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Abstract

Recently, a large number of new mortality models have been mr-
posed to analyse historical mortality rates and project them into the
future. Many of these su er from being over-parametrised or have
terms added in an ad hoc manner which cannot be justi ed in tems
of demographic signi cance. In addition, poor speci cation of a model
can lead to period e ects in the data being wrongly attributed to co-
hort e ects which results in the model making implausible projections.
We present a general procedure for constructing mortality nodels us-
ing a combination of a toolkit of functions and expert judgement. By
following the general procedure, it is possible to identifysequentially
every signi cant demographic feature in the data and give it a para-
metric structural form. We demonstrate using UK mortality d ata that
the general procedure produces a relatively parsimonious adel that
nevertheless has a good t to the data.

We are grateful to participants at a seminar at Cass Business Sclaj, at the Longevity
8 conference in Waterloo, Canada, in 2012, at the Perspectives dictuarial Risks in Talks
of Young Researchers winter school in Ascona, Switzerland, in 2@1and to the anonymous
referee for comments received which have improved this paper. Ware also grateful to
Andes Villegas for many useful discussions.
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1 Introduction

In recent years, there has been an explosion in the number of nevontal-
ity models that have been proposed. This has been triggered, in paby
the greater focus placed on longevity risk by demographers, aaties and
governments. It has also been prompted by the failure of existingadels to
identify adequately the full extent of the complexities involved in thesvolu-
tion of mortality rates over time.

Yet these new models often involve ad hoc extensions to existing mod
els, which have questionable demographic signi caneDespite having more
terms than the older models, they still fail to capture a lot of the indbrmation
present in the data, such as the level of lifespan inequality in the polation.
They also have di culties providing realistic forecasts of speci c maality
rates. Lacking a formal procedure for interrogating the data taestablish
what structure remains to be explained, modellers too often add weterms
based on theoretical models of mortality or on assumptions regamg the
shape of the mortality curve rather than evidence. This is especiallyan-
gerous in models with cohort parameters intended to capture geagonal
e ects. The result of any mis-speci cation in these extra age/péod terms
can result in structure being wrongly attributed to the cohort e ect. This
is then projected incorrectly, moving up the age range with the paage to
time, with the result that implausible forecasts are generated at hirger ages.

In view of this, we feel that the time has come to take a fresh look at
mortality model construction. But, rather than propose yet anther new
model, what we do in this paper is outline and implement a \general pree
dure" (GP) for building a mortality model from scratch, driven by a forensic
examination of the data. Through an iterative process, the GP idéires
every signi cant demographic feature in the data in a sequence, dianing

1Dpemographic signi cance is de ned in[Hunt and Blake (2015¢) as the iterpretation of
the components of a model in terms of the underlying biological, medil or socio-economic
causes of changes in mortality rates which generate them.



with the most important. For each demographic feature, we need tapply
expert judgement to choose a particular parametric form to repsent it. To
do this, we need a \toolkit" of suitable functions.

By following the GP, it is possible to construct mortality models with suf
cient terms to capture accurately all the signi cant information present in
the age, period and cohort dimensions of the data. In particularhe GP pre-
vents structure in the data which is genuinely associated with an afperiod
e ect being wrongly allocated to a cohort e ect. The procedure is@neral in
the sense that it can be applied to any dataset to give a fully speci eshodel
tailored to the features of the population under consideration. M signi -
cantly, the GP provides evidence for the addition of each term to aexisting
model; it allows each new term to be associated with a speci ¢ demoghac
and biological process driving the evolution of mortality rates.

Section[2 presents a summary of the structure of the class of radf
ity models we are considering and sets out the desirable propertidsat we
believe a good mortality model should possess. The general pragedis
discussed in Sectionl3. In Sectidd 4, we apply the GP to data for menthre
UK and describe how the steps in Sectidl 3 operate in practice. Inciien
B, we assess the goodness of t of this model and check whethsere is any
remaining structure present in the tted residuals. Sectiomnl6 congres the
GP with the Lee-Carter model and with a procedure based on prin@pcom-
ponent analysis as an alternative method of constructing mortalitynodels
with multiple age/period terms. Finally, Section[J concludes with an asss-
ment of how the nal model found measures up against our set oesirable
properties from Sectiori 2 as well as its advantages and disadvaygs.

2 The structural form of mortality models

The majority of existing mortality models proposed in the actuarial lierature
fall into an age/period/cohort framework. This transforms the dserved
mortality rates and then ts a series of terms to account for the iteractions
between the agex, the year of observationt, and the year of birth,y = t X,
for the population within each cell of data. Mathematically, this can ke



written as@

DX;t

X [ i)y ()
E = xt f(l)(X; (I)) it tx (1)
X5

i=1

E

This equation has the following components:

a link function to transform the observed data into a form suitable
for modelling. The raw data usually consists of death counB,.; and
exposures to riskEy; at agesx and for yearst;

a static age function  to capture the general shape of the mortality
curve that does not change with time;

N age/period termsf (O)(x; ©) ® " consisting of companion pairs of
period terms ﬁ') (or \trends") which give the evolution of mortality
rates through time and age function$ () (x; () which determine which

segments of the age range these trends a ect; and

cohort parameters ; x which determine the lifelong e ects that are
speci c to di erent generations as discussed in Willets (2004), deted
by their year of birth;

Many mortality models proposed to date can be written in this form. Tiese
include the Lee-Carter (LC) model proposed in_Lee and Carter (29) and
extensions of this, such as thoselof Renshaw and Haberman (J@0®i Yang et al.
(2010). It also includes the Cairns-Blake-Dowd family of mortality mdels (in
Cairns et al. (2006a) and Cairns et al. (2009)), the classic age/ped/cohort
model of Hobcraft et al. (1982) and developments of these modsigh as the
models proposed by Plat (2009) and O'Hare and/Li (2012). In additm it
includes various other mortality models not contained within these failies
such as the ones proposed iin Wilmath (1990) and Aro and Pennan@911).
The models of the rate of mortality change proposed in Haberman éiRenshaw
(2012, 2013) and Mitchell et al.|(2013) also fall within this structue for suit-
able choice of the link function ;. These models and the relationships
between them are discussed in greater depth in_Hunt and Blake (Z58).

