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Abstract 
The analysis of the driving behaviour is a challenging area in transport that has applications 
in numerous fields ranging from highway design to micro-simulation and development of 
advanced driver assistance systems (ADAS). There has been evidence suggesting changes 
in the driving behaviour in response to changes in traffic conditions, and this is known as 
adaptive driving behaviour. Identifying these changes, the conditions under which they 
happen, and describing them in a systematic way would contribute greatly to the accuracy of 
micro-simulation and more importantly to the understanding of the traffic flow, and will 
therefore pave the way for introducing further improvements in the efficiency of the transport 
network. In this paper adaptive driving behaviour is linked to changes in the model 
parameters for a given car-following model. These changes are tracked using a dynamic 
system identification method, namely unscented particle filtering.  
 
1. Introduction 
A look at the more than six-decade-long body of studies on micro-simulation points to the 
difficulty of representing the dynamics of driving under different traffic conditions and for 
different drivers by a single mathematical equation. There have been studies reporting that 
the behaviour of different drivers may best be represented using different model structures 
(Punzo & Simonelli, 2007; Ossen & Hoogendoorn, 2007). In other words, different drivers 
drive according to different models. Additionally, individual drivers exhibit different driving 
patterns in different traffic conditions, a phenomenon that is addressed in multiple studies 
(Munoz & Daganzo, 2002; Ma & Andréasson, 2007; Hoogendoorn, et al., 2006).  Moreover, 
the fact that the calibration of car-following models is highly dependent on the driving 
condition, as confirmed by numerous studies, such as (Punzo & Simonelli, 2007; Ossen & 
Hoogendoorn, 2008; Kesting & Treiber, 2009), is another indicator to adaptive driving 
behaviour. Many car-following models have a multi-regime structure to cope with this issue 
and achieve more accuracy in the reproduction of the driving behaviour, such as the models 
proposed by Wiedemann, Yang, and Fritzsche implemented in the VISSIM, MITSIM, and 
Paramics microsimulation software, respectively (Wiedemann, 1974; Yang & Koutsopoulos, 
1996; Fritzsche, 1994). 
 
This raises the important question whether is it possible to identify the conditions under 
which the changes in driving behaviour happen, and in what way those conditions affect the 
driving behaviour. Identifying and representing the adaptive behaviour in micro-simulation 
would greatly contribute to improving the accuracy of modelling and gaining a better insight 
into traffic flow. In (Ma & Andréasson, 2007) data collected from an instrumented vehicle 
were used to identify different regimes of driving. Therein, a fuzzy clustering method was 
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applied to a combination of accelerations and velocities of the following and lead vehicles as 
well as the spacing in between the two, in order to group the data into different regimes. In 
(Thiemann, et al., 2008) probability density functions for headways of a large amount of 
trajectory data were calculated. These empirical observations point out to a significant 
correlation between headway and variables representing driving condition such as speed, 
approaching speed, and traffic condition. In (Treiber, et al., 2006) a general adaptation 
method that can be integrated within a wide range of car-following models was proposed. 
This adaptation mechanism simply states that headway in smooth traffic flow increases 
linearly with variations in the local traffic. A measure for representing these variations is then 
given and then calibrated empirically using data from a Dutch highway. In (Hoogendoorn, et 
al., 2006) unscented particle filtering was used to calibrate two car-following models 
dynamically, namely the Gazis-Herman-Rothery (GHR) and Helly models. Unlike static 
system identification methods, where the whole period of time series data are used to find 
the single set of model parameters resulting in least error, in this method parameters are 
allowed to vary at each time instance to minimise the estimate error. Variations in the model 
parameters as a function of time were provided as a yet another evidence to adaptive driving 
behaviour.  
 
In this paper the possibility of utilising unscented particle filtering for a purpose beyond 
simple demonstration of variations in model parameters is investigated. Herein, the main 
research question is the investigation of the possibility of linking the changes in the model 
parameters to external stimuli or driving conditions. Deriving a conclusion with this regard 
could have two significant benefits. Firstly, such information will help gain a better insight into 
traffic dynamics and dynamic driving behaviour. A by-product of this is improvement in 
micro-simulation and modelling. Secondly, different aspects of a car-following model can be 
assessed based on the robustness of the parameter estimates.  
 
