. The constraint specifies that any can-
didate service that can retrieve movies while the location is Shanghai (i.e., serv-
ices that match operation getMovie() in SMovie) needs to have (a) a context opera-
tion classified in the category GREDIA_RELATIVE_TIME in ontology
http://eg.org/CoDAMos_Extended.xml with the result of executing this operation
being less than or equal to SECONDS-60, and (b) a context operation classified in
the category GREDIA_LOCATION in the ontology with the result of executing
this operation being equal to Shanghai, for this service to be accepted. Other con-

16	 George	 Spanoudakis	 and	 Andrea	 Zisman	 	

textual and non-contextual constraints can be described in SerDiQueL during de-
sign or adaptation of service-based systems.
	
4. Query Execution and Matching Process

In both design and adaptation of service-based systems, matchings between

queries and services are executed by the query processor (see Fig. 1) in a two-
phase process. In the first phase, the query processor searches service registries in order
to identify services that satisfy the hard constraints of a query based on exact matchings
(filtering phase). In the second phase, candidate services identified in the filtering phase
are matched against the structural, behavioural, and constraints sub-queries, and the best
candidate services for the query are identified (ranking phase).

The ranking phase is executed based on the computation of partial distances,
namely structural, behavioural, soft non-contextual, and contextual distances
when applicable (i.e., execution time adaptation). The partial distances computed
between services and a query are aggregated into an overall distance which is then
used to select the best services for a query.

The structural matching between a query and a service is performed by comparing
(i) the signatures of query messages in the structural model of a service-based sys-
tem against the signatures of the operations of WSDL specifications of candidate
services, during the design of service-based systems; or (ii) the signature of the
operations in the WSDL specification of a service that needs to be replaced in a
service-based system against the signature of the operations of WSDL specifica-
tions of candidate services, during adaptation of service-based systems. In both
cases, the structural matching is based on the comparison of graphs representing
the data types of the parameters of the operations and the linguistic distances of
the names of operations and parameters.

The behavioural matching between a query and a service is performed by
comparing the behavioural specification of the services and the behavioural sub-
query. In this case, the behavioural specifications of the service and the behav-
ioural sub-query are converted into state machine models and distances between
these state machines are calculated based on similarities of these state machines.

The soft constraint matching (contextual and non-contextual) between a query
and a service is performed by analysing the conditions in the constraint part of a
query against service specifications.

There may be some differences in the execution process of a query. These dif-
ferences are due to the lack of hard, behavioural, and soft contextual and non-
contextual constraints in a query, or any combinations of these constraints2. In
cases where there are no hard constraints in a query, the filtering phase is not exe-
cuted and partial distances are calculated for all the services in registries. Also if

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2	 Note that during the design of service-based systems, it is not possible to con-
sider contextual constraints in a query.	

Designing	 and	 Adapting	 Service-‐based	 Systems:	 A	 Service	 Discovery	 Framework	 17	

there are no behavioral or soft constraints in a query, the computation of the rele-
vant partial distances is bypassed and the overall distance is computed by using
only the partial distances of the types of constraints specified in a query. Note that
structural constraints are always present in a query and, therefore, distances based
on these constraints are always calculated. This is because during design of serv-
ice-based systems the signatures of the types of operations to be found in services
need to be specified, while during adaptation of service-based systems it is ex-
pected to have at least a WSDL description of a service to be replaced.

Other differences in the execution process of a query exist in the case when a
query is to be performed to support design or adaptation of a service-based sys-
tem. This difference is mainly concerned with the structural and behavioural
matching processes. More specifically, during the design of a service-based sys-
tem, the structural and behavioural matching processes are flexible allowing the
identification of services whose structure and behaviour characteristics have dif-
ferent degrees of similarity to those of a required service, and behaviour match-
ings with alternative or missing mappings between a required service and an exist-
ing service. The flexibility and alternative/missing mappings contribute to the re-
formulation of the design models of the service-based system under development
and to the design of service-based systems based on characteristics of existing ser-
vices. However, during adaptation of a service-based system, the structural and
behavioural matching process requires matches with services that can be used to
substitute services in a system without disturbing the rest of the system. Therefore,
in this case, for structural matching, it is necessary to guarantee that the input in-
formation for invoking the service that needs to be replaced in the system (S)
cover the input information needed by the candidate service (S’) and that the in-
formation produced by S’ covers the information expected from S. For behav-
ioural matching, the order of the different functionalities to be executed by a serv-
ice needs to be preserved. Furthermore, during execution time adaptation of
service-based systems, the execution process of a query also differs for push or
pulls modes. Details of the ways of executing a query are presented below.

4.1 Query Execution for Design of Service-based Systems

The execution of specified queries to identify services during the design of a
service-based system includes the filtering and ranking phases discussed above.
During filtering phase, query execution is based on checking the satisfiability of
the hard constraints specified as part of the query by the different services that ex-
ist in various service registries.

During ranking phase, the execution of queries is based on finding the best
possible 1-1 mapping between the service operations required by a query and the
operations provided by different services returned by the filtering phase or in the
service registries. The search for the best possible match is treated as an instance
of the assignment problem, i.e., for each of the alternative total 1-1 mappings (M)
of required operations (RO) on to service operations (SO), a total aggregate dis-
tance is calculated from distances between the individual (RO, SO) pairs that con-
stitute M (in such pairs RO is a required query operation and SO is an operation

18	 George	 Spanoudakis	 and	 Andrea	 Zisman	 	

offered by some service). The mapping that has the minimum aggregate distance
is selected as the final outcome of the process. In this process, the distance be-
tween a pair of required and service operations (RO, SO) is computed as weighted
sum of three partial distances between RO and SO, namely the structural, behav-
ioural and soft non-contextual constraint distances. Fig. 9 presents the structural
(dSTR), behavioural (dBEH), and soft constraint (dSOFTC) distances.

The structural distance between a required and a service operation is computed
by considering a linguistic distance between the names of these operations, and
distances between their input and output parameters. The linguistic distance be-
tween two operation names (see function dLING in Fig. 9) is computed as the ratio
of tokens in the names of the two operations, for which there is no token in the
other operation having a semantic relation with it in WordNet, or being identical
to it (the tokenization that precedes the computation of this distance assumes that
capital letters within operation names indicate the start of new tokens).

The distance between the input (output) parameters of two operations is based
on finding the best possible morphism between the structures of the data types of
these parameters. The computation of this morphism is based on graphs represent-
ing the input (output) parameters of the relevant operations. These graphs are for-
mulated by a special starting node with outgoing edges which are labeled by the
names of the input (output) parameters of the relevant operation and pointing to
nodes representing the types of these parameters. Furthermore, for each of the in-
put (output) parameter types T, the graph includes an edge starting from the node
representing T and ending at a node representing the type of the attribute. These
edges are labeled with the name of the relevant attributes whilst the nodes of the
graph are labeled with the names of the relevant data types. If the type of an at-
tribute is not a primitive one, the same construction process is followed until at-
tributes with primitive data types are reached.

Following the construction of the graph, the structural distance between two
parameter sets is computed according to the distance dSTR defined in Fig. 9. This
distance is computed by finding the morphism between the edges of the graphs
representing the input(output) parameters of the two operations which have the
minimum aggregate distance. The latter distance is computed as the linguistic dis-
tance between the names of the two edges under comparison and the names of
their source and destination nodes.

