

Permanent City Research Online URL: http://openaccess.city.ac.uk/5945/

Copyright & reuse
City University London has developed City Research Online so that its users may access the research outputs of City University London's staff. Copyright © and Moral Rights for this paper are retained by the individual author(s) and/ or other copyright holders. All material in City Research Online is checked for eligibility for copyright before being made available in the live archive. URLs from City Research Online may be freely distributed and linked to from other web pages.

Versions of research
The version in City Research Online may differ from the final published version. Users are advised to check the Permanent City Research Online URL above for the status of the paper.

Enquiries
If you have any enquiries about any aspect of City Research Online, or if you wish to make contact with the author(s) of this paper, please email the team at publications@city.ac.uk.
A critical role for RhoA-GTPase signaling in the tumor vascular disrupting action of combretastatin-A4-phosphate in vivo

Leigh Williams¹, Matthew Fisher¹, Constantino C. Reyes-Aldasoro¹, Chryso Kanthou¹, and Gillian M. Tozer¹

¹ Univ. of Sheffield, Sheffield, United Kingdom.

Abstract

Background: Tubulin binding microtubule depolymerising agents form a growing group of tumor vascular disrupting agents (VDAs) in clinical trial, with combretastatin A-4-phosphate (CA4P) the lead compound. Signalling through RhoGTPase/ROCK-dependent pathways is central to CA4P-induced effects on endothelial cells in vitro (1). Here, we tested the hypothesis that RhoGTPase/ROCK signalling is also important in tumor vascular damaging effects in vivo.

Experimental procedures: SW1222 human colorectal carcinoma cells were grown as solid subcutaneous tumors in SCID mice. The Rho kinase (ROCK) inhibitor, Y-27632 (50 mg/kg) or saline vehicle, was administered intraperitoneally (i.p.), 5 minutes prior to 100 mg/kg CA4P or saline i.p. Laser Doppler flowmetry was used to assess tumor vascular response from 0 – 2h post-treatment, under isoflurane anaesthesia. Intravenous administration of fluorescent tomato lectin was used for assessing tumor perfusion at 1, 3, 6 and 24 hours post-CA4P/saline treatment, unanaesthetised. Necrosis (H&E) and leukocyte infiltration (immunohistochemistry) were assessed at 24h from excised tumors. Mean arterial blood pressure (MABP) was monitored in unanaesthetised mice without tumors, using a tail cuff system.

Results: Y-27632 alone significantly decreased MABP by 40% but did not significantly affect tumor necrosis at 24 hours (17±4% of tumor sectional area for treated versus 10±3% for controls). Y-27632 alone reduced relative red cell flux in the tumor (laser Doppler flowmetry) by approximately 50%, which was similar to the reduction observed for CA4P alone. However, pre-treatment with Y-27632 did not affect CA4P-induced laser Doppler or perfused vascular volume measurements in the first few hours after CA4P and significantly reduced the effect of CA4P on perfused vascular volume and necrosis measured at 6 and 24 hours. Necrosis was 61±5% for CA4P alone and 35±7% for Y-27632+CA4P. These changes were accompanied by a decrease in staining for the myeloid markers, myeloperoxidase and GR-1 with Y-27632 pre-treatment.

Conclusions: The Y-27632-induced decrease in MABP is consistent with the decrease in relative red cell flux in the tumor, via a decrease in tumor perfusion pressure. Despite these effects of Y-27632 alone, its administration prior to CA4P was protective of CA4P-induced vascular damage at the later time-points, suggesting that ROCK inhibition is acting downstream from initial vascular shut-down, potentially via modulation of myeloid cell recruitment. These data indicate that RhoGTPase/ROCK-dependent signalling is a critical factor in determining extent of vascular disruption by CA4P – these results have significance for similar VDAs in development.

References

Funded by Cancer Research UK