Vector Control of Permanent Magnet Synchronous Motor using Adaptive Recurrent Neural Networks

Shuhui Li, Michael Fairbank, Xingang Fu, Donald C. Wunsch, and Eduardo Alonso

Abstract -- With the improvement of battery technology over the past two decades and automotive technology advances, more and more vehicle manufacturers have joined in the race to produce new generation of affordable, high-performance electric drive vehicles (EDVs). Permanent magnet synchronous motors (PMSMs) are at the top of AC motors in high performance drive systems for EDVs. Traditionally, A PMSM is controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations. This paper investigates how to mitigate such problems using a nested-loop recurrent neural network architecture to control a PMSM. The neural networks are trained using backpropagation through time to implement a dynamic programming (DP) algorithm. The performance of the neural controller is studied for typical vector control conditions and compared with conventional vector control methods, which demonstrates the neural vector control strategy proposed in this paper is effective. Even in a highly dynamic switching environment, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for complex EDV drive needs.

Index Terms – Permanent magnet synchronous motor, decoupled vector control, electric drive vehicle, recurrent neural network, dynamic programming, backpropagation through time

I. INTRODUCTION

SMALLER, lighter, and less expensive electric motors are critical for the adoption of electric drive vehicles (EDVs) in significant quantities, especially for HEV and PHEV applications where motors have to be packaged in a vehicle along with other large powertrain components such as engines and transmissions [1]. Permanent magnet synchronous motors (PMSMs) have emerged in recent years as a very strong contender to replace induction motors used in electronically controlled variable speed applications. In most cases, PMSMs can provide superior performance in terms of increased efficiency and reduced noise, while the total cost differential for motor plus power converters is subject to relatively fast payback [2, 3].

But, the performance of a PMSM depends also on how it is controlled. Conventionally, a PMSM is controlled using the standard decoupled d-q vector control approach [5-8]. But, recent studies indicate that the conventional vector control strategy is inherently limited [9, 10], particularly when facing uncertainties [11]. In recent years, significant research has been conducted in the area of dynamic programming (DP) for optimal control of nonlinear systems [16-20]. Classical DP methods discretize the state space and directly compare the costs associated with all feasible trajectories that satisfy the principle of optimality, guaranteeing the solution of the optimal control problem [21]. Adaptive critic designs constitute a class of approximate dynamic programming (ADP) methods that use incremental optimization combined with parametric structures that approximate the optimal cost and the control [22, 23]. Both classical DP and ADP methods have been used to train neural networks for a large number of nonlinear control applications, such as steering and controlling the speed of a two-axle vehicle [24], intercepting an agile missile [25], performing auto landing and control of an aircraft [26-28], and controlling a turbogenerator [29]. However, no research has been conducted regarding the vector control of PMSMs using DP or ADP-based neural networks.

The purpose of this paper is to report our research in developing a nested-loop neural-network-based vector control strategy for a PMSM. First, a brief review of the PMSM configuration in an electric drive vehicle is presented in Section II. Section III discusses PMSM model and the limitations associated with the conventional standard vector control method. Section IV proposes a nested-loop neural network vector control structure. Section V explains how to employ dynamic programming to train the current- and speed-loop neural networks for a PMSM. The performance of the proposed nested-loop neural network vector control scheme is evaluated in Section VI. Finally, the paper concludes with a summary of the main points.

II. PERMANENT MAGNET SYNCHRONOUS MOTORS IN ELECTRIC DRIVE VEHICLES

A PMSM is an ac electric motor that uses permanent magnets to produce the air gap magnetic field rather than using electromagnets. The rotors are driven by the stators via a synchronous rotational field generated by the three-phase currents passing through the stator windings. In most EDV...
applications, the stator windings of a PM motor are connected to the dc bus through a standard three-leg voltage-source PWM converter (Fig. 1) [12, 13]. The converter converts dc to three-phase ac in the PMSM drive mode or converts three-phase ac to dc in the regenerating mode. In the drive mode, power flows from the dc bus to the PMSM to drive the vehicle while in the regenerating mode, power flows from the PMSM to the dc bus to charge the battery.

