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Predicted flow patterns for variation of the fluid properties (a)
p=1.1172x i0 kg/rn 3 (b) p=1.2348x l0 kg/rn3

Predicted flow patterns for variation of the fluid properties (a)
p=0.882x iO kg/rn3 (b) p=1.47x io kg/rn3

Predicted flow patterns for variation of the fluid properties (a)
jt=3.42x10 3 Pa s (b) t=3.78x10 3 Pa s

Predicted flow patterns for variation of the fluid properties (a) jt=1.8x103
Pas (b) t=4.5x10 3 Pas

Vortex core path; 1724 cells, HYBRID, DT=40 ms, Iterations/time
step=100

Figure 7.18 (a) Axial position of vortex core and (b) Vortex ring radius over simula-
tion time; 54 data points; 1724 cells, HYBRID, DT=40 ms, Iterations/time
step=100

Figure 7.19	 Vortex core path; 1724 cells, HUW, DT=40 ms, Iterations/time step=100

Figure 7.20 (a) Axial position of vortex core and (b) Vortex ring radius over simula-
tion time; 54 data points; 1724 cells, HUW, DT=40 ms, Iterations/time
step=100

Figure 7.21 (a) Axial position of vortex core and (b) Vortex ring radius over simulation
time; 103 data points; 2900 cells, HYBRID, DT40 ms, Iterations/time
step=200

Figure 7.22 Vortex core path; 2900 cells, HYBRID, DT=40 ms, Iterations/time
step=200

Figure 7.23 (a) Axial position of vortex core and (b) Vortex ring radius over simula-
tion time; 103 data points; 2900 cells, HUW, DT=40 ms, Iterations/time
step=200

Figure 7.24	 Vortex core path; 2900 cells, HUW, DT40 ms, Iterations/time step=200

Figure 7.25

Figure 7.26

Figure 7.27

Figure 7.28

Figure 7.29

Figure 7.30

Figure 7.31

Figure 7.32

Vortex core path for different grids HYBRID, DT=40 ms

Grid for '54 data points' at minimum volume

Grid for '103 data points' at t=280 ms

Instantaneous Streamlines at (a) t=0.44 s; and (b) t=0.64 s

Vortex core path: CASE II; 1724 cells, HYBRID, DT40 ms, Itera-
tions/time step=100

(a) Axial position of vortex core and (b) Vortex ring radius over simulation
time. CASE II; 1724 cells, HYBRID, DT=40 ms, Iterations/time step= 100

Vortex core path: CASE II; 1724 cells, HUW, DT=40 ms, Iterations/time
step=100

(a) Axial position of vortex core and (b) Vortex ring radius over simulation
time. CASE H; 1724 cells, HUW, DT=40 ms, Iterations/time step100

Figure 7.33	 Predicted flow patterns for CASE II; HYBRID; t=1.0 s
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Figure 7.34 Predicted flow patterns for CASE H; HUW; t=1.0 s

Figure 7.35	 Predicted flow patterns for CASE III; HUW; t=1.O s

Figure 7.36	 Predicted flow patterns for CASE III; HYBRID; t=1.0 s

Figure 7.37 (a) Axial position of vortex coreand (b) Vortex ring radius over simula-
tion time. CASE III; 1724 cells, HYBRiD, DT=40 ms, Iterations/time
step= 100

Figure 7.38

Figure 7.39

Figure 7.40

Vortex core path: CASE III; 1724 cells, HYBRID, DT=40 ms, Iterations
per time step 100

(a) Axial position of vortex core and (b) Vortex ring radius over simulation
time. CASE III; 1724 cells, HUW, DT=40 ms, Iterations/time step=100

Vortex core path: CASE III; 1724 cells, HUW, DT=40 ms, Iterations/time
step=100

Figure 7.41	 Predicted flow patterns for CASE III; CONDIF; t=1.0 s

Figure 7.42 (a) Axial position of vortex core and (b) Vortex ring radius over simula-
tion time. CASE III; 1724 cells, CONDIF, DT=40 ms, Iterations/time
step= 100

Figure 7.43	 Construction of the analytical wall motion model

Figure 7.44

Figure 7.45

Figure 7.46

Comparison between wall outlines derived from video (indicated by *) and
computational grid at minimum and maximum volumes.

Time history of the radial and axial positions at one point (1=50, see Fig-
ure 7.44) along the ventricular wall

Experimental and predicted flow particle streaklines for Case I: (a) exper-
imental, and predicted - 0.44 s; (b) experimental, and predicted - 0.92 s

Figure 7.47	 Vortex centre trajectories for Case I

Figure 7.48	 Vortex centre trajectories for Case II

Figure 7.49

Figure 7.50

Figure 7.51

Figure 7.52

Figure 7.53

Figure 7.54

Figure 7.55

Figure 7.56

Figure 7.57

Vortex centre trajectories for Case III

Vortex centre trajectories for Case III - HIJW

Model used when a tank upstream of the tube was considered

Predicted flow pattern for the tank model test

Vortex centre trajectories for Case II for the tank model test

Instantaneous streamlines for the tank model test at 1.0 s

Particle pathlines during filling for case I (* indicates initial position; o
indicates final position)

Particle pathlines during filling for case H (* indicates initial position; o
indicates final position)

Particle pathlines during filling for case III (* indicates initial position; o
indicates final position)
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Figure 7.58	 Time history of wall shear stress at two sites on the ventricular surface.
See Figure 7.46 for location of sites

Figure 7.59 Comparisons of the distributions of flow shear stress. (a) Expansion at
Re=1.0; axial location X=0.046 m; time of simulation T=1.0 s. (b)
Contraction at Re=10; X=0.13 m; T=1.0 s. (c) Expansion at Re=1.67;
X=0.128 m; T=3.0 s. Three-block grid topology.

Figure 8.1	 Straight inlet flask model

Figure 8.2	 Predicted flow fields at four times of the cycle.

Figure 8.3

Figure 8.4

Figure 8.5

Figure 8.6

Figure 8.7

Figure 8.8

Figure 8.9

Figure 8.10

Figure 8.11

Predicted flow fields for two stages near maximum volume: (a) emptying,
(b) filling. Case I

Predicted flow fields for two stages near maximum volume: (a) emptying,
(b) filling. Case II

Predicted flow fields for two stages near maximum volume: (a) emptying,
(b) filling. Case III

Grid used in Case IV

Grid used in Case V

Predicted flow fields for two stages near maximum volume: (a) emptying,
(b) filling. Case IV

Predicted flow fields for two stages near maximum volume: (a) emptying,
(b) filling. Case V

Predicted flow fields for two stages near maximum volume: (a) emptying,
(b) filling. Case VI

Other flask model

Figure 8.12 Predicted flow fields for two stages near maximum volume: (a) emptying,
(b) filling. Other flask model.

Figure 8.13 Predicted flow fields for two stages near maximum volume: (a) emptying,
(b) filling. Case VII

Figure 8.14 Predicted flow fields for two stages near maximum volume: (a) emptying,
(b) filling. Case VIII

Figure 8.15 Straight inlet spherical model

Figure 8.16 Predicted flow patterns at maximum volume f=1.33 Hz

Figure 8.17

Figure 8.18

Figure 8.19

Figure 8.20

Figure 8.21

Figure B-i

Predicted flow patterns at maximum volume f=0.33 Hz

Curved inlet flask model

Predicted flow fields at four times of the cycle.

Curved inlet spherical model

Predicted flow fields at four times of the cycle.

Geometric nomenclature of various elements of a muscle sarcomere unit.
From Fung (1981)
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Figure C-i	 Rheogram for different types of flow behaviour assuming constant pressure
and temperature.

Figure D-1	 Schematic represantion of the coordinate system, and principal radii of
curvature of a point P.

Figure D-2	 (a) Shell element. (b) Volume element.

Figure G-i (a) Computational domain in the physical space. (b) Computational do-
main in the computational space. (c) Location of the minimum velocity
point (c', ii') in the computational space

Figure H-i	 Cross sectional view of the grid.

Figure H-2	 Comparison of the predicted shear stresses with the analytical solution
when the subroutine GRADDV was used.

Figure H-3	 Comparison of the predictd shear stresses with the analytical solution
when the interpolation in the computational space was used.

Figure H-4 Comparisons of the distributions of flow shear stress. (a) Expansion at
Re=i.O; axial location X=O.046 m; time of simulation T=1.O s. (b)
Contraction at Re=iO; X=O.i3 m; T=1.O s. (c) Expansion at Re=1.67;
X=O.0154 m; T=3.O s. One-block grid topology.
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ABSTRACT

Until recently, the only realistic form of treatment available to patients in end stage heart
failure was transplantation. In the last few years, the possibility of diverting skeletal muscle from
its normal function to perform a cardiac assist role has emerged as a potential alternative to
transplant surgery. The introduction of an Skeletal Muscle Ventricle (SMV) to the circulation is a
potential long-term hazard, as the patient's blood comes into contact with the non-endothelialised
surfaces of the wall of the new ventricle and the connecting conduits. This may trigger a cascade
of events leading to deposition of thrombus, whose formation is dependent on the nature of the
blood flow. The potential problem of haemostasis may arise in the apex of the artificial ventricle,
where little mixing and large residence times may occur. There is therefore a strong need for
carrying out flow analysis studies to address in detail the questions of haemostasis and thrombo-
genesis and in this context to evaluate possible candidate SMV configurations.

Research on the dynamics of the flow inside model SMVs has been carried out on physical
and numerical models with the objective of aialysing the effect of the size and shape of the vent-
ricle and inlet/outlet orientation of the duct. Due to the physiological limit on the power available
to pump the blood out of the ventricle, the efficiency of these potential assistance devices has to
be maximized. It is also necessary to minimize the risks of haemolysis and thrombogenesis, which
are both related, in different ways, to the level of shear stress on the wall and within the flow.
A common feature of these flows is the formation of vortex rings. Vortices enhance mixing, and
this is a useful process to encourage in an SMV, as it could assist in the mixing of the blood
components and in the reduction of apical residence time. Being able to predict accurately the
dynamics of the vortices is therefore important, as this will affect the prediction of residence times
and shear stresses at the wall and within the flow. It is also very important to know whether
numerical codes can predict vortex ring dynamics from both qualitative and quantitative points
of view.

In order to study the dynamics of the formation of these vortices, first, mathematical models
were studied. The general purpose CFDS-FLOW3D code was used in all numerical simulations.
Initial investigations of this research project concerned a progressive validation of the numerical
solution predicted by the code when the domain where the flow is calculated had moving boundar-
ies. Firstly, comparisons were made with the analytical solution for expanding/contracting pipes.
An adapted compliant SMV model was then generated with a truncated apex using sinusoidally
prescribed motion of the wall. With this model, two vortex rings could be predicted as in the
experiments. The spherical-end model also gave good agreement with experimental flow patterns
(ludicello et al., 1994). Frequency-dependent studies were carried out over the range of cardiac
values using single- and multi-block versions of the code.

A further validation exercise involved the use of sigmoidal filling curves in the in vitro mod-
els (Shortland et a!., 1994). Experimental data provided by such studies were used to drive the
wall motion in the numerical simulations, and parametric studies of several simulation parameters
were carried out. Flow field features and trajectories of the vortex paths were compared with the
experiments for different filling curves, with reasonable agreement. However, because shear stress
discontinuities occurred in the predictions a strict volume-defined analytical model was construc-
ted for wall movement with smooth spatial and temporal behaviour reproducing experimental
filling curves. Numerical predictions showed not only an improvement in the qualitative features
of the flow compared with the experiments, but also a quantitative improvement in the prediction
of the vortex core paths. Also the shear stress discontinuities were no longer evident. In order to
be able to estimate residence times, instantaneous streamlines and particle tracks were produced.
Analysis of shear stresses in the fluid and generation of particle pathlines for residence calculation
in 3-D geometries will be carried out in the next feature for model candidates for the final SMV
design. Some of the material published during the course of the project is included in APPENDIX
1.

In this thesis, attention is paid to the SMV fluid dynamics. However, SMV behaviour is
a coupled fluid-solid problem. Future work will be carried out in the muscle modelling. To this
end, a careful review has been carried out, and is included in the thesis. Implications for future
work are also discussed.
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NOMENCLATURE

B	 body force

Cr	 Courant number

E	 energy or Young's modulus

F	 force

gj	 metric tensor

Ii, '2, 13 strain invariants

p	 static pressure

P	 muscle force or power

Pe	 Peclet number

Q	 volume flow rate

Re	 Reynolds number

S 21	 strain rate tensor or Kirchoff's stress tensor

t	 time

T	 cardiac period

T, DT time step

u	 velocity vector

u,v,w	 velocity components

v	 muscle contraction velocity

W	 work or strain energy function

x2	reference state coordinates

deformed state coordinates

x,y,z	 spatial coordinates in rectangular space systems

Greek Symbols

strain rate

r	 diffusion coefficient

Kronecker delta

vorticity function

thermal conductivity

p	 coefficient of dynamic viscosity

v	 coefficient of kinematic viscosity

e	 (	 curvilinear coordinates

p	 fluid density

stress tensor

r	 shear stress

stream function
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CHAPTER 1

INTRODUCTION

Heart desease is a major cause of mortality and morbidity in the Western World.

For some years the surgical treatment of end-stage cardiac failure has been restricted to

cardiac transplantation and the temporary use of mechanical assist devices as a bridge to

transplant. The shortage of donors, problems of rejection, and high cost of the transplant

programme severely limit the number of patients who can benefit from this treatment.

In the United States, for example, only 1Q% of the estimated need for heart donors are

available (Evans et al., 1986). Mechanical assistance, in the form of total artificial heart

or ventricular assist devices has shown a degree of promise; however, because of the high

incidence of infection and thromboembolic complications, these devices are currently lim-

ited to temporary support as a bridge to transplantation (Hill, 1988). There is therefore

a strong case for seeking alternative therapeutic approaches that could be extended to a

broader category of seriously affected patients. Research into the harnessing of skeletal

muscle for cardiac assistance has an important part to play in the search for a practical

surgical alternative for the large number of patients suffering cardiac failure.

In the area of cardiac assist device development, the overall significant challenge

is to provide devices that have the requisite physical size, biocompability, reliability, effi-

ciency, operating life, and cost characteristics. Engineering methodology and techniques

have been important tools in the study of the interaction between mechanical heart assist

devices and the cardiovascular system. They have permitted the evolution of quantitative

criteria and the formulation of practical procedures for optimization of assistance. These

techniques have served as an important adjunct to animal experiments and to clinical

trials.

The latest computational dynamics techniques and the new generation of super-

computers provide a powerful tool for the investigation of the fluid dynamics involved in

cardiac assist devices and in potential model Skeletal Muscle Ventricles (SMVs). This

would help in research related to the final design of candidate models to harness as

skeletal muscle ventricles, with the benefit of limiting the need for in vivo experiments.

Moreover, computational fluid dynamics may well give a comprehensive analysis of all

fluid- and hemo-dynamics parameters involved, such as shear stress at the wall or in

the fluid, residence times and particle pathlines. This would be more 'complete' than

available experimental techniques (shear stresses are not obtainable in vivo), and involve

much less effort. However, numerical techniques have to be validated against experi-

mental evidence, and thus a close collaboration between experimental researchers and

computational fluid dynamics specialists has to be established.

This dissertation concerns the numerical analysis of the flow inside model SMVs.

The research work involved in such analysis is part of a comprehensive research pro-
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gramme on model SMV's promoted by the Skeletal Muscle Assist Research Group and

directed by Prof. Salmons, comprising in vivo, in vitro (carried out by our collaborators

at the University of Liverpool), and numerical studies. Due to the important role of fluid

dynamics in the hemodynamics involved in the SMVs, the numerical studies focus on

gaining and analysing detailed information on flow field, shear stresses at the wall and

in the fluid, estimation of residence times and particle pathlines, by means of corn puta-

tional fluid dynamics techniques. Most of the work presented has as a main objective the

validation of the numerical calculations. Numerical predictions of the flows inside model

SMVs are validated against an available analytical solution for a simple problem and in

vitro experimental measurements. Some numerical designs for the final model SMV are

also proposed and discussed.

1.1 MEDICAL PROBLEM

The idea of using skeletal muscle to repair, enlarge, augment or even replace the

function of a damaged heart has been around for more than 50 years. Early investigators

failed to take adequate account of the important physiological differences between the two

types of muscle, and were defeated ultimately by the inability of skeletal muscle to sustain

continuous work without fatigue. The discovery that long-term electrical stimulation of

fast -twitch mammalian skeletal muscle induces an adaptive transformation (Salmons

and Vrbova, 1969) which includes a marked increase in its resistance to fatigue, has

generated a remarkable resurgence of interest in this area. Advantages of the use of

cardiac assist devices powered by skeletal muscles include no requirement for an external

power supply, no generation of unwanted heat, and no problems of donor shortage or

rejection, which remain the major drawbacks of the otherwise successful heart transplant

programme (Salmons, 1990a).

Chronic stimulation at low-frequency induces profound changes in the mechano-

chemistry of contraction, the kinetics of calcium transport and storage, and the metabolic

pathways responsible for the generation of ATP. These changes enable the muscle to sup-

port sustained work without fatigue by decreasing the energy needed for contraction while

increasing the capacity for generating that energy through aerobic routes. Although fully

transformed muscles can develop a considerable proportion of cardiac power, they have

slower contractile characteristics (Salmons,1990a). One current objective of the research

on the optimisation of the stimulation parameters is therefore to identify the patterns

that can produce muscles that are faster and resistant to fatigue.

Skeletal muscle-powered cardiac assist devices have been under investigation in

several laboratories worldwide. Many different approaches toward harnessing the energy

of contracting skeletal muscle have been studied. These approaches will be discussed in

detail in the next chapter together with the most commonly used cardiac assist devices.

The most conservative approach to skeletal muscle assistance is to wrap the muscle around
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an existing structure, such as the heart (cardiomyoplasty) or aorta (aortomyoplasty), to

provide an uninterrupted endothelial interface with the blood (Salmons and Jarvis, 1992).

The power available for assisting the heart can be harnessed most efficiently by configuring

the skeletal muscle as a separate auxiliary ventricle connected to the patients circulation

and used either in a counter-pulsatory mode or in parallel with the heart. In the former

case, the SMV acts in a similar fashion to an intra-aortic balloon pump, augmenting

aortic pressure during diastole and reducing left-ventricular pressure during systole.

Pumping chambers have been fashioned from the preconditioned muscle following

the procedure illustrated in Fig. 1.1, and it has been demonstrated that the power output

generated by these auxiliary ventricles is sufficient to replace the work done by the right

ventricle or provide partial replacement or assistance of left ventricular function. These

muscle pumps have been built from different skeletal muscles. The latissimus dorsi (see

Fig. 1.1) has been most commonly used owing to its ease of harnessing and its minimal

donor disability. The power that is potentially available from a skeletal muscle was

discussed in relation to the power required for sustained cardiac assistance by Salmons

and Jarvis (1992). In terms of the energy available, a skeletal muscle ventricle could

be designed to provide a continuous partial assist of 1-2 1/mm, with flows of up to 8

1/mm sustainable for limited periods. Surgical manipulation of the muscle will affect

the volume and length of the formed ventricle (Oda et al., 1993), while the stimulation

patterns adopted to train the muscle to develop fatigue resistance, may govern its ejection

fraction.

Progress to date has ranged from acute animal work to clinical applications of car-

diomyoplasty. In experiments in dogs, ventricles of this type have pumped in circulation

for periods up to 2 years (Mocek et al., 1992). However, many questions remain to be

answered concerning the optimization of functional parameters such as the power available

from skeletal muscle in the long term, the conditioning and activation patterns, and

the configuration parameters. Answering these questions requires collaborative research

between biological, surgical, and bioengineering research groups.

Haemodynamics Aspects

A detailed understanding of the haemodynamics of the SMV can help to avoid the

possibility of failure of surgical procedures which would then necessitate repeated design

iterations. Despite its attractions, the SMV approach poses a significant problem in

requiring an additional, potentially thrombogenic, surface to be placed in the circulation.

In skeletal muscle wraps a blood/surface interface should be avoided as a raw muscle is

potentially thrombogenic.

It is known that artificial hearts and cardiac assist devices are prone to failure due

to haemolysis, thrombus formation, and sac calcification of the artificial pump. Sub-

stantial evidence indicates that abnormal flow phenomena, such as elevated shear stress,

high turbulence levels, prolonged stasis, cavitation and rapid changes in shear, form sub-

stantial obstacles to routinely successful application of many cardiovascular devices and
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treatments. Prolonged exposure of blood constituents to non-endothelialized surface en-

tails a risk of thrombus formation. In spite of improvements in biomaterials, events at

the blood-surface interface still limit the duration of assistance that can usefully be ob-

tained with mechanical assist devices. If the SMV approach is not subject to the same

limitations, it will be necessary to avoid artificial materials in the lining of the skeletal

muscle ventricles. The current option to prevent thromboembolism within the artificial

ventricle is the utilization of available biological materials.

Thrombus formation, propagation, composition and disintegration may be substan-

tially flow-induced (Goldsmith and Turrito, 1986). Therefore improved flow dynamics in

the device may result in reduced damage to blood components and reduced thrombus

formation with its associated effects, such as infection. For these reasons, it is extremely

important to address a preliminary analysis of the fluid-dynamics involved inside model

SMVs.

Figure 1.1 The skeletal muscle ventricle procedure. The latissimus dorsi is
taken from the back of the patient, electrically transformed and
wound round to act as an auxiliary ventricle controlled by a pace-
maker.
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1.2 GENERAL FEATURES OF THE FLOW IN MODEL SKELETAL

MUSCLE VENTRICLES

Research on the dynamics of the flow inside model SMVs has been carried out on

physical and numerical models with the objective of analysing the effect of the size and

shape of the ventricle and inlet/outlet orientation of the duct. Due to the physiological

limit on the power available to pump the blood out of the ventricle, the efficiency of these

potential assistance devices has to be maximized. It is also necessary to minimize the

risks of haemolysis and thrombogenesis, which are both related, in different ways, to the

level of shear stress on the wall and within the flow.

The fluid dynamics of model SMVs are particularly complex because of (i) the

rheological properties of blood, (ii) the three-dimensionality and pulsatility of the flow,

(iii) the time-dependent three-dimensional geometry, and (iv) the mechanical properties

of the compliant ventricular wall. The flow is likely to be highly disturbed and a wide

range of shear stresses is possible; flow recirculation and areas of stagnation could all be

present simultaneously. Flow pattern characteristics are dictated largely by the size and

orientation of the connections to the ventricle, the stroke volume, rates of contraction

and shape of the chamber.

Model SMVs may be operated in a variety of modes. For example, continuous cyclic

filling and pumping has been experimentally and numerically simulated. Also, quiescent

periods have been interposed between cycles in some of the in vitro models (Shortland

et al., 1993). A common feature of these flows is the formation of vortex rings. Similar

structures of the flow have been shown to exist, both experimentally (Sobey, 1985) and

numerically (Tutty, 1992), in pulsatile flows in channels with rigid constrictions.

To date, the experimental studies have been carried out to visualise flows in one

simple two-dimensional configuration for an SMV. The conduit connecting the SMV to the

aorta is considered not to affect the ventricular flow patterns. Clinical devices are likely

to be geometrically more complex, with separate inlet and outlet conduits connecting

the ventricle to the aorta and with possible valved configurations. The two-dimensional

flow visualization technique used for the in vitro experiments would be inadequate to

describe the three dimensional flow patterns produced in the three-dimensional config-

uration currently under investigation. In order to understand and quantify the mixing

properties of the vortical structures within the model ventricles, studies of residence times

and dye visualisation experiments need to be conducted. These should identify regions of

stagnation in the fluid where the risk of thrombus formation might be greatest clinically.

Laser Doppler velocimetry will allow measurements of stresses in models.

In vitro data have been used to prescribe a series of computational grids varying

in time on which a CFD simulation has been performed. The results of this simulation

have been compared to flow patterns observed in vitro in order to assess the ability of the

CFD code to model physiological flows. To examine the haemorheological implications

of cardiac assistance from SMVs more fully, more realistic models of SMVs should be
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investigated to include the influence of inlet/outlet geometry and simulated aortic flow.

Although substantial progress has been made through in vitro model studies by

using laser Doppler anemometry or flow visualization techniques, these usually involve

some degree of simplification, such as idealized geometry, steady or simple oscillating

flow, rigid wall and Newtonian fluid, which may well be questionable in the modelling of

the fluid dynamics of the blood. In addition, investigation techniques for in vivo flows

are lacking in the provision of accurate and detailed analysis. Similar limitations have

also applied to most previous numerical simulations. However, the current generation of

CFD codes offers all the modelling capabilities required to perform a comprehensive low cost

detailed analysis of the flow and therefore represents a very powerful tool in the design

of a human SMV candidate.

1.3 NUMERICAL MODELLING

Computational Fluid Dynamics (CFD) has been used for numerical prediction of

fluid flow and heat transfer since the 1960s. With the development of computer hardware,

computational techniques have been vigorously proposed, tested and refined to the point

that these are recognized as a cost-effective and convenient means of design in modern

engineering practice. Traditionally, experimental and theoretical methods have been

used to develop designs. With the advent of computers, a third method, the numerical

approach has become available.

The fundamental equations of fluid dynamics are represented by the continuity

equation, the momentum equations, and the energy equation. These are complex non-

linear partial-differential equations, which can be solved using numerical approaches.

Historically, the preferred numerical method to discretize the Navier-Stokes equations

has been the finite difference method; however, more recently finite element methods

have been used particularly in the field of blood flow, see for example (Perktold et al.

1994; Perktold and Rappitson, 1994).

Computational Fluid Dynamics represents a new method of research into blood flow

in the cardiovascular system. Numerical simulation of blood flow through arterial sys-

tems, in particular through prosthetic valves, bends, arterial bifurcations, stenoses, grafts,

natural and artificial ventricles has been of special interest in recent years because of the

speed and low cost, and detailed information of local flow patterns it can provide. These have

been extensively studied in the context of the work on blood flow modelling developed in

the Biomechanical Research Group at City University over the last decade. The complex

characteristics of blood flow throughout the cardiovascular system make mathematical

analysis a challenging problem. Recent developments in computer hardware and advances

in numerical methods have led to the point where complex three-dimensional unsteady

flows bounded by moving walls can be simulated. This is an essential feature in the mod-

elling of physiological flows, since they are mostly driven by the periodical wall motion.
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Analysis of blood flow in artificial hearts and assist devices is an area of active

interest. Numerical analysis represents an important tool in the design of more effI-

cient devices. It is also very useful in investigating areas of low and high shear stresses,

and regions of stasis. Few researchers have included the consideration of the motion of

boundaries in the simulation of flows in the cardiovascular system.

The application of CFD to the simulation of model SMVs is demanding because

it involves wall-driven unsteady flows and time dependent gridding. Modelling of the

flow mechanics requires either transient or adaptive gridding in the CFD programs, and

comprehensive modelling of the stress-strain behaviour of the wall. The numerical models

should therefore make provision for

(I) arbitrary three-dimensional geometry

(ii) moving grid/boundary capability'

(iii) (laminar) flow pulsatility

(iv) non-Newtonian blood flow characteristics

(v) wall compliance/muscle behaviour

The rheological properties of blood and its constituents play an important role in

the physiology of the circulation of the blood. Blood is generally non-Newtonian, its

viscosity varying with shear rate. In large vessels, blood can reasonably be considered a

homogeneous incompressible fluid. It is universally agreed that at very high shear rate (>

1000 s 1 ) blood can be assumed as Newtonian. In the numerical simulations performed

in model SMVs, non-Newtonian behaviour of blood was not taken into consideration

for simplicity. Further, since the in vitro experiments on model SMVs were carried out

using Newtonian fluids, the validation of the numerical predictions had to be performed

modelling the fluid as Newtonian.

Many powerful CFD programs are available based on different numerical methods

with varying degrees of modelling capabilities. Modern CFD codes solve the equations

governing unsteady, three-dimensional flows in complex, moving geometries. Among these

programs CFDS-FLOW3D has the advantage of providing all the capabilities required in

the modelling of the flow in model SMVs.

CFDS-FLOW3D is a general purpose code for the numerical solution of com-

pressible and incompressible, laminar and turbulent flows with heat transfer in three-

dimensional geometries. The code uses a finite volume method to solve the governing

equations on a general, three dimensional, non-orthogonal, body fitted grid with moving

boundaries. Moving wall/grid facilities are provided by both the single-block (Release

2.4) and multi-block versions (Release 3.2.1, Release 3.3.), validation of which for flows

in a semi-infinite expanding/contracting closed-end pipe is presented in Chapter 4. The

multi-block grid capability allows the simulation of flows in solution domains with sig-

nificantly more complex non- axisymmetric geometries. This allows the consideration of

flows in SMVs with curved inlet tubes. Also the hemispherical ends of the ventricle can

be modelled more accurately.

Extensive applications and tests on FLOW3D have been performed at City Uni-
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versity since 1986 on a wide range of problems. A number of numerical studies are now

in progress there, which are supported by the predictions of CFDS-FLOW3D. Nowadays,

much of the interest in blood flow modelling is focused on the fluid-structure interactions

occurring at the interface between blood and vessel wall. The research at City University

is currently engaged in two projects aimed at developing codes capable of solving the

coupled problem. The first is based on the finite volume code CFDS-FLOW3D, modified

to allow the modelling of the solid wall. The second project is based on the use of a FEM

code called FEAT, developed by Nuclear Electric's Engineering Analysis Group.

Numerical simulations of fluid-solid coupling in blood vessels or ventricles is a 'fore-

front' topic of the current research in computational methods applied to biomechanical

problems. The first comprehensive time-dependent 3-D model of flow through the left

side of the heart was developed by Peskin nd McQueen (1993), who used the Immersed

Boundary Method developed by Peskin (1977). The complete computational solution of

such flow problems is complicated by the requirement to solve the complex relationship

that exists between the wall mechanics and the fluid-dynamics. Such a solution requires

that the solid- and fluid-mechanical codes are coupled to a transient computational grid.

In the initial study in this thesis, the wall motion has been prescribed; however, the

ultimate goal of the research will be to predict SMV wall position by solving, in a coupled

manner, the equations for both the fluid and solid. A review of ventricle modelling with

special attention paid to muscle modelling is presented in the next chapter. Muscles

are not passive tissues, and therefore, in a coupled approach, not only are the fluid

and solid mechanics equations coupled, but so also are the muscle mechanics equations.

In order to have realistic ventricular models, solid mechanics equations have to allow

for large deformation, and non-linear elastic and visco-elastic material with orthotropic

properties. In modelling muscle mechanics passive and active states have to be considered

separately. In the passive state, anisotropy cannot be neglected. In the active state, body

forces have to be included in the equilibrium equations. When the muscle is operating

actively, the constitutive equations are represented by force-length, and force-velocity

relations available from experimental data.

Historically, the development of fluid and solid mechanics codes has developed

separately, and in parallel. CFD codes commonly use a finite volume approach, while

solid mechanics codes use the finite element method. In order properly to address the

compliance and muscle effects of the physiological tissue, the most comprehensive solid

mechanics available today is required (non-linear, anisotropic, visco-elastic, large deform-

ation, large strain). Application of Finite Element Analysis (FEA) to structural problems

has proved to be successful in many cases, and biomechanics applications have also been

performed (Reuderink, 1991; Perktold and Rappisch, 1993).
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1.4 OBJECTIVES OF THE RESEARCH AND STRATEGIES EMPLOYED

The objective of the research presented in this thesis is to study the dynamics of

the flow inside these ventricles using an established 3-dimensional computational fluid

dynamics code with accommodation of wall behaviour. The reliability of the predictions

will be established by critical validation against in vitro data. Validations of the qualitat-

ive and quantitative flow patterns have been carried out. Clinically relevant parameters

such as residence times and shear stresses will be calculated in the near feature from

the raw velocity data produced by the numerical code. This will allow the evaluation of

design specifications of SMVs for use in patients.

Validation Exercise

In order to be able to rely on the numerically predicted flow patterns, numerical

results have to be validated against experimental data available from the in vitro and

in vivo studies. In addition, analytical solutions of simplified problems may be used to

test the numerical solutions. The sources of errors which may arise in the numerical

predictions obtained using CFD may be attributed to: (i) the mathematical model, (ii)

the discretisation method, and (iii) the numerical algorithm. The magnitude of the

discretisation error is dependent upon both the discretisation approach and the mesh

density. This error can be reduced by either using a higher-order discretisation formula

designed to reduce the truncation error, or refining the grid. The latter is problem

dependent. The errors associated with the numerical algorithm are dominated by the

convergency criteria.

No CFD codes give guaranteed reasonable and accurate results to any kind of

problem, even within the code's capability. Their successful use often requires experienced

staff, and even then, the degree to which the codes can be routinely used as 'black boxes'

may be quite limited. It is highly desirable, therefore, to perform external validations for

particular problems. In general, code validation exercises may involve one or all of the

following comparisons:

(a) comparison with the analytical solution if one exists,

(b) comparison with laboratory data set up specifically for validation purposes,

(c) code to code comparison,

(d) comparison with a wide range of experimental data.

Although accurate results (grid-independent and/or time-independent) are the first

requirement for reliable numerical predictions, large-scale engineering applications of com-

putational fluid dynamics typically involve such wide ranges of length and time scale that

the use of cells and time steps sufficiently small is prohibitive.

As stated in section 1.2, a striking feature of the flows inside the model SMVs

is the formation of vortices. Vortices enhance mixing, and this is a useful process to

encourage in an SMV, as it could assist in the mixing of the blood components and in the
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reduction of the apical residence time. Being able to predict accurately the dynamics of

the vortices is therefore important, as this will affect the prediction of residence times and

shear stresses at the wall and within the flow. It is also very important to know whether

numerical codes can predict vortex ring dynamics from both qualitative and quantitative

points of view.

In order to study the dynamics of the formation of these vortices, numerical vent-

ricle models have been studied . Initial investigations have concerned a progressive valid-

ation of the numerical solutions predicted by the code for moving boundary flow domains.

Firstly, comparisons were made with the analytical solution for expanding/contracting

pipes of Uchida and Aoki (1977), and results are presented in Chapter 4.

An adapted compliant SMV model was then generated (rigid/compliant pipe) with

a truncated (flat-end) apex using a sinusoida1y prescribed motion of the wall. A spherical-

end rigid/compliant model was subsequently constructed. The flows are driven by pre-

scribed sinusoidal motion of the wall in both radial and axial directions. The predicted

flow structures show that the number of vortex rings formed at the time of maximum

ventricular volume is a function of the frequency of the wall motion. Predicted flow pat-

terns of these two models were qualitatively compared with experimental flow patterns

and discussed in Chapter 5. Subsequently, numerical analysis of the flow inside a model

SMV with wall motion prescribed experimentally was performed. The predicted results

are qualitatively compared with the corresponding in vitro data in Chapter 6.

In order to obtain a qualitative and quantitative validation of the numerical pre-

dictions, the dynamics of the formation of the vortices were studied in models where

sigmoidal filling curves were used to define the wall motion driving the volume change.

In vitro data provided by such studies were used to define the wall motion in the numer-

ical simulations. Flow field features and trajectories of the vortex paths were compared

with the experiments for different filling curves. However, because shear stress discontinu-

ities occurred in the predictions a strict volume-defined analytical model was constructed

for wall movement. This discussion is presented in Chapter 7.

Designing SMVs

Blood pump design involves much more than hydraulic design and pumping cap-

ability. A large number of investigators have worked in the field of determination of the

optimal haemodynamic conditions in which assist devices should operate, and although

considerable progress has been made, few have achieved the actual goal. Among the key

fluid dynamic criteria for the design of a cardiovascular pump are the reduction of high

shear rates, local accelerations, and high residence times of blood cells in contact with

the biomaterial surfaces. It has been hypothesized that spiral three-dimensional vortices

leading to a 'wash-out' of the pump chamber is advantageous in reducing thrombus forma-

tion and possibly blood sac calcification, and also in inducing remarkably low haemolysis,

thereby avoiding any high stress condition in blood and stagnation areas (Umezu, 1994).

The introduction of a SMV to the circulation is a potential long-term hazard,

-
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as the patient's blood comes into contact with the non-endothelialised surfaces of the

wall of the new ventricle and the connecting conduits. This may trigger a cascade of

events leading to deposition of thrombus, whose formation is dependent on the nature

of the blood flow. The potential problem of haemostasis may be particularly involved

at the apex of the artificial ventricle, where little mixing and large residence times may

occur. Flow analysis studies are therefore required to address in detail the questions of

haemostasis and thrombogenesis and in this context to evaluate possible candidate SMV

configurations.

The role of the fluid dynamicist is to design an SMV to encourage blood flow pat-

terns which inhibit mural thrombus formation, by increasing local mixing and decreasing

peak residence times while maintaining moderate shear stresses throughout the fluid. De-

signers of mechanical left ventricular assist devices have concentrated on the inlet/outlet

configuration and inlet valve orientation to produce a single large recirculation during

filling (Jin and Clarke, 1993). In this way, a new blood volume introduced during filling

will wash the wall of the device before being ejected (Tarbell, 1986).

Few numerical studies have been reported in the literature concerning the utiliz-

ation of CFD methods to improve design features of cardiac assist device models. This

lack of numerical simulation studies may be due to difficulties encountered in the treat-

ment of realistic cardiac assist devices models. Generally, flows inside cardiac assist

devices are three-dimensional, time-dependent, and often turbulent. An essential fea-

ture is the capability to accommodate the geometries of moving boundaries. This has

been introduced very recently in the computational fluid dynamic packages and still has

not been sufficiently tested against experimental data. Another important feature is the

three-dimensionality of the problem, which requires very powerful grid capabilities, with

special attention on the refinements necessary where boundaries are in motion. Further-

more, the grid has to undergo changes for each time step, which in turn has to allow for

the 'accurate' solution to be established without overloading the calculation too much.

The new generation of supercomputer hardware combined with new computational fluid

dynamics algorithms has increased remarkably both the computer power and the abil-

ity of modelling. However, a lot of work still needs to be done to validate the newly

available facilities against experimental evidence, and thus a close collaboration between

experimental researchers and haemodynamic specialists has to be established.

For the purpose of helping in the SMV design, three-dimensional model SMVs are

being investigated. Numerical simulations of flows in cardiac assist devices can be used

to study the effect on the flow of the shape and size of the device, and of the orientation

of inlet and outlet ducts. A three dimensional analysis of the flow inside SMVs is very

important in order to have a reliable estimate of the variables of medical relevance, and

consequently to be able to contribute to the design of model SMVs. However, computing

time limits 3-D investigations very strongly. It is very likely that in the final design

the duct that feeds the SMV is not a straight tube. This implies that in the numerical

modelling two dimensional cylindrical models cannot be used. When the duct is a curved
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cylinder or is a T-junction a truly 3-D model has to be considered.

Preliminary numerical studies on some 3-D models are presented in Chapter 8. It is

shown how changes in shape and inlet/outlet configuration may affect the resulting flow

fields for design considerations. One significant finding with respect to inlet geometry is

that a curved inlet appears to produce in the SMV a purging type of flow, similar to that

seen in the normal left ventricle. This would promote mixing of the blood components

and reduce significantly the residence times of particles.

Calculations of flow shear stress and particle pathlines, to be performed in the near

feature, will give a more accurate evaluation of the optimal configuration on the basis of

the haemodynamic conditions which are formed inside the ventricle. The ultimate aim

of the research is to establish the relationship between the geometrical configuration of

an SMV and its hydraulic performance, to analyse critically the effects of shape, size

and inlet/outlet configuration on the fluid dynamics, and use the information to prepare

well-founded guidelines for the surgical construction and use of SMVs in patients.

Calculations presented in this thesis were carried out on the Convex C3860 super-

computer at ULCC, and on the SUN Sparcstation 5 at City University. Post-processing

was performed on a Sun Sparcstation 2 at City University.
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CHAPTER 2

LITERATURE SURVEY

2.1 INTRODUCTION

In this chapter, engineering and medical aspects concerning the harnessing pro-

cedure and numerical modelling of the skeletal muscle ventricle are reviewed. First a

general review of all cardiac assist devices will be reported in section 2.2, followed by a

detailed review of muscle-powered assist devices in section 2.3. Section 2.4, dedicated to

general muscle structure and mechanics, is followed by a discussion of further literature

on the engineering and biochemical aspects f harnessing the skeletal muscle power for

cardiac assistance. In order to obtain a comprehensive solid and fluid-dynamic model

of the skeletal muscle ventricle it is necessary to couple fluid-dynamics equations with

solid mechanics equations (for the wall) and the muscle mechanics equations. Blood flow

modelling is presented in section 2.6, together with a review of the numerical modelling

of cardiac assist devices reported in the literature to date. This is followed by a section

dedicated to the modelling of the natural heart (section 2.7).

The overall literature review will be concluded with a review of the solid mechanics

equations in section 2.8, and a further review of the coupled solid-fluid models in section

2.9. However, a separate chapter will be dedicated to surveying the numerical methods

for solving the equations of the fluid-dynamics, as they are the main tool used in the

numerical modelling of skeletal muscle ventricles so far. It should be stressed that because

the final goal of the project (which extends beyond the Ph.D. itself) is the coupling of

solid/fluid behaviour in model SMVs, a correspondingly extensive literature survey has

been conducted on solid mechanics methods and muscle mechanics to be coupled with

the fluid-dynamics equations.

2.2 CARDIAC ASSIST DEVICES

The technological challenge to develop temporary and permanent circulatory assist

devices and artificial hearts arises from statistical evidence concerning the incidence of

cardiovascular mortality and morbidity in industrialized society. Currently, the patient

with end-stage heart failure has few therapeutic options. These include cardiac trans-

plantation, mechanical assist devices, and medical therapy. Despite recent advances in

all types of treatment, ideal therapy for the patient with a failing heart has yet to be

offered. Such an option should provide independence from external mechanical attach-

ments, minimize rejection problems and effects associated with blood-surface interaction

(Unger, 1979). Cardiac assist devices powered by skeletal muscle have the potential to

meet these requirements. Due to the limited availability of donor organs for cardiac
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transplantation, many candidates succumb before a suitable donor organ becomes avail-

able. A number of these severely ill patients have survived until (and following) their

transplants with the aid of a mechanical support device (Joyce et al., 1986). Numerous

techniques of mechanical cardiac assistance have been studied during the past quarter of

a century, but only two have as yet become recognized as standard clinical procedures:

artificial oxygenation and circulation of the blood by means of a pump-oxygenator, and

the intra-aortic balloon pump. However, a number of promising techniques have been,

and are being, extensively investigated.

The heart is a pump so it is logical to consider replacing it with a mechanical pump.

Gibbon was the first (Gibbon, 1954) to demonstrate a successful apparatus to bypass the

heart and the lungs in animals and one human patient during cardiac surgery, through the

use of heart-lung machines. The advent of pumps and prosthetic devices buttressed the

idea that a small man-made pump might be designed for implantation in the thorax as a

substitute for the damaged human heart. The effort towards this goal may be subdivided

into four groups of devices: (i) emergency assist devices; (ii) temporary assist devices;

(iii) permanent assist devices; and (iv) artificial hearts.

In the following section first a historical review will be presented. Then, some

principles of cardiac assistance will be discussed. Some of the more commonly used assist

devices will be reviewed. In-series cardiac assist devices will be treated in more detail.

This is also preliminary to the understanding of section 2.6.2.6, where numerical models

of cardiac assist devices will be reviewed.

2.2.1 Historical Background

Historically, research on mechanical assistance for the heart started in 1812 with

LeGallois (1813) who first addressed the complexity of replacing the heart. The feasibility

of the design of a roller pump by De Bakey in 1934 (De Bakey, 1934) provided the basic

principles for operating a heart-lung replacement device and for left ventricular assistance.

To overcome the limiting factors of the roller pump (low output and haemolysis), left

ventricular assist devices were developed on the basis of the membrane pump design.

The design of this pump is based on the early constructions of Akutsu and Kolif (Akutsu

and Kolif, 1958) which employ a U-turn geometry for the blood flow. In 1966 Kantrowitz

and his group (1968) implanted U-shaped avalvular auxiliary ventricles for permanent

cardiac assistance in two patients. Also in 1966 De Bakey (De Bakey, 1971) successfully

used a left ventricle (LV) bypass pump for temporary circulatory assistance. In 1967

Bernhard (Bernhard et al., 1968) designed an axi-symmetrical pump, in which the blood

crosses the pump unidirectionally.

At the same time, other modalities of circulatory assistance were attempted by dif-

ferent groups. LV assist systems were developed for both in series and parallel supports.

To avoid roller pumps the concept of propeller pumps was developed by Bernstein (Bern-
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stein, 1970), while bypass ventricles in series and in parallel to the heart were developed

by Kantrowitz et a!. (1965) and Thoma (1973), respectively. Many different possibilities

of cannulating the heart have been tried. In 1961 Dennis (Dennis et al., 1962) demon-

strated the left heart bypass by inserting an inflow carinula into the left atrium through

the atrial septum and returning blood through the femoral artery. This principle was

varied: Peters made cannulations to unload the left ventricle via apex (Peters et al.,

1977), Zwart through the aortic valves (Zwart, 1966), and Litwak through the left atrium

(Litwak, 1974). In addition, cardiac assistance can be performed with counterpulsation.

In 1961 Moulopoulos et al. (1962) developed their intra - aortic balloon pump (IABP),

which after the first clinical applications by Kantrowitz in 1967, became a well-established

tool offering great benefits in cases with well defined indications.

Heart replacement by an artificial heart is based on the early experiments over 30

years ago by Akutsu and Kolif (1958). Although in the beginning it was very difficult

to achieve long-term survival in animals, the artificial heart seems now to be coming of

age and can be discussed as a temporary replacement in combination with consecutive

transpianation. Hardy and Chavez (Hardy and Chavez, 1968) attempted to transplant

a chimpanzee heart into a man in 1964. The first successful allotransplantation of a

human heart was performed by Barnard in 1968 (Barnard, 1968). The development of

a total artificial heart (TAH) or a permanent left ventricular assist device (LVAD) that

becomes a routine clinical application is a great challenge that can be met only by a broad

interdisciplinary collaboration of surgeons, cardiologists, engineers, chemists, physicists,

and veterinarians. All these initial anecdotal experiences stimulated intensive research

and development which has blossomed today into the clinical stage of applications.

2.2.2 Principles of Mechanical Assistance

Many methods of mechanical assistance to aid the failing heart have been, and are

being, extensively investigated. The haemodynamic goals of the different methods being

studied vary depending upon the problems of the patient. However, they all fit into three

general categories:

- decreasing the work of the failing myocardium by reducing the load on the left

ventricle;

- increasing blood flow through the coronary circulation, and consequently

increasing the oxygen supply to the hypoxic tissue; and

- increasing cardiac output, and thus increasing the blood supply to the peripheral

organs.

Increase of coronary blood flow should be mainly achieved by increasing coronary

perfusion pressure, since flow through severely diseased vessels is pressure-dependent.

Mechanical cardiac assistance is the only currently available intervention that will fulfil

these requirements, as pharmacologic agents lead to undesired secondary effects.
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Mechanical assistance can be effected by following two principles (Moulopoulos,

1989):

1. An external or internally implanted energy source may provide the circulatory sys-

tem with the missing power to achieve adequate flow to the peripheral organs;

2. A mechanical device can be used to affect haemodynamic parameters within the

two phases of each cardiac circulatory cycle, in order to increase peripheral flow to

normal values.

It should be noted however, that if the heart is contracting, even if the output

is reduced, the application of an additional energy source will have to be positioned

within one or both phases of the cycle. As a consequence, the use of an auxiliary energy

source will necessar)y involve not only the first but the second principle too. Therefore,

analysis of the assistance techniques used should proceed according to the phase (systolic

or diastolic) during which they are applied.

Blood Pump Design

Blood pump design involves much more than hydraulic design and pumping cap-

ability. It is an overall challenge of high significance to provide devices that have the

requisite physical size, biocompatility, reliability, efficiency, operating life, and cost char-

acteristics. Design methods have recently been reported by Rosenberg (1994).

One of the most serious technical problems confronting designers of circulatory

support devices is the development of a material that is compatible with the blood.

Materials tend to damage blood constituents, promote clotting and generate abnormal

plasma proteins. Many problems arise in the area of biomaterials: these must be bio-

logically sufficiently compatible and withstand the rather excessive loads of a long-term

period of implantation. Also valves must not create high shear stresses or turbulence

which would lead to thrombus formation. The driving system must also be minimized to

allow the patients mobility and guarantee an acceptable quality of life.

Power requirements to drive any type of fluid-mechanical device for cardiac assist-

ance exceed that of the artificial pacemaker by several orders of magnitude. The work

done by the left ventricle, W, may be approximated for one heart beat by

w = jp(t)Q(t)dt	 (2.1)

where p, Q are pressure and volume flow rate respectively. For an average value of aortic

pressure of 100 mmllg and replacing fT Q(t)dt by a stroke volume of 75 cm3 , it follows

that

W = 10 x 13.6 x iO3 x 75 lO7erg

Assuming that T = 1.0 s, the power P lO7erg/s = 1W for the left ventricle only.

An upper bound for the output of the heart may be obtained by multiplying by four (four

chambers), and by five (for exercise levels of output), resulting in 20 W. Allowing for
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3.Mechanical Replacement:

4.Bridges:

5.Biological Replacement/Assist

6.Biomechanical Assistance:

the efficiency, power requirements for circulatory assist devices and artificial hearts have

been set in the range of 30-100 W. Power sources under study include electrical energy

systems, radioisotope (Pu-238) powered thermonuclear engines, and biological fuel cells

(such as muscles).

Assisted circulation can be categorized into six often interrelated and overlapping

activities (Ghosh, 1989):

1.In-series mechanical ventricular assistance: counterpulsation with for example IABP

2.ParaIlel mechanical ventricular assistance: Ventricular Assist Devices (VADs)

Total Artificial Heart (TAH)

VADs or TAH as bridges to transpianta-

tion

Heart and heart-lung transplantation

Cardiomyoplasty, Aortomyoplasty,

Skeletal Muscle Ventricles (SMVs),

Skeletal Muscle Tube Ventricles (SMTVs).

Major emphasis in this discussion will be laid on the cardiac assist devices which

work in series with the heart because the SMV can be harnessed as one of such.

