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Hospital readmission rates are increasingly used as signals of hospital performance and a basis for hospital
reimbursement. However, their interpretation may be complicated by differential patient survival rates.
If patient characteristics are not perfectly observable and hospitals differ in their mortality rates, then
hospitals with low mortality rates are likely to have a larger share of un-observably sicker patients at risk
of a readmission. Their performance on readmissions will then be underestimated. We examine hospitals’
performance relaxing the assumption of independence between mortality and readmissions implicitly

jlllz‘éclasszﬁcatmn: adopted in many empirical applications. We use data from the Hospital Episode Statistics on emergency
50 admissions for fractured hip in 290,000 patients aged 65 and over from 2003 to 2008 in England. We

find evidence of sample selection bias that affects inference from traditional models. We use a bivariate
Keywords: sample selection model to allow for the selection process and the dichotomous nature of the outcome
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variables.
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Outcome-based measures of quality for hospitals, such as risk
adjusted mortality and 28 days readmissions rates from specific
type of admissions, are publicly released, for example in the US by
the Centres for Medicare and Medicaid Services (CMS), in the UK by
the National Centre for Health Outcomes Development (NCHOD),
and in Australia by the Australian Institute of Health and Welfare
(AIHW). Amongst other things, they are intended to inform patient
choice of hospital, to monitor hospital performance and to promote
improvement.

Moreover, outcome-based measures are increasingly being
used as the basis for financial incentives for providers. For exam-
ple, the English National Health Service (NHS) has introduced new
rules for the reimbursement payments that seek to address rising
trends in emergency admissions. From the fiscal year 2011," auto-
matic payments to hospitals will stop for all emergency admissions
occurring within 30 days of a previous discharge. Emergency read-
missions following elective admissions will receive no payment,
while emergency readmissions following non-elective admissions
will receive no payment beyond a threshold based on at least a 25%

* Corresponding author. Tel.: +44 2075949765.
E-mail address: m.laudicella@imperial.ac.uk (M. Laudicella).
1 The fiscal year runs from 1 April to 31 March.

improvement in the historic rate of readmission (Department of
Health, 2011). Similarly, the US Congress has passed legislation that
allows the CMS to hold hospitals accountable for their readmissions
rate (Foster and Harkness, 2010), with the objective of reducing
the associated costs and volume of treatment. The Patient Protec-
tion and Affordable Care act gives the CMS the authority to penalise
hospitals for excess readmissions by reducing reimbursement pay-
ments from fiscal year 2013. The initial scope will be limited to 30
days readmissions after heart failure, acute myocardial infarctions
(AMI) and pneumonia admissions. Under policies such as these,
providing accurate measures of hospital performance on readmis-
sion will be crucial if distorted incentives and inefficiencies are to
be avoided.

A fundamental requirement of any comparison of hospital read-
mission rates is the need to ensure that any differences in the
clinical risk of patient populations are properly taken into account.
Hitherto, this has been achieved through various types of risk
adjustment, which adjust a hospital’s observed readmission rates
for an intervention according to the observed characteristics of
the population at risk of readmission. However, where there is
unobserved heterogeneity and a significant probability of mortal-
ity arising from the intervention, standard risk adjusted models for
readmissions are likely to be affected by systematic bias. The mech-
anism generating the bias can be described as follows. Suppose
patients’ risk of negative health outcomes (e.g. their underlying
health status on admission) is not perfectly observable, and that
hospitals differ in their performance on survival rates (e.g. their
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quality of care). Then, other things equal, hospitals that are more
successful in saving patients’ lives are likely to have a larger share
of patients at higher risk surviving the first admission as compared
with other hospitals. In these circumstances, hospitals’ relative per-
formance on readmissions is determined in part by their difference
in the quality of care provided and in part by their difference in
the share of patients with un-observably higher risk that survive
the first admission. High quality hospitals will then have upward
biased readmission rates due to the residual correlation between
the data generating process of survival and readmissions that sys-
tematically disadvantages such hospitals in any comparison. In the
extreme case, one could observe a positive (negative) correlation
between hospitals’ performance in survival? (mortality) and read-
mission rates, with hospitals with high survival rates experiencing
higher readmission rates, and vice versa.

Unless properly taken into account, this identification problem
may lead to incorrect inferences about the quality of care pro-
vided by individual hospitals and result in incorrect ranking of
hospital performance. This in turn may lead to the creation of per-
verse provider incentives, and faulty design of financial incentive
schemes.

In this study we first examine sample selection bias in the iden-
tification of hospitals’ performance on unplanned readmissions
occurring within 28 days of discharge of patients with a primary
diagnosis of fractured hip. This intervention is especially relevant
for the phenomenon we wish to explore, given the high risk of
both mortality and readmission, and great deal of heterogeneity
amongst patients. We quantify the bias at the patient level in terms
of the unexplained correlation between the residuals of two sep-
arate probit models for survival and readmissions, similar to the
models used in many applied studies. Second, having identified a
bias, we propose a solution to the sample selection problem relax-
ing the assumption of independence between the data generating
process of patient survival and readmission implicitly adopted in
most previous empirical applications. We use a bivariate sample
selection model that allows for the correlation between survival
and readmissions and for the non-linear nature of the data gener-
ating process. This model, drawn from the literature on education
and labour participation (Greene, 2003), is simple to implement
and provides accurate information on both the outcome of interest
and the underlying selection process.

We study patients aged 65 and over admitted with a fractured
hip to English hospitals over the fiscal years 2003-2008. This group
is chosen for several reasons. First, there are well-established med-
ical guidelines on the standard of services and processes of care
for this type of admissions and clear links between the guidelines
and both mortality and readmission outcomes (National Institute
for Clinical Excellence, 2004). Second, rates of unplanned readmis-
sions from this population of patients standardised for age and sex
are routinely published by the NCHOD and used by the Care Qual-
ity Commission to monitor the performance of English hospitals.
Finally, admissions for hip fracture have substantial economic and
health implications. It is estimated that fracture and frailty related
falls in older people accounted for more than 4 millions hospital
bed days in 2006 in England. The combined cost of social and hos-
pital care for this type of injury are reported to be in excess of £1.8
billion per year in the UK (Treml et al., 2011). Injuries from falls
are the leading cause of accident-related mortality in older people,

2 Survival rates and mortality rates are complementary terms, i.e. the probability
of a patient surviving her/his first admission equals 1 minus the probability of dying
in hospital on the first admission. Where possible, we prefer to refer to survival rates
rather than mortality rates for consistency with the specification of our empirical
model, which is defined over survival rates.

and half of the people suffering a hip fracture never return to their
original level of independence (Treml et al., 2011).

1. Related literature

A large amount of empirical research has sought to explain the
variation in hospital readmission rates observed in many high-
income countries (Boutwell et al., 2011; Friedman and Basu, 2004;
Vest et al., 2010; Westert et al., 2002; Yam et al., 2010). Identi-
fying the reasons for readmissions can be crucial to securing a
reduction in readmissions that are potentially avoidable, thereby
reducing healthcare costs and improving health outcomes. Hos-
pital mortality and readmission rates are important indicators of
hospital outcomes that are frequently used to assess and publi-
cise hospital and physician performance. They are also often used
in health services research to assess issues such as the impact of
service organisation (Coyte et al., 2000; Evans and Kim, 2006; Ho
and Hamilton, 2000; Lorch et al., 2010), the relationship between
hospital inputs and outcomes (Heggestad, 2002; Schreyogg and
Stargardt, 2010), the effect of introducing new policies (Evans et al.,
2008) and the impact of new technologies (Xian et al., 2011).