Fig. 1. Configuration and control of a PMSM in EDV application

A typical PMSM control strategy is the standard d-q vector control approach (Fig. 1), in which each of the d- and q-axis control loops has a cascaded structure: a fast inner current loop combined with an outer slower loop for speed and air gap magnetic field controls. In Fig. 1, the speed reference \(\omega^* \) is generated during the operation of the vehicle. The speed and magnetic field control is converted into decoupled d-q current control. The current-loop controller implements the final control function by applying a stator voltage control signal to the voltage-source PWM converter to realize the variable-speed operation of the EDV. [14, 15].

The control signal applied directly to the power converter is a three-phase sinusoidal voltage having the stator current frequency of the PMSM. The general strategy for transformation from the d-q control signal to the three-phase sinusoidal signal is also illustrated in Fig. 1 [15], in which \(v_{sd}^* \) and \(v_{sq}^* \) are d- and q-axis output voltages generated by the PMSM controller. The two d- and q-axis voltages are then converted to the three-phase sinusoidal voltage signals, \(v_a, v_b \) and \(v_c \), to control the voltage-source converter. Hence, from the converter average model standpoint, the three-phase sinusoidal voltage, \(v_{sd}, v_{sb}, \) and \(v_{sc} \), applied to the stator is linearly proportional to the three-phase control voltage in the converter linear modulation mode [15].

III. PMSM CONVENTIONAL VECTOR CONTROL

A. PM Motor Model

A commonly used PMSM transient model is the Park model. Using the motor convention, space vector theory yields the stator voltage equation in the form [20]:

\[
\begin{bmatrix}
0 & 1 & 0 \\
-1 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\psi_{sd} \\
\psi_{sq} \\
0
\end{bmatrix}
= \begin{bmatrix}
R_s & d & \omega \\
-\omega & R_s & d \\
d & -\omega & R_s
\end{bmatrix}
\begin{bmatrix}
i_{sd} \\
i_{sq} \\
i_{s0}
\end{bmatrix}
+ \begin{bmatrix}
v_{sd} \\
v_{sq} \\
0
\end{bmatrix}
\]

(1)

where \(R_s \) is the resistance of the stator winding; \(\omega_0 \) is the motor electrical rotational speed; and \(v_{sd}, v_{sq}, i_{sd}, i_{sq} \) and \(\psi_{sd}, \psi_{sq} \) are the d and q components of instantaneous stator voltage, current, and flux. If the d-axis is aligned along the rotor flux position, the stator flux linkages are

\[
\begin{bmatrix}
\psi_{sd} \\
\psi_{sq}
\end{bmatrix}
= \begin{bmatrix}
L_{ds} + L_{dm} & 0 \\
0 & L_{qs} + L_{qm}
\end{bmatrix}
\begin{bmatrix}
i_{sd} \\
i_{sq}
\end{bmatrix}
+ \begin{bmatrix}
\psi_{f} \\
0
\end{bmatrix}
\]

(2)

where \(L_d \) is the leakage inductance of the stator winding; \(L_{dm} \) and \(L_{qm} \) are the stator and rotor d- and q-axis mutual inductances; \(\psi_f \) is the flux linkage produced by the permanent magnet. Under the steady-state condition, (1) reduces to

\[
\begin{bmatrix}
V_{sd} \\
V_{sq}
\end{bmatrix}
= \begin{bmatrix}
R_s & -\omega L_q & L_d \\
\omega L_d & R_s & -\omega L_q
\end{bmatrix}
\begin{bmatrix}
i_{sd} \\
i_{sq}
\end{bmatrix}
+ \begin{bmatrix}
0 \\
\omega \psi_{f}
\end{bmatrix}
\]

(3)

If neglecting stator winding resistance, the stator d- and q-axis currents are

\[
i_{sd} = \frac{V_{sd}}{\omega L_q}, \quad i_{sq} = (V_{sq} - \omega \psi_f)/(\omega L_q)
\]

(4)