As an example of computing the signature distance between two operations,
consider the operation payMovie(phone:PhoneNumber, quantity:Integer):Boolean
in Fig. 4 and the operation payment(phoneNumber: String, serviceType: String,
amount:Integer): Boolean. The linguistic distance between the names of these two
operations will be dLING(“payMovie”, “payment”)) = 1/3 = 0.333 since the names
of the two operations are tokenized into the sets {“pay”, “movie”} and {“pay-
ment”} and the token “movie” in the first of these sets has no semantic relation
with any of the tokens in the second set whilst the tokens “pay” and “payment”
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3	 In the computation of signature distances we assume that w1=w2=w3=1.

Designing	 and	 Adapting	 Service-‐based	 Systems:	 A	 Service	 Discovery	 Framework	 19	

Fig.	 9:	 Distance functions used in execution of design service discovery queries

have a semantic relation with each other (as “payment is the noun of the verb
“pay”). Furthermore, the distance between the input parameters and the output pa-
rameters of these operations is dPS(In(payMovie),In(payment))=(2+0.11)/4=0.527
and dPS(Out(payMovie), Out(payment))=0/4=0. These distances are computed on

OPERATION	 DISTANCE:	
d	 (RO,SO)	 =	 wS*dSTR(RO,	 SO)	 +	 	 wB*dBEH	 (RO,	 SO))	 +	 wSC*dSOFTC(RO,	 SO)	
STRUCTURAL	 DISTANCE:	
dSTR	 (RO,SO)	 =	 wN*dLING(name(RO),	 name(SO))	 +	 	 wI*dPAR	 (In(RO),In(SO))	 +	 wO*dPAR(Out(RO),	 	
	 Out	 (SO))	
where	
• In(O)	 (Out(O))	 is	 the	 set	 of	 the	 input	 (output)	 parameters	 of	 O	

LINGUISTIC	 DISTANCE:	
dLING(S1,	 S2)	 =	 	 N1	 +	 N2	 /	 N	
where	
• N1	 (N2)	 is	 the	 number	 of	 tokens	 in	 S1	 (S2)	 which	 have	 no	 common	 synonym	 with	 a	 token	 in	 S2	 (S1)	
• N	 total	 number	 of	 tokens	 of	 S1	 and	 S2	 	 	

PARAMETER	 DISTANCE:	
dPS(P1,P2)	 =	 	 MIN	 M	 ∈	 Morphisms(Edges(P1),	 Edges(P2))	 {(∑	 (e1,e2)	 ∈	 m	 dE(e1,e2)	 +	 #Edges(P1)-‐non-‐in-‐M	 +	 	 #Edges(P2)-‐non-‐in-‐M)	 /	

max(#Edges(P2),	 #Edges(P1))	 }	
where	
• Edges(P1)	 (Edges(P2))	 is	 the	 graph	 formulated	 to	 represent	 the	 data	 types	 of	 the	 parameters	 in	 P1	
(P2)	

• #Edges(Pi)	 is	 the	 number	 of	 edges	 in	 the	 graph	 to	 represent	 the	 data	 types	 of	 the	 parameters	 in	 Pi	
• Morhisms(Edges(P1),	 Edges(P2))	 is	 the	 set	 of	 all	 the	 possible	 morphisms	 between	 the	 edges	 of	 the	
graph	 representing	 P1	 and	 the	 edges	 of	 the	 graph	 representing	 P2	 that	 covers	 the	 graph	 with	 the	
fewer	 edges	

• dE(e1,e2)	 	 =	 w1.dLING(name(e1),	 name(e2)	 +	 w2.dLING(name(sourceNode(e1)),	 name(sourceNode(e2)))	 +	 	
w3.dLING(name(destNode(e1),destNode(e2))	 /(w1	 +	 w2	 +	 w3)	

BEHAVIOURAL	 DISTANCE:	
dBEH(RO,	 SO,	 k)	 =	 1	 if	 transitions(SMSO)=∅	 or	 transitions(SMRO)=∅	
dBEH(RO,	 SO,	 k)	 =	 MINM	 ∈	 Morphs(≤K)(SMRO,	 SMSO)	 	

(∑	 (t,	 t’)	 ∈	 M	 dSIG(operation(t),operation(t’))	 +	 #transitions(SMRO)-‐non-‐in-‐M	 +	 	 #transi-‐
tions(SMQO)-‐non-‐in-‐M)	 /(MAX(length(SMRO),length(SMQO))	 	 if	 	 transitions(SMSO)≠∅	
and	 transitions(SMRO)	 ≠∅	

where	
• SMQO	 is	 the	 state	 machine	 formulated	 by	 the	 behavioural	 conditions	 of	 the	 behavioural	 conditions	 of	
the	 query	 containing	 RO	

• SMRO	 is	 the	 state	 machine	 of	 the	 service	 offering	 the	 operation	 RO	
• Morphs(≤K)(SMRO,	 SMQO))	 is	 the	 set	 of	 all	 the	 possible	 1-‐1	 mappings	 between	 the	 transitions	 of	 two	 paths	
p	 and	 q	 in	 SMRO	 and	 SMQO	 that	 preserve	 the	 ordering	 of	 the	 transitions	 within	 these	 paths	 (i.e.	 ,	 for	 all	
transitions	 ti	 and	 tj	 in	 p	 such	 that	 ti	 p	 tj	 it	 also	 holds	 that	 m(ti)	 q	 m(tj))	 and	 leave	 up	 to	 K	 transitions	 in	 p	
or	 q	 without	 counterparts	

• Length(SMRQ)(length(SMQO))	 is	 the	 length	 of	 the	 longest	 path	 of	 transitions	 in	 SMRQ(SMQO)	
SOFT	 CONSTRAINT	 DISTANCE:	 	
dSOFTC(RO,	 SO)	 =	 ∑	 C	 ∈	 SOFT-‐CONSTRAINTS(RO)	 wC	 ×	 not-‐satisfied(C)	 /	 ∑	 C	 ∈	 SOFT-‐CONSTRAINTS(RO)	 wC	
where	
• SOFT-‐CONSTRAINTS(RO)	 is	 the	 set	 of	 soft	 constraints	 in	 the	 query	 which	 apply	 to	 RO	
• wC	 is	 a	 weight	 expressing	 the	 significance	 of	 the	 constraint	 C	 for	 	 RO	 (wi	 >0),	
• not-‐satisfied(C)	 =	 1	 if	 the	 constraint	 Ci	 is	 not	 satisfied	 by	 So,	 or	 0	 otherwise.	 	 	

	

	

20	 George	 Spanoudakis	 and	 Andrea	 Zisman	 	

the basis of the graphs representing the structures of the relevant parameters,
which are shown in Fig. 10.

Fig. 10: In/Out Parameter graphs for PayMovie and Payment operations

More specifically, the distance between the input parameters of the two opera-
tions is 0.527 as there are two edges of the input graph of payMovie that have not
been mapped onto any edges of payment (i.e., phone and areaCode), one edge of
the input graph of payment that has not been mapped onto any edges of payMovie
(i.e., serviceType) and two pairs of edges which have been mapped (i.e., quantity
onto amount and number onto phoneNumber). The reason for mapping the edges
quantity and number of the input parameter graph of payMovie onto the edges
amount and phoneNumber of the input parameter graph of payment is because any
alternative mapping would result in higher aggregate distance between the two
graphs. The distance between the edge amount of payment and the edge phone of
payMovie, for example, would be 0.75 as the names of the two edges as well as
the names of their destination nodes do not have any semantic relation and there-
fore the linguistic distances between them are equal to one in both cases. Similarly
the distance between the output parameters of the operations payMovie and pay-
ment is equal to zero as the two operations have the same output type.