The idea behind outcome-based quality indicators such as
hospital mortality or readmission rates is that, if appropriate
adjustment is made for patient case-mix and external environmen-
tal factors, then variations in reported levels of such outcome-based
quality indicators are likely to be driven by differences in the (unob-
servable) quality of hospital services, as reflected in the processes of
hospital care and service organisation. For example, the provision
of appropriate rehabilitation services for fall and fracture patients
is known to have an impact on the risk of readmission (National
Institute for Clinical Excellence, 2004); similarly an efficient man-
agement of the surgical theatre and staff shifts can reduce the delay
before the patients are treated and thus their mortality risk (Bottle
and Aylin, 2006). The intrinsic quality attributes are often unob-
servable by the researcher, because collection of the necessary data
is either impossible or highly costly. However, we would expect
that hospitals with better quality should have on average better
outcomes (as defined above) than their lower quality peers, after
controlling for their differences in patient characteristics and envi-
ronmental factors. Many empirical applications therefore examine
unplanned readmissions occurring within 30 days from previous
discharge of patients admitted with a similar primary diagnosis,
such as hearth failures, AMI, strokes, pneumonia or hip fracture.

The advantage of outcome-based quality indicators is therefore
that they can be constructed by using routine administrative data
on patient discharges without the need for costly additional infor-
mation on the process of care. Outcome-based quality indicators
can make it feasible for large populations of patients and hospitals
to be included in a study and followed for several years. However,
these indicators can be inaccurate and have been criticised in the
medical literature for their lack of clinical relevance (Lilford and
Pronovost, 2010; Shahian et al., 2010). Moreover, some outcome
indicators have low correlation with more accurate measures of
quality based on the process of care (Bradley et al., 2006; Luthi
et al,, 2004).

Gowrisankaran and Town (1999) shed some light on the incon-
sistency between outcome-based and process-based measures
of quality. Using patients admitted with pneumonia in South
California hospitals from 1989 to 1994, they show that hospital
risk adjusted mortality rates are affected by selection bias that
invalidates inferences on the quality of care provided. Specifically,
if patients’ health conditions are not perfectly observable and
patients are able to choose the hospital of treatment, then (unmea-
surably) sicker patients are more likely to select high quality



M. Laudicella et al. / Journal of Health Economics 32 (2013) 909-921 911

hospitals. Therefore, the differences in mortality rates across
hospitals may be determined in part by difference in the quality
of care they provide and in part by differences in unobservable
patient health conditions. The latter effect systematically disad-
vantages high quality hospitals, and measures of the processes and
outcomes of care might show low correlation. Geweke et al. (2003)
provide an elegant econometric solution to correct for this bias by
using a structural model that takes into account the patient choice
of hospital and the two determinants of the mortality variable.

In general, observational studies based on hospital adminis-
trative data have only limited information on the heterogeneity
in patient and treatment characteristics, which are therefore only
partially observable. In contrast, other study designs in the med-
ical and epidemiology literature, such as retrospective studies or
prospective cohort studies, often have access to data describing
such heterogeneity and thus are able to provide a better direct
control for the latter. Therefore, observational studies need to pay
careful attention to the characteristics of the data generating pro-
cess before any meaningful inference can be made on variations in
hospital quality of care, and on the determinants of such variations.

In spite of the large number of empirical applications studying
hospital readmissions, only a few have paid attention to the char-
acteristics of the data generating process. Schreyogg and Stargardt
(2010) model the hazard of hospital deaths and the hazard of read-
missions using two separate Cox regression models and allow for
the event of death to be a competing risk for the event of a read-
mission. Their model for readmissions includes patients dying in
hospital as censored observations assuming independence between
mortality and readmissions. Papanicolas and McGuire (2011) uses
a vector of autoregressive (VAR) model to measure the quality of
English hospitals over 1996-2008 following the method described
in McClellan and Staiger (2000). In a first step they estimate hos-
pital risk adjusted mortality and readmission rates from patient
level regressions separately, i.e. assuming independence between
these outcomes. In a second step, they estimate a VAR model using
the hospital level quality indicators obtained in the first step. Their
VAR model provides a synthetic indicator of hospital quality that
takes into account information from a hospital’s present and past
performance on mortality and readmissions estimated in the first
step. In contrast, most empirical applications model hospital read-
missions using multilevel single index model (e.g. logit or probit)
or hazard model (e.g. Cox regression model) without paying much
attention to the relationship between the event of a hospital death
and a hospital readmission.

2. The model

The sample selection problem can be formulated in terms of
an omitted variable problem (Heckman, 1979) in the equation
describing the probability of an hospital readmission:

’
Rf =PB1xqi + &1

, (M
Py; = P(R; > 0|x5) = @(B7X1i)

* ! . .
S,' = BZX21 + &2i , (2)
Py; = P(S} > 0[Xa3) = P(ByX3i)

E(R?[X1i, Sf > 0) = B Xqi + E(e1i%45, S} > 0) (3)

Eq. (1) defines the propensity that patient “i” is readmitted,
R/", as a function of the vector Xy;. The latter can include: a Cx1
vector of variables, c;;, describing individual characteristics, such
as age, sex, health conditions; a Hx1 vector of dummy variables,
hy;, capturing the hospital of first admission; a Zx1 vector of area

level variables, zy;, capturing external environmental factors, such
as area level characteristics influencing the demand for and sup-
ply of health services. The probability of a readmission, P;;, can be
expressed as function of the latent process and is often modelled
using a standard probit model.

Eq. (2) assumes that the patients admitted to the hospital enter
a selection process before being discharged, for example a sample
of patients die during the treatment. The selection process can be
described by the latent variables S;” indicating survival propensity
of patient i. The readmission and the survival process are likely to be
driven by similar factors in terms of patients, hospitals and environ-
mental characteristics. However, an important difference between
the two processes should be highlighted: Eq. (2) is defined over
the total sample of patients admitted to the hospital; in contrast,
equation 1 is defined over the subsample of patients that survive
the first admission only.

Eq. (3) shows that sample selection bias might rise from sys-
tematic differences in the populations over which Eqgs. (1) and (2)
are defined. If the subsample of patients surviving the selection pro-
cess (Eq.(2))is systematically different from the sample of patients
admitted to the hospital (Eq. (1)), then the last term of Eq. (3) is dif-
ferent from zero, and hence the parameters in the 8’ vectors are
not identified. In other words, using the sample of patients sur-
viving the first admission for making inference on the sample of
patients admitted to the hospital is invalid.

Now, if we assume that:

(a) (&4, &7i) are bivariate standard normally distributed with cor-
relation coefficient p
(b) (&1i, €;) are independent from (Xy, Xo;)-

Then we can quantify the last term of Eq. (3):
E(e1ilXi, SF > 0) = E(eqil€2i > —BiXoi) = pA (4)

With A; = ¢(B5X2i)/¢(—B5Xy;) the inverse Mills ratio.