In a PM motor, the magnets can be placed in two different ways on the rotor. Depending on the placement they are called either as surface permanent magnet (SPM) motor or interior permanent magnet (IPM) motor. An IPM motor is considered to have saliency with q axis inductance greater than the d axis inductance (\(L_q > L_d \)) while a SPM motor is considered to have small saliency, thus having practically equal inductances in both axes (\(L_q\approx L_d \)) [8]. Therefore, depending on SPM or IPM motor, the torque of the PM motor is calculated by (5) or (6)

\[
\tau_{em} = p [i_{s0}^2 + \frac{1}{2} \rho_L i_{s0}] \quad \text{SPM motor}
\]

(5)

\[
\tau_{em} = p [i_{s0}^2 + \frac{1}{2} \rho_L i_{s0}^2] \quad \text{IPM Motor}
\]

(6)

where \(p \) is pole pairs. If the torque computed from (5) or (6) is positive, the PM motor operates in the drive mode. Otherwise, the motor operates in the regenerative mode.

B. EDV Drives Model

In an electric drive vehicle, the motor produces an electromagnetic torque. The bearing friction and wind resistance (drag) can be combined with the load torque opposing the rotation of the PM motor. The net torque, the difference between the electromagnetic torque \(\tau_{em} \) developed by the motor and the load torque \(T_L \) causes the combined inertias \(J_{eq} \) of the motor and the load to accelerate. Therefore, using the motor convention, the rotational speed of the motor follows from

\[
\tau_{em} = J_{eq} \frac{d \omega_m}{dt} + B_a \omega_m + T_L
\]

(7)

where \(\omega_m \) is the motor rotational speed, and \(B_a \) is the active damping coefficient representing motor rotational losses. The relation between \(\omega_m \) and \(\omega_e \) is presented in (8), where \(p \) is motor pole pairs.

\[
\omega_e = p \cdot \omega_m
\]

(8)

C. Conventional PM Motor Vector Control

The conventional vector control method for the PMSM has a nested-loop structure as shown by Fig. 1 [12]. The speed-
loop controller is normally a PI controller that is designed based on the torque equation (7). The current-loop controller is developed by rewriting (1) and (2) as

\[\nu_{ad} = \left(R i_{ad} + L_d \frac{di_{ad}}{dt} \right) - \omega_L i_{sl} \] \hspace{1cm} (9)

\[\nu_{aq} = \left(R i_{aq} + L_q \frac{di_{aq}}{dt} \right) + \omega_L i_{sd} + \omega \psi_f \] \hspace{1cm} (10)

where the item in the bracket of (9) and (10) is treated as the state equation between the voltage and current in the d- or q-axis loops, and the other items are treated as compensation terms \cite{12, 25}. This treatment assumes that \(\nu_{aq} \) in (9) has no major influence on \(i_{aq} \) and \(\nu_{sd} \) in (10) has no main effect on \(i_{sd} \).

But, this assumption is inadequate as explained below. According to Fig. 1, the final control voltages \(\nu_{ad}^* \) and \(\nu_{aq}^* \), linearly proportional to the converter output voltages \(\nu_{ad} \) and \(\nu_{aq} \) \cite{25}, include the d- and q-axis voltages \(\nu_{sd} \) and \(\nu_{sq} \) generated by the current-loop controllers plus the compensation terms as shown by (11). Hence, the conventional control configuration intends to regulate \(i_{sd} \) and \(i_{sq} \) using \(\nu_{sd} \) and \(\nu_{sq} \), respectively. But, according to (4), the d-axis voltage is primarily effective for \(i_{sd} \) or torque control, and the q-axis voltage is mainly effective for \(i_{sq} \) control.

\[\nu_{ad}^* = \nu_{ad} - \omega_L i_{sl} \]
\[\nu_{aq}^* = \nu_{aq} + \omega_L i_{sd} \]
\[\nu_{sd} + \omega \psi_f \] \hspace{1cm} (11)

IV. PMSM VECTOR CONTROL USING ARTIFICIAL NEURAL NETWORKS

The neural network control scheme consists of a faster inner current-loop neural network controller plus a slower outer speed-loop neural network controller as shown by Fig. 2.