2This structural form and demographic signi cance of the terms in it are discussed in
depth in Hunt and Blake (2015€).



Examples of models which fall outside this framework include those Wit
a constant, Makeham term, the extension to the LC model proped in
Renshaw and Haberman (2006) (due to the presence of th® term modi-
fying the cohort parameters) and the P-splines models|of Currie at. (2004).

A good mortality model should satisfy the following \desirability criteria™:

1. provide an adequate t to the data, with su cient terms to capture all
the signi cant structure in the data;

2. be biologically reasonabl@;and have terms which have demographic
signi cance in the sense that they are explainable in terms of the un-
derlying biological, medical or socio-economic causes of changes inrrmo
tality rates at speci c ages

3. be parsimonious, with the smallest number of terms needed to taye
this structure, and with each term using as few parameters as silsle;

4. be robust, in that parameter uncertainty should be low and small
changes in the data should not result in signi cant changes in the est
mates of the parameters and in our interpretation of them;

5. span the full age range, with su cient terms to model the compbe
shape of and dynamics observed in mortality rates at younger ages
and

6. include cohort e ects if justi ed by the data and allow for these b be
clearly distinguished from age/period e ects to allow plausible projec
tions of the model.

The GP has been designed with these criteria (and the trade-o s tveeen
them) in mind. Most speci cally, the GP chooses parametric age futionsf
f O (x; @), which take a speci ¢ functional form and are parameterised by
a small number of variables (), over more general non-parametric age func-
tionsf {, due to their parsimony and because we can use our judgement

SIntroduced in Cairns et al/ (2006b) and de ned as \a method of reasoning used to
establish a causal association (or relationship) betweenwvo factors that is consistent with
existing medical knowledgé

“De ned in Hunt and Blake! (2015€) as one taking a specic functional form that is
de ned by an algebraic formula

SDe ned in Hunt and Blake!(2015€) as one tted without imposing any a priori struc-
ture across ages



to assign demographic signi cance to the term in question. The adnwtages
and disadvantages of using parametric age functions are discussegreater
depth in|Hunt and Blake (2015€e). However, a key feature of the GB to use
the information discovered from rst using a non-parametric ageuhction to
provide guidance on the shape of that demographic feature. Thislm-

prove the goodness of t for each term and avoid the need to malkepriori

assumptions regarding which age functions to use.

3 A general procedure for constructing mor-
tality models

The general procedure consists of the following steps:

1. Start with a static age function , to capture the time-independent
shape of the mortality curve across ages in the data set under sait
eration;

2. Add a companion pair of non-parametric age and period functiong
to nd the most signi cant age/period e ect not captured by the model
so far, where the age term is free to take the shape that maximises
the t to the data;

3. Observe the shape of the estimated age term across ages and how
¢ has evolved through time;

4. Check that the addition of the new pair of terms improves the ovall
goodness of t to the data;

5. Use judgement to select a speci ¢ smooth functional form(x; ) to
replace the non-parametric age term, where the function is de ned
by a small number of free parameters;

6. Check whether the tted model with this speci c functional fom

(a) a) produces a similar evolution over time as the non-parametric
term by comparing the tted .'s for the two cases and

(b) b) achieves comparable improvements in the goodness of t aset
non-parametric term.



7. Check whether the addition of the new companion pair of terms ka
signi cantly changed the shape of previously selected terms, in whic
case we might need to change and re-estimate the earlier terms;

8. Repeat steps 2 to 7 until we are satis ed that the model captes all
signi cant age and period structure in the data;

9. Add a cohort term ;  to capture any year of birth e ects;

10. Testthe nal model for goodness of t and robustness, anthe residuals
for the properties of normality and independence, thereby comning
that there is no signi cant unexplained demographic structure remn-
ing in the data;

11. Compare the nal model to alternative models estimated usinghe
same data set.

After each modi cation of the model structure (e.g., replacing a no-parametric
age function, , with a parametric alternative, f (x), or the addition of the
cohort term), all the terms are re-estimated by tting the modelto historical
datall This ensures that all of the parameters are estimated on the basié
maximising the t to data and that there is no explicit hierarchy within t he
model structure. Figure[1l shows a ow chart of the GP summarisinthese
steps.

The GP is a data-driven procedure, with terms being selected based
on their ability to capture features of the observed mortality rats. At
high level, it is a speci c-to-general model building procedure (as ded
in Campos et al. (2005)) as it begins with a simple model and sequentially
adds terms in order to build a model that fully re ects the featuresontained
in the dataset under investigation. This approach is unavoidable, &s begin
with a fully general mortality model, as required by the general-topeci c
methodology, would contain such a large number of terms that it wad be
impossible to t it to data and di cult to simplify. However, at the \mi-
cro” level, each age/period companion pair is added in a general-tpesgi c
fashion - the most general form of the function is added to the metand
then simpli ed into a speci ¢, parametric form, whilst seeking to retan its

5The only exception to this is when an exploratory ,  term is added to the model,
since these models are often very unstable due to over-paramégation.
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Figure 1: Flow chart of the general procedure



explanatory power. Thus, we believe that the GP bene ts from bdt model-
building frameworks.

The GP selects the functional form of the age/period terms in twatages.
First, it allows each age/period term within the data to be identi ed by a
non-parametric age function without requiring any a priori assunmmns to be
made by the modeller. Second, it allows the shape of these non-pagdric
age functions to guide the choice of parametric function that is seted from
the toolkit to match as closely as possible the explanatory power dig for-
mer, whilst bene ting from parsimony in terms of the number of parmeters
to be estimated. However, judgement is required in the selection tife
parametric function, although that the GP provides evidence to jstify the
decision made.

