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Optimal capital allocation in a hierarchical corporate structure

Yaniv Zaks∗ Andreas Tsanakas†

March 11, 2014

Abstract

We consider capital allocation in a hierarchical corporate structure where stakeholders

at two organizational levels (e.g. board members vs line managers) may have conflicting

objectives, preferences, and beliefs about risk. Capital allocation is considered as the solution

to an optimization problem whereby a quadratic deviation measure between individual losses

(at both levels) and allocated capital amounts is minimized. Thus, this paper generalizes

the framework of Dhaene et al. [5], by allowing potentially diverging risk preferences in a

hierarchical structure. An explicit unique solution to this optimization problem is given.

In several examples, it is shown how the optimal capital allocation achieves a compromise

between conflicting views of risk within the organization.

Keywords: Capital allocation, Solvency II, Basel II, weighted capital allocation, hierarchical

firms.

1 Introduction

Capital allocation is an exercise whereby the total amount of economic capital available to an

insurance or financial institution is apportioned to individual sub-portfolios, such as business

divisions, lines of business, distinct legal entities (as in the case of an insurance group), or indi-

vidual contracts. Such allocation of capital may be purely notional or involve an actual transfer

of funds, depending on fungibility constraints. The purposes of capital allocation can include

performance measurement, assessment of investment opportunities, portfolio management, and

even incentive compensation.
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While a host of capital allocation methods are described in the literature, the underlying

principle is typically that the capital allocated to a particular risk should in some way reflect

the contribution of that risk to the portfolio, often as captured by a risk measure. There are

multiple ways of defining such contributions. Marginal cost arguments are used by Tasche [13]

in the context of performance measurement, while related game theoretical criteria emphasize

principles of fairness and stability in the portfolio (Denault [3], Tsanakas and Barnett [14]).

Capital allocation in models with hierarchically structured dependence has been considered by

Arbenz et al. [2]. Capital allocation methods derived from various notions of optimality are

investigated in Dhaene et al. [4], Laeven and Goovaerts [8], Zaks et al. [16], and Dhaene et al.

[5].

These last two papers are most closely related to the present contribution. In particular,

Dhaene et al. [5] formulate capital allocation as an optimization problem, where the available

capital is exogenously given and the objective function is formed by summing the distances of

allocated capital amounts from individual losses. Distance is measured by expected (quadratic

or absolute) deviations, after a re-weighting of probabilities, which assigns higher weights to

scenarios of higher relevance. It is shown that appropriate choice of such scenario weights,

reflecting management preferences for different parts of the portfolio, can generate a wide variety

of capital allocations, reproducing most of the allocation methods found in the literature. Zaks

[17] generalized such arguments to a situation case where capital is invested in a number of risky

assets.

An important practical issue that is generally ignored in the above literature relates to

the potentially conflicting objectives, preferences and beliefs at different levels of a financial

institution’s hierarchy, for example the levels of a company board and line managers. Such

conflicts may take different forms, reflecting different organizational structures and cultures.

Preferences / scenario weights may be solvency-driven at board level and price sensitive at line-

of-business level (or indeed the converse may be true). Boards may be concerned with overall

portfolio performance, while line managers focus on the performance of the books they are

managing. Even when preferences are consistent, the beliefs about loss probability distributions

may differ, for example reflecting the specific expertise that line managers have in relation to the

liabilities they are managing. For ways in which organizational design influences the allocation

of capital to competing investment projects (a problem indirectly related to what is studied

here), see Stein [12] and the references therein.

In this paper, we address the above issues by generalizing the argument of Dhaene et al.

[5] in a hierarchical setting. An augmented objective function is proposed, involving quadratic

deviations between loss and allocated capital at different levels of the organization’s hierarchy.
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There is enough flexibility in the selection of possible scenario weights, to reflect divergent risk

preferences by the same stakeholder for different parts of the portfolio, as well as by different

stakeholders in relation to the same part of the portfolio. Hence the conflicting views of, say,

company board and line managers can be accommodated in a single framework.

An explicit unique solution to the above optimization is derived. This leads to explicit

formulas for the optimally allocated capital at different (top and bottom) levels of the hierarchy.

Capital allocation becomes a two-step procedure. First, capital allocated at the top level under

consideration (e.g. to lines of business) is driven by a combination of preferences at both levels.

Second, the allocation of those capitals at the bottom level (e.g. to individual policies) is only

driven by bottom-level preferences. Thus, while board-level preferences impact on the capital

available to line managers, there is no interference from above in the allocation of capital within

lines of business.