A. Current-Loop Neural Network Vector Control

To develop a current-loop neural network vector controller, the PM motor model of eq. (1) is rearranged into the standard state-space form as shown by:

\[\frac{d}{dt} \begin{bmatrix} i_{ad} \\ i_{aq} \end{bmatrix} = \begin{bmatrix} \frac{R}{L_d} - \frac{\omega L_q}{L_d} & \frac{\omega L_q}{L_d} \\ \frac{L_q}{L_d} & \frac{R}{L_q} \end{bmatrix} \begin{bmatrix} i_{ad} \\ i_{aq} \end{bmatrix} + \begin{bmatrix} \frac{\nu_{ad}}{L_d} \\ \frac{\nu_{aq}}{L_q} \end{bmatrix} \] \hspace{1cm} (12)

where the system states are \(i_{sd} \) and \(i_{sq} \), permanent magnet flux \(\psi_f \) is normally constant, and converter output voltages \(\nu_{ad} \) and \(\nu_{aq} \) are proportional to the control voltage of the action neural network. For digital control implementation, the discrete equivalent of the continuous system state-space model must be obtained as shown by:

\[\begin{bmatrix} i_{ad}(kT_s + T_s) \\ i_{aq}(kT_s + T_s) \end{bmatrix} = A \begin{bmatrix} i_{ad}(kT_s) \\ i_{aq}(kT_s) \end{bmatrix} + B \begin{bmatrix} \nu_{ad}(kT_s) \\ \nu_{aq}(kT_s) \end{bmatrix} - \omega \psi_f \] \hspace{1cm} (13)

where \(T_s \) represents the sampling period, \(A \) is the system matrix, and \(B \) is the input matrix. In this paper, a zero-order-hold discrete equivalent mechanism \cite{31} is used to convert the continuous state-space model of the system (14) to the discrete state-space model (13). We used \(T_s=0.001 \)sec in all experiments.

Let \(\tilde{x} \equiv \begin{bmatrix} i_{ad} \\ i_{aq} \end{bmatrix} \), \(\tilde{u} \equiv \begin{bmatrix} \nu_{ad} \\ \nu_{aq} \end{bmatrix} \), and \(\tilde{k} \equiv \begin{bmatrix} 0 \\ -\omega \psi_f \end{bmatrix} \). Then, the state equation (13) can be simplified in a more general form as shown by

\[\tilde{x}_{i+1} = A \tilde{x} + B(\tilde{u} - \tilde{k}) \] \hspace{1cm} (14)

The system is controlled by the action network \(\pi(\tilde{x}, \bar{p} - \tilde{x}, \tilde{z}) \) which is a neural network with weight vector \(\tilde{z} \), such that

\[\tilde{u} = \pi(\tilde{x}, \bar{p} - \tilde{x}, \tilde{z}) \] \hspace{1cm} (15)

The objective of the current-loop neural controller is to implement a current tracking problem, i.e. hold the state \(\tilde{x} \) near to a given (possibly moving) target state \(\bar{p} \). We train the weights of the action network to solve the tracking problem by doing gradient descent with respect to \(\tilde{w} \) on the following function based on the dynamic programming principle:

\[J(\tilde{x}, \tilde{z}) = \sum_{t} \gamma |\tilde{x}_t - \bar{p}|^m \] \hspace{1cm} (16)

where \(m \) is some constant power (we used \(m=0.5 \) in our experiments). \(||\) denotes the modulus of a vector, and \(\gamma \in [0, 1] \) is a constant “discount factor”. The gradient descent weight update \(\Delta \omega = \alpha \cdot \nabla J/\nabla \tilde{w} \) for a learning rate \(\alpha > 0 \), can be computed efficiently by the backproagation through time \cite{1, 2}.

[Fig. 2. PMSM neural vector control structure]
In addition, to overcome the challenge of training the action network for rapidly changing target states and random variation of PM motor parameters in EDV applications, we have employed the following strategies: 1) a “stabilizing matrix” approach to enhance the learning speed and stability of the neural network controller and 2) a design of using predicted and past inputs to allow the neural network having the capability of training offline but adaptive online [XX].

With the stabilizing matrix [XX], the control voltage from the current-loop action network becomes
\[
\hat{u}_i = \pi \left(\tilde{x}_i, \tilde{p}_i - \tilde{x}_i, \tilde{z}_i \right) + W_{0} \tilde{x}_i + \hat{k}
\]
where \(W_{0} = -B^{-1} (A - I) \) is constant. It acts like an extra weight matrix in the neural network that connects the input layer directly to the output layer.