Appendix [Al gives details of the \toolkit" of parametric age functions
needed to implement the GP; it also gives a general algorithm for estimg
the free parameters in them. However, a toolkit is never complet@é so we
do not o er this as an exhaustive list of functions - only as those weake
considered so far. Two highly desirable features for a function teebncluded
in the toolkit are a small number of free parameters (in our experiee, more
than two free parameters leads to unstable estimates) and theibty to ad-
just the location of the function in the age range.

At each stage of the GP, we need to assess whether the resultingdel
is in accordance with our desirability criteria. First, we will need to teis
whether an additional age function improves the t of the model todata.
It is well known that a measure such as the log-likelihood will always sho
an improvement in the t of a series of nested models to the data du®
the increased number of free parameters. In order to achieveraiesire for
a parsimonious model, it is therefore necessary to penalise the nenkof
free parameters used by considering a measure such as the Bdgésrma-
tion Criterion (BIC). [ The log-likelihood is still useful, however, when adding
an additional non-parametric term as the change in this measurepmsents
the maximum possible improvement in the t from the addition of a single
new term. We can therefore use this maximum possible improvemers the
benchmark for measuring the success of the speci ¢ parametrarm being

’De ned as max(Log-likelihood) 0:5 No. free parameters In(No. data points).



trialled: a parametric age function which produces 80-90% of thersa im-
provement in log-likelihood can be regarded as highly desirable.

Second, we need to compare whether the structure identi ed by rRon-
parametric age function is the same as that found when a speci c izemetric
function is introduced. Plots of the two are useful for revealing # general
pattern of mortality change and identifying features such as trehchanges
and outliers that the two series have in common.

Finally, we will need to test the residuals from the data. As discussead
Pitacco et al. (2009), under a Poisson model for deaths (such dstone we
use), the standardised deviance residualg; are given by
N ! !

T g 2 @ da)
X;t

u
Mgt = Sign(dx;t (.?x;t)%I

with actual death count dy., tted death count él\x;t = Ey¢ xt» and the
scale parameter given by the total tted deviance divided by the nober of
degrees of freed f the model. This assumes that the residuals have con-
stant variance across age and time. For large expected death ots) these
should be approximately standard normal variables, so we can take resid-
uals for normality using the Jarque-Bera test of the skewness akdrtosis
to check this. The residuals should also be independent and show rwvie
ous structure across ages, periods and cohorts. To look forustiure within
the residuals, we plot heat maps and visually inspect for obvious vardl,
horizontal or diagonal banding patterns. This would indicate the msence
of further age, period or cohort e ects. We also calculate the c@lations of
the residuals with their neighbours in the age and period directionspd test
these correlations against the assumption of independence.

To exit the cycle of adding new age/period terms, we need a stopping
rule in the GP to determine when there are no further demographitta sig-
ni cant age/period terms left unidenti ed in the data. Such a stoppng rule
will inevitably be subjective. This means that the GP is not a \black-b&"
algorithm; it requires the active engagement and exercise of judgent by

8Number of data points less number of free parameters.
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the modeller at each stage of the model building process.

Finally, we add the cohort parameters as the last step in the GP. The
reason for this re ects a preference for a model where the méjfg of the
temporal dependence in the data is allocated to the age/period tas. The
reasons for this preference are discussed in detail in Hunt and Bia2015e),
but in our experience, the pattern of tted cohort parameters poduced by
some models does not seem to have any demographic signi cance rauag be
caused by the model trying to compensate for inadequate agefjl terms.
We therefore seek to avoid this in the GP.

4  Application of procedure to male UK data

To illustrate the GP, we apply it to data for men in the UK from 1950 to
2009 covering ages 0 to 100 (ungrouped) downloaded from the HanrMor-
tality Database (Human Mortality Database (2014)). We restrict he data
to the period since the Second World War as it is free from major coicts
and abrupt social upheaval. Since the Human Mortality Database pvides
central exposures to risk for each age and year, we assume tha death
counts are Poisson random variables and therefore use a log-linkidtion
for «t as it is the canonical link function for the Poisson distribution, as
discussed in_Hunt and Blake|(2015e). We t the model at each stagesing
Poisson maximum likelihood estimation using the algorithms described in
Appendix [Al

4.1 Stage 0 - Static life table

The static life table produced by tting In( «t) = « constitutes the rst

step in the GP. The tted values of  (not shown) show the usual pattern
of mortality across the full age range: with high mortality rates at ge zero
due to infant mortality, the log-linear pattern of mortality increases at high
ages (from 50 to 90) and the increased rates of mortality due todhaccident
hump between ages 15 and 25. Whilst the age function is re tted aieh
stage of the GP, this shape does not change signi cantly throughbthe

di erent stages of the model building process.
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4.2 Stage 1 - First age/period term

The next step is to add the rst non-parametric age/period term b the static

model to arrive atIn( x¢) = s+ « §1), which has the form of the LC model.

This gives the familiar , and El) terms shown in Figure 2.

In order to fully identify the model, we impose

x - -
j xj=1 (2)

=0 ©)
t

and adopt these identi ability constraints for all subsequent aggderiod terms
in the model for consistency. For parametric age functions, impiag Equa-
tion 2 involves rescaling the age function by either a constant or with func-
tion of the free parameters, () (i.e., ensuring that the age function is \self-
normalising"). This is discussed further in Appendix_ A and Hunt and Bl&e
(2015b).

In the interests of parsimony and demographic signi cance, we bele
that it is highly desirable to nd a simpler parametric form than the age
function of the LC model to capture the impact of the dominant trad
within the data - ideally the simplest age function that will capture the
same trend. This parametric form should be continuous to avoid angsues
with the smoothness of projected mortality rates. As the tted , age func-
tion is positive across the whole age range, it might be felt to repregea
general improvement in mortality rates across all ages. Appealing this
demographic signi cance, we therefore try the simplest possibleafunction
- a constant. As Figurd 2 shows, this simple age function e ectivelyaptures
the same trend as the non-parametric, function with 100 fewer parameters,
and achieves approximately 92% of the same improvement in log-likelduh
We are therefore satis ed that there is no need to use a more colaeyp and
less parsimonious age function, although we would expect that muol the
age structure present in the tted , will need to be captured by subsequent
age/period terms.

