The Euclidean Division as an Iterative ERES-based Process

Dimitrios Christou¹, Nicos Karcanias¹ and Marilena Mitrouli²

¹ Control Engineering Research Centre, School of Engineering and Mathematical Sciences, City University, Northampton Square, EC1V 0HB, London, U.K.
² Department of Mathematics, University of Athens, Panepistemiopolis 15784, Athens, Greece.
dchrist@math.uoa.gr, N.Karcanias@city.ac.uk, mmitroul@math.uoa.gr

Abstract. Considering the Euclidean Division of two real polynomials, we present an iterative process based on the ERES method to compute the remainder of the division and we represent it using a simple matrix form.

Introduction

The representation of the Euclidean algorithm process is presented using the matrix-based methodology of Extended-Row-Equivalence and Shifting operations (ERES) [3, 4]. This allows the use of numerical methodologies for algebraic computation problems with the additional advantage of being able to handle uncertain coefficients and numerical errors.

We consider two real polynomials:

\[P(x) = \sum_{i=0}^{m} p_i x^i, \quad p_m \neq 0 \quad \text{and} \quad Q(x) = \sum_{i=0}^{n} q_i x^i, \quad q_n \neq 0, \quad m, n \in \mathbb{N} \]

(0.1)

with degrees \(\deg\{P(x)\} = m \), \(\deg\{Q(x)\} = n \) respectively, and \(m \geq n \).

Definition 1. We define the set

\[D_{m,n} = \left\{ (P(x), Q(x)) : P(x), Q(x) \in \mathbb{R}[x], \ m = \deg\{P(x)\} \geq \deg\{Q(x)\} = n \right\} \]

For any pair \(D = (P(x), Q(x)) \in D_{m,n} \), we define a vector representative \(D(x) \) and a basis matrix \(D_m \) represented as :

\[D(x) = [P(x), Q(x)]^t = [p, q]^t \cdot E_m(x) = D_m \cdot E_m(x) \]

where \(D_m \in \mathbb{R}^{2 \times (m+1)}, E_m(x) = [x^m, x^{m-1}, \ldots, x, 1]^t \). The matrix \(D_m \) is formed directly from the coefficients of the given polynomials \(P(x) \) and \(Q(x) \).

Definition 2. Given a pair \(D_{m,n} \) of real polynomials with a basis matrix \(D_m \), the following operations are defined [3, 4]:

\[D(x) = [P(x), Q(x)]^t = [p, q]^t \cdot E_m(x) = D_m \cdot E_m(x) \]

\[D_m(x) = [P(x), Q(x)]^t = [p, q]^t \cdot E_m(x) = D_m \cdot E_m(x) \]

\[D_m(x) = [P(x), Q(x)]^t = [p, q]^t \cdot E_m(x) = D_m \cdot E_m(x) \]
a) Elementary row operations with scalars from \(\mathbb{R} \) on \(D_m \).

b) Addition or elimination of zero rows on \(D_m \).

c) If \(a^t = [0, \ldots, 0, a_t, \ldots, a_k] \in \mathbb{R}^k, a_t \neq 0 \) then we define as the Shifting operation

\[
\text{shf} : \text{shf}(a^t) = [a_t, \ldots, a_k, 0, \ldots, 0] \in \mathbb{R}^k
\]

By \(\text{shf}(D_{m,n}) \equiv D^*_{m,n} \), we shall denote the pair obtained from \(D_{m,n} \) by applying shifting on the rows of \(D_m \). Type (a), (b) and (c) operations are referred to as Extended-Row-Equivalence and Shifting (ERES) operations.

The following theorem shows the relation between a matrix and its shifted form [1].