The rest of this paper is organised as follows. A brief introduction on the car-following model 
used in this work, the calibration of car-following models, and the unscented particle filtering 
are given in Section 2. The simulated dataset and the application of the unscented particle 
filtering to this dataset are described in Section 3. Moreover, in this section a simple method 
for discretisation of the dynamic parameter estimates is proposed. This discretisation 
facilitates the identification and analysis of the dynamic driving behaviour. The proposed 
method is then applied to NGSIM dataset and the results are discussed in Section 4, and 
finally concluding notes and future work are discussed in Section 5.  
 
2. Background  
Car-following models, and acceleration models in general, represent the understanding of 
the behaviour of human drivers. These models, integrated in simulation software, are used to 
assess policy-making in various fields related to transport networks, ranging from highway 
design to the evaluation of advanced driver assistance systems (ADAS). However, not all of 
these models are developed for the same purpose, and different levels of accuracy might be 
required accordingly, and so different car-following models may best serve different 
purposes. For a review of different car-following models, the reader is referred to 
(Brackstone & McDonald, 1999; Ahmed, 1999). 
 
System identification is another important aspect for car-following models. Car-following 
models describe the structure of stimuli-response underlying the car-following behaviour in a 
mathematical form. However, for application in a specific scenario the model needs to be 
adjusted and tailored. This may be done through calibration using an appropriate dataset.  
 
In this section, first the car-following model used in this work, the Intelligent Driving Model 
(IDM), is described. Then some of the considerations related to the calibration of car-
following models are discussed, and finally the method of unscented particle filtering is 
briefly described.  
 
2.1. The IDM car-following model  

The IDM car-following model has been selected for the present study on the basis of a 
number of advantages that it presents over others. Specifically, the studies available on the 
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macroscopic and microscopic calibration of the IDM model point to the good performance of 
this model on both aspects (Treiber, et al., 2000; Treiber & Kesting, 2013; Punzo & 
Simonelli, 2007). Moreover, it is computationally simple and relies on a small number of 
parameters, each with an intuitive meaning. Finally, numerous studies on different aspects 
this model such as calibration, stability and other microscopic and macroscopic properties 
are available (Wilson & Ward, 2011; Kesting & Treiber, 2009). 
 
The IDM model is given by the following general equation; 

                              

 

where,  is maximum acceleration, vd is desired speed,  is acceleration exponent, s0 and 
s1 determine jam distances in fully stopped traffic and in high densities respectively, T is 
safe time headway, b is comfortable deceleration, and they are all model parameters. Input 
variables are speed of the subject vehicle, v, speed of the preceding vehicle, vp, and 
distance headway, s. Finally, the output variable, , determines the acceleration of the 
subject vehicle. 
 
2.2. Calibration of car-following model 
Numerous factors in the calibration of a car-following model must be taken into account. The 
choice of the dataset, the method employed for calibration, and the purpose for which the 
calibrated model is to be employed are of great importance. When a certain level of accuracy 
in the collective behaviour or traffic flow is required to reproduce the same flow-density 
characteristics as observed in real data, a certain set of model parameters for a given car-
following model may work best ( Treiber, et al., 2000). However, for the purpose of modelling 
microscopic behaviour of individual drivers, including details such as velocity and spacing of 
individual vehicles, a different set of model parameters may work best (Treiber & Kesting, 
2013). Even for a single driver a significant inconsistency between calibration results for 
different trajectory data is found. This means that if one intends to reproduce accurate 
trajectories for a specific driving condition, for a given driver, while driving in a stretch of a 
specific highway, e.g. upstream of a bottleneck, taking into account the traffic flow and 
density, weather condition, etc., the data used for calibration must match the scenario under 
investigation in terms of traffic characteristics.  
 