2.2.3 In-series Mechanical Ventricular Assistance

In-series cardiac assistance, also known as counterpulsation or diastolic augment a-

tion, was originally intended for those patients who suffered from secondary effects to

acute myocardial infarction. Its use has now been extended to include applications in

patients who can benefit from effects of temporary cardiac support.

In-series cardiac assistance by mechanical means attempts to achieve three major

goals: 1) a reduction in myocardial oxygen demand through the assumption of a portion

of the work of the left ventricle and a reduction of the workload of the heart; 2) an increase

in oxygen supply to the ischemic myocardium obtained by enhancement of blood flow to

the coronary circulation; and 3) an increase in blood supply to the peripheral system.

These objectives can be accomplished by creating a pressure or flow perturbation in the

central aorta which is repeated with each cardiac cycle. This is achieved through the use

of a device which is synchronized to the cardiac cycle and phased in such a way as to

reduce aortic pressure during systole and augment it during diastole (Fig.2.1). The high

augmented diastole produces a significant high flow in the coronary arteries. In systole

the heart faces a reduced ejection resistance, so the heart work is reduced (25% by an

intra-aortic balloon pumping) (Unger, 1979).

Kantrowitz and Kantrowitz (1953) reported, in 1953, the earliest attempt to per-

form diastolic augmentation on an experimental animal. Wide clinical application of

temporary cardiac support by counterpulsation became possible with the introduction
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of a new intraarterial device, the intra-aortic balloon pump (Moulopoulos et al. 1962).

Details on the modalities of work of this device will be reported below. In the past,

several devices have been proposed and evaluated; however, most of those did not work

sufficiently.

The systems available fall into the following two methods:

(a) Non-invasive Methods:

1. Body Accelerating Synchronous Heartbeat technique (BASH);

2. External Compression (ECP);

(b) Invasive Methods:

1. Intra-aortic Balloon Pump (IABP(Fig.2.2);

2. Aortic Ring;

3. Aortic WindKessel ventricle (AWK);

4. Inter-aortic Ventricle (IAV);

5. External Ventricle (EV);

6. Pulsatile Assist Device (PAD);

7. Intraventricular balloon;

8. Compression Cups;

9. Auxiliary Ventricle;

10. Dynamic aortic patch (DAP);

11. U-shaped mechanical auxiliary ventricle (MAV);

12. Percutaneous Access Device (PAD).

Comprehensive literature on these methods is readily available in (Unger, 1979;

Unger, 1984; Unger, 1989). Here only the most commonly used will be treated in detail.

;T'-

Figure 2.1 Relationship of the pump to the circulation during counterpulsation
and intended effects on the arterial pressure curve. From Moulo-
poulos (1989).
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Figure 2.2 Intra-aortic balloon pump.
From Unger (1979).

2.2.3.1 Intra-Aortic Balloon Pump

The main clinically established method for intra-aortic counterpulsation is the

Intra-Aortic Balloon Pump (Fig.2.2). Since its evaluation by Moulopoulos (Moulopoulos

et al., 1962) and its first clinical implantation in 1967 by Kantrowitz, the IABP has be-

come the most widely used of the methods available for circulatory support, because of

its relative ease of use. In relation to patients undergoing cardiac surgical procedures,

the IABP has been advocated preoperatively, intraoperatively, or postoperatively, for

patients with low cardiac output (Creswell et al., 1992).

An elongated polyurethane balloon, mounted over one end of a catheter, is intro-

duced into the aorta. Pressurized helium is admitted to the balloon catheter through a

solenoid valve. A comprehensive discussion of the early research on IABP is reported

in Weber and Janicki's review (Weber and Janicki, 1974). Recent investigations on the

IABP concern its clinical use as long-term circulatory support (Kantrowitz et a!., 1989;

Creswell et a!., 1992).

2.2.4 Parallel Mechanical Ventricular Assistance

Ventricular assistance can be simply defined as unloading of one or both ventricles

by taking over and shifting the blood volume. Ventricular Assistance Devices, VADs,

work in parallel with the ventricle in situ, unloading the left ventricle by taking up the

blood volume from the left atrium or the left ventricle and returning it to the great
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vessels (aorta or pulmonary artery). In the venoarterial bypass the total blood volume

bypasses the heart, unloading also the left heart chamber completely. Ventricular assist

pumping can support both systemic and pulmonary circulation or either individually. At

the same time it unloads the failing ventricle, decreases myocardial oxygen demand and

consumption, and allows metabolic recovery of the myocardium. The main requirement

is a working right ventricle. If the right ventricle fails an additional device on the right

(a Right Ventricular Assist Device, RVAD) side is necessary. Furthemore, biventricular

assistance (Biventricular Assist Devices, BVADs) provides a functional heart replacement.

The first clinical use of a left heart assist device was reported in 1963 by Liotta et

al. (1963). All VADs basically consist of (a) conduits (or cannulae - inflow and outflow)

and (b) pump. Unger (Unger, 1979) discussed all the inflow and outflow cannulation

sites in his lucidly illustrated review. In the case of LVADs, there are two methods of

implantation, with access via the left atrium or via the left ventricle. A left atrio-aortic

method is sufficient only for partial support of the heart. For a permanent implanta-

tion or for bridging to transplantation, a transapical left ventricular access can be used.

The arterial return with both methods is to the ascending or descending aorta or the

abdominal aorta.

The search for an ideal pump for ventricular assistance has been going on for

more than a century. We may differentiate between pulsatile devices with artificial heart

chambers, which are driven pneumatically or electrically, and non-pulsatile blood pumps.

Devices currently used are artificial ventricles (driven pneumatically or electromechan-

ically), roller pumps, and centrifugal pumps. The optimal volume of flow through the

parallel circuit of the VAD required for ideal circulatory assistance is not known. Flow

capacity of different designs of assist pumps varies from 3.5 I/mm (Utah pump of Peters)

to 14 1/mm (Thoratec Model VIC).

2.2.5 Mechanical Replacement: Total Artificial Heart

The demand for the development of the artificial heart has arisen due to the com-

plications in heart transplanation, and the problem in the selection of donors and their

availability. The old dream of replacing a failing heart by an artificial heart was first

realized in 1957 by Kollf's group (Kollf et al., 1959). The first artificial heart consisted

of a pair of sac-type ventricles. The main progress has been achieved by Kolif's group

with hemispherical ventricles driven pneumatically with a diaphragm-type membrane.

Numerous complications, such as hemorrhage and thromboembolism, plague clinical im-

plantation of pneumatic TARs. The main limiting design factors are represented by the

biomaterials, the artificial valves, and the driving systems. The required biomaterials

have to withstand loads with defined physical and chemical properties lasting up to 5

years.

The ultimate goal in designing artificial hearts has been a totally implantable device
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consisting of ventricles and integrated energy and control systems with electrical driving

systems. The transmission of energy through the skin could be realistic within the next

few years. The use of an electrostimulated skeletal muscle as an internal source of energy

has also been proposed (Frey et al., 1986; Ugolini, 1986).

2.2.6 Bridges to Transplantation

The idea of using an artificial heart as a bridge to a consecutive transplantation

dates back to the 1969 operation performed by Cooley. In the eighties several centres

started adopting the bridge concept to sustain patients awaiting transplantation, as an

alternative to impeding death from terminal heart disease (De Vries et a!., 1984). The

possible options for the bridges are: (a) IABP, (b) LVAD, (c) BVAD, (d) TAFT, (e)

biological bridge, (f) partial cardiac replacement. To date more than a hundred artificial

hearts have been implanted and about a hundred pulsatile ventricular assist devices. The

indication for bridging is given for a highly selected group of patients. The Jarvik TAH

has been successful as a bridge in 55% of cases.

The prospects are promising that in the next years we will see the demonstration of

a biologically activated energy converter capable of assuming the full pressure and volume

work of both ventricles. The next section will be devoted to a review of such devices.

2.3 SKELETAL MUSCLE-POWERED ASSIST DEVICES

The concept of biomechanical assistance dates back more than 50 years. A func-

tional autologous powered skeletal muscle is utilized as a source of energy to replace or

assist a failing or insufficient heart. Such a device would be completely implantable and

need no transcutaneous transfer of energy, conduits or immunological intervention.

The idea of using a skeletal muscle for active assistance of the heart was introduced

by Leriche and Fontaine (1933) in 1933. The first experiments were performed on dogs

applying pectoralis major muscle grafts. The same muscle was first applied in humans

by De Jesus (De Jesus, 1931) 1 and then by Beck (1935) with promising results. In 1958

Kantrowitz and McKinnen (1958) reported their method of wrapping diaphragm around

the heart and the aorta to compress them rhythmically, with synchronous stimulation of

the phrenic nerve in each systole. Shepherd (1969) first studied inlay and onlay grafts

of the heart as enlargement procedures using diaphragm muscle. Petrovsky used skeletal

muscle (diaphragm) on a large number of patients to reinforce the left ventricular wall

(Petrovsky, 1966). Termet and co-workers (1966) were the first group to use pedicled

latissimus dorsi (LD) muscle flaps and to indicate its advantages. In the next decade,

'Although, chronologically, De Jesus was the first to use skeletal muscle for cardiac assistance, the first
attempt is often attributed to Leriche and Fontaine, because De Jesus's work was unknown for sometime,
presumably because it was reported in a South American journal
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Kusaba et al. (1973), Spotnitz et al. (1974), von Recum et al. (1977), and their colleagues

experimented with diaphragm or rectus abdominis as pouches or onlay grafts. Each

group recognized the potential of these skeletal muscles for cardiac assistance from the

physiological point of view, but also their many limitations. All these investigators found

insuperable hindrances in muscle fatigue on repetitive stimulation at rates sufficiently

high to provide meaningful circulatory assistance.

Around the same time some major basic physiological concepts emerged which influ-

enced the whole approach of biomechanical assistance. Salmons and co-workers (Salmons

and Sreter, 1967; Salmons and Vrbova, 1969; Salmons and Henriksson, 1981) reported

on the nature of skeletal muscle plasticity and adaptive changes. In 1982 the concept of

electrical induction of fatigue resistance in skeletal muscles for use in cardiac reconstruc-

tion was advanced by Macoviak's group (MacQviak et al., 1982). Since then, the research

groups in Montreal (Dr. Chiu), Philadelphia (headed by Dr. Stephenson and Dr. Ander-

sen), Stanford, and Seattle have successfully conditioned the skeletal muscles to become

fatigue resistant at low frequencies without adverse effects. They documented the partial

histochemical conversion of fast-twitch fatiguable type II fibres to aerobic slow-twitch

fatigue-resistant type I fibres, rich in mitochondria, and more durable when stressed with

tetanic stimuli. However, a number of other problems, including graft fibrosis, dener-

vation atrophy, growth of the graft, blood/muscle interface, and thromboembolism, also

exist. These problems need to be addressed before skeletal muscle biomechanical assist-

ance can be evolved into a widely practised clinical procedure.

Depending on the type of surface seen by the blood, there are two main methods

of utilization of skeletal muscle for biomechanical assistance (Salmons and Jarvis, 1992):

1. preserving the natural endothelium lining of the patient's cardiovascular system:

cardiomyoplasty or aortomyoplasty

2. adding an additional surface (artificial material or autogenous biological lining) of

an independent structure that is connected to the patient's circulation:

pouches, SMV, SMT, energiser for TAHs or LVADs.

In general, those approaches fall into three main approaches to the use of skeletal

muscle:

1. Wrapping a layer of muscle around the heart, cardiomyoplasty, to produce inter-

mittent compression of the patient's left or right ventricle (see Fig.2.3 (A)) (Chagas

et al., 1989; Hagege et al. 1990); or wrapping a layer of muscle around the aorta,

aortomyoplasty, to produce compression of ascending or descending aorta directly

(Fig.2.3 (B)) (Pattison et a!., 1991), or indirectly arranging to inflate a cuff placed

around the vessel for contraction of the muscle (Fig.2.3 (C)) (Kochamba et a!.,

1988).

2. Configuring a layer of muscle as a separate, auxiliary ventricle, to operate either in

parallel with the right or left ventricle or in counterpulsation with the left ventricle.

42



These include for example auxiliary pouch-shaped or tube-shape ventricles, as a

skeletal muscle ventricle (SMV) (see Fig.2.3 (D)) or a skeletal muscle tube ventricle

(SMT) (Fig.2.3 (E)), that can be connected to the circulation as a synchronous or

counterpulsatory assist (Acker et aL, 1986; Anderson et al., 1991).

3. Using a skeletal muscle as the power source for mechanical assist devices, such as

mechanical artificial hearts or ventricular assist devices, via mechanical (Fig.2.3

(F)), hydraulic (Fig.2.3 (G)), or electrical (Fig.2.3 (H)) actuation (Frey et al., 1986;

Ugolini, 1986).

C
Latissimus
dorsi in situ	 -

z

. ;/

or

)SMV

GJJ/

I.

H

Energy
converter

Figure 2.3 Schematic examples of the approaches for skeletal muscle-powered assist
devices: (A) cardiomyoplasty, (B) aortomyoplasty, (C) compression of
aorta by a cuff, (D) skeletal muscle ventricle, (E) skeletal muscle tube
ventricle, (F) LVAD energised mechanically, (G) LVAD energised hydraul-
ically, (H) LVAD energised electrically. From Salmons and Jarvis (1992)
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All three approaches involve substantial bioengineering contributions in the devel-

opment of specialized implantable pacemaker and electrodes, valves, and non thrombo-

genic linings, and in the formulation of engineering science models for the evaluation

of pressure, flow, and shear stresses. 'The first approach represents the most conser-

vative option, since the presence of an uninterrupted endothelium minimises the risk of

thromboembolic complications' (Salmons and Jarvis, 1992). However, cardiomyoplasty

has been shown not to produce sufficient developed pressure compared with the SMV

(Anderson et al., 1988a). This is due to the geometric configuration. In fact, LDPGs

represent only one layer of muscle applied to the surface of the heart, while SMVs are

contructed with multiple layers wrapped in a spiral fashion to form a cone or a tube.

Because in the latter case the radius is smaller the pressure developed will be greater

according to Laplace's law. The first attempt o power biologically a mechanical blood

pump was made by Kusserow and Clapp (1964) in 1964. Twenty years later, the same

concept was applied by Ugolini and associates (Ugolini, 1986).

In the next subsections the approaches of biomechanical assistance will be dis-

cussed in detail. A more specific review on muscle characteristics will be presented in the

next sections, where cardiac muscle features (chemical, physiological, anatomical) will be

compared with the features of 'normal' and 'conditioned' skeletal muscle.

2.3.1 Cardioniyoplasty and Aortomyoplasty

Carpantier and Chachques introduced the term 'dynamic cardiomyoplasty' for car-

diac reconstruction with skeletal muscle grafts applied directly to the beating heart or

the aorta preserving the natural endothelial lining. There are three basic techniques for

cardiomyoplasty:

(a) Ventricular reinforcement, consisting of an electrostimulated LD wrapped around the

ventricles (Fig.2.4(a)).

(b) Ventricular substitution by means of a new biological cardiac wall composed of a

patch of autologous pericardium as neoendocardium and the electrostimulated LD

as myocardium (Fig.2.4(b)).

(c) Ventricular substitution and reinforcement of the remaining ventricular wall

(combination of procedures 1 and 2) (Fig.2.4(c)).

When substitution of the ventricular wall procedures are applied, in order to avoid

thrombogenic surfaces, the autologous pericardium has been used as the blood/biomaterial

interface. An alternative is to leave behind native endocardium.

Numerous investigators have grafted skeletal muscle to the heart. While skeletal

muscle ventricles have shown to generate adequate force for months (Acker et al., 1986)

the performance of a muscle wrap in cardiomyoplasty is less clear. Ironically, cardi-

omyoplisty has been the only clinical application of skeletal muscle augmentation to
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date. The technique was first applied to a human patient in 1985 in Paris by Carpentier

and Chachques's group (Carpantier and Chachques, 1985) using a pedicled LD muscle

graft stimulated synchronously with a significant increase of the wall motion and ejection

fraction.

It is possible to apply LDPGs to the heart in several different configurations. It was

found that graft orientation affects the cardiac output, and that the best performance is

obtained when fibre orientation of the two types of muscles coincides. This type of assist

suffers from a major limitation: the geometry of the pump is dictated by the size and

shape of the existing organs. In consequence, a grossly hypertropied heart may be too

large to be wrapped effectively by the patient's latissimus dorsi, and the small lumen of

the aorta restricts the stroke volume which can be achieved by compressing it. The fixed

geometry imposes loading conditions on the mucle wrap which are far from the peak of

its power curve (Salmons and Jarvis, 1992).

Nowadays over 24 institutions in Europe, Latin America, Canada, and the United

States are assessing the technique for the treatment of patients with severe heart fail-

ure. The current procedure uses the pedicled latissimus dorsi muscle (usually that of

the left side) secured around the cardiac ventricle. The muscle flap is then stimulated to

contract synchronously with the heart by means of a programmable, implantable muscle

stimulator triggered by R wave of the electrocardiogram. For the initial two weeks, blood

supply recovers and an adhesion of the flap to the heart is allowed, with the stimulator

off. A programme of graded stimulation is then initiated to transform the muscle. Clin-

ical results following cardiomyoplasty have been encouraging, with improvements in the

majority of patients (Hagege et al., 1990).

REINFORaMENT	 SUBSTITUTION	 REINFORMENT& SUBSTITU11ON

a	 b	 c

Figure 2.4a-c Different approaches of dynamic cardiomyoplasty. From Chachques
et al. (1989)

The first attempt in aortomyoplasty was by Kantrowitz 1958, who mobilized the

muscular part of the left hemidiaphragm and wrapped it around the distal descending

thoracic aorta. This augmentation was short-lived, owing to rapid muscle fatigue, but

laid the foundation for the development of the intra-aortic balloon pump.
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The major advantage of using aortomyoplasty is that it circumvents the problem

of blood-surface interaction. The effect of aortomyoplasty treatment is reminiscent of

the volume displacement produced by an intra-aortic balloon. Therefore, the benefits of

counterpulsation, with skeletal muscle contracting in diastole, ensue for both the heart

and the muscle itself. Successful counterpulsation has been achieved over several weeks

(Pattison et al., 1991). The muscle is stimulated 2 days after the operation to achieve

muscular contraction and conditioning at the same time (Cumming et al., 1991).

Effects of cardiomyoplasty combined with aortomyoplasty on dogs were reported

in a recent work of Takahashi and his colleagues (Takahashi et al., 1993). LD was used

around the heart, while the major pectoralis muscle wrapped around the ascending aorta.

Their work was carried out in Japan where for social reasons heart transplantation is not

practiced, and hence, use of skeletal muscles for assisting patients with heart disease

represents almost the only option for such patients. Results were compared with the

two treatments performed separately. They confirmed the findings of Carpentier's group

(Chachques et a!., 1988; Chachques et al., 1989) that using cardiomyoplasty, hemody-

namic parameters such as the systolic aortic pressure, dp/dt and the left ventricular

pressure increase significantly, while diastolic pressure remains unchanged. When cardi-

omyoplasty was combined with aortomyoplasty all parameters improved. The reason for

this is thought to be the fact that aortomyoplasty 	 acts	 as a new ventricle and

decreases left ventricular afterload.

2.3.2 Skeletal Muscle Ventricles

An alternative approach to the use of skeletal muscle for circulatory support is to

configure it as an auxiliary pumping chamber. The great advantage of this approach is

that the geometry of the ventricle can be optimized to provide the most favourable loading

conditions for the muscular wall, so that the pumping capabilities of the muscle are used

maximally. The only limitations of this approach, therefore, are the size, shape and fibre

orientation. A blood/muscle interface should be avoided as raw muscle is potentially

thrombogenic. In this case an additional surface is placed between the muscle and blood,

which may be a polymeric material (smooth segmentedpolyurethane) or an autogenous

biologicI lining. Consequently, there is the need to ensure that the introduction of

such a device into the patient's circulation does not cause thrombus formation, with the

attendant risks of obstruction of flow through the device and embolism to vital organs.

2.3.2.1 Construction of Skeletal Muscle Ventricles

Skeletal Muscle Ventricles can now be constructed and made to pump in vivo either

against mock circulation devices or in the circulation for weeks (Acker et al., 1986; Acker
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et a!., 1987a; Acker et al., 1987b). Because of its non-critical function, location, mass and

familiar use in reconstructive operation the latissimus dorsi muscle has been the muscle

of choice for most of the experimental studies. The latissimus dorsi is large and flat; it

is easy to mobilize into the thoracic cavity and can be moulded into various shapes. Its

principal function of LD is adduction of the forelimb. Other muscles used have included

the rectus abdominus, quadriceps femoris, pectoralis major, gluteus maximus, psoas, and

diaphragm (Ghosh, 1989).

To construct an SMV, the latissimus dorsi is freed from its attachments to the chest

wall, sacrificing penetrating collateral vessels but preserving the thoracodorsal nerve and

blood vessels. The muscle is then wrapped around a Teflon P.T.F.E. mandrel of a given

shape and size in an overlapping spiral (see Fig.2.5). The mandrel is either conical,

when forming pouch-type ventricles, or cylindrical, to produce tube-type or flow-through

ventricles. Generally, 1.5-2.5 muscle wraps ares obtained. The SMV can be placed inside

the thoracic cavity or left on the chest wall under the skin and subcutaneous tissue.

Electrodes are placed in position for subsequent stimulation of the thoracodorsal nerve

and the wound is closed. The muscle can be stimulated either directly, through the

muscle body, or indirectly through the thoracodorsal motor nerve (Khalafalla and Malek,

1989). However nerve stimulation allows a complete uniform transformation of the muscle

fibres to the fatigue resistant state by electrical preconditioning, where direct stimulation

promotes transformation segmentally in the area of the wire electrode (Macoviak et a!.,

1982).

Figure 2.5	 Schematic representation of the skeletal muscle ventricle construc-
tion from latissimus dorsi. From Anderson et al. (1989)

Loss of the collateral vessels renders the distal portion of the muscle ischaemic and

it has been found beneficial to introduce a post-operative delay of at least 3 weeks during

which a collateral circulation is allowed to develop (Mannion et al., 1986a). The condi-

tioning pattern of stimulation can be commenced at this stage, although preconditioning

of the graft has been found not to be strictly necessary in dogs (Acker et al., 1987b). The

electrical preconditioning process takes approximately 6 weeks. The muscle is stimulated
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to contract isometrically against the rigid Teflon mandrel at a rate of 54 contractions per

mm at 25 Hz (Acker et al., 1986). At the time the SMV is to be used, the mandrel is

replaced by a bladder of synthetic material in a second operation; this is then connected

to an apparatus for measuring pressure and flow or to the animal's own circulation.

The combination of a vascular delay period and electrical preconditioning allows

the SMV to be essentially fatigue resistant. Using radiolabeled microspheres, Mannion

et al. (1986b) demonstrated that all layers of an SMV receive substantial blood flow

following the vascular delay period while the ventricles are pumping In the circulation.

2.3.2.2 In Vivo Assessment of Skeletal Muscle Ventricles

Skeletal muscle ventricles have been constructed by several investigators, and they

reported encouraging results. Stevens and Brown for example (Stevens and Brown, 1986)

formed cylindrical pouches from the unconditioned canine rectus abdominus muscle and

connected it to a mock circulation device. Although it had been known for some time that

skeletal muscles transformed by chronic stimulation showed a high resistance to fatigue,

the tests had always been conducted under isometric conditions. Acute experiments

with conditioned SMVs showed that they were in fact capable of generating significant

pressures and flows for several hours (Mannion et al., 1987).

Most of the experiments in vivo have been performed on dogs. The main reason

for selecting this species is the observation that the latissimus dorsi muscle and the heart

are comparable both in size and anatomy to the human equivalents. However, compared

with the human LD muscle, canine skeletal muscle has a high basal level of oxidative

metabolism in which no increase is seen after electrical stimulation. The species that is

used to perform the experimental (in vivo) part of this study is the sheep. The reason

for this is that sheep are even closer than dogs to humans in size and other parameters

(Thoma et al., 1991).

An implantable mock circulation circuit used in the Philadelphia laboratory has

enabled long-term evaluation of the capabilities of SMVs to be undertaken without the

potential complexities of actually pumping blood. Coneshaped SMVs of 17 ml were tested

in the mock circulation device shown in Fig.2.6. This device provided for manipulation

of both SMV preload and afterload as well as SMV output. Skeletal muscle ventricles

underwent a 3-week vascular delay followed by a 6-week electrical preconditioning period;

they functioned for up to 9 weeks in conscious animals (Acker et al., 1986; Acker et al.,

1987b). In these experiments, it was arranged for the SMVs to pump against a pressure

of 80 mmHg with a preload of 40 mmHg. A subsequent study was designed to determine

functional characteristics of SMVs during the electrical conditioning process (Acker et

al., 1987a).
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Figure 2.6 Schematic representation of the mock circulation device. From An-
derson et al. (1989)

Similar experiments were conducted by the same group to prove that continuous

work is performed while skeletal muscle is undergoing adaptive transformation at the level

needed for an auxiliary cardiovascular pump. No period of electrical preconditioning

was applied to the SMVs, which were stimulated to contract immediately. The work

generated was intermediate between the work of the canine right and left ventricle. After

one week of continuous pumping, the performance of muscle conditioned and electrically

preconditioned muscle was essentially identical. After two months few animals were still

generating significant work. In subsequent experiments larger mandrels were used to form

the SMV, with a considerable improvement in performance under physiological conditions

of preloads (Bridges et al., 1989). Further evidence that a skeletal muscle can acquire

the capacity for sustaining continuous tetanic, cardiac-like work, after the second week of

muscle conditioning is reported from the experimental results carried out by Carraro et

al. (1991). Animal have survived up to two years with skeletal muscle ventricles without

thromboembolism (Mocek et al., 1992).

2.3.2.3 Skeletal Muscle Ventricles as Diastolic Counterpulsators

Skeletal muscle ventricles can be configured in series with the descending aorta as

shown in type A of Fig.2.7, in parallel as in type C, or in an adjacent configuration as

in type B. Skeletal muscle ventricles configured (type B) to function as diastolic counter-

pulsators are connected in series with the thoracic aorta. These SMVs are designed to

pump blood, augment aortic diastolic blood pressure , and reduce mean systemic afterload

during systole. They have shown to produce significant diastolic augmentation for many

weeks with a substantial reduction in left ventricular stroke work and augmentation of

coronary blood flow.
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The Philadelphia research group headed by Dr. Stephenson has tested SMVs in

series and in parallel to the heart (Anderson et al., 1989). Mannion demonstrated electric-

ally preconditioned SMVs working as diastolic counterpulsators were able to function well

in the circulation for many hours (Mannion et al., 1986a; Mannion et al., 1987). Acker et

al. (1987b) demonstrated that skeletal muscle ventricles could function as long-term dia-

stolic counterpulsators, pumping blood in the circulation. In order to obtain experience

of the operation of such devices in the canine systemic circulation, a tubular ventricle

(SMT) was interposed in the descending aorta and stimulated in counterpulsation with

the heart. In fact this configuration would be less likely to precipitate thromboembolic

events. These SMTs produced significant diastolic augmentation for several weeks (Acker

et al., 1987a).

The performance of the ventricles, and their response to different frequencies of

stimulations was documented by the work of salmons and Stephenson (1989). Recently,

long-term aortic diastolic counterpulsation has been achieved with SMVs of improved

design lined with pleura or pericardium (Anderson et al., 1991).

Type A

Type B

(Our choice)

Muscle mess
	 Type C

Figure 2.7 Possible configurations of a SMV in the circulation. From Khalafalla
and Malek (1989)

2.3.2.4 Skeletal Muscle Ventricles in-parallel with the Left Ventricle

As mentioned above the first skeletal muscle pouches were constructed from canine

rectus by Spotrtitz et al. (1974). As said earlier, the research group in Philadelphia

has directed effort toward using skeletal muscle to form pouch-shaped or tube-shaped

ventricles in parallel to the heart which when placed in the circulation can pump blood

effectively for at least several days (Andersen et al., 1989). The biomedical engineering

research group at Purdue University (West Lafayette, USA), has studied the in vivo

application of skeletal muscle ventricles in parallel to the heart in dogs (see Fig.2.8).

An SMV was constructed by wrapping the untrained rectus abdominus muscle around

a valved compressible pouch that was inserted into the left ventricular apex (with no

valve) and to the aorta via a one-way valve. Consequently, the pressure in the SMV
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pouch is always equal to LV pressure. This configuration allows for (i) a low pouch

diastolic pressure, which together assures a high muscle capillary blood flow, and (ii) a

high precontraction pressure , which assure a forceful muscle contraction.

No Valve

Pulse Gener_Z

SMV Stimulating Leads	 I	 Z-	 VS-SMV
Stroke Volume

Rectus Muscle''

Valve

Figure 2.8 SMV in parallel connected between the left ventricle without a valve
and the aorta with an outlet valve. From Geddes et al. (1993)

The first to connect a double valved, air-compressed pouch between the left vent-

ricle and aorta in a chronic calf study was LaFarge et a! (1968). Similar double-valved

pouches were powered by skeletal muscle in the experimental studies conducted in dogs

by (Drinkwater et al., 1980; Neilson et al., 1985; Badylack et a!., 1989). Wessale et al.

(1991) showed that there was an increased cardiac output during SMV assistance, with

an unloading of the left ventricle. Stimulation parameters have been optimized for spe-

cific studies (Geddes et al., 1993) in terms of pulse duration, frequency and delay to the

ventricle contraction, those being a function of the fluid dynamics of the pumping system,

which in turn depends on the geometry and size of chamber and conduits.

2.4 MUSCLE MECHANICS

Muscle is a generator of mechanical work from chemical fuel. In order to understand

the mechanisms of this generation first muscle structure will be analyzed at macro- and

micro-anatomic level, then muscle mechanics will be introduced pointing out differences

between skeletal muscle and cardiac muscle.

There are three kinds of muscle: skeletal, heart, and smooth muscles. Skeletal

muscle makes up a major part of the animal body. It is the prime mover of animal loco-

motion, and is controlled by voluntary nerves. It has the feature that if it stimulated at

a sufficiently high frequency, it can generate a maximal tension, which remains constant

in time. It is then said to be tetanized. Since a resting skeletal muscle is a visco-elastic
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material with quite ordinary properties, the really interesting part of the properties of

skeletal muscle is the contraction. Hence skeletal muscle is often studied in the tetanized

condition. Heart muscle is also striated like skeletal muscle, but in its normal function

it is never tetanized. Smooth muscles are not striated, and are not controlled by volun-

tary nerves. There are many kinds of smooth muscles, with widely different mechanical

properties.

2.4.1 Skeletal Muscle Structure

Most mammalian muscles contain a mixture of fibre types and motor units. Generally,

whole muscles contain a heterogeneous nixture of fast-contracting and slow-contracting

fibres, as well as fibres with high endurance and low endurance. The organization of

skeletal muscles is hierarchic and is shown in Fig.2.9.

Myolibril

______________	 I, ___________ FIIi

-	 ___

Myouilaments

Myosin

Actin

Figure 2.9 The organizational hierarchy of skeletal muscle. From Gray's Ana-
tomy, 35th edn. (1973), Warwick and William (eds).
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2.4.1.1 Skeletal Muscle Fibres

The following discussion on skeletal muscle fibres is largely based on the material

published by Lieber (1992). Skeletal muscle fibres are cells that, in many ways, are like

any other body cell. However, because muscle cell function is highly specialized to pro-

duce force and movement, the cellular components are also specialized (Fig.2.10). Muscle

cells (fibres) are cylindrical, with a diameter ranging from about 10 jim to about 100 jim.

Moo,

Nerd.

Figure 2.10 Schematic representation of the muscle cell. From Lieber (1992)

The muscle fibre diameter determines its strength and use. Muscle fibre length is

highly variable, depending on the muscle architecture. This plays an important role in the

attainment of fibre contraction velocity and distance over which the fibre can shorten. The

muscle cell contains an array of filamentous proteins as well as other subcellular organelles

such as mitochondria, nuclei, sarcoplasmic reticulum, and the transverse tubular system.

Nuclei are located at intervals along the cell length. These, as cell nuclei, control

the scheduling and type of cell material that must be distributed throughout the cell.

Protein synthesis is coordinated by the nucleus and performed on ribosomes. The amount

and type of muscle proteins present confer on the cell its strength, speed, and endurance

properties.

Muscle rnitocondria are responsible for the aerobic generation of the main cellular

energy molecule, adenosine triphosphate (ATP). ATP is used throughout the cell, for

example, for muscle contraction, ion transport, protein syntesis, and cellular repair. The

location and distribution of mitocondria are dependent on the particular muscle fibre type.

Mitocondria density is important in determining the muscle fibre's endurance properties.

The actual amount of mitocondria in the highly oxidative fibres may exceed 20% of the

total cell volume (Einsenberg, 1983).

The most distinctive feature of the muscle is the ordered array of contractile fila-

ments that are arranged throughout the cell. A well-defined hierarchy of filament organiz-

ation proceeds from large (the order of microns) to a small scales of angstrom dimensions.
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The largest functional unit of contractile filaments is the i-nyofibril. Myofibrils are simply

a string of sarcomeres arranged in series. The myofibrils are arranged in parallel (side

by side) to make up the muscle fibre; thousands of myofibrils can be packed into a single

fibre. The functional consequence of this arrangement is that the various myofibrils may

not act completely independently during normal contraction.

Myofibrils can also be subdivided into sarcomeres arranged in series. The total

distance of myofibrillar shortening is equal to the sum of the individual shortening dis-

tances of the individual sarcomeres. Sarcomeres are composed of contractile filaments

termed myofilaments. Two major sets of contractile filaments exist in the sarcomeres

(Fig.2.11). They represent large polymers of the proteins myosin (thick filament) and

actin (thin filament). These filaments interdigitate to generate muscle shortening and

form a hexagonal lattice. This interdigitated pattern gives the muscle its striated ap-

pearance observable microscopically by virtue of the dark and light banding pattern.

The sarcomere region containing the myosin filaments is known as the A-band and that

containing the actin filament the I-band. The region of the A-band where there is not

actin-myosin overlap is called the H-zone. The dark narrow line that bisects the I-band is

the Z-band. If the muscle contracts greatly, the I and H bands may narrow to extinction,

but the A bands remain unaltered. Finally, the relatively dense structures noted in the

centre of the A-band are known as the M-band. The distance from one Z-band to the

next is defined as the sarcomere length, which is an important variable relevant to force

generation. The hexagonal pattern of arrangement of these filaments is shown in Fig.2.11.

While the myosin-containing filament generates tension during the muscle con-

traction, the actin-containing filament regulates tension generation. Actin monomers

are relatively small and roughly spherical in shape; their arrangement creates a long

groove along the filament's length where the regulatory protein (tropomyosin) fits. At

intervals along the filament the protein troponin (Tn) is located. This is responsible for

turning on the contraction.

A meshlike sheath of collageneous tissue, called endomysium, surrounds the muscle

fibre. This plays some role in the passive mechanical properties of the fibre. Bundles

of fibres, each surrounded by endomysial tissue, are organized into muscle fascicles, each

surrounded by a more stout perimysial tissue. Finally, bundles of fascicles are organ-

ized into muscles, surrounded by epimysial connective tissue. Finally, the macroscopic

organization of the muscle fibres also determines a muscle's contractile properties.

In addition to the well-defined arrangement of force-generating components present

in muscle cells, there is an intricate membrane system for causing these force generators

to act. This is composed of two main components: the transverse tubular system (T-

system) and the sarcoplasmatic reticulum (SR). The function of the T-system is to convey

an activation signal to the myofibrils, which are themselves not in direct contact with the

motorneuron. The SR has the main function to release and take up calcium during

contraction and relaxation, respectively. As such, the SR envelops each myofibril to

permit intimate contact between the activation and force-generation systems. The SR
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is also in contact with the T-system and therefore acts as the 'middleman' in skeletal

muscle activation and relaxation.
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Figure 2.11 The structure of a myofilament, showing the spatial arrangement of
the actin and myosin molecules. From Gray's Anatomy, 35th edn.
(1973), Warwick and William (eds).

Numerous microscopic methods have been used to examine skeletal muscle struc-

ture. Early light microscopes did not provide a great deal of insight into the structure of

the living muscle fibre due to its translucency. The interference microscope developed by

A. Huxley (1952) allowed the striated appearance of the muscle fibre to be seen. During

a similar period, H. Huxley and Hanson (1954) developed preparative methods for the

then-new electron microscope, and observed the hexagonal lattices and the actin and

myosin filaments. The X-ray diffraction method provided the muscle structural changes

during contraction (Huxley et al., 1981).

2.4.2 Activation Process

Peripheral nerves innervate skeletal muscles so that neural activation precedes

muscle contraction. This process is known as excitation-contraction cotLpling (EC coup-

ling), and comprises a sequence of events. The first step in the EC coupling chain is

the generation of the peripheral nerve action potential that arrives at the neuromuscular

junction, that is the interface between muscle and nerve. The end of the nerve contains

packets of the neurotransmitters acetylcholine (ACh), which causes muscle fibre excita-

tion. The action potential is conducted deep into the fibre by the T-system, by signalling

the SR to release calcium in the regions of myofilaments. The calcium ions bind to

troponin, which in turn releases the inhibition on the actin filament, permitting interac-

tion with the myosin filament and resulting in cross-bridge cycling, i.e. force generation.

55



When the neural impulse ceases, calcium is pumped back into the SR by the calcium-

activated adenosine triphosphatase (ATPase) enzyme. Calcium levels in the region of

the myofilamerits drop below a critical level, thin filament inhibition again resumes, and

actin-myosin interaction is prevented. This inhibition is manifested externally as muscle

fibre relaxation. The time required for activation, contraction, and then relaxation to

occur is finite. Excitation (with accompanying calcium release) is relatively rapid (about

5 ms), while contraction and relaxation are relatively slow (of the order of about 100 ms).

Successive twitches may act additively to produce a stronger action. A critical

frequency is reached at which the successive contractions fuse together. This is the

tetanized state. For frequencies higher than the critical frequency further increase in the

force of contraction is slight.

2.4.3 The Cross-Bridge Cycle and Skeletal Muscle Energetics

Much of our understanding of the mechanism of muscle contraction has come in

large part from the excellent biochemical studies performed from the 1950s to the mid-

1970s, see for example (Mommaerts, 1969). It was during this period that methods for

isolating specific muscle proteins were developed as well as the methods for measuring

their physicochemical and biochemical properties. In its simplest form, the cross-bridge

cycle can be envisaged as actin combining with myosin and ATP to produce force, aden-

osine diphosphate (ADP), and inorganic phosphate, P. ATP serves at least two functions

in skeletal muscle systems: 1) it disconnects and 2) reconnects actin and myosin. In more

detail, in contracting skeletal muscle, ATP binds to the actin-myosin complex, causing

actin and myosin to dissociate. When it does, ATP is hydrolyzed by the S-i portion of

the myosin molecule into ADP and F1 , which then allows actin and myosin to reassociate.

Muscle cells require energy to perform their normal functions and force generation.

Glucose serves as the major energy source of the cell. There are two main processes

by which glucose can be oxidized to yield energy that is useable by the cells: glycolysis,

and oxidative phosphorylation. Glycolysis does not require oxygen and occurs within the

soluble cytoplasm of the cell; oxidative phosphorylation requires oxygen and occurs within

the mitocondria. ATP is the primary energy molecule used in the cross-bridge cycle. In

the glycolysis process for every molecule of glucose metabolized, two ATF molecules are

created. While glycolysis can supply the energy needs of the cell, it is not extremely

efficient. Lactate buildup after glycolysis can alter the intracellular pH, thus changing

cellular contractile and metabolic activity. In addition, lactate clearance requires further

bodily energy. When oxygen is present, the preferable pathway for glucose metabolism is

to oxidize glucose completely by oxidative phosphorylation. This process yields 32 ATP

per glucose molecule.
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2.4.4 Skeletal Muscle Mechanics

The following discussion is based on the approach used by Noordergraaf (1978).

During most of the nineteenth century, activated muscle was regarded in mechanical

sense as a stretched spring with a store of potential energy. Shortening was then looked

upon as a release of this energy. The concept of the stretched spring was found inadequate

when Fick (1891) discovered that the stored energy during stretching

	

j
K(1 - lo)dl
	

(2.2)

in which K is the spring constant, 1 the instantaneous and l the initial length, was less

than the energy released by shortening oyer the same distance 1 1 - to

ph
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J 10

where F is the force exerted by the muscle and LQ the heat generated during shortening.

This discrepancy led to the introduction of the viscoelastic model by Hill (1922).

This model considers an elastic force in combination with a viscous force which opposes

the shortening. However, upon inspection of the thermodynamics aspects, Fenn (1923)

found Hill's ideas unacceptable, and discovered that the 'Fenn effect', namely the sum of

the external work performed, E, and the dissipated heat iQ,

phi

	

E + zQ = / Fdl + zQ	 (2.4)
J 10

is not constant, but a function of the speed with which the distance 1 - I is covered.

It transpired gradually that the contractile force F was a function of the speed of the

contraction v (Fenn and Marsh, 1935). This understanding was crystallized in Hill's now

classic model of skeletal muscle, which marked a new era in muscle research (Hill, 1938;

Hill, 1949-1950; Hill, 1950; Hill, 1953). Hill's model consists of two elements in series

(Fig.2.12): a passive elastic (nonlinear) element (SE) and a contractile element (CE).

These obey the relationship:

	

(P + a) x v = b x (P0 - P)	 (2.5)

or its equivalent

	

(P + a) (v + b) = constant	 (2.6)

where a and b are constants 1 derived experimentally (usually about 0.25), P is the muscle

force, P0 the maximum tetanic tension, and v the muscle velocity of contraction. This

equation can be used to determine the relative muscle force that occurs as a muscle is

allowed to shorten. Roughly, if we ignore the constants a and b the equation states that

the rate of work done, and thus the rate of energy conversion from chemical reaction, is

a constant. This seems reasonable in the tetanized condition s for which the equation was
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derived. This equation is in contrast to the viscoelastic behaviour of a passive material, for

which the higher velocity of deformation calls for higher forces that cause the deformation.

Therefore, the active contraction of a muscle has no resemblance to the viscoela.sticity of

a passive material. The original derivation of Hill's equation is presented in APPENDIX

A.

CE

Figure 2.12 Hill's two-element model of skeletal muscle consisting of a passive
elastic element SE and a contractile element CE. From Noordergraaf
(1978)

2.4.4.1 Length-Tension Relationship: Isometric Muscle Contraction

Since the late 1800s, it has been known that the force developed by a muscle during

isometric contraction (when the muscle is not allowed to shorten) varies with its starting

length (see review by Podoisky and Shoenberg, 1983). The isometric length-tension curve

is generated by maximally stimulating a skeletal muscle at a variety of discrete lengths

and measuring the tension generated at each length. When maximum tetanic tension at

each length is plotted against length, a relationship such as that shown in Fig.2.13 is usu-

ally obtained. While a general description of this relationship was established early in the

history of biological science, the precise structural basis for the length-tension relation -

ship in skeletal muscle was not elucidated until the sophisticated mechanical experiments

of the early 1960s. These experiments defined the precise relationship between myofil-

ament overlap and tension generation, which we refer to today as the length-tension

relationship. In its most basic form, this relationship states that tension in skeletal

muscle is a direct function of the magnitude of overlap between the actin and myosin

filaments.

in the late 1950s and early 1960, Gordon et al.(1966), and Edman (1966) proposed

that in order to determine the detailed structural basis for the length-tension relationship,

isolated, intact, single skeletal muscle fibres are required. The mechanics of the sarcomere

is the foundation on which the mechanics of muscle bundles can be built by the

addition of other constituents. A. Huxley (1957) designed a mechanical apparatus to
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keep a small segment of the fibre at a constant length, that is, to keep a region of the

fibre at a constant sarcomere length.
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Figure 2.13 The sarcomere length-tension curve for frog skeletal muscle. Insets
show schematic arrangement of myofilaments in different regions of
the length-tension curve. Dotted line represents passive muscle ten-
sion. From Lieber (1992)

The results of the classic experiments by Gordon, Huxley and Julian (1966) are

summarized in Fig.2.13, where muscle relative tetanic tension (as a percentage of max-

imum) is plotted as function of sarcomere length (tim). During the extreme stretching

of the muscle to a sarcomere length of 3.65 m, the latter developed no active force. In

fact, since the myosin length is 1.65 im long and the actin filament is 2.0 m in length,

at a sarcomere length of 3.65 there is no overlap between the actin and myosin filaments,

that is no myosin cross-bridges are in the vicinity of the actin active sites. Hence, no

force generation may occur. During shortening of the muscle, overlap between actin and

myosin was possible, and the amount of force generated by the muscle increased as sar-

comere length decreased (because the number of cross-bridges between actin and myosin

increased) until the muscle sarcomere length reached length of 2.2 im. This region of the

length-tension curve is known as the 'descending limb'.

As the length of sarcomere changed from 2.0 to 2.2 j.im, the muscle force remained

constant. This was because no additional cross-bridge connections were made. In fact,

there exists a bare region of the myosin molecule that is devoid of cross-bridges, as a

result of the myosin molecules coming together in the centre of the myosin filament. This

region of the curve is known as the plateau region. The length at which the maximum

tetanic tension (Po) is obtained is known as the optimal length (L0).

It might be predicted that shortening past the sarcomere length of 2.0 m would

be impossible. However, after this point actin filaments from one side of the sarcomere

double overlap with the actin filaments on the opposite side of the sarcomere. The actin

filament from one side interferes with the cross-bridge formation on the other side of the

sarcomere, and this results in decreased muscle force output (shallow ascending limb).

At shorter lengths the myosin filament actually begins to interfere with shortening as it
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abuts on the sarcomere Z-disk, reducing force precipitously (steep ascending limb).

The dotted line in Fig.2.13 represents the tension generated if a muscle is stretched

to various lengths without stimulation. Near the optimal length, passive tension is almost

zero. However, as the muscle is stretched to greater lengths, passive tension increases

dramatically. This means that passive tension can play a role in providing resistive force

even in the absence of muscle activation. Recent studies performed by Magid and Law

(1985) on chemical stripping of sarcolemma have demonstrated that the source of the

passive tension is a new structural very large protein (titin) which connects the thick

myosin filaments end to end. This is very fragile and thus has probably been missed

in earlier studies. In addition to passively supporting the sarcomere, titin stabilizes the

myosin lattice so that high muscle forces do not disrupt the orderly hexagonal array.

2.4.4.2 Force-Velocity Relationship: Isotonic Muscle Contraction

Unlike the length-tension relationship, the force velocity relationship does not have

a precise, anatomically identifiable basis. The force-velocity relationship states that the

force generated by a muscle is a function of its velocity, or conversely, that the velocity of

muscle contraction is dependent on the force resisting the muscle. This relationship was

historically also used to define the kinetic properties of the cross-bridges.

Experimental elucidation of the force-velocity relationship was first presented by

Hill and Katz in their classic papers (Hill, 1938; Katz, 1939). The current description has

been ascribed to Hill (1970), who, in his decades of important muscle studies, generated

an equation for the muscle force-velocity relationship that is still in use today.

Experimentally, the force-velocity relationship is a curve that actually represents

the results of many experiments plotted on the same graph. A muscle is stimulated

maximally and allowed to shorten (or lengthen) against a constant load. The muscle

velocity during shortening (or lengthening) is measured and then plotted against the

resistive force. The general form of this relationship is plotted in Fig.2. 14. The horizontal

axis represents the ratio of muscle velocity relative to maximum velocity (Vmax), while

the vertical axis is the ratio of muscle force relative to maximum force (Po).

When a muscle is activated and required to lift a load that is less than its maximum

tetanic tension, the muscle begins to shorten. Contractions that permit the muscle to

shorten are called concentric contractions. In this case, the force generated by the muscle

is always less than the maximum P0 . As the load that the muscle is required to lift de-

creases, contraction velocity increases. This occurs until the muscle reaches its maximum

contraction velocity Vmax. The mathematical form of the force-velocity relationship is a

rectangular hyperbola and is given by eq.(2.5).

The physiological basis of the force-velocity relationship is determined by the fact

that the cross-bridges between actin and myosin both attach and detach at certain rates.

These rates are referred to as 'rate constants'. At any point in time, the force generated

-
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by a muscle depends on the number of cross-bridges attached. Because it takes a certain

amount of time for the cross-bridges to attach (based on the rate constant of attachment),

when the filaments slide past one another increasingly rapidly (i.e. as the muscle shortens

with increasing velocity), the force decreases due to the lower number of cross-bridges

attached. Conversely, as the relative filament velocity decreases (i.e. as muscle velocity

decreases), more cross-bridges have time to attach and to generate force, and thus force

increases.

As the load on the muscle increases, it reaches a point where the external load is

greater than the load which the muscle itself can generate. Thus the muscle is activated,

but it is forced to lengthen due to the high external load. This is referred to as eccentric

contraction (contraction does not necessarily imply shortening). The absolute tensions

are very high relative to the muscle's maximum tetanic tension generating capacity, and

it is independent of lengthening velocity. Hence, skeletal muscles are very resistant to

lengthening.
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Figure 2.14 The muscle force-velocity curve for skeletal muscle. Insets show
schematic representation of cross-bridges. From Lieber (1992)

2.4.4.3 Length-Tension-Velocity Relationship

The muscle force changes with changes in length and/or due to changing velocity.

This means that when muscle length and muscle velocity change simultaneously, it is

still possible to define the muscle force produced. The length-tension experiment can

be viewed simply as a series of length-force-velocity experiments at constant velocity

(zero), and the force-velocity relationship can be viewed as a series of length-force-velocity

experiments performed at constant length L0 . The point shared bewteen the classic force-

velocity and length-tension curves is the point of maximum isometric tension (L0 at zero

velocity, resulting in a tension P0).
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The appearance of the length-tension-velocity relationship is shown in Fig.2.15. If

the muscle velocity is very high, the force will be independent of length. This means that

at high velocity length is not very important. At low concentric velocities, muscle length

becomes an important force modulator. At eccentric velocities, again muscle velocity
dominates length as the determinant of force.

-

Figure 2.15 The hypothetical muscle surface for skeletal
muscle. Shaded regions represent a Slice of the surface at either
constant length or velocity. From Lieber (1992)

2.4.4.4 Hill's Three-Element Model

Hill's equation was derived from quick-release experiments on frog muscle in tet-

anized condition. It reveals only one aspect of the muscle behaviour. To be able to

model situations where a slow release occurs or strain varies with time, or where a

muscle is unstimulated a comprehensive approach is necessary. Several methods have

been proposed, the best known being 'Hill's three-element model'. Two alternative con-

figurations of three-element models have been proposed: the Voigt Model and Maxwell

Model (Fig.2.16). That favoured by Hill was the Maxwell model. Brankov and Petrov

(1978) demonstrated that if a nerve signal is used as a physiological parameter, instead of

Ca concentration, Hill's three-parametric model should be replaced by a five-parameter

model.