To make the neural network having the capability of training offline but adaptive online, the neural network needs to have some idea on how the actual plant behavior is differing from its expected behavior. Hence we give the neural network an extra input of the difference between the actual current state (\(\tilde{x}_i \)) and the predicted current state (\(\hat{x}_i \)) calculated with a fixed model
\[
\hat{x}_i = A_{0} \tilde{x}_{i-1} + B_{0} \left(\tilde{u}_{i-1} - \hat{k} \right)
\]
where \(A_{0} \) and \(B_{0} \) are constant matrices of (13) chosen for the default normal PMSM parameters. This idea is similar to the conventional predictive control concept. However, when the predictive input is combined with the neural network, it is much more powerful than the conventional only model-based predictive control mechanism.

Finally to improve performance further, the neural network needs to know what action it attempted in the previous time step. This enables the neural network to get feedback on what it tried previously and hence whether it’s worth trying that a bit more next time, or a bit less. So, we add a network input which represents the previous action, i.e. \(\tilde{u}_{i-1} \).

In summary, with the stabilizing matrix and predicted and past inputs to the network, the control voltage generated by the current-loop action network becomes
\[
\hat{u}_i = \pi \left(\tilde{x}_i, \tilde{p}_i - \tilde{x}_i, \tilde{z}_i, \tilde{u}_{i-1}, z_i \right) + W_{0} \tilde{x}_i + \hat{k}
\]

B. Speed-Loop Neural Network Controller

To develop a speed-loop neural network controller, the torque equation from Eq. (7) is rearranged into the standard state-space representation as shown by:
\[
\frac{d\omega_m}{dt} = -\frac{B_{e}}{J_{eq}} \omega_m + \frac{1}{J_{eq}} \left(\tau_{em} - T_L \right)
\]
where the system state is \(\omega_m \) and the drive torque \(\tau_{em} \) is proportional to the output of the speed-loop action neural network. The conversion from the torque to the q-axis current is obtained from Eq. (5). For digital control implementation, the discrete equivalent of the continuous state-space model must be obtained as shown by
\[
\omega_m(t) = A \cdot \omega_m(kT_s + T_s) + B \cdot \left[\tau_{em}(kT_s) - T_L \right]
\]

The objective of the speed-loop control is to implement a speed tracking problem, i.e. hold the state \(\omega_m \) near to a given (possibly moving) target state \(\omega_m^* \). We train the weights of the speed-loop action network to solve the tracking problem by doing gradient descent with respect to \(\hat{w}_i \) on the following function based on the dynamic programming principle:
\[
J(\omega_m, \hat{z}_i) = \sum y_i' \left[\omega_m(t) - \omega_m^* \right]^2
\]

V. TRAINING NEURAL NETWORKS BASED UPON DYNAMIC PROGRAMMING

Dynamic programming employs the principle of optimality and is a very useful tool for solving optimization and optimal control problems. According to [20], the principle of optimality is expressed as: “An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision.” The typical structure of the discrete-time DP includes a discrete-time system model and a performance index or cost associated with the system [23].

A. Backpropagation Through Time Algorithm

For the PM motor drives, the current- and speed-loop action neural networks were trained separately to minimize the DP cost of Eqs. (16) and (22), respectively, by using the backpropagation through time (BPTT) algorithm [33]. BPTT is gradient descent on \(J(\tilde{x}, \tilde{z}) \) or \(J(\hat{\omega}_m, \hat{z}_i) \) with respect to the weight vector of the action network. BPTT can be applied to an arbitrary trajectory with an initial state \(\tilde{x}_0 \) or \(\hat{\omega}_m(0) \), and thus be used to optimize the neural network control strategy. We chose to use the BPTT algorithm because it is particularly suited to situations where the model functions are known and differentiable, and also because BPTT has nice proven stability and convergence properties since it is a gradient descent algorithm - provided the learning rate is sufficiently small. In general, the BPTT algorithm consists of two steps: a forward pass which unrolls a trajectory, followed by a backward pass along the whole trajectory which accumulates the gradient descent derivative. Figure 3 illustrates the pseudocode of this whole process for the current-loop neural controller. In the figure, the vector and matrix notation is such that all vectors are columns; differentiation of a scalar by a vector gives a column. Differentiation of a vector function by
a vector argument gives a matrix, such that for example \((dA/dw)_k = dA_i/dw_i\). In Fig. 3, the subscripts \(k\) variables on parenthases indicate that a quantity is to be evaluated at time step \(k\). For the termination condition of a trajectory, we used a fixed trajectory length corresponding to a real time of 1 second (i.e. a trajectory had 1/1000 time steps in it). We used \(\gamma = 1\) for the discount factor in both (16) and (22).