When survival and readmissions are uncorrelated, i.e. p=0,
inference on the population of patients admitted to the hospital
can be made by using Eq. (1). This might be the case if the two pro-
cesses are truly independent, or equivalently if we are able to make
the two processes independent after controlling for the residual
heterogeneity conditioning on x, e.g. in a clinical trial study design.

If survival and readmissions are correlated, i.e. p # 0,thenusing
Eq. (1) to make inferences over the population of patients admitted
to the hospital results in omitted variable bias described by the term
(4).

Why should we expect the survival and readmission process
to be correlated? The answer comes from the combination of two
factors: first, the characteristics of patients that influence their
underlying risk of a negative health outcome are only partially
observable, e.g. patient health conditions; and second, unobserv-
able characteristics of patients influencing their mortality risk are
also likely to influence their risk of a readmission. Thus, if we are
unable to provide appropriate control for these risk factors in the
readmission equation, then ex ante patients surviving their first
admission are expected to have a lower risk of being readmitted
than patients dying in the hospital. This condition can be sum-
marised in the following expression:

P(R; = 11x;, S; = 1) < P(R; = 1x;, S; = 0) (5)

When we are able to control for all the relevant risk factors, x;,
the conditional probability of being readmitted for patients surviv-
ing the first admission equals the conditional probability for the
patients that die in hospital, i.e. the two processes are uncorrelated
and p=0. Otherwise, we expect that the conditional probability
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of being readmitted to be smaller in the subsample of patients
that survive the first admission because, for example, they are
un-observably healthier than other patients, i.e. p<0. Clearly, the
potential for sample selection bias is large in population of patients
with high mortality risk and large uncontrolled heterogeneity in
such risk.

We now assume that hospitals differ in their performance on
survival rates after conditioning on observable confounders. In
other words, the best performing hospitals are most successful in
reducing mortality of patients at higher risk of a negative health
outcome. Then we would expect a larger share of un-observably
riskier patients to survive their first admission in these hospitals,
i.e. there is a larger share of patients with large values of p\; in Eq.
(3). Therefore, the relative performance of such hospitals on read-
missions is not identified by using Eq. (1) either with respect to
the population of patients that survive their first admission or with
respect to the total population of patients admitted. The problem
of sample selection bias translates to a problem of identification of
hospital performance because patients surviving the first admis-
sion are no longer randomly assigned to hospitals. We can also
predict the sign of the bias. Since the inverse Mills ratio A; is non-
negative and we expect p <0, then the performance of hospital with
high survival rates is underestimated due to the effect of the sample
selection bias.

We use a bivariate sample selection model to allow for the
selection bias and estimate the model over the total population
of patients admitted to the hospital, which can be assumed to be
randomly allocated after controlling for observable confounders.
This model is attractive because it takes into account the non-linear
nature of the process that defines mortality and readmissions. The
model consists of two equations as follows.

First a selection equation defines the probability of surviving the
first admission, S;, as a function of the latent propensity of surviving

*

Si :
St = BoXai + &2

1if $¥>0 (6)
S,‘ =

0 if Sr<0

The parameterisation of Eq. (6) is described in Eq. (2).

Second, an outcome equation describes the probability of being
readmitted, R;, as a function of the latent propensity of being read-
mitted, R; observed only when S;" >0

Rf = BiXqi + €1
1 if R*>0 (7)
Ri = '
0 if RF<0
With
(a) (&4, &2) are bivariate standard normally distributed with cor-

relation coefficient p.
(b) (&1j, &2;) are independent from (Xq;, X24).

The maximum likelihood function is defined over the probabil-
ities of three possible events:

Surviving and being readmitted:

P(Ri=1, S=1Jx;)= Pp(BX1i, BXai, 0) (8)
Surviving and not being readmitted:
P(Ri =0, S;=1[x;)=Pp(B X1, BrXai. p) 9

Dying in hospital:
P(S; = 01%y3) = P(BXai) (10)

The maximum likelihood is (Van de Ven and van Praag, 1981):

n n
ML = H¢B(B/1x1i7 B)Xai, p) x H Pp — BoXoi, p

i=1 i=nj+1

x T] o-B2xa) (11)

i=ny+1

where the first n; patients survive and are readmitted, the follow-
ing n, —ny patients survive and are not readmitted, and the last
n—ny die in hospital.

The probability of interest is the probability of a readmission
conditional on having survived the first admission:

P(Ri=1,5=1x;)
P(S: ]\Xi)
= P(R} > Olxy;, S} > 0)

P(R; = 11%45, S;=1)

, , (12)
= P(&1; < —B1X1ilXqi, €21 < —B3Xai)
_ Pg(B7Xqi, BoXoi, P)

D(ByXoi)

In the case of no sample selection, this probability is given by Eq.
(1). The performance of hospital j in readmissions can be measured
in terms of average partial effect (APE) of being treated in hospital A
as compare to a baseline hospital. Specifically, the APE is defined as
the difference between the conditional probability of a readmission
in hospital A and the baseline hospital averaged over all patients in
the population:

n

1
APE; = H—ZZP(Ri =1lc1i, z1i, hyji = 1,5, = 1)
i=1
—P(R; = 1|45, 245, hyji = 0,5, = 1) (13)

The vectors ¢4; and z;; define the characteristics and the exter-
nal environmental factors associated with patient i; and hyj; is a
dummy variable identifying the hospital j.

Alternatively, the performance of the hospital j can be defined
in terms of average conditional probability, i.e. the first term of Eq.
(13):

n
1
AP = - PRy = Tiew, 23y, hyji = 1,51 = 1) (14)

i=1

Expression (14) describes the probability of a readmission in
hospital j averaged over the total population of patients and can
be interpreted as the performance on readmission that hospital j
would have if it had treated the whole population of patients. This
measure of hospital performance has three appealing character-
istics: (1) it is purged of differences across hospital case mix and
external environmental factors, (2) it is measured on a ratio scale,
i.e. has no arbitrary zero value, (3) it does not depend on a baseline
hospital. In contrast, the APE benefits from only the first of these
desirable properties.

The mechanism we are modelling through the bivariate sample
selection model is essentially the heterogeneity in the chance of
survival of patients with different readmission risk. Both the chance
of survival and readmission are affected by patient and hospital
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unobserved characteristics, e.g. latent patient health and hospital
quality. Although patients can be assumed to be randomly assigned
to hospitals at the point of their first admission, this assumption is
violated after the survival selection process. We explicitly model
such a selection process and allow for the unbiased identification
of patient and hospital effects on readmission.

The model is identified under the two assumptions described
in (a) and (b). Assumption (a) is a parametric assumption that is
needed for the model identification arising from the functional
form of the probit models. In order to improve the identification
of the model we provide a set of exclusion restrictions, i.e. vari-
ables that explain the variation in the probability of surviving (the
selection Eq. (6)) and are uncorrelated with the probability of a
readmission (the outcome Eq. (7)) after controlling for other fac-
tors. We discuss our approach to the exclusion restriction in the
following section.

Assumption (b) states that the error terms in Eqs. (6) and (7) are
independent of all regressors. We have shown in equation 3 that
the hospital effects are potentially correlated with unobservable
patient characteristics in the error term. However, such a corre-
lation is an effect of the sample selection bias only, since after
controlling for observable confounders patients are assumed to be
randomly allocated to hospital on admission.