The muscle is regarded as an accumulation of identical sarcomeres. The model

(Fig.2.17) represents an active muscle as composed of three elements. Two elements

are arranged in series: (a) a contractile element, which at rest is freely extensible (zero

tension), but when activated is capable of shortening; and (b) an elastic element arranged
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in series with the contractile element. To account for the elasticity of the muscle at rest,

a 'parallel elastic element' is added. The passive tissue state is modelled by substituting

a viscous element for the contractile element.
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Figure 2.16 Alternative configurations of the three-element models. 	 From
Noordergraaf (1978

1

Figure 2.17 Hill's functional model of the muscle. From Fung (1981)

Most authors would identify the contractile element with the sliding actin-myosin

molecules, and generation of active tension with the number of active cross-bridges

between them. The series elasticity may be due to the intrinsic elasticity of the actin

and myosin molecules and cross-bridges, and of Z band and connective tissues. It may

arise also from the nonuniformity both of the sarcomeres and of activation of the myofib-

ru filaments. The parallel elasticity may be due to connective tissues, cell membranes,

mitochondria and collageneous sheaths.

Assuming that the contractile element contributes no tension in a resting muscle,

then the stress-strain-history relationship of a resting muscle determines the constitutive

equation of the parallel element. The difference between the mechanical properties of the

whole muscle and those of the parallel element then characterizes the contractile and series

elastic elements in combination, whose division of the total strain is not uniquely iden-

tifiable. However, a model may be postulated by assuming that the contractile element

is tension-free when the muscle is in the resting state (resting state is unique), and that
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the series elastic element is truly elastic (not viscoelastic). The mathematical derivation

of the basic dynamic equations for this model are in APPENDIX B. Modifications have

been proposed to make the series and parallel elements viscoelastic. Other approaches

result in different configurations for these elements, with one element parallel with the

contractile, and another in series with the combination. The basic difficulty with Hill's

model and all its modifications is that the division of forces between the parallel and

contractile elements, and the series elastic, is made by introducing auxiliary hypotheses

on which depend the experimental evaluation of the properties of the elements.

2.4.4.5 Distribution-Moment Model

The models discussed above employ a functional formulation of the state variables of

the closed system of thermodynamics. Extraordinary advances have been made in recent

years in understanding the mechanism of muscular contraction at the molecular level

applying increasingly sophisticated experimental methods, such as diffraction analysis,

micromechanical perturbations, microcalorimetry, and fast time resolution of chemical

kinetics. These advances, however, appear to have had little impact on macroscopic

biomechanics. Although biophysical theories of molecular contraction dynamics admit of

precise mathematical formulation and analysis, even in the simplest versions the resulting

equations are too complex for direct application. Recently, a muscle contraction model

based on the molecular structure (the open system of thermodynamics) has been proposed

by Zahaiak (1986; 1990; 1994), as a reasonably close connection between the simplified

muscle models employed by the biomechanicists and the more complex models of the

biophysicists. His technique, dubbed the 'Distribution-Moment (DM) Approximation',

uses simple state-variable models of muscle extracted from A.Huxley's cross-bridge theory

(Huxley, 1957), and also developed in detail in (Peskin, 1973-74).

The DM theory focuses on the low order moments of the. actin-myosin bond-

distribution function, as these moments are related directly to important macroscopic

variables of muscle function namely stiffness, force, and elastic energy. This approach

has been used to develop a muscle-fibre model that encompasses the salient features of

activation, contraction, energetics, and metabolism. Although the DM approach suf-

fers the disadvantage of complexity with respect to the Hill-type models, it offers the

advantage of simplicity with respect to the Huxley-type kinetic-molecular models.

2.4.5 Heart Muscle Structure

Myocardial cells are also striated in the same way as skeletal muscle cells, and their

ultrastructure is also very similar. While the basic mechanism of contraction is the same,
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important differences do, however, exist. The most significant difference between skeletal

and cardiac muscle is the semblance of a syncytium in cardiac muscle with branching

interconnecting fibres. The myocardium is not a true anatomical syncytium. At the

ends, each myocardial cell is separated from its neighbour by dense structure, intercalated

discs, which are continuous with the sarcolemma. Nevertheless, cardiac muscle functions

as a syncytium, since a wave of depolarization is followed by contraction of the entire

myocardium when a suprathreshold stimulus is applied to any one focus in the atrium.

Graded contraction, as seen in skeletal muscle by activation of different numbers of cells,

does not occur in heart muscle. All cells of the heart act as a concerted whole (all-or-

none-response).

The second difference is the abundance of mitochondria in cardiac muscle as corn-

pared with their relative sparsity in skeleIal muscle. The heart muscle relies on the large

number of mitochondria to keep pace with its energy needs. The skeletal muscle is called

on for relatively short periods of repetitive or sustained contraction, and relies only partly

on the immediate supply of energy by mitochondria, the remaining energy being supplied

by anaerobic metabolism, which builds up a substantial oxygen debt. In contrast, car-

diac muscle has to contract repetitively for a lifetime, and is incapable of developing a

significant oxygen debt.

A third difference is the abundance of capillary blood vessels in the myocardium as

compared with their relatively sparse distribution in the skeletal muscle. This is consistent

with the greater need of the myocardium for an immediate supply of oxygen and substrate

for its metabolic machinery. The exchange of substances between the capillary blood and

myocardial cells is helped further by a system of longitudinal and transverse tubules (T

tubules), that play a part in excitation-contraction coupling.

Recent studies have revealed an extensive network of connective tissue in the

myocardium, see for example (Robinson et al., 1987). This extracellular matrix is or-

ganized into a distinct hierarchy of different structures. Robinson classified these struc-

tures using a terminology associated with the organization of connective tissue network

in skeletal muscle. The connective tissue network surrounding individual myocytes or

coupling adjacent myocytes is called endomysiurn; perimysitLm is the collagen network

surrounding groups or bundles of fibres and linking contiguous bundles; and epymysium

is the connective tissue coat surrounding the entire muscle. This scheme, generally accep-

ted, works well for papillary muscle and trabeculae, the myocardium which most closely

resembles skeletal muscle, but is less appropriate for ventricular myocardium.

2.4.6 Cardiac Muscle Mechanics

Mechanically, the most important difference between cardiac and skeletal muscles

lies in the importance of the resting tension in the normal function of the heart. However,

other differences like the time dependence of the active state, the dependence of the active
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state on the mechanical history of the contraction, the length-dependence of developed

tension in the physiological range of lengths, need to be take into account in a muscle

mechanics study.

Fig.2.18 shows the relationship between the end-diastolic volume and the end-

diastolic and peak systolic pressure in the left ventricle of a dog. If the tension is computed

from the pressure and is plotted against the length of muscle fibres, a diagram similar

to Fig.2.13 will be obtained with the ordinate and abscissa giving respectively muscle

tension and muscle length. When such a diagram is compared with Fig.2.13 for the

skeletal muscle, two observations can be made: (a) in the normal (physiological) range

of muscle length, the resting tension is entirely negligible in the skeletal muscle, but is

significant in the heart muscle; (b) because of the resting tension, the operational range

of the length of the heart muscle is quite limited, whereas that of the skeletal muscle can

be larger.
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Figure 2.18 Relationship of the left ventricular end-diastolic volume to end-
diastolic and peak systolic ventricular pressure in intact dog heart.
From Fung (1981)

Initial studies of cardiac mechanics concentrated on the active state, and the pass-

ive state was ignored. The first attempts to characterize fully the mechanical properties

of passive myocardium are due to Pinto and Fung (1973). From the mechanical point

of view, a heart muscle in the passive state is an inhomogeneous, anisotropic, and in-

compressible material. Its properties change with temperature and other environmental

conditions. It exhibits stress relaxation under maintained stretch, and creep under main-

tained stress (Fung, 1970). It dissipates energy and has a hysteresis loop in cyclic loading

and unloading. Thus, heart muscle in the resting state is viscoelastic (Pinto and Pat-

itucci, 1980). When a heart muscle is subjected to a cyclic loading and unloading at

a constant strain rate, the stress-strain curve stabilizes into a unique hysteresis loop,
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which is independent of temperature (in the range 5-37° C) and is affected by the strain

rate only in a minor way. Thus the pseudoelasticity concept is applicable (see section

2.8.1)(Fung, 1981).

The differences in properties between skeletal and cardiac muscle have compounded

the difficulties encountered in quantitative studies of cardiac muscle. In spite of this, the

pattern followed by researchers of skeletal muscle has been adopted by several workers in

the field of cardiac muscle. Roughly speaking, Hill-like models are similarly applicable.

The only modification that is needed is to introduce a factor of an 'active state' to relate

the maximum force and the maximum velocity that occur in Hill's equation with the

time after stimulation. The confirmation is quite good if the muscle is tested at a length

so small that the resting tension in the parallel element is negligible compared with the

active tension. The existence of the rest4 tension requires that a model for heart muscle

behaviour must consist of at least three elements.

In consistency with the above, the Voigt and Maxwell models have been pro-

posed. Hefner and Bowen (1967) adopted a three-element model identical to the one

denoted in Fig.2.16(a) (parallel resting tension). Brady (1967) selected an alternative

(Fig.2.16(b))(series resting tension), while Parreley and Sonnenblick (1967) concluded

that neither sufficed, and, in fact, that a four-element model was required. Although

many multi-element models have been developed, the most useful current model of the

mechanical properties of the heart muscle considers each muscle fibre as composed of two

elements (Fig. 2.17). In this case, if the series element is assumed elastic, then its elastic

characteristics can be determined by the methods described in APPENDIX B. Extensive

work on the series element has been reported by Parmley and Sonnenblick (1967), Edman

and Nilsson (1968; 1972), and others.

For cardiac muscle of such a length that the resting tension must be taken into

account, the analysis of the experimental data according to the three-element model

becomes complex. Many authors have looked into this problem, and varying results are

reported. Hefner and Bowen (1967) found bell-shaped force-velocity curves and concluded

that the maximum velocity of shortening occurs for loads appreciably larger than zero.

They found near-hyperbolic behaviour, however, for large resting tension. Experimental

results demonstrated non-unique model-dependence. Since all these complications are

associated with attempts to take the parallel element into account, it was concluded that

identifying this element with the unstimulated resting muscle was not successful. Also

the assumptions concerning the contractile element may not be valid. Then perhaps,

having considered these difficulties, the three-element model severely limited in empirical

value. An alternative more general approach was proposed by Fung (1981), called fading

memory theory, which could accomodate any experimental results.

Recently, Lacker and Peskin (1986) developed a cross-bridge model with a very

simple relation between actin activation and tension development during isometric con-

traction. Their model is general enough to fit the complete force-velocity relation observed

in isolated cardiac muscle. This model was used by Guccione and McCulloch (1993c) to
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develop the constitutive relations for active stress in cardiac muscle.

Active work has continued in the application of the principles of muscle mechan-

ics derived from isolated preparations to the analysis of function in the intact heart.

The mechanism which determines the contraction of isolated cardiac muscle affects the

contraction of the whole heart. However, in order to know how the entire muscle con-

tracts, the fluid mechanical equations for the blood, together with the solid mechanical

equations for the wall, need to be coupled to the muscle mechanics of the single fibre

presented so far. This discussion will be faced in section 2.7 when ventricular modelling

will be reviewed.

2.5 HARNESSING SKELETAL MUSCLE POWER FOR CARDIAC

ASSISTANCE

There is a long history of attempts to use skeletal muscle power for cardiac assist-

ance. Compared to myocardium, normal skeletal muscle is far less resistant to fatigue,

and the problem is exacerbated when the muscle is activated via the unphysiological

route of electrical stimulation. This susceptibility to fatigue thwarted the pioneering at-

tempts to harness skeletal muscle to the performance of cardiac patterns of work. In

1969, Salmons and Vrbova (1969) discovered that chronic indirect electrical stimulation

produce in skeletal muscle a complete transformation in which the fast muscle acquires

all the physiological, biochemical, and morphological attributes of a slow-twitch, fatigue

resistant muscle. In terms of the mechanical behaviour of the muscle, the overall response

to chronic stimulation is a reduction in contractile speed.

In this section, we will discuss the physiological, biochemical, and engineering prob-

lems related to the fatigue resistant property of normal skeletal muscles, the conditioning

process, the mechanical properties and the power generating capacity of the conditioned

muscle compared to the normal skeletal muscle.

2.5.1 Skeletal Muscle Fatigue

As discussed in section 2.4.5, skeletal muscle and cardiac muscle share many sim-

ilarities, but they differ in several important physiological and histological properties.

Cardiac muscle functions as an electrical syncytium, while skeletal muscle fibres are ar-

ranged into motor units that contract individually, as each unit contains its own nerve

ending. An electrical stimulus applied to a skeletal muscle motor nerve may be sufficient

for contraction of some, all, or none of the motor units. In this way, the strength of a

contraction is a function of the number of motor units activated as well as of the rate of

recruitment. A single twitch generated by a single electrical stimulus is usually not suf-

ficient to cause skeletal muscle to generate cardiac-type work. A burst stimulation leads
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to rapid mechanical summation of motor units and generation of substantial contractile

force, whose magnitude and duration can be modified by varying the burst stimulation

parameters.

Histologically, cardiac muscle cells are relatively uniform while in skeletal muscle

two basic fibre types may be distinguished. Type-I fibres are oxidative fatigue resistant

like cardiac muscle fibres, use aerobic metabolism and contract slowly. Type-Il fibres are

glycolitic fatigue sensitive fibres, use anaerobic metabolism and contract rapidly. These

are more plentful than type-I. The relative number of each fibre type varies in response to

the work with which a particular muscle is required to perform. Histochemical study of

skeletal muscle shows specific myosin isotypes correlating with each of the differing fibre

types. Type-I fibres have a specific 'slow' isoform of myosin, while type-I! fibres have an

analogous 'fast' myosin isoform. Fatigue,occurs when the high-energy phosphate reserves

of skeletal muscle have been used up and the muscle is no longer able to replenish high-

energy phosphates at the rate that is being utilized.

Salmons and Vrbova (1969) found that 'it was the pattern of the stimulation

through the motor nerve which governed the ultimate definition of muscle type, and

not the motor neuron characteristic'. Slow-twitch muscles are subjected to chronic low-

frequency stimulation. If fast-twitch skeletal muscle undergoes a similar stimulation, an

orderly sequence of changes occurs, which results in the transformation of a fast-twitch

muscle into a slow-twitch muscle. Whereas some features of this response are seen in

the muscles of athletes undergoing endurance training, chronic electrical stimulation can

accomplish the complete spectrum of adaptive changes in a matter of weeks.

2.5.2 Skeletal Muscle Adaptation to Electrical Stimulation: Conditioning

Process

The discussion that follows is based on the material published by Lieber (1992).

Skeletal muscle is one of the most adaptable (plastic) tissues in the body. This includes

architecture, fibre type distribution, tendon length, fibre diameter, myosin profile, mito-

chondrial distribution, capillary density, and fibre length. Chronic electrical stimulation

produce this sort of adaptive transformation. If the stimulator is activated at a nominal

frequency of about 10 Hz and allowed to operate 24 hours a day, a well-defined progres-

sion of changes is observed whereby the fast muscle first changes its metabolic and then

its contractile properties to transform completely into a slow muscle.

The histochemical assay for myofibrillar ATPase is used to distinguish between fast

- and slow- contracting muscle fibres. In fact, Barany (1967) found that Vma and myosin

ATPase activity were directly proportional. Myosin activity ATPase is a rate expressed

in units of moles of product per unit mass per time interval, that is millimoles protein

per minute in the case of the myosin ATPase assay.

Experimental data from a number of laboratories including the work of Eisenberg
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(Chicago), Pette (Konstantz), and Salmons (Liverpool) have documented transformation

in a number of different muscles and species. The fast-to-slow transformation that oc-

curs is detectable using modern techniques such as measurement of muscle contractile,

ultrastructural, histochemical, biochemical, and morphological properties. In all cases,

following transformation, the new slow fibres are almost completely indistinguishable

from normal slow skeletal muscle fibres (Einsenberg and Salmons, 1981; Eisenberg et al.,

1984; Salmons and Henriksson, 1981; Pette, 1980; 1990).

If low-frequency stimulation is applied 24 hours a day, the total transformation

process requires only about 8 weeks. The earliest observed changes occur within a few

hours after the onset of stimulation, when the sarcoplasmic reticulum begins to swell

(Fig.2.19). Within the next 2-12 days, increases are measured in the volume percent

of mitocondria (Eisenberg and Salmons, 1981), oxidative enzyme activity (Henriksson

et al., 1990), in capillaries (Brown et al., 1976), total blood flow, and total oxygen con-

sumption, reflecting the increased metabolic activity of the muscle (Fig.2.19(B) and (C)).

The increase in oxidative enzymes and capillary density is manifested as a decrease in

muscle fatiguability. At this point, the width of the Z-band begins to increase toward

the wider value observed for normal slow muscle (Fig.2.19(D)). The amount and activity

of the calcium transport adenosine triphosphatase (ATPase) decreases and changes its

particle distribution within the SR layer (Fig.2.19(E)). This decrease in the amount and

activity of the calcium (ATPase) to levels approaching those of slow-twitch type-I fibres

can be detected as prolonged time-to-peak twitch tension and a prolonged relaxation

time of a muscle twitch, or as a decrease in the fusion frequency. There is a decrease

in the tetanus-twitch ratio and the rate of tension development. This slowing is also a

consequence of the changes in the myosin isoforms which result in less rapid cycling of the

cross-bridges formed between the thick and the thin filaments (Brown et a!., 1983). As a

result the muscle can develop substantial forces at much lower frequencies of activation,

and the energy cost of those contractions is substantially reduced (Crow and Kushmerick,

1982). Finally, after about 4 weeks of continuous stimulation, an alteration in the myosin

light chain profile is observed whereby the muscle contains light chains characteristic of

slow fibres. By this time, muscle fibre cross-sectional area, maximum tetanic tension,

and muscle weight have decreased significantly (Fig.2.19(G)). The Z-band is now the

full width of that normally observed in a slow fibre, and the density of the T-system is

greatly decreased (Fig.2.19(H)). In every respect, the muscle is indistinguishable from a

normal slow skeletal muscle. Under such conditions skeletal muscle never becomes cardiac

muscle, but it can become functionally indistinguishable from the myocardium in terms

of its ability to deliver significant pumping work indefinitely without fatigue.

As a result of this conditioning process, as Dr. Stephenson coined it, the muscle is

potentially capable of performing cardiac work. Such muscles show more efficient coupling

between the development and maintenance of tension and the consumption of oxygen

(Acker et a!., 1987d), and a production of ATP that can match even extreme increases

in its utilization during high-intensity repetitive contractions (Clark et a!., 1988).
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This set of phenomena may be interpreted as evidence of a natural adaptive capacity

of skeletal muscle (Salmons, 1971; Salmons and Stephenson, 1989). In the absence of

activity, differentiation is oppositely directed, so that the mucles tend to retain, or revert

to, a native fast state. Changes due to chronic stimulation have been found to undergo

complete reversal after stimulation has been discontinued (Brown et al., 1989; Salmons,

1990b). There is growing evidence that the changes seen during stimulation and recovery

suggests that there is a threshold which must be exceeded for these changes to take place.

This threshold concept has been discussed in Salmons (1980). A general feature of the

recovery process is that changes tend to take place on a 'first-in, last-out' basis, so that

the earlier a parameter changes during the course of stimulation, the later it returns to

control level during recovery.

a
	

3 ho:s	 b.	 2-12 days	 c.	 2-12 days	 d.	 14 da.:

MU

Figure 2.19 Schematic representation of the time course of muscular adaptation
to chronic stimulation trasforming a fast to slow fibre. In each panel
the normal fibre is shown in the upper panel and the stimulated fibre
in the lower panel. From Lieber (1992)

Optimal stimulation regimes are a key area of research and development, funda-

mental to the successful use of skeletal muscle for long term cardiac assistance. Macoviak

et al.(1982) first showed that direct electrical conditioning at 10 Hz of the canine dia-

phragm after five weeks results in nearly a complete transformation to a slow-twitch,

fatigue resistant muscle in areas adjacent to the stimulating electrode. Armenti et al.

(1984) extended this work to show that the entire muscle could be converted using in-

direct stimulation of the phrenic nerve. As LD is used infrequently, it is a relatively
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fast twitch muscle and fatigues rapidly. Mannion and co-workers (Mannion et al., 1986c)

demonstrated that the latissimus dorsi could be preconditioned at stimulation frequency

of either 2 or 10 Hz, while the same effect was obtained on the canine diaphragm with

stimulation frequencies of 2 and 4 Hz (Acker et al., 1987c). Further work by Acker et

a!. showed that near complete transformation of LD could be accomplished after several

weeks of electrical preconditioning using intermittent burst stimulation at a frequency of

25 Hz, and a yielded contraction of 54/mm. The preconditoning process was completed

in a 6 week period of isometric contractions, followed by a period of contraction against

a mock circulation device for measurement of stroke work and power output (Acker et

al., 1986). A second similar experiment demonstrated that the preconditioning process

could be accomplished while the muscle was performing useful-type work and contracting

against the mock circulation device (Acker et al., 1987a). Total conversion of muscle fibre

types of LD muscles stimulated in situ with a continuous 2 Hz pattern was obtained by

Carraro et a!. (1990).

2.5.3 The Power-Generating Capacity of Skeletal Muscle

The following discussion is largely based on the material published by Salmons and

Jarvis (1992) and summarized as below.

The maximum value of the power required for pumping in cardiac assist-

ance is given by:

P=QxP'	 (2.7)

where Q is the mean flow rate, and P'the average systemic pressure. This is

estimated for a normal 70 kg subject at rest (Q=6 1/mm, P100 mm Hg) to

be about 1.3 W. In order to support activities such as walking and climbing

stairs, the pump should have a short term capacity of 10 1/mm, and therefore

a power capability of 3 W. These levels are necessary when most of the power

required for producing the systemic blood flow is provided by the assist device.

For partial assistance lower levels of operation are acceptable.

Skeletal muscle represents a particularly attractive biological source, as it

is capable of converting the small amount of energy required to stimulate the

motor nerve into mechanical work with great efficiency. The power available is

determined by: (i) the mass of well-vascularized tissue that can be recruited

for the purpose, (ii) the sustainable power per gram of tissue, and (iii)

the way in which power is to be coupled to the circulation. Configurations

requiring the muscle to be diverted entirely from its normal function and

transposed into a new position would have the benefit of a high efficiency in

the utilization of the energy available; while configurations where the muscle

operates in situ would have the benefit ofa major freedom in the choice of the

suitable muscle, but a poorer efficiency.
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The power produced by the human left ventricle at rest is about 4 W/kg

of muscle tissue. The average mass of an adult male latissimus dorsi muscle

is 600 g. For a sustainable pumping power of 1.3 W, with a reserve capacity

for short-term use of 3 W, the power required would be 2.1 W/kg of muscle

tissue, with a short-term capability of 5 W/kg.

In order to analyse the capacity of continuous power production of a single skeletal

muscle Prof. Salmons and Dr. Jarvis at the University of Liverpool (Jarvis, 1990; Salmons

and Jarvis, 1992) have performed experiments using the rabbit tibialis anterior muscle

to measure the effects of long artificial electronic activation. An ergometer has been

designed to facilitate the investigation of the relationships between force, velocity, power,

and endurance in the rabbit tibialis muscle (Jarvis and Salmons, 1990). Fig.2.20 shows

the force-velocity and power-velocity curvs for such a muscle. The curves show the rate

of work output at any velocity of shortening between zero, where the force is maximal

but the power (force x velocity) is zero, and the maximum unloaded shortening velocity,

where all the force produced is used to achieve shortening within the muscle, and the

external output is also zero. Between these extremes of zero power output, there is a

velocity (V0 ) for which the power output is maximal.

The curves of characteristics show very clearly that the power output of skeletal

muscle is highly dependent on the load and that for a muscle to deliver its maximum

power it must work against a load which allows it to shorten at a velocity near to V07,.

In cardiomyoplasty or in the construction of skeletal muscle ventricles, the relationship

between the geometrical configuration of the muscle graft and the imposed load should

be considered so that the surgical technique can be optimised mechanically within the

anatomical limits. This is not a simple task, and require the use of numerical modelling

of the solid mechanics to predict the performance of skeletal muscle as a hydraulic pump,

after having duly taken into account the fundamental properties of the muscle fibres.

In Fig.2.20,	 expressed in fibre lengths per second, varies between fibre types.

Chronic stimulation of fast-twitch skeletal muscle produces a transformation towards

slow muscle characteristics. Fast-twitch fibres produce their maximal power output at

about 2 fibre lengths/s and slow-twitch fibres at 0.5 fibre lengths/s. For an unconditioned

rabbit TA muscle, the maximum acute power output is about 300 W/Kg. After 8-10 weeks

of continuous stimulation at a frequency of 10 Hz, the mass falls to 50% of control and

to 25% of control values. The combined effect of these losses is a reduction in power

output to about 10% of control values (Fig.2.20, lower curve), that is the maximal acute

power output of the stimulated muscle is still 30-40 W/kg, close to the systolic power

of the left ventricular myocardium. These power outputs refer only to the rate at which

work is performed during contraction. In any practical application, the muscle spends at

least as much time in relaxation as in contraction, and since work is available only during

contraction the maximum power output is about 20 W/kg. At the specified work rates of

2.1-5 W/kg, then, the stimulated muscle would be working at 10-20% of the maximum.

The characteristic curves only describe the behaviour of muscles in single maximally
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activated contractions and do not therefore give any direct information concerning the

contraction duration and the endurance of the muscle. Optimal timing of conditioned

skeletal muscle contraction is essential for effective cardiac augmentation, and, unlike

mechanical devices, skeletal muscle requires time to develop a peak of tension. Recently.

Letsou et al. (1994) found that conditioned skeletal muscle needed, on average, 0.35

sec to develop peak tension and 0.20 sec for 90% relaxation. Thus, 0.55 sec of muscle

contraction/relaxation cycle was devoted to development of peak tension and successive

relaxation.

Fatigue tests performed on the same muscles have shown that conditioned muscles

working under conditions in which they were constrained to perform external work at 10

W/kg, were able to maintain this level of work for many hours whereas control muscle

showed progressive fatigue at the same initial work rate, even though their maximum

power capacity was much greater. The induction to fatigue resistance to the power

requirement appears to occur early in the sequence of the progressive changes of the

transformation. After 2 weeks of stimulation at 10 Hz, for example, the contractile

apparatus itself is little changed and the acute output power is still 50% of control but

there is a large increase both in the extent of the vascular bed in the capacity of the

aerobic pathways of ATP production. The fatigue resistance of muscles in this state is

not significantly different from muscles in the extreme state of transformation. This 'ideal'

intermediate state with good power output and high fatigue resistance would appear to

be much better suited for use in cardiac assistance. Fibres with these properties exist in

normal muscles, and are called 2A type.

Experiments have been conducted at lower stimulation frequencies by the Liverpool

research group to see if these properties could be maintained stably. These experiments

showed that skeletal muscle could become sufficiently fatigue-resistant to perform cardiac

work without concomitant induction of slow myosin heavy chain isoforms by continuous

stimulation at 2.5 Hz (Jarvis et al., 1991a; Jarvis et al., 1991b). Analysis of metabolic

changes in muscles stimulated for 10 months at 2.5 Hz showed no secondary decline in

oxidative enzyme activity as shown in muscles stimulated at 10 Hz. Current experimental

research is being carried out in which these patterns of stimulation are maintained for

nearly one year, in order to examine the long-term stability of the changes. The challenge

will be to devise stimulation regimes that fulfil the functional requirements of the cardiac

assistance application while still maintaining in the long term an appropriate combination

of muscle properties.

Conventional, constant-frequency burst stimulation is unphysiological and wastful

of energy. New approaches are being developed based on the changing interpulse intervals

found in motorneurone firing patterns. A comprehensive study of the relationship of force

and force-time integral to the interpulse intervals contained in the stimulating pattern

have been performed for determining the optimum pulse train for muscles of given con-

tractile speed. Optimized pulse trains should enable the cost of contraction to be reduced,

so that effective stimulation can be introduced at an earlier stage of conditioning; the
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reduced number of impulses will also be important for minimizing the tendency to induce

slow contractile characteristics.

A new promising technique for providing powerful cardiac assistance avoiding the

disadvantages of muscle conditioning (loss of power, mass, contractile speed) from skeletal

muscle has recently been developed by Guidner and his group (Guidner et al., 1994).

This method consists of the initial combination of electrical conditioning with dynamic

training of the SMVs against an elastic compliant afterload (obtained with the opposition

of the flow direction in the SMVs using special heart valves), which resulted in a strong

muscle pump that did not develop fatigue. The elastic training device is removed once

the electrical and dynamic training has been completed.
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Figure 2.20

2.5.4 Harnessing Skeletal Muscle Power

A power-generating capacity per muscle mass unit of 10 W/kg has to be regarded as

an overestimate because it is based on rabbit muscle; the specific power of human muscle

is intrinsically less, because of its slower contractile characteristics (Faulkner et al., 1992).

However it would be sensible to allow for a reduction to 8W/kg. The actual mass will also

be less than the starting one (from 600 g to 225 g), for several reason (transformation,

grafting procedure, ischaemic damage). The power available would therefore be unlikely

to exceed 1.8 W. Since the power requirement for cardiac assistance is 1.3-3 W, this

estimated power available could be harnessed to provide a substantial assist (8 I/mm)

(Salmons and Jarvis, 1992).

As seen in section 2.3, two main approaches are available to couple skeletal muscle

to the circulation:

1. direct coupling to the circulation;

2. indirect coupling to the circulation.
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Direct mechanical linkage (Fig.2.3(F)) would be moderately efficient, especially if

the muscle were allowed to operate in its normal line of action and without disturbance

to its vascular supply. Problems would compromise the need for the assist device to be

close to the muscle, and the difficulty of creating a strong and reliable junction between

a muscle and a non-biological surface. A hydraulic link could be established by wrapping

a muscle around a fluid-filled bladder (Fig.2.3(G)) (Anderson et al., 1988b) or, more

conservatively, by arranging for the bladder to divert the muscle from its normal line of

action, so that it would be compressed when the muscle contracted (Li et al., 1990). This

approach would give a little more freedom in the placement of the assist device relative

to the muscle, at the cost of some resistive energy losses in the coupling lines. However,

all existing biopolymers are permeable to some extent, so that in the present state of

development it would be possible to avoid a progressive escape of fluid from the system.

An indirect approach (Fig.2.3(H)), in which contraction of the muscle was coupled

to the generation of electricity, has several advantages - flexible placement, broad choice

of assist devices - accompanied by the disadvantages of the technological problems and

the high cost. Estimating a 50% rate of energy conversion, the maximum pumping power

available from human muscle working at 8 W/kg would be 0.9 W, equivalent to 4 1/mm

for the mechanical and hydraulic approaches. The electromechanical approach involves

two conversions, and the maximum pumping power available would therefore be 0.45 W,

equivalent to 2 1/mm. Thus partial assistance of the resting heart function borders on

feasibility with this technique, but the reserve capacity would be limited (Salmons and

Jarvis, 1992).

In section 2.7 possible approaches for ventricle modelling will be presented with the

purpose of providing an adequate background for the future coupled solid-fluid modelling

to be used in the modelling of skeletal muscle ventricles. This discussion will be preceded

by a review on blood flow modelling presented in the next section.

2.6 BLOOD FLOW MODELLING

As mentioned above, for the purposes of formulating a comprehensive approach of

fluid and solid mechanics to be applied in the modelling of SMVs, the fluid-dynamics and

solid mechanics equations have to be coupled. In this section applications of the former

(fluid dynamics) to blood flow modelling will be reviewed and discussed.

The three-dimensional and unsteady characteristics of blood flow throughout the

cardiovascular system make the mathematical analysis a challenging problem. The ana-

lysis is complicated by the compliant nature of the vessels in which the blood flows, and

by the rheological properties of blood. Powerful Computational Fluid Dynamics (CFD)

codes developed in the last few years allow the modelling of realistic geometries with mov-

ing walls. This is an important feature of physiological flows, which are mostly driven by

the periodical motion of the blood vessels at each cardiac cycle.
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The rheological properties of blood and its constituents play an important role in

the physiology of the circulation of the blood. In large vessels, blood can reasonably be

considered a homogeneous incompressible fluid, although non-Newtonian effects become

significant in the pulsatile flow (Liepsch, 1986). Kobayashi and Pereira (1994) demon-

strated that blood cannot be considered Newtonian for separated flows, even in large

vessels. Nevertheless, it has been shown that basic features of the flow are not affected

(Perktold et al., 1991; Xu and Collins, 1994) and it may be concluded that non-Newtonian

effects can be considered a 'third-order' effect after geometry and wall distensibility ef-

fects. A discussion on blood rheology and its interactions with the flow will be given in

section 2.6.1. A discussion on blood flow modelling, concentrating on blood flow in the

large vessels, will follow in section 2.6.2, where applications to arterial wave propagation,

bifurcations, stenoses and grafts will be briefly reviewed. These have been extensively

studied in the context of the work on blood flow modelling developed in the Biomechan-

ical Research Group at City University over the last decade and satisfying results have

been achieved. In this discussion, particular attention will be paid to natural and artifi-

cial ventricles, that is artificial hearts and assist devices. Finally, cardiovascular diseases

and blood trauma caused by fluid-dynamics factors will be discussed in section 2.6.4.

2.6.1 Rheological Properties of Blood

The rheological properties of blood and its flow in the cardiovascular system of

humans have posed a serious challenge to researchers through the ages. Efforts have been

made and theories postulated, yet even today, with the most modern sophisticated equip-

ment and methods available, this fluid has defied attempts at a completely satisfactory

solution (Rodkiewicz et al., 1990).

Human blood is a suspension of cells in a complex acqueous solution called plasma.

The plasma is about 90% water by weight, 7% plasma protein (mainly fibrinogen, globulin

and albumin), 1% inorganic substances, and 1% other organic substances. The cellular

contents are essentially red cells (erythrocytes), occupying 97% of the total particle

volume, with white cells (leukocytes) of various categories, and platelets. For a normal

human body the value of hematocrit (concentration of cells in the total volume of the

suspension) is around 45% in large vessels, and 25% in small arterioles or venules (Cokelet,

1972). Human red cells are biconcave disk shaped, white cells are more rounded and

there are many types. Platelets are much smaller and they play a significant role in the

formation of blood clots.

The mechanical properties of blood are determined by those of plasma, the rheolo-

gical properties of the red cells, and the distribution and interaction of individual cells.

Whole blood has a density between 1.05 and 1.06 x iO Kg/m3 . Plasma behaves like a

homogeneous Newtonian viscous fluid (Merrill et al., 1965), and its viscosity varies with

temperature. Blood behaves as a non-Newtonian fluid, due to the presence of suspended
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cells. Its apparent viscosity varies with the rate of shear (pseudoplastic fluid), with the

hematocrit, the temperature, the vessel diameter and eventual desease state (Chien et

al., 1966). Fig.2.21 shows the variation of blood viscosity with the shear rate and the

temperature. In addition to its pseudoplastic behaviour, it was observed that under static

conditions whole blood exhibits a Bingham plastic behaviour. This means that a certain

minimum force (yield stress) is necessary to initiate flow. However, it should be pointed

out that the yield stress for blood is extremely small (of the order of 0.05 dyn/cm2),

and that it is doubtful that a yield stress would exist in dynamic situations. The non-

Newtonian behaviour becomes insignificant when the shear rate is greater than 1000 s
-1, and the apparent viscosity approaches an asymptotic value of 4 x iO3 Kg/ms. As

the shear rate decreases the apparent viscosity increases slowly, until at a rate less than

1 s 1 it rises extremely steeply. Experimental studies have shown that at hematocrit up

to about 12%, a suspension of red cells in plasma behaves like a Newtonian fluid at all

shear rates, although it has a higher viscosity than plasma. As the hematocrit increases,

not only does the viscosity of the suspension increase, but also non-Newtonian behaviour

is evidenced.

There are two primary reasons for the characteristic behaviour of whole blood.

First, red blood cells deform at high shear rates in such a way as to reduce the resistance

to flow. Second, at low shear rates, red blood cells aggregate and form rouleaux which

increase apparent viscosity (Chien, 1970). The existence of rouleaux is related to the

presence of the proteins fibrinogen and globulin in the plasma. The slower the blood

flows, or rather, the smaller the shear rate, the more prevalent are the aggregates. When

the shear rate increases, blood aggregates tend to be broken up, and the viscosity of

blood is reduced. As the shear increases further, the deformation of the red cells becomes

more evident, and the cells tend to become elongated and line up with the streamlines.

This further reduces the viscosity. Also tumbling of suspended particles (red cells) while

flowing disturbs the flow and requires expenditure of energy, which is revealed in viscosity.

Detailed studies of the tumbling and deformation of red cells and rouleaux in shear flow

have been made by Goldsmith and co-workers (Goldsmith and Marlow, 1972). It has also

been pointed out by different investigators that when blood flows in a tube, red cells tend

to move toward the axis of the tube, leaving a marginal zone of plasma, increasing in

width with increasing shear rate. Goldsmith (1972) found that the deformability of the

particle appears to be the reason for lateral migration. Observations of flow containing

rouleaux of red cells show that the rouleaux migrate to the tube axis faster than individual

red cells. When the cell concentration is high (45% hematocrit), the crowding effect acts

against migration away from the wall into the crowded centre. The plasma-rich zone

near the solid wall, although very thin, affects blood viscosity, especially in small blood

vessels.

In large vessels, blood can reasonably be considered a homogeneous incompressible

fluid. It is universally agreed that at very high shear rate (> 1000 s') blood can be

assumed to be Newtonian. However, recent experimental studies (Liepsch, 1986) showed
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that blood may behave as a non-Newtonian fluid, even in large arteries (femoral artery).

The normal arterial blood flow is subjected to some cyclic peak shear-rates, and at such

shear-rates blood behaves like a Newtonian fluid (Caro et al., 1978). However, high shear-

rates occur only during a relatively short part of the cycle period, and predominantly

close to the wall. Therefore, it would be more appropriate to consider that blood behaves

predominantly as a non-Newtonian fluid (Rodkiewicz et al., 1990), and that for a realistic

modelling of blood (even in large arteries) appropriate constitutive equations for the

viscous behaviour of blood should be incorporated in accordance with the levels of shear

rates established. However, this effect is not considered primary in blood flow modelling.

Furthermore, when blood is tested dynamically, it exhibits viscoelastic characterist-

ics, which change with the level of strain and strain history (that is, a thixotropic fluid).

A thixotropic fluid is characterized by the breakdown of structure by shear. Rouleaux

disaggregation is the primary cause of this lehaviour. Blood, however, is different from

some other non-Newtonian fluids in that its thixotropic behaviour is reversible. While the

breakdown of rouleaux happen almost instantaneously, the reaggregation time depends

on hematocrit, plasma composition, and shear rate.

n the numerical simulations performed in model SMVs, non-Newtonian behaviour

of blood was not taken into consideration for simplicity. On the other hand, since the

in vitro experiments on model SMVs have been carried out using Newtonian fluids,

the validation of the numerical predictions had to be performed modelling the fluid as

Newtonian. Further in vitro and numerical studies on the investigation of the shear

rates that establish throughout the cardiac cycle in the whole volume of the ventricle,

will show whether it is necessary to use constitutive equations for modelling the non-

Newtonian viscosity of blood.
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Figure 2.21 Variation of the viscosity of human blood with shear rate and tem-
perature at the hematocrit 44.8%. From Merrill et al. (1965)
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2.6.1.1 The Constitutive Equation

Several functional forms for the constitutive equation have been proposed to models

the non-Newtonian behaviour of blood, such as the general power law, Bingham model,

Casson model, biviscosity model, and Walburn and Schneck model. These are discussed

in more detail by Xu (1992) and their mathematical formulations are summarized in

APPENDIX C. The Walburn and Schneck model has been shown to be the most appro-

priate in modelling pulsatile flows in a conduit (Rodkiewicz et al., 1990). However, it

was developed for low shear rates, and has been found to be invalid for high shear rates.

A separate issue is that these models have validity based on steady flow problems. In

reality, blood in the cardiovascular system is changing constantly in chemical composition

and shear rate and the interrelations are mahy and complex. Despite this, the models do

offer reasonable and practical constitutive equations for human blood.

The above discussion may be expressed algebraically. For a given sample of blood

the stress tensor in its most general form is a function not only of the strain rate tensor

and time, but the time history of the strain rate tensor

r=r(j'(t))

The several steady state models represent a simplification of the shear stress expression

to

r=r(-y).

2.6.1.2 Effects of Blood Rheology on the Flow

The potential importance of non-Newtonian effects in various physiological flows

has been demonstrated by several pioneering experiments. Liepsch and his co-workers

found striking differences in flow patterns and calculated wall shear stress in arterial

bifurcation models between Newtonian and non-Newtonian fluids. Moravec and Liepsch

(1983) found that significant effects of the non-Newtonian behaviour of the blood are likely

to occur where separation and reverse flow are manifested even in large blood vessels.

Similar conclusions were reported by Ku and Liepsch (1986). Numerical analysis of the

effect of the non-Newtonian characteristics of blood was conducted by Dr Xu (1992) on

3-D bifurcation problems. Newtonian and non-Newtonian flow has also been investigated

in an artificial ventricle (Mann et al., 1987), and in straight and curved arterial models

(Mann and Tarbel, 1990). Differences were found. Kobayashi and Pereira (1994) showed

that a non-Newtonian fluid produces higher levels of shear stress, and therefore is prone

to produce early damage to the vessels. However, most of the findings have shown that

the overall features of the flow appear to be little affected by the choice of the rheological
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model, although they could have local significance. These findings agree with the results

presented by Perktold et al. (1991).

Analytical and numerical studies relating to non-Newtonian blood flow are more

sparse. Pulsatile flow of non-Newtonian and viscoelastic fluids in simple geometries is dis-

cussed in Joseph (1990). Pulsatile physiological flows of several constitutive blood models

in a straight rigid tube have been compared by Rodkiewicz et al. (1990). Blood rheology

substantially influences flow in some modelling conditions in cardiovascular devices and

arteries. Sharp (1994) calculated the effect of blood viscoelasticity on velocity profiles

and shear stress in flows representative of those in large arteries, such as the ascending

aorta and femoral artery. He used an analytical solution for pulsatile flow of a generalized

Maxwell fluid in straight rigid tubes, and found small differences in velocity and shear

stress, comparing viscous and viscoelastic flow. He concluded that blood behaves nearly

as a Newtonian fluid when arteries are approximated as straight tubes, but suggested,

however, that viscoelasticity is an important factor where stagnant flows occur and in

regions not washed out at each heart beat. This situation, likely to occur in assist devices,

would encourage red blood cells aggregation and hence a change in blood viscosity.

2.6.2 Blood Flow Modelling

Blood pumped from the left ventricle into the circulatory system creates a change

in pressure and results in flow along the aorta and throughout the circulatory system. At

any given point pressure and velocity change periodically, and the flow is pulsatile and

associated with propagation of a pressure wave. The complete cardiovascular system is

far too complex to be amenable to a comprehensive analytical treatment, and the purpose

of most of the analyses has focused on the specific aspect of interest.

An extensive account of the early historical development of ideas concerning the

circulation is given by Fishman and Richards (1964). The pioneer worker concerning

the laminar flow of blood in its vessels was Poiseuille (1846). Interest in arterial blood

flow started with Womersley (1955) and McDonald (1960). They developed an analytical

linearized solution to calculate the pulsewave propagation for an oscillatory flow of a

Newtonian fluid in a circular tube. In the early theoretical studies, linear and non linear

theories were extensively used in the mathematical analysis of wave propagation in arterial

blood flow. Recently, theory of unsteady flow in collapsible tubes has been developed to

model blood flow in veins. In the last three decades, progress has been made in describing

blood flow at junctions, through stenoses, in bends and in capillary blood vessels. More

recently (in the last two decades), extensive treatments of blood flow problems have been

made by solving numerically the Navier-Stokes equations. Early numerical studies were

performed using the vorticity stream function method. In order to model 3-D situations

primitive variables were used with finite difference or finite element techniques.
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2.6.2.1 Arterial Flow

Flow and pressure at one point in the arterial tree behave in the manner shown

in Fig.2.22. Although the increase in flow starts more or less synchronously with the

pressure rise, the peak flow velocity precedes the peak pressure. This is explained by the

fact that it is the pressure gradient that determines pulsatile flow. The first derivation of

the velocity of propagation of the pulse wave in blood flow was given by Young (1808).

Womersley (1955; 1957) found the mathematical solution of an oscillatory laminar flow

in a compliant tube when the pressure gradient varied periodically in the form of a

sine wave, and for a homogeneous Newtonian fluid. The flow is related to any periodic

pressure gradient with a Fourier series. To reproduce the pulsatile nature of arterial flow,

oscillatory flow and higher order harmonics of flow may be superimposed on a steady

flow.

GreenIleld and Fry (1965) derived a pressure-flow relation that is simpler than the

more general form of the Womersley theory. Under simplifying assumptions the one

dimensional flow equations can be linearized, the resulting equations being analogous

to those for electric transmission lines (pressure and volume flow rate are analogous to

voltage and current respectively). Advantages associated with the use of this method are

its versatility in superposing a partial solution, and analogy with electric transmission

lines. However, the linearization process may well introduce errors. In modelling the

arterial system wave propagation, the best representation of the pulse wave is given by the

application of non linear theories. Anliker et al. (1971) made a significant development

of the method of characteristics applied to the Navier-Stokes and continuity equations,

to model a major canine arterial pathway. The flow is treated as quasi-one-dimensional

but the nonlinear terms of the equations are retained.

Figure 2.22 A flow velocity pulse (Q) and the arterial pressure pulse (P) recor-
ded simultaneously in the femoral artery of a dog. From Nichols and
O'Rourke (1992).

The two techniques discussed above can be applied to a segment of the arterial tree
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or to the entire arterial system, and are used either separately or in combination. However,

since the flow is treated as one-dimensional, they do not give information on the local flow.

The effect of the geometric complexity of the arterial system has been explored recently. A

principal effect of the geometric transition of the arterial system is the generation of partial

reflections of the pulse wave. While the linear theory of wave reflections has provided

considerable insight, in order to provide a more accurate mathematical description of

the observed phenomena, several studies have included the effects of transition in the

nonlinear theories of blood flow (Jones et a!., 1992). Comprehensive theories of wave

propagation in the circulatory system based on regarding it as a system of elastic tubes,

have been developed in the past three decades. Details on blood vessel modelling will be

discussed in section 2.6.3.

2.6.2.2 Flow at Arterial Bifurcatioris

The study of blood flow through arterial bifurcations has been driven to a large

extent by the fact that these areas of the cardiovascular system appear to be preferred sites

for atheroma. There is evidence that due to the complex nature of the flow occurring

in arterial bifurcations the walls in these regions experience low and fluctuating shear

stress. Modelling of flow in bifurcations involves treating the complex three-dimensional

geometry of the bifurcation, the pulsatile nature of the flow, the distensibility of the

arterial wall and the non-Newtonian characteristics of the blood.

A study on the development of numerical models for the analysis of flow in arterial

bifurcations is given by Xu (1992). Initial studies were confined to two-dimensions in the

1970s. However, three dimensional modelling is virtually essential, due to the presence

of such phenomena as secondary flows. Three-dimensional pulsatile flow simulations

in realistic geometrical models of arterial bifurcations have become possible with the

latest CFD codes and computers. These simulations are expected to clarify the role

played by haemodynamics in the formation of atheromatous plaques. In the last couple

of years, Perktold and co-workers (Perktold et al., 1991) have studied three-dimensional,

pulsatile flow in realistic models of the human carotid artery bifurcation. He used a newly

developed pressure correction finite element method, which includes a realistic velocity

waveform and consideration of non-Newtonian effects. Xu et al. (1992) have performed

three-dimensional simulations of the flow through canine femoral bifurcations. Geometry

and inlet velocity waveforms were based on in vivo measurements.

Few attempts have been made to model pulsatile flow through compliant bifurca-

tions. Reuderink (1991) presented a decoupled model; Xu and Collins (1994 a) have suc-

cessfully simulated flow in a compliant T-junction; and Perktold and Rappitsch (1993)

used a coupled approach to calculate the pulsatile, non-Newtonian flow field and the wall

shear stress distribution in a distensible human carotid artery bifurcation.
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2.6.2.3 Flow through Stenoses

Atheromatous lesions within the intimal layers of arteries grow to the extent that

they protrude in to the lumen of the artery, thus forming a stenosis. Understanding

of local flow behaviour in the vicinity of an arterial stenosis has proceeded from both

theoretical and experimental research. Several numerical treatments have considered

symmetric constrictions in rigid axisymmetric conduits, both steady (Luo and Kuang,

1992), and pulsatile (Tu, 1992). However, arterial stenoses are unlikely to be axisymmetric

and a number of researchers have considered more physiologically realistic models.

Pulsatile flows through a plane channel with an indentation on one side (Tutty,

1992) exhibit trains of counter-rotating vortices whose effect is to produce periodically

changing shear stresses at the wall. However, Ojha et al. (1990) found experimentally

that flow downstream of an asymmetric stenosis in a circular tube does not exhibit an

axially periodic shear stress distribution. This finding was confirmed by the numerical

study performed by Henry and Collins (1993a; 1994) of the flow through axisymmetric

and asymmetric stenoses.

2.6.2.4 Flow through Bypass Graft Anastomoses

Bypass grafts, used to alleviate chronic ischaemic heart disease and restore blood

supply to the distal areas of stenosed arteries, often fail due to the formation of athero-

matous plaques in the anostomosis region. Local flow dynamics may play a role in the

formation of atheromatous lesions. Numerical simulations of flows in proximal and distal

anastomosis models have helped in the understanding of the important factors governing

these flows. Analysis of the predicted wall shear stress and separation sites can be used

to determine the optimal anastomosis angle and graft to artery diameter ratio for the

particular flow situation in the presence of moderate shear levels and minimum blood

damage.