\[
t \leftarrow 0, \Delta z \leftarrow 0 \\
\{ \text{Unroll trajectory ...} \}
\]

while not terminated \((\hat{z}_t)\) do
\[
\hat{z}_t = A \hat{z}_{t-1} + B \left(\hat{u}_{t-1} - k \right) \\
\hat{u}_i = \pi \left(\hat{x}_i, \hat{p}_i, \hat{x}_i, \hat{u}_i, \hat{u}_{i-1}, \hat{z} \right) + W_{\alpha} \hat{x}_i + k \\
\hat{x}_{i+1} = f \left(\hat{x}_i, \hat{u}_i \right) = A \hat{x}_i + B \left(\hat{u}_i - k \right) \\
t \leftarrow t + 1
\]
end while

\[
F \leftarrow t, \Delta \hat{p} \leftarrow 0 \\
\{ \text{Backward pass ...} \}
\]

for \(t = F - 1\) to 0 step -1 do
\[
\Delta \hat{z} \leftarrow \Delta \hat{z} + \left(\frac{\partial \pi}{\partial \hat{z}} \right) + \gamma \left(\frac{\partial f}{\partial \hat{u}} \right) + \frac{\partial f}{\partial \hat{u}} + \frac{\partial f}{\partial \hat{u}} = \left(\frac{\partial f}{\partial \hat{u}} \right) \frac{\partial f}{\partial \hat{u}} \hat{p}
\]
end for

\[
\hat{z} \leftarrow \hat{z} + \alpha \Delta \hat{z}
\]

Fig. 3. DP based BPTT algorithm for PMSM Vector control

B. Training the Current-Loop Neural Controller

To train the current-loop neural network controller, the system data associated with Eq. (7) are specified. The training procedure for the current-loop neural network controller includes 1) randomly generating a sample initial state \(i_{sd}(\theta)\).

2) randomly generating a changing sample reference \(f_{dq}\) current sequence, 3) unrolling the trajectory of the GCC system from the initial state, 4) training the current-loop neural network based on the DP cost function Eq. (16) and the BPTT training algorithm, and 5) repeating the process for all the sample initial states and reference \(f_{dq}\) currents until a stop criterion associated with the DP cost is reached (Fig. 3). The weights were initially all randomized using a Gaussian distribution with zero mean and 0.1 variance. The training also considers variable nature of the PM motor resistance and inductance. Training used RPROP [35] to accelerate learning, and we allowed RPROP to act on multiple trajectories simultaneously (each with a different start point and \(i_{sd}\)).

The generation of the reference current must consider the physical constraints of a practical PMSM. These include the rated current and converter PWM saturation constraints. From the neural network standpoint, the PWM saturation constraint stands for the maximum positive or negative voltage that the action network can output. Therefore, if a reference \(f_{dq}\) current requires a control voltage that is beyond the acceptable voltage range of the action network, it is impossible to reduce the cost (Eq. (16)) during the training of the action network.