3. The data
3.1. Population of interest and health outcome variables

Data on patient admissions are extracted from the Hospital
Episode Statistics (HES), which comprise records of all publicly
funded patients admitted to hospitals in England. We include in our
study all hospital emergency admissions during the fiscal year 2003
to 20083 of patients aged 65 and over with a primary diagnosis of
a fractured hip (ICD-10 codes S70.0, S70.1 and S70.2) at the time of
admission. We track the full hospital history of these patients from
their first admission to the final discharge home taking into account
transfers across different hospitals occurring within the period of
inpatient stay. Hospitals with less than 50 relevant admissions per
year are excluded from the analysis.

Unplanned readmissions are identified as emergency admis-
sions occurring within 28 days of the patient’s last discharge, and
wherever they occur they are attributed to the hospital where the
patient was first admitted and treated for the fractured hip. We
exclude patients admitted or discharged under a mental health
specialty and avoid double counting of patients having multiple
28 days readmissions for a fractured hip by including only the
first one.* Our identification of patient population and readmis-
sions follows the methodology used by the NCHOD in producing
hospital standardised readmission rates to monitor hospitals’ per-
formance.

We identify in-hospital patient mortality as reported by the hos-
pital at the point of discharge. We do not have data on patients
dying at home within 28 days of discharge for the full period cov-
ered by our study. However, we have data on mortality occurring
within 28 days in any setting (home, hospital or other institution)
from 2003 to 2006 and are therefore able to test the robustness of
our model to the inclusion of such deaths.

3 Seenote 1.
4 Also, we take into account readmissions occurring in the last month of the fiscal
year 2002/3 and the first month of 2009/10.

3.2. Patient characteristics

We include dummy variables for patient age (7 groups) and
gender. We measure patient health characteristics on admis-
sion (observable risk of a negative heath outcome) by using the
Charlson co-morbidity index and a set of dummy variables con-
trolling for specific conditions separately (Bottle and Aylin, 2006):
dementia or Alzheimer’s (ICD-10 codes FOO-F03, G30), diabetes
(E10-E14), chronic ischaemic heart disease (120, 123-125), chronic
lower respiratory disease (J40-J47), heart failure (150), renal fail-
ure (N17-N19), and malignant melanoma (any C code). Also, we
include a variable counting the total number of secondary diagno-
sis in the first episode of care after the patient’s admission (Wray
et al., 1997). We include dummies for the main type of operations
performed, i.e. fixation procedure including primary open or closed
reduction and internal or external fixation (OPCS-4 codes W19-25),
prostatic replacement of head of femur (W46-48), other proce-
dures including non-orthopaedic ones, and no procedure carried
out (the baseline). We follow the classification used in similar stud-
ies (Bottle and Aylin, 2006). The controls for the type of operation
acts as a proxy for patient health conditions rather than as hospital
decision variables, since the scope for varying the choice of proce-
dure is limited for these type of patients. All the variables described
above are measured at the individual level and are included in both
the patient survival and readmission equations.

3.3. Environmental characteristics at small area level

We provide control for external environmental factors that
influence hospital performance but are outside the control of the
hospital. We use a battery of indicators capturing the character-
istics of the patient small area of residence, known as the lower
super output area (LSOA). These are geographical units developed
by the Office for National Statistics with an average population
of 1500 individuals and a standard deviation of 200. We control
for the socioeconomic deprivation in the patient area of residence
by using an indicator of income deprivation among older people
(IDOPI). This indicator is one of the subdomains of the indices of
multiple deprivation 2007 (Noble et al., 2008) and measures the
proportion of area residents aged 65 and over living in family rely-
ing on means-tested income benefits. We divided the IDOPI into 4
quartiles representing increasing level of deprivation and include
these in both the survival and readmission equations.

The distance of the hospital from the patient’s place of residence
may influence the probability of a readmission, as patients living
closer to the hospital have lower costs in accessing hospital ser-
vices. This could influence the performance of hospitals located
in urban areas relative to those located in rural areas where the
population is sparse. We include the distance variable both in the
mortality and readmission equation.

Hospitals are likely to differ in their propensity to admit simi-
lar patients. Part of such variation is due to differences in hospital
management and quality of services, and part to factors beyond
the control of the hospital. Specifically, characteristics of the local
supply and demand for health services might influence hospital
propensity to admit and hence readmit (Epstein et al., 2011). For
example, a relatively high supply of primary services might reduce
hospital care utilisation, while a relatively high supply of hospital
providers might increase it. Similarly, the nature of local demand
for health services may influence the propensity for hospital read-
missions. For example, the total population, the age and gender
composition, and the prevalence of disease are likely to put hospi-
tal services under different degrees of pressure. Therefore, we need
to control for such factors in order to be able to identify the effect
on readmissions that is due to hospital management and quality.
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To this end, we construct an indicator of the expected volume of all

“won,

cause emergency admissions in the patient area of residence “a”:
A~ A/
€q = ,B3x3a

where &, is obtained by regressing all cause emergency admissions
occurring in area “a” against the area level characteristics of supply
and demand captured by the vector X3,. The latter includes number
of GPs per 10,000 population, number of hospitals within 30 km,
total area population, age and gender composition and prevalence
of disease (i.e. atrial fibrillation, cancer, chronic kidney disease,
chronic obstructive pulmonary disease, coronary heart disease,
diabetes, epilepsy, heart failure, hypertension, hypothyroidism,
obesity, stroke and transient ischaemic attack). We estimate é; by
running a separate OLS regression using the total population of
English LSOAs. This indicator of emergency admissions propensity
is then used as a control in the readmission equation only.

Data on the prevalence of disease are submitted yearly by GP
practices to the national Quality Management and Analysis System
(QMAS) and show the proportion of individuals registered with
a GP practice recorded with that condition. We attribute this to
small area level using the Attribution Dataset of patient registra-
tion addresses within GP practices. The attribution process assumes
that prevalence for a particular small area is a weighted sum of
the prevalence in each GP practice serving that small area, with
weights proportional to the number of the area’s residents regis-
tered with each GP practice. Both the QMAS data and practice to
small area attribution data were obtained from the NHS Informa-
tion Centre. Number of GPs per 10,000 population is based on GP
practice level administrative data on whole time equivalent GPs
per registered patient, from the General Medical Services database.
This GP practice level variable is then attributed to small level using
the same procedure described above, as a weighted average based
on the share of GP practice registered patients resident in the small
area.

3.4. Exclusion restrictions

In order to improve the identification of our model, we use
a set of variables explaining variation in the mortality equation,
but assumed to be uncorrelated with patient readmissions. For
this purpose we construct indicators for patients being admit-
ted during Christmas or Easter holidays and for the weekday of
admission. Hospitals experience difficulties in maintaining appro-
priate levels of staff during weekends and over long holidays due to
higher costs, hence nurse and specialist staff is generally reduced
over these periods, and patient mortality risk increases (Dr Foster
Intelligence, 2011). However, these indicators can be assumed to
be uncorrelated with the risk of a readmission, which depends on
post-operative care that can be provided more flexibly over a long
period of time once survival has been assured. Also, being admit-
ted over a particular weekday, Christmas or Easter should not be
correlated with unobservable characteristics of the patient risk of a
negative health outcome. We have tested the association between
our exclusion restrictions and the probability of a readmission by
including the latter in the probit for readmission (equation 3) and
find no statistically significant association. Also, appendix 1 reports
differences in mean survivals, readmission, patient age, Charlson
index and number of diagnoses disaggregated by Christmas, Easter
and week day of admission. There are only small differences in the
characteristics of patients by time of admission. Finally, a similar set
of variables are used as instruments in a study of the effect of a delay
in treatment on mortality in hip fracture admissions (Hamilton,
1999).