Most of the models reported in the literature are two-dimensional - see for example

Kim and Chandran (1992). In vitro studies of steady and pulsatile flow in proximal

and distal end-to-side anastomoses by Hughes and How (1994) have showed the highly

three-dimensional nature of these flows. Recent calculations on three-dimensional distal

anastomoses were published by Perktold et al. (1993). Proximal and distal steady ana-

stomosis models were investigated by Henry and co-workers (Henry et al., 1992a; 1994b,

1995a. The numerically predicted flow patterns compared well with the in vitro meas-

urements of Hughes and How (1994). An interesting feature of the flow in the graft

tube is the occurrence of two counter-rotating vortices, roughly aligned with the mean

flow direction. Similar streamwise vortex pairs have been seen in the daughter vessels of

arterial bifurcations.
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2.6.2.5 Flow in the Heart, and through Natural and Prosthetic Valves

Modelling of the flow in the heart is one of the most challenging problems of the

current generation of blood flow modellers. Due to the complex geometry and flow

features, analytical approaches are not accurate and numerical modelling is the only

method which can be pursued by researchers.

The shape and orientation of the atrio-ventricular valves, and the fibrous threads,

the chordae tendiriae, attached to them, which are in turn attached to the papillary

muscles protruding from the ventricular wall must all affect the flow within the ventricle.

A simplified mathematical model of potential flow in a pulsating bulb was presented by

Jones (1970). However, a more complete analysis of the flow in the heart can be obtained

using numerical methods applied to realistk or simplified geometries of the heart and

left ventricle. Accurate representation of these characteristics require a grid size which is

beyond current capabilities. The first comprehensive time-dependent 3-D model of flow

through the left side of the heart was developed by Peskin and McQueen (1993). Peskin's

group have worked in the last 20 years in the development of a coupled approach for

modelling cardiac wall and blood flow where the cardiac wall is modelled as a system of

fibres immersed in the blood fluid (Immersed Boundary Method). Details of this method

will be given in section 2.9.1 where solid-fluid coupling approaches are discussed. The

model included the elastic fibres of the heart, a Newtonian model for the blood, the

left atrium, ventricle, natural mitral valve and natural aortic valve (massless). However,

even this comprehensive model does not show the correct contraction of the heart when

compared with a real human heart.

Georgiadis et al. (1992) have recently demonstrated that computational fluid dy-

namics techniques can be a valuable tool for simulating heart flow problems. They have

developed an elliptical axisymmetric model for the left ventricle assuming inviscid flow.

This assumption was justified by the fact that during ejection the flow is dominated by

the inertia effects. The stream function method was used to solve the Navier-Stokes equa-

tions, and the alternating-direction-implicit (ADI) algorithm. Taylor et al. (1993; 1994)

have recently developed a realistic 3-D model to solve the LV ejection flow using a CFD

package, made in Japan (SCRYU). This is based on a finite volume integration method of

the three-dimensional Navier-Stokes equations. The SIMPLE pressure/velocity coupling

algorithm is used with body-fitted coordinates. The blood flow was assumed to be New-

tonian, homogeneous and incompressible. A preliminary spherical model was considered.

The time course of the ventricular wall changes were assumed to vary as a trigonometric

function. The modelling framework of this model was used to construct a realistic model

using a cast from a dog heart which was in diastole. The left ventricular wall motion was

assumed to follow the blood flow.

The most interesting fluid-dynamical events in the heart are the filling and ejecting

of blood in the ventricles associated with the motion of the heart valves. Details of the

dynamics of the opening and closing of the valves will be given in section 2.7.1, and flow
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dynamics characteristics will be summarized briefly as follows. During systole, the aortic

valve is opened, while the mitral valve is closed. The flow issuing from the ventricle

immediately upon opening of the aortic valve at the inception of systole is split into two

streams at each valve cusp. Part of the flow is directed into the sinus behind the valve

cusp, where it forms a vortical flow before re-emerging to rejoin the main stream in the

ascending aorta. When the aortic pressure rises sufficiently so that deceleration of the

flow occurs, an adverse pressure gradient is produced, which causes a greater flow into the

sinus and carries the cusps toward apposition. During diastole, the deceleration of the

jet and the associated adverse pressure gradient are the mechanisms responsible for valve

closure. The opening of the mitral valve occurs when the pressure in the left ventricle is

low. The vortical motion prevents valve cups from bulging outwards to contact the walls

of the sinuses (Fung, 1981).

Modelling of the fluid through natural and prosthetic valves has also been the

subject of many theoretical investigations (Lee and Talbot, 1979; Peskin, 1977; 1982),

and more recently numerical modelling (Peskin, 1992; King, 1994). Lee and Talbot (1979)

formulated a mathematical theory to calculate the valve cusp motion from the velocity-

time history of the flow through the valve, under the assumption that valve cusps are

massless and passive, and the velocity in the valve cross section is uniform.

Numerous investigators have considered flow downstream of tilting disk, ball and

cage, and ball and disk mechanical heart valves using a variety of 2-D, 3-D, time-

dependent and steady state flow, Newtonian and non-Newtonian blood models, turbu-

lent and laminar flow using numerical methods (CFD). Numerical simulations were being

performed as early as the 1970s (Peskin, 1977). Some years later McQueen and Peskin

(1985) used CFD methods to give concepts for the design of bileaflet valves (mechanical

heart valves) obtained from the numerical parametric study of a two-dimensional model.

However, experimental findings showed the occurrence of vortical 3-D structures of the

flow past the bileaflet valve. Currently, the most commonly implanted heart valve is

the bileaflet heart valve and yet a detailed knowledge of the flow characteristics of this

valve is not available. Experimental findings have shown flow disturbance and probable

turbulence leading to high shear stresses and risks of thrombogenic events (Stein and

Sabbah, 1980). Use of CFD models combined with experimental verification will permit

greater understanding of the flow mechanisms downstream of the valve, and the per-

formance of parametric design studies (King, 1994). Eilers et al. (1994) have recently

found that small differences occur when non-Newtonian blood models are applied to the

flow at mechanical heart valve prostheses, while an opposite conclusion was reported by

Kobayashi and Pereira (1994).

2.6.2.6 Flow in Cardiac Assist Devices

Enormous research effort is involved in the quite difficult task of establishing the

crucial fluid dynamics factors which is why cardiac assist device implantation is still not
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satisfactory from the clinical point of view. High shear rates and extended residence times

causing haemolysis and platelet activation developing in the pump or in the cannula when

inferior flow conditions are established may severely limit clinical applications. A large

number of investigators have worked in the field of determination of the optimal hae-

modynamic conditions in which assist devices should operate, and although considerable

progress has been made, few have achieved the actual goal. In this discussion, only a brief

review of the experimental studies will be reported. Major attention will be addressed to

the numerical studies.

Experimental techniques have extensively been used to test in vitro and in vivo ar-

tificial ventricle models, and improve the blood pump characteristics. Several investigat-

ors performed experiments on LVAD, BVAD, and TAH devices to measure the flow char-

acteristics using polystyrene tracer techniques, pulsed Doppler ultrasound velocimetry

and Laser Doppler Anamometry (Araki et at., 1993; Baldwin et al., 1990; Goldman et

a!., 1991). The LDA technique has become a popular tool for assessing haemocompatibil-

ity by measuring flow induced shear stresses. This method can provide three-dimensional

maps of stresses which can be used to predict potential areas for blood trauma. It has

been argued that the expensive and time consuming LDA technique makes its use more

appropriate in the final stages of confirmation of a design. Simple and inexpensive flow

visualization techniques may be used for qualitative analysis. Mulder et al. (1993) used

for example this technique to study the effectiveness and haemocompability of a mag-

netically suspended centrifugal pump impeller for use in assist devices. Jin and Clarke

(1993) have used both the LDA and flow visualization techniques to carry out an exper-

imental investigation of the unsteady non-Newtonian flow behaviour within a sac-type

ventricular device. Good 'wash-out' of the mural peripheral parts and central parts of

the chamber were observed. This was caused by the main vortex developed during filling.

Flow recirculation regions developed at junctions may lead to fluid particle deposition

and indicates a risk of thrombus formation which may be reduced by modifying the device

design.

Experimental techniques require geometrically accurate models for testing to be

carried out in every new prototype. In researching the requirements of the optimal design,

numerical techniques present several advantages. They provide detailed information even

in points not accessible to experimental measurements, and hence may be used to test

local areas. They also permit parametric study of the geometric design. Jin and Clarke's

research group, for example, is currently using CFD methods to improve design features of

their model. Despite so, very few numerical studies have been reported in the literature.

This lack of numerical simulation studies may be due to difficulties encountered when

modelling realistic cardiac assist devices models. Generally, flows inside cardiac assist

devices are three-dimensional, time-dependent, and often turbulent. An essential feature

is the capability to accomodate the geometries of moving boundaries. This has been

introduced very recently in the computational fluid dynamic packages and still has not

been sufficiently tested against experimental evidence. Another important feature is
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the three-dimensionality of the problem, which requires very powerful grid capabilities,

with special attention on the refinements necessary where boundaries are in motion.

Furthermore, the grid has to undergo changes for each time step, which in turn has

to allow for the 'accurate' solution to be established without bordering the calculation

too much. Flows inside these assist devices are often turbulent, and this is another

open problem in fluid dynamics modelling. On the one hand, the new generation of

supercomputer hardware has increased remarkably the computer power and is combined

with new computational fluid dynamics algorithms with the ability of modelling anything

which has an engineering interest. On the other hand however, a lot of work still needs to

be done to validate the newly available facilities against experimental evidence, and thus

a close collaboration between experimental researchers and haemodynamics specialists

has to be established.

Chesler and Kamm (1994) developed ar approach to mechanical heart assist design

and evaluation, which resulted in an efficient procedure to find the optimum for a single

chamber mechanical ventricle with fixed stroke volume and ejection time. This proced-

ure involved the use of a finite element 'rubber mesh' template and the spectral solver

provided by the commercial code NEKTON. The problem was modeled as an unsteady,

incompressible three-dimensional flow with moving boundaries. Despite the good promise

offered by their software, they have not carried out validation studies to the best of our

knowledge. Hence some doubt exists as to the accuracy of their application.

Experimental and numerical studies were conducted by Amling et al. (1990) on

a 'teaspoon pump' (nutating centrifugal pump) to test the risk of damage to red blood

cells in this new type of centrifugal pump. The flow in the pump was found to be highly

turbulent. The numerical solution was based on the 2-D time-dependent Navier-Stokes

equations solved using a discrete vortex method. This method allows the strong shear

layers generated in the gap between impeller and annular passage wall to be computed

with greater resolution than is possible with conventional grid-based methods. The flow is

represented by a collection of vortex 'blobs' that yield an associated velocity field. Results

showed the persistent occurrence of a recirculation area behind the impeller, which was

not seen in the experiments.

In order to understand the problems of damage to constituent elements of the blood

due to the flow dynamics within the chamber, several experimental studies have been

reported on the measurement of turbulent shear stresses within a TAH. Due to the prac-

tical limitations of measurements there, especially in the vicinity of the inflow and outflow

valves, data obtained from experimental measurements appear to be limited. Computa-

tional fluid dynamics again has provided an alternative technique in which more detailed

analysis of fluid dynamic effects of the flow within a TAH can be evaluated. Rogers et

a!. (1989) solved the 3-D Navier-Stokes equation for steady and time-dependent flows in

a Penn state artificial heart. This involved a relatively low Reynolds number. Kim et al.

(1992) have tested a total artificial heart model using a steady two-dimensional numer-

ical model in conditions of both laminar and turbulent flows. The governing equations
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were solved using the Finite Analytic method of Chen and Chen (1984) on a staggered

cartesian grid. This method derives the necessary algebraic equations from local analyt-

ical solutions of the governing equations at each cell. Pressure-velocity de-coupling was

accomplished using the SIMPLER algorithm, and the k-E turbulence model was used.

Kim et al. (1992) reported reasonable agreement with available experimental data, but

recognized the need to extend their model to pulsatile 3-D flows, and to include body-

fitted moving grids to allow the modelling of the moving valve leaflets, and the pump

diaphragm. Their results suggested a correlation between high turbulent stresses and

presence of thrombus in the vicinity of the valves in the total artificial heart, and that a

tilting disk valve produces preferential flow dynamics characteristics relative to those is

the trileaflet valve.

Another important problem in the analysis of flow in assist devices is the choice of

the working fluid to use in the in vitro and nuinerical studies. Experimental investigation

of the effect of non-Newtonian fluids on flow in artificial ventricles has been carried out

by Mann et al. (1987) and PohI et a!. (19O). Mann et al. (1987) investigated blood rhe-

ology effects on the flow inside the Penn State Electric Ventricular Device (EVAD) using

Pulsed Doppler Ultrasound Velocimetry. They concluded that rheological properties of

the working fluid are very important in the experimental simulation studies. The same

conclusion was reported by Pohl et al. (1990). They performed experiments using hot

film anemometry to investigate the influence of the rheological properties of the fluids on

flow patterns inside artificial ventricles. They found significant qualitative and quantit-

ative differences in the flow characteristics especially in areas of low shear stresses, and

concluded that blood-analogous fluid is important in in vitro investigations.

2.6.3 Blood Vessel Modelling

For the purpose of blood flow modelling it is important also to consider wall dis-

tensibility of blood vessels. Experimental results have shown that mechanical properties

of blood vessels are characterized by a high deformability, a non-linear stress-strain rela-

tionship and the existence of viscoelastic time-dependent behaviour, such as hysteresis,

creep and stress relaxation. These effects are determined by the properties of the tissues

that compose vessels, and their arrangement in the wall.

Blood vessels are composed of viscoelastic inhomogeneous multi-layered tissues.

These are mainly composed of endothelial lining, elastin and collagen fibres, and smooth

muscles, arranged in three concentric layers - the intima, the media and adventia. Arterial

walls are considerably thicker than the walls of veins, and although composed of the same

tissues, they have different architecture. in this discussion attention will only be paid to

arterial vessels. In the mathematical formulation, the arterial wall can be assumed as a

homogeneous, incompressible and non-linearly elastic material which can be modelled as

an orthotropic thin-walled cylinder undergoing finite deformation.
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2.6.3.1 Mechanical Properties of Blood Vessels

The mechanical properties of the wall are mainly determined by the connective

tissue and smooth muscle of the media. The endothelial lining is the innermost layer of the

vessel wall that comes into contact with the flowing blood. it provides a smooth surface

and offers a selective permeability to various substances carried in the blood stream but

is too soft to contribute to the elastic properties of the wall. It is therefore omitted from

the discussion on the overall elastic performance. Elastin fibres are highly elastic, while

collagen is much stiffer. The modulus of smooth muscle varies in the passive and the

active states. it has been shown that the most significant effect of smooth muscle is on

the circumferential properties. At low strains the collagen fibres are slack and most of the

load is borne by elastin fibres. At higher strains, however, the collagen fibres straighten

out, causing the arterial wall to become relatively inextensible. Thus the response of the

arterial wall to transmural pressure is highly nonlinear, being strongly compliant at low

pressure but increasing in stiffness with rising pressure.

The overall properties of blood vessels result from its complex multicomponent

structure and are characterized by an anisotropic behaviour, with orthotropic symmetry.

This implies that only normal strains are present in arteries and the mathematical treat-

ment can be considerably simplified (Patel and Vaishnav, 1972). Young's modulus of the

arterial wall is in the range 2 - 8 x i0 Nm 2 . Although uniaxial and biaxial tests on flat

specimens are performed to determine mechanical properties of arterial walls, pressure-

diameter data obtained from in vitro and in vivo tubular segments are more informative

and realistic (Hayashi, 1993).

2.6.3.2 Mathematical Models for the Stress-Strain Relationship

A variety of analytical approaches have been proposed to model arterial wall with

different assumptions about the wall behaviour. Generally, in order to simplify analysis

arterial vessels are assumed to be homogeneous. This is reasonably valid in the cir-

cumferential and longitudinal directions, but not strictly radially because of the layered

structure. Furthermore, it can be assumed incompressible and approximated by a thin-

walled cylinder model (11% of error) (How, 1990). Membrane and shell theories have

been applied. For the constitutive models linear and non-linear elastic, and viscoelastic

behaviour has been variously assumed, with uniaxial, biaxial, or triaxial laws. When

the uniaxial elastic model is applied, the wall motion will be assumed to have a pref-

erential radial direction due to the longitudinal tethering inhibition. For this reason

the mechanical properties of arteries are commonly defined in terms of distensibility D

(D - (dA/dp)/A). Uniaxial elastic models have extensively been used in both linear and

non-linear arterial wave propagation theories (McDonald, 1960).

It has been found that when subjected to physiological loads an arterial segment

deforms circumferentially by 2 - 5 %. When the artery is excised, it shortens by up to
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60%. It is therefore under considerable initial strain (How, 1990). During the heartbeat,

however, the longitudinal deformation is small. In the radial direction, deformation

is compressive and stresses are usually much smaller than those in the circumferential

and longitudinal directions. These findings imply that a finite deformation approach

should be used for the stress-strain relationship. However, in the past more simplified

models, such as small strain analysis and incremental analysis have been applied.

Patel and Vaishnav (1972) and others have treated the arterial tissues as non-linear

viscoelastic. However, they found that viscosity can be considered as a second-order

effect, and therefore it is reasonable to treat the arterial tissue as a nonlinear elastic

material.

When applying small stress analysis the wall material is assumed to be isotropic

and linearly elastic. For a thin-walled tube, the radial stress is much smaller than the

circumferential and longitudinal stresses and may be ignored. The incremental analysis is

an approximate analysis of nonlinear finite elasticity. It is based on the use of linear small

strain theory to describe non-linear stress-strain behaviour. The finite deformation

analysis can be applied to finite non-linear elastic deformations. It is based on the

assumption that the work done in deforming an elastic body is stored as strain energy

expressed as a function of strains only. Polynomial (Patel and Vaishnav, 1972) and

exponential (Fung et al., 1979) strain functions have been used. Polynomial functions are

more general and simple to use. A third order polynomial function gives a satisfactory

fit with experimental data.

The group at City are working on the problem of flow through compliant arterial

models. Henry and Collins have developed a technique to couple solid and fluid equa-

tions simultanously and applied it to a tube (Henry and Collins, 1993b). Xu and Collins

(1994a) have successfully simulated flow in a compliant T-junction, using a simplified

pressure/diameter relationship. Perktold and Rappitsch (1993) modelled the artery seg-

ment as a thin shell applying non-linear shell theory and incrementally linear elastic wall

behaviour. The structural problem and the flow problem were solved in a coupled ap-

proach using finite element techniques. Reuderink et al. (1993) developed an uncoupled

approach to solve the fluid flow and the wall motion in non-uniform distensible tubes.

Coupled approaches reported in the literature will be described in more detail in section

2.9.

2.6.4 Haemodymanics and Flow-Induced Diseases

Fluid-dynamic factors exert pivotal influence upon prothrombotic and atherogen-

etic reactions, both of which occur under conditions associated with deviations from

strictly laminar Poiseuille-flow. The mechanical environment imposed by the haemody-

namics of the vascular system have wide ranging effects, which may be divided into:

(1) the effects on blood (haemolysis and thrombosis)
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(ii) effects on blood vessels (atherosclerosis), and

(iii) interaction of blood with the non-endothelialized artificial surface.

2.6.4.1 Effects of Flow on Blood

Substantial evidence exists that indicates that abnormal flow phenomena, such

as elevated shear stress, high turbulence levels, prolonged stasis, cavitation and rapid

changes in shear, form substantial obstacles to routinely successful application of many

cardiovascular devices and treatments. Lysis of blood cells has been observed at shear

stresses in the range of 1500 dyn/cm 2 for erythrocytes, 300 for leukocytes and 100-150

for platelets (Sutera, 1977). The threshold \'alues depend upon the nature and duration

of shear. Similarly, large shear stresses in the fluid domain can lead to blood cell damage,

activation of the clotting cascade and thrombosis (Sutera, 1977).

The thrombosis process represents a very complex blood coagulation sequence.

The biochemical reactions of the clotting mechanism have been studied extensively, and

it has been universally agreed that a number of proenzymes and enzymes are involved in

blood clotting. At each stage, the product of one triggers the next, and as a biochemical

amplifier, leading to the formation of a greater weight of protein than at the earlier step.

Analysis of the blood damage caused by the implantation of a total artificial heart

have shown a deposition of thrombi concentrated in the vicinity of inflow and outflow

valves (Levinson et al., 1986). Hung et al. (1991) found increased blood viscosity, erythro-

cyte rigidity, plasma fibrinogen concentration, platelet aggregation and thrombus forma-

tion around valves in a study of Jarvik-7 total artificial heart and Novacor left ventricular

assist device recipients. Previous investigators (Chandran et al., 1984) have suggested

that haemolysis and/or subhaemolytic damage to red blood cells may occur due to tur-

bulent stresses in the downstream wake of prosthetic valves even though mean velocity

shear rates are low. Much lower values of shear stress cause aggregation and adhesion

of platelets (Brown et al., 1975). Moderate shear stress results in aggregation of white

cells (Dewitz et al., 1977). Shear stresses lower than 0.1 dyn/cm 2 have been observed to

cause deformation of red cells (Goldsmith, 1972). Hence, since white cells

are much more deformable than red cells and since many of the functions of these cells

are membrane related, it follows that the processes leading to thrombus formation may

be sensitive to increases in shear stress of quite a small magnitude. Indeed, the release

of serotonin, an activator of thrombogenesis, from platelets has been shown to increase

with an applied average oscillatory shear stress of only 16.5 dyn/cm 2 (Goldsmith, 1974).

Implantable artificial heart and assist devices have been more prone to infection

than other prosthetic devices, due to the number of possible pathways. The incidence

of infection occurring inside the blood pump has been connected with the presence of

thrombi. Since thrombus formation, propagation, composition and disintegration may

be substantially flow-induced (Goldsmith and Turrito, 1986), improved flow dynamics
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in the device may result not only in reduced damage to blood components and reduced

thrombus formation with its associated effects, but also in reduced infection. Mixing

structures such as vortices may be of value to the long term patency of SMVs by increasing

local mixing of the blood constituents and decreasing peak residence times.

2.6.4.2 Effects of Flow on Blood Vessels

Today, atherosclerosis is the main cause of death in the western world. It has

been recognized that a correlation exists between the disease processes and fluid-dynamic

aspects of the blood flow (Nerem, 1992). The initial stage of the development of athero-

matous lesions in the walls of arteries (atherogenesis) involves truly nano-scale phenomena

and microhydronamics with the accumulation in the intimal layers of the wall of lipo-

proteins and other blood-borne materials, and changes in both the cellular and connect-

ive tissue components of the wall. The basic lesions (atheroma) may lead to narrowing

(stenoses) and hardening of the arterial wall and so to further pathological complications.

Localisation of atherosclerosis lesions is preferential in geometrically contorted sites such

as bifurcations and bends, where flow separation and recirculation regions occur.

Wall shear stresses have received most attention in the analysis of atherosclerosis

causes due to the flow-induced changes of the endothelial cells. In vitro studies using cell

cultures exposed to defined laminar flow have demonstrated that time history of shear

stress can influence cell shape and metabolism. The mechanism of the transduction of the

mechanical signals into chemical are not yet well understood, different hypotheses having

been postulated. Initially, Fry (1972) proposed that atheromatous lesions were more likely

to be found in regions of high wall shear stress. However, Caro et al. (1981) concluded

that low wall shear stress was the cause of the atheromatous lesions. This hypothesis

has gained much support from other laboratories and theoretical investigations, and has

suggested that the development of atheroma is associated with shear dependent mass

transport phenomena rather than wall damage due the motion of blood. Ku and Giddens

(1985) confirmed these findings, but also indicated that marked oscillations in the wall

shear stress may enhance atherogenesis.

2.64.3 Interaction of Blood with Artificial Surfaces

Blood/foreign surface interaction phenomena affect significantly the in vivo per-

formance of cardiac assist devices. In contrast to the living intact endothelium, all other

surfaces induce interactions in blood the extent of which varies from the tolerable to the

detrimental. The scheme in Fig.2.23 summarizes the essential pathways of these interac-

tions under physiological conditions. The end result of contact between blood and artifi-

cial surfaces is thrombus formation. When synthetic smooth surfaces come into contact
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with blood, most of them absorb a thin layer of proteins after the initial contact (Brash,

1989). The nature of this absorption phenomenon under in vivo physiological condi-

tions and the subsequent changes that occur in the absorbed proteins are both influenced

by several factors, including surface smoothness, chemical structure and haemorheologic

factors. As a consequence, the prerequisite for blood compatibility with synthetic solids

is the adsorption of specific plasma proteins. The adsorption process is frequently accom-

panied by adsorption of blood components, which may affect not only blood compatibility

but the physical properties of biomaterials (Bruck, 1989). Platelet-surface interactions

are involved directly in initiation of thrombosis at polymer surfaces. This is accomplished

via platelet adhesion, release of constituent granules, and formation of surface-localized

aggregates, which eventually involve red cells and fibrin mesh (Baier, 1977).
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Figure 2.23 Sequence of events leading to thrombus formation on artificial sur-
faces. From Brash (1989).

In contrast to most synthetic biomaterials, there is no evidence that the living

endothelium absorbs proteins in the blood under physiological conditions. The endothelial

layer maintains an active secretory process that prevents platelet activation and creates

an effective 'renewing' surface.

In the design of assist devices stagnant flows are to be avoided. Prolonged exposure

of blood constituents to non-endothelialized surfaces entails a risk of thrombus formation.

Regions of low shear stress, which are are associated with blood stasis, are implicated in

the development of stable mural thrombi on artificial surfaces (Flashimoto et a!., 1985).

Regions of stagnant or recirculating flows near walls within an artificial ventricle can also

cause calcification of the artificial surface (Harasaki et al., 1985). Calcification occurring

especially in the moving portion of a blood pump can cause diaphragm perforation and

serve as nuclei for embolism. The process is initiated by nonviable and degraded cells and

subcellular components. It has been hypothesized that a rotational flow leading to a

'wash-out' of the pump chamber is advantageous in reducing thrombus formation and

possibly blood sac calcification.

Preliminary in vitro and numerical simulation studies are in this context essential.

In the next section modelling reported in the literature for the left ventricle will be

discussed with the objective of defining the solid mechanics problems that very probably
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would apply to the modelling of SMVs.

2.7 VENTRICLE MODELLING

For the purposes of the coupled solid-fluid model of an SMV, fluid mechanics equa-

tions should be coupled together with solid mechanics equations. Besides, since muscles

are not passive tissues, muscle mechanics equations should be coupled to the fluid and

solid equations. In this section ventricle modelling approaches will be discussed with the

objective of providing a suitable approach for the coupled solid-fluid system outlining the

requirements for the solid mechanics equations, in order to give a valid representation of

the mechanics of the ventricle.

Ventricle modelling has been applied to the heart left ventricle to date. Geometric

and physiological features in model SMVs would, in fact, be quite different. However,

provided that these differences are duly taken into account, methods for left ventricle

modelling would constitute an approach also applicable to the SMV modelling. A more

specific literature review on solid-fluid coupled approaches will be given in section 2.9.

Firstly, a brief description of the dynamics of the pumping function of the heart

in the systemic circulation will be presented in section 2.7.1. This will help in finding

general criteria that allow the global pumping function characteristics of a ventricle to

be related to its modelling at the muscle fibre level. It will also give an overview of

the cardiac dynamics, and an outline of the interactions of the potential use of an assist

device such as an SMV in the circulatory system dynamics. Then, section 2.7.2 will

deal with the mechanical properties of the intact heart. Determining the relationship

between stress and strain in the myocardium poses the principal challenge to the study of

heart mechanics due to the non-linear time-dependent constitutive law. Finally, the most

relevant left ventricle models documented in the literature will be described in section

2.7.3.

2.7.1 Cardiac Dynamics

The heart is the prime mover of blood. By periodic stimulation of its muscles it

contracts rhythmically and pumps blood throughout the body. The heart contains two

sections: the right side, which receives deoxygenated blood from the body and pumps

it to the lungs; and the left side, which receives oxygenated blood from the lungs and

pumps it out around the body. The flow of blood through the heart is controlled by four

one-way valves which open when there is a positive pressure drop across them and close

when an negative pressure difference is applied. As shown in Fig.2.24, at each cycle in

the diastolic phase the left and right ventricles are filled with blood from the left and

right atria, respectively. Then by the deceleration of the blood stream a pressure field
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is generated, which closes the valves between the atria and ventricles (tricuspid in the

right side, and mitral in the left side). The contraction of the heart muscle begins and

the pressure in the ventricles rises. When the pressure in the left ventricle exceeds that

in the aorta, and the pressure in the right ventricle exceeds that in the pulmonary artery,

the aortic valve in the left and the pulmonary valve in the right are pushed open, and

blood is ejected into the aorta and the lung. The ejection in the systolic phase continues

until the deceleration of the jets of blood creates pressure fields which close the valves.

Then the muscle relaxes, the pressure decreases, and the diastolic phase begins.

Figure 2.24 Blood flow through the heart. The arrows show the direction of
blood flow. From Folkow and Neil (1971).

The pressure in the left ventricle fluctuates from a low of nearly zero (i.e. atmo-

spheric) to a high of 120 mm Hg or so. In the aorta, the pressure fluctuation is much less

because of its distensibility. The pressures acting on the pericardium and in the ventricles

are unsteady with respect to time and nonuniform with respect to space. These pressures

together with the inertial forces due to acceleration, and with the elastic, viscoelastic,

and active contraction stresses in the muscle, determine the dynamics of the heart. On

the other hand, a feedback mechanism is in operation due to the pressure of the fluid in

the heart cavities and determined by the movement of the walls.

2.7.1.1 Geometry and Material of the Heart

The four chambers of the human heart constist of two thin-walled atria separated

by an interatrial septum, and two thick-walled ventricles separated by an interventricular

septum. The muscles of the atria and ventricles are joined to a skeleton of fibrous tissue
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on which the rings of the four valves are seated. The valves are seated in a plane (see

Fig.2.24). The mitral and tricuspid valves are relatively large in area: they are opened to

fill the ventricles when the blood pressure is low and its velocity is small. The aortic and

pulmonary valves, through which blood is pumped out of the ventricles at high velocity,

are smaller. The mitral and tricuspid valves are attached to papillary muscles, which

contract in systole, pull down the valves to generate systolic pressure rapidly, and prevent

the valves from any danger of inversion into the atrium. The aortic and pulmonary valves

have no such strings attached.

Fig.2.25 shows the ejection pattern of the two ventricles. The left ventricle remains

nearly ellipsoidal in shape. The right ventricle appears as a bellows, which is a geometry

ideally suited to the ejection of a large volume of fluid at a low pressure. In both ventricles,

there is also some shortening of the longitudinal axis. In vivo studies on dogs showed

that during ejection the minor axis of the inner wall of the chamber shortens by about

25% and the major axis by 8%, increasing the wall thickness by about 20-25% (Fung,

1984).

Figure 2.25 Patterns of ventricular contraction. From Fung (1984).

The model often used when considering the left ventricle is a thick-walled ellipsoid

of revolution. In longitudinal section, the left ventricle has been geometrically described

as somewhat egg shaped. The equatorial plane divides the LV into apical and basal

ports. The shape of the apex is between a cone and an ellipsoid. The basal portion

can be regarded as a truncated version of the apical. This approximation applies to

both contracted and distended states. Because the LV wall is thick, epi- and erido-cardial

shells can be considerably different in shape. Although the cone and ellipsoid are possible

representations of ventricular wall in various states of contraction, empirical methods

of representation are often used (Streeter and Ramon, 1983). Fully three-dimensional

reconstructions of left ventricular geometry have been obtained using a variety of imaging

methods, such as biplane cineangiography, two-dimensional ultrasound, and tomography.

2.7.1.2 Muscle Fibre Orientation

Fibre orientation has been studied by many investigators. The most extensive
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analysis was performed by Streeter and co-workers (Streeter et al., 1969; Streeter et al.,

1973; Streeter and Ramon, 1983), who measured fibre orientation in dogs and found a

systematic orientation through the wall. In the epicardium, the muscle fibres are oriented

from the apex to the base and are arranged in the direction of the longitudes. Away from

the epicardium the muscle fibre orientation changes continuously. At the midwall the

fibres are oriented parallel to the base, i.e., in the direction of the latitudes. The rotation

continues until the fibres become longitudinal again in the endocardium.

The principal fibrepaths tend to follow a geodesic path on the surface of the dissec-

ted heart wall in both ventricles, see Fig.2.26; and in addition they 'burrow' into the wall

in a continuous fashion such that they make a 'figure 8' path and returns to the equator.

Thus a muscle fibrepath can be represented by a helical path from epi- to endo-cardium

in both ventricles. The helix angle changes in each section quite smoothly, progressively

changing from a somewhat large negative angle at the pericardial surface, through zero

degrees near midwall, to an increasingly positive angle towards the endocardium (Streeter

and Ramon, 1983).
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Figure 2.26 Schematic representation of the left ventricle of the heart with muscle
fibrepath plotted on it. From Streeter and Ramon (1983).

2.7.1.3 The Pumping Function of the Heart: Pressure-Volume Curve

The heart is a pump that provides the blood with energy to circulate through the

body's vascular network. Its energy output is roughly the product of mean pressure

and flow. Because mean systemic arterial pressure is maintained within a relatively

narrow range by various mechanisms, cardiac pump function is often evaluated in terms

of flow output per minute, or simply 'cardiac output'. Under different loadings, the heart

may provide the blood with an identical amount of mechanical energy while consuming

vastly different amounts of total chemical energy for contraction. The working conditions

imposed on the heart before and after the onset of contraction have been called 'preload'

and 'afterload'.

The pressure volume diagram enables an evaluation to be made of the pumping

function of the heart. The first pressure-volume diagram of the heart (Frank-Starling law

of the heart) was published by Frank (1895), and later by Starling (1918). They wanted
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to use the knowledge of the length-tension relationship gained in isolated skeletal muscle

studies in the attempt to interpret the pressure-volume relationship data measured in the

ventricle. Similarly, many recent investigators have attempted to understand the basic

characteristics of ventricular contraction by focusing on the tension-velocity relationship.

Fig.2.27 shows a left ventricular pressure-volume diagram obtained from the time

function curves of pressure and volume. The pressure-volume loop (shaded in Fig.2.27)

represents the energy imparted to the blood by contraction of the ventricle. More con-

ventionally the ioop area represents the stroke work,

pEEV

SW=_J
p(t)dv

EDV

of the ventricle on the external (arterial) system, from the end-diastolic volume (EDV)

to end-ejection volume (EEV).
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Figure 2.27 Pressure-volume loop diagram of the ventricle. Point a indicates the
pressure and volume at which the ventricle begins its contraction.
The isovolumic period is represented by the vertical segment of line
a-b. The aortic valve opens in point b. The ventricle ejection occurs
in segment b-c. From Sagawa et al. (1988).

The end-systolic pressure-volume relationship (ESPVR) and the end-diastolic pressure-

volume relationship (EDPVR) of the ventricle in a given contractile state can also be

inserted in the pressure-volume diagram, as indicated in Fig.2.27. These curves represent

the mechanical properties of the fully contracted ventricle at end-systole and fully relaxed

ventricle at end diastole. Both ESPVR and EDPVR relationships shift with changes in

the contractile state of the myocardium, or with changes in the ratio of the wall thickness

to the cavity radius.

2.7.1.3.1 Pressure-Volume Curve in model SMVs

According to the Frank-Starling relationships, cardiac muscle is like skeletal muscle

in that the energy of contraction is a function of the length of the muscle fibre before

contraction. As the fibre length increases, the energy of contraction also increases up
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to an optimal length, above which lengthening will cause the energy of contraction to

decrease. Stroke volume is a function of the extent of ventricular shortening at any level

of diastolic length and contractility.

Results from experiments on models SMVs in mock circulations showed that like

the heart, the SMV has an inverse relationship between afterload and stroke volume.

Stroke work (stroke volume x pressure) of the SMV remained relatively unchanged over

the ranges of afterloads studied (Acker et al., 1986). The stroke volume was high at low

afterloads and low at high afterloads, which resulted in little change in total stroke work.

As with the heart, stroke work did decline sharply when, at very high afterloads, little

or no flow was generated. Ejection fraction of the SMV compares favourably with the

ejection fraction of the left ventricle. (Ejection fraction, like stroke volume, is inversely

related to afterload).

When SMVs are used as diastolic countrpulsators, the preload pressure is equival-

ent to aortic diastolic pressure, typically 60-100 mm Hg. In the early mock circulation

studies, (Acker et al., 1986), preload was set at 40 mm Hg. Bridges et al. (1989) demon-

strated that preconditioned SMVs in dogs can be constructed that have the pressure-

volume characteristics appropriate for pumping blood under the physiological conditions

that pertain to the left and right ventricles.

P-V curves of SMVs, when configured as (rectus muscle wrapped) pouches in par-

allel to the left ventricle (Geddes et al., 1993), are shown in Fig.2.28 (see also section

2.3.2.4). Fig.2.28 illustrates two P-V diagrams A and B for the SMV in which instantan-

eous pouch pressure is plotted against instantaneous pouch volume, detected by imped-

ance, for non-contracting and contracting rectus muscle respectively.
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Figure 2.28 Pressure-volume loops for an SMV in parallel, not activated in A,
and activated in B. From Geddes et a!. (1993).
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2.7.2 Mechanical Properties of the Intact Heart

Mechanical analysis of myocardium is in general required to compute the wall

stresses, strains, and their variation during the cardiac cycle. For several decades re-

searchers have been attempting to understand the mechanics of the heart. In spite of

the considerable effort no unified description of heart mechanics has emerged. This is

because of the complexity of the geometry of the heart, of its structure, and of the ma-

terial behaviour of its musculature. In addition, the large number of variables entering a

given experimental situation and their complex interaction make the interpretation of ex-

perimental data difficult. To circumvent these difficulties many researchers have focused

their attention on the study of muscle bundles, such as the papillary muscle.

The performance of the whole heart is affected by the mechanism of contraction of

isolated cardiac muscle. Pinto discussed the relevance of the constitutive law of papillary

muscle to the mechanics of intact heart in a fairly recent paper (Pinto, 1987). However,

it is evident that there are important structural differences between papillary muscle and

ventricular myocardium. Other factors such as the shape of the ventricles, the muscle

fibre orientation, and the thickness of the ventricular wall all determine the distribution

of forces within the ventricular myocardium.

The myocardial connective structure plays an important role in the characterization

of the mechanical properties of the myocardium both in the active and passive state. Both

the fibrous structure of cardiac muscle and the organization of its extracellular connective

tissue matrix indicate that the mechanical properties of passive myocardium are aniso-

tropic. Humphrey and Yin (1987) demonstrated that, although cardiac tissue possesses a

complex deformation-dependent anisotropy, the assumption of transverse isotropy with

respect to a local muscle fibre direction (orthotropy) appears to be reasonable. Uniaxial

laws implemented in ventricular models may be extended to two or three dimensions only

under conditions of isotropy. Therefore, the three-dimensional material properties cannot

be fully characterized by one-dimensional mechanical tests.

2.7.2.1 Biaxial Testing

It is possible to characterize the three-dimensional material properties of incom-

pressible anisotropic membranes using biaxial mechanical testing procedures. Yin et al.

(1987) proposed biaxial exponential laws which fits very well with the experimental res-

ults. Stress-strain curves for myocardial sections taken from midway through the left

ventricular free wall are shown in Fig.2.29. In the fibre direction, stress-strain relations

exhibited the non-linear characteristics of passive papillary muscle with low stiffness at

small extensions but which increased sharply, as maximum extensions were approached.

Stress-strain relations in the cross-fibre direction exhibited creep and rate dependent
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hysteresis. These findings show a clear anisotropy associated with the fibre direction,

depending on the transmural site from which the myocardial section is removed.
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Figure 2.29 Stress vs extension ratio under equibiaxial loading for left ventricular
midwall specimens. Bars represent errors. From Hunter and Smaill
(1988).

2.7.2.2 Relation between isolated muscle and intact heart mechanics

Numerous investigators have used the one-dimensional models to interpret data

collected on the intact three-dimensional left ventricle, such as the pressure-volume curve.

Fry et al. (1964) were among the first investigators to use a lumped parameter model to

analyze experimental data obtained from the intact left ventricle. Grood et al. (1979)

demonstrated that the one-dimensional model of the isolated muscle is not adequate to

describe the behaviour of the 3-D ventricular wall. They developed a composite model of

the heart muscle consisting of active uniaxial contractile filaments embedded in a passive

3-D elastic binder. Equations were developed to relate the average contractile filament

force to the stress in the muscle tissue.

In a qualitative sense, the ventricle does behave in a manner similar to the isolated

muscle. The ventricular wall exhibits a roughly inverse hyperbolic relationship between

stress and shortening velocity. Further, contractile force increases with an increase in

length up to a maximum value as in the isolated muscle (Starling effect). This seems

to show that there is a similarity between ventricular pressure p(t) and myocardial force

F(t), and between ventricular volume V(t) and muscle length L(t). However, an accurate

reinterpretation of the ventricular variables (P-V) into muscle variables (F-L) is a very

difficult task, because of the complex shape, non-uniform thickness and fibre orientation

of the ventricular wall. If cardiac wall is assumed as a homogeneous medium with isotropic

properties, the internal pressure p is related to the mean wall circumferential stress T

through the relationship

p = f(V)T	 (2.8)

where the so-called 'shape factor' f(V) depends on the particular representation adopted
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for the LV geometry. In any case, it decreases with the inner volume V. Some biomedical

engineers incorporated the concept of time-varying elastance for modelling the ventricle

at the muscle level (Sagawa, 1978), assuming a load-independence of the volume elastance

or Pressure:Volume ratio,

p(t) = E(t)V(t)	 (2.9)

Recent experimental evidence, however, demonstrates that the tension-length/ (muscle)

and pressure-volume/(ventricle) relationships are load dependent. These findings have

led to the addition to the ventricular model of internal viscous resistance in series to the

elastance (Sagawa et al., 1988).

2.7.3 Approaches to Ventricle Modelling

Realistic modelling of the complex three-dimensional geometry and fibre archi-

tecture, the large deformations and the non-linear elastic, anisotropic, time-dependent

material properties is extremely difficult. Therefore, most models of the heart have been

restricted to the passive left ventricle and have relied either on simplified geometric rep-

resentations, such as cylinders or spheres, or on linear approximations to the governing

equations when reproducing global pressure-volume relationships. Under these conditions

mathematical sophistication is not required. Even linear models based on cylindrical or

spherical approximations are able to produce the diastolic filling curve to within 20%

(Janz et al., 1974). However, the importance of accounting for large deformations of the

passive left ventricle when predicting stress distributions has been demonstrated when

finite element models are used (Janz et al., 1974). This is supported by experimental

measurements of myocardial fibre stretches that may exceed 20% at physiological filling

pressures.

Numerous models dealing with the mechanical activity of the heart ventricles have

been published in the more recent past. These models can be divided into two main

groups:

1. phenomenological models, which utilize material laws in the form of general

mathematical expressions, and

2. structural models, that are based on the microstructure of the heart.

Experience has shown that it is difficult to account for the complex three-dimensional,

anisotropic properties of the myocardium using phenomenological material laws. A more

realistic analysis of the deformation pattern of the ventricle or the intramyocardial pres-

sure and stress, can be carried out with models utilizing microstructural material laws

(Lanir, 1983). In the phenomenological approach the myocardium mechanics is modelled

using the equations for continuum mechanics. This approach avoids a detailed represent-

ation of the complex structure of the myocardium, and hence has the benefit of a greater

simplicity.
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The structural approach considers basic elements with known properties. Their

contributions are integrated to obtain the behaviour of the whole system. The integration

process is based upon the morphological structure of the myocardium, particularly the

ordered pattern of muscle fibres, as described by Streeter et al. (1969). Most of the

published structural models consider the basic myocardial element as an isolated cardiac

muscle, and then define a pattern to these fibres across the ventricle wall. The Immersed

Boundary Method developed by Peskin and co-workers will be discussed in detail in

section 2.9.1 with the solid-fluid coupled models.

When studying the dynamics of the left ventricle, the choice of the geometry of

the left ventricle model is rather important because the relation between wall stress and

left ventricle pressure depends on the geometry. From Back's analysis (Back, 1977), for

example, it can be concluded that the calculated wall stress is approximately 50% less if a

spherical rather than an ellipsoidal geometry is assumed. The most realistic results for the

relation between left ventricular pressure and wall stress are obtained when ellipsoidal

geometry is assumed. Cylindrical geometry approximates these results closely, within

10%, and significantly better than when spherical geometry is assumed.

Numerous ventricle models in the literature use a cylindrical geometry to approx-

imate the shape of the left ventricle. Besides its inherent simplicity, the thick-walled

cylinder is the only geometry in which an anisotropic structure can be described with

one single spatial parameter, the radial coordinate. Solving the mechanics of a fibrous

thick-walled sphere or ellipsoid is substantially more complicated as each more realistic

rotationally symmetric geometry involves loss of symmetry after deformation. In the el-

lipsoidal case, the corresponding solution of the problem has two dimensions in space, the

radial and axial coordinate. In an asymmetric geometry, a third, tangential coordinate

has to be added.

2.7.3.1 Phenomenological Approach

The phenomenological approach uses the equations of the continuum mechanics for

deformable material to model the mechanics of the ventricle. The result of a set of forces

acting on a deformable material is a time-varying displacement field. Each material point

moves a certain distance depending both on its position relative to the applied forces and

on the mechanical properties of the material. The derivation of the equations governing

the motion of deformable materials is considered in the following steps:

(i) kinematic relations, which define the components of strain in terms of displacement

gradients and, in the case of incompressible materials, define the compressibility

constraint;

(ii) stress equilibrium, or equations of motion, derived from the laws of conservation

of linear momentum and conservation of angular momentum;

(iii) constitutive relations, which express the relationship between stress and strain
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and must be established from experimental data characterizing the non-linear

anisotropic material properties of cardiac muscle;

(iv) boundary conditions, which specify the external loads or displacement

constraints acting on the deforming body.

In mechanical studies, an efficient representation of the geometry of the cardiac

structure should consider the three-dimensional geometry of the right and left ventricles

and the complex pattern of muscle fibre orientations. An accurate three-dimensional

reconstruction of the ventricular geometry is not an easy task. The instantaneous three-

dimensional ventricular geometry was estimated from biplane cineventriculograms by Pao

et al. (1974) and Yettram et al. (1982), and used to develop finite element models. Recent

advances in cardiac imaging have been spectacular and it seems likely that sequential

high-resolution reconstruction of three-dimensiQnal ventricular structure will soon become

available. In the following discussion, analytical ventricle models are reviewed.

2.7.3.1.1 Left Ventricle Analytical Models

A considerable number of analytical models of the mechanics of the left ventricle

have been described in the literature due to the great interest in the study of the wall

stresses of the myocardium. Ventricular wall stress is, in fact, a primary determinant of

myocardial oxygen consumption and coronary blood flow, and local stress and strain give

an indication of myocardial ischemia. Direct information on the distribution of myocardial

stresses is not available because intramural force gauges have proved to be unreliable

(Huisman et al., 1980). In order to calculate wall stresses indirectly, assumptions for the

of the ventricle need to be made.

The earliest attempt was by Woods (1892), who calculated wall tension a for the

thin-spherical geometry from cavity pressure p and radius R using the classical Laplace

membrane solution (a,, = R x p/2) . Calculations on ellipsoidal thin-walled models were

carried out by Sandier and Dodge (1963), Streeter et a!. (1969) and Falsetti et al. (1970).

However, as the left ventricular wall is of comparable thickness to the ventricular radius,

the absence of any shear stress in these models severely limited their application.

Thick-walled models with linear material properties originate from Lame's classical

solution for the stress distribution in an inflated thick-walled and a basical spherical

geometry was proposed by Sokolnikoff (1956), and applied by Hanna (1973) and Mirsky

(1973). Vito (1979) proposed a more complex version of the Mirsky model (1973), which

was recently reassessed by Shivakumar et al. (1989); they modelled the heart with the

pericardium as two concentric spheres. A more accurate description of the ventricular

geometry is a prolate ellipsoid as proposed by Hood et al. (1969), Mirsky (1969), Wong

and Rautaharjiu (1968), Ghista and SandIer (1969), and Streeter et a!. (1973). They

all used ellipsoidal geometries with sufficient simplification to the stress distributions to

enable an analytical solution to be obtained. Streeter et al. (1973) considered anisotropy
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of the myocardial material and changing of fibre orientation across the wall. In their

model, however, large deformations, which occur during ventricular ejection, could not

be described adequately because of the applied mathematics.

Any attempt to discuss here details on the mathematical formulation of the calcu-

lation of exact stress distribution in the ventricular wall for the model mentioned above

would represent a cumbersome discussion, even considering the simplifying assumptions

used. However, to give a representative example the thick-walled ellipsoidal model by

Wong and Rautaharju (1968) is reported in detail in APPENDIX D.

With the advent of the Finite Element Method, stress analysis of complex geo-

metry together with constitutive models became possible. Extension to more complex

axisymmetric shapes using finite element models, but still with linear elastic material

properties were made by Gould et al.(1972) and Pao et al. (1974). All these models use

the infinitesimal elasticity theory.

The first model to offer real insight into myocardial stress distribution were those

of Mirsky (1973), who used the large elastic deformation solutions of Green and Zerna

(1968) for the inflation of a thick-walled sphere, and Janz et al. (1974), who used finite

deformation theory with an axisymmetric finite element model having isotropic proper-

ties. These studies showed circumferential stress and strain distribution at end-diastole

to be much higher in the subendocardium than in the subepicardium. Chen et al. (1980)

using finite elements, modelled a 3-D active LV as a non-hear elastic orthotropic material

having long and layered fibres allowing large deformations. An evaluation of several geo-

metric assumptions for the estimation of left ventricular circumferential wall stress was

given by McHale and Greenfleld (1973). A recent evaluation of the above analytical mod-

els was presented by Eberhardt and Sanford (1993). They also compared finite element

models of passive linear elastic ellipsoids with experimental results.

The calculated stress distribution across the myocardial wall depends also on the

mechanical properties of the myocardial material as introduced in the model. Many au-

thors (Hood et al., 1969; Janz and Grimm, 1972; Mirsky, 1969; Pao et al., 1974; Wong

and Rautohaju, 1968) assumed isotropy of the myocardial material. Models based on

isotropic material introduce large errors in describing the process of ejection and the

transmural distribution of stresses (Arts and Reneman, 1977). During ejection the sim-

ulated, isotropic left ventricle appears three times stiffer than the real ventricle in a dog.