The behavioural distance between a required query operation and a service op-
eration (see function dBEH(RO,SO, k) in Fig. 9) is computed by matching a state ma-
chine representing the behavior of the interface that defines the operation in a
query and the state machine of the service that provides a candidate operation for
the query. The state machine of the interface that defines the required operation in
the query is generated automatically from the query itself. The details of this gen-
eration are beyond the scope of this chapter and are given in [40]. It should be
noted, however, that this state machine always has a single path. Given these two
state machines, the behavioural distance between two operations is computed by
finding the best possible match between the single path p of the state machine of

	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	

	 	
	 	

Start	 (In)	
 	

PhoneNumber	
 	 Integer	

 	
d	 LING	 (N)	 = 0.33, d	 LING	 (S)	 = 0,	 d	 LING	 (D)	 = 0	 	

phone	
 	

String	
 	

areaCode	
 	 number	

 	

Start	 (In)	
 	

Integer	
 	

amount	
 	

String	
 	

phoneNumber	
 	

d	 LING	 (N)	 = 0, d	 LING	 (S)	 = 0, d	 LING	 (D)	 = 0	 	
quantity	

 	

Start	 (Out)	
 	

Boolean	
 	

out	
 	

Start	 (Out)	
 	

Boolean	
 	

out	
 	

d	 LING	 (N)	 = 0, d	 LING	 (S)	 = 0, d	 LING	 (D)	 = 0	 	

d	 LING	 (N)	 = d	 LING	 (name(edge1), name(edge2))	
 	 d	 LING	 (S)	 = d	 LING	 (name(source(edge	 1)), name(source(edge2)))	

 	
d	 LING	 (D)	 = d	 LING	 (name(destination(edge1)), name(destination(edge2)))	

 	
 	

IN 	
parameters	 	 graphs	 	

OUT 	
parameters	

 	 graphs	 	

serviceType	
 	

Designing	 and	 Adapting	 Service-‐based	 Systems:	 A	 Service	 Discovery	 Framework	 21	

the query operation and the different paths of the state machine of the service
(SMSO). In the search for this match the individual transitions of p are mapped
onto transitions of all different paths q of SMSO. This mapping is constrained to
preserve the order of the transitions in p and SMSO, i.e., for all transitions ti and tj in p
such that ti p tj if ti and tj are mapped onto m(ti) and m(tj) of a path q in SMSO respec-
tively it should also hold that m(ti) q m(tj)4. Furthermore the possible mappings m be-
tween p and different paths q in SMSO are constrained to leave up to k transitions of p
and q without a counterpart. Hence, the parameter k takes an integer value that controls
the flexibility of the behavioural matching process. Given all the possible mappings m
between p and SMSO that satisfy these constraints, dBEH(RO, SO,k) is computed by
finding the mapping m’ that has the minimum aggregate transition distance. This dis-
tance is computed as the ratio of the sum of the signature distances between the oper-
ations that label the pairs of mapped transitions and the number of the non-mapped tran-
sitions of p and q, over the length of the longest of the two paths p and q.

Fig. 11: State machines for payMovie and payment operations

As an example of the computation of dBEH(RO, SO,k) consider the state machines for
the query and service in Fig. 11. Given these state machines the path morphism with the
the lower aggregate distance between the two machines is the one that maps the path
(payMovie→ retrieveMovie) of the state machine of the query onto the path (payment
→getMovie) of the state machine of the service. The behavioural distance resulting from
this mapping would be:

dBEH(RO,SO, 0) = (dSTR(payMovie,payment) + dSTR(retrieveMovie,getMovie)) / 2

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
4	 P is a relation indicating the order of transitions in path P and Q is a relation indicating
the order of transitions in an SMSO path Q.

22	 George	 Spanoudakis	 and	 Andrea	 Zisman	 	

 = ((dLING(name(payMovie),name(payment)) +
 dSTR(In(payMovie),In(payment)) +
 dSTR(Out(payMovie),Out(payment)))/3) +
 (dLING(name(retrieveMovie),name(getMovie) +
 dSTR(In(retrieveMovie),In(getMovie)) +
 dSIG(Out(retrieveMovie),Out(getMovie)))/3))/2

 = ((0.33 + 0.66 + 0)/3 + (0 + 0.744 + 0.33)/3) /2 = 0.344
It should be noted that other mappings between paths of these state machines are

either not valid as they do not preserve the order of transitions (e.g., the mapping of
(payMovie→ retrieveMovie) onto (getMovie →payment)) or would not result in a mini-
mum distance (e.g., the mapping (payMovie→ retrieveMovie) onto (reserveMovie
→payment)).

4.2 Query Execution for Adaptation of Service-based Systems

During adaptation of service-based systems, the framework can execute que-

ries in both pull and push modes. In the pull mode of query execution, the query
requestor invokes the query processor to execute a query. The query processor ex-
ecutes the query and maintains services whose distance from the query does not
exceed a specific threshold. The set of maintained services is sorted in ascending
distance order and returned to the client application for further action.

In the push mode of query execution, the client application subscribes to the
framework the services it deploys and a query for each of these services. Based on
a subscribed query Q for a service S in the service-based system, the framework
retrieves a set of possible candidate services that could replace S (if necessary).
These candidate services are initially identified by executing the query as in the
pull mode. To allow a pro-active service discovery process, the framework main-
tains an up-to-date version of the set of candidate services for a service S as
changes in the descriptions and context of the services and/or the environment of
the application are notified to the framework through the context servers and serv-
ice listeners (see Fig. 1). The up-to-date set of candidate services is maintained in
parallel to the execution of a service-based system and includes only services
whose overall distance from the query subscribed for S does not exceed a given
threshold. The services are sorted in ascending distance order in the set.

In the framework, the replacement of S in a service-based system may not take
place right after modifications occur in the set of candidate services for S. This is
because an immediate replacement might be inappropriate as, for example, in cas-
es where service S is executing some transactions on behalf of the application, at
the time when a new better service is found. The decision to stop the execution of
the application in order to replace a service for which a better alternative service
has been found is based on replacement policies. Details about the replacement
policies used in the framework can be found in [26].

The distance threshold for a candidate service is specified in a query by the
value of the query element Parameter, as discussed in Section 3. When a threshold
is not specified, the framework uses a default value of 0.5.

Designing	 and	 Adapting	 Service-‐based	 Systems:	 A	 Service	 Discovery	 Framework	 23	

The push mode of query execution covers four different cases. These are the
cases where: (a) a service S in the system becomes malfunctioning or unavailable
(Case A); (b) there are changes in the structure, functionality, quality or context of
any service in the set of candidate services for S or in S (Case B); (c) there are
changes in the context of the service-based system environment (Case C); or (d)
new services become available or existing services have their characteristics modi-
fied (Case D). In the following, we discuss the push execution mode for each case.
Case A: In this case, service S is replaced by the first service in the set of candi-

date services. By virtue of the process of maintaining this set, the first service
in the set is guaranteed to have the smallest distance to query Q associated
with S. Following the replacement, S is removed from Set_S.

Case B: In this case, service S can be either a service in the service-based system
or a service in the set of candidate services for a service in the system. Service
S is evaluated against query Q to verify if it still matches the query. The new
overall distance between Q and S is calculated. If S was a candidate replace-
ment service and the distance between S and Q is below the threshold distance,
S remains in the set of candidate services. The position of S in the set of candi-
date services may change, however. If S becomes the best replacement service
in the set, S will replace a service in the system when the replacement policy
permits. Otherwise, if the distance between S and Q is above the threshold, S is
removed from the set of candidate services. If S is a service currently deployed
by the service-based system, but is no longer the best option based on its new
distance with Q, S is replaced by the first service in the set of candidate serv-
ices, when the replacement policy permits the change.