Special cases where the formulas simplify are considered and a number of detailed examples

are given. It is beyond the scope of this paper to complicate the rather exhaustive discussion

of Dhaene et al. [5], by considering a multitude of combinations of diverging preferences at

different levels. The examples are chosen to highlight particularly pertinent cases of conflicting

objectives, preferences and beliefs at different levels of a financial institution’s hierarchy, as

discussed above. We focus on how the optimal capital allocation derived attempts to resolve

these conflicts and achieve a compromise view of risk.

The formal setting and main result are given in Section 2, while special cases and examples

are discussed in Section 3. The proof of the main result is presented in Section 4. Finally, brief

conclusions are given in Section 5.

2 Optimal capital allocations

2.1 Set-up

We consider a financial institution with n portfolios, where the ith portfolio is in turn divided

into ni sub-portfolios. Several situations fit this hierarchical setting, for example (i) an insurance

group consisting of n legal entities, each writing ni lines of business; (ii) an insurance company

active in n lines of business, in each of which ni (groups of similar) policies are sold; (iii) a

financial institution exposed to n types of risk as defined by solvency regulation (market, credit,

operational etc), each of which is decomposed into ni sources of exposure.

The loss arising from the ith portfolio is denoted by the random variable Xi for i = 1, . . . , n.

The loss arising from the jth sub-portfolio of the ith portfolio is denoted by the random variable

Xij for j = 1, . . . , ni. Note that we do not in general require that
∑ni

j=1Xij = Xi, though the

3



simplifying assumption is used in the examples of Section 3. That allows for the presence of

portfolio non-linearities, as well as the inclusion in Xi of deadweight costs or risks to which no

capital will be allocated1.

We assume that an exogenously given total amount of capital K is available. This will be

allocated to the n portfolios by K = (K1, ...,Kn), where the top-level capitals add up to the

total available capital,
∑n

i=1Ki = K. In turn, each Ki will be allocated to ni sub-portfolios via

ki = (ki1, ..., kini), where the bottom-level capitals add up to Ki, i.e.
∑ni

j=1 kij = Ki. Denote the∑n
i=1 ni-vector of bottom-level capitals as k = (k1, . . . ,kn).

Consistently with the arguments of Zaks et al. [16] and Dhaene et al. [5], the capital

allocation will be derived from the general principle that the capital allocated to a risk should be

close to it, according a measure of distance that reflects management preferences. In particular,

capital allocation in this paper arises as the solution to the following optimization problem:

min
K,k

{
(1− λ)

n∑
i=1

1
νi
E
[
ξi (Ki −Xi)

2
]
+ λ

n∑
i=1

ni∑
j=1

1
νij

E
[
ξij (kij −Xij)

2
]}

s.t.
n∑

i=1
Ki = K

ni∑
j=1

kij = Ki ∀i = 1, . . . , n, j = 1, . . . , ni,

(1)

where the distance measures used are built with the following elements:

• A quadratic deviation measure, consistent with the common use of quadratic loss functions

in insurance, see e.g. Lemaire [9].

• Measures of business volume, νi > 0, νij > 0 corresponding to Xi, Xij respectively.

• Scenario weights ξi, ξij , corresponding to Xi, Xij respectively. Each of ξi, ξij is a non-

negative random variable with E[ξi] = E[ξij ] = 1. These weights reflect an assessment

that certain scenarios (states of the world) may be more relevant as drivers of capital

than others. Depending on management preferences, the variables ξi, ξij may assign a

higher weight on scenarios where particular (sub-)portfolios incur high losses or where

market conditions are adverse. For a full discussion and several examples see Dhaene

et al. [5]. A key difference in this paper is that the ξi, ξij are generally not the same,

reflecting differently defined risk preferences at different (top and bottom) levels of the

organization’s hierarchy.

• A constant 0 < λ < 1 that reflects the balance between top-level preferences (low λ) and

bottom-level preferences (high λ).

1For example, if capital allocation is used to derive profitability targets, there may be no allocated capital to

forms of operational risk, that are not directly associated with profit-making.
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2.2 Main result

For the case λ = 0 the solution to the optimization problem (1) is given by Dhaene et al. [5],

with the obvious difference that optimization is over K only and the second constraint does not

apply. For completeness and to draw comparisons we state the solution to that simpler problem:

K∗
i = E[ξiXi] +

νi∑n
r=1 νr

(
K −

n∑
r=1

E[ξrXr]

)
. (2)

Thus, the capital allocated to Xi is equal to its weighted expectation with respect to ξi, plus a

proportional share, according to business volume, of the excess of available capital K over the

weighted expectations of all portfolio losses.