An anisotropic asymmetric model based on finite deformation theory was developed by

McCulloch et al. (1992). The basic equations for the solution of the solid mechanics under

the assumptions of interest - large deformation and strains, non-linear elastic behaviour

and anisotropy of material - will be discussed in section 2.8.

Among the modelling approaches documented in the recent literature, some seem

to have gained substantial success in the valid representation of the mechanics of the left

ventricle, although their complete development is still in progress. These include:

the global body force approach, developed by Shoucri;

• the finite element approach, developed by Hunter and co-workers in collabora-
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tion with Guccione and co-workers; and

the nonlinear, laminated-muscle-shell theory approach, developed by Taber.

2.7.3.1.1.1 Global Body Force Continuum Mechanics Approach

The concept of a active body force in an elastic model of the left ventricle was

developed by Pierce (1981) and later by Shoucri (1991a). In Pierce's model, the active

myocardium fibres create a body force proportional to the divergence of the tension

direction vector, and a second equal to the tension divided by the radius of curvature.

Explicit solutions to isotropic linearly elastic'tensor equations with these body forces are

found for a axisymmetric thick-walled spherical ventricle with radial body force.

Shoucri proposed a global continuum mechanics approach in which the active force

of the myocardium is represented by three components of a body force along three or-

thogonal coordinate axes. These components are included in the equations that describe

the mechanics of cardiac contraction. The concept of body force is used to model the

active state of myocardium in the same way that the laws of the theory of elasticity are

employed. The concept of strain energy density function is used. This had already been

applied to biological tissues by Fung et al. (1979), for instance. The theory of large

elastic deformation was used as discussed in Green and Adkins (1970).

The myocardium is represented as a thick-walled elastic cylinder with transverse

isotropy contracting symmetrically. Bending and twisting of the cylinder are neglected,

as are the inertia. The myocardium was assumed to be incompressible. Fibres lie on

cylindrical surfaces and wind around the surface in a helical manner. The relation between

body force and tension is derived from Peskin's formulation (Peskin, 1973-74). Shoucri

used this approach to derive an equation for the P-V relation in the left ventricle from

the calculation of the radial force per unit area (Shoucri, 1991a), and to evaluate the

pump function of the left ventricle (Shoucri, 1991b).

2.7.3.1.1.2 Finite Element Continuum Mechanics Approach for the Left

Ventricle

A numerous group of investigators comprising a collaborative activity between the

Guccione and Hunter groups have been working in the recent past on the modelling of

the myocardium using a finite element continuum mechanics approach. Guccione

and his collaborators have developed the mathematical formulation of the passive and

active properties of the myocardium and have recently modeled the heart (Guccione et al.,

1993a) using the finite element techniques developed by Hunter et al. (1988). Previous
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studies on the passive myocardium properties were performed in a thick-walled cylindrical

model of the left ventricle representing the equatorial region. The myocardium was

modeled as a homogeneous incompressible hyperelastic material possessing curvilinear

aelotropy with respect to the local muscle fibre axis. The stress-free state of the left

ventricle was assumed to be a warped cylindrical arc. Residual stress and strain are

modelled by prescribing displacements in two steps. First, the cylindrical arc is deformed

from the stress-free state to the intact unloaded configuration. Then displacement are

prescribed to model the deformation of the cylinder during the passive loading.

The finite element method developed specifically for the heart by Hunter and his

co-workers (Hunter and Smaill, 1988) uses the Galerkin finite element equations for three-

dimensional finite elasticity derived in prolate spheroidal coordinates. Orthotropic con-

stitutive equations derived from biaxial testing of myocardial sheets are defined with

respect to the microstructural axes of the tissue. Muscle fibre orientation is identified

throughout the myocardium using finite element fields with nodal parameters fitted by

least squares to comprehensive measurements of these variables. The material anisotropy

of the ventricular wall was defined by referring the stress tensor components at every

point in the element to an orthogonal system of local material coordinates, having one

axis aligned with the fibre direction. An elastance model for active fibre stress was in-

corporated in a three-dimensional model that included an accurate representation of the

left ventricular free wall geometry and fibre angle distribution in the dog heart, and a

nonlinear constitutive equation for the resting myocardium, that was transversely iso-

tropic with respect to the local fibre axis. Details on the method development are given

in APPENDIX E.

Grid generation included the generation of nodal coordinates for the finite ele-

ment mesh and the generation of orthotropic material axes at each computational point.

Solution of the governing equations on the computational mesh required the material

constitutive laws to be defined at the Gaussian quadrature or collocation points of the

mesh. Thus, the spatially varying material coordinate axes needed to express the con-

stitutive laws, may be defined mathematically by finite element basis functions and nodal

parameters in a manner analogous to the decription of mesh geometry.

This model was used to simulate a canine heart with the purpose of analyzing

the local sarcomere length and the active fibre stress during ejection (Guccione et al.,

1993a). It was able to reproduce experimental data very well using a uniform stress-free

sarcomere length distribution, the same transmural fibre angle distribution in all regions,

and homogeneous material properties.

2.7.3.1.1.3 Nonlinear Laminated-muscle-shell Theory Approach

While many researchers have modelled the left ventricle as a 'shell' few have used

'shell theory' to analyze their models. In general, researchers have used membrane the-
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ory, and three-dimensional elasticity theory. Using the recent advances in nonlinear

theory (Libai and Sirnmonds, 1988), Taber has developed laminated-shell equations that

account for large-strain geometric and material nonlinearities, thick-shell effects, aniso-

tropy, muscle activation, and residual stress (Taber, 1991a); and has modelled the canine

left ventricle as a thick-walled laminated cylinder (Taber, 1991b).

Each layer is composed of an incompressible, orthotropic, pseudoelastic material

with principal material directions that lie along helices whose orientation is based on

anatomical data for the muscle fibres. The shell was moderately thick (ratio of radius

to thickness greater than 10). Bending and transverse shear strains were considered

moderately large. Surface shear stresses were neglected. In each lamina, shear strains due

to residual strains and muscle activation were considered small to the principal material

directions. Dynamic effects (inertia and muscle contraction velocity) were neglected. The

governing equations were expressed in generJ lines-to-curvature coordinates and include

axisymmetric deformation with torsion due to off-axis orthotropy. A single pseudostrain-

energy density function with time-varying coefficients was used to describe the passive

and active behaviour of the cardiac muscle for uniaxial, biaxial, and intact physiological

loading conditions. For each layer of the shell three states were defined: zero-stress state,

unload physiological state, and loaded state. Residual strain and muscle activation were

treated in a unified manner, through shifts across the zero-stress configuration. The

model predicted strain distributions that agree fairly well with published experimental

measurements.

2.7.3.2 Structural Approach

The most popular structural methods that use analytical techniques are the nested

shell approach, known as Arts's approach, and the Fluid-fibre approach. Both methods

use cylindrical geometries to model the left ventricle. A nested shell spheroidal shape

with a realistical distribution of muscle fibres in the wall was used by Beyar and Sidenam

(1986).

2.7.3.2.1 Arts's Approach

Arts and his group have worked in the last twenty years in the development of a

mathematical model for the mechanics of the left ventricle, which relate instantaneous

values of left ventricular volume, pressure and dimensions as well as the transmural course

of stress and sarcomere length in the left ventricle (Arts et al., 1979). They have simu'ated

the left ventricle with a thick-walled cylinder composed of eight concentric shells. The

ejecting ventricle was analyzed without considering the strain rate effect. The myocardial
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tissue is assumed to be anisotropic, and consisting of a contractile fibre structure embed -

ded in a soft incompressible material. The sarcomere length changes during the cardiac

cycle as a function of the degree of activation of the cardiac muscle. Fibre orientation

and sarcomere length change across the wall, and the spread of activation was considered

to proceed only in the radial direction. Within a cylindrical shell all fibres have the same

orientation, the same load, the same sarcomere length and similar degree of activation.

Transmural gradients of these quantities are presented as stepwise changes from shell to

shell. A similar model was developed by Feit (1979), who confined his analysis to the

end-diastolic passive state and used an exponential stress-strain relation.

The calculation was performed following an iterative procedure starting on estim-

ated height and torsion angle of the cylinder. Condition of equilibrium was applied to

the total axial force and torque, acting on the upper surface of the cylinder including

the cavity, and calculated taking into account the left ventricular pressure and the axial

stresses. Iterations were stopped when the deviations from the equilibria were sufficiently

small. Details of the calculation procedures are given in Arts et al. (1979). Recently, the

mitral valve papillary muscle was incorporated in the model (Arts and Reneman, 1989).

The model presented above has given realistic results as global hemodynamics para-

meters and also in respect of the torsional deformation. It revealed that, when torsion is

admitted, the transmural course of sarcomere length and tensile muscle stress are rather

uniform. This result is essentially different from the results of studies on ventricular

mechanics as performed by Wong and Rautaharju (1968) and Hood et al. (1969), who

found a subendocardial stress in systole approximately twice as high as subepicardial

stress. This discrepancy can be explained by the fact that the latter assumed isotropic

cardiac muscle material.

2.7.3.2.2 Fluid-Fibre Approach

The linear continuum mechanics methods in which the myocardium is represented

in a way that can be interpreted as a fluid-fibre continuum was first proposed by Chadwick

(Chadwick, 1981; Chadwick, 1982). Anisotropic elastic effects due to the fibre direction

field are incorporated (Streeter, 1973). The model consists of a thick-walled cylindrical

shaped ventricle in which fibres spiral on helical paths and terminate on planar end

surfaces. The helix pitch angle varies continuously through the wall. Tozeren (1983)

presented a similar model, but used nonlinear continuum mechanics to account for the

large deformations which occur during myocardial contraction.

The myocardium is seen as a mixture of fluid and elastic components, where muscle

fibres are embedded in a continuum. Fibres carry tensile stresses, while the fluid matrix

sustain only hydrostatic pressure. A stress tensor is used, which accounts for the pressure

in the fluid and the tensile stress produced by the action of the fibres. The quasi-static

equilibrium approximation is used at each instant of time. That is, the ventricular cycle
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is idealized as a sequence of mechanical equilibrium states and the effect of inertia is

neglected. Moskowitz (1981) demonstrated that the difference between dynamic and

quasi-static stresses is not significant for the case of late rapid-filling stage. A linear

relation between fibre stress and linearized fibre strain was used. The instantaneous elastic

modulus includes a time-dependent activation function to account for the heartbeat.

Strain rate or other pathdependent effects are omitted. These assumptions lead to a

theory which is consistent with the observation of Sagawa (1978), namely that over a

significant physiological range there exists an essentially linear relationship between end

systolic chamber pressure and chamber volume, and that this relationship is independent

of preload and path. Nonlinear effects, such as finite deformation and a stress-dependent

elastic modulus are quantitatively important during diastole (Mirsky, 1979). To include

such effects more complex theory has to be applied.

The model was applied by Chadwick (1982) to a cylinder that is allowed to deform

longitudinally in one direction while maintaining the cylindrical shape radially. The 'four

corners' of the pressure-volume loop were analyzed. Ohayon and Chadwick (1988) used

the same thick-walled cylindrical model to consider the effect of isotropic collagen matrix

and the sheath surrounding a myocite. Their analysis is for infinitesimal deformations

and uses the phenomenological isotropic Hooke's law for the collagen matrix.

Recently, a similar model for nonlinear finite deformations of the left ventricle has

been developed by Nevo and Lanir (1989), based on a three-dimensional micro-structure

of the myocardium which consists of helical muscle fibres interconnected by transverse

collagen fibres. Muscle and collagen fibres are embedded in a fluid matrix. The collagen

fibres form two distict networks: transverse collagen bundles interconnecting adjacent

muscle fibres, and collagen fibres parallel to muscle fibres, forming collagenous sheaths

around muscle cells. The uniaxial properties of the collagen fibres and those of the

muscle fibres during the active phase are based on the experimental studies performed

with passive and active isolated papillary muscles, respectively. Based on the findings of

Horowitz et al. (1988), the passive stiffness of the myocardium is entirely represented by

the collagen fibres.

From the extensive literature on ventricle modelling discussed in this section, it

is possible to conclude that, in order to have reasonably realistic modelling of an SMV,

the solid mechanics equations to be used in the coupled approach should generally be

formulated for large deformation, non-linear elastic and viscoelastic material with

orthotropic properties. The formulation of these equations will be addressed in the next

section.

The final goal of this research is the achievement of a coupled solid-fluid ventricle

models to be applied to model SMVs. Numerical modelling of fluid-solid coupling was

initially carried out by our Biomedical group treating the solid as a quasi-fluid along

the lines of Peskin's approach. Few pioneering approaches have coupled continuum solid

equations to the fluid equations, and they are under investigation by our group. Details

of these approaches are given in section 2.9.
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2.8 SOLID MECHANICS

In this section, the basic equations are presented for a comprehensive solid mechan-

ics model applicable to ventricle modelling. A realistic modelling of the ventricle dynamics

should include the following aspects:

(i) reasonably faithful three-dimensional geometric representation

(ii) time-dependent analysis

(iii) large deformation analysis

(iv) non-linear constitutive relations

(v) anisotropy of the material

(vi) viscoelastic effects

(vii) inertia effects	 1

(viii) large strain analysis

Table 2.1 summarizes the most relevant approaches reported in the literature to

model the solid mechanics of the left ventricle pointing out the various approximations

made to the geometry, material behaviour, and type of deformation analysis. As men-

tioned in the previous section, initial models were derived from the exact solution of the

linear elasticity equations for small deformations and isotropic material. The mathem-

atical formulation of a thick-walled ellipsoidal model is reported in APPENDIX D. More

realistic models require a greater mathematical effort. As Janz et al. (1974) demon-

strated from the analysis of available experimental data showing peak fibre stretches of

about 20 %, finite deformation analysis is required. In addition, due to the nature of

the constitutive equations both in the passive and active states of muscles, the analysis

should consider viscoelastic and non-linear elastic terms. The structure of the muscle

can be assumed homogeneous, but anisotropic effects cannot be neglected. However, the

analysis is in part simplified by the fact that transverse isotropy (orthotropy) can be

assumed. Inertia effects are usually neglected, reducing the problem to a quasi-static

case.

It has to be pointed out that fibre organization when using the latissimus dorsi

as powering muscle for SMVs does not have the same configuration encountered in the

cardiac muscle. It is admitted that it should be borne in mind that a certain degree of

orientation with respect to the longitudinal axis will be presented in the in vivo harnessed

SMV. For muscle modelling in the immediate future, however, a simplified approach

is intended where the orientation of the fibres is mainly circumferential and uniform

throughout the wall thickness.

An important issue to consider is the separate behaviour of the muscle in the pass-

ive and active states. In the passive state, anisotropy cannot be neglected. In the active

state, body forces have to be included in the equilibrium equations. Passive constitutive

relations consider viscoelastic effects. As discussed in the previous section, when the

muscle is operating passively the connective structure of the fibres determine the mech-

anical behaviour. Experimental data seem to fit well with exponential curves although
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biaxial testing is needed to take into account the anisotropy of the muscles. When the

muscle is operating actively, the constituive equations are represented by force-length,

and force-velocity relations available from experimental data.

Table 2.1

Summary of ventricle models reported in literature

Reference	 Geometry	 Elasticity Anisotropy Deformation

_________________________ ____________________ Theory ___________ Analysis

Sandier and Dodge (1963)	 thin-walled ellipse	 linear	 isotropic	 small

Streeter et al. (1969)	 thin-wailed ellipse	 linear	 isotropic	 small

Wong & Rautahaju (1968) 	 thick-walled ellipse	 linear	 isotropic	 small

Sandier and Ghista (1969)	 thick-walled ellipse	 linear	 isotropic	 small

Mirsky (1969)	 thick-walled ellipse	 linear	 isotropic	 small

Gould et al. (1972) 	 realistic model 	 linear	 isotropic	 small

Hanna (1973)	 thick-walled sphere	 linear	 isotropic	 small

Streeter et al. (1973) 	 thick-walled ellipse	 linear	 anisotropic	 small

Mirsky (1973)	 thick-walled sphere	 linear	 isotropic	 large

Pao et al. (1974)	 realistic model	 linear	 isotropic	 small

Janz et al. (1974)	 thick-walled cylinder	 linear	 isotropic	 large

Vito (1979)	 thick-walled sphere 	 linear	 isotropic	 large

Chen et al. (1980)	 ring strip	 non-linear	 isotropic	 large

Shivakumar et al. (1989)	 thick-walled sphere	 linear	 orthotropic	 large

Shoucri (1991)	 thick-walled cylinder	 linear	 orthotropic	 large

Taber (1991b)	 thick-wailed cylinder non-linear orthotropic 	 large

Guccione et al. (1993c)

	

	 thick-walled cylinder non-linear orthotropic 	 large

thick-walled prolate

Guccione et ai. (1993a)	 spheroid	 non-linear orthotropic	 large

The basic solid mechanics equations for large deformation problem are discussed

in section 2.8.1. Numerical methods are presented in section 2.8.2.

2.8.1 Basic Equations

From an estimate of the deformations that model SMVs may experience, it is

possible to conclude that finite deformation equations have to be considered for the

purpose of modelling the solid mechanics of the ventricle. The discussion that follows

refers to Fung's approach as it is described in (Fung, 1990, 1981), and based on the
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non-linear elastic theory as treated by Green and Adkins (Green and Adkins, 1970).

This approach has been extensively used in biomechanics by many ventricle modellers.

In order to know the deformation of a body, stresses and strains are to be found first,

then the deformation gradient, and finally, the functions that describe the deformation

of each point.

Large Deformation Analysis

To describe the deformation of a body we need to know the position of any point

in the body with respect to an initial configuration termed the reference state. When

considering Lagrangian formulation, stresses and strains are referred to the initial config-

uration. Positions are described with respect to a fixed frame of reference, represented

by the rectangular cartesian coordinate system. Every point in the body at the reference

state has three coordinates x 1 , x2 , x3 . When the body is deformed, the point F, having

coordinates x in the reference state, will have new coordinates y. The deformation of

the body is known completely when the relationship

yi = yt (x i ,x 2 ,x 3)
	

i = 1,2,3
	

(2.10)

is known, or its inverse

xi = Xj(yi,y2,y3)
	

i= 1,2,3
	

(2.11)

for every point in the body. These relations are single-valued functions possessing a

unique inverse and continuous derivatives. They represent the final goal to which stress

analysis leads once stress and strain are calculated. To describe the deformation in the

immediate neighbourhood of a point, the deformation gradient tensors are used:

0y/ax 3 ,	 t9x/ôy,	 i,j=1,2,3

These deformation gradients enable the description of the change in distance between

two neighbouring points such as P(x), P'(x + dx 2 ) after deformation to Q(yi), Q'(y i-

dy). Using the summation convention, these distances PP'(dx) and QQ'(dy1) can be

written as

ds = ödxdx,	 ds2 = 8dydy

where 6, is the Kronecker delta. The difference is given by

ds2 - ds = 5'(dydy, - dxdx,)
	

(2.12)

Substituting the derivatives of the deformation expressions:

/	 oxi oxI Uy '9yds2 - ds =	 - 51k) dx(dx k =	
- ;;-.j;; ) 

dyjdyk (2.13)
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leads to the form:

ds2 - ds = 2E13 dxdx3 = 2e1dydy

where	 is the Green's strain tensor and ejj the Almansi strain tensor. These latter

can also be written as

E1 =	 +	 +	 (2.14)
2	 9x2	 a1

and
- 1 (8u 1 	 19U3	 I9Uk Uk

e3- - - + - -
2	 t9y	 ay, ay3

where	 - x.These tensors allow the calculatiion of distances between two neighbouring points

in a deformed body, and from these the calculation of the deformation functions. For

small deformations the square of an infinitesimal can be neglected and the Cauchy's

infinitesimal strain tensor is obtained

1 (an1au	
(2.16)

- 2	 j - 2 8x	 ôx)

The use of curvilinear coordinates system (ai ) can be advantageous when consider-

ing a local coordinate system. In this case, the square of length of a differential element

can be written as

(2.15)

(0)ds = g1 dx2dz,

where g and g23 are metric tensors defined as

ds2 = gdy1dy,

	

(0)_&kôXk	 ôYkOYk
- --, g23 - --

	

öa ôa	 t9a 0a,

Thus the strain tensor may be expressed as:

11	 (0)E2 =	 -

Stress State Analysis

The state of stress at a point in the deformed body, referred to a cartesian system

is determined by the symmetric Cauchy's stress tensor Ujj . Stresses may, like strains,

be expressed with respect to the original configuration. Consider an element in the

original state and in the deformed state. A force vector dT acts on a surface of the

deformed element with a unit outer normal ii, with a corresponding force vector dT0

acting in the original configuration on a surface with area dS0 and unit outer normal flu.

The assignment of a correspondence rule between dT and dT0 is arbitrary, but must be

mathematically consistent. According to Cauchy's relation:

dT = cr1ndS
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_Po Dxi-
P c'Ym

(2.17)

P0 Ox Ox3
S3 =

P 01/a 0Yj3
(2.18)

and

According to the Lagrangian rule, the force vector is transformed without change of

direction and magnitude from the surface element in the deformed configuration. If T13

is the Lagrangian stress tensor, it follows that

dT02 = Tj1 no,dSo = dT2

An alternative is the Kirchhoff's rule. This requires a change of magnitude and direction

of the force vector, and states

dTj'	 dT0, = S3n0,dS0

is called the Kirchhoff's stress tensor. The following relationships between o,

and Sjj are given in standard textbooks:

The Eulerian stress tensor ajj , and the Kirchhoff's stress tensor are symmetric. The

Lagrangian stress tensor T3, is not necessarily symmetric. This implies that the Lag-

rangian stress tensor is inconvenient to use in a stress-strain law in which the strain

tensor is always symmetric; the Kirchhoff stress tensor is more suitable. From eqs.(2.17)

and (2.18), we have

Sji =
	

(2.19)

P Oyi _LLSacT = ---Tm
P0 DXp	 - PD OXa 0Xf3

= sip
	 (2.21)

Equilibrium Equation

In the Eulerian description, the external loads consist of a body force F per unit

mass, and a surface traction T per unit area acting on a surface element dS whose unit

outer normal is 11. In the Lagrangian description, the focus is on the body force per unit

mass F0 (with F = F01 ). By considering the resulting forces acting on the volume and

on the surface and using Gauss's theorem, the following equation of static equilibrium

can be written in Lagrangian terms:

0x3 +poF0 =0
	

(2.22)

If the body is in motion, we can apply D'Alembert's principle to reduce an equation of

motion to an equation of equilibrium by applying the inertial force, as an external load.

Hence F0 includes the inertial force. The equation of equilibrium, expressed in terms of

(2.20)
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(2.30)

the Kirchhoff stress tensor is:

_- (3Y--) +poFo, = 0	 (2.23)

The well known equation of equilibrium expressed in terms of Cauchy stress can easily

be written in the deformed state as:

+ poFi = 0	 (2.24)
19yi

Strain Energy Function

One of the best known approaches to the elasticity of bodies capable of finite

deformation is to postulate the form of an elastic potential, or strain energy function W.

If a material (tissue) is elastic, a strain energy function per unit mass W exists, which

is an analytical function of the strain components measured with respect to the stress-free

state, with the property that the rate of change of strain energy per unit mass is equal to

the power of the stresses. This definition expressed in terms of Eulerian variables, gives

=	 (2.25)

where D/Dt is the substantial derivative and V13 is the rate of deformation defined as

1 (ovj +
Vii =	

T Oyi)	
(2.26)

where v is the velocity field. In terms of Lagrangian variables, we have

D	 1 D	 1 ô
=	 =	 (2.27)

Among the salient properties of the strain energy function poW are:

(i) the Kirchhoff's stress tensor can be expressed as

tJ - 
a(,0W)	

(2.28)
uL:,3

(ii) the Lagrangian stress tensor can be expressed as

T1 - D(poW) - O(poW)
(2.29)

- i9(ôy2 /ôx,) - O(Ou/Ox)

If the material is incompressible, then ôv1 /t9y1 = V 1 = 0. This condition can be

expressed in terms of DE13 /Dt, and writing
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we have
BD3 =0	 (2.31)

is called Finger's strain tensor. From this follows that for an incompressible material:

s. - ____ - 
p j	 (2.32)

-

where p is an arbitrary scalar which can be identified with pressure. Known strain

energy functions of biological tissue are reported by Fung (1981). Guccione et al. (1991)

have found a strain energy function to be used in modelling of the passive state of the

myocardium. Details are in APPENDIX E.

Strain-Rate Effects and Pseudo-Elasticity

Mechanical properties of soft tissues, such as arteries and muscles, are qualitatively

similar. They are inelastic in that there is not a single-valued relationship between stress

and strain. They show hysteresis, relaxation, and creep. They are anisotropic, and

their stress-strain-history relationships are nonlinear. When hysteresis can be ignored,

nonlinear elasticity can be approached using the incremental laws of elasticity. Since these

laws represent the behaviour of a nonlinear viscoelastic material subjected to oscillations

of small amplitude, they may be strain-rate dependent. If hysteresis is not ignored but the

loops remain small, then one may consider incremental laws of viscoelasticity (Pate!

and Vaishnav, 1972). The stress-strain relationship of muscle is rather insensitive to

strain rate (Fung et al., 1979).

If a tissue is able to be preconditioned, the stress-strain relationship for the loading

and unloading branches separately is unique. Then the material can be treated as pseudo-

elastic, and a pseudo strain energy function can be used. The concept of pseudo-

elasticity is very useful because of its insensitivity to the strain rate.

Stress-Strain Relation for a Transverse Isotropic Material

Suppose that the material is transversely isotropic with respect to the direction

parallel to x 3 , in the cartesian coordinate system. The strain invariant expressions for an

incompressible body are

11 = 3 + 2Err ,	 '2 = 3 + 4Err + 2(ErrEss - ErsErs), 	 13 = 1
	

(2.33)

Let us define K1 , and K2 as

K1 E33 ,	 K2 = E3aE3a
	 (2.34)

where c represents the orientation angle in the plane orthogonal to the fibre direction.

The strain energy function can be expressed as

W= W(11 ,12 , K1 , K2 )
	

(2.35)
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The stress tensor ri', measured per unit area of the deformed body, and referred to

curvilinear coordinates, is expressed by:

= Igjj + WB23 + pg + M23 + AN'2

where

	

OW	 - OW	 ow

	

.:=2Oi,	 P_281,	
°8K'	 0K2'

Oa, 0a2
B'3 =	 - 9irYisY (°)	 M'3 

=

-	 +	 Ea3
- OX 3 OX c. 0x0.Oxs)

p is an unknown scalar invariant function of the curvilinear coordinate system.

(2.36)

(2.37)

(2.38)

(2.39)

2.8.2 Numerical Methods

A complete analytical solution for the displacement, stresses or strains in a body

subjected to internal and external forces, can be found only in a limited number of ex-

amples. Numerical methods overcome these difficulties by giving an approximate solution

to the governing differential equations. These are replaced by a set of algebraic simul-

taneous equations which allow the calculation of the variables of the problem at discrete

nodes. Two approaches are available: the Finite Difference Method and the Finite Ele-

ment Method. The older Finite Difference Method is based on a differential formulation,

while the Finite Element Method is based on integral formulations. The earliest mathem-

atical formulations for finite element models were based on variational techniques. This

was followed by the more recent weighted residual techniques, among which the most

common are the Galerkin method, collocation methods, and subdomain methods. Other

details of the Finite Element Method are given in section 3.4.2, where major attention is

paid to its use in the solution of fluid-dynamics problems.

Application of Finite Element Analysis (FEA) to structural problems has proved

to be successful in many cases, and biomechanics applications have also been performed

(Reuderink, 1991; Perktold and Rappisch, 1993). They have been developed to the point

where theoretical analyses for more complex situations and constitutive material laws

have been directly developed for the use in finite element analysis. Recently the modelling

has been extended to finite deformation, and more latterly to large strain problems, and

this has made the approach very promising in modelling biological tissues mechanics. A

discussion on the equations to be used for finite deformation and finite strain in the finite

element context is given below, followed by an outline of the solution algorithm. For a

background to general finite element procedures see Zienkiewicz (1977).
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Formulation of Finite Element Equations

In the following derivation the equations will be written for a single element. The

equilibrium equation in Lagrangian variables expressed in terms of the Finite Element is

formulated by considering a continuum occupying a region V with a boundary surface S

in the deformed state, which corresponds to a region V0 with a boundary surface S0 in

the original state. The body is subjected to external loads, consisting of a body force F°

per unit mass, and a surface force T° per unit area acting on a surface element dS0. The

equilibrium equation referred to the initial configuration is:

T0TvdS0 + F°"vdV0 = L0 STEdV0	 (2.40)

where v is the velocity field within the region referred to the current geometry. S is the

Kirchhoff stress, and E the time rate change of Green's strain. If the displacement field

is u this becomes

T0TdudSo + F°TdudV0 =
	

STdEdV0	 (2.41)

This leads to the equilibrium equation in finite element form:

p =
	

(2.42)

In this equation the surface traction and body forces have been lumped together in P

which is the vector of equivalent nodal loads. B is the matrix which relates an increment

of Lagrange strain to the nodal displacement increments. By taking derivatives the

incremental stiffness equations are obtained which relate displacement increments to load

increments:

dP [J TDdV0 + J GT MGdV0] da	 (2.43)

where D is the constitutive matrix relating stress increments to strain increments, G the

matrix relating displacement derivatives to nodal displacement increments, M the matrix

of Kirchhoff stress components, and a the vector of nodal displacement increements. This

formulation is valid for small strain. If large strains are to be considered, then the matrix

D has to be defined so that increments of Kirchhoff stress are related to increments of

Lagrange strain. In order to do so, other stress definitions have to be introduced, such

as the Jaumann stress.

The solution to a problem is achieved by applying the load as a series of increments.

Within each load increment iterations are performed to establish equilibrium. A full

tangent stiffness is evaluated for each iteration, allowing increments of maximum size to

be used.

Current FEA programs (Puttre', 1991) offer extensive features for non-linear dy-

namic analysis and finite strains (Harper, 1984). Whereas available CFIJ codes can

adequately represent all the large scale phenomena of blood flows, to simulate the various

aspects of the compliance and muscle behaviour require the most comprehensive solid
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mechanics stress modelling available today. Among the current FEA packages for struc-

tural analysis used in the modelling of biomechanics problems are ABAQUS, used by

Perkold and co-workers (Perktold and Rappisch, 1993), and MARC used by Reuderink

(Reuderink, 1991). Some of these packages - FEAT for example - allow a comprehensive

solid-fluid analysis, being then suitable for application in solid-fluid interaction model-

ling. More details on these packages are discussed in section 3.6, where other FEM CFD

packages are described.

2.9 COUPLED SOLID-FLUID APPROACHES

Much of the interest in blood flow modelling is focused on the conditions prevailing

at the interface between blood and vessel wall. The latter constitues a rather complex,

fibrous, compliant material which interacts mechanically and chemically with blood. In

addition, when modelling the wall motion of a ventricle, the active muscle behaviour in

contraction has to be addressed. The total load acting on the wall consists of the fluid

pressure (acting normally) and of the wall shear stress (acting tangentially). These two

distend and distort the wall which in turn reacts producing stresses and strains. Although,

microscopically, both the pressure and the shear stress are important, macroscopically it

is the pressure that plays the principal role.

Numerical modelling of a coupled solid-fluid model is complicated by the neces-

sity of solving the equations of motion for the flow and wall simultaneously. Very few

researchers have simulated the interaction of fluid with cardiovascular tissue. The Im-

mersed Boundary Method developed by Peskin (1977) represents a comprehensive ap-

proach in the modelling of the complex structure of the heart. Despite several years of

research aiming at defining the most realistic and sophisticated approach, fulfilment of

expectations has been elusive. Reuderink (1991) developed an uncoupled approach to

solve the equations for the solid and for the fluid separately. As mentioned previously,

Xu and Collins (1994) have modelled the wall distensibility in an arterial bifurcation

using a simple pressure-diameter relationship incorporated in the wall boundary routine

of CFDS-FLOW3D. Perktold and Rappisch (1993) have developed a coupled approach

using the FEM method to solve the flow and solid mechanics problems. A number of

groups are actively working on the development of coupled fluid/solids numerical codes.

The Biomechanical Research group at City University are currently engaged in two pro-

jects aimed at developing numerical codes capable of solving the coupled problem (Xu

et al., 1994c). The first is based on the finite volume code CFDS-FLOW3D, modified

to allow the modelling of the solid wall. The second project is based on the use of a

FEM code called FEAT, developed by Nuclear Electric's Engineering Analysis Group.

Coupled calculations of flow in a compliant artery using infinitesimal strain theory have

been successfully conducted using both codes. We now look at various approaches in

detail.
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Of less interest, the uncoupled approach by Reuderink can be summarized as fol-

lows. First the time-dependent pressure distribution due to wave propagation (1-D) is

determined. Next the wall motion due to this pressure distribution is calculated. Finally,

the wall motion is prescribed as a boundary condition for the solution of the fluid motion.

This approach is valid when the pressure distribution causing the wall motion is indeed

mainly dependent on wave phenomena and not on 'local flow effects'. Reuderink (1991)

applied this approach to a 3-D distensible model of the carotid bifurcation (Reuderink),

and to a distensible non-uniform tube (Reuderink et al., 1993). The Boundary Immersed

Method is discussed in section 2.9.1, followed by a brief description of Perktold 's approach

in section 2.9.2. The two approaches that are being developed at City are presented in

sections 2.9.3 and 2.9.4.

2.9.1 The Immersed Boundary Method

The Immersed Boundary approach treats the fluid-structure system as two separate

subsystems, those of the fluid and the structure. Each subsystem is solved separately at

each time step. The results of the previous solution of one subsystem are used to solve

the other. The fluid velocity field is used to deform the moving structure (cardiac tissue).

Once deformed, the structural forces associated with the new configuration are computed,

ignoring the fluid flow field. In reality, the boundary force would be in equilibrium with

the fluid force; a weakly coupled method only approximates equilibrium. These forces are

then applied to the fluid field, and a new fluid velocity field is computed. In the immersed

boundary method, a semi-implicit estimate of the boundary forces improves the estimate

of the structural forces in equilibrium with the fluid forces. The effect of the fluid inertia

is included in the computation of the boundary forces.

For the Immersed Boundary Method, the cardiac tissue is represented as a system

of totally immersed, neutrally buoyant, infinitely thin springs. Elastic and/or contractile

fibres are immersed in a viscous incompressible fluid. The cardiac tissue has a Lagrangian

representation, while the fluid has an Eulerian representation. An interpolation function

rather than a Jacobian matrix is used to convert a Lagrangian variable to a Eulerian

variable, and viceversa. The interaction between the fluid and the tissue is described by

using local body forces on the fluid at the location of the contact point with the surface,

rather than by prescribing boundary conditions at the contact point. The magnitude

and direction of the body forces are determined by the tissue strain. Because the fluid is

viscous, the velocity field cannot have discontinuities, and since the structure is assumed

infinitely thin and moves at the velocity of the adjacent fluid, no slip can occur on either

side of the tissue.

The three-dimensional Navier-Stokes equations are solved by an extension of Chorin's

projection method (Chorin, 1967). Peskin extended the algorithm to include a body force

term (Peskin, 1977). Fluid equations are solved using a finite difference method on a fixed
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regular computational lattice. Fibre points move freely through this lattice without be-

ing constrained to lie at the lattice intersections. Communication between fibres and

fluid involves interpolation of the fluid velocity to the fibre points and spreading of the

fibre forces to the computational lattice of the fluid. Details of the governing equations

and the computational method are described in Peskin and McQueen (1989), McQueen

and Peskin (1989), and Peskin (1992), Peskin and McQueen (1993), and are reported

in APPENDIX F. Yoganathan et al. (1994) have used this approach to model a 3-D

thin-walled left ventricle during isovolumic contraction and early systolic ejection. The

numerical predictions, have been compared with available clinical data.

2.9.2 Perktold's Approach

Perktold and co-workers have developed a coupled approach to model the flow

in distensible artery bifurcations. The mathematical description of the flow field uses

time-dependent Navier-Stokes equations to calculate pulsatile, non-Newtonian flows. The

flow equations are solved numerically using their recently developed pressure-velocity

correction method and finite element techniques. The artery segment is modelled as a

thin shell where geometrically non-linear shell theory and incrementally linear elastic wall

are applied. The wall calculations are carried out applying the finite element program

package ABAQUS version 4.9 (Hibbit, 1989). The numerical scheme at a time level

consists of the following steps:

1. Calculation of the wall displacements

2. Calculation of the wall velocity

3. Updating of the geometry and the finite element mesh

4. Calculation of the flow velocity and the pressure with the updated boundary conditions

5. Iteration of the scheme until convergence is obtained.

Application of this approach to a human carotid bifurcation is reported in Perktold

and Rappisch (1993).

2.9.3 The Finite Volume Method Approach

The application of the Finite Volume (FV) method to solid mechanics is quite

novel. The advantage of this approach is that coupled wall-fluid problems of blood flow

can be investigated using conventional CFD codes with relative ease. The model is able

to predict the full, time-dependent displacement and stress within the wall as well as to

solve the flow problem. The model has been applied to simple compliant-wall flows giving

reasonable agreement with available analytical solutions.

The equation of motion is derived for a tube in cylindrical coordinates. The wall is

assumed to be isotropic, linearly elastic, and incompressible. The governing equation of
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the unsteady, axisymmetric flow for a Newtonian fluid are solved using CFDS-FLOW3D.

The standard version of CFDS-FLOW3D requires the position of the moving surface to

be a known function of time. Because, in this coupled approach the interface position

is part of the solution, it was necessary to modify CFDS-FLOW3D so that the routine

defining the wall position could be called repeatedly, until the predetermined conver-

gence condition is achieved. This allowed the interface position to be found using a

predictor/corrector scheme as follows:

1. An initial wall position is defined.

2. Using the current wall position, the flow field is calculated. The predicted distri-

butions of pressure and shear stress at the wall provide an estimate of the wall

loading.

3. Using the current guess of wall loading, the equation of motion and volumetric in-

variance equation are solved to give an updated guess of the interface configuration.

4. The current interface configuration is compared with the preceding guess, and the

procedure is repeated from step 2 if convergence is not achieved.

5. Steps 2, 3, and 4 are repeated for each time step. The interface configuration at

time T is used as the initial guess for the configuration at T+T.

A discrete formulation of the equations of motion is obtained using the finite volume

method. The solution procedure mirrors that used to solve the flow field. Each variable is

decomposed into a guessed, or predicted, value and a correction. Following the SIMPLEC

approach, correction equations are formulated from reduced forms of the momentum

equations. The equation for the pressure correction is derived from the equation of

volumetric invariance. Values of all variables (except displacement) and coefficients on

the control volume boundaries are estimated as averages of the two nodal values either side

of the relevant boundary. Details of the formulation of the equations and the numerical

procedure to solve them can be found in Henry and Collins (1993b).

2.9.4 The Finite Element Method Approach

In this approach three sets of equations are solved: (1) the full time-dependent

Navier-Stokes equations for a non-Newtonian fluid, (2) the linear elastic small displace-

ment stress equations for the wall, and (3) the mesh displacement equations. The flow

equations are solved in moving boundary grids. The grid velocity is determined by solving

the mesh displacement equations. As a starting point, simpler models have been con-

sidered solving the equations governing the motion of a linearly elastic, incompressible,

isotropic solid undergoing small deformations. The three sets of equations are solved sim-

ultaneously together with appropriate boundary conditions. Details of these equations

are reported in Xu and Collins (1995).
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The coupled solution procedure has been implemented in the FE-based computa-

tional fluid-dynamics code FEAT (Anonymous, 1991a), a code extensively used in the

nuclear industry. The momentum equations for both the fluid and the wall are discret-

ised using the Galerkin finite element method, with the continuity equations being in-

corporated by a penalty-augmented Lagrangian-multiplier (PALM) method. An implicit

predictor/corrector method is used to solve the fully-coupled time-dependent equations.

The predictor is the second order explicit Adams-Bashforth method and the corrector

is the implicit Crank-Nicholson scheme, which is non-dissipative, completely stable and

second order accurate. The non-linear system of algebraic equations is solved using the

Newton-Raphson iteration algorithm. The mesh displacement equations are solved sep-

arately at each time step to obtain updated grid velocities, which will then be used to

calculate the transformation matrix introduced in the modified fluid equations. By doing

so , the transformed fluid equations are always solved on the original computational mesh,

regardless of the fact that the physical grid is moving.

In order to validate the two approaches under investigation in our research group,

tests have been performed in three stages: (1) decoupled solution for wall displacement,

(2) decoupled solution for flow field with moving boundary, and (3) coupled solution for

wall motion and fluid flow. For each case, numerical predictions have been attempted

using both the FV and the FE codes, and good agreement has been demonstrated. Future

work will include modifying the model wall used in the current codes to allow more

complex stress-strain relationships. Both these two techniques are very promising for the

purpose of muscle modelling.

In chapter 4, the first validation exercise, for the problem of decoupled flow with

moving boundary, will be discussed in detail. This has been found to be essential as

an initial validation of the numerical solution calculated by CFDS-FLOW3D, details of

which are discussed in the next chapter, but leading towards the full qualitative and

quantitative validation of the flows in realistic in vitro model SMVs. This procedure will

be discussed in the chapters that follow.
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CHAPTER 3

NUMERICAL METHODS FOR

COMPUTATIONAL FLUID DYNAMICS

3.1. INTRODUCTION

This chapter describes the mathematical model equations for fluid flow and heat

and mass transfer used in Computational Fluid Dynamics, and the numerical methods

for solving these equations. Discretization methods, advection schemes, time differencing

schemes and pressure/velocity coupling algorithms are discussed. Commercially available

CFD software packages are reviewed and CFDS-FLOW3D is described in detail.

Flows inside model Skeletal Muscle Ventricles are laminar, axisymmetric, time-

dependent and incompressible. Furthermore, these flows are driven by the wall motion

and, therefore, are characterized by moving boundaries.

The governing equations are complex non-linear partial-differential equations, which

can be solved using numerical approaches. The next section is intended to give a brief

historical background of the numerical methods in Computational Fluid Dynamics. The

third section of this chapter is dedicated to the governing equations; while numerical

methods are discussed in the fourth section. Grid generation techniques are reviewed

in the following section. Commercially available codes, and a code overview of CFDS-

FLOW3D are presented in the sixth and seventh section respectively.

3.2 BRIEF HISTORICAL PERSPECTIVE

Until the end of World War II, most fluid dynamics problems were solved using

methods that were either analytical or empirical. Few pioneers used numerical methods

and a single solution of a problem represented a monumental amount of work since

calculations were performed by hand. Most people attribute the first important work on

CFD to Richardson (Richardson, 1910), who introduced Finite Difference approximations

to the governing differential equations. He used point iterative schemes to solve Laplace's

equation applied to an elastic model of an ideal beam. The invention of relaxation

methods by Southwell (1946) allowed many practical solutions to be achieved. Sometimes

the beginning of numerical analysis is attributed to a famous paper by Courant, Friedrichs

and Lewy (1928), where the stability requirement was assessed for the numerical solution

of hyperbolic partial differential equations.

During the World War II and immediately following, a great deal of research was

done on the use of numerical methods for solving problems in fluid dynamics. J. Von

Neumann developed a method to evaluate stability of numerical methods for solving
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time-marching problems (O'Brien et al., 1950). This method is the most widely used

technique in CFD for determining stability. At the same time, progress was being made

on the development of methods for both elliptic and parabolic problems. Frankel (1950)

presented the first version of the Successive Over-Relaxation scheme (SOR) for solving

Laplace's equation. Peaceman, Douglas, and Rachford (Douglas and Rachford, 1956)

developed a new family of implicit methods for parabolic and elliptic equations. These

methods are referred to as Alternating Direction Implicit (ADI) schemes and are used

extensively today.

Various aspects of CFD began to be treated in the late fifties and early sixties

starting with the early book of Richtrnyer (1957). During the past 25 years, the progress

made and the number of researchers working in CFD has expanded at an ever increasing

rate. For this reason, it would be difficul? to provide a short history of the significant

contributions. A comprehensive review was summarized by Hall (1981), while Levine

(1982) gave details of the potential of computational methods in prospective of the su-

percomputer generation. Even since then, there has been a virtual revolution in the range

of applicability of CFD to engineering problems.

3.3 GOVERNING EQUATIONS

The fundamental equations of fluid dynamics are based on the universal laws of

conservation of mass, momentum (Newton's second law), and, in a non-isothermal flow,

energy (first law of thermodynamics). Applying these conservation laws to a fluid flow,

the continuity equation, the momentum equations, and the energy equation are derived.

The derivation of these equations may be found in a variety of sources, as for instance,

Collins and Ciofalo (1991).

For unsteady, compressible flow, these equations are written, using an Eulerian

approach and a vector notation, as follows:

(a) Continuity Equation

(3.1)

where p is the fluid density, u = (u, v, w) is the fluid velocity vector, and t is time;

(b) Momentum Equations

(3.2)

where B is the body force and a is the stress tensor;
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(c) Energy Equation

+ V (puH) — V . (AVT) =

	

	 (3.3)
at

where II is the total enthalpy given in terms of static enthalpy h as H = h + u2 ; p is

the pressure, T the temperature and A the thermal conductivity.

The main advantage of using a vector notation is that the equations apply to any

coordinate system. The five equations above ( the momentum equations represent three

equations in three dimensions), in seven unknowns u, v, w, p, p, t, H, are completed by

the equation of state p = p(T,p) and the constitutive equation h = h(T,p).

Since no heat transfer is usually involved in the flows in the cardiova.scular system,

the energy equation can be omitted. Therefre, the transport equations in index notation

using (Einstein's) summation convention that repeated indices are summed over, using a

cartesian coordinate system are:

+	 =
at	 ax

a(puk)	 ô(PuIuk)	 aOk

at + a	
=Bk+—	 (3.5)

For a Newtonian fluid the stress tensor o jj is given according to Schlichting (1968)

as:

o jj = —pSj j + u'Skk 8 + 2iiS	 (3.6)

where Sjj is the strain rate tensor defined as:

(3.7)

ji is the coefficient of dynamic viscosity of the fluid and jil is its second coefficient of

viscosity. The two coefficients of viscosity are related to the coefficient of bulk viscosity

K by the expression

K =

Because the coefficient of bulk viscosity is negligible except in the study of the

structure of shock waves, the second coefficient of viscosity becomes t'	 -	 and the

tensor stress may be written as

= —psi2 + i42Sii - Skk5j]	 (3.8)

Substituing eq. (3.8) into eq. (3.5) the famous Navier-Stokes equation is obtained:

+ O(puju)	
B -	 - + /- { 1L [(	 +.) - 6J}	 (3.9)

(3.4)
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It is common practice to include the continuity equation in the Navier-Stokes equa-

tions. Body forces, consisting mainly of inertial forces due to gravitational acceleration,

are considered negligible in medical applications. However, there is some evidence that

the flow in coronary arteries, for example, is affected by the cyclic motion of the heart

wall (Moore et al., 1992).

For a constant-density fluid (incompressible fluid) the continuity equation takes the

simplified form:

t9xi
	 (3.10)

and the stress tensor becomes:

o.ij	 -pc j3 +	 (3.11)

Then, the momentum equation is:

out	 Ott	 1 Op	 it ô2ui	
(3.12)

In the general case of three-dimensional flows we have four equations (3.10 and 3.12)

in four variables (velocity components and pressure), which are solvable with appropriate

initial and boundary conditions.

If the fluid is non-Newtonian, its viscosity will be a function of the second invariant

of the strain rate tensor, i.e,

J2 =

and the stress tensor will be:

O•ij = P5ij + 2ji(J2)S2.

In order to solve the governing equations (3.10 and 3.12), the constitutive equations for

the non-Newtonian fluid must also be specified.

The above equations (3.12) can also be expressed as a scalar transport advection-

diffusion equation in the independent variable = (x, y, z, t), given in vector notation

by:

+ V-(puq' - FVq5) = S	 (3.13)

and in index notation by:

0p95	 0	
- F--)= S	 (3.14)- + —(pui

Ot	 Ox1

The four terms are the unsteady term, the convection term, the diffusion term and

the source term. r is the diffusion coefficient, and S is a source or sink term representing
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creation or destruction of . In addition to this equation the continuity equation has to

be satisfied (it is a case of eq.(3.14) where 	 1).

3.4 NUMERICAL METHODS FOR THE SOLUTION OF THE

NAVIER-STOICES EQUATIONS

The Navier-Stokes equations can exhibit different mathematical characteristics, de-

pending on the nature of the particular problem. They may represent a parabolic, hy-

perbolic or elliptic set of equations, or they can be a mixed set of those. The unsteady

incompressible Navier-Stokes equations are a mixed set of elliptical-parabolic equations

where the unknowns are the velocity vector u and the pressure p.

As in the experimental fluid-dynamics, the continuous problem domain is 'discret-

ized' so that the solution of the basic equations represent sets of data found at discrete

points in the flow field. Numerical methods used to discretize the Navier-Stokes equa-

tions are referred to as 'discretization methods' and fall into three main categories: (a)

Finite Difference Methods (FDMs), (b) Finite Element Methods (FEMs), and (c) Spectral

Methods.

Historically, the preferred approach has been the finite difference method; however,

more recently finite element methods have been used particularly in the field of the blood

flow, see for example (Perktold et a!. 1994; Perktold and Rappitson, 1994). The difference

between the three methods results from the ways of deriving the

discretization equations. The discretization of the space and of the dependent variables

allow the governing equations to be replaced with simple non-linear algebraic equations,

consisting of four equations, three for the velocities and one for the pressure for each

control volume.

3.4.1 Finite Difference Methods

In the Finite Difference approach, the dependent variables are considered to exist

only at discrete points of the problem domain which has been discretized by a finite-

difference mesh. Several procedures are available for developing finite difference equations.

Among these are: (i) the Taylor-series expansions technique, (ii) the Polynomial fitting

technique, (iii) the Integral method, and (iv) the Control-volume approach.

The most commonly used procedure to solve the basic equations with the finite

difference method is the control volume approach, or finite volume method. The control

volume formulation can be regarded as a spectral version of the finite element method.

