

Permanent City Research Online URL: http://openaccess.city.ac.uk/733/

Copyright & reuse
City University London has developed City Research Online so that its users may access the research outputs of City University London's staff. Copyright © and Moral Rights for this paper are retained by the individual author(s) and/ or other copyright holders. All material in City Research Online is checked for eligibility for copyright before being made available in the live archive. URLs from City Research Online may be freely distributed and linked to from other web pages.

Versions of research
The version in City Research Online may differ from the final published version. Users are advised to check the Permanent City Research Online URL above for the status of the paper.

Enquiries
If you have any enquiries about any aspect of City Research Online, or if you wish to make contact with the author(s) of this paper, please email the team at publications@city.ac.uk.
The Euclidean Division as an Iterative
ERES-based Process

Dimitrios Christou1, Nicos Karcanias1 and Marilena Mitrouli2

1 Control Engineering Research Centre, School of Engineering and Mathematical
Sciences, City University, Northampton Square, EC1V 0HB, London, U.K.
2 Department of Mathematics, University of Athens, Panepistemiopolis 15784,
Athens, Greece.
dchrist@math.uoa.gr, N.Karcanias@city.ac.uk, mmitroul@math.uoa.gr

Abstract. Considering the Euclidean Division of two real polynomials,
we present an iterative process based on the ERES method to compute
the remainder of the division and we represent it using a simple matrix
form.

Introduction

The representation of the Euclidean algorithm process is presented using the
matrix-based methodology of Extended-Row-Equivalence and Shifting opera-
tions (ERES) \cite{3, 4}. This allows the use of numerical methodologies for algebraic
computation problems with the additional advantage of being able to handle
uncertain coefficients and numerical errors.

We consider two real polynomials:

\[P(x) = \sum_{i=0}^{m} p_i x^i, \; p_m \neq 0 \quad \text{and} \quad Q(x) = \sum_{i=0}^{n} q_i x^i, \; q_n \neq 0, \quad m, n \in \mathbb{N} \quad (0.1) \]

with degrees \(\deg\{P(x)\} = m, \deg\{Q(x)\} = n \) respectively, and \(m \geq n \).

Definition 1. We define the set

\[\mathcal{D}_{m,n} = \{(P(x), Q(x)) : P(x), Q(x) \in \mathbb{R}[x], \; m = \deg\{P(x)\} \geq \deg\{Q(x)\} = n\} \]

For any pair \(\mathcal{D} = (P(x), Q(x)) \in \mathcal{D}_{m,n}, \) we define a vector representative \(\mathcal{D}(x) \)
and a basis matrix \(D_m \) represented as :

\[\mathcal{D}(x) = [P(x), Q(x)]^t = [p, q]^t \cdot \mathcal{L}_m(x) = D_m \cdot \mathcal{L}_m(x) \]

where \(D_m \in \mathbb{R}^{2 \times (m+1)}, \mathcal{L}_m(x) = [x^m, x^{m-1}, \ldots, x, 1]^t. \) The matrix \(D_m \) is formed
directly from the coefficients of the given polynomials \(P(x) \) and \(Q(x) \).

Definition 2. Given a pair \(\mathcal{D}_{m,n} \) of real polynomials with a basis matrix \(D_m \),
the following operations are defined \cite{3, 4}:
a) Elementary row operations with scalars from \(\mathbb{R} \) on \(D_m \).
b) Addition or elimination of zero rows on \(D_m \).
c) If \(a^t = [0, \ldots, 0, a_t, \ldots, a_k] \in \mathbb{R}^k, a_t \neq 0 \) then we define as the Shifting operation

\[
\text{shf} : \text{shf}(a^t) = [a_t, \ldots, a_k, 0, \ldots, 0] \in \mathbb{R}^k
\]

By \(\text{shf}(D_{m,n}) \equiv D^*_{m,n} \), we shall denote the pair obtained from \(D_{m,n} \) by applying shifting on the rows of \(D_m \). Type (a), (b) and (c) operations are referred to as Extended-Row-Equivalence and Shifting (ERES) operations.

The following theorem shows the relation between a matrix and its shifted form [1].