Case C: In this case, a value in a context constraint in query Q is modified and a
new query Q’ needs to be created to reflect the new context value. The service
S associated with Q that is currently bound to the system needs to be evaluated
against the new context constraint in Q’. If S does not match the new query Q’,
the services in the set of candidate services are evaluated against Q’ and a new
set of candidate services may be generated. This is necessary for identifying a
service S’ that best matches Q’ and bind it to the system, as soon as possible,
so that the system can continue its execution, while the framework tries to find
new services that match Q’ in the service registries. Following the use of S’,
the framework will do an exhaustive search in registries (pull mode) to update
the set of candidate services based on Q’. The same search will be executed
when there are no services in the current set of candidate services that match
Q’. After updating the set of candidate services, if there is a service that is bet-
ter than S’, this service will replace S’ subject to the replacement policy.

Case D: In this case new services may appear in registries for the first time, or the
descriptions of existing services in the registries that did not initially match a
query Q change. After being notified of a new service S, or updated service
descriptions for S, the framework evaluates S against each subscribed query Q
for each service deployed in the service-based application. Depending on the
distance value between S and the queries, S may be included in a set of candi-
date services for a service in the system or replace a service in the application,
depending on the replacement policy for this service.

24	 George	 Spanoudakis	 and	 Andrea	 Zisman	 	

In any of the above cases for push mode, or in the case of pull mode of query
execution, the ranking phase of the matching process between a service and a
query is executed in three substages. In the first of these substages, the structural
and behavioural parts of a query are evaluated against candidate services and a
structural-behavioural partial distance between each of the services and the query
is computed. In the second substage, the soft non-contextual constraints of a query
are evaluated against the set of candidate services and a soft non-contextual partial
distance is computed for each candidate service. Finally, in the third substage, the
contextual constraints of a query are evaluated against the candidate services and a
contextual partial distance is computed for each candidate service. At the end, the
partial distances computed for each service are aggregated into an overall distance
between each service and the query and the service for which this distance is be-
low a threshold are maintained. Fig. 12 presents the overall distance and partial
structural-behavioural distance. The soft contextual and non-contextual partial
constraint distances are the same as the soft constraint distance shown in Fig.	 9.

The structural evaluation of a query against services is executed by comparing
operations in the structural sub-query with operations in structural specifications
of services expressed in WSDL based on the comparison of graphs of the data
types of the parameters of the operations and linguistic distances of the names of
the operations and parameters. The graphs of the data types of the parameters are
constructed as presented in Section 4.1. The matching process uses a variant of the
VF2 algorithm for detecting graph morphisms that we have previously developed
for linear composition of static service discovery [55].

More specifically, a query operation Qop having an input parameter data type
graph ITGQop and an output parameter data type graph OTGQop matches a service
operation Sop having an input parameter data type graph ITGSop and an output pa-
rameter data type graph OTGSop, if ITGSop is a sub-graph of ITGQop and OTGQop is
a sub-graph of OTGSop. In other words, a candidate service operation Sop matches
a query operation Qop, if the data types of its input parameters are super-types of
the input parameters of the query operation, and the data types of its output pa-
rameters are subtypes of the output parameters of the query operation. This is
necessary for adaptation to guarantee that the input information assumed for
invoking Qop will cover the input information needed by Sop, and the output
information produced by Sop will cover the output information expected from
Qop. After computing the structural distance for each pair of query and service op-
erations in a query Q and a service S, the framework identifies all the possible
mappings between the operations in Q and operations in S in which each operation
in Q is mapped onto a single operation in S.

For each of these mappings, the framework computes the behavioural distance
between the mapped service and query operations based on the comparisons of
paths representing the behavioural sub-query and behavioural service specifica-
tion. More specifically, the behaviour matching is executed by (i) transforming
behavioural service specifications into state machines, (ii) extracting all the possi-
ble paths from the generated state machine, (iii) transforming the behavioural sub-
query into paths, and (iv) verifying if the path representing the behavioural sub-
query can be matched against a path of the state machine of a service.

Designing	 and	 Adapting	 Service-‐based	 Systems:	 A	 Service	 Discovery	 Framework	 25	

When a path representing the behavioural sub-query can be matched with a
path in the state machine of a service, the behavioural distance for each pair of
mappings of query and service operations in these paths is set to zero. Otherwise,
the behavioural distance for each pair of mappings of query and service operations
in these paths is set to one. After computing the structural and behavioural dis-
tances for all pairs of query and service operations in all possible operation map-
pings, the framework selects the mapping that has the minimal value for all the
pairs divided by the number of operations in the query.

OVERALL	 DISTANCE:	
OD	 (Q,	 S)	 =	 (dSTR_BEH(Q,	 S)	 +	 	 dNCON	 (Q,	 S)	 +	 dCON(Q,	 S))	 /	 N	
where	 N	 is	 the	 number	 of	 computed	 partial	 distances	

STRUCTURAL_BEHAVIOUR	 DISTANCE:	
dSTR_BEH	 (Q,S)	 =	 Min	 (SUM	 (dSB(Qopi,	 Sopj)	 /n)	 	
where	
• dSB(Qopi,	 Sopj)	 =	 (dS(Qopi,	 Sopj)	 	 +	 dB(Qopi,	 Sopj))	 /	 2;	 1	 <=	 I	 <=	 n;	 1	 <=	 j	 <=	 m;	

• n	 is	 the	 number	 of	 operations	 in	 Q;	

• m	 is	 the	 number	 of	 operations	 in	 S;	

• dS(Qopi,	 Sopj)	 	 is	 the	 structural	 distance	 between	 an	 operation	 in	 Q	 and	 an	 operation	 in	 S	
• dB(Qopi,	 Sopj)	 is	 the	 behavioural	 distance	 between	 an	 operation	 in	 Q	 and	 an	 operation	 in	 S	

dS(Qopi,	 Sopj)	 =	 (dLING(Qopi,	 Sopj)	 +	 dIN(Qopi,	 Sopj)	 +	 dOUT(Qopi,	 Sopj))	 /	 3	
where	
• dLING(Qopi,	 Sopj)	 is	 calculated	 as	 in	 Fig.	 9	

• dIN(Qopi,	 Sopj)	 =	 #UnMap_Edges(IN_Graph)	 /	 #Edges(IN_Graph)	

• dOUT(Qopi,	 Sopj)	 =	 #UnMap_Edges(OUT_Graph)	 /	 #Edges(OUT_Graph)	

dS(Qopi,	 Sopj)	 =	 0	 if	 path	 in	 the	 state	 machine	 of	 a	 behavioural	 sub-‐query	 can	 be	 mapped	 to	 a	 path	 in	 the	 stet	

machine	 of	 behavioural	 specification;	

dS(Qopi,	 Sopj)	 =	 1	 if	 path	 in	 the	 state	 machine	 of	 a	 behavioural	 sub-‐query	 cannot	 be	 mapped	 to	 a	 path	 in	 the	
state	 machine	 of	 the	 behavioural	 specification;	

Fig. 12: Distance functions used in execution of service discovery queries	

As in the case of design of service-based systems, the evaluation of soft (non-
contextual) constraints is executed by assessing constraint expressions in the con-
straint sub-queries against service specification facets. This evaluation takes place
by retrieving the values of the XPath expressions from service specification facets
and assessing arithmetic, relational and logical expressions that define the con-
straint using these values. The result of this evaluation is a binary value indicating
whether a specific constraint is satisfied (0) or not (1). Based on the evaluation of
individual constraints, a weighted soft (non-contextual) constraint partial distance
is calculated (see soft constraint distance shown in Fig. 9).