The following result shows how the allocation formula (2) is generalized, when potentially

conflicting preferences are present at different levels of the organization’s hierarchy. As the proof

is lengthy and requires the introduction of multiple notations, it is delegated to Section 4.

Theorem 1. Let 0 < λ < 1. The optimization problem (1) has the unique solution

K∗
i = w̃iE [ξiXi] + wi

ni∑
j=1

E [ξijXij ]

+
νiw̃i∑n

r=1 νrw̃r

K −
n∑

r=1

w̃rE [ξrXr]−
n∑

r=1

wr

nr∑
j=1

E [ξrjXrj ]

 , (3)

k∗ij = E [ξijXij ] +
νij∑ni
s=1 νis

(
K∗

i −
ni∑
s=1

E [ξisXis]

)
, (4)

where

wi =
λνi

(1− λ)
∑ni

s=1 νis + λνi
, w̃i = 1− wi. (5)

Glancing at (4) it is seen that the allocated capitals at the bottom level k∗ij are given by

a formula conceptually similar to (2): the allocated capital to Xij is given by its weighted

expectation E[ξijXij ] plus a proportional share of the excess of the optimal capital K∗
i available

for the portfolio that Xij belongs to, over the sum of weighted expected losses in that portfolio.

However, a key difference is that K∗
i is now endogenously given by the solution of optimization

problem.

K∗
i in (3) is still given by a formula that obeys the general structure of “weighted expectation

plus share of excess capital”. However, the weighted expectation now reflects both the preferences

at both the top level (via E[ξiXi]) and the bottom level (via
∑ni

j=1 E[ξijXij ]). The weights wi, w̃i,

depending on λ and the business volumes νi, νij , determine which of the two levels will dominate

the capital allocation.
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Theorem 1 gives explicit formulas for the capital allocation for any specification of business

volumes and scenario weights. In Section 3, two special cases are treated, for which more

transparent and easily interpretable formulas can be obtained.

2.3 Limiting cases

Since the value of λ controls the balance between top- and bottom-level preferences, it is useful

to consider what happens to the solution of optimization problem (1) in the limiting cases λ = 0

and λ = 1, which are not formally covered by Theorem 1.

First consider the case that λ → 0, corresponding to the top-level preferences dominating.

Then we have

lim
λ→0

wi = 0, lim
λ→0

w̃i = 1 =⇒ lim
λ→0

νiw̃i∑n
r=1 νrw̃r

=
νi∑n
r=1 νr

. (6)

Substituting these quantities into the equation (3), we obtain

lim
λ→0

K∗
i = E[ξiXi] +

νi∑n
r=1 νr

(
K −

n∑
r=1

E[ξrXr]

)
, (7)

such that the top-level preferences only are considered in the determination of the optimal

capital K∗
i . Of course this is identical to the capital allocation (2) in Dhaene et al. [5]. Notice

that equation (4) is unaffected by taking the limit; the allocation of a given K∗
i to k∗ij is still

determined from bottom-level preferences only. Thus the capital allocation problems for the two

organizational levels are essentially completely decomposed.

In the case that λ → 1, with bottom-level preferences dominating, first note that from the

definition of wi, w̃i it is νiw̃i/(1− λ) =
∑ni

s=1 νiswi/λ, such that

νiw̃i∑n
r=1 νrw̃r

=

∑ni
s=1 νiswi∑n

r=1

∑nr
s=1 νrswr

. (8)

Then, we have

lim
λ→1

wi = 1, lim
λ→1

w̃i = 0 =⇒ lim
λ→1

∑ni
s=1 νiswi∑n

r=1

∑nr
s=1 νrswr

=

∑ni
s=1 νis∑n

r=1

∑nr
s=1 νrs

, (9)

such that (3) now becomes

lim
λ→1

K∗
i =

ni∑
j=1

E [ξijXij ] +

∑ni
s=1 νis∑n

r=1

∑nr
s=1 νrs

K −
n∑

r=1

nr∑
j=1

E [ξrjXrj ]

 (10)

and (4) again remains unchanged. Hence, the allocation is now completely driven by bottom-up

preferences.
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3 Special cases and examples

3.1 Consistent business volume measures

A simplification to the formula (3) for K∗
i occurs if we assume that the way that business volume

is measured within the organization is consistent across different levels of the hierarchy.

νi =

ni∑
j=1

νij , for all i = 1, . . . , n, (11)

and denote ν =
∑n

i=1 νi. Such consistency is reasonable when business volume is represented

by an additive measure such as premium income or expected loss.