Theorem 1 (Matrix representation of Shifting). If \(D \in \mathbb{R}^{2 \times k}, k > 2 \), is an upper trapezoidal matrix with rank \(\rho(D) = 2 \) and \(D^* \in \mathbb{R}^{2 \times k} \) is the matrix obtained from \(D \) by applying shifting on its rows, then there exists a matrix \(S \in \mathbb{R}^{k \times k} \) such that:

\[
D^* = D \cdot S
\]

Corollary 1. If \(D_m \in \mathbb{R}^{2 \times (m+1)} \) is the basis matrix of a pair of real polynomials \(D = (P(x), Q(x)) \in D_{m,n} \), then \(D^*_m \in \mathbb{R}^{2 \times (m+1)} \) is the basis matrix of the pair \(D^* = (P(x), x^{m-n} Q(x)) \in D_{m,m} \) and there exists a matrix \(S_D \in \mathbb{R}^{(m+1) \times (m+1)} \) such that:

\[
D^*_m = D_m \cdot S_D
\]

The ERES representation of the Euclidean Division

If we have a pair of polynomials \(D = (P(x), Q(x)) \in D_{m,n} \), then, according to Euclid’s division algorithm, it holds:

\[
P(x) = \frac{P_m}{q_n} x^{m-n} Q(x) + R_1(x)
\]

This is the first and basic step of the Euclidean Division algorithm. The polynomial \(R_1(x) \in \mathbb{R}[x] \) is given by:

\[
R_1(x) = \sum_{i=m-n}^{m-1} \left(p_i - \frac{P_m}{q_n} q_{i-(m-n)} \right) x^i + \sum_{i=0}^{m-n-1} p_i x^i
\]

In the following, we will show that the remainder \(R_1(x) \) can be computed by applying ERES operations to the basis matrix \(D_m \) of the pair \(D \).

Proposition 1 (Matrix representation of the first remainder of the Euclidean Division). Applying the algorithm of the Euclidean Division to a pair \(D = (P(x), Q(x)) \in D_{m,n} \) of real polynomials, there exists a polynomial \(R_1(x) \in \mathbb{R}[x] \) with degree \(0 \leq \deg(R_1(x)) < m \) such that:

\[
P(x) = \frac{P_m}{q_n} x^{m-n} Q(x) + R_1(x)
\]
Then, the remainder \(R_1(x) \) can be represented in matrix form as:

\[
R_1(x) = \mathbf{v}^t \cdot E_1 \cdot \mathbf{E}_m(x)
\]

where \(E_1 \in \mathbb{R}^{2 \times (m+1)} \) is the matrix, which occurs from the application of the ERES operations on the basis matrix \(D_m \) of the pair \(\mathcal{D} \) and \(\mathbf{v} = [0, 1]^t \).

Proof. If we consider the division \(P(x)/Q(x) \), then, according to Euclid’s algorithm, there is a polynomial \(R_1(x) \) with degree \(0 \leq \text{deg}\{R_1(x)\} < m \) such that:

\[
R_1(x) = P(x) - \frac{p_m}{q_n} x^{m-n} Q(x) = [0, 1] \begin{bmatrix} 0 & 1 - \frac{p_m}{q_n} \end{bmatrix} \begin{bmatrix} P(x) \\ x^{m-n} Q(x) \end{bmatrix} \quad (0.5)
\]

If we take into account the result in corollary 1, we will have:

\[
R_1(x) = [0, 1] \begin{bmatrix} 0 & 1 - \frac{p_m}{q_n} \end{bmatrix} \cdot D_m \cdot S_D \cdot \mathbf{E}_m(x) = \mathbf{v}^t \cdot C \cdot D_m \cdot S_D \cdot \mathbf{E}_m(x) \quad (0.6)
\]

where \(\mathbf{v}^t = [0, 1], C = \begin{bmatrix} 0 & 1 - \frac{p_m}{q_n} \end{bmatrix}, D_m \) is the basis matrix of the polynomials \(P(x) \) and \(Q(x) \) and \(S_D \) the respective shifting matrix. Therefore, there exists a matrix \(E_1 \in \mathbb{R}^{2 \times (m+1)} \) such that:

\[
E_1 = C \cdot D_m \cdot S_D \quad \text{and} \quad R_1(x) = \mathbf{v}^t \cdot E_1 \cdot \mathbf{E}_m(x) \quad (0.7)
\]