The evaluation of contextual constraints is based on the work described in
[39]. Context constraints are evaluated against context facets of candidate serv-
ices. This evaluation is concerned with the runtime execution of context opera-
tions defined in the constraint sub-query and the comparison of the results of the
execution of these operations with the value specified in the constraint. In the
framework, context information is provided by context operations, which are as-

26	 George	 Spanoudakis	 and	 Andrea	 Zisman	 	

sociated with service operations and executed at runtime. Our work assumes the
existence of context services that provide context information. These context serv-
ices provide context operations that are dynamically executed in order to generate
context values associated with the context operations. A service operation may
have one or more context operations. A context operation may be related to one or
more service operations, or a whole service-based application.

The context operations associated with a service are specified in context facets
represented in XML format. A context facet specifies the service to which the
facet is associated and the context operations available for this service based on
semantic categories defined in terms of ontologies. In the current version of the
framework we use an extended version of the CODAMOS ontology [8], as shown
in the example of Fig. 8. However, the approach does not impose any restriction
on the form of ontology used to describe semantic categories, as long as the ontol-
ogy is specified in XML.

 Op1 Op2 Op3 DSB
 dS dB dSB dS dB dSB dS dB dSB

payment 0 1 .5 C1
getMovie .8 1 .9

.7

payment 0 0 0 C2
getMovie 0 0 0

.0

payment 0 0 0 C3
getMovie .53 0 .26

.13

payment .8 1 .9 C4
getMovie .8 1 .9

.9

payment .8 1 .9 C5
getMovie 0 1 .5

.7

payment .8 1 .9 C6
getMovie .53 1 .26

.58

payment .8 1 .9 C7
getMovie .8 1 .9

.9

payment .8 0 .4 C8
getMovie 0 0 0

.7

payment .8 1 .9 C9
getMovie .53 1 .76

.83

Fig. 13: Structural and behavioural distances for all mapping combinations

The evaluation of a contextual constraint results in a binary value indicating
whether the constraint is satisfied (0) or not (1) and the computation of a weighted
contextual constraint partial distance between a query and a service.
To illustrate the query execution process and the computation of distance for exe-
cution time adaptation, consider the example in which a user of CPO service-
based system has moved temporarily to Shanghai. In this case, due to change in
the location (context) of the application’s environment (Case C above), service
SMovie does not match the new context constraint and a service that matches the
constraints need to be identified. Suppose that Q1 is a query describing the service
that needs to be identified to replace SMovie with the following characteristics:

Designing	 and	 Adapting	 Service-‐based	 Systems:	 A	 Service	 Discovery	 Framework	 27	

(a) the structural sub-query is the WSDL description of SMovie with operations
payment(phone:Number, serviceType:String, amount:Integer):Boolean and
getMovie(phone:Number, title:String, director:String, language:String):Movie

(b) the behavioural sub-query states that operation payment() needs to be executed
before operation getMovie(), similar to the query in Fig. 7;

(c) the constraint sub-query as described in Fig. 8.
Consider SMovieNew a service in the set of candidate services for SMovie that

matches the contextual constraint of Q1 and has overall distance with Q1 below
the expected threshold. Assume SMovieNew with the operations below and a state
machine in which Op1 is executed before Op3 and Op3 is executed before Op2
(Op1 → OP3 → Op2).
Op1: payment(phone:Number, serviceType:String, amount:Integer):Boolean
Op2:getMovie(phone:Number,title:String,director:String,language:String):Movie
Op3:listRelatedMovies(phone:Number,title:String,director:String,language:String

):String
Fig. 13 shows the structural (dS) and behavioural (dB) distances for all possible

combinations of mappings of pairs of operations in Q1 (dSB) and SMovieNew and the
structural_behavioural distance (DSB) for each combination. As shown in this fig-
ure, the behavioural distances for the mappings in combinations 2, 3, and 8 are ze-
ro, since in these combinations the mappings of the query and service operations
guarantee the order specified by the behavioural condition in the query. More spe-
cifically, in combination 2, the query operation payment is mapped to service op-
eration Op1, the query operation getMovie is mapped to service operation Op2,
and Op1 occurs before Op2 in the state machine of the service. Similar situations
occur in (a) combination 3, in which payment is mapped to Op1, getMovie is
mapped to Op3, and Op1 occurs before Op3 in the state machine of the service;
and (b) combination 8, in which payment is mapped to Op3, getMovie is mapped
to Op2, and Op3 occurs before Op2 in the state machine of the service. In all other
combinations, the behavioural distances are set to 1 since the service operations
mapped to payment and getMovie query operations do not preserve the order spe-
cified by the behavioural condition of the query. For example, in combinations
C4, C7, and C6, payment is mapped to a service operation that occurs after the
service operation to which query operation getMovie is mapped. In this example
the best mapping is the one corresponding to combination 2.

5. Discussion

The framework that we have presented in the preceding sections provides a
common basis for supporting both design time and execution time adaptation of
service-based systems based on service discovery.

In particular, the discovery of services during the design of service based sys-
tems needs to be compatible with established system design specification lan-
guages and processes. This means that it should enable the specification of service
discovery queries in ways that are conceptually close to design specification lan-
guages in order to make it easy to specify the discovery queries during the design
phase of the software development life cycle and derive discovery conditions for

28	 George	 Spanoudakis	 and	 Andrea	 Zisman	 	

the services to be discovered from design models. Furthermore, it should be possi-
ble to create representations of the discovered services in the same language that
has been used to specify the design model which has driven their selection, and in-
tegrate the representations of the services that the designers decide to use consis-
tently into these models.

It should also be noted that, from a matching point of view, the discovery
process should be able to offer varying degrees of flexibility as such degrees
might be appropriate and required at different stages of the system design process
depending on the maturity of the ongoing design model. In early stages of the sys-
tem design process, for instance, it is very likely to require a high degree of
matching flexibility in discovery in order to ensure that no services which could
be potentially useful for a system are missed due to strict matching. Later in the
design process, however, when the design model of a system is more likely to
have taken a rather elaborate and stable form, the degree of flexibility in matching
may need to be reduced in order to ensure that the key assumptions of the design
model and the constraints that it defines for the system are preserved by any of the
services that can be located through the discovery process. In general, the degree
of matching flexibility correlates negatively with the maturity of the design model:
the more mature the design model less flexibility is required and vice versa.

The discovery framework that we have presented in this chapter addresses
these requirements as it supports the graphical specification of service discovery
queries in reference to design models of service based systems expressed in UML,
the automatic expansion of these queries with parts of the specification of the de-
sign model which are relevant to the required services, the transformation of the
expanded queries into queries that are expressed in a common executable query
language, the execution of the queries, and the transformation of the descriptions
of the located services back into UML. The discovery framework provides a range
of features that enable designers to control the flexibility of the matching process
including the abilities: (a) to distinguish between hard and soft constraints that
should be satisfied by the located services and allow the generation of results that
satisfy the latter type of constraints only partially, (b) to define the weight that
each soft constraint should have in the matching process, (c) to opt between dif-
ferent types of structural matching between the types used in the operation signa-
tures in queries and services (e.g., strict subgraph matching vs. detection of non
overall structure preserving morphisms between these types), and (d) to opt be-
tween different types of matching for query and service behavioural models.