Theorem 1 (Matrix representation of Shifting). If \(D \in \mathbb{R}^{2 \times k}, k > 2 \), is an upper trapezoidal matrix with rank \(\rho(D) = 2 \) and \(D^* \in \mathbb{R}^{2 \times k} \) is the matrix obtained from \(D \) by applying shifting on its rows, then there exists a matrix \(S \in \mathbb{R}^{k \times k} \) such that:

\[
D^* = D \cdot S
\]

Corollary 1. If \(D_m \in \mathbb{R}^{2 \times (m+1)} \) is the basis matrix of a pair of real polynomials \(D = (P(x), Q(x)) \in D_{m,n} \), then \(D^*_m \in \mathbb{R}^{2 \times (m+1)} \) is the basis matrix of the pair \(D^* = (P(x), x^{m-n} Q(x)) \in D_{m,m} \) and there exists a matrix \(S_D \in \mathbb{R}^{(m+1) \times (m+1)} \) such that:

\[
D^*_m = D_m \cdot S_D
\]

(0.2)

The ERES representation of the Euclidean Division

If we have a pair of polynomials \(D = (P(x), Q(x)) \in D_{m,n} \), then, according to Euclid’s division algorithm, it holds:

\[
P(x) = \frac{P_m}{q_n} x^{m-n} Q(x) + R_1(x)
\]

(0.3)

This is the first and basic step of the Euclidean Division algorithm. The polynomial \(R_1(x) \in \mathbb{R}[x] \) is given by:

\[
R_1(x) = \sum_{i=m-n}^{m-1} \left(p_i - \frac{p_m}{q_n} q_{i-(m-n)} \right) x^i + \sum_{i=0}^{m-n-1} p_i x^i
\]

(0.4)

In the following, we will show that the remainder \(R_1(x) \) can be computed by applying ERES operations to the basis matrix \(D_m \) of the pair \(D \).

Proposition 1 (Matrix representation of the first remainder of the Euclidean Division). Applying the algorithm of the Euclidean Division to a pair \(D = (P(x), Q(x)) \in D_{m,n} \) of real polynomials, there exists a polynomial \(R_1(x) \in \mathbb{R}[x] \) with degree \(0 \leq \deg(R_1(x)) < m \) such that:

\[
P(x) = \frac{P_m}{q_n} x^{m-n} Q(x) + R_1(x)
\]
Then, the remainder \(R_1(x) \) can be represented in matrix form as:

\[
R_1(x) = \mathbf{v}^t \cdot E_1 \cdot \mathbf{E}_m(x)
\]

where \(E_1 \in \mathbb{R}^{2 \times (n+1)} \) is the matrix, which occurs from the application of the ERES operations on the basis matrix \(D_m \) of the pair \(\mathcal{D} \) and \(\mathbf{v} = [0, 1]^t \).

Proof. If we consider the division \(P(x)/Q(x) \), then, according to Euclid’s algorithm, there is a polynomial \(R_1(x) \) with degree \(0 \leq \text{deg}\{R_1(x)\} < m \) such that:

\[
R_1(x) = P(x) - \frac{p_m}{q_n} x^{m-n} Q(x) = [0, 1] \cdot \begin{bmatrix}
0 & 1 - \frac{p_m}{q_n}
\end{bmatrix} \cdot \begin{bmatrix}
x^{m-n} Q(x)
\end{bmatrix} \tag{0.5}
\]

If we take into account the result in corollary 1, we will have:

\[
R_1(x) = [0, 1] \cdot \begin{bmatrix}
0 & 1 - \frac{p_m}{q_n}
\end{bmatrix} \cdot D_m \cdot S_D \cdot \mathbf{E}_m(x) = \mathbf{v}^t \cdot C \cdot D_m \cdot S_D \cdot \mathbf{E}_m(x) \tag{0.6}
\]

where \(\mathbf{v}^t = [0, 1] \), \(C = \begin{bmatrix}
0 & 1 - \frac{p_m}{q_n}
\end{bmatrix} \), \(D_m \) is the basis matrix of the polynomials \(P(x) \) and \(Q(x) \) and \(S_D \) the respective shifting matrix. Therefore, there exists a matrix \(E_1 \in \mathbb{R}^{2 \times (n+1)} \) such that:

\[
E_1 = C \cdot D_m \cdot S_D \quad \text{and} \quad R_1(x) = \mathbf{v}^t \cdot E_1 \cdot \mathbf{E}_m(x) \tag{0.7}
\]