Notice that (11) leads to wi = λ, w̃i = 1− λ, for all i = 1, . . . , n. Therefore, the solution of

optimization problem (1) becomes

K∗
i = (1− λ)E [ξiXi] + λ

ni∑
j=1

E [ξijXij ]

+
νi
ν

K − (1− λ)

n∑
r=1

E [ξrXr]− λ

n∑
r=1

nr∑
j=1

E [ξrjXrj ]

 (12)

k∗ij = E [ξijXij ] +
νij
νi

(
K∗

i −
ni∑
s=1

E [ξisXis]

)
. (13)

A further simplification occurs when there is consistency between the risk assessment at the

top and bottom levels, in the sense that
∑ni

j=1 E[ξijXij ] = E[ξiXi] for each i = 1, . . . , n. A

natural sufficient condition for this to let Xi =
∑ni

j=1Xij and ξi = ξij for all j = 1, . . . , ni. Then,

simple manipulations yield

K∗
i = E [ξiXi] +

νi
ν

(
K −

n∑
r=1

E [ξrXr]

)
, (14)

which replicates Dhaene et al. [5].

In the following three examples, different corporate structures, risk preferences and beliefs

are considered in the context of a consistent measure of business volume. In all examples we

consider additivity of risks in the sense that

Xi =

ni∑
j=1

Xij , for all j = 1, . . . , ni. (15)

We also denote the total risk by X =
∑n

i=1Xi.

Example 1. Here we consider the case of an insurance group consisting of n legal entities

(companies), each exposed to loss Xi, i = 1, . . . , n, and sub-divided into lines of business with

losses Xij , i = 1, . . . , n.
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We assume that the risk preferences of each company’s management are driven by a (possibly

regulatory) risk measure. Formally, we consider weights ξi = hi(Xi), with E[hi(Xi)] = 1. This

implies that the scenarios of interest for the ith entity are weighted in terms of outcomes of Xi

only. Thus, consistently with Furman and Zitikis [6] and Dhaene et al. [5], hi(Xi) defines a risk

measure ρi by

E[ξiXi] = E[hi(Xi)Xi] = ρi(Xi). (16)

Several common risk measures can be constructed in this way. For example, one can let hi(Xi) =

1
1−pi

1{Xi > Qpi(Xi)}, where we denote by 1{A} the indicator function of the event A and by

Qp(Y ) the 100pth percentile of a random variable Y . In that case (assuming continuity of

distributions for simplicity), ρi(Xi) = E[Xi|Xi > Qpi(Xi)] is the Tail-Value-at-Risk (TVaR) risk

measure of Xi at security level pi.

On the other hand, we assume that the preferences of each line manager within an entity

are market driven, with profitability rather than solvency being a primary concern. This can be

modeled by letting ξij = ζ for all i = 1, . . . , n, j = 1, . . . , ni, where ζ is a market pricing kernel.

In particular, it is implied that

E[ξijXij ] = E[ζXij ] = π(Xij),

ni∑
j=1

E [ξijXij ] = E[ζXi] = π(Xi) (17)

n∑
r=1

nr∑
j=1

E [ξrjXrj ] = E[ζX] = π(X).

Due to the linearity of the functional π(·) it is convenient to define business volumes by

νi = π(Xi), νij = π(Xij). (18)

Under the above assumptions, equation (13) immediately becomes

k∗ij = π(Xij) +
π(Xij)

π(Xi)
(K∗

i − π(Xi))

⇔
k∗ij − π(Xij)

π(Xij)
=

K∗
i − π(Xi)

π(Xi)
(19)

Therefore, it is implied that for each business line, the solvency ratio under the optimal capital

allocation is equal to the solvency ratio of the entity as a whole.

After some simple but tedious algebra that is not repeated here, (12) can be written as

K − π(X)

π(X)
− K∗

i − π(Xi)

π(Xi)
= (1− λ)

(∑n
r=1 ρr(Xr)− π(X)

π(X)
− ρi(Xi)− π(Xi)

π(Xi)

)
(20)

The left hand side of (20) represents the difference between the solvency ratios at the group

and legal entity levels, under the optimal capital allocation. The right hand side involves the
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difference between the solvency ratios at the group and company levels, if capital is set for

each company according to the risk measure that represents the preferences of its management.

Since 1−λ < 1, the difference between the solvency ratios under the optimal allocation is always

smaller than the difference between the solvency rations calculated using risk measures. For λ

approaching 1, the preferences of company management are ignored in favor of the preferences

of line managers and K−π(X)
π(X) approaches

K∗
i −π(Xi)
π(Xi)

. �

Example 2. So far we have assumed that the total available capital K is exogenously given.