Figures[Za and 2b shows the age and period functions generated3tgige
1 of the GP. We can see that the population has experienced suse&dhim-

12
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provements in mortality which have accelerated slightly in recent yes. The
model also detects the increased mortality in 1951 owing to the in uea
epidemic in that year which a ected much of England.

So far, so good, but a plot of the residuals - not shown here - indieat
that additional terms are necessary to fully capture all the strucre within
the data.

4.3 Stage 2 - Second age/period term

In order to nd the next most signi cant age/period e ect within th e data,
we now add another non-parametric age/period term to the modéb arrive
at
IN( x)= x+fO) P+ P (4)

The tted model gives the values of , and §2) shown in Figure[3. It
is not a trivial task to select an appropriate parametric age functio from
the shape of , and this is where judgement becomes important. By in-
spection, the non-parametric age function appears to have tworaponents
- an upward-sloping linear trend across the entire age range and age
\hump" superimposed on the age range 10 to 50. Since we can assigar-
ent demographic signi cance to each of these features, it is appraate that
we separate them into two di erent age/period terms in the fully spei ed
model. However, these trends will probably be highly correlated wiias
why the non-parametric function has combined them.

We choose to t a straight line as our choice of @ (x) as it is a simpler
potential function than one with a hump shape; indeed it is the simplés
possible function after a constant. In our experience, a straighhe is often
the second choice of age function that arises naturally when applgirthe
GP, especially for data restricted to higher ages. This lends suppdor the
use of the Cairns-Blake-Dowd class of models. A straight line can been
preted as determining changes in the slope parameter in a Gompentodel
of mortality for models with a logarithmic link function. This is related to
the \rectangularisation” of the mortality curve, as a greater prgortion of
deaths at high age occur around the median age of death. We alsdenthat

§l) and §2) are negatively correlated, consistent with the Strehler-Mildvan

14



law of mortality discussed in_Finkelstein ((2012).

4.4 Stage 3 - Third age/period term

Our discussion of the choice of an appropriate age function at S&g should
give us a strong idea as to the appropriate shape of the age funatir Stage
3. The GP gives us the evidence to support or reject our conjectuby rst
extending the model with a new non-parametric age/period term

x .
IN( )= + fOx) D+ , (5)
i=1

The tted non-parametric model gives the values of , and §3) shown

in Figure @. This conrms that a suitable choice forf ®(x) could indeed
be some form of hump-shaped function centred around age 25 aswl we
experiment with

FOx) /) texp & f)z (6)

This function has two free parametersx/and which, by analogy with the

normal distribution, govern the location of the hump and its width. These
are estimated using Poisson maximum likelihood estimation. We chooset
starting values for these parameters by observing the patterri the , func-

tion, before applying our optimisation algorithm. The nal, tted valu es
should not be overly sensitive to the initial choice. If they are, this idicates
that the choice of age function may be inappropriate and will causegblems
with the model when additional terms are added.

The nal tted f®(x) and @ functions are shown in Figuré 4. When
adding a new term to the model, we need to check that it does not sign
cantly alter the demographic interpretation of the previous terms Plots of
the rst two terms - not shown here - indicate that they have not banged
signi cantly due to the presence of the third term.

Visual inspection of the heat map of residuals in Figurg 5 shows us tha
a) there appear to be additional age/period e ects in the data, n&t obvi-
ously centred on age 0 and age 18 and b) there is a clear need for laoco

15
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e ect in the model as shown by the prominent diagonal lines on the ae
map indicating features which follow individual years of birth as they ge.
The evidence gleaned from the heat map plot is useful when deciding o
subsequent terms, especially when trying to determine if the shapleown by
an exploratory ,  function is trying to approximate for a cohort e ect -
something we believe is essential to avoid.
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Figure 5: Heat map of residuals from Stage 3

4.5 Stage 4 onwards - Additional age/period terms

The format of the GP from Stage 4 onwards follows the same patteas for
Stages 1, 2 and 3: choose an appropriate functional form for thge term
in order to capture the main e ect revealed by the non-parametric, . term.

18



We have already dipped into our toolkit of age functions, most nota by
using the two-parameter Gaussian function at Stage 3. Stage 4caonwards
require us to have a far greater range of functions available in thedlkit
that we can potentially use. AppendixX'A contains a list of the parameic
functions considered in this analysis.

Figure [8 shows plots of the nal tted age functionsf ()(x) and trends

% for i = 4;5;6,7. Itis useful to note that the order of discovery of these
functional forms provides a natural order of importance for thege terms.

The age functions we have tted are:

Stage 4. a broken linear function similar to the payo of a put option,
which we can associate with childhood mortality rated;

Stage 5: a Rayleigh function, which we associate with the postpone-
ment of deaths from late middle age to old age that results from medic
improvements over the past 60 years;

Stage 6: alog-normal function centred on ages 18-19 which weoasste
with the peak age of the accident hump; and

Stage 7. a normal function centred on ages 55 to 65 which may be
associated with the major causes of death in late middle age, such as
lung cancer and coronary heart disease and the e orts made toctde
them.

The residual heat map for Stage 7 (Figur&l7) is dominated by the di-
agonal lines representing the cohort e ects which have been exadd from
the model so far. This might lead us to conclude that we have extrisd
all of the important age/period e ects from the data. This is con rmed by
adding a further exploratory non-parametric term to the model. Wilst the
resulting BIC for the model does increase, there is little structuréo the

« tted (shown in Figure Ba)) except for the periodic pattern at high aes

9This function can be thought of as a very simple linear spline with a singlénot, similar
to those used as basis functions in Aro and Pennanen (2011). Momplex splines could
also be considered as part of the toolkit of age functions.
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which is clearly trying to capture a series of cohort e ecttd We therefore
conclude that, for UK male data over the sample period, there areeen
distinct age/period e ects in the data.