12% 13% 14% 15%
L L

11%

10%

T T T T T T
2003 2004 2005 2006 2007 2008
year

——o —- mortality rates = ——&—— readmission rates

Fig. 1. Unadjusted trends in mortality and readmissions.

4. Results
4.1. Descriptive statistics

Table 1 contains descriptive statistics for all the main variables
used in the analysis pooled from the fiscal year 2003 to 2008.
The average age in our population of patients is 83.3 years with
the largest share falling in the 80-85 (25.6%) and 85-90 (24.6%)
age bands; 77.8% are women since bone frailty and osteoporo-
sis are conditions more prevalent in this gender group. Patients
admitted have on average 5 diagnoses and their more frequent
co-morbidities in the Charlson index are chronic ischaemic heart
disease (13.4% of admissions) and chronic lower tract disease
(10.9%). The most frequent procedure is a fixation (42.7%), followed
by prostatic replacement (37.5%), management of the patient with-
out procedure carried out (15.2%) and other procedures (4.7%). The
average patient comes from a small area characterised by 15% of
the over 65 population relying on income benefits, with an aver-
age distance of 12.8 km from the hospital of first admission and a
predicted volume of 129 emergency admissions per year given the
characteristics of the local demand and supply of health services.

Fig. 1 shows annual trends in hospital mortality as total deaths
over the total patients admitted and annual trends in hospital read-
missions as total readmissions over total patient discharged alive
after the first admission. Hospital mortality follows a decreasing
trend over the full study period, with a steeper trend from the fis-
cal year 2006. In contrast, readmissions rise noticeably until 2005,
stay constant in the following two years and then fall in 2008.

Table 2 shows annual trends in unadjusted outcomes at hospi-
tal level. The number of hospitals included in the analysis® each
year ranges from 151 to 148 and their average volume of relevant
admissions rises progressively from 375 to 404. The average hospi-
tal survival rate (see note 1) increases progressively from 85.0% to
88.4%, while their average readmission rate increases from 10.9%
in 2003 to 13.0% in 2005-2006 and drop back to 11.8% in 2008. The
variation in hospital survival rates is stable from 2003 to 2006 with
coefficient of variation (i.e. standard deviation over mean) ranging
from 4.3% to 4.1%. This variation drops in 2007 and 2008 when the
coefficient of variation is 3.6% and 3.4% respectively. The correla-
tion between hospital unadjusted survival rates and readmission
rates is positive over the period with larger variation in hospital

5 Only hospitals with more than 50 admissions per year are included and 3 hos-
pitals merges together over the period considered.
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Table 1
Patient level descriptive statistics 2003-2008.

Variable Obs Mean Std. Dev.

Health outcomes
Readmissions 250,700 0.1192581 0.3240926
Survivals 289,910 0.8647631 0.3419771

Demographics
Age 289,910 83.26665 7.434723
65-70 289,910 0.047325 0.2123335
70-75 289,910 0.0858473 0.280139
75-80 289,910 0.1590563 0.3657292
80-85 289,910 0.2514608 0.4338536
85-90 289,910 0.2458039 0.4305635
90-95 289,910 0.1553172 0.3622074
95 and over 289,910 0.0551895 0.2283502
Female 289910 0.7774516 0.4159582

Health conditions
Dementia (ICD-10 codes FOO-F03, G30) 289,910 0.0553206 0.2286054
Diabetes (E10-E14) 289,910 0.098465 0.2979429
Chronic ischaemic heart disease (120, 123-125) 289,910 0.1341175 0.3407791
Chronic low tract respiratory disease (J40-]47) 289,910 0.1091339 0.3118076
Heart failure (150) 289,910 0.0574903 0.2327774
Renal failure (N17-N19) 289,910 0.0369046 0.1885278
Malignant melanoma (any C codes) 289,910 0.0345142 0.182546
Charlson index 289,910 0.7533614 1.109684
Total diagnoses 289,910 5.114377 2.505715
Fixation procedure (OPCS-4 codes W19-25) 289,910 0.4266634 0.4945934
Prostatic replacement of head of femur (W46-48) 289,910 0.3745266 0.4840013
other procedure 289,910 0.0470767 0.2118033
No procedure performed 289,910 0.1517354 0.3587648

Environmental factors
Expected emergency admissions? 289,910 128.5546 35.50588
Distance from hospital 289,910 12.84647 2539315
Income deprivation among older people index (IDAOPI) 289910 0.1524638 0.1128906

Year dummies
2003 289,910 0.1627735 0.3691595
2004 289,910 0.1622767 0.3687051
2005 289,910 0.1661159 0.3721853
2006 289,910 0.164643 0.3708587
2007 289,910 0.1719868 0.3773696
2008 289,910 0.1722041 0.3775584

2 Expected values are obtained by regressing observed total emergency admissions in the patient area of residence against the characteristics of demand and supply of

health services.

survival (2003-2006) and becomes negative over the period with
smaller variation in hospital survival (2007-2008). In other words,
the descriptive statistics show that hospitals with better perfor-
mance on survival rates have worse performance on readmissions
when the variation across hospital performance in survival rates is
large. The positive correlation between the two health outcomes is
superficially puzzling: if hospital quality of care (e.g. organisation
and clinical quality) influences survivals and readmissions, then
hospital with higher survivals might be expected to have lower
readmissions, in which case the correlation should be negative.
Indeed, the correlation turns negative when the variation across
hospital survivalratesis reduced. Using regression analysis we shall
show that the observed correlation is the result of a sample selec-
tion process in which hospitals with higher survival rates end up

having a larger share of patients at high risk of a negative outcome
compared to hospitals with lower survival rates.

4.2. Regression analysis

Table 3 contains the estimated average partial effects (APEs)
obtained from the probit model on readmission described in equa-
tions 1 (column 1), a bivariate sample selection model described
in equations 6-7 (column 2 and 3). All models are estimated over
pooled observations from 2003 to 2008 and include dummy indi-
cators capturing the hospital fixed effects. The bivariate sample
selection model reports a significant and negative residual correla-
tion between the probit on survival and the probit on readmission
(p=-0.56). This suggests that the sample of patients that die in

Table 2
Hospital level descriptive statistics by year.
2003 2004 2005 2006 2007 2008

Total hospitals 150 151 151 148 148 148
Mean admissions 374.8 373.7 382.2 389.0 404.2 404.0
Mean survival 0.850 0.853 0.857 0.865 0.872 0.884
Mean readmissions 0.109 0.120 0.129 0.130 0.128 0.118
Survival std. dev. 0.037 0.036 0.036 0.035 0.031 0.030
Survival std. dev./mean 0.043 0.043 0.042 0.041 0.036 0.034
Correlation survival readmissions 0.045 0.120 0.168 0.085 —0.040 -0.110
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Table 3
Estimated average partial effects (APE) from regression analysis.