However, in several applications the capital is itself driven by a risk measure, as is the case for

regulatory capital requirements. To illustrate this point consider the case of a single insurance

company, with n lines of business, producing losses Xi, i = 1, . . . , n. The ith line of business is

divided into ni (groups of) policies, each with loss Xij , j = 1, . . . , ni.

We assume that the company’s board agrees to a set of scenario weights that are of relevance

across the company and are driven by the aggregate company loss. Hence it is required that

ξi = ζ = h(X) for all i = 1, . . . , n. (21)

The total capital held is given as the expected total loss under the weighting specified by the

board, that is,

K = E[ζX]. (22)

On the other hand, each line manager also specifies scenario weights that are the same for

all policies she is in charge of and are driven by the loss of that line of business only, such that

ξij = ζi = hi(Xi) =⇒
ni∑
j=1

E[ξijXij ] = E[ζiXi], for all j = 1, . . . , ni. (23)

Under these assumptions, simple manipulations of (12) and (13) yield:

K∗
i = (1− λ)E[ζXi] + λE[ζiXi] + λ

νi
ν

(
E[ζX]−

n∑
r=1

E[ζrXr]

)
(24)

k∗ij = E[ζiXij ] + (1− λ)
νij
νi

(E[ζXi]− E[ζiXi]) + λ
νij
ν

(
E[ζX]−

n∑
r=1

E[ζrXr]

)
(25)

Hence K∗
i arises as linear combination of the weighted averages of Xi under board and line

manager risk preferences, plus an adjustment term reflecting the inconsistency of those two

views in their assessment of the aggregate risk. k∗ij is the average loss of Xij under the scenarios

specified by the ith line manager, plus two adjustment terms, reflecting inconsistencies in the

assessment of the risk Xi and of the aggregate risk X. Note that E[ζXi] represents the part of

risk E[ζX] allocated to Xi, while E[ζiXij ] represents the part of risk E[ζiXi] allocated to Xij , in

the sense of the weighted capital allocation principle of Furman and Zitikis [7].
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To make matters more concrete, assume that at both the aggregate and line-of-business level,

risk is measured with Tail-Value-at-Risk (TVaR) measure at respected security levels p, q. This

implies the use of weights

ζ =
1

1− p
1{X > Qp(X)}, ζi =

1

1− q
1{X > Qq(Xi)}. (26)

Hence, only adverse scenarios for X and Xi respectively are considered for capital allocation

purposes. The total capital is given by

K = E[X|X > Qp(X)], (27)

which is the TVaR measure of X at security level p.

The allocated capital to Xi is

K∗
i = (1− λ)E[Xi|X > Qp(X)] + λE[Xi|Xi > Qq(Xi)] (28)

+ λ
νi
ν

(
E[X|X > Qp(X)−

n∑
r=1

E[Xr|Xr > Qq(Xr)]

)
. (29)

Here, the first term involves a marginal TVaR-based allocation of the total risk to Xi (see e.g.

Overbeck [10]), while the second term involves the TVaR measure ofXi at level q. The two terms

give different types of information. E[Xi|X > Qp(X)] quantifies the marginal contribution of

Xi to the risk of the portfolio X, taking into account the diversification of Xi against other lines

of business, whereas E[Xi|Xi > Qq(Xi)] captures the stand-alone risk of Xi, without explicitly

considering diversification effects. The former view is important from a portfolio management

perspective, but the latter view is useful in order to give clear incentives to line managers.

Note that the third term in (28) can be made to be zero, by judicious choice of p, q. If

p = 0.99, consistently with regulatory practice (e.g. in the context of the Swiss Solvency Test

[11]) then some choice of q∗ < p is possible that leads to

E[X|X > Qp(X)] =
n∑

r=1

E[Xr|Xr > Qq∗(Xr)], (30)

in a logical extension of the haircut allocation principle discussed in Dhaene et al. [5].

Assuming that q = q∗ is chosen as above, the allocation to Xij is

k∗ij = E[Xij |Xi > Qq∗(Xi)] + (1− λ)
νij
νi

(E[Xi|X > Qp(X)]− E[Xi|Xi > Qq∗(Xi)]) . (31)

Here, the first term involves the marginal contribution of Xij to the TVaR of Xi, while the

second term reflects the inconsistency between the stand-alone and marginal risk assessments of

Xi. Note that this adjustment term could also be made to vanish if a different choice of security

level qi was allowed for each line of business. However this would create obvious problems of

equity between lines of business and is therefore not further considered here. �
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Example 3. In this example we consider the case of an insurance company, where the risk

preferences of the company board and of line managers are consistent, but there are differences

in their beliefs about loss distributions.