Year

1960

Age

100

Figure 7: Heat map of residuals from Stage 7
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O\We have tested whether the use of an indicator function at age 18raa narrow, triangu-
lar \spike" function centred on this age would improve the goodnesf t. However, when
using the BIC which penalises for excessive parametrisation, the esof these functions did
not improve the t of the model. The use of an indicator function also leads to mortality
rates at age 18 being t perfectly which does not accord with our dsire for parsimony
and may lead to discontinuous mortality rates which are not biologically reasonable.
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4.6 Stage 8 - Cohort term

The nal stage is to add the cohort parameters;  to yield the nal model

7
In( xi)= <+ fOx) P+
i=1

Due to the limited number of observations on very early and late cohs,
we do not estimate cohort parameters in the rst and last ten year of birth.
Instead, we linearly interpolate these to zero for smoothness. &@mal model
gives the cohort parameters shown in Figuii€ 9. Adding a cohort tarto the
model also creates additional issues with the identi ability of the paameters,
which are solved by applying extra identi ability constraints] The full set
of identi ability constraints required by the nal model produced by the GP
is given in Appendix[A.

From this, we can identify the major features of interest and canry to
relate them to the life histories of the a ected cohorts. Most obviesly, there
is a clear discontinuity between years of birth 1918 and 1919. This yneelate
to the impact of the in uenza epidemic that year. Alternatively, it could be a
data artefact caused by a ood of births after the First World Wardistorting
the assumptions used to construct exposures to risk (for a dission, see
Richards (2003)). Following this is the decline in cohort mortality obseed in
Willets (1999,12004) and discussed in Murphy (2009) relating to thegblden
cohort" of individuals born in the late 1920's and early 1930's. We also
observe a further (although smaller) discontinuity between 1945nd 1946
relating to the end of the Second World War, strengthening the datartefact
argument presented in_Richards! (2008). We are unsure what degnaphic
signi cance the excess cohort mortality observed for years of thirbetween
1960 and 1980 has. These are individuals currently aged betweenad@
50 and therefore we have limited mortality experience data for themnd so
any attempt at assigning demographic signi cance is somewhat spsémtive.
However, this feature is robust when adjusting the range of theath for the
model and when additional age/period terms are added. This featiwill be
signi cant for projecting mortality rates if this excess mortality is @mntinued
later into life. Finally, we observe a distinct cohort e ect for individuds
born around the year 1900 (which again is robust to the model ancath

1 This issue is discussed in_ Hunt and Blake| (2015c).
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Figure 9: ; x cohort e ects from Stage 8 of the general procedure

speci cation). This may be due to the formative impact of experiereeduring
the First World War as young men and the lifetime health e ects this mg
have induced.

5 Testing the nal model

Our nal model consists of the seven age period terms describedTable [1
plus terms for the static life table , and the cohort parameters ; .

Figure [10 shows (on a logarithmic plot) the contribution each of thes
terms makes to improving the goodness of t (measured by the B)®f the
model. It can be seen that the majority of the improvement in goodss of
t comes from the rst three age/period terms. However, the oher terms (as
well as being statistically and demographically signi cant) are still impdant
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Term | Description fO(x)/ Demographic
Signi cance
1 Constant 1 General level
of mortality
2 Linear X X \Gompertz slope”,
rectangularisation
3 Normal exp & Young adult
mortality
4 | \Put option" (Xe Xx)* Childhood
mortality
5 Rayleigh | (x R)exp( ?(x %)% | Postponement of
old age mortality
6 Log-normal %exp M Peak of
accident hump
7 Normal exp &° Late middle /
old age mortality

Table 1. Age/period terms in the nal model

in describing genuine structure in the data such as the level of inegjity in

lifespan in the population, described by measures such as the epiyr Gini

coe cient of the life table (for instance, see Shkolnikov et al.[ (2003 With-

out them, the cohort term - as the nal catch-all term added to he model -
would attempt to capture this structure, leading to it being wronglyspeci ed
and generating inaccurate and implausible forecasts of mortality tes when
projected.

Our nal model should, ideally, satisfy the desirable properties retang
to the adequacy and goodness of t of the model discussed in Sewnt2.
Speci cally

1. it should provide a good and parsimonious t to the data (which shdd
have been achieved through the model tting procedure);

2. it should extract all of the signi cant structure from the data, leaving
residuals which are independent and identically distributed; and
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Figure 10: Improvement in goodness of t at di erent stages of ta general
procedure

3. it should give parameter estimates which are robust to small chges
in the data.

To test for structure within the standardised deviance residualsye ex-
tend the procedures in_Dowd et al.|(2010b). We rst plot the heat rap
shown in Figure[11. This shows an apparent lack of any major age#ped or
cohort features and there are very few \hot" and \cold" regionsor clusters
in the plot. We then calculate the sample moments of the residuals whic
are shown in Table 2. With large exposures and death counts and aiss
ing the residuals have constant variance, we can use an approxiimat to
assume that they areN (0; 1) variables under the null hypothesis and so use
the Jarque-Bera statistic to test for this.

The critical statistic for the Jarque-Bera test at 95% is 9, whilst at 99%
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Figure 11: Heat map of residuals from Stage 8

it is 9:21. This means that we decisively reject the assumption of normality
for the standardised deviance residuals. Next, we consider therretations
of the residuals with those adjacent in the age and period directionise.

COH’( X 1;:; x;:)
corr( .t 15 :t)

- XX

Figure[I2 shows the plot of these correlations against age and yaad
the relevant statistics if we test against the null hypothesis of ingeendence
(a two-tailed test at 95% signi cance) for the nal model from thegeneral
procedure. Clearly, the hypothesis of independence is not supfsat overall.
Testing these jointly (i.e., as a series of independent binomial trials wte the
probability of failure is 5% under the null) con rms the lack of independnce
in both the age and period directions at the 99% level.
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Residual | Standard | Residual | Residual | Jarque-Bera
mean | deviation | skewness kurtosis statistic
General procedurg -0.01 0.94 -0.03 3.38 37.70
Lee-Carter -0.02 0.98 0.47 9.75 11,700
PCA 0.00 0.94 0.06 3.26 21.25

Table 2: Properties of the residuals from Stage 8 of the generalopedure
and the Lee-Carter and PCA models