Variables Probit on readmissions Bivariate sample selection model
APE se Readmission equation Selection equation
APE se APE se
Demographics (baseline: age 65-70)
70-75 0.00700 (0.00329) 0.0116 (0.00379) —0.0140"" (0.00261)
75-80 0.0162"" (0.00322) 0.0285" (0.00430) ~0.0379 (0.00302)
80-85 0.0287" (0.00335) 0.0495" (0.00536) —0.0632" (0.00350)
85-90 0.0421 (0.00362) 0.0746 (0.00705) —0.0975™" (0.00420)
90-95 0.0501" (0.00396) 0.0992"" (0.00963) ~0.1517" (0.00522)
95 and over 0.0489"" (0.00477) 0.116™ (0.0129) 0214 (0.00664)
Female ~0.0258"" (0.00155) ~0.0456"" (0.00306) 0.0562"" (0.00127)
Health conditions
Dementia 0.0255"" (0.00323) 0.0270"" (0.00362) 0.00117 (0.00247)
Diabetes 0.0133" (0.00253) 0.00237 (0.00330) 0.0332" (0.00175)
Chronic ischaemic heart disease 0.00999 (0.00215) 0.0152 (0.00255) —0.0129™" (0.00173)
Chronic low tract respiratory disease 0.00336 (0.00237) 0.00850"" (0.00286) —0.0175" (0.00203)
Heart failure 0.0103"" (0.00357) 0.0491" (0.00708) -0.0922° (0.00312)
Renal failure 0.000866 (0.00444) 0.0479 (0.00900) -0.117" (0.00412)
Malignant melanoma -0.0153" (0.00436) ~0.0140"" (0.00515) —0.00660 (0.00372)
Charlson index 0.00955" (0.000996) 0.0168"" (0.00147) ~0.0185 (0.000758)
Total diagnoses 0.00373"" (0.000347) 0.0106™" (0.00109) -0.0207"" (0.000279)
Procedure (baseline: no procedure)
Fixation procedure -0.0272"" (0.00197) -0.0596"" (0.00463) 0.0978"" (0.00149)
Prostatic replacement of head of femur —0.0294" (0.00199) -0.0624" (0.00469) 0.0992"" (0.00152)
Other procedure —0.0289° (0.00353) —0.0470° (0.00462) 0.0465" (0.00342)
Environmental factors (baseline: least income deprived?)
2nd quartile 0.00160 (0.00196) 0.00379° (0.00230) -0.00707" (0.00173)
3rd quartile 0.00797 (0.00208) 0.0127 (0.00250) —0.0130"" (0.00178)
4th quartile (most income deprived) 0.0136 (0.00227) 0.0206 (0.00277) -0.0187" (0.00192)
Distance from hospital —8.37e-05 (2.94e—05) —0.000154 (3.66e—05) 0.000288 (3.38e—05)
Expected emergency admissions® 0.000175 (2.23e-05) 0.000196 (2.52e-05)
Year dummies (baseline: 2003)
2004 0.00601" (0.00243) 0.00272 (0.00281) 0.0131" (0.00184)
2005 0.0109" (0.00246) 0.00410 (0.00302) 0.0259"" (0.00173)
2006 0.00866 (0.00245) —0.00298 (0.00332) 0.0399" (0.00163)
2007 0.00514" (0.00240) -0.0113" (0.00369) 0.0533"" (0.00152)
2008 -0.00676"" (0.00233) -0.0299" (0.00431) 0.0702"" (0.00139)
Patient admitted on (baseline Saturday)
Sunday —0.00584 " (0.00231)
Monday -0.00333 (0.00222)
Tuesday —0.00222 (0.00220)
Wednesday —0.00255 (0.00221)
Thursday 0.000233 (0.00219)
Friday -0.00391° (0.00222)
Christmas holidays —-0.0158™" (0.00384)
Easter holidays —0.0102" (0.00471)
Rho —0.56064 (-0.05782)
Hospital fixed effects 153 153 153
Observations 250,700 289,910 289,910

Notes: Robust standard errors in parentheses.
2 Income deprivation among older people index (IDAOPI).

b Expected values are obtained by regressing observed total emergency admissions in the patient area of residence against the characteristics of demand and supply of

health services.
" p<0.1.

" p<0.05.

™ p<0.01.

-

hospital would be at higher risk of a readmission had they survived
their first admission compared to patients who survive (expres-
sion (10)). Therefore, the population of patients admitted to the
hospital and the sample of patients that survive the first admis-
sion differ in their risk of being readmitted after controlling for all
observable confounders. This implies that the group of survivors
cannot be used as a basis for making inferences on the conditional
probability of being readmitted before appropriate correction for
the sample selection bias is made.

The differences between the estimated coefficients of the probit
and the sample selection model are especially noticeable amongst
the variables that describe patient characteristics. The conditional
probability of a readmission between each age group over the

baseline (patients aged 65-70) almost doubles after controlling
for sample selection. In practical terms this means that hospitals
experiencing a rise in their share of admissions of older patients
might underestimate their future increment in readmissions if such
projections are based solely on past readmissions of patients with
similar age. The difference in the conditional probability between
women and men almost doubles (—0.0258 probit; —0.0456 sample
selection). The conditional probabilities for many health condi-
tions increase noticeably: chronic ischaemic heart disease (0.010
probit; 0.015 sample selection), chronic lower respiratory disease
(0.003 probit; 0.009 sample selection), heart failure (0.010 probit;
0.049 sample selection), renal failure (0.001 probit; 0.048 sample
selection). Similar patterns are found in the effect of variations
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in the Charlson index (0.010 probit; 0.017 sample selection) and
total number of diagnoses (0.004 probit; 0.011 sample selection).
The conditional probabilities for each type of operation doubles in
the sample selection model reflecting the higher risk of a nega-
tive outcome relative to patients managed with no operation (the
baseline): fixation (—0.027 probit; —0.060 sample selection), pro-
static replacement (—0.029 probit; —0.062 sample selection) other
operations (—0.029 probit —0.047 sample selection).

The estimated effects of the external environmental factors
on readmissions show more modest differences between the two
models: patients in the second income deprived quartile (0.002
probit; 0.004 sample selection), third quartile (0.008 probit; 0.013
sample selection) and most deprived quartile (0.014 probit; 0.021
sample selection) as compared with patients resident in the least
deprived quartile of area (the baseline); the effect of living 1 km
further away from the hospital (—0.00008 probit; —0.00015 sam-
ple selection); the effect of the characteristics of the demand and
supply in the patient area of residence (0.00018 probit; 0.00020
sample selection).

The most remarkable difference is found in the annual trend in
readmissions estimated by the two models. The probit predictions
mirror the trend suggested by the descriptive statistics in Fig. 1. A
sharp rise in readmissions over the 2004 (0.006) and 2005 (0.011)
as compared with 2003 (baseline), followed by a similar level in
2006 (0.009), a modest fall in 2007 (0.005) and then a sharper fall
in 2008 (—0.007). In contrast, the sample selection model iden-
tifies no significant change in the year trend from 2003 to 2005
and a reduction in readmissions from 2007 (—0.011) and in 2008
(—0.030). The differences in the two models’ predictions should be
examined in the light of the predictions from the probit on sur-
vivals, which describes the selection process. The latter shows a
significant and increasing trend in the probability of surviving the
first admission (0.013 in 2004, 0.026 in 2005, 0.040 in 2006, 0.053
in 2007 and 0.070 in 2008 as compared with 2003). The rise in
readmissions estimated by the probit model (Table 3, column 1) is
generated by the following selection process. An increasing num-
ber of patients at risk of negative health outcomes survive their first
admission over time, the risk of a negative health outcome is only
partially controlled by the probit model, and hence risk adjusted
readmissions are predicted to increase over time. The 2003-2006
increment in readmissions disappears after allowing for the sample
selection process (Table 3, column 2).