Even excluding the question of intra-driver inconsistencies, this gives rise to the so called 
phenomenon of over-fitting. Over-fitting means that the model will be so accurately adapted 
to a given scenario that it will lose its generality, such that for an only slightly different driving 
scenario the results would be completely inaccurate and consequently unreliable for making 
any predictions. One may recognise this as a trade-off between accuracy and robust 
calibration. Other considerations regarding calibration include the choice of: error 
measurement, e.g. travel time, spacing, velocity, acceleration; system identification method, 
e.g. Maximum-Likelihood Estimation (MLE), Least Squares Estimation (LSE), and nonlinear 
optimisation methods such as Genetic Algorithm; and finally error tests, e.g., Root Mean 
Square error (RMSe), Root Mean Square Percentage error (RMSQe), and Theil’s inequality 
coefficient (U). For a review on some of these considerations, the reader is referred to 
(Punzo & Simonelli, 2007; Ossen & Hoogendoorn, 2008; Treiber & Kesting, 2013; Ranjitkar, 
et al., 2004).  
 
2.3. Unscented particle filtering  
Sequential Monte-Carlo filtering or Particle Filtering (PF) can be used to tackle the difficulty 
associated with the estimation of states or parameters in nonlinear, non-Guassian filtering. 
This method is based on the principles of Bayes theorem, which provides a mechanism for 
updating knowledge about the underlying system upon receipt of new data on the observed 
states of the system at each time instance.  An important step in this method is importance 
sampling, where an estimate for the posterior distribution is calculated.  Unscented particle 
filtering is one of the many variations of PF where the estimate of the posterior is based on 
the Unscented Kalman Filter.  It was shown that this method outperforms other nonlinear 
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filters such as Extended Kalman Filter (EXF) and some other variation of PF (van der Merwe 
et al. 2000). Figure 1 gives a schematic representation of this method. 

 
Figure 1 illustration of the three stages of importance sampling, resampling, and sampling 

(prediction) in PF, figure from (van der Merwe et al. 2000) 

 
For more details and pseudo-code of the method refer to (van der Merwe et al. 2000; 
Hoogendoorn et al. 2006; Arulampalam et al. 2002).  
 
3. Methodology 
In this section, a brief on the simulated dataset is provided. The unscented particle filtering is 
then applied to the simulated data to investigate the extent to which the properties of the 
adaptive driving can be identified using this method. Moreover, the choice of the objective 
function for calibration is described. Finally, a simple method for discretisation of the 
estimates is proposed. The discretisation of the dynamic estimates is an important step to 
make sense of the raw estimates obtained initially and link the changes in the model 
parameter to the traffic conditions.  
 
3.1. Simulated dataset 
In the previous section, unscented particle filtering was introduced. In this section the 
application of this method to simulated data is investigated to illustrate the extent to which 
this method can be utilised for the purpose of “meaningful” dynamic calibration of car-
following models. The additional constraint arising from the term “meaningful” refers to the 
fact that, sometimes by calibrating a number of model parameters simultaneously, an error in 
the estimation of one model parameter may be compensated by another error (over-
estimation or under-estimation depending on the relation between the two model 
parameters) in estimation of the other model parameters. This happens due to the fact that 
the information available is less than what is required for the determination of the unknowns, 
and in this sense it is similar to trying to find the solution to a system of three linear equations 
with four unknowns. The lack of independent information on the fourth equation results in 
infinite possible solutions instead of the unique solution intended.  
 
Data are simulated in the following way. The trajectories of a specific vehicle from the 
NGSIM dataset (Montanino & Punzo, 2013) were selected. These trajectories were then 
used to generate trajectories for follower vehicles with the IDM model proposed by (Treiber, 
Hennecke, & Helbing 2000). A specific parameter profile was used for this purpose. In the 
parameter profile used certain parameters were varied at certain points in time. Unscented 
particle filtering was then applied to the trajectories to generate dynamic estimates of the 
model parameters. Figure 2 illustrates the trajectories used for the leader vehicle.  
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Figure 2 a) Trajectory of the lead vehicle selected from NGSIM data Lane 2    b,c,d) Position 
trajectories, velocities, and accelerations of the lead vehicle and synthetized follower in dashed 

red line and blue line respectively 

 
The parameter profiles used for the simulation of the trajectories shown are as follows. The 
default model parameters reported by (Treiber, Hennecke, & Helbing 2000) are used up to 
Time t=300. At this instance, the following parameters are changed to the given values: 

. 