This lack of normality and independence should be investigated fureh

In practice, this may be due to isolated outliers (often caused by taerrors)
or due to structural changes within the data. This would cause theariance
of the residuals to change with age or time. Plots of the residuals fnothe
model against age, period and cohort (not shown) indicate that #re are no
extreme outliers that would need to be investigated and that the vance of
the residuals is roughly constant. Therefore, it is probable that #re is un-
explained structure remaining within the data which is not captured ¥ the
model. However, comparing these results to those from the PCA ol and
other models such as the Lee-Carter model show that the GP givessults
which are at least as good as those from alternative mortality modéf

We also perform a number of tests of the robustness of the model
changes in the data. These include:

1. Fitting the model to di erent periods of data by increasing the sart
date sequentially from 1950 to 1980;

2. Bootstrapping the standard deviance residuals using a methocded
on the procedure of Koissi et al. (2006) to test the extent of pameter
uncertainty; and

3. Removing ages and years from the data by setting their weights zero
to test that none of the age/period functions are overly sensitivéo
speci ¢ ages and years.

The rst of these tests is based on the procedure In Cairns et al.@29).
Graphs of the tted parameters (not shown but available from theauthors)

2\We will compare the relative performance of alternative mortality models in Section

0.
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indicate that the model ts similar patterns for the evolution of the di erent
§') period functions and slowly varying age functions as the age rangetioe
data is changed.

The second robustness test we perform is to look at parameteragmtainty
under residual bootstrapping. Standard bootstrapping techniges, such as
that implemented by [Koissi et al. (2006) were developed for use witihe
Lee-Carter model and assume that the residuals from the modekandepen-
dent. However, this assumption is not valid Nevertheless, for simplicity,

More recently, stratied (see D'Amato et al.| (2011)) and block-bootstrapping (see
Liu and Braun (2010)) procedures have been used, as have thobased on geo-statistical
techniques which look at the correlation structure across residula (se€_Delon et al. (2003,

2010)).
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we implement an approach based on this method of residual bootgbping
in order to test our nal model for parameter uncertainty. This method sam-
ples randomly from the tted residuals and adds them to the tted nortality
surface to generate arti cial death counts, to which the model ige tted to
generate new parameter estimates. In this fashion, the degrefeparameter
uncertainty can be ascertained. The plots in Figuré_13 depict fan ahs
(see . Dowd et al. [(2010a)) showing the 90% con dence interval ftine pe-
riod and cohort parameters produced by this bootstrapping predure using
1,000 simulations. As can be seen, the underlying pattern of the paneters
remains unchanged and there is no evidence to suggest that anyne are
not signi cant when allowance is made for parameter uncertainty. fie age
functions are not shown, but these are considerably more robustthe e ect
of parameter uncertainty than the period and cohort e ects.

As a nal test of the model, we systematically remove ages and ysdrom
the data by setting their weights to zeros and then re tting the paameters.
This tests if any of the tted functions are overly sensitive to the peci ¢ rows
or columns of the data grid, and the model's ability to interpolate sefisly
for missing data. Figured_I4 and—15 shows the impact of this analysis o
the cohort parameters ; , and on the age/period termsf © (x) and §6)
As can be observed, while removing speci ¢ ages and years can distbe
cohort parameters at the end of the range of data, it does not Isstantially
a ect those estimated across more data points in the centre oféhrange. EG)
is also robust under this analysi@. We are therefore satis ed that our nal

model is robust under small changes to the data.

14This age/period term was chosen as the most speci ¢ age functiontted and therefore
probably the most susceptible to uncertainty under this analysis.
5Corresponding graphs for the age functions and other period fuctions, not shown

here, also show considerable robustness.
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6 Comparison with alternative models

The model produced by the GP in Section]5 had some unexplained stture
according to our analysis of the residuals. How serious a problem igsth
Perhaps the best way to answer this question is to compare the neddrom
the GP with some alternative mortality models: the LC model (as the st
widely used mortality model) and a method based on principal compomte
analysis which extends the Lee-Carter approach with multiple agegpiod
and cohort terms.

The LC model, introduced inlLee and Carter|(1992) has subsequbnt
been much studied, developed and extended, most notably in thenkaf Lee
(2000),Brouhns et al. [(2002), Booth et al.[(2002), Renshaw atthberman
(2003), Renshaw and Haberman (2006) and Hyndman and Ullah (200 It
has rapidly become the benchmark mortality model against which ogs are
compared (for instance in_Cairns et al.| (2009) ar Plat (2009)) andosis a
natural starting point for comparing the model produced by the @ against.
However, it is a relatively simple model with only one age/period term ah
no cohort term, and so we would expect the GP to give signi cantly kter
ts to the data.

The singular value decomposition used to tthe model to data in Leeral Carter
(1992) is a particular implementation of principal component analysig®CA)
- see_Huang et al.|(2009) for more details. It is therefore the naal exten-
sion of the Lee-Carter methodology capable of giving multiple age/ped
terms. It nds age and period functions that explain the maximum arount
of variance (across the period dimension) in the model. PCA has long
been used in the study of mortality rates: for example Wilmoth| (1990
used it to detect higher order age/period functions, Booth et al.2002) and
Renshaw and Haberman| (2003) both proposed its use to extendethee-
Carter model with additional age/period terms and the models of Hydman and Ullah
(2007) andlYang et al. [(2010) used it directly to t multiple age/peria ef-
fects. However, it cannot directly nd cohort e ects. Therefoe a direct
comparison of PCA with our model is not appropriate.

In order to compare procedures, we use a method similar to thatagin

Wilmoth/ (1990). We rst use PCA to nd age/period functions for In( )
in the absence of cohort e ects. We then add a cohort e ect to th under-
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lying model and use the PCA age/period e ects as the starting poinivhen
maximising the Poisson log-likelihood using the algorithms in AppendIx]A.
This process is repeated for di erent numbers of age/period tesnand the
model with the highest BIC selected for comparison against our thanodel.