Assume for simplicity that all random variables considered have a continuous distribution

and denote by fi, Fi the density and distribution function of Xi respectively, as formulated by

the model used by the company’s central risk function, which is taken to also represent the

beliefs of the board. It is agreed across the company that scenario weights should be determined

for each line of business reflecting the loss of that line of business only. In particular the scenario

weights are defined as

ξi = ϕ (Fi(Xi)) , i = 1, . . . , n, (32)

where ϕ is a non-negative, non-decreasing function with
∫ 1
0 ϕ(t) = 1. Such scenarios generate a

distortion or spectral risk measure (see Wang [15], Acerbi [1]), by

ρϕ(Xi) = E[ξiXi] =

∫
x∈Si

ϕ(Fi(x))xfi(x)dx, (33)

where Si is the support of fi. The TVaR measure considered earlier is well known to arise as a

special case (e.g Acerbi [1]).

Line managers agree to use the same principle of risk measurement for all their policies.

However, given their local expertise, they potentially disagree about the assessment of the dis-

tribution of the losses considered. In particular, the manager of the ith portfolio believes that

the density and distribution of Xi are f̃i, F̃i respectively, again with support Si. Hence he wants

to measure the risk of his portfolio by∫
x∈Si

ϕ(F̃i(x))xf̃i(x)dx =

∫
x∈Si

ϕ(F̃i(x))x
f̃i(x)

fi(x)
fi(x)dx = E

[
ϕ(F̃i(Xi))

f̃i(Xi)

fi(Xi)
Xi

]
, (34)

where the expectation is calculated using the model Fi favored by the central risk function. This

motivates the definition of the following scenario weights by line managers

ξij = ξ̃i = ϕ(F̃i(Xi))
f̃i(Xi)

fi(Xi)
, i = 1, . . . , n, j = 1, . . . , ni. (35)

Denote now

ζi = (1− λ)ξi + λξ̃i, =⇒ (1− λ)E [ξiXi] + λ

ni∑
j=1

E [ξijXij ] = E[ζiXi], (36)

where ζi are scenario weights produced as a compromise between the beliefs of the company

board and the manager of the ith line. Consequently, equations (12) and (13) become

K∗
i = E[ζiXi] +

νi
ν

(
K −

n∑
r=1

E [ζrXr]

)
(37)

k∗ij = E
[
ξ̃iXij

]
+

νij
νi

(
K∗

i − E
[
ξ̃iXi

])
. (38)
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Thus the capital allocation formulas take their simplest form, structurally similar to (2) appear-

ing in Dhaene et al. [5]. However, the capital K∗
i is calculated under the compromise scenario

weights, while K∗
i is allocated to k∗ij according to weights reflecting the line managers’ beliefs

only.

�

3.2 Proportional allocations

A somewhat different simplification to the results of Theorem 1 occurs if the business volumes

are risk adjusted, in the sense that they are chosen to be equal to weighted expected losses, such

that

νi = E[ξiXi], i = 1, . . . , n (39)

νij = E[ξijXij ], j = 1, . . . , ni. (40)

Define the constants

ηi =
νi
∑ni

j=1 νij

(1− λ)
∑ni

j=1 νij + λνi
=

E[ξiXi]
∑ni

j=1 E[ξijXij ]

(1− λ)
∑ni

j=1 E[ξijXij ] + λE[ξiXi]
, (41)

for i = 1, . . . , n. Then the quantities appearing in Theorem 1 become:

wi =
ληi∑ni
j=1 νij

, w̃i =
(1− λ)ηi

νi
,

νiw̃i∑n
r=1 νrw̃r

=
ηi∑n
r=1 ηr

. (42)

Substituting into equation (3) yields

K∗
i = ηi +

ηi∑n
r=1 ηr

(
K −

n∑
r=1

ηr

)
. (43)

Consequently, simple algebra allows us to write equations (3) and (4) as

K∗
i =

ηi∑n
r=1 ηr

K (44)

k∗ij =
E[ξijXij ]∑ni
s=1 E[ξisXis]

K∗
i . (45)

Hence the optimal capital allocation becomes a proportional sharing of available funds. In

particular, k∗ij is derived by simply allocating the optimal capital K∗
i according to the weighted

expected losses E[ξijXij ]. On the other hand, K∗
i derives from a proportional allocation of the

total capital K, where the proportions ηi/
∑n

r=1 ηr reflect the weighted expected loss of Xi, at

the different levels of the organization.

A simple example illustrates the situation of proportional capital allocations further.