In contrast, the reduction in readmissions observed in
2007-2008 outweighs the selection effect and therefore appears
to reflect improvements in standards of care. This effect is cap-
tured both by the sample selection model and by the probit model
(Table 3, columns 2 and 1 respectively), but is underestimated by
the latter. It is also interesting to note that this selection effect also
explains the difference in magnitude between the risk adjusted
year trend estimated by the probit model (Table 3, column 1) and
the unadjusted trend shown in the descriptive statistics in Fig. 1.
Probit risk adjusted predictions show a more modest increase in
readmissions over time than descriptive statistics, since they cap-
ture the observable increase in patient risk of a readmission over
time. However, the probit model is unable to adjust for the unob-
servable increase in patient risk generated by the selection process,
and hence its trend predictions are larger than the trend prediction
of the bivariate sample selection model.

Column 3 of Table 3 reports the APEs of the probit model for
survival. This model describes the selection process that generates
the sample of patients at risk of a readmission. The probability
of surviving the first admission decreases with the age of the
patient, the total number of diagnoses, the score of the Charlson
index, and the income deprivation of the patient area of residence.
Almost all the comorbidity dummies are associated with a lower

Table 4
Correlation between hospital risk adjusted survival and readmission rates.
2003-2004 2005-2006 2007-2008
Bivariate sample selection -0.306 -0.213 -0.390
Probit —0.042 0.089 -0.073

probability of surviving with the sole exception of patients with
diabetes. Patient having no operation performed are associated
with a lower probability of surviving than patients receiving a
fixation or a prostatic replacement. The distance from the hospital
is positively associated with the probability of surviving although
the effect is virtually zero in magnitude (i.e. 100 km increment in
distance is associated with a 0.02 increment in the probability of
surviving). This variable is likely to capture the effect of patients
who seek care further away from their usual place of residence.
Such patients might be relatively more autonomous, informed and
healthier than other patients. Moving to our exclusion restriction
variables, we find that patients are less likely to survive if admitted
on Sunday and over Christmas and Easter holidays. Finally, the
year dummies show a progressive increase in the probability of
surviving the first admission from 2003 (baseline) to 2008.

Fig. 2 plots the hospital APE on readmissions from the pro-
bit model (left panel) and from the sample selection model (right
panel) against the hospital APE on survivals. The hospital APE are
estimated using the models in Table 3 and are defined as the
difference between the conditional probability of a readmission
(survival) in a given hospital and a baseline hospital averaged over
of all patients in the population (expression (21)). The hospital
APE provides a measure of hospital relative performance in risk
adjusted outcomes over the entire period 2003-2008. The slope
of the fitted line shows the correlation between the hospital per-
formance on survival and readmissions. The correlation is almost
zero when hospital performance is estimated using a probit model
for readmission that does not correct for the sample selection,
but becomes negative when the performance is estimated using
a bivariate sample selection model. Fig. 2 provides evidence that
the sample selection at patient level biases the identification of
the hospital performance on readmissions, and that sample selec-
tion will lead to an underestimation of relative readmission rates
amongst hospitals with lower survival rates.®

In Table 4 we report the correlation between hospital perfor-
mance in survival and readmissions obtained from the probit and
the bivariate sample selection models, disaggregated by two-year
period.” The correlation between risk adjusted survivals and read-
missions is always underestimated (in absolute value) by the probit
with respect to the sample selection model. Also, the probit model
predicts a positive correlation in 2005-2006, i.e. hospitals with
higher survival rates tend to experience higher levels of readmis-
sions.

The problem of sample selection can be described as an omit-
ted variable problem as we argue in the Model section, i.e. the
researcher is not able to control for the unobserved heterogeneity

6 As a robustness check, we run the analysis excluding two hospital outliers

reporting readmission rates 0.25 and 0.18 larger than the baseline hospital. Results
at patient level are unchanged as well as the estimated residual correlation coef-
ficient p=-0.52. Hospital level correlation between risk adjusted survival and
readmission rates increase by —0.20 under both the univariate and the bivariate
probit models (from —0.01 to —0.20 and from —0.28 to —0.48, respectively). That is,
hospital performance on readmissions is still underestimated under the univariate
probit for hospital with high survival rates but now has the expected negative sign.
However, these two outliers reports higher readmissions every year and hence are
likely to be genuine observations.

7 This ensures a sufficient number of observations to identify the hospital effects.
However results do not change even when correlations are computed by each year.
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Fig. 2. Hospital performance in risk adjusted survival and readmission rates 2003-2008 — Hospital Average Partial Effects (APE).
Table 5

Estimated residual correlations between the survival and readmission process from
models including additional indicators of patient health risk.

Rho coefficient Std. error
Model A: Charlson index —0.7859 0.0505
Model B: A + set of specific health conditions? -0.5324 0.0771
Model C: B+indicator of total diagnoses” —0.5606 0.0578

2 Dementia or Alzheimer’s, diabetes, chronic ischaemic heart disease, chronic
lower respiratory disease, heart failure, renal failure, and malignant melanoma.
b Model C is the full model presented in Table 3.

in patient health risk that would make the readmission and the
survival process independent. Table 5 highlights this idea show-
ing estimated residual correlation coefficients, rho, from three
different specification of the model described in Egs. (6) and (7).

T
100
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Fig. 3. Hospital risk adjusted readmission rates 2003-2008. Estimated average
probabilities using a bivariate sample selection model.

Each model specification includes the variables listed in Table 3
with the exception of the patient risk variables that are included
progressively: Model A includes only the Charlson comorbidity
index, Model B adds a set of indicators for specific health conditions
and finally Model C adds a variable counting the total number
of patient’s diagnoses, i.e. the full model presented in Table 3.
Adding more risk variables improves the model identification and
also reduces the residual correlation between the survival and
readmission process.

Fig. 3 ranks hospitals by increasing average conditional prob-
ability (AP) of a readmission as defined in expression (22). This
can be interpreted as the conditional probability of a readmission
expected for a given hospital had that hospital treated the whole
population of patients. The specification of the bivariate sample
selection model is the same as in Table 3 column 2. The bottom and
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Fig. 4. Hospitals’ performance in readmission rates. Hospitals ranked using probit
model predictions versus bivariate sample selection predictions.
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top quintile of hospitals have a significantly different performance
in readmissions over the period 2003-2008. Fig. 4 shows the
change in the hospital performance rank between the bivariate
sample selection model and the probit model. Hospitals on the
45° line experience no change in their rank using both models,
hospitals above (below) the diagonal show a worse (better)
performance under the probit model with respect to the sample
selection model. The largest changes in ranks affect middle rank
hospitals, while hospitals at the extreme top and bottom of the
45° line move less in their ranks.