6.1 Results

Table [3 compares the three models and shows the goodness of tdor
dataset. The LC is a single factor model and so it is unsurprising thahe
other two models give considerably better ts to the data, althouly at the
cost of a far greater number of parameters. The PCA method alsequires
substantially fewer age/period terms to achieve a very similar goodss of t
to the model produced by the GP. Because each of these age fiors has
approximately one hundred free parameters compared with a maxim of
two using the GP, this does not result in a more parsimonious model,wever.
Further, as we are primarily interested in the evolution of mortality ates over
the period, we consider that it is desirable to have a high proportionf the
parameters relating to the period and cohort e ects of interestThis is not
the case in the PCA model.

Model No. A/P No. free Log- BIC
terms | parameters| likelihood
General procedure 7 679 309 10¢| 338 10
Lee-Carter 1 259 513 10*| 525 10
PCA 3 735 307 10*| 339 10

Table 3: Goodness of t for the di erent models

Figures[16 and1l7 show the age and period functions for the GP an@R
procedure - the age and period functions for the LC model are tlsame as
the non-parametric terms shown in Figurél2. We nd it di cult to assign
demographic signi cance to the age functions in the LC and PCA mode
The cohort parameters for the GP and PCA models are shown in Figeill8
- there is no corresponding plot for the LC model due to the absemof a
cohort term. Here it is worth noting the similarities as well as the di eences
in the tted parameters. Both approaches detect the discontinties after the
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First and Second World Wars and the increase in cohort mortality foyears
of birth around 1900 and between 1960 and 1980.

However, there are substantial di erences in both the magnitudand the
pattern of cohort parameters. Cohort e ects for the GP are lespronounced
than those from the PCA procedure. In addition, the PCA model fids to nd
a sustained decrease in cohort mortality for the \golden cohort" idcussed
previously. Most seriously, there appear to be large cohort e extat the
beginning and end of the range of years of birth which are not explaible
demographically. We believe that these e ects are trying to compsate for
the second and third age functions in the PCA model, which do not ten
to zero at high ages (as shown in Figuie 1I7a). This has very seriouscés
when these models are projected into the future. We thereforeeleve that
the cohort parameters produced by the GP are more biologically reanable
and demographically signi cant than those tted by the PCA procedire.

Table [2 above shows the moments and results of the Jarque-Begsts
on the residuals for the three approaches. We note that none dfet three
models tested give normally distributed standardised residuals, atthgh the
residuals from the GP and PCA models come considerably closer thdrose
from the LC model.

We also compare plots of the residual heat maps in Figurel 19 and tést
correlation amongst the standardised deviance residuals in Figur@ from
the Lee-Carter and PCA models in Figurée 20 - comparable plots for ¢h
GP are shown in Figured~11 and—12 respectively. The heat maps foreth
Lee-Carter and PCA models shows obvious clusters in the tted riglials,
indicating that there is still substantial structure remaining in the residuals
of the PCA model. The LC residuals in particular show the clear needrfo
a cohort term to capture the impact of the cohorts born after tk First
and Second World Wars. The PCA model yields residuals which are close
to normality than the GP, although they still do not pass the JarqueBera
test. The correlations across residuals from the PCA procedureeahigher
than from the GP. Probably this is due to the smaller number of age/griod
terms. However, adding additional terms to the PCA model results worse
BICs and therefore will not improve the goodness of t. This reinfices the
conclusion that there is still structure in the data which is not adeqately
captured by the PCA model.
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7 Conclusions

As the level of interest in longevity risk increases, it becomes incegagly im-
portant to be able to construct more sophisticated mortality modis reliably
and robustly. These will need to capture most of the identi able suicture
in mortality rates within the data - which calls for more terms - but to d
so with the smallest number of free parameters - which calls for parsny.
Where cohort e ects are believed to be real and important, they M/ need to
be captured by the model. However, they must also be clearly distinghed
from age/period e ects in order that they can be projected coactly. This,
in practice, means that all the signi cant age/period e ects must ke identi-
ed before any attempt is made to estimate the cohort e ect. Fin#ly, terms
within the model should be capable of being associated with underlyitgp-
logical or social processes. This requires judgement to be usedjtide their
projection and aid their communication with other, non-technical, kehold-
ers who are subject to longevity risk and wish to understand the inipations.

In this paper, we have introduced a new, general procedure famnstruct-
ing mortality models. The general procedure is driven by forensicalgxam-
ining the data to provide evidence for the selection of each and eyderm
in the nal model produced. We believe this improves the goodnes$ o
of the model parsimoniously and with demographic signi cance. We a
applied the general procedure to a specic dataset, associatedck term
generated with an underlying demographic and/or socio-economactor for
the population being modelled, analysed the residuals to con rm thahere
is no identi able structure remaining in the data which is not capturedby
the model, and compared the results with those from other methedf con-
structing mortality models.

The general procedure requires the modeller to engage intelligentlyth
the data and make various subjective decisions in its implementatiorit is
not a \black box" algorithm which can be deployed mechanically on varigs
datasets, but rather requires a substantial investment of timeat understand
the underlying forces driving mortality within the population of interest and
how these forces can be represented mathematically. But farfinchis being
a disadvantage, we would argue that our approach accords petfg with
good model building practice, which seeks to move beyond a purely @iigh-
mic approach in order to understand better the underlying struatre of the
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data.

In conclusion, we believe that the general procedure is capable obguc-
ing models which are in accordance with the desirability criteria of adagcy
of t to the data, demographic signi cance, parsimony, robustnes and com-
pleteness (by including su cient terms to cover all ages and cohasj.

However, we are aware that in order to be practically useful, a gootl
to historical data needs to be accompanied by the ability to use the adel
to make reliable forecasts of future mortality rates. Projecting wdels with
multiple age/period and cohort terms consistently is a di cult problem as
the historical time series are often highly correlated and display owature,
outliers or subtle trend changes which need to be accommodated (aave
been described in Li and Chan (2005); Li et al. (2011) and Coelhodaiunes
(2011)). We therefore intend to address this issue in Hunt and Blak20153)
and/Hunt and Blake (2015d).