The calculation domain is divided into a number of non-overlapping control volumes,

generally hexahedral. The conservation equations are then integrated over each control
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volume. Gauss's theorem is invoked, and the resulting convective and diffusive fluxes

across the volume's faces are approximated by the values of the flow variables at discrete

points (volume centroids) at neighbouring volumes.

In practice, this method has a history of leading quickly to expressions that prove

to be more accurate than others near boundaries, probably because the method keeps

the discrete nature of the solution method in view at all times. This ensures that the

physical law is satisfied over a finite region rather than only at a point.

One of the most attractive feature of finite difference methods is their relatively

smaller computer cost. However, they are less amenable to irregular-shaped geometries.

Generalized grid techniques have been developed for the FDM, and such body-fitted

curvilinear coordinate systems, have contributed to an accurate representation of complex

geometries also. More details on these methods will be presented in section 3.5 of this

chapter.

3.4.2 Finite Element Methods

In the Finite Element methods the problem domain is subdivided into a number

of non overlapping subdomains, called finite elements, and the mesh can be 'arbitrarily'

irregular. These elements are triangular and quadrilateral-shaped in 2-D, and tetrahedric,

pentahedric and hexahedric-shaped in 3-D.

Each flow variable is approximated by a 'shape function' and the differential equa-

tions are solved for each element using the method of weighted residuals, or variational

principle (Finlayson, 1972). The local equations are then collected together to form a

global system of ordinary differential equations or algebraic equations, usually non linear,

including a proper account of the boundary conditions. The nodal values of the depend-

ent variables are determined from the solution of this system of equations using direct

or indirect methods. Different versions of the method result from the choice of different

classes of weighting functions among which is the Galerkin method (Galerkin, 1915).

Finite element methods were originally developed by engineers in the 1950s for

stress and strain analysis in large structural systems for aircrafts; they are now routinely

used in structural mechanics to perform analysis of complex structures. Applications

to non structural problems, such as elementary flow and electromagnetism, were first

reported by Zienkiewicz and Cheung (1965). Although several weighted-residuals criteria

were employed in the pioneering research, the Galerkin criterion is the most representative

of a direct extension from the classical variational calculus and Rayleigh-Ritz methods

(Rayleigh, 1877; Ritz, 1909).

Recently FEM has received an increased attention in CFD. Whereas most finite-

element methods are based on the variational principle, Baliga and Patankar (1983) have

developed a method based on the control volume approach. This employs triangular grids

with unequal-order interpolation, a shape function based on the local velocity vector, and
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a solution scheme that is similar to SIMPLER. For a natural convection problem, a mixed

solution method has been proposed by McDonough and Catton (1982), who employed

the Galerkin technique in the horizontal direction and finite difference in the vertical.

FEM are computationally more expensive than standard finite difference methods

despite the efforts of Gresho (1984) and others to produce new algorithms for the solution

of Navier-Stokes equations for time-dependent flows and incompressible fluid. The finite

volume method is a variant of the finite element method when the simplest weighting

function (the Dirac delta) is used. A survey of past work and prospects for the future are

reported by Hutton et al. (1987).

3.4.3 Spectral Methods

These methods were originally developed and used for many years by meteoro-

logists. They have become recently the prevailing numerical technique for large-scale

calculations in certain areas of computational fluid dynamics such as direct simulation

of homogeneous turbulence, computation of transition in shear flows, and global weather

modelling.

Spectral methods have been a standard analytical tool in the solution of linear

differential equations since the last century. The eventual difficulties represented by the

non-linearity of certain problems were surmounted effectively in the early 1970s. Methods

prior to 1970 were termed Garlekin methods; after the 1970s the advent of computers

made feasible an alternative discretization, termed the spectral collocation technique, also

used in FEM. Many useful versions of spectral methods have been used since then and

especially during the 1980s. The book by Canuto et al. (1987) contains a detailed descrip-

tion of many spectral algorithms and presents an exhaustive discussion of the theoretical

aspects of these numerical methods. Also Hussaini and Zang (1987) have reviewed recent

developments in this field with special attention to the fluid-dynamics applications, where

spectral methods have recently been developed to the point where they can be applied to

problems with complex geometries and general boundary conditions. They have shown to

be more accurate compared with finite difference methods although they have difficulties

in handling general boundary conditions.

Each flow variable is expanded in a truncated series of global and, usually ortho-

gonal, polynomials, which possess attractive approximation properties for use in numer-

ical calculations, and the coefficients of which are determined by a weighted-residual

projection technique. In fact, these functions are infinitely differentiable, and converge

rapidly. This convergence is referred to as infinite-order accuracy, exponential conver-

gence, or spectral accuracy. The expansion functions have to be appropriate to the

boundary conditions. For example, Fourier series would be appropriate for problems with

periodic boundary conditions, while in general non periodic cases, Jacobi polynomials,

normalized to [-1,1], such asChebishevor Legendre functions, are used. For time-evolution
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problems, a spectral discretization of the spatial derivatives is combined with a standard

finite-difference technique for the time derivatives. The Leap Frog, Adams-Bashforth,

Crank-Nicolson, and Runge-Kutta schemes are those most commonly used (Canuto et

a!., 1987). The stability regions of these schemes depend upon the spatial operators.

The recent development of the multidomain technique has advanced this method

to the stage of use for more realistic engineering problems having the benefit of the

geometric flexibility of FEM and the accuracy of the spectral method. Multidomain

techniques allow geometries to be treated for which a simple, global expansion is either

impossible or inadvisable. The domain is partitioned into subdomains that may overlap

or be patched together at interfaces. Interface conditions may be expressed as continuity

conditions, may arise from a variational principle (Patera, 1984), or may be enforced by

a penalty method. Patera's method is to d ,ate the most highly developed of these. An

attractive approach to very large problems is to combine a less accurate but more ready

preconditioning with multigrid techniques so that one combines iterations on the desired

grid with much cheaper iterations on successively coarser grids.

Several computations are reported in the literature which use mixed spectral/finite

difference methods, i.e. algorithms with spectral discretizations in some directions and

finite differences in the others. Among these are the large eddy simulations of turbulent

channel flow of Mom and Kim (1982). A recent application of this technique to biomedical

flows is reported by He and Ku (1992). They have used the same method that Patera

(1984) applied to time-dependent laminar flow problems. A more recent application of

spectral methods to the simulation of the fluid-dynamics of an artificial heart pumping

chamber has been reported by Chelser and Kamm (1994). As said in section 2.6.2.6, the

spectral element solver NEKTON was used to treat the problem involving unsteady flows

with moving boundaries in a 3-D geometry.

3.4.4 Press ure/ Velocity Coupling Procedures

The process of discretization of the governing differential equations leads to a set

of non-linear, coupled algebraic equations, which are solved using iterative methods.

Methods for two-dimensional Navier-Stokes equations have been reviewed by Cebeci et

al. (1981). One of the most popular early techniques for solving the 2-D incompress-

ible Navier-Stokes equations is the Vorticity-Stream Function Method (Gosman et a!.,

1969). The main attraction to this approach is the fact that pressure does not appear in

the formulation; however, difficulties in specifying the vorticity at boundary conditions

at sharp corners may cause problems in obtaining a converged solution.

A change of variables is made replacing the velocity components with the vorticity

(and the stream function Using these new dependent variables, the two momentum

equations can be combined to lead to the parabolic vorticity transport equation and

an elliptic PDE in the form of a Poisson equation. This allows the separation of the
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mixed elliptic-parabolic PDE into one parabolic and one elliptic, that can be solved

with any standard iterative method such as SOR (Successive Over-Relaxation). Iii order

to determine the pressure an additional equation, referred to as a Poisson equation for

pressure, is solved.

The extension of the vorticity-stream function approach to three-dimensional prob-

lems is complicated by the fact that a stream function does not exist for a truly three-

dimensional flow. However, using a velocity-potential vector, it is possible to have a

vector Poisson equation and a vector vorticity transport equation, which must be separ-

ated into three parabolic and three elliptic PDEs. As a result, it does not appear that

the vorticity-stream function approach offers any advantage over the primitive-variable

approach when solving a 3-D problem (Roache, 1972). The latter uses the incompress-

ible Navier-Stokes equations in the primitiv-variable form, and then non-dimensionalizes

them.

The artificial compressibility method of Chorin (1967) is one of the early techniques

proposed for solving the incompressible Navier-Stokes equations in the primitive-variable

form. An artificial compressibility is introduced which vanishes when the steady-state

solution is reached and makes the differential equations a mixed set of hyperbolic equa-

tions which can be solved using a standard time-dependent approach.

The most common primitive-variable approach, however, involves the use of a

Poisson equation in place of the continuity equation in order to separate the pressure

effects into a single equation. This technique was first used by Harlow and Welch (1965)

in conjunction with their Marker-and-Cell (MAC) method, for solving the incompressible

Navier-Stokes equations for transient flows. Approximate initial values are given to the

pressure gradients to find the velocities from the momentum equation and the pressure

from the Poisson equation. This procedure is repeated until the solution converges. The

ADI scheme is applied to the momentum equations (Ghia et a!., 1981) and a SOR method

is then used to solve the Poisson pressure equation.

3.4.4.1 SIMPLE Algorithms

All the above methods were slowly converging, suffered from stability problems and

were very difficult to use in 3-D flows. In the early 1970s a pressure-correction technique,

referred to as SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) procedure

was developed by Patankar and Spalding (1972). The SIMPLE procedure marked a

significant improvement and is currently used, in one of its many forms, in all general

purpose CFD codes.

This procedure is based on a cyclic series of guess-and-correct operations to solve

the governing equations and is, with its variants SIMPLER and SIMPLEC, the most

widely used in solving for the pressure field. It was first proposed for parabolic flows,

and then was soon adapted to general 3-D elliptic problems. The velocity components
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are first calculated from the momentum equations using a guessed pressure field. The

pressure and the velocities are then corrected so as to satisfy continuity. This process

continues until the solution converges.

The actual pressure p at the generic iteration step is written as

P = P0+ P1

where po is the estimated (or intermediate) value of pressure and p' is the pressure cor-

rection. Similarly in 2-D

and	 v=vo+v'

where u0 and v0 are estimated values, and u' and v' are the velocity corrections.

Using these equations and approximate forms of the momentum equations, we ob-

tain a pressure correction equation which i a Poisson equation in the pressure correction

p' and the estimated velocity vector. Once the first guess of the pressure is made and

the velocities are then estimated by the momentum equations, the pressure-correction

equation is solved to find p', then p, and finally u, v using the approximate form of

the momentum equations. These new values are then used as estimated values and the

process is repeated until the solution converges.

Because the pressure correction equation tends to overestimate the value of p' in

certain cases, the rate of convergence was found to be unsatisfactory. Under-relaxation

techniques were used to improve the convergence properties. A new technique was then

proposed by Patankar (1981), called SIMPLER (SIMPLE Revised), where initially the

velocity field is guessed. Velocity corrections are computed in the same manner as in

SIMPLE, but a complete Poisson equation is used to compute pressure. With this pro-

cedure the need of under-relaxation is greatly reduced and a converged solution is obtained

with fewer iterations, although more computational effort is involved per iteration. The

original implementation of this scheme required the use of staggered grids in order to

prevent a numerical instability known as 'checkerboarding', which occurred on a single

grid because the velocities were insensitive to small oscillations in the pressure solution,

and vice versa.

The SIMPLEST method (Spalding, 1980) is based on an explicit treatment of con-

vective terms and implicit treatment of diffusive terms in the momentum equations. The

SIMPLEC method, proposed by Van Doormal and Raithby (1984), uses consistent under-

relaxation for the momentum and pressure corrections. This method has been shown to

allow faster convergence in pressure gradient-dominant and drag forces-dominant prob-

lems.

3.4.4.2 PISO Algorithms

An alternative pressure-correction scheme was proposed by Issa (1985) as a Pressure-

Implicit with Splitting of Operators (PISO) technique. In order to remove completely
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the need to iterate between pressure and velocity equations, a second pressure-correction

equation is solved in each iteration, much like SIMPLER yielding pressure and velocity

fields that are second-order accurate in time. This allows its use as a non-iterative method

(one cycle per time step), but it requires an accurate solution of the linearized equations.

Although this method appear to be preferentially indicated for problems where

conservation of mass and momentum are particularly important, it does require pressure

and velocity equations to be solved to tight convergence tolerances, and in practice the

scheme is often implemented in an iteration loop similar to that used for SIMPLE. It was

proved to be faster than SIMPLE for transient problems in which the flow field varies

markedly at each step, but not for 'smooth' time-dependent flows (Ciofalo and Collins,

1988). At last, in the PISOC method similar modifications to SIMPLEC are applied to

PISO.

A review of pressure-velocity coupling algorithms is given by Latimer and Polland

(1985). The SIMPLE-like and PISO-like methods have all been implemented in the pre-

vious versions of CFDS-FLOW3D (single-block versions). Only SIMPLE and SIMPLEC

methods are available in the more recent multi-block versions of CFDS-FLOW3D. In fact,

these are the only ones that prove to be robust for more general purpose applications.

3.4.4.3 Pressure/Velocity Coupling Techniques for FEMs

As in FDM, early calculations using FEM circumvented the pressure/velocity coup-

ling problem by using the vorticity-stream function formulation. Techniques in use to

date for handling the coupling between velocity and pressure are the Penalty Method,

the Lagrange M'ultiplier Method or a combination of these, and the PALM Method

(Smith, 1985). In other cases either the momentum and continuity equations are solved

directly or a SIMPLE-like iterative procedure is devised.

The Penalty Method, first presented by Zienkiewicz (1977), uses a penalty para-

meter which, multiplied by the pressure, is introduced in the right-hand side of the

continuity equation, which should be zero for the continuity condition. This parameter

is very small so that the continuity equation is nearly satisfied. The pressure, given as

the ratio of the divergence of the velocity vector and the vanishing penalty parameter, is

substituted into the momentum equation, thereby eliminating pressure. A general discus-

sion of the penalty method is given by Reddy (1982), while Baker (1984) has described

the use of the penalty method in three-dimensional parabolic flows. In the Lagrange

Multiplier Method, the pressure is considered as a linear function or piecewise constant

over quadratic or linear velocity elements respectively (Gresho et al., 1980). That is, the

approximation for pressure has to be of lower degree than that used for velocity.

Solution existence can be only guaranteed for those velocity/pressure element nodal

arrangements that satisfy the Babuska-Brezzi condition (Babuska and Aziz, 1982; Brezzi,

1974). That is, on a triangular element it is required to have velocity on more than each

-
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vertex (for example also on the medians), and pressure at more than at the centroid (for

example, at three internal point centroids).

Recently Hilbert (1987) and Perktold (1989) have proposed a scheme which uses

simple hexahedral elements that are linear in velocity and constant in pressure in a

manner similar to the pressure correction scheme used in FDM codes. Perktold and his

collaborators have successfully applied this method to a variety of blood flow problems,

although the need to filter the pressure to suppress checkerboarding was reported by

Perktold et al. (1991).

3.4.4.4 Rhie-Chow Interpolation Method

In order to prevent a 'checkerboard' pressure field that may develop when velocity

components and pressure are located at the same grid point and FDM are applied, a

common approach has been the use of 'staggered grids'. In this case pressure and scalars

are defined at the centroids of control volumes, while the velocities are defined at the

centroids of the faces to which they are normal. However, this approach may become

quite cumbersome in the presence of non-orthogonal, body-fitted grids.

The Rhie-Chow algorithm (Rhie, 1981; Rhie and Chow, 1983) allowed the required

velocity components on the cell faces to be computed from the values of velocity and

pressure at the cell centroids in non-staggered grids without inducing checkerboarding.

It works on 3-D body-fitted grids, and allows a natural application of SIMPLE-like al-

gorithms. The Rhie-Chow algorithm has been incorporated into CFDS-FLOW3D since

its Release 2 version; and it is also implemented into most last-generation computer codes.

An improvement to this algorithm has been carried out within the latest versions of

CFDS-FLOW3D to allow applications to be treated where large pressure gradients occur

which balance strongly varying body forces. Details on this formulation are in the user

manuals (Anonymous, 1994 a; 1994b).

3.4.5 Advective-term Methods

In recent years, a significant, amount of research effort has been directed toward

discretization of the combined convection and diffusion fluxes. Inaccurate modelling of

these terms can seriously degrade overall accuracy and stability of the solution. In many

cases, it is almost impossible to refine the grid sufficiently so that the numerical errors will

reduce to acceptable levels. Thus, it is essential to have a convection-diffusion formulation

that leads to a stable and accurate solution with grids of modest fineness. Whereas many

methods have been formulated, there exists no clear consensus about a preferred method.

The more accurate schemes tend to be less robust and slower.
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In order to help subsequent discussion, some of the more common models will be

described. We shall consider a simple situation of steady one-dimensional flow where only

convection and diffusion terms are present. If is the variable advected at a constant

velocity u, then, integrating the relevant advection term over the control volume shown

in Fig.3.1 gives

fu='ax (—q)

As values of are only known at the centre of each control volume, a linear profile

can be taken to estimate e and q5,,,. The result is the Central Difference Scheme (CDS):

q e = ( cbE+cbp )	 and
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Figure 3.1 Typical control volume

The factor 1/2 arises from the assumption of the interfaces being midway. This

scheme is formally second-order accurate, but can lead to spurious spatial oscillation

('wiggles') of the solution (Roache, 1972) or physically non-realistic solutions unless the

cell Peclet number ( Pe = p x iux/F, where x is the cell width, and F is the diffusion

coefficient ) is less than 2. There has been some misunderstanding in the literature as

to the nature of these oscillations; however, it is now accepted that they are related

to an accuracy problem rather than to a stability problem (Vreugdenhil, 1989). It is

also relevant that, when CDS is used and the cell Peclet number is high, the linearized

governing equations lose diagonal dominance. This makes the CDS algorithm lose its

'robustness', and very small under-relaxation factors, or very small time steps, are needed

to converge or converge easily.

An unconditionally stable but rather 'crude' approximation is to assume that the

value at the face is the same as the nodal value upstream of the face. This technique is

the basis of the Upwind-Difference Scheme (UDS). It was first put forward by Courant et

al. (1952) and subsequently reinvented by Gentry et al. (1966). This scheme introduces a

false 'numerical diffusion' and produces a result that is actually the solution to a different

problem.

The exponential scheme which uses the exact solution profile would give a highly

desirable behaviour, but at very high computational cost and without being able to
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to be applicable to more general situations. An easy-to-compute scheme that has the

qualitative behaviour of the exponential scheme is Hybrid Difference Scheme (HDS). It

was developed by Spalding (1972), and applies a central-difference scheme for the Peclet-

number range —2 Fe 2 and an upwind-difference outside this range by ignoring

diffusion. This advection model is used as a default model in many FDM programs. It

is again first-order accurate and cannot eliminate false diffusion errors, but it is slightly

better than upwind differencing because second-order central differencing will be result

across streams and in regions of low flow.

Since it is the grid Peclet number that decides the behaviour of the numerical

schemes, it is, in principle, possible to refine the grid (i.e., to use smaller x) until Pe is

small enough ( < 2 ) for the central difference scheme to yield a reasonable solution. In

most practical problems, however, this strategy requires excessively fine grids, which are

usually not feasible on economic grounds.

A large number of differencing schemes have been proposed to prevent numerical

diffusion while preserving robustness and avoiding 'wiggles'. They include the following

approaches:

(a) Higher-order upwind schemes, based on the use of more than one grid point

value in the finite-difference expression of the advective fluxes, such as the second-order

upwind, third-order upwind (QUICK), or the related 'power-law' schemes (Patankar,

1980) (PLDS), 'Hermitian Polynomial' schemes (Glass and Rodi, 1982), and 'spline' meth-

ods (Rubin and Graves, 1975).

(b) 'Skew' schemes, such as the 'skewed upwind' (SUDS) and 'skewed upwind

weighted' (SUWDS) schemes (Raithby, 1976), the 'mass flow weighted' (Hassan et a!.,

1983), the 'vector upstream' (Lillington, 1981), 'bounded skew upwind' (BSUDS) (Syed

and Chiappetta, 1985), and 'flux bending' schemes (Gosman and Peric, 1985): they all

take some account of the angle at which the fluid crosses the coordinate lines.

(c) Methods based on a locally exact solution of the governing equations, such as

the 'finite analytic' method (Chen et al., 1981), and the 'locally analytic' scheme (LOADS)

(Wong and Raithby, 1979). These formulations do give stable and accurate results but

are rather complex and expensive for regular use.

(d) Modified-central differencing schemes, such as CONDIF (Runchal, 1987), and

NONDIF (Hedberg, 1989).

Among these we give some details of advection schemes available in CFDS-FLOW3D

and used, in particular, in the parametric studies carried out in the numerical simulations

to be presented in the next chapters.

The Higher-order Upwinding scheme (HUW) represents a more accurate upwind

scheme, which uses an additional nodal value further from the face. Assuming equal
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spatial increments, ct is given by:

Qw = cw -

A formally more accurate scheme than HUW is the quadratic upwinding scheme

known as QUICK (Leonard, 1979). This is an upwinded scheme which is third-order

accurate for the advection and second-order accurate for the diffusion terms. This scheme

uses two upstream points and one downstream point, which makes it slightly unstable:

The higher order upwinded schemes can suffer from non-physical overshoots in their

solutions. For example, turbulent kinetic energy can become negative. The CCCT scheme

is a modification of the QUICK scheme which is bounded, eliminating these overshoots.

The scheme has:

ç=(— a)q5p+(+2a)qfw— Qww

where a is a parameter that depends on the curvature of the variable çt. Full details of

the calculation of a are given by Alderton and Wilkes (1988).

CONDIF is a modification of central differencing in which the coefficients are writ-

ten in such a way as to be diagonally dominant, and upwind differencing is used at any

points at which the solution may have a non-physical overshoot. Again full details are

given by Alderton and Wilkes (1988).

A survey of comparative studies on advection schemes is given by Patankar (1988).

While some reviewers are in favour of the QUICK scheme, others report over- and under-

shoots, oscillations and convergence problems, and conclude in favour of HUW or even

UDS. Also, higher-order schemes imply a significant increase in computational complexity.

Burns and Wilkes (1987) handled this problem using the 'deferred correction approach',

that is, they included the extra terms on the right hand side of the equations in the source

term.

Convection-diffusion formulations in Finite Element methods have followed a sim-

ilar pattern, and various comparable upwinding schemes have been proposed. Because

of the non-linearity of the advection terms, Newton-Raphson or Picard iteration meth-

ods are commonly used. A control-volume formulation was introduced by Baliga and

Patankar (1980), who used a shape function based on the direction of the local velocity

vector. In the Galerkin formulation of the finite-element method, a streamline upwind

procedure was employed by Brooks and Hughes (1982).

3.4.6 Time Stepping Procedures

In steady-state problems, the generic transport equation for the variable 4' can be

written as:

F(cb) = S
	

(3.15)
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In time-dependent problems this equation becomes:

(3.16)

The time derivative of the flow variable 4 can be discretized with a degree of

implicitness x (0 < x ^ 1) as:

- ) + xF(') + (1 - X)F() = S	 (3.17)

which can be written in the same form as the steady-state equation (3.15):

F( 1 ) = S
	

(3.18)

Thus the same basic algorithms can be used, though some extra storage is required

for the values of the variables at step n. For a degree of implicitness x = 1.0 we have, for

example, 'the fully implicit backward time differencing scheme; for x = 0.5 there is the

time-centred time differencing scheme of Crank and Nicolson and for x=O.O the scheme

is fully explicit. The fully implicit and the Crank-Nicolson schemes are unconditionally

stable in the mathematical sense, while the explicit method is subject to the Courant

stability criterion, e.g., the Courant number Cr 1, (where Cr = , with c as

celerity of propagation in the analytical solution and x the width of the smallest cell).

In the Finite Element Methods, Crank-Nicolson or backward Euler time stepping

may be used. However, more general time-splitting techniques are becoming popular,

some of which have recently been reviewed by Glowinski and Pironneau (1992).

3.4.7 Solution Techniques for the Linearized Equations

The discretization/linearization techniques described above lead, at the generic

inner iteration (SIMPLE iteration), to very large systems of linear equations representing

either the scalar transport equation or the pressure correction equation, having the general

form:

Ax=b	 (3.19)

In the pressure correction case, the coefficient matrix is symmetric. In all cases, if

the 'deferred correction technique', described above, is used, the matrix A contains only

seven non-zero diagonals (in 3-D problems) and is efficiently stored as a N x 7 array, N

being the overall number of control volumes in the grid.

To solve such a large systems only iterative methods, such Gauss-Seidel and Suc-

cessive Over-Relaxation (SOR) methods, are applicable. These consist in guessing and

solving the equations repetitively until the iterative procedure converges.

Whereas the Gauss-Seidel (point-by-point, line-by-line or ADI) methods have been

commonly used for the solution of linear algebraic equations, these methods converge
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very slowly, especially when a large number of grid points are involved. For large three

dimensional problems, it has been found that a more reliable technique is the Strongly

Implicit Procedure (SIP) proposed by Stone (1968); this was also strongly indicated for

problems with internal blockages (Burns et al., 1987). This technique has proved to be the

best in the solution of the pressure correction equation having a high degree of accuracy.

It applies a 'factorization' strategy, which consists in replacing the original sparse matrix

A by a modified matrix A+T, such that it can be decomposed into upper and lower

triangular matrices. The matrix T has to be selected so that the ADI procedure can be

applied.

Recently, new techniques have been proposed, some of which are extensions of the

SIP method. Lin (1985) has proposed the use of three free parameters to accelerate

the convergence of Stone's method. In the methods formulated by Schneider and Zedan

(1981) and Peric (1987), the five diagonal matrix in Stone's method is replaced by a nine-

diagonal matrix. As a result, these modified methods (Modified Strongly-Implicit, MSI)

are applicable to the discretization formulations that lead to nine-diagonal matrices; they

have also been shown to be more efficient when applied to five-diagonal systems as well.

3.5 THE COMPUTATIONAL GRID AND GRID GENERATION

TECHNIQUES

One of the main problems in computing numerical solutions of PDE is the genera-

tion of the mesh for the solution domain. The grid has to be well-constructed otherwise

it may lead to an instability or lack of convergence. Numerical grid generation has now

become a fairly common tool in the numerical solution of PDEs on arbitrarily shaped re-

gions and several commercial packages are available (Thompson, 1988). A comprehensive

survey of procedures and applications has been given by Thompson et al. (1982; 1984).

Body-fitted curvilinear coordinate systems - used in modern CFD codes - generated

to maintain coordinate lines coincident with the boundaries were introduced to extend

the capabilities of FDMs to deal with complex geometries and assist in the imposition of

boundary conditions without the need of special procedures at the boundaries. Motion

of the boundaries is also possible, the coordinate system adjusting to follow variations

developing in the evolving physical solution. In any case, the numerically-generated grid

allows all computations to be done on a fixed square grid in the computational field which

is always rectangular by construction. However, the cost of the greater flexibility afforded

by the use of body-fitted grids and general coordinates is an increase in complexity of the

equations to be solved, due to the non-linear coordinate transformation.

The first step in the generation of the grid is the transformation of the physical

space (complex-geometry domain) into a computational domain (simple-rectangular do-

main), where all numerical algorithms, finite difference or finite element, are implemented.

Numerical grid generation techniques may be roughly classified into three categories:
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(a) Complex variable methods

(b) Algebraic methods

(c) Differential Equation Techniques

Complex Variable Methods are restricted to two dimensional problems and so

their applicability is very limited. These techniques have the advantage that the trans-

formations used are analytic or partially analytic as opposed to the other methods that

are entirely numerical. Algebraic and differential equation techniques can be used on

complicated three-dimensional problems. In the next sections we present the main ap-

proaches to the generation of meshes for structured grids. Then, special techniques for

gridding complex geometries will be discussed.

3.5.1 Algebraic Methods

Algebraic mesh generation methods determine the coordinate positions by inter-

polation among boundaries and/or intermediate surfaces using known functions or sets

of data points. The main advantages of algebraic mappings are that they are direct and

the metrics of the transformation can be analytically computed; however, since inherent

smoothing properties are missing, discontinuities can arise in the mesh.

Several interpolation methods are used, and are classified as unidirectional and

multidirectional methods. In the unidirectional interpolation method, the interpolation,

in one curvilinear coordinate direction only, occurs between points. These points can,

however, lie on boundary (or interior) curves of surfaces, and in this sense the unidirec-

tional interpolation can be considered to be between these curves or surfaces. Several

interpolation techniques are available (Lagrange, Hermite, Splines), the most general

procedure being the 'multi-surface procedure' (Eiseman, 1979) of which Lagrangian or

Hermitian interpolations are special cases. This procedure is constructed from an inter-

polation of a specified vector field, defined from piecewise-linear curves determined by

the boundaries and successive intermediate control surfaces. These vectors are taken to

be tangential to the coordinate lines intersecting the surfaces, so that integration of this

vector field produces the position vector field for the grid points.

Multi-directional interpolation involves interpolation among functions of curves

or surfaces. The most general method used is the 'transfinite', described in detail by

Rizzi and Eriksson (1981). The interpolation generates the mapping by combining uni-

directional interpolation with Boolean sums, and matches the function at any number of

points.

3.5.2 Partial Differential Equation Methods

These techniques are the most highly developed for generating grids. The grids are
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the solution of a set of partial differential equations, which can be hyperbolic, elliptic

or parabolic. If the coordinate points are specified on the entire closed boundary of the

physical region, the equations must be elliptic, while if the specification is on only a

portion of the boundary the equations would be parabolic or hyperbolic.

The use of elliptic PDEs to generate grids has been extensively treated by Thompson

et al. (1974). This procedure transforms the physical space into the computational space

where the mapping is controlled by general Poisson-type systems. The generation system

guarantees a one-to-one mapping for boundary-conforming curvilinear coordinate systems

on general closed boundaries. The advantages of using this technique are to generate a

smooth grid, complex boundaries being easily treated, without overlap of grid lines (ex-

tremum principles). However, grid point control on the interior is difficult to achieve,

and if boundaries are changing in time, since the grid has to be computed for each time

step, large amounts of computer time may be consumed.

The most simple elliptic partial differential system is the Laplace equation:

= 0	 (i = 1,2,3)	 (3.20)

where ' is the coordinate vector in the computational domain.

This system exhibits an extremum principle and considerable smoothness. Control

of the coordinate line distribution in the field can be obtained by generalizing the elliptic

generating system to the Poisson equations:

= Pi 	(i	 1,2,3)	 (3.21)

in which the 'control functions', P, can be fashioned to control the spacing and orientation

of the coordinate lines. In the absence of the control functions, the coordinate lines will

tend to be generally equally spaced away from the boundaries regardless of the boundary

point distribution. Variations of elliptic systems are noted in Thompson et a!. (1982;

1984).

A number of different algorithms have been used for the solution of these equations,

including point and line SOR, ADI (Thompson et al., 1982; Thompson, 1984). The

convergence can be accelerated by using multiple grid iteration (Forsey and Billing, 1988).

For general configurations, point SOR is certainly the most convenient to code and has

been found to be rapid and dependable, using over-relaxation, for a wide variety of

configurations. Since the system is nonlinear, convergence depends on the initial guess

in iterative solutions. Algebraic grid generation procedures may be used to generate this

initial guess. Transfinite interpolation generally produces a more reliable initial guess

than unidirectional interpolation does because of its reduced skewness.

A fundamental development of the hyperbolic generation system was made by

Starius (1977). Hyperbolic systems are applicable to domains in which the inner boundary

is specified but the surrounding outer boundary is arbitrary, and is therefore of interest

only for use in calculation on physically unbounded regions where the precise location of a

144



computational outer boundary is not important. The parabolic system can be applied to

generate the grid between the two boundaries of a doubly-connected region with each of

these boundaries specified. The grid control is generally weak and difficult compared with

the elliptic methods. However the weakest method in the grid control is the hyperbolic

grid generation method. Both parabolic and hyperbolic grid generation systems have the

advance of being generally faster than elliptic generation systems, but, as just noted, are

applicable only to certain configurations. Hyperbolic generation systems are faster than

elliptic by one or two orders of magnitude, and can be used to generate orthogonal grids.

Orthogonality is one of the most desirable properties in grid generation techniques.

Orthogonal coordinate systems produce fewer additional terms in transformed partial

differential equations, and thus reduce the amount of computation required. It also makes

the application of boundary conditions mor straightforward, and permits a greater degree

of vectorization on supercomputers. A severe departure from orthogonality will introduce

truncation error in 'difference expressions'. Orthogonality in three dimensions is difficult

to achieve, and only exists when the coordinates lines on the bounding surfaces follow

lines of curvature, i.e., lines in the direction of maximum or minimum curvature of the

surface. It is possible, however, to have the system locally orthogonal at boundaries,

and/or to have orthogonality of surface coordinates. Since a part of the truncation error

decreases as the grid becomes more orthogonal, it is of interest to generate grids which are

'nearly-orthogonal'. Various generation procedures of orthogonal systems are surveyed in

Thompson (1980).

3.5.3 Adaptive Grids

Adaptive grids are generated with the objective of directing the distribution of

grid points so that a functional relationship on these points may represent the physical

solution with sufficient accuracy. As the physical solution develops, grid points move

concentrating in regions of large gradients in the solution as they emerge. Movement of

grid points is coupled to their neighbours, and cannot be too far or too fast, otherwise

oscillations may occur.

Different techniques for constructing adaptive grids have been proposed. Brackill

and Saltzman (1980) have developed a technique for constructing an adaptive grid using

a variational approach. It offers a powerful method for constructing computational

grids; however, a considerable effort must be expended in solving the equations which

govern the grid generation. Many applications of adaptive grids require grid motion

along one coordinate. The equidistribution scheme is a minimisation process applied in

a one-dimensional form, and the grid points are distributed so that the weight function is

equally distributed over the field. A number of applications of the use of one-dimensional

equidistribution are cited in the survey on adaptive grids given by Thompson (1984).

The grid speed scheme, developed by Hindman and Spencer (1983) also incorporates
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the idea of equidistribution. The grid speeds are established by differentiating the steady

grid equation, and solving the resulting equation. To advance the grid to the next time

level the grid speeds are integrated. Several other approaches are discussed by Thompson

(1984).

Once adaptivity criteria have been formulated, it is necessary to move points around

the domain so that the flow solution has a minimum error. Three basic strategies may

be employed to do so: (i) redistribution of a fixed number of points, (ii) local refinement

of a fixed set of points, (iii) local increase in algorithm order.

Solutions to PDEs obtained using numerical methods in conjunction with adaptive

grids show significant improvements in either accuracy or resolution. Oscillations associ-

ated with cell Reynolds number and with shocks in fluid mechanics computations have

been shown to be eliminated with adaptive rids. The adaptive grid is most effective when

it is dynamically coupled with the physical solution, so that solution and grid are solved

together in a single continuous problem. The development and application of adaptive

grids have been surveyed by Eiseman and Eriebacher (1987).

3.5.4 Moving Boundary Grids

Moving Boundary procedures have recently been developed by a number of research

groups and are included in the most advanced commercially available CFD codes. Moving

boundaries are a chief feature of the flow in the cardiovascular system where the blood

flow is driven by the motion of the wall at each cardiac cycle throughout the arterial

and venous systems (Henry and Collins, 1994b; Henry and Collins, 1995; Xu and Collins,

1995'. Also in lungs air flow is generated by the motion of the alveoli (Henry et aL,

1994c; 1994d).

Details of the application of the moving boundaries procedures to the Navier-Stokes

equations are given by Demirdzic and Peric (1990), and Hawkins and Wilkes(1991). The

validation of the moving-grid capabilities in CFDS-FLOW3D will be presented in chapter

4, together with further discussion of this issue.

3.5.5 Computational Grids for Complex Geometry Domains

There are three basic types of computational grid in current use:

(i) Single-block, fully structured grids,

(ii) Multi-block grids,

(iii) Unstructured grids.

Single-block, fully structured grids, discussed above, are traditionally used in FDMs.

As shown in Fig.3.2, they transform the physical space into a rectangular (or hexahedronal
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(a)
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in 3-D) computational space. In complex geometry domains, to have accurate solutions

of the flow, special techniques are required for gridding, such as multi-block and unstruc-

tured grids.

xl	x3

Figure 3.2 Sample of a single-block grid. (a) Physical domain. (b) Computa-
tional domain.

3.5.5.1 Multi-block Grids

The Multi-block approach is a very popular method of applying structured grids to

complex geometrical regions. The physical domain is segmented into sub-regions, which

constitute contiguous blocks. Each block has to transform into a hexahedron, so that

several local curvilinear systems are constructed and connected together. However, the

global distortion of the grid is relatively less accentuated. Grid points at block interfaces

have to be treated so that points at the common edge of any two adjacent blocks are

continuous and so that slope continuity may be enforced.

Multiblock grids are very powerful in that they allow the use of a wide range of

mesh topology for a given configuration and different coordinate systems are allowed in

each block. They are restricted to the grid generation technique - algebraic or partial

differential equations. Although the concept of multiblock mesh is very attractive from
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a mesh generation point of view, additional complexities are intoduced in the solution

procedures, that involve a slow-down of the calculation time.

Examples of three-dimensional multi-block grids applied to complex geometry are

given in the literature by Weatherill and Forsey (1984), and are noted in the survey given

by Thompson and Warsi (1983). Multi-block grids have been implemented in the latest

Releases (3.1.2, 3.2, and 3.3) of CFDS-FLOW3]J which will be discussed in section 3.7.

3.5.5.2 Unstructured Grids

Unstructured meshes, traditionally used in FEM, are generally composed of tri-

angles and/or arbitrary quadrilaterals in 2-D, and tetrahedra and/or hexahedra in 3-D.

Therefore, the number of cells surrounding a typical node of the mesh is not constant.

Techniques for the generation of unstructured meshes are discussed in detail by Peraire

et al. (1990). It was found that to have an adaptive mesh triangulation is necessary to

allow easy transition between small and large elements.

The unstructured nature of the mesh requires a local coordinate system of each

element. The resultant mesh, therefore, is poorly ordered and less amenable to the

use of vectorization algorithms. Also larger computer time and storage are required in

comparison with structured grids. However, unstructured meshes are more efficient in

complex geometry domains, and offer the possibility of incorporating adaptivity. In order

to minimize computer time requirements, renumbering strategies for unstructured grids

have been proposed.

3.6 COMMERCIALLY AVAILABLE CODES

Computational Fluid Dynamics has been used for numerical prediction of fluid

flows and heat transfer since the 1960s. With the development of computer hardware,

computational techniques have been vigorously proposed, tested and refined to the point

that these are recognized as cost-effective and convenient means of obtaining detailed

data for complex physical situations. Many powerful CFD programs are available based

on the three above-mentioned (3.4) numerical methods with varying degrees of modelling

capabilities. Among these, commercially available codes based on (i) FDM are for ex-

ample CFDS-FLOW3D, FLUENT, PHOENICS, STAR-CD, ASTEC, FIRE; while codes

based on (ii) FEM are for example FIDAP, FEAT, P/FLOTRAN; an available package

which uses spectral methods is NEKTON.

Grid generation and post-processing packages are often included. Pre- and post-

processing packages are also available from specialized companies and referred to as visu-

alisation software, such as CAD, PATRAN, FEM VIEW, UNIRAS, and AVS. The power
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and flexibility of the CFD packages available today are such that there is now little need

to develop purpose-built programs for specific problems.

Vector-processing and parallel-processing capabilities of new supercomputers have

made some impact both on computer programming and on the development of numerical

algorithms that have been specifIcally designed to achieve a high degree of vectorization

and speed up computational time. A recent survey of a number of CFD codes has been

presented by Wolfe (1991) and by Collins and Ciofalo (1991).

(i) Finite Difference Codes. TEACH (Gosman and Pun, 1974) can be considered

the 'ancestor' of many CFD codes based on FDMs. It was developed in the early 1970s at

Imperial College, and could handle problems of 2-D flows; it employed a i- turbulent flow

model and the SIMPLE algorithm. Several last-generation codes, such as PHOENICS

(Anonymous, 1990b), CFDS-FLOW3D, STAR-CD (Anonymous, 1990a) and ASTEC, can

be considered as 'offsprings' of TEACH. These codes solve 3-D flows in laminar and turbu-

lent regimes, with steady and time-dependent conditions, in complex geometries treated

by body-fitted grids. PHOENICS and CFDS-FLOW3D are based on structured grids,

while STAR-CD and ASTEC can use unstructured grids. Details of CFDS-FLOW3D,

which was used throughout this research, are given in the next section.

(ii) Finite Element Codes. FEAT, developed at the Berkeley Nuclear Laboratories,

is a 'classic' finite element code for CFD and heat transfer problems. Also FIDAP is widely

used. In addition to these, most general purpose FE packages such as MSC/NASTRAN,

ADINA/ANSYS, NISA-Il and ABAQUS, include CFD modules although they are less

advanced than specialized CFD codes. A review of FE methods for CFD problems is

given by Lohner (1987).

3.7 CFDS-FLOW3D: CODE OVERVIEW

CFDS-FLOW3D, also known as HARWELL-FLOW3D up to a few years ago, is a

general purpose thermofluid-dynamic computer code born, as other computer codes of

the same family, in the early seventies and developed from the research work at Imperial

College. The original version of FLOW3D was limited to simple staggered and rectilinear

grid, cartesian or cylindrical coordinates, (Wilkes et al. 1985, Jones et al. 1985, 1986).

HARWELL-FLOW3D was marketed with the Release 2 of the code (Burns et al., 1986,

1987). A body-fitted coordinate system was implemented in a structured non-staggered

grid, and the Rhie-Chow algorithm (Rhie and Chow, 1983) was used to prevent 'chequer-

boarding'. The pressure/velocity coupling algorithm was a SIMPLE-family algorithm.

Linear equations solvers were used (Kightley and Jones, 1985), and higher-order advec-

tion treatment schemes (including HUW and QUICK) (Thompson and Wilkes (1982)).

Adaptive gridding, combustion models, coupling with radiation codes, some two-phase

flow capabilities, and new advection treatment schemes were introduced, like CCCT and

CONDIF, (Anonymous, 1990c).
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The first predictions and code validation presented In this work were carried out

using Release 2.4 of the code (Anonymous, 1991). In this version, moving grid facilities

(essential in the simulation of model SMVs) were introduced (Hawkins and Wilkes, 1991).

While this work was in progress, the code's capabilities were being extended. The current

release of the code renamed as CFDS-FLOW3D, Release 3, has extended the geometric

capabilities of the code by introducing the facility of multi-block grids. The first version

of release 3, Release 3.1.2 (Anonymous, 1992), did not allow for moving gridding and was

not used in this work. The following release, Release 3.2.1 (Anonymous, 1993), allowed

for moving gridds, and was used largely in this work. The current release, Release 3.3

(Anonymous, 1994a), is currently used in this research work, and also by the biomechan-

ical, mechanical and aeronautical research groups at City University. Details presented

below relate to this last version.

3.7.1 Description of the code

The suite of CFDS programs consists of a number of modules: (i) Pre-Processing

Modules, or Geometry and Grid Generators; (ii) Interactive Frontend; (iii) Frontend Mod-

ule of CFDS-FLOW3D; (iv) Solution Module of CFDS-FLOW3D; (v) Post-Processing,

or Graphics Modules.

The Geometry and Grid Generators may be used to define the finite difference grid.

The grid coordinates are dumped to disk in a form readable by the Frontend. Through

the use of a flag in the Frontend, the program is informed that the grid information is

to be read in from disk. Use of these modules is optional. The grid can also be defined

within the Frontend. The Geometry and Grid Generators include the interactive grid

generator, SOPHIA, which may also be used to specify some of the topological features

of the geometry, and the finite element to multi-block grid converter FEF3D, which are

described in the ENVIRONMENT User Guide (Anonymous, 1994b). Body-fitted Grids

are generated using transfinite interpolation.

The Frontend takes the input specification of the problem and converts it from a

form convenient for the user into a form designed for efficient execution. Detailed error

checking is performed. Facilities are available to provide a database which calculates the

physical properties of some common fluids. The problem is specified in a single data file

using the Command Language, that is a set of English-like commands, subcommands,

and associated keywords. In the Interactive Frontend, this data file is constructed auto-

matically via a series of displays on the screen. User-defined Fortran routines may be

included for features that are too complex to be described using the Command Language.

The Solution Module solves the discretized representation of the problem. It re-

ceives the information in a form that permits maximum efficiency to be obtained on

different types of computer including vector processors. The Solution Module has only a

few output facilities - for, example, for printing and dumping the solution to disk files.
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The Graphics Modules produce the main graphics output, interrogating the disk

files written by the Solution Module. Interfaces to other post-processing packages have

been constructed, and there are a number of post-processing options available for various

workstations. Use of these modules is optional, and described in the ENVIRONMENT

User Guide.

In the present work no use was made of the pre-processing facilities such as the

interactive grid generator (SOPHIA), since this so far does not allow for transient grids

automatically. In fact, it would have been necessary to construct the grid for each time

step. Use of the Fortran user subroutine USRGRD was found to be more flexible to

define a time dependent grid. Problem specifications were made using the Command

Language File. Calculations of local velocity vectors, pressure, and shear stresses were

also carried out using the user subroutine ISRTRN. This routine can be used to monitor

the calculation, or to produce special output for each time step. The output produced

can be used by graphics packages, such as GINO-GRAF, to plot velocity patterns, or any

other solution variables.

The main features of the code are summarized in Table 3.1.

Table 3.1
Main features and capabilities of CFDS-FLOW3D, Release 3

1. Physical Models and Geometry

Physical Space Coordinates: Cartesian / Cylindrical
Type of Flow:	 Laminar / Turbulent

Steady / Unsteady
2-Dimensional / Three-Dimensional
Incompressible / Compressible
Isothermal / Non-Isothermal
Forced / Natural Convection
Buoyant: Boussinesq approximation or fully compressible
Multiphase flow: multi-fluid model / homogeneous model

Boundary Conditions: 	 Solid Walls
Symmetry or Periodicity Surfaces
Inlet / Outlet Faces
Pressure Boundary
Mass Flow Boundary

Turbulence Models:	 ic-e for high Reynolds number /
Low Reynolds number model
Higher order turbulence models:
Algebraic Reynolds Stress Model (ASM) /
Differential Reynolds Stress Model (RSM) /
Differential Reynolds Flux Model

Combustion Models: 	 Two gaseous models:
eddy break-up model / mixed-is-burnt model

Particle Transport Models: Lagrangian
Rectangular / body-fitted
Multi-block
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Rotating coordinate system
Adaptive Grids

Other Options:	 Solids / Thin Walls / Porous Regions
Heat Conduction in Solids
Radiative Heat Transfer (via RAD3D code)
Chemical Kinetics for single-phase chemical reactions
Additional Scalar Transport Equations for fluid mixture

2. Numerical Methods

Finite Volume Discretization: multi-block unstructured, non-staggered grid
Time-Differencing:	 Fully Implicit Backward Euler Differencinga

Crank/Nicolson (central) differencing
Pressure/Velocity Coupling: SIMPLE / SIMPLEC '
Advection Algorithm Schemes: Central / Upwind / Hybrid / HUW /

QUICK / CONDIF /CCCT
Linear Equation Solver: 	 Line Relaxation /

Preconditioned Conjugate Gradient (ICCG) /
Full field Stone's Method/
Block Stone's Method/
Algebraic Multi-Grid

°This option should not be used with transient gridding
'PISO and PISOC are not available in Release 3 of the code

3.7.2 Computational Domain

The generic computational domain in 2-D is shown in Fig.3.3.

symmetry_plane____ - ___ -

	 1

thin surface	
oiets

inle	 __

walls

Figure 3.3 Generic CFDS-FLOW3D 2-D computational domain and structures
which can be defined within it.

Multi-block grids are constructed by patching together a number of simple, rectan-

gular grids to form a grid that is not restricted to be topologically rectangular. Topological
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features within the domain of each block are described using patches (Boundary condition

surfaces and interbiock boundaries). The generic block grid include NI, NJ, NK volumes

along the 'intrinsic' directions I, J, K, respectively. The grid is defined by specifying the

coordinates of the grid vertices in physical space, arbitrarily oriented.

The generic control volume, shown in Fig.3.4, appears like a distorted 'brick'. The

corners of the volume are numbered, and 'intrinsic' directions are indicated following

the usual 'compass rose' convention. In order to invoke boundary conditions the control

volumes lying on the perimeter of a grid block, considered outside the solution domain, are

added (automatically in the multi-block version) to constitute dummy control volumes.

The interior control volumes are called active control volumes. Two dimensional problems

are treated as three-dimensional with two symmetry or periodicity planes. If cylindrical

coordinates are used, a special treatmen is implemented to deal with the singularity

created by the fact that the axis is included in the computational domain.

(LJ^1.K+1)	 (I^i.J+1.K+1)

(L.LK)
	

(1+1.K)

Figure 3.4 Generic control volume. Indices of corners are shown.

The Dirichlet boundary condition (flow variables) is specified at the inlets. For

the outlets the Neumann boundary condition is specified by giving the normal derivat-

ives of all flow variables. Symmetry plane boundary conditions are imposed by setting

as opposite the values of the normal velocity components, and as identical the values

of tangential velocity components and all scalars. Periodicity boundary conditions are

allowed by imposing on each variable 4 the double condition:

and	 42,2,k = T/NJ,3,k

A summary of CFDS-FLOW3D commands and keywords are reported in the manual

(Anonymous, 1994a). The schematic flow chart for the code is shown in Fig.3.5. The

'inner' iterations of the linear solvers, are nested in the loop of 'outer' iterations, which

in turn are nested in the time stepping loop. The 'outer' iteration process is stopped

either completely or for the current time step of a transient problem, when the chosen

convergence criteria are satisfied. These criteria are for example: maximum number of

outer iterations, the tolerance on a residual, the CPU limit. In the tolerance on a residual

criterion, iterations are stopped when the overall residual mass source em (the sum of
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the absolute mass source residual in all control volumes) falls below a prescribed value

SORMAX.

problem description

initialization

Nt = Nt + 1

Niter = Niter + 1

linearization

NUn = NUn + 1

solution of
linearized equations

Res<MaxR	 NO

S..
+-a	 a
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=	 4-'
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Figure 3.5 Schematic flow chart of CFDS-FLOW3D.
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3.7.3 Applications

A survey of the applications and validation tests of CFDS-FLOW3D is given by

Jones (1991). Recent applications may also be found in the Proceedings of the last two

CFDS conferences (1993; 1994). They range from numerical simulations of indoor air-

flows and tunnel fires to two-phase flow in a vapour generator, and a steam condensor.