Additionally, the value of the parameter, T, changes again to the values T=1 and T=3 at time 
points t=400 and t=500, respectively. 
 
3.2. Application of unscented particle filtering to simulated data  
Figure 3 shows the results of the application of the method to the simulated dataset. For this 
purpose, all of the model parameters are set to their default values, except for parameter T, 
which is to be estimated. 
 
Parameter T was chosen over other model parameters because it was found that no other 
parameter was capable of tracking the changes in the driving behaviour for numerous 
trajectories when selected alone.  Also variations in this model parameter remain low 
compared to other model parameters. Furthermore, one of the advantages of IDM is that the 
parameters have intuitive meanings, and if one parameter is to be selected among others 
representing comfortable deceleration, maximum acceleration, desired velocity, and etc., the 
choice of the parameter T, representing headway, makes most sense. This parameter was 
also used in ( Treiber, Hennecke, & Helbing 2000) to generate variations in traffic conditions, 
and hence driving behaviour, and by doing so the empirical data related to formation of traffic 
jams were successfully simulated. 
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Figure 3 The result for estimation of the parameter T. The blue shadow denotes the distribution 

of particles at each time instance while the red curve is the selected particle. 

 
It can be seen that up to time t=300, the estimation of parameter T is almost error-free and 
stable. Also, the subsequent changes at the times t=300, t=400, and t=500 can be identified 
from Figure 3 by “jumps” in the values of the parameter at these times, compared to the 
smooth curves in the intervals between the changes. The estimations of parameter T at 
times after t=300, unlike before, are unstable and fluctuate around a certain value. This is 
due to the fact that beyond time t=300 other model parameters were changed to values 
other than the ones used in the estimation process. As a result, the effect of this false 
estimation needs to be compensated for by overestimations and underestimations of 
parameter T. 
  
Using the parameter estimation given by the application of unscented particle filtering (Figure 

3), almost perfect estimation of the spacing ( ), velocity ( ) and 
acceleration ( ) can be derived despite the error in other model parameters from 
t=300 afterwards). This is shown in Figure 4.  
 

 
Figure 4 The comparison of real trajectories with simulated trajectories when the dynamic 

estimation of the parameter T, given by unscented particle filtering, is used. 

 
It should be noted that herein, the IDM car-following model was used to generate trajectories 
for the follower vehicles, and the same car-following model was used in the calibration 
process. In the application to real data, this is the equivalent of assuming knowledge of the 
model underlying the behaviour of human drivers. Although this is obviously not the case, 
the findings of (Ossen & Hoogendoorn, 2008) may justify use of such simulated data. 
Therein, it was found that the characteristics of the followers’ behaviour can be recovered by 
calibrating a car-following model to data, even when the real model is different than the 
model used for calibration.  
 

3.3. Objective function 
The objective function defines a measure of error that is intended to be minimised. For this 
purpose, one needs to choose among measures of performance (MOPs) such as spacing, 
speed, and acceleration; as well as an appropriate error test (functional form of the defined 
error) such as root mean square error (RMSe) and root mean square percentage error 
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(RMSPe). For more details on this subject, the reader is referred to (Punzo & Simonelli, 
2007; Ossen & Hoogendoorn, 2008; Treiber & Kesting, 2013; Ranjitkar, et al., 2004).  
 
In (Punzo & Simonelli, 2007), the inter-vehicle spacing was suggested as the most reliable 
MOP. In this work, however, it was found that the best result is obtained when a combination 
of errors on spacing, velocity, and acceleration was used in the objective function instead of 
selecting a single variable as the performance measure. This might be due to utilising the 
information available on all variables.  Herein, the weighted sum of squared errors on all the 
three variables was used. The accuracy of the acceleration trajectories in NGSIM data is 
somewhat questionable, as pointed out by (Thiemann, Treiber , & Kesting, 2008) 
nonetheless, excluding acceleration error between the predicted values and real values from 
the objective function results in randomly fluctuating estimates of acceleration with 
unrealistically large values for jerk. This can be avoided by including acceleration error in the 
objective function with a low weight to suppress significant influence of these inaccurate data 
on the estimation process. Figure below, illustrates the simulated acceleration trajectory 
when acceleration error is excluded from the objective function. Although in this case a slight 
improvement in the simulated velocity and spacing trajectories is obtained yet, as it can be 
seen from Fig. 5 this improvements comes at the great cost for acceleration.  
 