12



Example 4. Similarly to Example 2, we consider a single company with n lines of business,

each of which consists of ni insurance policies. Again it is assumed that Xi =
∑ni

j=1Xij for all

j = 1, . . . , ni and X =
∑n

i=1Xi. As in Example 2, the company management preferences are

given by weights ξi = ζ for all i = 1, . . . , n. These weights again taken to reflect the aggregate

risk. In this example, rather than using scenario weights related to TVaR, we use instead the

weights

ξi = ζ = 1 + γ
X − E[X]

σ[X]
, γ > 0, (46)

implying

νi = E[ζXi] = E[Xi] + γ
Cov[Xi, X]

σ[X]
. (47)

In this example, line managers are interested in allocating capital to the level of individual

policies. For that reason, a very simple weight and business volume measure is proposed, with

ξij ≡ 1 for all i = 1, . . . , n, j = 1, . . . , ni, leading to

νij = E[Xij ]. (48)

Consequently the allocation of the optimal capital K∗
i to Xij is simply given by

k∗ij =
E[Xij ]

E[Xi]
K∗

i . (49)

To determine K∗
i itself by (44), we need to consider the quantities

ηi = E[Xi]

(
E[Xi] + γ

Cov[Xi, X]

σ[X]

)(
E[Xi] + λγ

Cov[Xi, X]

σ[X]

)−1

(50)

For the sake of exposition we now consider the limiting cases for λ, as discussed in Section 2.3.

For λ → 0 we have

ηi → E[Xi] + γ
Cov[Xi, X]

σ[X]
=⇒

K∗
i →

(
E[Xi] + γ

Cov[Xi, X]

σ[X]

)
K

E[X] + γσ[X]
, (51)

which is a form of the covariance-based allocation discussed by Dhaene et al. [5]. For λ → 1 the

allocation reduces to the simple case

ηi → E[Xi] =⇒ K∗
i → E[Xi]

K

E[X]
. (52)

�
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4 Proof of Theorem 1

The following notations are used throughout the proof.

aij =

(
λ

νij

)1/2

∀i = 1, ..., n , ∀j = 1, ..., ni

Ai =

(
1

ai1
, ...,

1

ain1

)
A =

(
1

a11
, ...,

1

a1n1

, ...,
1

an1
, ...,

1

annn

)
bij = E [ξijXij ] aij ∀i = 1, ..., n , ∀j = 1, ..., ni

bi = (bi1, ..., bini)

b = (b11, ..., b1ni , ..., bn1, ..., bnnn)

Vectors A, b are of length
n∑

i=1
ni while the vectors Ai, bi are of length ni. In addition denote

αi = ⟨Ai,Ai⟩ =
ni∑
j=1

a−2
ij =

1

λ

ni∑
j=1

νij

α = ⟨A,A⟩ = 1

λ

n∑
i=1

ni∑
j=1

νij

βi = ⟨bi,Ai⟩ =
ni∑
j=1

E [ξijXij ]

β = ⟨b,A⟩ =
n∑

i=1

ni∑
j=1

E [ξijXij ]

In the objective function of (1) the variables Ki, kij are multiplied by the random variables

Xi, Xij , ξi, ξij . The main idea of the proof is to transform the objective function, such that only

expectations involving those random variables are present, and proceed by geometric arguments.

This is done by the relation

λ

νij
E
[
ξij (kij −Xij)

2
]
=

(
kij

(
λ

νij

)1/2

− E [ξijXij ]

(
λ

νij

)1/2
)2

− λ (E [ξijXij ])
2

νij
+

λE
[
ξijX

2
ij

]
νij

(53)

Note that the last two terms on the right hand side of (53) do not depend on kij and therefore

they have not affect on the optimal solution. Thus, we may replace the term λ
νij

E
[
ξij (kij −Xij)

2
]

with the term (aijkij − bij)
2. Similarly we can replace the first term in the objective function in

(1). Hence, we rewrite (1) as

14





min
Ki,kij

{
n∑

i=1
(riKi − si)

2 +
n∑

i=1

ni∑
j=1

(aijkij − bij)
2

}
s.t.

n∑
i=1

Ki = K

ni∑
j=1

kij = Ki ∀i = 1, . . . , n, j = 1, . . . , ni.

(54)

where ri =
(
1−λ
νi

)1/2
, si = E [ξiXi] ri.

Let Ui = riKi and Tij = aijkij . Hereby we will describe the optimization problem in terms

of vectors, where U = (U1, ..., Un) , T i = (Ti1, ..., Tini) . Substituting U ,T i in (54) leads to:
min
U ,T i

{
∥U − s∥2 +

n∑
i=1

∥T i − bi∥2
}

s.t. (i) ⟨U ,R⟩ = K

(ii) ⟨T i,Ai⟩ = Ui
ri

∀i = 1, , , n

(55)

where R =
(

1
r1
, ..., 1

rn

)
and s = (s1, ..., sn).