Our framework could provide more comprehensive support for service discov-
ery during system design subject to certain enhancements. The first of these en-
hancements is support for verifying that the design model generated from integrat-
ing the descriptions of the discovered services with the original design model used
in the discovery process satisfies certain properties (e.g., avoidance of deadlocks).
The results of verification analysis could be used to decide which of the discov-
ered services should be integrated into the system. The verification process could
also be used in order to support the specification of discovery queries in subse-
quent iterations. If the conjunction of a service model and a design model is found
to violate a property (e.g. avoidance of deadlocks), and the violation can be attrib-

Designing	 and	 Adapting	 Service-‐based	 Systems:	 A	 Service	 Discovery	 Framework	 29	

uted to certain elements in the model of the service, a subsequent query could be
formulated with conditions that would filter out services having these elements.

The discovery of services during the execution time adaptation of service-
based systems needs to support different situations that may trigger the need for
adapting the systems. In this respect, the framework that we described in this
chapter provides the required support for (i) unavailability of malfunctioning of a
service, (ii) changes in the characteristics of a service, (iii) changes in the context
of a service or the application’s environment, and (iv) availability of a service that
is superior to one being used in the system. Moreover, the language to allow for
the specification of queries should be able to express complex and different types
of constraints. Services are described from different perspectives and, therefore, in
order to guarantee a better precision during the identification of a service to re-
place a service on a running service-based system, it is necessary to consider com-
binations of these different perspectives.

Although our experience has demonstrated that the discovery of services based
on different perspectives increases its precision, it is not possible to guarantee that
services will always be described in terms of their structural, behavioural, and
quality characteristics. Therefore, it is necessary to provide ways to infer the be-
haviour of services based on monitoring of these services.

Also for execution time adaptation of service-based systems another critical
factor is the performance of the service discovery process. This factor is often ne-
glected in the literature. Our measure for addressing this factor is the pro-active
discovery approach. In this approach, which is realized by our framework, serv-
ices are continually identified in parallel to the execution of the system and point-
ers to those of them that can replace existing system services are maintained so as
to be able to rebind to them immediately if the need arises. Based on this pro-
active approach, our framework provides considerable reduction in the time re-
quired for identifying replacement services (see [56] for experimental results).

Some limitations of the adaptation process provided by the framework include
the need to support changes in service-based systems that are not only concerned
with the replacement of a service by another service, but that consider (a) re-
placement of a service by a composition of services, (b) replacement of a group of
services by a single service or another composition of service, (c) changes in other
parts of a service-based system workflow (e.g., variables, conditions, loops). Ad-
aptation of service-based system should consider other aspects that may require
adaptation apart from (i)-(iv) above such as dynamic evolution and changes of
business activities that underpin and need to be supported by the service-based
system, as well as dynamic evolution of user requirements and demands.

6. Related Work

Two areas of research related to the work presented in this chapter, namely

service discovery and service-based system adaptation, are reviewed below.
Service discovery has been a main strand of research in service oriented com-

puting.	 The different approaches to service discovery can be classified based on
the core algorithmic aspects of the search process that they use into (i) keyword,

30	 George	 Spanoudakis	 and	 Andrea	 Zisman	 	

(ii) model, and (iii) semantics based approaches. Some approaches support also
context based service discovery.

Keyword based service discovery approaches specify service requests as sets
of keywords and are implemented predominantly as part of service search engines.
Examples of such engines include Seekda [34] and Strikeiron [41]. Seekda offers
a search facility that looks into textual and interface (i.e. WSDL) descriptions of
services. Seekda allows also the application of predefined filters on discovered
service results (e.g country or service provider). Both these search engines provide
browsing facilities for discovery and continually updated fixed types of searches
based on criteria such as the frequency of service usage. Keyword based searches
are also deployed in active service registries such as AWSR [42]. AWSR searches
for RSS data feeds providing information about services in different web-sites,
combines them together, and offers them in new “syndicated” data feeds. Simi-
larly, text-based requirements specifications are matched with textual descriptions
of services to drive the discovery process in [49]. The latter approach uses also
term disambiguation based on WordNet Overall, keyword based approaches are
easy to implement, conform to the paradigm of information retrieval over the In-
ternet, and are more natural and easier to use from an end user perspective. How-
ever, they tend to have low precision and recall and are unable to support complex
querying conditions regarding interface, behaviour, or quality of services.

In model based service discovery approaches, queries and services are de-
scribed in some form of structured models without using ontologies and semantic
matchmaking techniques. In [14], for example, service discovery is based on the use
of behavioural service models represented in WSCL [54] and matching these models
with graphs representing users requirements based on graph matching. The work in
[44] proposes QoS-based selection. A goal-based model that considers re-use of
predefined goals, discovery of relevant abstract services described in terms of ca-
pabilities, and contracting of concrete services to fulfill requesting goals has been
proposed in [21]. Other approaches deploy graph transformation rules [17,20], or
behavioural matching [14,16,27,35]. The approach in [16] uses abstract behav-
ioural models of services. In [15] and [36], functional and quality crosscutting
concerns of components and services are specified as aspects, and discovery is
based on a formal analysis and validation of aspect based descriptions. The work in
The use of behavioural specifications expressed in BPEL and a tree-alignment algorithm
to identify query-service matchings is used in [27].

The approach described in [24] supports the specification of service discovery que-
ries using system design models expressed in UML and uses graph matching techniques.
In [30], the authors propose USQL, an XML-based language to represent syntac-
tic, semantic, and quality of service search criteria. An extension of USQL that in-
corporates behavioural models expressed as UML sequence diagrams has been
proposed in [31]. An XML based service query language is also used in [54,37]
for service discovery. The queries expressed in this language can cover service in-
terface, behaviour and QoS characteristics and can be specified by system devel-
opers to discover replacement services for systems at runtime. The query language
proposed in [32] is used to support composition of services based on user goals. In
[5] the authors propose BP-QL a visual query language for business processes.

Designing	 and	 Adapting	 Service-‐based	 Systems:	 A	 Service	 Discovery	 Framework	 31	

Some of the model based approaches are hybrid as they deploy both keyword-based
lexical matching and model matching. WSDL-M2 [23] uses lexical matching to calcu-
late linguistic similarities between concepts, structural matching to evaluate the overall
similarity between composite concepts, and combines vector-space model techniques
with synonyms and semantic relations based on WordNet. The work in [51] combines
WordNet-based techniques and structure matching for service discovery. The work in
[45] uses four similarity assessment methods for service matching.

Model based approaches enable the specification of semantically richer queries
and can produce results of higher precision than keyword based approaches. These
advantages arise when services that have descriptions in the form of structured
models assumed by the approaches are available. However, this is not always the
case. Therefore, these approaches are often non applicable especially in situations
where normal users are searching for services to support them, rather than to build
some “system” out of them. On the other hand model based approaches work bet-
ter for system designers who might have, complete or partial, system design mod-
els providing the basis for specifying model based service discovery queries.

The semantic based approaches assume services described in terms of struc-
tured models that may incorporate logical conditions expressing behavioural and
quality service properties, annotated by ontologies. These ontologies are used to
signify the semantics of services, providing a basis for detecting semantic similari-
ties between services as well as between services and queries. Several techniques
have been developed using semantic approaches including [1,17,19,21,22].
METEOR-S [1], adopts a constraint driven service discovery approach in which
service requests are integrated into the composition process of a service-based sys-
tem. In [17], service discovery is based on matching requests specified in a variant
of Description Logic (DL). The work in [21] supports explicit and implicit service
semantics and uses logic based approximate matching and Information Retrieval
(IR) techniques. In [35] a query language based on first-order logic that focuses on
properties of service behaviour signatures specified in OWL is used to support the dis-
covery process. Approaches for service discovery based on service capabilities
have been proposed in [28,50]. The work in [50] uses DAML-S to describe serv-
ice capabilities, while in [28] services are described in OWL. In [50] service re-
quests are matched against service advertisement. The approach considers four
degrees of matching, namely exact, plugin, subsumes, and fails. The work in [28]
reduces these four degrees of matching to three degrees (exact, inclusive, and
weak), and considers discovery of pervasive services based on context and QoS
characteristics. The semantic service discovery category includes also many approaches
that have been developed to support context aware service discovery such as [6,48].