  
Figure 5 Comparison of the simulated accelerations with the real values when acceleration 

error is a) excluded in the objective function b) included in the objective function 
 
3.4. Making sense of the dynamic parameter estimates 
As was shown in Figure 3, although the “jumps” in the value of the model parameters are 
visually identifiable, when the method is applied to real data the resulting estimates are much 
harder to interpret. This makes the identification of the points where a sudden change in the 
model parameter takes place difficult, and is due to two reasons:  1) the actual changes in 
the model parameters are not known in advance; and 2) the changes are much less intense 
and more frequent. As one would expect from human drivers, they do not drive in a crisp and 
deterministic fashion, and neither do they immediately change their underlying incentives as 
soon as they reach a different traffic condition, but instead a smooth and gradual change in 
incentives is to be expected from them. Moreover, it should be pointed out that for real data, 
the true underlying model generating the car-following dynamics is unknown.  
 
Hence, a way to identify significant changes and filtering out the smooth fluctuations from the 
dynamic model parameter estimate is required. A simple clustering approach is adopted 
here for this purpose, whereby the points where maximum changes in the subsequent 
values of the parameter under estimation are identified. These points are referred to as 
“breaking points”. Following that, the average values of the parameter between pairs of 
breaking points are calculated and assigned to the value of the parameter between the two 
breaking points. The only condition imposed on the number of breaking points is that the 
distance between each two must be greater than a certain value. This condition is imposed 
to avoid frequent changes of the parameter in a short interval. The implementation of this 
constraint may also be justified by the fact that frequent and sudden changes in driving 
behaviour and driving incentives in a short time interval are highly unlikely among human 
drivers. Herein, the value of five seconds (50 time steps for the NGSIM dataset) is used. For 
Figure 3, this entails averaging the value of the parameter estimate between time intervals [0 
, 300], [300 , 400], [400, 500], and [500, 600], and assigning the average as the fixed value 
of the parameter between the corresponding intervals. The application of this method to the 
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same simulated data described earlier shows promising results. Figure 6 shows a 
comparison of the simulated results using this method compared to the real data.     

 
Figure 6. Comparison of the simulated trajectories when averaging between the breaking points 

is applied with real results for a) The estimation of parameter T  b) Spacing  c)Speed 
d)Acceleration 

 
It can be seen that not only the points where the parameter is changed are identified 
correctly, but also the values of the parameter within corresponding intervals are estimated 
with relatively high accuracy. Hence, the acceleration, velocity, and spacing trajectories are 
generated with accuracy that is incomparable to any static estimation method.   
 
4. Results 
In the previous section it was shown that using the unscented particle filtering along with the 
proposed discretisation method, the changes in the model parameters can be identified and 
consequently the changes in the driving behaviour can be captured. In this section, this 
method is applied to the NGSIM trajectory dataset to investigate the question of the 
identification of the adaptive driving behaviour.  
 
4.1. Application to the NGSIM dataset 
The functionality of the proposed method was illustrated using simulated data. In this section 
the proposed method is applied to a platoon of nine vehicles driving in the second lane to 
investigate the following two issues: 1) whether the assumption of systematic changes in 
driving incentives can be validated; and 2) whether these changes can be identified using 
car-following models, such as IDM, and an adaptive system identification method, such as 
unscented particle filtering. All the vehicles observed remain in the platoon for the whole 
duration of the experiment, and this means that the dynamics are not disturbed by lane 
changes. Figure 7 illustrates the application of the proposed method to one of the vehicles. 
The first figure illustrates the discretised parameter estimate. This parameter profile is 
subsequently used to simulate the driving behaviour for the follower. The comparison of the 
simulated states (spacing, speed, and acceleration) with the real states points to the 
accuracy of the simulated behaviour. The reason why the acceleration estimates are 
relatively poor is due to the low weight of this variable in the objective function as explained 
earlier.  
 
