City Research Online

City, University of London Institutional Repository

Citation: Bagchi, B. \& Fring, A. (2009). Comment on "Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty". Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 5(089), 089. doi: 10.3842/sigma.2009.089

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/748/

Link to published version: https://doi.org/10.3842/sigma.2009.089

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Comment on "Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty"

Bijan BAGCHI ${ }^{\dagger}$ and Andreas FRING \ddagger
\dagger Department of Applied Mathematics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, India
E-mail: BBagchi123@rediffmail.com
\ddagger Centre for Mathematical Science, City University London, Northampton Square, London EC1V 0HB, UK
E-mail: A.Fring@city.ac.uk

Received August 18, 2009; Published online September 17, 2009 doi:10.3842/SIGMA.2009.089

Abstract

We demonstrate that the recent paper by Jana and Roy entitled "Non-Hermitian quantum mechanics with minimal length uncertainty" SIGMA 5 (2009), 083, 7 pages, arXiv:0908.1755 contains various misconceptions. We compare with an analysis on the same topic carried out previously in our manuscript arXiv:0907.5354. In particular, we show that the metric operators computed for the deformed non-Hermitian Swanson models differs in both cases and is inconsistent in the former.

Key words: non-Hermitian Hamiltonians; deformed canonical commutation relations; minimal length

2000 Mathematics Subject Classification: 81Q10; 46C15; 81Q12
It is known for some time that the deformations of the standard canonical commutation relations between the position operator P and the momentum operator X will inevitably lead to a minimal length, that is a bound beyond which the localization of space-time events are no longer possible. In a recent manuscript [1] we investigated various limits of the q-deformationed relations

$$
[X, P]=i \hbar q^{f(N)}(\alpha \delta+\beta \gamma)+\frac{i \hbar\left(q^{2}-1\right)}{\alpha \delta+\beta \gamma}\left(\delta \gamma X^{2}+\alpha \beta P^{2}+i \alpha \delta X P-i \beta \gamma P X\right)
$$

in conjunction with the constraint $4 \alpha \gamma=\left(q^{2}+1\right)$, with $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ and f being an arbitrary function of the number operator N. One may consider various types of Hamiltonian systems, either Hermitian or non-Hermitian, and replace the original standard canonical variables $\left(x_{0}, p_{0}\right)$, obeying $\left[x_{0}, p_{0}\right]=i \hbar$, by (X, P). It is crucial to note that even when the undeformed Hamiltonian is Hermitian $H\left(x_{0}, p_{0}\right)=H^{\dagger}\left(x_{0}, p_{0}\right)$ the deformed Hamiltonian is inevitably non-Hermitian $H(X, P) \neq H^{\dagger}(X, P)$ as a consequence of the fact that X and/or P are no longer Hermitian. Of course one may also deform Hamiltonians, which are already non-Hermitian when undeformed $H\left(x_{0}, p_{0}\right) \neq H^{\dagger}\left(x_{0}, p_{0}\right)$. In both cases a proper quantum mechanical description requires the re-definition of the metric to compensate for the introduction of non-Hermitian variables and in the latter an additional change due to the fact that the Hamiltonian was non-Hermitian in the first place.

In a certain limit, as specified in [1], X and P allow for a well-known representation of the form $X=\left(1+\tau p_{0}^{2}\right) x_{0}$ and $P=p_{0}$, which in momentum space, i.e. $x_{0}=i \hbar \partial_{p_{0}}$, corresponds to the one used by Jana and Roy [2], up to an irrelevant additional term $i \hbar \tilde{\gamma} P$. (Whenever constants with the same name but different meanings occur in [2] and [1] we dress the former with a tilde.)

[^0]The additional term can simply be gauged away and has no physical significance. Jana and Roy have studied the non-Hermitian displaced harmonic oscillator and the Swanson model. As we have previously also investigated the latter in [1], we shall comment on the differences. The conventions in [2] are

$$
H_{\mathrm{JR}}\left(a, a^{\dagger}\right)=\omega a^{\dagger} a+\lambda a^{2}+\tilde{\delta}\left(a^{\dagger}\right)^{2}+\frac{\omega}{2}
$$

with $\lambda \neq \tilde{\delta} \in \mathbb{R}$ and $a=(P-i \omega X) / \sqrt{2 m \hbar \omega}, a^{\dagger}=(P+i \omega X) / \sqrt{2 m \hbar \omega}$, whereas in [1] we used

$$
H_{\mathrm{BF}}(X, P)=\frac{P^{2}}{2 m}+\frac{m \omega^{2}}{2} X^{2}+i \mu\{X, P\}
$$

with $\mu \in \mathbb{R}$ as a starting point. Setting $\hbar=m=1$ it is easy to see that the models coincide when $\lambda=-\tilde{\delta}$ and $\mu=\tilde{\delta}-\lambda$. The Hamiltonians exhibit a "twofold" non-Hermiticity, one resulting from the fact that when $\lambda \neq \tilde{\delta}$ even the undeformed Hamiltonian is non-Hermitian and the other resulting from the replacement of the Hermitian variables $\left(x_{0}, p_{0}\right)$ by (X, P). The factor of the metric operator to compensate for the non-Hermiticity of X coincides in both cases, but the factor which is required due to the non-Hermitian nature of the undeformed case differs in both cases

$$
\rho_{\mathrm{BF}}=e^{2 \mu P^{2}} \quad \text { and } \quad \rho_{\mathrm{JR}}=\left(1+\tau P^{2}\right)^{\frac{\mu}{\omega^{2} \tau}}
$$

We have made the above identifications such that $H_{\mathrm{JR}}\left(a, a^{\dagger}\right)=H_{\mathrm{BF}}(X, P)$ and replaced the deformation parameter β used in [2] by τ employed in [1]. It is well known that when given only a non-Hermitian Hamiltonian, the metric operator can not be uniquely determined. However, as argued in [1] with the specification of the observable X, which coincides in [2] and [1], the outcome is unique and we can therefore directly compare ρ_{BF} and ρ_{JR}. The limit $\tau \rightarrow 0$ reduces the deformed Hamiltonian $H_{\mathrm{JR}}=H_{\mathrm{BF}}$ to the standard Swanson Hamiltonian, such that ρ_{JR} and ρ_{BF} should acquire the form of a previously constructed metric operator. This is indeed the case for ρ_{BF}, but not for ρ_{JR}. In fact it is unclear how to carry out this limit for ρ_{JR} and we therefore conclude that the metric ρ_{JR} is incorrect.

References

[1] Bagchi B., Fring A., Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems, arXiv:0907.5354
[2] Jana T.K., Roy P., Non-Hermitian quantum mechanics with minimal length uncertainty, SIGMA 5 (2009), 083, 7 pages, arXiv:0908.1755

[^0]: *This paper is a contribution to the Proceedings of the 5 -th Microconference "Analytic and Algebraic Methods V". The full collection is available at http://www.emis.de/journals/SIGMA/Prague2009.html