The following two strategies are used to adjust randomly generated reference currents. If the rated current constraint is exceeded, the reference \(f_{dq}\) current is modified by keeping the q-axis current reference \(i_{sd}^*\) unchanged to maintain torque control effectiveness (Eq. (5)) while modifying the d-axis current reference \(i_{sd}^*\) to satisfy the d-axis control demand as much as possible as shown by [13, 14].

\[
i_{sd}^* = \text{sign} \left(i_{sd}^* \right) \cdot \sqrt{ \left(i_{dq}^{*\text{max}} - (i_{sd}^*)^2 \right) - (i_{sd}^*)^2 }
\]

If the PWM saturation limit is exceeded, the reference \(f_{dq}\) current is modified by

\[
v_a^* = -i_{sa} \omega L_q \\
v_q^* = \frac{\sqrt{v_{sd}^{*\text{max}}^2 - (v_q^*)^2}}{\omega L_q}
\]

which represents a condition of keeping the d-axis voltage reference \(v_{sd}^*\) unchanged so as to maintain the torque control effectiveness ((4) and (5)) while modifying the q-axis voltage reference \(v_q^*\) to meet the d-axis control demand as much as possible [13].

C. Training the Speed-Loop Neural Network Controller

To train the speed-loop neural network controller, the system data associated with Eq. (7) are specified [6, 7, 14]. The training procedure includes 1) randomly generating a sample initial state \(\omega_m\), 2) randomly generating a changing sample reference speed \(v_{dq}\) current sequence, 3) unrolling the trajectory of the GCC system from the initial state, 4) training the neural network based on theDP cost function of Eq. (22) and the BPTT training algorithm, and 5) repeating the process for all the sample initial states and reference speeds until a stop criterion associated with the DP cost is reached. Training also used RPROP.

The generation of the reference speed considers the speed changing range from 0 rad/s to the maximum possible motor rotating speed. The training considers variable nature of the inertia and the damping coefficient and the limitation of maximum acceptable torque.

![Fig. 4. Average DP cost per trajectory time step for training neural controller](image-url)
overall average DP cost dropped to a small number quickly, demonstrating good learning ability of the neural controller for
the vector control application.

VI. PERFORMANCE EVALUATION OF NESTED-LOOP NEURAL
NETWORK CONTROLLER

To evaluate the current- and speed-loop neural network
controllers, an integrated transient simulation of a complete
PMSM system is developed by using power converter average
and detailed switching models in SimPowerSystems (Fig. 5),
in which both steady and variable drive conditions are
considered. The average model is used for an initial evaluation
while the detailed switching model is used for investigation
under more practical conditions. For the switching-model
based PMSM system, the converter switching frequency is
1980Hz and losses within the dc/ac power converter are
considered. The parameters used in the simulation study are
shown in Table 1.

![Fig. 5. Neural network control of PM motor in SimPowerSystems](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Power</td>
<td>50 kW</td>
<td></td>
</tr>
<tr>
<td>dc voltage</td>
<td>500 V</td>
<td></td>
</tr>
<tr>
<td>Permanent magnet flux</td>
<td>0.1757 wb</td>
<td></td>
</tr>
<tr>
<td>Inductance in q-axis, Lq</td>
<td>1.598 mH</td>
<td></td>
</tr>
<tr>
<td>Inductance in d-axis, Ld</td>
<td>1.598 mH</td>
<td></td>
</tr>
<tr>
<td>Stator copper resistance, Rs</td>
<td>0.0065 Ω</td>
<td></td>
</tr>
<tr>
<td>Inertia</td>
<td>0.089 kg·m²</td>
<td></td>
</tr>
<tr>
<td>Damping coefficient</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Pole pairs</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

A. Ability of the Neural Network Controllers in Current and
Speed Tracking

Figure 6 presents a performance study of the current- and
speed-loop controllers of the PM motor under a steady load
torque condition by using the average-model based simulation.
The motor starts with a reference speed increasing linearly
from 0 rad/s at the beginning to 60 rad/s at t=0.25s. This
causes the q-axis reference current generated by the speed-
loop controller increasing linearly while d-axis reference
current is hold at 0A for a minimum stator current control
purpose. As shown by Fig. 6, both motor current and speed
can follow the reference current and speed perfectly. When the
reference speed changes to a constant value of 60 rad/s at
t=0.25s, the motor current or torque is quickly regulated in
such a way that makes the motor get to the steady speed
almost immediately. For other reference speed change from 60
rad/s to 40 rad/s at t=1s and from 40 rad/s to 80 rad/s at t=2s,
the nested-loop neural network controller has excellent
performance in regulating current, torque, and speed of the
PM motor to meet the motor control demands as shown by
Fig. 6.