A Appendix: Algorithms and toolkit of func-
tion

In order to implement the general procedure, we need the ability iatroduce

new terms to existing models and to t these to data. At each stageall pa-

rameters within the model are freely estimated (although the valgefound at
previous stages are used as convenient starting points for latéages of the
maximisation algorithm). The exception to this is when new non-paraatric

terms are added to the model and the previously tted age functits are not
re-estimated as this often leads to model instability. As these tewsrare added
purely for exploratory purposes and all parameters will be re-astated once
they are replaced with suitable parametric forms, we do not believais will

have a signi cant impact on the nal model.

As we have central exposures to risk from the Human Mortality Datbase
(Human Mortality Database (2014)), we adopt a Poisson likelihood nxami-
sation approach which enables us to do this quickly and e ciently. This
procedure is based on that implemented in Brouhns et lal. (2002) amnlde-
scribed in Algorithm[1 at high level below.
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Algorithm 1 Algorithm for Poisson likelihood maximisation

1. Set initial starting values and calculate initial log-likelihood
2: while Increase in log-likelihood less than threshold value (e.g. £ do
3:  Maximise log-likelihood with respect to  holding all other parameters

constant
4. for Each age/period termi do
5: Maximise log-likelihood with respect to §i) holding all other param-
eters constant
6: Maximise log-likelihood with respect to free-parameters®”) in age

function f O (x; @) or with respect to , holding all other parame-
ters constant
7. end for
8: Maximise log-likelihood with respect to ; x holding all other param-
eters constant if model contains a cohort term
9: Impose identi ability constraints through use of invariant transfama-
tions
10:  Calculate updated log-likelihood
11: end while
12: Calculate residuals and BIC

The tting algorithm used by the general procedure diers from tre
Brouhns et al. (2002) method in that the log-likelihood is maximised with
respect to each set of parameters sequentially rather than simaitteously. It
could be argued that this may lead the algorithm to nd local rather han
global maxima for the parameter values. In practice, we have natdnd this
to be an issue and believe it can be largely resolved through nding thell
set of identi cation issues for the parameters within the model (adiscussed
in Hunt and Blake (2015hb,c)). The maximisation of each set of paraness
Ge. = « « U o ®O)is done as per Algorithni2 below.

This is nothing more than the repeated application of the Newton-R#son
procedure. The parameter 2 (0;1] is a simple scaling which can be low-
ered to improve the stability of parameter estimates (albeit at the ast of
increasing the run time of the algorithm). In most cases, the paragter sets
are treated as vectors meaning tha% is the Hessian matrix. However, this

matrix usually has a diagonal structure (e.g.@%@y = 0 for x 6 y) which
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Algorithm 2 Algorithm for maximisation of individual parameters

1. Start with values for maximisation passed from parent algorithm

2: while Increase in log-likelihood less than threshold value (e.g. ) do

3: Calculate rst derivative of log-likelihood with respect to parametes
@L

@
4.  Calculate second derivative of log-likelihood with respect to paranmats

a@L
@2

5. Update estimate of parameters' =

RESE

6: Impose simple identi ability constraints, e.g. on the level of M using
invariant transformations
7. Update tted surface 4 and log-likelihood
8: end while
9: Return updated parameter estimates, tted mortality rates andlog-
likelihood to parent algorithm

simpli es the implementation signi cantly.

Models produced by the GP will not be fully identi ed and so will require
additional identi ability constraints to be robustly estimated. A discussion
of the origin and nature of this lack of identi ability and the selection d ap-
propriate identi ability constraints was given in Hunt and Blake (201%) and
Hunt and Blake (2015c). In summary, we impose the following identilaility
constraints upon the nal model from Stage 8.

D=0 g (7)
FOx; Mj=1 8i (8)

X X
ny y=0 9)

X y
ny y(y y)=0 (10)

X y

ny y(y ¥)* )=0 (11)

y

Not all of these constraints will be applicable at all stages (e.g., theow-
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straints in Equations[9,[I0 and_I11 will not apply to models without a cadrt
term) whilst for models with a non-parametric age function, we redre the
additional constraints below.

X
j =1 (12)

SO(x; Dy=0 8 (13)
(14)

We refer to Equations[8 and_I2as the normalisation of the age furam. In
contrast to some authors (e.g. Haberman and Renshaw (2009) do not re-
quire that age functions are non-negative. In order to normaliseya functions

ith free parameters (), we must modify the form of the age function so that

JFO(x; M)j is not a function of . This means that the normalisation
scheme in EquatioriB holds as®” is varied when tting the model. This is
usually achieved by multiplying it by a \self-normalisation” function N ( ().
This was discussed in greater depth in_ Hunt and Blake (2015b). Ediien
13 is only applied in exploratory models with a non-parametric term in adler
to maximise the distinctness of the age/period terms.

The functions in the toolkit we have developed so far are given in Talie
along with the free parameters they require and the self-normalisan func-
tions N( ), In this, the age range is assumed to run from age 1 to ae
with x = & % xand » =& ), (x x)2 Some of these normalisations
are only approximate or are true up to a constant, so it is still necsary to
rescale the age functions after applying Algorithml?2 to optimise thealue of
the free parameters. Similar de nitions fory and , are used in Equations

9,10 and11.
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Function

Normalisation
Name F(x)/ N( ) Free Parameters
Constant 1 = none
Linear X X TN none
Quadratic (x x)2 EX (X +2)2 none
\Put option” (Xe X)* oD X. - pivot
\Call option" (X Xo)* XX =D X. - pivot
Exponential exp( Xx) 1 exp( ) - width
Gumbel exp(exp( X)) - width
Spike X (X a)l(xc a x<x+ 1 Xc - peak
((xc+a) X)N(Xe X<Xc+a) a a - width
(x )2 1 R - location
Normal exp > - width
) 1 (n(x) %)? 1 R - location
Log-Normal SeXp e - width
. R - location
2 2 ‘B 2
Rayleigh (x k)ﬂexp( (X %R)9) 05 _ width
. I — % - location
(x_%)2 2
Ellipse 1 — = a - width

Table 4: Age functions in toolkit
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