We consider now the basis matrix \(D_m \) of the polynomials \(P(x) \) and \(Q(x) \):

\[
D_m = \begin{bmatrix} P(x) \\ Q(x) \end{bmatrix} = \begin{bmatrix} p_m & \ldots & p_{n+1} & p_n & p_{n-1} & \ldots & p_0 \\ 0 & \ldots & 0 & q_n & q_{n-1} & \ldots & q_0 \end{bmatrix} \cdot \mathbf{E}_m(x) \quad (0.8)
\]

and we will show that the above matrix \(E_1 \) is produced by applying the ERES operations to the basis matrix \(D_m \) of the polynomials \(P(x) \) and \(Q(x) \). We follow the next methodology:

1. We apply shifting on the rows of \(D_m \). Let \(S_D \in \mathbb{R}^{(m+1) \times (m+1)} \), be the proper shifting matrix: \(D_m^{(1)} = D_m \cdot S_D = \begin{bmatrix} p_m & \ldots & p_{m-n+1} & p_{m-n} & p_{m-n-1} & \ldots & p_0 \\ q_n & \ldots & q_1 & q_0 & 0 & \ldots & 0 \end{bmatrix} \).

2. We reorder the rows of the matrix \(D_m^{(1)} \). If \(J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) is the permutation matrix, then: \(D_m^{(2)} = J \cdot D_m^{(1)} = \begin{bmatrix} q_n & \ldots & q_1 & q_0 & 0 & \ldots & 0 \\ p_m & \ldots & p_{m-n+1} & p_{m-n} & p_{m-n-1} & \ldots & p_0 \end{bmatrix} \).

3. We apply stable row operations on \(D_m^{(2)} \) (LU factorization). If \(L = \begin{bmatrix} 1 & 0 \\ \frac{p_m}{q_n} & 1 \end{bmatrix} \) then \(L^{-1} = \begin{bmatrix} 1 & 0 \\ -\frac{p_m}{q_n} & 1 \end{bmatrix} \) and therefore:
The Euclidean Division as an Iterative ERES-based Process 71

\[D^{(3)}_m = L^{-1} \cdot D^{(2)}_m = \begin{bmatrix} 1 & 0 \\ -\frac{p_m}{q_n} & 1 \end{bmatrix} \cdot \begin{bmatrix} q_n & \cdots & q_1 & q_0 & 0 & \cdots & 0 \\ p_m & \cdots & p_{m-n+1} & p_{m-n} & p_{m-n-1} & \cdots & p_0 \end{bmatrix} \]

\[= \begin{bmatrix} q_n & \cdots & q_1 & 0 & \cdots & 0 \\ 0 & \cdots & p_{m-n+1} & q_1 & p_{m-n} - q_0 \frac{p_m}{q_n} & p_{m-n-1} & \cdots & p_0 \end{bmatrix} \]

We notice that the term \(\frac{p_m}{q_n} \) emerges from the LU factorization.

The above process can be described by the following equation:

\[D^{(3)}_m = L^{-1} \cdot J \cdot D_m \cdot S_D \] (0.9)

which represents the ERES methodology. Obviously \(L^{-1} \cdot J = C \) and therefore,

we conclude that \(D^{(3)}_m \equiv E_1 \). \(\square \)

The following theorem establishes the connection between the ERES method and the Euclidean Division of two real polynomials.

Theorem 2 (Matrix representation of the remainder of the Euclidean Division). Applying the algorithm of the Euclidean Division to a pair \(D = (P(x), Q(x)) \in D_{m,n} \) of real polynomials, there are polynomials \(G(x), R(x) \in \mathbb{R}[x] \) with degrees \(\deg{G(x)} = m - n \) and \(0 \leq \deg{R(x)} < n \) respectively, such that:

\[P(x) = G(x)Q(x) + R(x) \]

Then, the final remainder \(R(x) \) can be represented in matrix form as:

\[R(x) = v^t \cdot E_N \cdot \xi_m (x) \]

where \(E_N \in \mathbb{R}^{2 \times (m+1)} \) is the matrix, which occurs from the successive application of the ERES operations on the basis matrix \(D_m \) of the pair \(D \) and \(v = [0, 1]^t \).

The proof of the previous theorem is based on the iterative application of the result from proposition 1 to the sequence \(\{(P(x), Q(x)), (R_i(x), Q(x))\} \), for \(1 \leq i \leq (m - n) \). Therefore, we get a sequence of matrices \(E_i = L_i^{-1} \cdot E_{i-1} \cdot S_i \) for \(i = 1, 2, \ldots, N < m - n \), where the final matrix \(E_N \) gives the total remainder \(R(x) \) and every matrix \(L_i \) gives a specific coefficient of the quotient \(G(x) \).

References