We consider now the basis matrix \(D_m \) of the polynomials \(P(x) \) and \(Q(x) \):

\[
D_m = \begin{bmatrix}
P(x) \\
Q(x)
\end{bmatrix} = \begin{bmatrix}
p_m & \ldots & p_{n+1} & p_n & p_{n-1} & \ldots & p_0 \\
0 & \ldots & 0 & q_n & q_{n-1} & \ldots & q_0
\end{bmatrix} \cdot \mathbf{E}_m(x) \tag{0.8}
\]

and we will show that the above matrix \(E_1 \) is produced by applying the ERES operations to the basis matrix \(D_m \) of the polynomials \(P(x) \) and \(Q(x) \). We follow the next methodology:

1. We apply stable row operations on \(D_m^{(1)} \). Let \(S_D \in \mathbb{R}^{(m+1) \times (m+1)} \), be the proper shifting matrix: \(D_m^{(1)} = D_m \cdot S_D = \begin{bmatrix}
p_m & \ldots & p_{m-n+1} & p_{m-n} & p_{m-n-1} & \ldots & p_0 \\
q_n & \ldots & q_1 & q_0 & 0 & \ldots & 0
\end{bmatrix} \)

2. We reorder the rows of the matrix \(D_m^{(1)} \). If \(J = \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} \) is the permutation matrix, then: \(D_m^{(2)} = J \cdot D_m^{(1)} = \begin{bmatrix}
q_n & \ldots & q_1 & q_0 & 0 & \ldots & 0 \\
p_m & \ldots & p_{m-n+1} & p_{m-n} & p_{m-n-1} & \ldots & p_0
\end{bmatrix} \)

3. We apply stable row operations on \(D_m^{(2)} \) (LU factorization). If \(L = \begin{bmatrix}
1 & 0 \\
\frac{p_m}{q_n} & 1
\end{bmatrix} \) then \(L^{-1} = \begin{bmatrix}
1 & 0 \\
-\frac{p_m}{q_n} & 1
\end{bmatrix} \) and therefore:
We notice that the term \(\frac{p_m}{q_n} \) emerges from the LU factorization.

The above process can be described by the following equation:

\[
D_m^{(3)} = L^{-1} \cdot J \cdot D_m \cdot S_D
\]

which represents the ERES methodology. Obviously \(L^{-1} \cdot J = C \) and therefore, we conclude that \(D_m^{(3)} \equiv E_1 \). \(\square \)

The following theorem establishes the connection between the ERES method and the Euclidean Division of two real polynomials.

Theorem 2 (Matrix representation of the remainder of the Euclidean Division). Applying the algorithm of the Euclidean Division to a pair \(D = (P(x), Q(x)) \in D_{m,n} \) of real polynomials, there are polynomials \(G(x), R(x) \in \mathbb{R}[x] \) with degrees \(\deg G(x) = m - n \) and \(0 \leq \deg R(x) < n \) respectively, such that:

\[
P(x) = G(x) \cdot Q(x) + R(x)
\]

Then, the final remainder \(R(x) \) can be represented in matrix form as:

\[
R(x) = v^t \cdot E_N \cdot \mathcal{E}_m(x)
\]

where \(E_N \in \mathbb{R}^{2 \times (m+1)} \) is the matrix, which occurs from the successive application of the ERES operations on the basis matrix \(D_m \) of the pair \(D \) and \(v = [0, 1]^t \).

The proof of the previous theorem is based on the iterative application of the result from proposition 1 to the sequence \(\{(P(x), Q(x)), (R_i(x), Q(x))\} \), for \(1 \leq i \leq (m - n) \). Therefore, we get a sequence of matrices \(E_i = L_i^{-1} \cdot E_{i-1} \cdot S_i \), for \(i = 1, 2, \ldots, N < m - n \), where the final matrix \(E_N \) gives the total remainder \(R(x) \) and every matrix \(L_i \) gives a specific coefficient of the quotient \(G(x) \).

References