Semantic service discovery approaches are normally expected to be more pre-
cise than their model and keyword based counterparts. This expectation, however,
is not plausible unless ontologies are accurate and consistent. Generally, there is
lack of appropriate service ontologies and semantic based approaches are limited
to those cases where there are adequately described services. This limitation is
also due to the fact that semantic approaches are more difficult to use, as they re-
quire the specification of some complex logic-based queries. Similarly, these ap-
proaches require substantial investment from service providers to provide complex

32	 George	 Spanoudakis	 and	 Andrea	 Zisman	 	

service models, annotate them in reference to existing ontologies, and maintain
service descriptions when ontologies evolve.

Context oriented service discovery approaches are found in [5,6,9,39,48].
These approaches may use matching techniques similar to those described above,
but differ on the automatic generation of discovery queries from service deploy-
ment context. In [9], context information is represented by key-value pairs at-
tached to the edges of a graph representing service classifications. This approach
does not integrate context information with behavioural and quality matching, and
context information is stored explicitly in a service repository that must be up-
dated following context changes. In [6] queries, services, and context information
are expressed in ontologies. The work in [5] focuses on user context information.
The approach in [48] locates components based on context-aware browsing. In
this approach, the interaction of software developers with the development envi-
ronment is monitored and candidate components that match the development con-
text based on signature matching are identified and presented to developers for
browsing. The above approaches support the use of context conditions in service
discovery but do not fully integrate such conditions with behavioural criteria.
They also have limited applicability since they depend on the use of specific on-
tologies for the expression of context conditions. An approach that uses other dis-
covery criteria (service interface and behaviour) without assuming the use of a
particular ontology is presented in [39]. Context oriented service discovery ap-
proaches are useful when the criteria for service discovery are related to the de-
ployment context of the required service and their main strength arises from their
ability to construct automatically queries with context discovery conditions and
execute them in a seamless way. The drawback of such approaches is that they of-
ten do not take into account other discovery conditions and if they do these condi-
tions need to be specified manually.

Recently, some approaches that support adaptation of service-based systems
started to appear. The dynamic binding approach described in [4] provides binding
and reconfiguration rules to support evolution of service compositions during run-
time. The work supports four types of rules, namely: (a) rule to discover services
based on defined constraints and preferences and to bind the best identified serv-
ice; (b) rule to bind to a service from a list of candidate services defined during
design time of the composition; (c) rule to delete or modify a binding to point to
another service; and (d) rule to stop the execution of the composition.

A self-healing approach for service compositions based on monitoring rules
and reaction strategies is proposed in [3]. Examples of reaction strategies, i.e., ac-
tions taken by the system when monitoring expressions are not verified, include
the re-execution of the same service invocation, the selection of a new service, the
creation of a composition of services that can execute the behaviour of the faulty
interaction or changes in the way that the process is monitored (i.e., less strict).
Another self-healing approach is found in the PAWS framework [2], which also
uses monitoring and recovery actions. Examples of PAWS recovery actions in-
clude retrying/redoing the process task, substituting the problematic service by a
candidate service, or executing a compensation action.

The VieDAME framework [29] uses an aspect-oriented approach to allow ad-
aptation of service-based systems for certain QoS criteria based on alternative

Designing	 and	 Adapting	 Service-‐based	 Systems:	 A	 Service	 Discovery	 Framework	 33	

services. A service participating in the system can be marked as replaceable to in-
dicate that alternative services can be invoked instead of the original one, when
necessary. Policies are used to indicate alternative services. In [18], the authors
propose PROSA, a pro-active adaptation approach based on online testing.

7. Conclusions and Future Work

In this chapter we presented a framework to support design and execution time

adaptation of service-based systems based on service discovery. The work pre-
sented in this chapter unifies the results of two EU F6 projects in the area of serv-
ice-oriented computing, namely SeCSE [33] and Gredia [13] projects. The work
has been developed based on the challenges identified by industrial partners in
both projects in the areas of telecommunications, automotive, software, media,
and banking. Different characteristics of predecessors of the unified framework
focusing on design and execution time service discovery have been discussed in
earlier publications (see Section 1). This chapter, however, presents the unified
version of the framework for the first time, and uses the Cell Phone Operator sys-
tem case study of this book to illustrate how the framework works, hence making
it easier for the reader to appreciate how it compares with alternative approaches.

Several evaluations of different aspects of the framework have been conducted
and reported elsewhere (e.g. in [58,40]). These evaluations measure the frame-
work in terms of the recall and precision that it achieves in service discovery as
well as the efficiency of the service discovery processes that it implements both at
design time and at execution time. Overall, as we have reported in the cited pa-
pers, the results of these evaluations have been very positive.

Currently, we are extending the framework to address some of the points that
we discuss in Section 5. In particular, we are extending the framework to support:
(a) discovery based on behavioural service operation composition, (b) the verifica-
tion of design models after introducing into them models of discovered services,
(c) pro-active negotiation of service level agreements as part of the execution time
service discovery process, and (d) other forms of adaptation of service-based sys-
tems triggered by changes in business activities and user desires.

References

1. R. Aggarwal, K. Verma, J. Miller, and W. Milnor. Constraint Driven Web Service Compo-
sition in METEOR-S, Int. Conf. on Services Comp. 2004.

2. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A Framework for
Executing Adaptive Web-Service Processes. IEEE Software, 24 (6), (2007).

3. Baresi, L., Ghezzi, C., Guinea, S.: Towards Self-Healing Compositions of Services. Studies
in Computational Intelligence, v. 42, Springer (2007).

4. Baresi, L., Di Nitto, E., Ghezzi, C., Guinea, S.: A Framework for the Deployment of
Adaptable Web Service Compositions. Service Oriented Computing and Applications Jour-
nal (to appear).

5. C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying Business Processes. 32nd Inter-
national Conference on Very Large Data Bases, VLDB, Korea, September (2006).

6. F. Bormann, et al, Towards Context-Aware Service Discovery: A Case Study for a new

34	 George	 Spanoudakis	 and	 Andrea	 Zisman	 	

Advice of Charge Service”, 14th IST Mobile and Wireless Communications Summit, 2005.
7. BPEL4WS.http://www128.ibm.com/developerworks/library/specification/ws-bpel/
8. CoDAMoS. www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/CoDAMoS/ontology/
9. S. Cuddy, M. Katchabaw, and H. Lutfiyya. Context-Aware Service Selection Based on Dy-

namic and Static Service Attributes. IEEE Int. Conf. on Wireless and Mobile Computing,
Networking and Comm., 2005.

10. Deubler M., Meisinger M., Kruger I. Modelling Crosscutting Services with UML Sequence
Diagrams. 8th Int. Conf. on Model Driven Engineering Languages and Systems, 2005

11. J. Dooley, A. Zisman, G. Spanoudakis. Runtime Service Discovery for Grid Applications.
Book chapter in Grid Technology for Maximizing Collaborative Decision Management and
Support: Advancing Effective Virtual Organizations, 2009.

12. Gardner T. UML Modelling of Automated Business Processes with a Mapping to
BPEL4WS. In 2nd European Workshop on OO and Web Services (ecoop), 2004.