An interesting finding of this work that can be identified from Figure 7, is the correlation 
between the estimate of parameter T, and speed. This will be explained further in the 
following section. 
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Figure 7 Trajectories resulting from application of the proposed method to the vehicle ID 348 

 
4.2. Analysis of the parameter estimates 
Figure 8 illustrates the resulting parameter estimates for the vehicles, based on which very 
accurate estimates of the spacing and and velocity trajectories can be obtained. Table 1 
summarises the errors in estimation of velocity and spacing. 
 

 

 
Figure 8 Parameter estimates for the eight vehicles following vehicle ID 329. The place of each 

vehicle inside the platoon is specified in front of the vehicle ID 
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Table 1 measures regarding quality of fit for each the vehicle in platoon 

 V348 V343 V354 V362 V368 V378 V381 V391 

Average squared 
error for spacing 

 

0.5481 

 

0.3003 

     

 

3.5496 

     

 

1.1143 

     

 

0.2500 

     

 

0.5516 

     

 

0.9181 

     

 

1.7758 

     

Coefficient of 
determination for 
spacing 

 

0.9669 

     

 

0.8959 

     

 

0.9153 

     

 

0.9592 

     

 

0.9384 

     

 

0.8919 

     

 

0.7897 

     

 

0.9037 

     

Average squared 
error for speed 

 

 

0.3360 

 

0.2734 

     

 

0.3615 

 

 

0.3711 

 

 

0.1543 

 

 

0.3287 

 

 

0.2694 

 

 

0.6629 

     

Coefficient of 
determination for 
speed 

 

0.8967     

 

0.9353     

 

0.9073 

 

0.8994 

 

0.9644 

 

0.9284 

 

0.9230 

 

0.8409         

 
One of the interesting findings of this work is that in four of the eight investigated vehicles, a 
significant correlation between the average speed and the estimation of parameter T can be 
observed. Correlation between this parameter and the local average speed was also 
reported by (Treiber, Kesting, & Helbing 2006), and based on this, a general model that can 
be integrated within a number of car-following models was proposed. However, interestingly, 
two other distinct patterns can be observed within the estimates for this platoon: 1) the 
inverse relation with the average speed, as is the case with vehicle 368; and 2) irrelevant or 
no changes in the estimated parameter with respect to average speed, which is the case for 
vehicles 343, 378, and 381. Similar patterns were observed in many other examined 
vehicles, and the reason is likely to be difference in driving styles, intentions (such as the 
preparation for performing a lane change), or maybe a more complicated relation between 
the average speed and spacing. Further investigation on these topics and application of the 
method to more trajectories will shed more light on some of these issues. 
 
5. Conclusion and future work 
In this paper, unscented particle filtering was utilised to examine the dynamic behaviour of 
drivers in different traffic conditions. In order to interpret the estimates given by the 
unscented particle filtering, a simple discretisation method was used, and promising results 
from its application to simulated and real data were obtained. This helped to isolate minor 
fluctuations, which could be due to the fuzzy and stochastic nature of human driving, or 
minor errors in the modelling of car-following behaviour, and to convert the raw estimates 
given by the unscented particle filtering to an interpretable form.  
 
The application of this method to real data delivered interesting results. Specifically, for a 
large number of cases, a strong correlation between average speed and the parameter 
under investigation was observed. This correlation was also reported by (Treiber, Kesting, & 
Helbing 2006). However, two additional patterns were, interestingly, observed: 1) inverse 
relation with the average speed; and 2) the parameter estimate is not influenced by the 
average speed. In spite of these, though, the employed framework has been found to have 
great potential in investigating the properties of traffic flow, as well as in examining the 
robustness and performance of car-following models.  
 
In future work, the application of suitable clustering methods, such as consolidated fuzzy 
clustering (Ma & Andréasson, 2007) will be considered for grouping the estimation results. 
Moreover, in order to draw reliable conclusions about how driving behaviour changes with 
reference to car-following models, analysis of larger groups of data will be carried out. The 
data used is recorded from a highway with seven lanes, and it is therefore hard to identify 
platoons of vehicles uninterrupted by lane-changing. Isolating lane-changing from the factors 
influencing the driving behaviour by using datasets recorded from a platoon of vehicles 
following one another for a long enough period can reduce the complexities of the analysis.       
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