In order to analyze (55) we rewrite the terms ∥T i − bi∥2 = ⟨T i − bi,T i − bi⟩ in terms of

Ui. For every choice of U , such that the first constraint holds, the optimal T i is the Euclidean

projection of bi onto the hyperplane ⟨T i,Ai⟩ = Ui
ri
, thus:

T ∗
i = bi +

Ui
ri

− ⟨bi,Ai⟩
⟨Ai,Ai⟩

Ai . (56)

Therefore, ∥T ∗
i − bi∥2 =

(
Ui
ri

−βi

)2

αi
. This implies that for every choice ofU and the corresponding

T ∗
i , the value of the objective function is ∥U − s∥2+

n∑
i=1

(
Ui
ri

−βi

)2

αi
. In order to write this expression

in terms of a Euclidean norm we define the following notations:

θi =

(
1 +

1

αir2i

)1/2

, τi =
1

riθi
, δi =

1

θi

(
si +

βi
αiri

)
, Di = θiUi

for every i = 1, ..., n.

By substituting these notations in (55) we get the following equivalent optimization problem:


min
D

{
∥D − δ∥2

}
s.t. ⟨D, τ ⟩ = K

(57)

where D = (D1, ..., Dn), δ = (δ1, ..., δn) and τ = (τ1, ..., τn). Hence, the optimal solution is

D∗ =
K − ⟨δ, τ ⟩

⟨τ , τ ⟩
τ + δ (58)
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Recall that Ui = riKi and Di = θiUi, hence Ki =
Di
θiri

. We derive the optimal capital allocation

at the top level from (58):

K∗ =
1

riθi

[
K − ⟨δ, τ ⟩

⟨τ , τ ⟩
τ + δ

]
i

(59)

and the i− th element of K∗ is

K∗
i =

1

riθi

(
K − ⟨δ, τ ⟩

⟨τ , τ ⟩
τi + δi

)
(60)

By simple algebraic calculation we obtain the following equalities:

riθi =

(
(1− λ)αi + νi

αiνi

)1/2

θ2i =
(1− λ)αi + νi

(1− λ)αi

τi =

(
αiνi

(1− λ)αi + νi

)1/2

⟨τ , τ ⟩ =
n∑

r=1

αrνr
(1− λ)αr + νr

δiτi =
(1− λ)αiE [ξiXi] + βiνi

αi (1− λ) + νi

⟨δ, τ ⟩ =
n∑

r=1

(1− λ)αrE [ξrXr] + βrνr
αr (1− λ) + νr

By Substituting these notations in (60) we obtain,

K∗
i =

(
αiνi

(1− λ)αi + νi

)K −
n∑

r=1

(1−λ)αrE[ξrXr]+βrνr
(1−λ)αr+νr

n∑
r=1

αrνr
(1−λ)αr+νr

+
(1− λ)

νi
E [ξiXi] +

βi
αi

 (61)

from which (3) follows by simple algebraic manipulations.

Following (56) we obtain the optimal capital allocation at the bottom level

k∗
i =

1

aij

[
bi +

Ki
∗ − βi
αi

αi

]
j

(62)

where the allocated capital to the j − th risk in the i− th line is

k∗ij =
1

aij

(
bij +

K∗
i − βi

⟨Ai,Ai⟩ aij

)
= E [ξijXij ] +

K∗
i − βi
λαi

νij , (63)

from which (4) follows.
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5 Conclusions

Conflicting risk preferences are a fact of life within any insurance or financial institution. Rather

than trying to eliminate these inconsistencies, we propose to embrace the diversity of views

of risk and synthesize them into an optimal capital allocation that reflects all stakeholders’

preoccupations. While different combinations of risk preferences (scenario weights) lead to

very different looking capital allocations, a unifying principle emerges. Capital allocation in

a hierarchical structure becomes a two-step procedure. First, the total capital is allocated to

portfolios, according to synthesized preferences, reflecting the compromises reached. Second,

such portfolio capitals are in turn allocated to more granular sub-portfolios, using bottom-up

preferences that are only relevant to those sub-portfolios. In that sense, the top-level preferences

set constraints but do not lead to micro-management. Thus, the solution to this optimization

problem may lead to an organizationally acceptable capital allocation method.

It may be reasonable that in a large financial conglomerate, more than two organizational

levels are relevant for the purposes of synthesizing preferences and allocating capital. In that

case, optimal capital allocations can still be obtained following similar steps as in the proof of

Theorem 1 – for a hierarchy with d relevant levels, capital allocation would become a d-step

exercise.
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