Extensive applications and tests on CFDS-FLOW3D have been performed at City Uni-

versity and at the University of Palermo since 1986 by Dr. M. Ciofalo and Prof. Collins

on a wide range of problems concerning turbulent flows (Ciofalo and Collins, 1988; Cio-

falo and Collins, 1989; Ciofalo and Karayiannis, 1991; Ciofalo et al., 1991; Ciofalo and

Collins, 1992), and are reported in the bibliography of Ciofalo's Ph.D. thesis (Ciofalo,

1992). Other tests of the ,c- turbulence model against experimental data have been

performed by Dr. Henry and Prof. Collins for the prediction of flow over rib-roughened

surfaces (Henry and Collins, 1991) relevant to the Advanced Gas Cooled Reactor (AGR).

A number of numerical studies are now in progress at City University, which are

supported by the predictions of CFDS-FLOW3D. Among them, in the Department of

Mechanical Engineering and Aeronautics, Dr. Henry has studied a numerical model of

boundary layer flows over flat plates, generated by pitched and skewed air jets (Henry

and Pearcey, 1994). Since Dr. Xu started the first approach to biomechanical problems in

1988, followed by work of Dr. Henry in these topics, several biomechanical applications

have been carried out. Dr. Xu has used computational fluid-dynamics codes, such as

ASTEC, FLOW3D and FEAT to study predicted flows in arterial bifurcations. This has

led to a considerable experience in the numerical predictions of flows in blood vessels (Xu

and Collins, 1990; Collins and Xu, 1990; Xu, 1992; Xu and Collins 1994a). In parallel

Dr. Henry, who has used CFDS-FLOW3D for a number of applications in engineering

(as above) has achieved substantial results in modelling of several cardiovascular vessels,

such as flow in graft bypasses (Henry et al., 1992a; 1994b; 1995a), in stenoses (Henry and

Collins, 1993a; 1994) and air flow in lung alveoli (Henry et al., 1994c; 1994d). Also he

has studied the flow inside SMVs (Henry et at., 1992b).

Nowdays, much of the interest in blood flow modelling is focused on the fluid-

srtucture interactions occuring at interface between blood and vessel wall. The research

at City is currently engaged in two projects aimed at developing codes capable of solving

the coupled problem. The first involves solving for the wall motion in a special subroutine

within CFDS-FLOW3D. In this case, the equations of motion of an incompressible solid

are solved using the techniques employed by CFDS-FLOW3D to solve the Navier-Stokes

equations. The second project is being carried out in conjunction with researchers at

Nuclear Electric's Engineering Analysis Centre, and will be based on their FEM FEAT.

Recent validations of CFDS-FLOW3D against experiments have been published.

Among these are Fletcher et al. (1993), Oakley and Bahn (1993), and Graham et al.

(1992). In the next chapter, the numerical analysis conducted to validate the moving

grid/boundary capability of CFDS-FLOW3D is presented.
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CHAPTER 4

VALIDATION OF THE MOVING GRID/BOUNDARY CAPABILITY

IN CFDS-FLOW3D

4.1 INTRODUCTION

In this chapter a validation of the moving grid/boundary capability of the code

CFDS-FLOW3D is presented. Numerical predictions of the flow created by a closed-end

pipe expanding or contracting radially are compared with an analytical solution. The

main purpose of this numerical study has 'been to test whether CFDS-FLOW3D can

predict accurately physiological types of flows that are driven by the movement of the

walls, and that are of relevance to the SMV modelling.

As discussed in the introductory chapter, the numerical studies carried out on model

SMVs have as a major objective the provision of a powerful comprehensive analysis tool

for the design of model SMVs. However, before being able to use the numerical predictions

in the design process, a comprehensive set of validations needs to be carried out. Most

of the work presented in this thesis has been focused on the validation of the numerical

predictions computed by CFDS-FLOW3D. Firstly, the validation of the predictions will

be discussed for a simple problem of unsteady flow with moving boundaries against the

analytical solution. Then numerical models undergoing an analytical wall motion will

be presented (Chapter 5) and the flow fields compared to similar experimental models.

Numerical simulations of the flow within model SMVs where experimental data have been

used to drive the wall motion are discussed in Chapters 6 and 7. Finally, some numerical

designs for the modelling of SMVs are presented in Chapter 8.

As discussed in chapter 2, the simplest geometry used in the ventricle modelling is a

cylindrical vessel which produces flows by alternate contraction and expansion of its wall.

During systole, contracting muscles in the wall of the left ventricle reduce the vessel's

internal volume and force the blood through the aortic valve into the aorta. Throughout

this pumping stage, the mitral valve is closed, and hence, the ventricle resembles a closed-

end cylinder which is contracting radially. In diastole, the muscles relax, the aortic valve

closes, the mitral valve opens, and the ventricle refills. Again, the ventricle resembles a

closed-end cylinder, but now it is expanding radially.

Similar physiological flows occur in a cardiac assist device such as a skeletal muscle

ventricle. As in the case of the left ventricle, the flow in an SMV is driven by the

wall movement, and hence, in modelling such flows it is essential to take into account

the moving boundaries. As indicated above, a possible model for an SMV, or the left

ventricle, is a semi-infinite pipe with one end closed. An analytical solution for such a

pipe has been given by Uchida and Aoki (1977). Their solution is based on the full Navier-

Stokes equation for unsteady flow in a semi-infinite contracting or expanding pipe and
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low Reynolds numbers. The closed end of the pipe is idealized as a compliant membrane

which prevents axial motion of the fluid, but allows radial motion.

It is admitted that Uchida and Aoki's model is restricted to a type of wall motion

that does not represent well that seen in an SMV; i.e., it is not periodic, but is either

expanding or contracting, and the Reynolds numbers considered are rather low. Despite

these, it does offer some definitely useful features. For instance, it is not restricted to small

wall displacements, in contrast to Secomb's (1977) solution of a flow in a channel with

pulsating walls. Also, being a solution of the Navier-Stokes equations, it more faithfully

represents the viscous nature of blood flow than does that given by Jones (1970) for

the unsteady flow of an inviscid fluid in pulsating bulbs. Finally, being an analytical

solution, it can be used to validate the numerical predictions more easily than could

another numerical prediction, such as the two-dimensional prediction by Tsangaris and

Koufopoulos (1990) of pulsating flows induced by the wall motion of an arbitrarily shaped

left ventricle.

In this chapter numerical predictions, using the code CFDS-FLOW3D, are com-

pared with an analytical solution of a flow that has some common features to those

occuring in model SMVs. The flow simulated is that studied by Uchida and Aoki (1977),

and their solution is used to validate the predictions of both single-block (Release 2.4),

and multi-block (Release 3.2) versions of FLOW3D. In the following, the analytical solu-

tion is first described. Brief details of the numerical solution procedure follow, and then

the numerical predictions are compared with the analytical solution. The chapter con-

cludes with an assessment of the importance of the present findings to the simulation of

flow in an SMV.

4.2 ANALYTICAL SOLUTION

In the work presented by Uchida and Aoki (1977) an analytical solution was de-

veloped for unsteady flow produced by a single contraction or expansion of the wall of a

semi-infinite pipe with a closed end (see Fig.4.1). The no-flow end condition was modelled

by dividing the infinite circular pipe into two parts by an elastic membrane perpendicular

to the axis of the pipe. Mathematically this was modelled as a symmetry plane at x = 0.

If u and v are the axial and radial components of the velocity respectively, the

equations of continuity and motion in cylindrical coordinates for axisymmetric unsteady

flow are:

U + Vr + v/r = 0
	

(4.1)

Uj + UtL + VtLr	 Px/P + v(u + rr + Ur/)	 (4.2)

Vt +UV + VVr	 Pr/P+ z'(v+ Vrr +Vr/r -v/r2 )	 (4.3)

where p, p , ii are pressure, density and kinematic viscosity of the fluid respectively.
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Figure 4.1 Representation of the semi-infinite pi pe and flow patterns in a con-
tracting pipe. From Ucthida and Aoki (1977).

As the wall moves only in the radial direction, the radial velocity at the wall, v,

is the wall velocity da/dt = a'. Therefore, the boundary conditions are:

x=O u=O

r=O	 v=O tLO

r=a(t) u=O v=v=a'

Eliminating the pressure from the equation of motion and introducing the Stokes

stream functions defined by: 'çb = — yr and r = ur, the vorticity equation is

( + U(z + V(y. - v(/r = v(( + (r, + Cr/r - (/r2)	 (4.4)

where (= v	 U,- is the vorticity component normal to the meridian plane.

Assuming the variation of the radius to be independent of x it is possible to find

a similar solution, and as the problem has not been linearized, a full solution similar in

both space and time can be found. Therefore, introducing the non-dimensional variable

= r/a, the stream function can be written

= vxF(ij,t)
	

(4.5)

and then the axial and radial velocities are respectively:

u = (vx/a2)(F,1/ii); 	 v =
	

(4.6)

As v is independent of x, (z= —u,., and using the continuity equation, the vorticity

equation becomes:

{u(u + U,-,- + ur/r) (Ut + UU + VU,-)],- 0
	

(4.7)

Uchida and Aoki showed that a full solution similar in both space and time can be
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obtained by assuming 	 = 0 and a = constant. The value of a is set to its initial value

a = a'a/v = aao/zi

The parameter al represents the Reynolds number and its sign indicates whether

the pipe is contracting or expanding; e.g., it is negative when the pipe is contracting.

Integrating a a'a/zI = aao/v the temporal function of the radius of the pipe is

obtained as

a/ao \/i + 2a(vt/4)	 (4.8)

Substituting eq.(4.6) in eq.(4.7) we b,ave the differential equation for F('q)

= 0

and integrating

G(i1) (F'/r1)" + (1/ij + F/ri + arj)(F'/ij)' - (F7i - 2a)F'/ij = K	 (4.9)

The transformed boundary conditions for the new variable ri are:

5 q=O F/r1=0	 (F/ri),=0

1 =' F/ij=—a F,,/ri=0

Integrating numerically equation (4.9), we can obtain F(ri). Since there is a singu-

larity at the origin, F(rj) is expanded in a power series in the region 0 < 7) < 0.01 as:

F('ij) b0 +b27)2 +b47)4 +b67)6 +b87)8 ...	 (4.10)

where

=	 + 4(b2 - a)b2];	 b6 --(b2 - 2a)b4 ;	 b = —(9ab6 - 2b);

—[[(2n - 4)b2 + (2n + 2)a](2n + 2)b22 + B]/{(2n + 2) 2 (2n + 4];

and

n-i
B	 (2n - 2 - 4m)(2n + 2 - 2m)b2m+2 b 2n+2_ 2m	 Ti ^ 2

n1

The coefficients b2 [b2	(F'/ri)/2] and K are determined to satisfy the boundary

conditions. Uchida and Aoki gave values of b2 and K for certain values of a and these

are reproduced in Table 4.1.
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U - F'/r

Urn	 2a
(4.11)

v	 F/i1

v	 a
(4.12)

Table 4.1

Numerical values of the constant K and of the functions at the boundary.

From Uchida and Aoki (1977).

{ a T K	 (F'/i1)oJ (F"')1

-10.0 -1267	 26.90	 -175.36

-5.0	 -369.7	 14.6	 -69.23

-1.0	 -29.93	 3.620	 -9.788

-0.1	 -1.744	 0.3944	 -0.8192

0.0	 0.0	 0.0	 0.0

0.1	 1.451	 -0.4055	 0.7792

1.0	 -1.107	 -4.839	 5.291

1.2	 -7.281	 -6.289	 5.335

1.4	 -17.13	 -8.072	 4.528

1.6	 -35.73	 -10.84	 1.697

1.67	 -54.75	 -13.33	 -2.156

To calculate F(i1) the Runge-Kutta method was applied to the system of first-order

differential equations obtained from equation (4.9); i.e.,

F'=A
A'=B

B1=i1k+2(B-)-(1++ai1)(B_)+(_2a)A

The boundary conditions at i	 0.01 are derived from equation (4.10). From the

calculated F(i1) it is possible to find:

where Urn is the mean velocity.
Typical flow patterns from Uchida and Aoki for contracting and expanding pipes

are shown in Fig.4.2. Axial and radial velocity distributions given by (4.11) and (4.12)

are shown in Fig.4.3. For a very low Reynolds number, the axial velocity distribution

is parabolic for both expansion and contraction. For a contracting pipe the effects of

viscosity are limited to a thin boundary layer attached to the wall, which becomes thinner

for higher values of the Reynolds number. For an expanding pipe and high Reynolds

number, the axial velocity distribution contains higher harmonics, the flow adjacent to

the wall is retarded, and reverse flow occurs in the wall region for Reynolds number above
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(a)

a critical value of a 1.644. The magnitude of the radial velocity increases from the

centre of the pipe to a peak value at about i = 0.5, which is always larger than its value at

the wall. It then decreases monotonically to the wall value. In the case of the expanding

pipe, where reverse flow occurs, the maximum value of v/v is approximately 40% larger

than at the wall.

•0

1•0

Figure 4.2 Streamlines. (a) Contracting pipe (a = —1). (b) Expanding pipe
(a 1). From Uchida and Aoki (1977).
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Figure 4.3 Distributions of axial velocity ((a) and (b)), and radial velocity ((c)
and (d)). (a) and (c) Contracting pipes. (b) and (d) expanding
pipes. From Uchida and Aoki (1977).

4.3 TREATMENT OF THE MOVING WALL IN CFDS-FLOW3D

The governing equations for the fluid are the equations for the conservation of

momentum and mass. For unsteady, laminar, axisymmetric flow these are given by

equations (4.1), (4.2) and (4.3).

The solution algorithm for the calculation of unsteady flows with moving boundaries
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has been provided by Demirdzic and Peric (1990) and is concisely summarized as follows:

1. Provide the initial grid and the solution for the initial time to.

2. Determine the location of the boundary grid points for the time to + 5t and move the

new grid to fit the new boundaries at the new prescribed position.

3. Calculate iteratively the new solution employing the currently available pressure and

mass fluxes until the sum of the absolute residuals in the momentum and continuity

equations are satisfactory reduced.

4. Advance the time by another increment 6t and return to step 2.

In order to allow the boundaries an4 the grid to move in the prescribed manner,

the momentum and mass equations have been modified. If the physical grid is moving

the time derivatives have to be modified so that in computational space the grid is fixed.

This has the effect that the convective term

at	 ax2

becomes, following Thompson et al. (1985),

,)+_(./	 at

where g is the determinant of the metric tensor which represents the square of the volume

in physical space and corresponds to unit volume in computational space. In addition,

an equation for the conservation of space

at	 ax3at)

has to be solved simultaneously with mass, momentum and energy equations, as it is

pointed out by Demirdzic and Peric (1988).

Full details are given in Hawkins and Wilkes (1991), while the user interface is

given in FLOW3D Release 2.4 and Release 3.2 user manuals (Anonymous, 1991b; 1993)

4.4 NUMERICAL MODEL

Validation exercises have been carried out for both single-block (Release 2.4) and

multi-block versions (Release 3.2). The semi-infinite pipe of the analytical solution

has been simulated as a pipe with a symmetry plane at the closed-end and a pressure
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boundary condition (p = 0 ) at the inlet/outlet. The pipe diameter is 10.0 x 10 3 m and

has a length of 15 diameters. The wall moves in a manner defined by equation (4.8). The

kinematic viscosity ii has been taken as 4 x iO m2 /s (the viscosity of the liquid used in

the in vitro work).

Because of the simplicity of the solution domain, a grid comprising only a single

axisymmetric block was in fact used in the multi-block calculations, which meant that

the grids used in the two versions were identical. Also, polar coordinates were used in

physical space in both versions. The grid, as shown in Fig. 4.4, expands in r from the

wall and in x from the symmetry plane. The cyclic contraction and expansion occuring

in cardiovascular pumps and in particular in the model SMVs used in the in vitro ex-

perimental study and in the corresponding numerical analysis, have, for obvious reasons,

a period about 1.0 s. A value of 1.0 s fo the time of simulation has been used as the

reference value. This has been chosen mainly to see whether a similar solution could be

achieved over the time scale of the cardiac cycle period.

The choice of the simulation parameters set for the reference case, see Table 4.2,

has been reached after a suitable parametric study on the geometric features (length

and initial diameter of the pipe), number of cells in the radial and axial directions,

time stepping and number of iterations. For this set, the predictions have shown good

convergence.

In this study two speeds of expansion and one of contraction have been modelled:

1. A slow expansion with a = 0.1

2. A relatively fast contraction with a = —10

3. A faster expansion with a 1.67

An initial study has been performed with the single-block version and subsequently

the same study has been carried on for the multi-block version. Thus three comparisons

have been possible: the predictions with the analytical solutions for both versions, and

between the predictions from different versions.

Table 4.2

Simulation parameters

Number of cells in radial direction	 NJ = 20

Number of cells in axial direction	 NI 50

Total number of cells 	 NC = 1000

Time step	 DT = 10 ms

Number of iterations per time step	 IT 20
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Figure 4.4 Grid used to model the semi-infinite pipe.

4.5 COMPARISON BETWEEN NUMERICAL AND ANALYTICAL

SOLUTION

4.5.1 Single-block Version (Release 2.4)

1. Expansion with Reynolds number, Re = 0.1

For this case, the set of parameters given in Table 4.2 has been used. Very good

agreement between the predicted and analytical results has been achieved, as can be seen

in Fig.4.5. It can be seen that for low Reynolds number the axial velocity distribution

is parabolic, while the radial distribution increases from the wall and falls to zero at

the centre of the pipe. The predicted results have been plotted for an axial position

of x/d = 0.9. This has been found to be sufficiently far from the outlet to ensure the

numerical solution to be similar. It is noted that the constant pressure boundary con-

dition used is not consistent with the analytical solution. Hence, the predictions close

to this boundary can be expected to be in error. As an alternative, a fully-developed

flow boundary condition has been tried at the outlet of the pipe without any reasonable

results. However, this was not unexpected as the flow cannot be fully developed, in the

usual sense, when the pipe wall is moving.
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2. Contraction with Re = 10

Again the parameters given in Table 4.2 have 'been used for the contraction case

with an initial diameter equal to 30.0 x 10 3 m. Also for this case the agreement is very

satisfactory as shown in Fig.4.6. The distribution of the axial velocity is monotonic and

the effect of viscosity is limited to a thin layer attached to the wall.

3. Expansion with Re = 1.67

This expansion represents an interesting case as reverse flow is seen in the analytical

solution, and it proved a more difficult flow to simulate. Use of the parameter set in

Table 4.2 has not produced the expected characteristics of the flow; comparisons between

predictions and analytical solutions for thi set are shown in Fig.4.7. The axial velocity

distribution is underpredicted near the centreline and overpredicted approaching the wall.

This would appear to indicate that the time required to establish similar velocity profiles

is larger than the simulation time used in the standard parameter set. The radial velocity

distribution is underpredicted in most of the central region although the values at the

centre and at the wall are predicted correctly.

It has been found possible to achieve improvement by increasing the time of simula-

tion and decreasing the time step. Comparisons between numerical and analytical results

are given in Fig.4.8 for this study from which it may verified that the best agreement is

reached for a time of simulation of 3.0 s and a time step DT = 5ms (Fig.4.8(d)). In this

case reverse flow has been predicted. The main factor influencing the numerical solution

appears to be the time of simulation.
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Figure 4.5 Comparisons of the distributions of (a) axial and (b) radial velocit-
ies. Expansion at Re 0.1. Single-block version.
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Contraction at Re = 1O Single-block version.
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Figure 4.7 Comparisons of the distributions of (a) axial and (b) radial velocit-
ies. Expansion at Re = 1.67. Single-block version.
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Figure 4.8(a) Comparisons of the distributions of (a) axial and (b) radial velocit-
ies. Expansion at Re = 1.67. DT = 5 ms. Single-block version.
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Figure 4.8(c) Comparisons of the distributions of (a) axial and (b) radial velocities.
Expansion at Re 1.67. Simulation time 3 s. Single-block version.

I 	 I 	

(a)	
0.0	

(b)

0.00 0.25 0.50 0.75 1.00	 0.00 0.25 0.50 0.75 1.00
r/R	 r/R

Figure 4.8(d) Comparisons of the distributions of (a) axial and (b) radial velocities.
Expansion at Re = 1.67. Simulation time 3 s. DT= 5 ms. Single-
block version.
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4.5.2 Multi-block Version (Release 3.2)

The same set of calculations as described above has been performed for the multi-

block version of the code. The grid is composed of one axisymmetric block and polar

coordinates are used in physical space. The set of parameters used for the reference case

is the same as that used for the single-block version.

Comparison between predictions and analytical solution are given in Figs.4.9(a)

and (b) for a = 0.1 and a = —10, respectively. As can be seen, the results show good

agreement for both expansion and contraction. The graphs in Fig.4.10 show the axial

and radial velocity distribution for Re 1.67 when the parameter set of the reference

case is used. In this case, the same 4isagreement can be seen as has been found in the

single-block version for a time of simulation 1.0 s.

It is shown in Figs.4.11 and 4.12 that using a larger time of simulation has produced

predictions that approached the analytical solution in a manner similar to that found with

the single-block version. Also, the effect of time stepping is comparable with the effect

seen in the single-block version. The graphs in Fig.4.13 show the best agreement reached

with a time of simulation of 3.0 s and DT = 5ms.

The above indicates that, for the problem studied, the multi- and single-block

moving grid facilities produce comparable results and that each is able to match well the

analytical solution.
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Figure 4.9(a) Comparisons of the distributions of (a) axial and (b) radial velocit-
ies. Expansion at Re 0.1. Multi-block version.
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Figure 4.10 Comparisons of the distributions of (a) axial and (b) radial velocit-
ies. Expansion at Re = 1.67. Multi-block version.
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Figure 4.11 Comparisons of the distributions of (a) axial and (b) radial velocities.
Expansion at Re = 1.67. Simulation time 2 s. Multi-block version.
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Figure 4.12 Comparisons of the distributions of (a) axial and (b) radial velocities.
Expansion at Re = 1.67. Simulation time 3 s. Multi-block version.

Figure 4.13 Comparisons of the distributions of (a) axial and (b) radial velocities.
Expansion at Re = 1.67. Simulation time 3 s. DT= 5 ms. Multi-
block version.

4.6 DISCUSSION OF RELEVANCE TO SMV SIMULATIONS

The results presented above are important in that they are the first comparison,

carried out by the City University group, between numerical predictions and an analytical

solution with some flow features common to those in an SMV. While the good agreement

between predictions and analytical solution is encouraging, it is should be remembered

that there are many points of difference between the flow studied here and that in an

SMV.

The first and most obvious difference is that the physiological flow is periodic, and

hence, the flow cannot be similar in time. Also, the time taken by the numerical model

to reach a similar solution has been of the same order as the period of the SMV flow. It is

therefore unlikely that a similar solution could be established even over part of the cycle.
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Further, the Reynolds number, c , for the SMV is at least an order of magnitude larger

than has been considered here (a typical peak value is about 200). Finally, all the SMVs

studied to date have rigid inlet tubes, and hence, over part of the cycle at least, the flow

geometry resembles that of a sudden pipe expansion. As would be expected, this produces

flow separation and recirculation. The primary recirculation is usually accompanied by

a second and possibly a third recirculating region. Hence, the flows are far from similar

in the axial direction. In the next chapter the numerical model has been extended by

adding a rigid section to the pipe in order to see whether recirculation regions can be

predicted similar to those seen experimentally.

4.7 SUMMARY

In this chapter, a validation exercise of the moving wall capability of both single-

and multi-block versions of CFDS-FLOW3D has been presented. Predicted flows in

an expanding or contracting semi-infinite pipe have been compared with the analytical

solution due to Uchida and Aoki (1977). Very good agreement between the predictions

of both versions of the code and the analytical solution have been achieved. Only minor

differences have been observed between the predictions using the single-block version of

the code, and those produced using the multi-block version. More 'realistic' mathematical

models for the SMV are presented in the next chapter.
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CHAPTER 5

NUMERICAL MODEL SKELETAL MUSCLE VENTRICLES:

RIGID/COMPLIANT MODELS

5.1 INTRODUCTION

Iii this chapter a numerical study on rigid/compliant model SMVs is presented.

The obvious limitation of the model considered in the previous section is that an SMV

has a finite length, and hence a similarity solution in x cannot be developed. Also, the

pulsatile motion of the SMV wall means that a similarity solution in time is not possible.

Further, it is likely that the SMV will be fed by a rigid tube. While an analytical solution

encompassing the preceding features is almost certainly unattainable, in vitro data are

available with which numerical predictions can be compared. The model presented in the

preceding chapter has been modified to include a rigid inlet/outlet tube, and the wall

motion has been made sinusoidal. This will be referred to as the rigid/compliant model.

The essential features of the flow in an SMV are (i) flow separation and (ii) regions

of recirculation. Similar features have been shown to exist, both experimentally (Sobey,

1985) and numerically (Tutty, 1992), in pulsatile flows in channels with rigid constrictions.

These flow fields show trains of counter-rotating vortices whose features are related to

the frequency and Reynolds number of the upstream flow.

Preliminary studies on model SMVs were reported by Henry et al. (1992). In

this chapter, predicted flow patterns in two numerical model SMVs are presented: (i)

a simple rigid/compliant model, and (ii) a spherical-end rigid/compliant model. Calcu-

lations have been performed using both single- and multi-block versions of FLOW3D.

The ventricle wall has been prescribed to move in a simple sinusoidal manner. Different

structures of the flow field can be seen for different frequencies of the cycle considered.

This is relevant in that similar flow behaviour has been revealed in the in vitro study.

A brief description of the experimental flow patterns is given in the next section; a more

detailed discussion on the in vitro experimental setup is presented in the two chapters

that follow where a validation of the numerical results against the experimental data

is presented. The two numerical models presented in this chapters are reported in the

sections 5.3 and 5.4; predicted results are then presented and discussed in the following

sections; the chapter concludes with a summary.

5.2 BRIEF DESCRIPTION OF THE EXPERIMENTAL FLOW FIELD

In the in vitro studies, the flow fields inside elastomer models are visualized

throughout the cycle using a plane of laser light illuminating suspended particles in the
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fluid, and photographs were taken in diametral planes. One in vitro model SMV is shown

in Fig.5.1. All the model SMVs studied to date have rigid inlet tubes, and hence, over

part of the cycle at least, the flow geometry resembles that of a sudden pipe expansion.

As would be expected, this produces flow separation and recirculation. The primary re-

circulation, which consists of a vortex ring close to the inlet wall and symmetrical to the

axis, is accompanied by a second vortex ring further in the ventricle when the volume of

the model is approaching its maximum value. Eventually a third recirculation region can

be seen close to the closed end of the model at high frequencies of the cycle.

Figure 5.1 In vitro model SMV

5.3 SIMPLE RIGID/COMPLIANT MODEL

The simple model comprises a compliant closed-end cylinder attached to a rigid

inlet tube, as illustrated in Fig.5.2 for the maximum volume configuration. The walls of

the compliant section are prescribed to expand and contract radially in a simple sinusoidal

fashion with a variation of the radius of 40%. The radius changed from a minimum of

11.5 mm, to a maximum of 16.1 mm, while the length was fixed at 30 mm. The ejected

volume was approximately 28% of the minimum ventricular volume. The predicted flow

field in this model is shown in Fig.5.3. Fig. 5.4 shows a model of twice the length of the

model in Fig.5.2, while Fig.5.5 shows the predicted flow field.

The flow fields shown in Figs.5.3 and 5.5 have been predicted using the single-block

version of FLOW3D, and represents the flow at maximum ventricular volume, that is, at

the time when the ventricle is passing from the filling to the pumping phase. The cycle

frequency is 1.33 Hz. A clear two vortex structure is visible, while a third weaker vortex

ring is shown close to the wall of the straight compliant tube. This configuration has not

been significantly affected by a change in frequency between 1.0 and 2.0 Hz. Fig. 5.6

shows that the same results have been predicted by the multi-block version of the code

(compare with Fig.5.3) with the same grid and simulation parameters. Comparing the

numerical results with the experimental flow patterns (Fig.5.1) 1, a clear similarity in the

features of the flow field can be seen.
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Figure 5.2 Simple rigid/compliant model (Lventricie = 3 X Riet)

d'1 '(t?!1
- _.-.__._ 	.- - ....................-	 ---.-.--.-- - -	 . ...............

Figure 5.3 Flow structure predicted at the maximum volume for the simple ri-
gid/compliant model (Lve2tricie	 3 X Rniet)

Figure 5.4 Simple rigid/compliant model ( Lventrjcie	 6 X Riniet)
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Figure 5.5 Flow structure predicted at the maximum volume for the simple ri-
gid/compliant model (Lventricie = 6 X Riniet)

Figure 5.6 Flow structure predicted at the maximum volume for the simple
rigid/compliant model (L ventrjcie 3 X Rnjj) obtained using the
multi-block version CFDS-FLOW3D

5.4 SPHERICAL-END RIGID/COMPLIANT MODEL

The spherical-end rigid/compliant model has been constructed by information avail-

able from the in vitro studies (Shortland et al., 1993). Fig.5.7 shows a photograph of the

in vitro model at its maximum volume. The model is similar to the above simple model,

but it has a spherical rather than a square end. The geometric features of the model,

assumed in the numerical analysis, are summarized in Table 5.1.
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Table 5.1
Geometric features of the model

Inlet pipe diameter
	

D1 = 22 mm
Inlet pipe length
	 = 30 mm

Minimum SMV diameter
	

Dmjn = 23 mm
Maximum SMV diameter

	
Dmav = 32 mm

SMV length
	

LSMV = 31 mm

Figure 5.7 In vitro model SMV

Throughout the cycle the model undergoes a significant change in shape from a

cylindrical central region configuration, at minimum volume to a totally spherical shape,

at maximum volume, as in Fig. 5.8. This has been taken into account in the numerical

modelling. The grid used to model the ventricle is shown in Fig.5.9. The same grid was

used for both single- and multi-block versions of the code. The wall has been assumed

to move sinusoidally in the axial direction with r = 40%. The boundary condition is

constant pressure at the inlet of the duct: p = 1.3332 x 104N/m2 . The density and the

viscosity assumed for the fluid are respectively: p = 1176kg/rn3; v = 4.0 x 103Ns/m2.

These values are taken from the values of density and viscosity used in the in vitro

experiments. Note that the experimental fluid is Newtonian.

The choice of simulation parameters was reached after a suitable parametric study.

The parameter set used in the simulation, for which the predictions show good conver-

gence, is shown in Table 5.2. The flow was assumed to be laminar and axisymmetric.

Table 5.2
Simulation Parameters

Number of cells in radial direction
Number of cells in axial direction
Total number of cells
Time step
Number of iterations per time step
Pressure/velocity coupling
Advection algorithm

NJ=24
NI=50
NC= 1200
DT=10 ms
IT=50
SIMPLEC
HIGHER UPWIND
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Figure 5.8 Spherical-end model at minimum and maximum volume

Figure 5.9 Grid used for the spherical-end model

5.5 NUMERICAL RESULTS

As in the previous case, the chief feature of the predicted flows in the spherical-end

model is the formation of recirculation regions, or vortex rings, at the time of maximum

ventricular volume. In this case, however, different flow structures are predicted as the

frequency of the wall motion varies. Different frequencies of the cycle were tested within

a range of 0.3-3.0 Hz.

Fig. 5.10. shows the temporal sequence of the flow field in the model SMV for

f 1.0Hz over the whole cycle. For this case the predicted flow develops within the
ventricle in the same manner as in the typical in vitro model. For all the frequencies

considered a 'vortex structure' is clearly visible at the time coincident with the maximum
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Figure 5.10 Predictions of the flow field inside the spherical-end model: (a), (b),
(c), (d), (e) show the temporal sequence over one period
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At low frequencies only primary recirculations can be seen. This is shown in the

flow field given in Fig.5.11, which represents the flow structure at the time of maximum

ventricular volume with the ventricle driven at a frequency of 0.3 Hz. Above this fre-

quency, a second recirculation forms. Two vortex rings can be seen in the flow field given

in Fig.5.12, which represents the flow in the ventricle at a frequency of 1.25 Hz. At a

frequency between 1.25 and 1.33 Hz, a third vortex is formed. The three-vortex flow

structure can be seen in Fig. 5.13, for a frequency of 1.33 Hz. The frequency has been

increased to 3.0 Hz without further vortices appearing. The flow field for a frequency of

3.0 Hz is shown in Fig.5.14.

The flow fields presented in Figs.5.11 to 5.14 have been predicted using the multi-

block version of the code. Predictions using the single-block version have been performed

for the same frequency range and are shovn in Figs. 5.15 to 5.18. While the predicted

flow fields have agreed in general, the frequency at which three vortices form has been

found to be somewhat lower than in the multi-block version. Table 5.3 summarizes the

predicted results for the flow structures over the frequency range 0.3-3.0 Hz for both

versions of the code. The reason for the differences is as yet unexplained.

Table 5.3

Vortex structures over the frequency range

Number of vortices I	 1	 2	 3

Single-block version below 0.3 Hz 0.3-1.38 Hz 1.38-3.0 Hz

Multi-block version below 0.3 Hz 0.3-1.25 Hz 1.25-3.0 Hz

Figure 5.11 Flow structure predicted at the maximum volume for the spherical-
end rigid/compliant model for f=0.3 Hz and using the multi-block
version of CFDS-FLOW3D
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Figure 5.12 Flow structure predicted at the maximum volume for the spherical-
end rigid/compliant model for f=1.25 Hz and using the multi-block
version of CFDS-FLOW3D

Figure 5.13 Flow structure predicted at the maximum volume for the spherical-
end rigid/compliant model for f=1.33 Hz and using the multi-block
version of CFDS-FLOW3D
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Figure 5.14 Flow structure predicted at the maximum volume for the spherical-
end rigid/compliant model for f=3.O Hz and using the multi-block
version of CFDS-FLOW3D

Figure 5.15 Flow structure predicted at the maximum volume for the spherical-
end rigid/compliant model for f=O.3 Hz and using the single-block
version of CFDS-FLOW3D
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Figure 5.16 Flow structure predicted at the maximum volume for the spherical-
end rigid/compliant model for f=1.33 Hz and using the single-block
version of CFDS-FLOW3D

Figure 5.17 Flow structure predicted at the maximum volume for the spherical-
end rigid/compliant model for f=1.66 Hz and using the single-block
version of CFDS-FLOW3D
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Figure 5.18 Flow structure predicted at the maximum volume for the spherical-
end rigid/compliant model for f=3.0 Hz and using the single-block
version of CFDS-FLOW3D

5.6 DISCUSSION

A mathematical model for unsteady flow and inviscid fluid in pulsating bulbs was

proposed by Jones (1970). Recently Tsangaris and Koufopoulos (1990) presented numer-

ical simulations of pulsating viscous flow induced by sinusoidal motion of the wall in a

ventricle model similar to that presented above. In their work the predicted flow field

were not compared with experimental results and, as the rate of wall motion was slower,

their data could not form a basis of comparison with the present work.

The essential features of the model SMV can be compared with a channel with a

symmetrical indentation. Several numerical and experimental studies have been reported

on flow in such channels: Tutty (1992) studied pulsatile flows through a plane channel

with an indentation and his predicted results are supported by the experimental findings

of Sobey (1985). The flow field show trains of counter-rotating vortices demonstrating

different features for different frequencies and Reynolds numbers of the upstream flow.

Furthermore, experimental and theoretical two-dimensional unsteady flows in a chan-

nel with a time-dependent indentation which moves sinusoidally are described by Pedley

(1985); similar numerical predictions are also presented by Demirdzic and Peric (1990).

In the light of these findings we can try to characterize the behaviour of the flow in

the model SMV studied above. In fact, we can reasonably conclude that the formation of

184



the train of vortices is determined by the features of the flow filling the ventricle during

its expansion. If the rate of this expansion is low, as it is at low frequencies of the cycle,

the separation of the entering flow establishes only a single recirculation region inside the

ventricle; if this is higher a second or even third recirculation can be established.

5.7 SUMMARY

In this chapter, two numerical model SMVs have been discussed. For the simple

rigid/compliant model, the predicted flow fields have shown good agreement over the

cycle with the experimental flow fields from the in vitro study for a similar model. For

the spherical-end rigid/compliant model, the predicted flow structures have shown that

the number of vortex rings formed at the time of maximum ventricular volume is a

function of the frequency of the wall motion. The number of vortices increases with the

frequency. A similar connection between vortex structure and frequency has been seen in

the in vitro model SMVs. These results have indicated that modern CFD codes, such as

CFDS-FLOW3D, are probably capable of simulating physiological flows in actual SMVs.

In the next chapter, a numerical analysis will be presented where experimental data

for the motion of the wall are incorporated in the calculations to drive the grid boundary

at each time step throughout the cycle.
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CHAPTER 6

NUMERICAL SIMULATION OF THE FLOW IN A MODEL SMV
WITH EXPERIMENTAL WALL MOTION

6.1 INTRODUCTION

In this chapter, a numerical analysis is presented of the flow inside a model SMV

with wall motion prescribed experimentally. The predicted results are qualitatively com-

pared with the corresponding experimental in vitro data. The calculations have been

carried out on ventricles whose wall motion is defined by experimental data, and un-

dergoing identical boundary conditions. These data were provided by Dr. Shortland at

the University of Liverpool, and consisted of radial and axial coordinates of points along

the ventricle wall. Numerical results have shown that while the predictions agreed in

general with the experimental data, differences can be seen about the time of maximum

ventricular volume.

The chapter begins with a brief description of both the experimental set up and

the data provided. Predictions of the in vitro cases are then presented and discussed.

6.2 IN VITRO STUDIES

6.2.1 Experimental Apparatus

The in vitro model SMVs are thin-walled, translucent elastomer ventricles made

from silicone rubber (Dow Corning, MDX4-4410). The ventricle, fitted inside a perspex

fluid-filled tank, is attached to a rigid inlet/outlet tube. The tube has a length of 30

cm and a diameter of 22 mm, and is attached to a constant head tank. Wall motion

is generated by a computer controlled piston pump attached to the fluid-filled chamber.

A sketch of the flow apparatus is shown in Fig.6.1. The pump can be programmed to

provide a wide range of waveforms. In the case to be discussed, it is assumed that the

ventricle is activated in a pulsatile mode at each cardiac cycle.

As can be seen in Fig.6.2, the general shape of the ventricle is that of a closed-

end cylinder. The fluid used (Newtonian) is a 36% sucrose solution with a viscosity and

density of 4.0 x 10 3Ns/m2 and 1176.0kg/rn3, respectively. A small amount of 80-150

micron diameter polymethyl methacrylate particles are introduced to the fluid to enhance

flow visualization. Planar illumination of the longitudinal mid-plane is provided by a 16

mW Helium Neon laser. Streak-line images of 80 ms duration are captured by a modified

charge coupled device (CCD) video camera capable of integration on its sensor. Video

images were collected by a framegrabber and recorded on video tape.
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Figure 6.1 Experimental apparatus

6.2.2 General Features of the Flow in the in vitro Model SMV

The basic features of the flow are shown in the sequence of photos shown in Fig.6.2.

As the ventricle fills, Fig.6.2(a), its radius increases, and eventually the flow situation is

similar to that of a sudden expansion in a pipe. That is, the flow separates at the

step formed at the inlet and reattaches further into the ventricle, forming a recirculating

region. As the flow is axisymmetric, the two vortices shown in Fig.6.2(b) are actually

cross sections of the same vortex ring. This ring grows in size and strength as the ventricle

continues to expand. Eventually, the radial motion produced by the vortex ring on the

fluid passing through its centre is sufficient to produce a second vortex ring, of opposite

sense, as can be seen in Fig.6.2(c). Each ring produces an induced motion in the other

such that the initial ring reduces in diameter while the second ring increases in diameter.

This can be seen by comparing Fig.6.2(d) with Fig.6.2(c). As flow starts to be forced

out of the ventricle, the second vortex ring disappears almost immediately, while the first

persists a little longer. This sequence appears to be relatively insensitive to changes in

the length of cycle period or the precise value of ejected volume.

6.2.3 Wall Movement Data

A number of data sets of wall movement were produced for use in the numerical

simulations. The data consist of subsets of radial and axial coordinates of 40 equispaced
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points along the ventricle wall. The interval between subsets is fixed at 4Oms. Hence,

the number of subsets in a set depends on the cycle period. In this description two sets

of data will be discussed, termed the B data set and the D data set. It is believed that

the latter set is more accurate.

The B set comprises four subsets; BlOb, B1015, B1215, and B1515. Each subset

has a different combination of ejected volume and frequency, which is signified by the

numbers following the letter used to designate to which data set the subset belongs. The

first two digits are a code for the frequency; for instance, B 1215 has a frequency of 1.2Hz.

The second two digit are a code for the amplitude of the stroke of the pump, in term of

D/A converter units, and hence, they are related to the ejected volume. The essential

point to note is that the larger the second of the two digits, the larger is the ejected

volume. That is, B1015 has a larger ejected volume than does B101O. The D data set in

fact has only one subset, DiOlO.

The temporal behaviour of the radial and axial position of three points along the

ventricle is given in Figs 6.3, 6.4, 6.5, for the B1515, BlOb, and DiOlO data, respectively.

Note that the axial movement has been magnified by 10. In order to allow the computa-

tional time step to be reduced if necessary, a Fourier decomposition has been applied to

the original data to produce data sets with a desired subdivision of the original time step.

Examples of regenerated data sets with a time step of one quarter the original; i.e., 10 ms,

are also given in Figs.6.3, 6.4, 6.5. The corresponding variation in the total volume of the

ventricle for each of the three data sets is given in Fig.6.6. It is evident from a comparison

of Figs.6.4 and 6.5, and 6.6(b) and 6.6(c) that the D data set changes more smoothly

than does the B set. The higher frequencies seen in the B set are believed to be largely

due to experimental error. The D set has been produced using a more sophisticated data

gathering system, and hence it is believed that this set is relatively free of error.

Characteristic values of mean, maximum, minimum and ejected volume are given

in Table 6.1 for some of the sets analyzed. This table also shows the maximum estimated

Reynolds number, based on the inlet tube diameter. The Reynolds numbers for the B

data set have been obtained by averaging the surrounding points at maximum volume

variation rate, and omitting the obviously erroneous points. Without this averaging

process, the maximum Reynolds number occurs at the 'bump' seen after the maximum

volume in Fig.6.6(b). The artificially large value of the derivative of volume with respect

to time caused by this bump produces an exceptionally large flow down the inlet pipe.
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Table 6.1

Values of mean, maximum, minimum and ejected volume, and maximum estimated

Reynolds number for some data sets.

B1515 data set

Mean volume

Maximum volume

Minimum volume

Ejected volume

Maximum estimated Reynolds number

Vm 33m1

Vmz. - 46rn1

Vmn = 21m1

Vej 25m1

Re = 2000

BlOW data set

Mean volume

Maximum volume

Minimum volume

Ejected volume

Maximum estimated Reynolds number

Vm = 28ml

Vmx = 37m1

Vmn = 20m1

V, = 17m1

Re = 900

DiOlO data set

Mean volume

Maximum volume

Minimum volume

Ejected volume

Maximum estimated Reynolds number

Vm 24ml

Vmx = 31m1

Vmn = l7ml

Vej = 14m1

Re = 900
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Figure 6.2(a-d)Experjmental flow field at four characteristic times of the period in
the in vitro model SMV
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6.3 NUMERICAL RESULTS

6.3.1 Numerical Grid

The axial spacing of the grid given by the experimental data was fixed. Grid

refinement in the axial direction was achieved by linearly interpolating the original data

at the time each grid was produced. The original grid data placed no restriction on the

radial grid spacing. Both equispaced grids and those expanding away from the wall have

been used in the radial direction. The rigid 30cm inlet pipe was also modelled. To reduce

the number of control volumes used in the inlet tube, the grid was made to expand away

from the ventricle.

6.3.2 Original Data

All sets of data have been simulated using the single-block version of FLOW3D;

Release 2.4. Predicted flow fields for equispaced times in the period are given in Fig.6.7

for the BlOb data. Although the predicted flow fields agree with the experimental data

over a large part of the cycle, they do not predict the occurrence of the second vortex

ring. It can be seen that at the inlet a powerful jet is predicted to exist at the time

of maximum volume with one vortex close to the wall. Further into the ventricle, the

maximum velocity in the predicted flow is near the centreline, whereas in the experimental

flow, the maximum velocity is in the area close to the wall. Both grid refinement and

reductions in time step have failed to make any significant difference to the predicted flow

field. The results presented above were in fact for a refined time step of one quarter of

the original. A sample refined-grid prediction, for set BlOb, is given in Fig.6.8.
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Figure 6.7 Predictions of the flow field inside the SMV for the b101O data; (a),
(b), (c), (d), (e) show the temporal sequence over one period. Nl=51,
NJ= 18, DT= 10 ms
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Figure 6.8 Predictions of the flow field inside the SMV for the b101O data; (a),
(b), (c), (d), (e) show the temporal sequence over one period. NI=51,
NJ= 24, DT= 10 ms
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6.3.4 New Data

It was felt that the known inaccuracies in the B data set might be responsible for

the inability of the numerical model to predict the second vortex ring. In order to test

this hypothesis, a new set of data, the D set, was produced using a more accurate data

gathering procedure. Unfortunately, as can be seen in Fig.6.9, simulations using the new

data also failed to predict the second vortex ring. In fact, it could be argued that not

even the primary vortex is predicted.

t/T=1/5

(a> IIIitIitiititmOti1
t/T2/5

(b) ______

t/T3/5	 - - -
--

(C)	 I

t/T=4/5

(d) 'Iii

t/T=1

(e)

Figure 6.9 Predictions of the flow field inside the SMV for the diOlO data; (a),
(b), (c), (d), (e) show the temporal sequence over one period. NI=51,
NJ= 18, DT= 10 ms

6.3.4 Advection Models

The default scheme used to model the advection terms in the governing equations

in FLOW3D is the HYBRID scheme. This scheme uses central differences when the

cell Peclet number is below 2, and first-order Upwind Differences otherwise. While this

scheme is extremely robust, it is known to introduce numerical dissipation which tends to

'smear' the solution. As mentioned in chapter 3, FLOW3D offers several other options,
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t /T-

jcluding the second-order accurate Higher-order Upwind scheme (HUW) and the third-

order accurate QUICK scheme. Simulations using both schemes were performed to check

whether, in this case, the advection model had any influence on the predicted flow fields.

The advection algorithm study was carried out using the B1515 data set. In Fig.6.IO

are given predicted flow fields for eight equispaced times in the cycle using the HYBRID

scheme. Plots are given for predictions using HUW and QUICK in Figs.6.11 and 6.12,

respectively, for four equispaced times close to the time of maximum volume. While,

differences in the flow fields produced using the various advection algorithms are apparent,

those produced using HUW and QUICK are quite similar. Both predict the centre velocity

to be a little stronger than does the HYBRID scheme. However, neither HUW nor QUICK

predicts the second vortex.

t/'r-l/B	 UUiiiii f11Th

t/T-2 / 8	 _________________________________________________

t IT- 3/8

iI}

t/T-7/8 _____ ______________	 i_n

Figure 6.10 Predictions of the flow field inside the SMV for the b1515 data using
HYBRID advection algorithm. NI=51, NJ= 18, DT= 10 ms
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Figure 6.11 Predictions of the flow field inside the SMV for the b1515 data using
QUICK advection algorithm.
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Figure 6.12 Predictions of the flow field inside the SMV for the b1515 data using
HIGHER UPWIND advection algorithm.
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6.3.5 Pressure/Velocity Coupling

FLOW3D (Release 2.4) provided four different pressure/velocity coupling algorithms;

SIMPLE, SIMPLEC, PISO and PISOC. The default was SIMPLEC, and this scheme was

used in the predictions discussed above. SIMPLEC is a modified version of SIMPLE, and

the former has been shown to have better convergence properties. PISOC is a similarly

modified version of PISO. As PISO was designed specifically for transient flow calcula-

tions, it was decided to see whether its use (actually, PISOC) would have any affect on

the prediction. In Fig.6.13 is given the predicted flow field for a time close to maximum

ventricle volume using the D data set. It can be seen that the predicted flow is signi-

ficantly different from that produced using SIMPLEC. Specifically, it contains a double

vortex ring structure similar to that seen in the experimental data. However, in the

predicted field, the primary vortex, the one closest to the inlet, is much smaller than in

the experimental case. Also, while not obvious from the given figure, the second vortex

in the predicted field was observed to persist for a longer period of time than was seen in

the experimental case. Further, there is some question as to the accuracy of the PISOC

solution, as convergence was never fully achieved. There is no reason to expect that solu-

tions produced using SIMPLEC and PISOC should be significantly different, providing

each has converged sufficiently. Hence, the PISOC solution must be viewed with some

caution.

It should be noted that in this case, the grid was slightly modified at the closed

end. While in most of the grid the gridlines in the radial direction were normal to the

centreline, at the closed end of the ventricle, the grid was made more non-orthogonal in

order to more accurately model the rounded end. An example of the grid is shown in

Fig.6.14.

Figure 6.13 Predictions of the flow field Inside the SMV for a particular time in
the period using PISOC
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Figure 6.14 Particular of the grid used at the closed end of the ventricle.

6.4 SUMMARY

In this chapter, the numerical predictions of model SMVs driven by experimental

wall motion have been qualitatively compared with the general features of the flow pat-

terns in the experiments. While the predictions agreed in general with the experimental

data, differences were seen about the time of maximum ventricle volume. Specifically, the

predicted flow fields exhibited one vortex ring close to the inlet, while the experimental

flows had at least two counter rotating vortices. Various refinements of the numerical

model, such as increasing the grid density, and using more accurate advection algorithms

failed to produce the second vortex. For a possible explanation of this disagreement there

is a further discussion in the next chapter where qualitative and quantitative comparisons

for another model SMV with experimental wall motion will be discussed.

A flow field that was seemingly better was achieved using PISOC, but as conver-

gence was poor in this case, it is believed that this can not be taken as a true solution.

Hence, the reason for this difference has yet to be determined.
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CHAPTER 7

NUMERICAL SIMULATION OF THE FLOW IN
MODEL SKELETAL MUSCLE VENTRICLES

WITH SIGMOIDAL' FILLING

7.1 INTRODUCTION

in this chapter, the numerical predictions of the flow in model SMVs with sigmoidal

filling are compared with the experimental data. Three cases with different combinations

of filling volume and filling duration are discussed. Qualitative and quantitative compar-

isons are analysed for two models: (i) an experimental wall motion model, and (ii) an

analytical wall motion model.