In sensitivity analysis, we relax the parametric assumption of
joint normality that characterises the bivariate sample selection
model. We use a semiparametric model described in Gallant and
Nychka (1987), which approximates the unknown densities of the
latent regression errors by Hermite polynomial expansions and use
the approximations to derive a pseudo-ML estimator for the model
parameters. Relaxing the distribution assumption does not allow
for direct inference on the rho coefficient; also the two models
are not nested. However, the estimated residual correlation from
the semiparametric model (rho=-0.47) is close to the prediction
of the parametric bivariate model (rho=-0.56). Also, the hospi-
tal predicted readmissions from the two models are correlated
at 87%.

5. Discussion and conclusions

The main contribution of this study is to model hospital perfor-
mance on readmissions relaxing the assumption of independence
between the data generating process of patient survival (or mortal-
ity) and readmission that is implicitly adopted in the vast majority
of studies on hospital readmissions. We examine all emergency
admissions for hip fractures of patients aged 65 and over occurring
over 2003-2008 in English public hospitals. We find evidence that
ignoring the correlation between mortality and readmission for
this procedure results in material sample selection bias in the iden-
tification of the hospital effect on readmissions. The bias originates
from unobservable patient characteristics that influence his/her
risk of a negative health outcome, such as unmeasured patient
health conditions, and from differences in hospital mortality rates.
Specifically, if patients’ health conditions are not perfectly observ-
able, then risk adjustment will be inadequate and hospitals with
higher survival rates are more likely to have a larger share of
patients at higher risk of a readmission. Therefore, hospitals’ per-
formance in readmissions is determined in part by their difference
in the quality of care and in part by their difference in the share of
unobservably sicker patients. If this hypothesis holds, high quality
hospitals with high survival rates will tend to have higher reported
readmission rates, and hence their true performance on readmis-
sions will be underestimated.

Evidence of sample selection at patient level comes from the
estimated correlation coefficient (p = —0.56) between the residuals
of a risk adjusted probit model on the patient probability of sur-
viving and a risk adjusted probit model on the patient probability
of experiencing an emergency admission within 28 days of previ-
ous discharge. Also, we find no correlation or positive correlation
between the hospital risk adjusted performance in survival and
readmission estimated using the two separate probits. The posi-
tive correlation suggests that hospitals with better performance
in survival rates have worse performance in readmission rates.
This association is the opposite of what would be expected if both
survival and readmissions are driven by the underlying quality
of hospital care, after controlling for patient characteristics and
external environmental factors that might influence hospital per-
formance. We argue that this estimated association is the result

of ignoring the correlation between the data generating process of
survival and readmission.

We implement a solution to the sample selection bias prob-
lem by using a bivariate sample selection model that allows for
the residual correlation between the probability of survival and
readmission. This model is attractive because it also allows for the
dichotomous nature of the two outcome variables. Once the sample
selection s taken into account, hospitals’ risk adjusted performance
in survival and readmission rates became negatively correlated
with hospitals having high survival rates also having low readmis-
sion rates.

The model also allows for sample selection in estimating the
differences in the conditional probabilities of a readmission by gen-
der, age and co-morbidity groups. The estimates from the sample
selection model are noticeably different from those obtained from
the probit model, which assumes independence between survival
and readmissions. Specifically, the conditional probabilities by gen-
der and by age groups are from 50% to 100% higher in the sample
selection model as compared with the probit model; similar results
obtain for the conditional probabilities of patients with chronic
ischaemic heart disease, heart failure, renal failure, and chronic
low tract respiratory disease. This is not surprising given that these
patients are at higher risk of dying during their first admission (rel-
ative to patients without the condition), and hence the sample that
survives is subject to an intense selection process.

Finally the annual trend estimates derived from the sample
selection model differ from the annual trend estimates from the
probit model. The former predicts a flat trend in readmissions over
2003-2005 followed by a fall in 2007-2008. In contrast, the lat-
ter predicts a rise in readmissions over the 2003-2005 years and a
small drop in 2007-2008. The differences between the two models
are explained by the increasing trend in survival rates that char-
acterised the 2003-2008 period. As the share of patients surviving
their first admission rises over time, so the risk of a negative out-
come in the survivors increases over time. The probit model fails to
control for the increasing risk inherent in the hospital case-mix,
because patient health characteristics are only partially observ-
able. In contrast, the sample selection model provides a better risk
adjustment by incorporating information on the selection process
over time.

Our study offers strong evidence that ignoring the correlation
between the data generating process of survival and readmission
may seriously corrupt any inference on readmission for proce-
dures where there is a significant risk of mortality. If the researcher
were able to observe all relevant patient characteristics, then
survival and readmission probabilities can be estimated indepen-
dently by conditioning on observables, and hence a simple binary
response model on readmission becomes an appropriate instru-
ment of analysis. Unfortunately, most studies, such those using
hospital administrative data, have access only to partial informa-
tion on patient health conditions and treatment characteristics. In
this case, our study suggests that a simple test for the residual
correlation between patient survival and readmission can provide
valuable information on the most appropriate model to use in any
empirical analysis of readmissions.

An increasing number of health systems have started to release
public reports of hospital performance on readmission rates to
inform patient choice of provider and to monitor hospital quality of
care. In the US, 30 day emergency readmissions following hospitali-
sations for pneumonia, acute myocardial infractions (AMI) or heart
failure have been reported by the Centre for Medicare and Med-
icaid Services (CMS) from 2009. In the UK, the NCHOD has from
1998 produced age and gender standardised indicators of hospi-
tal 28 days emergency readmission rates following admissions for
hip fractures and strokes to inform quality regulators. Australia’s
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Table 6
Patient mean outcomes and health characteristics by period of admission.

Survival Readmissions Age Charslon index Total diagnoses

Christmas

(Yes) 0.849 0.125 83.419 0.755 5220

(No) 0.865 0.119 83.263 0.753 5.112
Easter

(Yes) 0.858 0.121 83.257 0.727 5.029

(No) 0.865 0.119 83.267 0.754 5.116
Week day

Sunday 0.861 0.121 83.348 0.753 5.125

Monday 0.864 0.119 83.237 0.760 5.117

Tuesday 0.864 0.119 83.243 0.752 5.113

Wednesday 0.864 0.121 83.324 0.762 5.109

Thursday 0.867 0.117 83.243 0.755 5.109

Friday 0.864 0.118 83.272 0.747 5.119

Saturday 0.869 0.119 83.207 0.745 5.109

National Agency for Health and Information uses readmission to
hospital within 28 days for selected types of surgery as an indica-
tor of the safety and quality of public hospital care. At the same
time, hospitals in these and other countries are under pressure to
reduce mortality rates for the same type of admissions for which
they are required to reduce their readmission rates.

Conventional hospital readmission indicators currently take
no account of the sample selection bias described above, and
may therefore offer misleading signals of performance. Using
inappropriate indicators of performance might put some hospitals
under unwarranted pressure (and conversely may ignore weak
performance in other hospitals) and generate perverse incentives
for hospital behaviour. The recent efforts to link reimbursement to
readmission performance indicators increase the potential for per-
verse incentives associated with such measures. We find evidence
that hospital readmissions are likely to rise as a consequence of
falling mortality rates over time, but that reducing both mortality
and readmissions is an achievable target. However, if adverse
consequences are to be avoided, it will be necessary to develop
more analytically satisfactory measures of hospital performance
on readmissions along the lines described in this paper.
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