![Fig. 6. Performance of nested-d- and q-axis currents torque](image)

B. Comparison of Neural Network Controller with
Conventional Vector Control Method

For the comparison study, the current- and speed-loop PI
controllers are designed by using the conventional standard
vector control technique, as shown in Section III. The gains
of the current-loop PI controller are designed based on the
transfer function of Eqs. (9) and (10) [7]. The gains of the
speed-loop PI controller are designed based on the transfer
function of Eq. (7). Then, for digital control implementation of
the PI controllers at the sampling rate of Ts=1ms, the
controller gains for both the speed and current loops are
retuned until the controller performance is acceptable [14].
Tuning of the PI controllers is a challenging task, particularly
for a low sampling rate, such as Ts=1ms. This gives neural
network controller better a advantage from this perspective.
The figure indicates that the neural network controller has the
fastest response time, low overshoot, and best performance.
For many other reference current conditions, the comparison
demonstrates that the neural network vector controller
performs better.

C. Performance Evaluation under Variable Parameters of a
PM Motor

PM motor stability has been one of the main issues to be
investigated. In general, such a study primarily focuses on the
motor performance under uncertain system parameter
variations. These include changes of motor resistance and
inductance from its normal values or changes of fraction coefficient and combined inertia. Those changes would affect the performance of the current- or speed-loop controller.

D. Performance Evaluation in Power Converter Switching Environment

In reality, the PM motor control is achieved through power electronic converters which operate in a highly dynamic switching environment (Fig. 5). This causes high order harmonics in the three-phase PMSM stator voltage and current. This means that in the dq reference frame, large oscillations would appear in voltage \(\hat{v}_{dq}\) and current \(\hat{i}_{dq}\). Since those oscillation impacts are not considered during the network training stage, the neural network controller could be severely deteriorated or loss stability. Hence, it is important to investigate the behavior of the neural network controller in the power converter switching environment.

In this paper, the nested-loop neural network control technique is evaluated for two variable system parameter conditions, namely, 1) variation of motor resistance and inductance, and 2) deviation of motor drive parameters associated with the torque-speed equation (7). Figure 8 shows how the neural network controllers are affected when the motor resistance and inductance values increase by 30% from the initial values and the equivalent inertia \(J_{eq}\) is doubled. The study shows that both the current- and speed-loop neural network controllers are affected very little by the system parameter variation. This is due to the fact that both the speed- and current-loop neural network controllers have been trained for the variable system parameter conditions so that the neural network controllers possess an ability to handle the motor control under variable system parameter conditions.

Figure 9 presents a case study of neural network vector controller in the switching environment of the power converter, in which the speed reference is similar to those used in Fig. 6. As it can be seen from the figure, the neural network control shows an excellent performance in the high frequency switching condition too. Due to the switching impact, the actual dq current oscillates around the reference current. An examination of the stator current shows that the three-phase current is very balanced and adequate (Fig. 9c). For any command change of the reference speed, the motor can be adjusted to a new balanced three-phase current and a new speed quickly, demonstrating a strong optimal control capability of the neural network vector control method even in the highly dynamic switching condition.
VII. CONCLUSIONS

Permanent magnet synchronous motors are used widely in electric drive applications, particularly in electric drive vehicles. This paper investigates the conventional standard vector control approach for the PMSM and analyzes the limitations associated with conventional vector control method. Then, a nested-loop neural network based vector control method is proposed. The paper describes how dynamic-programming (DP) methods are employed to train the current- and speed-loop neural network controllers through a backpropagation through time algorithm.

The performance evaluation demonstrates that the current-loop neural network controller can track the reference d- and q-axis currents effectively while the speed-loop neural network controller is able to follow the reference speed excellently. Compared to the conventional standard vector control method, the neural network vector control approach produces the fastest response time, low overshoot, and, in general, the best performance. In addition, since the neural networks are trained under variable system parameters, the nested-loop neural network controller has more attractive performance when the system parameters are hard to be identified.

In a highly dynamic switching environment, the neural vector controller again demonstrates strong capability in tracking reference commands while maintaining a high power quality.

VIII. REFERENCE