13. GREDIA. www.gredia.eu.
14. D. Grirori, J.C. Corrales, and M.Bouzeghoub. Behavioral Matching for Service Retrieval,

International Conference on Web Services, ICWS 2006, USA, September 2006.
15. J. Grundy and G. Ding. Automatic Validation of Deployed J2EE Components Using As-

pects. IEEE 16th International Conference on Automated Software Engineering, USA, 2001.
16. R.J. Hall and A. Zisman. Behavioral Models as Service Descriptions, Int. Conf. on Service

Oriented Computing, 2004
17. J.H. Hausmann, R. Heckel and M. Lohman. Model-based Discovery of Web Services, Int.

Conf. on Web Services, 2004.
18. Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: A Framework for Proactive Self-

Adaptation of Service-based Applications Based on Online Testing, 1st Eur. Conf. Towards
a Service-Based Internet, ServiceWave, LNCS 5377, 2008.

19. W. Hoschek. The Web Service Discovery Architecture, IEEE/ACM Supercomputing Conf.,
2002.

20. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic Location of Services,
European Semantic Web Conference, 2005.

21. M. Klein and A. Bernstein. Toward High-Precision Service Retrieval. IEEE Internet Com-
puting, 30-36, 2004.

22. M. Klusch, B. Fries, and K. Sycara. Automated Semantic Web Service Discovery with
OWLS-MX, Int. Conf. on Autonomous Agents and Multiagent Systems, 2006.

23. Kokash N., van den Heuvel W.J., D’Andrea V. Leveraging Web Services Discovery with
Customizable Hybrid Matching, Int. Conf. on Web Services, ICWS 2006, 2006.

24. A. Kozlenkov V. Fasoulas F. Sanchez G. Spanoudakis A. Zisman. A Framework for Archi-
tecture-driven Service Discovery, International Workshop on Service Oriented Software
Engineering (IW-SOSE'06), ICSE, China, 2006.

25. Kozlenkov A., Spanoudakis G., Zisman A., Fasoulas F., Sanchez F. Architecture-driven
Service Discovery for Service Centric Systems, International Journal of Web Services Re-
search, special issue on Service Engineering,, 4(2):81-112, 2007

26. K Mahbub and A. Zisman, Replacement Policies for Service-based Systems, 2nd Workshop
on Monitoring, Adaptation and Beyond (MONA+), Stockholm, November 2009.

27. R. Mikhaiel and E. Stroulia, Interface- and Usage-aware Service Discovery, 4th Int. Conf.
on Service Oriented Computing (ICSOC), 2006.

28. B. Mokhtar S., Preuveneers D., Georgantas N., Issarny V., and Berbers Y. EASY: Efficient
semantic Service discovery in pervasive computing environments with QoS and context
support. Journal of Systems and Software 81: 785-808, 2008.

29. O.Moser, F. Rosenberg, S. Dustdar, Non-Intrusive Monitoring and Service Adaptation for
WS-BPEL, 17th Int. World Wide Web Conference, 2008.

30. M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos. Discovering Web Services in
JXTA Peer-to-Peer Services in a Unified Manner. 4th International Conference on Service
Oriented Computing (ICSOC), 2006.

Designing	 and	 Adapting	 Service-‐based	 Systems:	 A	 Service	 Discovery	 Framework	 35	

31. M. Pantazoglou, A. Tsalgatidou, and G. Spanoudakis, G.: Behavior-aware, Unified Service
Discovery. In Proceedings of the Service-Oriented Computing: a look at the inside Work-
shop, SOC@Inside'07, Austria, September, 2007.

32. M. Papazoglou, M. Aiello, M. Pistore, J. Yang. XSRL: A Request Language for web serv-
ices, http://citeseer.ist.psu.edu/575968.html

33. SeCSE. Secse.eng.it/pls/secse/ecolnet.home.
34. Seekda . [Online]. Available at: http://seekda.com/
35. Z. Shen and J. Su. Web Service Discovery based on Behavior Signatures. IEEE Int. Conf.

on Service Computing, 2005.
36. S. Singh, J. Grundy, J. Hosking, J. Sun. An Architecture for Developing Aspect-Oriented

Web Services, 3rd European Conf. in Web Services, 2005.
37. G. Spanoudakis G., A. Zisman, A. Kozlenkov: A Service Discovery Framework for Service

Centric Systems, 2005 IEEE Conference on Services Computing (SCC 2005), 2005.
38. G. Spanoudakis and A.Zisman. UML-based Service Discovery Tool, 21st IEEE Interna-

tional Conference on Automated Software Engineering Conference, ASE, Japan, 2006.
39. G. Spanoudakis, K. Mahbub, and A. Zisman. A Platform for Context-Aware Run-time Ser-

vice Discovery, IEEE Int. Conf. on Web Services (ICWS 2007), USA, 2007
40. G. Spanoudakis and A. Zisman. Discovering Services during Service-based System Design

using UML, IEEE Transactions of Software Engineering (to appear).
41. Strikeiron, [Online]. Available: http://strikeiron.com/
42. M. Treiber and S. Dustdar, Active web service registries, IEEE Internet Computing, 11(5):

66–71, 2007.
43. UDDI. www.uddi.org.
44. X. Wang, T. Vitvar, T. Kerrigan, and I. Toma, “A QoS-Aware Selection Model for Seman-

tic Web Services”, 4th Int. Conf. on Service Oriented Computing, ICSOC, USA, 2006
45. J. Wu and Z. Wu "Similarity-based Web Service Matchmaking". IEEE Int. Conf. on Serv-

ices Computing, SCC, 2005.
46. WSDL. http://www.w3.org/TR/wsdl
47. XQuery. http://www.w3.org/TR/xquery/
48. Y. Ye and G. Fischer. Context-Aware Browsing of Large Component Repositories. IEEE

16th Int. Conf. on Automated Software Engineering, ASE, USA, 2001.
49. K. Zachos, N.A.M Maiden, S.Jones and X.Zhu, 'Discovering Web Services To Specify

More Complete System Requirements', 19th Conf. on Advanced Information System Engi-
neering, (CAiSE), 2007.

50. Paolucci M., Kawamura T., Payne T.R., and Sycara K. “Semantic Matching of Web Serv-
ices Capabilities”. Int. Semantic Web Conference, Italy, 2002.

51. Wang Y. and Stroulia E. “Semantic Structure Matching for assessing Web-Service Similar-
ity”, 1st Int. Conf. on Service Oriented Compusting, 2003.

52. WOOGLE. http://www.gujian.net/woogle/
53. WSDL. http://www.w3.org/TR/wsdl..
54. WSCL. Web Services conversation language. http://www.w3.org/TR/wscl10
55. A. Zisman, K. Mahbub, and G. Spanoudakis. A Service Discovery Framework based on

Linear Composition, 2007 IEEE International Conference on Services Computing (SCC
2007), USA, July 2007.

56. Zisman A., Spanoudakis G., Dooley J.: A Framework for Dynamic Service Discovery, 23rd
IEEE/ACM International Conference on Automated Software Engineering, 2008.

57. A. Zisman, J. Dooley, G. Spanoudakis. Proactive Runtime Service Discovery, IEEE 2008
International Service Computing Conference (SCC ’08), Hawaii, 2008.

58. A. Zisman and G. Spanoudakis. UML-based Service Discovery Framework, 4th Interna-
tional Conference on Service Oriented Computing, ICSOC, Chicago, 2006.

59. A. Zisman, G. Spanoudakis, J. Dooley. A Query Language for Service Discovery, 4th In-
ternational Conference on Software and Data Technologies - ICSOFT, Bulgaria, 2009.

	