Besides the validation exercise of the numerical predictions against the experiments,

the study of the dynamics of the flow inside model SMVs has been carried out on physical

and numerical models with the objective of analysing the effect of the size and shape of

the ventricle and inlet/outlet orientation of the duct. Due to the physiological limit on the

power available to pump the blood out of the ventricle, the efficiency of these potential

assistance devices has to be maximized. It is also necessary to minimize the risks of

haemolysis and thrombogenesis, which are both related, in different ways, to the level of

shear stress on the wall and within the flow.

A common feature of the flow in model SMVs is the formation of vortex rings.

Vortices enhance mixing, and this is a useful process to encourage in an SMV, as it could

assist in the mixing of the blood components and in the reduction of the apical residence

time. Being able to predict accurately the dynamics of the vortices is therefore important,

as this will affect the prediction of residence times and shear stresses at the wall and within

the flow. Therefore, it is very important to know whether CFD codes can predict vortex

ring dynamics from both qualitative and quantitative points of view. In order to study

the dynamics of the formation of these vortices, sigmoidal filling curves have been used in

two in vitro models. Vortex rings have been observed in the experiments and vortex core

paths have been estimated from the recorded video images. Details of the experimental

study are given by Shortland et al (1995). The numerical simulation of these flows is the

main topic of this chapter.

The chapter briefly reviews the experimental studies carried out by Dr. Adam

Shortland of the University of Liverpool, discussing the important features of the flow

patterns in the in vitro models. The numerical predictions of the in vitro flows in the two

models mentioned above will then be discussed. Calculations of instantaneous streamlines

and particle pathlines are also analysed. These are very important in the calculation of

'Sigmoidal indicates the type of filling curve used to vary the injected volume in the filling phase. The
curve is expressed by the function V(t) = 1 - cos(wt)
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residence times to be carried out in the near feature. Finally predicted wall shear stresses

are discussed. An initial calculation of the fluid shear stresses concludes the chapter.

7.2 EXPERIMENTAL STUDIES

The experimental apparatus has been discussed in detail in the previous chapter.

Details of the experiments carried out on model SMVs with sigmoidal filling are given in

Shortland et al. (1995). The fluid used is a 40% aqueous-glycerol solution with a density,

p, of 1158kg/rn3 and viscosity, j1 of 3.3mPas. Injection volumes ranged between 5 and

60 ml, and filling times ranged between 300 and 800 ms. Streak-lines were analysed off-

line using a frame grabber together with a computer-generated cursor to measure vortex

extent, position, and ventricular dimensions.

7.2.1 Description of the Flow Patterns

The dominant feature observed in the ventricle for the case of sigmoidal filling was

the formation of a vortex ring, and its subsequent motion towards the apical end. The

development of a region of flow separation creates a vortex ring. Then the vortex becomes

more voluminous and it is bounded by the incoming jet. When the wall velocity decreases

and the jet weakens, the vortex ring diameter decreases and its axial progress slows. Also,

the core of the vortex ring increases to occupy the radial extent of the ventricle, and later,

the axial velocity increases to approach the same value it had during the filling phase. In

some cases, soon after the wall stops moving, a counterrotating vortex ring forms behind

the primary vortex.

Vortices were observed to form for nearly all the conditions studied. Usually, the

vortex reached the end of the ventricle. The influence of various factors on the charac-

teristics of the vortex formation and travel; e.g., the axial velocity and the diameter of

the ring, were all investigated (Shortland et al., 1995).

7.2.2 The Experimental Data

The experimental data were provided in the form of recorded radial and axial

positions of the ventricle wall measured at 40 ms time intervals. Vortex core positions

were also provided. Three different filling curves for the model ventricle shown in Fig.7.1

were simulated numerically. Details of the filling curves are given in Table 7.1.
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Table 7.1

Details of filling curves

CASE 1f Filling	 Filling	 Average Maximum Average Maximum

volume	 (ml) time (ms) inlet Re	 inlet Re	 wall Re	 wall Re

I	 30	 500	 1233	 1928	 94	 154

II	 20	 800	 604	 947	 48	 79

III	 - 20	 400	 1191	 1840	 89	 155

'wall Re is	 where a is the current ventricular radius (Uchida and Aoki, 1977).

Figure 7.1 Physical model and flow patterns at t=760 ms for CASE I

7.3 EXPERIMENTAL WALL MOTION MODEL

Measured wall profiles were used to define the ventricle shape at each time step.

Like the in vitro case, the numerical model of the ventricle was assumed to be attached

to a 30 cm long rigid tube. The other end of this tube was also defined to be at a fixed

pressure.

Experimental measurements of the flow in various diametral planes revealed the flow

to be axisymmetric, and to remain laminar. Hence the numerical flow was defined to be

axIsymmetric and laminar. The fluid was assumed to be incompressible and Newtonian.

The density was set to be 1.158 x lO3kg/m3 , and the viscosity to be 3.6 x 103m2/s.
The grid comprised three blocks. The multi-block grid allowed a better description

of the spherical end of the ventricle than would be possible with a single block. The grid

spacing was decreased near solid surfaces, the centre line, and the interface plane between
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the rigid tube and the ventricle. This ensured a high grid density in areas of the flow

expected to have high gradients.

7.3.1 CASE-I: Filling Volume 30 ml - Filling Duration 500 ms

In the first case studied, a volume of 30 ml was drawn in over a period of 500 ms.

The flow patterns were observed for a further 500 ms for a total time of observation of 1 s.

The experimental wall position data were recorded as described above in the form of 15

data sets (representing 14 time steps) of axial and diametral positions of the wall for each

time interval. The numerical model uses these sets to drive the wall motion for 560 ms.

(The wall actually stops moving at 500 is; i.e., between the 12th and 13th time step).

Then, without changing the configuration of the compliant wall further, the computation

is continued for another 440 ms. The variation of the wall position in the time is shown

in Fig.7.2 in terms of axial and radial movement at the axial position 1=22 for a data

set of 40 equi-spaced points along the ventricle wall. More accurate data were produced

with more grid points in the inlet: one with '54 points', and a even more refined set of

'103 points'. These refined sets were produced by curve fitting the original 40 equi-spaced

Time (s)

Figure 7.2 Time history of a typical wall point

A parametric study was performed on the '40 point' basic set. An attempt was

made to achieve a numerical solution which was independent of all simulation parameters.

This is of course a key issue in numerical studies, and comprised the effects of

(i) the grid density,

(ii) the relative radial position of the blocks,

(iii) the time stepping,

(iv) the advection algorithm,

and (v) the inaccuracies of measurement of the density and viscosity.
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Also, this study represents a good test of the CFDS-FLOW3D capabilities in sim-

ulating the kind of flows in question against experimental solutions.

7.3.2 Parametric Study

A summary of the study is shown in the following Table 7.2.

Table 7.2

Parametric Study on the Simulation Parameters.

GridDensity	 ______ ______ ______ ______

N° of cells	 671 1388 1908 2120

TimeStepping	 _____ _____ _____ _____

tT=-40 ms	 YES YES YES YES

zT =10 ms NO YES YES YES

AdvectionAlgorithm _____ _____ _____ _____

HIGHER UPWIND YES YES YES YES

HYBRID	 NO YES YES YES

CENTRAL	 NO YES NO NO

UPWIND	 NO YES NO NO

CONDIF	 NO YES NO NO

QUICK	 NO YES NO NO

Initially a grid of 671 cells was used. With this grid only the second-order upwind

advection model known as HUW was used as previous results had showed it to be satis-

factory (see chapter 5). The time step was set to 40 ms, and 100 iterations per time step

were found necessary to reach satisfactory convergence. Then, the grid was refined in the

radial direction. The resulting grid had 1388 cells (see Fig.7.3). Initial calculations with

the new grid again used HUW, T = 4Oms and 100 iterations per time step. Predicted

flow patterns are shown in Fig.7.4 at relevant times in the simulation and these will be

discussed in the next section. The vortex ring travels towards the apical end of the vent-

ricle in a similar fashion to that seen in the in vitro simulations. The predicted and

experimental axial positions of the vortex core at each time step is given in Fig. 7.5(a),

and the corresponding variation of radial position, which also represents the vortex ring

radius, is given in Fig. 7.5(b). The two are combined in Fig.7.6 to give the time history

of the vortex core; i.e., the path the vortex core would be seen to take in the experimental

rig. The vortex core position at each time step was determined using a program which

calculates the location of the minimum velocity in a certain specified domain assuming

that locally the velocity behaves as a biquadratic function of the computational space.

Details are presented in APPENDIX G.
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As can be seen in the plots of Fig.7.5, significant differences between experiment

and prediction exist, and several refinements to the numerical model were performed.

The grid refinement produced an improvement of the results both in the prediction of

the qualitative features of the flow field development and the evaluated position of the

vortex core with time (compare Fig.7.5 with Fig.7.7). However, an error of about 40%

in the radial predicted position against the experimental data still existed. A time step

of 10 ms was tried. In order to use a smaller time step than that of the wall data, some

form of interpolation had to be performed. In this case linear interpolation was used.

The predictions were found to be sensitive to the grid density but not to the time step.

Figure 7.3 Grid (1388 cells) used in the numerical model at maximum volume

(a)
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Figure 7.4 Predicted flow patterns at relevant times in the simulation (a) 240
ms; (b) 480 ms; (c) 1.0 s

Figure 7.5 (a) Axial position of vortex core and (b) Vortex ring radius over sim-
ulation time; 1388 cells, HUW, DT=40 ms, Iterations/time step=100
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Figure 7.6 Vortex core path; 1388 cells, HUW, DT=40 ms, Iterations/time
step= 100

Figure 7.7 (a) Axial position of vortex core and (b) Vortex ring radius over sim-
ulation time; 671 cells, HUW, DT=40 ms, Iterations/time step=100

Various advection models were also tested. All the advection algorithms available in

FLOW3D were tried: CENTRAL, UPWIND, HYBRID, HIGHER UPWIND, CONDIF,

QUICK. In all cases a 1388 cell grid, T 4Oms, and 100 iterations per time step

were used. A non-divergent solution could not be obtained with Central differencing.

However, CONDIF, QUICK, and HUW all converged and produced more or less the

same flow patterns, as can be seen in Fig. 7.8. The predictions using HYBRID showed

a very different result, and, somewhat surprisingly, were the closest to the experimental

data in terms of vortex core positions. It is known that the HYBRID scheme uses

central-differencing for a cell Peclet number between -2 and 2, and that outside this

range it reduces to (first-order) Upwinding (Patankar, 1980). Comparison of the plots for

HYBRID and (first-order) Upwinding in Fig. 7.9 suggest that the HYBRID calculation

used Upwinding for the first 360 ms of simulation. At later times, the two predictions were

not identical, suggesting that, at least in some areas, HYBRID was central-differencing.

The comparisons between the numerical and experimental solutions are in Figs. 7.10 and
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(b)

7.11, while the predicted flow patterns are in Fig.7.12.

Further tests were made with a grid of increased density in the radial direction

and in the axial direction in the inlet/outlet tube, using the HYBRID scheme, but no

significant change in the resulting flow fields were found. Also reducing the time step

to 10 ms and changing the relative radial position of the blocks led to the same results.

Using finer grids of 1908 and 2120 cells gave the same results as before, even with HUW.

In order to test the effects of possible inaccuracies in the measurement of the vis-

cosity and density on the resulting computed flow field, the values provided were varied

by ±5% and then by ±25%. A variation of ±5% produced no noticeable change. A slight

change was found for larger variations; however, this large an error would almost certainly

not occur in practice. Also, it can be expected that the dynamics of filling the ventricle

with a fluid with such different properties would result in a different wall motion. Hence,

the validity of predicting the dynamics of filling using ventricle wall profiles taken for a

fluid of significantly different properties is questionable. Examples of the flow field at the

end of the running time are shown in Figs. 7.13 to 7.16.

QUICK

(a)

CONDIF

71/'/1/'I, " / / -
•/v/. -	 - -.- -
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HUW

(c)

Figure 7.8 Comparison of the flow field using (a) QUICK; (b) CONDIF; (c)
HUW

Figure 7.9 Predicted flow patterns at 360 ms using UPWIND advection a!-
gorithm
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Figure 7.10 Vortex core path;"1388 cells, HYBRID, DT=40 ms, Iterations/time
step=100
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Figure 7.11 (a) Axial position of vortex core and (b) Vortex ring radius over
simulation time; 1388 cells, HYBRID, DT4O ms, Iterations/time
step=100
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Figure 7.12 Predicted flow patterns using HYBRID at relevant times in the simula-
tion (a) 280 ms; (b) 480 ms; (c) 1.0 s

-

213



----2'i.----- ,- / I
- - / I t \
, /	 \ " -S,'

I	 \	 •'
.- -.-	 - - -.---
- - - --

-

-. - - - -- -•----.:------
- - -
-

- -	 -	 - - - -.

(b)

Figure 7.13 Predicted flow patterns for variation of the fluid properties (a)
p=l.1172x	 kg/rn3 (b) p=1.2348x 10 kg/rn3

(a)

-._ .-, /J 1
------ / ,i :	 \ \
- 'I \ \ \' -..	 -	 - .-,. -. -- - -	 -------	 -.---- -- _-----t-

(b)

Figure 7.14 Predicted flow patterns for variation of the fluid properties (a)
p=0.882x103 kg/rn3 (b) p=1.47x10 3 kg/rn3
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Figure 7.16 Predicted flow patterns for variation of the fluid properties (a)
ii=1.8x10 3 Pas (b) 2=4.5x10 3 Pas

73.3 Refinement of the Experimental Data

A refinement of the experimental data was required in order to have a larger number

of data points at the entrance of the ventricle. In fact, it was found that the accuracy

of the outlines at the inlet of the expanding section, and then of the velocity of the wall,

were important in predicting the dynamics of the vortex formation and, hence, of its

motion. Two sets were provided; termed '54 points' data set and '103 points' data set.

At the initial stages of vortex formation the shape of the vortex resembled more closely

that seen in the experiments. However, the overall results of this refinement only slightly

changed the flow patterns at later times.

The predicted results seem to have a slight change in the flow patterns with data

sets of 54 and 103 points. The flow field is more circular and especially with the first

set ('54 points') a better matching of the vortex path was seen. Comparison between

predictions and experimental data are given in Figs 7.17 to 7.20 for '54 data' case and

in Figs. 7.21 to 7.24 for '103 data' case. Comparisons for different grids are given in

Fig.7.25.

Using the '54 points' data set, the grid had 1724 cells ( see Fig. 7.26) and 100

iterations per time step were necessary to achieve convergence. However, the '103 points'

data set produced a grid of 2900 cells (Fig. 7.27), and convergence was obtained with

200 iterations per time step.
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Figure 7.19 Vortex core path; 1724 cells, HUW, DT=40 ms, Iterations/time
step=100

217



5

E

U

Lfl

91
d

0
	 (a)
0.0	 0.3	 0.8	 0.8	 1.2

time (s)

2.0

E
Li

'' 1 .5
Ui
3

x

L
0
>

0.0
	 (b)
0.0	 0.3	 0.6	 0.9	 1.2

time (s)

Figure 7.20 (a) Axial position of vortex core and (b) Vortex ring radius over
simulation time; 54 data points; 1724 cells, HUW, DT=40 ms, Iter-
ations/time step=100

5
E

a)
U
c3
ci

Ui

91
x
ci

0 (a)

0.0	 0.3	 0.6	 0.9	 1.2
time (s)

2.0
I-'
E
LI

'•' 1 .5
Ui

0

F 1.0

x
a)

L
0
>

0.0
	 (b)
0.0	 0.3	 0.6	 0.9	 1.2

time (s)
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Figure 7.26 Grid for '54 data'points' at minimum volume

GRID AT 280 ms

Figure 7.27 Grid for '103 data points' at t=280 ms

7.3.4 Discussion of the Results

CASE-I

From the comparisons between experimental and numerical results, it appears that

the code predicts the general features of the flow driven by the wall motion; however, the

dynamics of the vortex rings have not been well predicted, in general. Travelling velocity,

core position and the flow patterns are still not very satisfactorily predicted; however the

time of formation of the vortex was predicted with reasonable accuracy.

It is possible to distinguish, from the parametric study just presented, that the code

used can give two numerical solutions: one using HUW and another using HYBRID. The

former predicts the formation of the first vortex at 240 ms, which is the same as that

observed in the experiments; and the latter predicts the vortex appearing 40 ms later,

that is, at 280 ms. Also, the vortex ring seen in the experiments looks very circular

220



(a)

and large while the one predicted in the HYBRID case is more elliptical and smaller at

the beginning. However, later, it becomes larger and appears to fill all the volume of the

ventricle. This is not seen in the experiments. The vortex is always circular and compact.

The shape and extent of the vortex are obviously relevant in residence time calculations.

Unfortunately, at the moment, we do not have any measure of the velocity patterns

inside the in uitro ventricle nor of the shear stresses involved. If the predicted flow pat-

terns agreed with the experiment, then we would have had confidence that the predictions

of shear stress were reasonably accurate. But we cannot say that the velocities are the

same in our case because the vortex dynamics are different. The fact that the predicted

vortices are elliptical suggests an effect of numerical diffusion in the axial direction. In

any case it is not desirable from the hemodynamic point of view to have such a flow field

for a skeletal muscle ventricle. Plots of instantaneous streamlines are in Fig. 7.28 for

certain times in the filling. These clearly show the more elliptical shape of the vortex

produced. Inspection of the results generated with HUW, shows the predicted vortex to

be more circular and to appear at the same time as that seen in the experiments. However

it is very fast and its radius is larger (see Fig.7.4). The appearance of the second vortex

is predicted correctly again, while it is late with HYBRID.

If we examine the dynamics of the vortex from the time it appears to when the wall

stops moving, we can see that, in the experiments and in the numerical predictions, the

vortex appears approximately in the same place. While the wall is moving, the vortex

is predicted to travel faster towards the apical end than in the experimental case. The

predicted radial position is always above the measured values. When the wall stops,

the measured vortex changes its axial and radial velocity. The vortex core, which was

midway between the jet and the wall, is not now supported by the jet, and so it reduces its

radius. The radius starts decreasing when the velocity of the wall is very small and then

it remains relatively unchanged, slightly increasing following the shape of the ventricle

end. The axial velocity of the vortex ring is almost constant, but it decreases at the end

of the simulation because it nears the end of the ventricle.
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(b)

Figure 7.28 Instantaneous Streamlines at (a) t=0.44 s; and (b) t0.64 s

In the numerical predictions it seems that the overall flow is affected by the re-

duction of the velocity with a certain delay. This is clearly shown in the HYBRID case

where the axial and radial velocities of the vortex change with a certain delay with re-

spect to the experimental data. When HUW was used, the velocity of the vortex core

seemed to be unaffected by the reduction in wall speed. At later times in the simulation

the predicted experimental vortices travel at approximately the same speed, but as the

predicted vortex had a higher initial speed it is always ahead of the experimental vortex.

Hence it travels with a constant velocity, but it is sited in different places at equal times

in the numerical predictions and in the experiments. The radial position of the vortex

is predicted to be above the position assumed in the experiments, although the same

velocity can be assumed. A better numerical prediction of the step in velocity, occurring

at the time the wall motion arrests, is obtained with the more refined sets. In this case

the step is very clear even though still late and less sharp.

7.3.5 CASE-Il: Injection Volume 20 ml - Filling Duration 800 ms

In this case the mean velocities are smaller, but qualitatively, the resulting flow

fields are similar to the previous case. An experimental data set of 54 points was used

in the numerical simulations. The first vortex is predicted to appear later than seen

in experiment (at 320 ms with HYBRID and HUW). Between 320 ms and 520 ms, the

vortex is weak and unstable (it is seen to go forwards and backwards); after which it is

clearly distinguishable. It is not evident whether this is seen in the experiments. As in

the other case, the predicted vortex is quicker in the axial direction compared with the

experimental data, and after the wall stops, the radial position reflects the step more

smoothly and late. These features are more accentuated for the prediction using HUW,

when a second vortex appears just at the end of the time of simulation of 1 s. This was

-
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not seen using HYBRID. Results are compared in Fig. 7.29 to 7.32. The predicted flow

field at the end of the time of simulation is shown in Figs.7.33 and 7.34 for HYBRID and

HUW respectively.

2 .0 ________________

1.5

o 1.0

Prediction
0.5

Experiment

0.04
0.0
	

1.0	 2.0	 3.0	 .0

Axial (cm)

Figure 7.29 Vortex core path: CASE 11; 1724 cells, HYBRID, DT=40 ms, Itera-
tions/time step=100
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Figure 7.33 Predicted flow patterns for CASE Ii; HYBRID; t=1.O s
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Figure 7.34 Predicted flow patterns for CASE II; HUW; t=1.O s

7.3.6 CASE-Ill: Injection Volume 20 ml - Filling Duration 400 ms

In the last case simulated, the mass of liquid drawn in was the same as in CASE-Il,

but the duration of the filling was halved. This caused a very fast filling of the ventricle.

While the average rate of filling was as in Case I, maximum instantaneous values were
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higher. However, the formation of the vortex, both in the experiment and in the numerical

predictions, was at 240 ms, which is the same time as CASE-I. This would suggest that

240 ms might be a minimum time required for vortex formation for any injected volume

and duration of the filling, at least in the range of values used.

It seems also that the faster the filling, the better the numerical solution can ap-

proximate the time of formation of the vortex ring. In fact both HYBRID and HUW

advection algorithms predicted that the vortex appeared at 240 ms.

Unfortunately, later in the simulation, the predictions do not match well the ex-

perimental results. In fact, the vortex is predicted to speed up either using HYBRID or

HUW with a much higher velocity toward the end of the ventricle, so that, at the end of

the simulation of 1 s, the vortex ring has reached the apical end of the ventricle, while in

the experiments it is only just past tle middle of the ventricle.

A second vortex was predicted to form at the back of the main one after 520 ms

with HUW and after 680 ms with HYBRID. Experimental evidence of this occurence is

inconclusive. In the HUW prediction, a third recirculation region is established at the

end of the time of simulation, as can be seen in Fig.7.35. This is not present in the

HYBRID prediction, see Fig.7.38.

Other comparisons of the vortex path are shown in the plots of Figs.7.37-40. The

predicted results displayed for this case reported the maximum disagreement with the experi-

mental data. This is thought to be due to the fact that, in the last case, the filling velocity

is higher than in the other cases and CFDS-FLOW3D is not capable of predicting very

well, quantitatively, flows with boundaries moving at high speed. Although predicting

flow patterns very similar to HUW, the CONDIF advection algorithm predicted slight

differences in the patterns of the vortex motion, as may be seen in Figs.7.41 and 7.42.

--.-----

Figure 7.35 Predicted flow patterns for CASE III; HYBRID; t1.0 s.
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Figure 7.37 (a) Axial position of vortex coreand (b) Vortex ring radius over sim-
ulation time. CASE III; 1724 cells, HYBRID, DT=40 ms, Itera-
tions/time step= 100
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Figure 7.40 Vortex core path: CASE III; 1724 cells, HUW, DT=40 ms, Itera-
tions/time step=100

228



2.0

E
U

"1.5
:3

-D
d 1 .0
L

x
a)

0
>

0.0 --
0.0

o Prediction
A Experiment

(b)

0.3	 0.6	 0.9	 1.2
time (s)

0.0
	

0.3	 0.6	 0.9	 1.2
time (s)

5
E

a)
U
£3

x

0

o Prediction
A	 ''

(a)

.-. .-.- .- - ..- - ,-

:::::.	 ::
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Figure 7.42 (a) Axial position of vortex core and (b) Vortex ring radius over
simulation time. CASE III; 1724 cells, CONDIF, DT=40 ms, Itera-
tions/time step= 100

7.4 ANALYTICAL WALL MOTION MODEL

The principal reason that led to the idea of the development of a model with

analytical wall motion was the fact that in the experimental wall motion model the

predicted shear stresses at the wall behaved discontinuously. This was due to the method
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used to take the experimental points on the ventricular wall. The points, at which

axial and diametral positions are taken, are not always the same material points. They

are taken by dividing the ventricular extension into forty equal parts, but an uniform

expansion at each time of all the forty intervals is not very likely to occur. This may

cause a relative motion of the fluid to the wall which is not real.

Another reason for constructing a model with analytical motion but still matching

the experimental outlines in space and in time, was the attempt to overcome the dis-

continuities presented by the experimental data (see Fig.7.2). In fact, although accurate

methods were used to interpolate the experimental data, they appeared to be smooth in

space but not always in time. Details of the construction of this model are given below.

7.4.1 The Numerical Model

The analytical wall motion model (Fig. 7.43) was constructed from the experi-

mental outlines. This was achieved by defining as boundary conditions analytical outlines

matching the in vitro outlines of the ventricle at minimum and maximum values. Inter-

mediate outlines were found by iterations of the geometric variables shown in Fig.7.43,

and were based on the in vitro ventricular volume (sigmoidally varying) at each time.

Fig. 7.44 shows the analytical outlines matching the experimental wall data at minimum

and maximum volumes. Fig. 7.45 shows the time history of the radial and axial positions

at one point along the ventricular wall. Note the smoothness of two variables in time

compared with Fig. 7.2.

-

Figure 7.43 Construction of the analytical wall motion model

A parametric study on the grid density and time stepping was carried out. This

study led to the grid shown in Fig. 7.44 for which the numerical solution appeared to be

independent of the grid density. The final grid was composed of 2352 active volumes. The

parametric study performed on the time stepping showed that the comparisons between

the experimental and numerical results did not improve significantly for a time step less

than 10 ms.

230



20

15

10

5

0
0.0 0.2	 0.4	 0.6	 0.8	 1.0

(ID)
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Figure 7.45 Time history of the radial and axial positions at one point (1=50, see
Figure 7.44) along the ventricular wall

7.4.2 Predicted Results

Qualitative Comparisons

As in the previous model the general features of the predicted flow were in good
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agreement with the flows observed in the experiments. The vortex appeared more circular

and similar to the one seen in the experiments when HUW was used. When HYBRID

was used, the vortex filled all the ventricle, and appeared less circular. This is confirmed

by the comparison of the streak lines derived from particle pathlines over a period of 80

ms and the flow visualization images for the same nominal time after the initiation of the

filling, as shown in Fig.7.46. However, quantitative comparisons showed that the solution

obtained using HYBRID matched closer the experimental data.

Quantitative Comparisons

Figs. 7.47 - 7.49 show the comparisons of the vortex trajectories for the three cases

considered. As can be seen, the quantitative agreement between predictions and experi-

ments improved significantly with the new model. They were obtained using HYBRID.

The maximum discrepancy was estimated to be 8% for the axial trajectories and 10% in

diameter in Case III.

Plots of the trajectories of the vortex obtained using HUW are compared with the

experimental data in Fig.7.50. This shows that the quantitative agreement using HUW

did not improve to the same extent as when using HYBRID.
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Figure 7.47 Vortex centre trajectories for Case I
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7.4.3 Tank Model Test

In order to study the influence of the boundary condition on the predicted flows,

a tank upstream of the rigid tube was modelled as shown in Fig.7.51. The tank was

20x20 cm 2 and had a pressure boundary condition (p= 1.333x io Pa) at its top surface.

An example of the predicted flow patterns in Case III and at t=1.O s is shown in Fig.

7.52. Vortex core trajectories are compared with the experimental data in Fig. 7.53.

Comparing those with the ones shown in Fig. 7.49, it may be concluded that there is no

difference in the predictions when upstream the boundary conditions are changed.

Figure 7.51 Model used when a tank upstream of the tube was considered

(\\\\\\\	 /1 )j1j I i' ' "
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Figure 7.52 Predicted flow pattern for the tank model test
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Figure 7.53 Vortex centre trajectories for Case II for the tank model test

7.5 CALCULATION OF THE STREAMLINES AND

PARTICLE TRACKING

Particle tracking calculation is very important in the design of the SMV, as it al-

lows the estimation of residence times of particles inside the ventricle. Instantaneous

streamlines and particle tracking have been calculated from the velocity vector field us-

ing a program developed by Dr. Henry. The program is suitable for 2-D geometries,

and allows for moving boundaries. Instantaneous streamlines were also used to test the

validity of the method presented in APPENDIX G in finding the vortex core positions.

Fig. 7.54 shows a plot of streamlines at the end of the run (1.0 sec) for Case III using

the upstream tank as a boundary condition. Similar plots have already been discussed

previously for the experimental wall motion model in Fig. 7.28.

Fig. 7.55 shows two sets of the predicted particle pathlines over a period of 1.0

for Case I. Figs. 7.56 and 7.57 show the same set of predictions for Case II and III

respectively. The vortex travelling induces the trasport of particles from the inlet of

the ventricle or at its vicinity in the tube to the apex. The velocity of the vortex is

proportional to the mean flow velocity during filling (Shortland et al., 1995). Particle

traces are longer in the case with the largest mean volume flow rate. Therefore, it can

be expected that the fluid dynamics of the particles inside the ventricle is determined by

the vortex dynamics.

The above plots show that particles which are at the inlet when the expansion

begins do not reach the apical end of the ventricle in the period of 1 s. Particle at the

inlet near to the wall return towards the inlet after having travelled for a short length in

the ventricle. Particle in the apex area (Figs.7.55 (b), 7.56 (b) and 7.57 (b)) travel very

little unless the vortex is in the vicinity. These results indicate that the presence of the

vortex travelling along the ventricle length enhances the mixing properties and reduces
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the residence time of the fluid within the ventricle.

Figure 7.54 Instantaneous streamlines for the tank model test at 1.0 s

Figure 7.55	 Particle pathlines during filling for case I (* indicates initial position;
o indicates final position)
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Figure 7.56 Particle pathlines during filling for case II (* indicates initial posi-
tion; o indicates final position)

Figure 7.57 Particle pathlines during filling for case III (* indicates initial posi-
tion; o indicates final position)
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7.6 CALCULATION OF THE WALL SHEAR STRESSES

Wall shear stresses were calculated using a subroutine provided by CFDS-FLOW3D

staff. The routine was modified slightly to allow a dump of the shear rates at each time

step and to include the dumping of position variables. This subroutine uses the velocity

gradients at the wall to calculate the tangential stresses. A form-factor takes into account

the surface deformation at the wall. This routine produced values of wall shear stress

that matched analytical predictions.

Time histories of wall shear stress are shown in Fig. 7.58 at two points along the

ventricular wall for the cases considered. Positive values of shear indicate that flow in

the immediate vicinity of the wall is moving away from the inlet. As the vortex passes,

the sign of the shear stress changes. Iri the apical volume the flow is towards the inlet

for most of the time simulated. The maximum value of shear is experienced in Case III

(r = 2.0 Pa). In the other two cases the maximum level of shear is about 1 Pa.

In the calculation of the wall shear stress, it is important to define the wall grid

points so that there is no relative motion to each other when the curve defining the grid

boundary is changing in length. The grid points are assumed to be fixed to material points

in the wall, and therefore they must expand in the wall in a similar fashion, otherwise

the resulting shear stresses will include a component due to their relative motion.

(a)
	

(b)

Figure 7.58 Time history of wall shear stress at two sites on the ventricular sur-
face. See Figure 7.44 for location of sites
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7.7 INITIAL CALCULATION OF THE FLUID SHEAR STRESS FIELD

The calculation of the shear stress field within the flow is not a default output

parameter in CFDS-FLOW3D. The calculation, in fact, requires some user input. As

measurement of shear stress is not feasible with the current experimental setup, the nu-

merical predictions of such cannot be validated against experimental data. Therefore as

an initial approach for their calculation in a model SMV, numerically predicted distribu-

tions of shear stress have been compared with corresponding analytical data for:

(i) fully-developed flow of a Newtonian fluid through a circular tube,

and (ii) the flow in a seminfinite expanding/contracting pipe.

This study was performed to ched the ability of CFDS-FLOW3D to predict shear

stress fields, particularly over grid inter-block boundaries. The computational grid used

for these calculations was topologically similar to that used for the SMV predictions.

Particular attention was paid to conditions at the interfaces of the grid blocks.

The shears were calculated at the centre of each control volume using initially

the utility subroutine GRADDV, which calculates the spatial gradients of a specified

velocity component from which the components of the shear are calculated. Predictions

obtained with this method showed significant differences compared with the analytical

solution at grid block interfaces. The main reason for the inaccuracy at the interfaces is

believed to be due to the way in which cell information is interpolated over the interfaces,

and how this affects the calculation of velocity gradients. To resolve this problem, a

routine to calculate the shear stress on a uniformly spaced computational space, and

perform a variable transformation, was written by Dr. Henry. This allowed interpolation

inaccuracies related to the grid topology to be reduced when the gradients are calculated

directly on the physical space. Details of this study are given in APPENDIX H.

In order to validate this method for problems of flow with moving boundaries, such

as the expanding/contracting pipe of Uchida and Aoki (1977), numerical predictions were

compared with the available analytical solution. Comparisons have been made for the

case of 'one-block' grid topology as used in Chapter 4 to validate velocity profiles, and

for the case of 'three-block' grid topology as used for the simulations discussed in this

chapter. In Fig.7.69 the comparisons are shown for the case of the 'three-block' grid

configuration. Predicted results are shown to be in good agreement with the analytical

solution. Results obtained for the 'one-block' grid topology are reported in APPENDIX

H, together with the other details of the validation. Slight differences can still be seen

at grid block interfaces with respect to the 'one-block' grid. These results lead to the

conclusion that flow shear stresses predicted by CFDS-FLOW3D agree with the analytical

solution for simple cases. However, some care has still to be taken at grid-block interfaces.

Validation against experimental measurements is still required to be carried out in the

next feature.
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Figure 7.59 Comparisons of the distributions of flow shear stress. (a) Expansion
at Re=1.O; axial location X=O.046 m; time of simulation T=1.O S.

(b) Contraction at Re=1O; X=O.13 m; T=1.O s. (c) Expansion at
Re=1.67; X=O.128 m; T=3.O s. Three-block grid topology.
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7.8 SUMMARY

A range of numerical simulations has been performed in order to validate the nu-

merical solution against the experimental in vitro data of the flow inside a ventricle into

which fluid was drawn following a sigmoidal filling curve. Qualitative and quantitative

comparisons have been analysed for two models: 1) an experimental wall motion model,

and 2) an analytical waIl motion model. Simulation parameters have been tested; e.g.,

grid density, time step and advection algorithm. A typical simulation took 90 mm on a

Convex C3860 supercomputer.

Although the basic features of the flow patterns revealed in the experiments are

predicted by FLOW3D, the numerical solutions have to be viewed with some caution. The

best agreement was obtained for slow fitling of the ventricle. Predicted results have shown

that the numerical solution is most sensitive to the way in which the wall motion is defined.

The development of an analytical wall motion model with smooth wall motion profiles in

space and in time, has produced a closer quantitative agreement of the predictions with

the experimental data.

It could be argued that the assumed axisymmetry of the flow should be investigated

by modelling the full ventricle, and not a two-dimensional slice; however, this would

increase the size of the grid to such an extent that the cost of the computation would be

high and the scope for grid or time stepping refinement would be limited. In the design

of model SMVs, however, it is very important to consider its three-dimensionality. Some

3-D models, proposed as potential designs for an SMV, are presented in the next chapter.
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CHAPTER 8

NUMERICAL SIMULATION OF THE FLOW IN 3-D

MODEL SKELETAL MUSCLE VENTRICLES

8.1 INTRODUCTION

In this chapter some numerical 3-D model SMVs are analysed. These may be taken

into consideration in the design of the SMV. Computational Fluid Dynamics represents

a powerful method of research into blood flow in the cardiovascular system. Numerical

simulations of flows in cardiac assist devices can be used to study the effect on the flow

of the shape and size of the device, and of the orientation of inlet and outlet ducts. The

objective is to optimize the performance, in terms of maximum efficiency of the blood

pump for the limited (physiologically provided) power, while at the same time minimizing

the risk of haemolysis and thrombogenesis.

A three dimensional analysis of the flow inside SMVs is very important in order

to have a reliable estimate of the variables of medical relevance, and consequently to be

able to contribute to the design of model SMVs. It is very likely that in the final design

the duct that feeds the SMV is not a straight tube. This implies that in the numerical

modelling two dimensional cylindrical models cannot be taken into consideration. When

the duct is a curved cylinder or is a T-junction a truly 3-D model has to be considered.

The models discussed in this chapter are characterized by two different inlet con-

figurations: (i) a straight inlet tube, as for the models previously considered, and (ii)

a curved inlet tube. These will be referred to as the straight inlet model, and the

curved inlet model. For each of these, a number of models have been analysed. They are

characterized by their shape, and referred to as flask models and spherical models. Both

of them have been analysed for the above two inlet configurations. Some of the models

have been treated for a circumferential range of 1800, others for a circumerential range

of 360°, the formers being modelled with a symmetry plane at the diametral plane. This

simplification is justified by the high computer cost involved when the size of the grid is

doubled.

The calculations were performed using the multi-block version of CFDS-FLOW3D.

The multi-block grid capability allows the simulation of flows in solution domains with

significantly more complex geometries than can be achieved with a single-block grid. Spe-

cifically, non-axisymmetric geometries such as curved inlet tubes can be considered with

relative ease. Also, the spherical end of the ventricle can be modelled more accurately.

In all the cases to be discussed in this chapter, the base geometry and the wall movement

were defined analytically.

The chapter begins with the analysis of the flow inside straight inlet models, flask-

and spherical-shaped. Then curved inlet models are analysed, again considering flask and

spherical models. A summary concludes the chapter.
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8.2 STRAIGHT-INLET MODELS

8.2.1 Flask Models

The general geometrical features are as shown in Fig.8.1. The ventricle starts with a

diverging section, continues with a section of constant diameter, and ends hemispherically.

The geometric features used for the reference case are in Table 8.1. The density and the

viscosity of the fluid are respectively: p = 1.0 x lO3kg/m3 , ii 4.0 x l03Ns/m2.

A constant pressure boundary condition was specified at the inlet of the duct: p =

1.3332x 104N/m2 . All points on the wall are assumed to move radially in a pure sinusoidal

manner about a mean position. The ainp1itude of the wall movement was defined to be

20% of the mean diameter. The period of oscillation was taken to be 0.75 seconds, and

unless otherwise stated, the time step was set to one twenty-fourth of the period.

z=O

Figure 8.1 Straight inlet flask model

The predicted velocity fields for various times in the cycle for SMVs are given in

Fig. 8.2. In order to study the effect of shape on the predicted flow, various changes to

the basic geometry were considered. Grid refinement and advection model studies were

also performed. The various geometries, grids and advection models used are specified

in Table 8.2. In Fig.8.3 are given predicted velocity fields for the base model, referred to
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as case I in Table 8.2. The two plots are for times just before and just after maximum

volume respectively.
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Figure 8.2 Predicted flow fields at four times of the cycle.
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Table 8.1

Geometric features of the reference case

Inlet pipe diameter	 = 20 mm

Inlet pipe length	 = 30 mm

Straight pipe length
	

L3=lOmm

Divergent pipe length
	

Ld = 20 mm

Maximum SMV diamter
	

Dmax = 30 mm

Table 8.2

Details of the parametric study

Case Number of Number of Total number Geometric 	 Advection

axial cells radial cells 	 of volumes	 ratio	 algorithm

I	 23	 5	 664	 1: 1	 HYBRID

II	 33	 5	 984	 1 : 1	 HYBRID

III	 23	 7	 1392	 1 : 1	 HYBRID

IV	 26	 5	 760	 2 : 1	 HYBRID

V	 29	 5	 856	 3 : 1	 HYBRID

VI	 29	 7	 1788	 3 : 1	 HYBRID

VII	 29	 7	 1788	 3 : 1	 QUICK

VIII	 29	 7	 1788	 3 : 1	 HIGHER UPWIND
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Figure 8.3 Predicted flow fields for two stages near maximum volume: (a)
emptying, (b) filling. Case I
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Grid Refinement

In Fig.8.4 are given predictions of velocity for the same times as in Fig.8.3. In this

case, (Case II) the number of control volumes in the axial direction has been changed

from 23 to 33. Similar plots are given in Fig.8.5 for a case of grid refinement in the radial

direction (Case III). Only minor differences can be seen in the three cases.
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Figure 8.4 Predicted flow fields for two stages near maximum volume: (a)
emptying, (b) filling. Case II
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Figure 8.5 Predicted flow fields for two stages near maximum volume: (a)
emptying, (b) filling. Case III

Changes in Geometry

The effect of ventricle geometry on the resulting flow fields was restricted to chan-

ging the length of the straight section. Two cases were considered; one (Case IV) with a
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straight section twice as long as the base case, and one (Case V) with the section three

times as long. Sketches of the grids used for Cases IV and V are given in Figs.8.6 and 8.7,

respectively. The corresponding flow fields, for the same times as in Fig.8.3, are given in

Figs.8.8 and 8.9. It can be seen that as the length is increased, the vortex moves towards

the closed end, and closer to the wall. However, the basic flow pattern is similar to the

base case. That is, the flows are characterized by a single vortex ring forming within the

first half of the ventricle, and flow in the second half being relatively quiescent.

Figure 8.6 Grid used in Case IV

Figure 8.7 Grid used in Case V

The effect of refining the grid in the radial direction for Case VI is shown in Fig.8.1O.

It can be seen that grid refinement does not produce any dramatic changes in the resulting

flow field. It should be noted that the plots in Fig.8.1O have more vectors both in the

radial and axial directions than do the plots in Fig.8.9. This gives the impression that

the two flow fields differ more than actually is the case.

A flask model with a geometry similar to the models analysed in chapter 5 is in

Fig.8.11. The predicted flow for this model is given in Fig.8.12. In this case the time step

was halved. Flow patterns show the formation of one vortex ring only during the whole

cycle. This seems to lead to the conclusion that the particular shape of the flask model,
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emptying, (b) filing. Case VI

Figure 8.11 Other flask model

Figure 8.12 Predicted flow fields for two stages near maximum volume: (a)
emptying, (b) filling. Other flask model.

251



v=O
	 (a)	 (b)

t /T=1
t/T r 1/12	 -

Advection Models

Predictions of the flow using the QUICK advection model are given in Fig.8.13.

The geometry and grid were the same as those used for the predictions given in Fig.8.9.

It can be seen that QUICK produces a vortex that is longer than that predicted using

the HYBRID scheme. This results in a more energetic flow in the closed-end region, both

in filling and emptying. Predictions using HUW, at identical times to those in Fig.8.9,

are given in Fig.8.14. It can be seen that HUW predicts a vortex that almost completely

fills the ventricle.

All the models presented above exhibit essentially the same flow structure, namely

the occurrence of one large vortex ring. The predictions differ only in the extent to

which this vortex approaches the closed end. This may be taken into account in the

design considerations. Geometries where vortices occupy part of the ventricle volume

promote stagnant flows in the apical region. Geometries where vortices occupy most of

the ventricle volume allow good mixing and prevent flow stagnations.

Figure 8.13 Predicted flow fields for two stages near maximum volume: (a)
emptying, (b) filling. Case VII
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z=
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Figure 8.14 Predicted flow fiels for two stages near maximum volume: (a)
emptying, (b) filling. Case VIII

8.2.2 Spherical Models

In order to have a complete analysis of the problem 360° models are required. This

is not an easy task since the number of cells involved may lead to a prohibitive CPU

time. The spherical model considered in this section has the same geometric features of

the spherical-end rigid/compliant model analysed in chapter 5 to which I return for more

details. Also the analytical function used to drive the wall motion is identical.

The three-dimensional grid used for the model is shown in Fig.8.15. Different

frequencies of the cycle were considered. Preliminary studies for the refinement of the

grid and time stepping were carried out. Then simulations for the analysis of the solution

over the frequency range were performed. This required a considerable amount of CPU

time. Calculations for this preliminary study were performed by the supercomputer

Convex C3860 at University of London Supercomputer Centre (ULCC). The final grid

used in the frequency study had 21500 active volumes. The time step varied for each of

the frequencies considered. It was found that this would save a quantity of CPU time.
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Figure 8.15 Straight inlet spherical model

Before a steady periodically repeating solution was achieved, the model ventricle

had to undergo three cycles of numerical computations. The calculations required 32

hours of CPU time in the Convex for each cycle. Successive cycles were simulated using

successive restarts. Because of the limited CPU time granted by ULCC, it was neccessary

to run the cases locally at City University on a SUN sparcstation 5. Each cycle required

between four days and one week to run, depending on the number of contemporary users.

For the above reasons, only two frequencies were tested. The predicted flow patterns

at maximum volume for a frequency of 1.33 Hz are shown in Fig.8.16. Fig. 8.17 shows

the predicted flow patterns for a frequency of 0.33 Hz. A striking feature of the predicted

flow is that the vortex structure (two-vortex rings at f=1.33 Hz, and one-vortex ring at

1=0.33 Hz, as predicted in the 2-D model) is not symmetric with respect to the axis of

the ventricle. This feature cannot be easily evidenced in the experimental Rows. As can

be seen, the asymmetry is less evident at lower frequencies. It can be expected that for

even lower frequencies flows are symmetric. Such simulations will be performed soon.

Having reported the asymmetric characteristic of the flow to mathematicians, we

have learned of the symmetry-breaking bifurcation problem, considerations on which are
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summarized below.
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Figure 8.16 Predicted flow patterns at maximum volume f=1.33 Hz
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Figure 8.17 Predicted flow patterns at maximum volume f=O.33 Hz

8.2.2.1 Considerations on symmetry-breaking bifurcation problems

Experimental observations and numerical analysis of the flow through a symmetric

channel expansion have shown the following features. Initial flow at low Reynolds number

is symmetric, becomes unstable in the proximity of a critical Re, and then becomes

asymmetric. As Re is increased further, various events may occur according to the channel

configuration. The flow may become first three-dimensional and then time-dependent or

viceversa.

Experimental studies on the above problem were performed by many investigat-

ors, see for example Sobey (1985). Numerical and experimental studies were carried

out by Fearn, Mullin and Cliffe (1990). They showed that the asymmetry arises at a

symmetry-breaking bifurcation. The numerical results predict that the unique solution

to the steady two-dimensional Navier-Stokes equation loses stability at a critical value

of Re, via symmetry-breaking bifurcation. Above this value of Re, the equations have
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three solutions, of which the original solution is now unstable. As a consequence of the

symmetry in the geoemtry of the problem, the two stable solutions above the critical Re

are a pair of asymmetric solutions of opposite senses with respect to the line of symmetry.

Analysis of the flow at higher Re is still under investigation, and will be discussed by

Tavener and Cliffe in a paper in preparation.

Unfortunately, CFDS-FLOW3D is not suitable for investigating instabilities phe-

nomena such as those above, and other packages, which use a finite element formula-

tion, should be used to ascertain instabilities and bifurcations of the numerical solutions.

However, since FLOW3D generates only stable solutions in the context of the symmetry-

breaking bifurcation problem, an investigation on the stable solutions only can be carried

out by performing a large number of simulations at different Re (e.g. frequency of the

cycle), and analysing the flow symmetry. When by decreasing Re (or the frequency)

the flow becomes symmetric, it is possible to extrapolate to the critical Re. This study

requires an enormous CPU time and the use of powerful supercomputers. Future ana-

lysis will be carried out using the CRAY Y-MP machine at the ATLAS centre Cray

(Rutherford).

8.3 CURVED INLET MODELS

As part of design considerations of the flask model discussed in the previous section,

the requirement of preventing stagnant flows in the apex of the ventricle has been pointed

out. In order to allow a good wash-out of the flow within the ventricle, Prof. Collins and

Dr. Henry thought that a curved inlet could produce a flow field that would 'flush out'

the ventricle in a way that could not be achieved with a straight inlet, and thus reduce

haemodynamic residence times. Two models are presented, a flask model and a spherical

model. They both have a circumferential range of 1800.

8.3.1 Flask Models

The curved inlet flask model is shown in Fig.8.18. Geometric features of the vent-

ricle are identical to those used for the straight inlet flask model as summarized in Table

8.1. The angle of curvature of the tube was 60 0 . The number of active volumes was 664,

and the time step was one twenty-fourth of the period (T=0.75 s). Fig.8.19 shows the pre-

dicted flow patterns for various times in the cycles. As can be seen, the whole ventricular

volume is 'washed' by a single vortex, which is established early in the expansion and

disappears late during the contraction.

-
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Figure 8.18 Curved inlet flask model

t/T=O.25

UflEh
z=O

258



t/T=O.5

z=O

\
-	 ..- -, . -	 -	 .	 .	 .	 .- - -	 - -	 ---.. .- - - -- - - - --	 -	 -	 . . .

y=O

t/T=O.75

z=O

,	 ..	 .-	 -/ / - - -/ , , .- .- - - -/ -. - .-. - .- - ----.-.- - - -. - -- - - - -- - -- - - - -

- *
y=O

259



t/T=1.0

.
a

z = O•

Figure 8.19 Predicted flow fields at four times of the cycle.

8.3.2 Spherical Models

The curved inlet spherical model is shown in Fig.8.20. Geometric features of this

model are assumed to be the same as those for the straight inlet spherical model. The

inclination angle of the tube was 60 0 . The number of active volumes was 568, and the

time step was one twenty-fourth of the period (T=0.75 s). Fig.8.21 shows the predicted

flow patterns for various times in the cycle. They show the formation of a vortex close to

the inlet in the top side, which grows and moves around the ventricle up to its bottom side

where it disappears just before the minimum volume is reached. This vortex travelling

around the ventricular wall promotes a good wash-out of the ventricle again. However,

before a complete evaluation of this model versus the straight inlet equivalent can be

made, the levels of shear established during the cycle and the residence times values

require consideration. This will be done in the near future.
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Figure 8.20 Curved inlet spherical model
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Figure 8.21 Predicted flow fields at four times of the cycle.

8.4 SUMMARY

The purpose of the numerical study presented in this chapter has been to ascertain

how changes in shape and inlet/outlet configuration affect the resulting flow fields for

design considerations. One significant finding with respect to inlet geometry is that a

curved inlet appears to produce in the SMV a purging type of flow, similar to that

seen in the normal left ventricle. This would promote mixing of the blood components

and reduce significantly the residence times of particles. However, before a thorough

evaluation of the design is made, analysis of levels of the shear (at the wall, and within the

flow) requires further investigation. This will be carried out in the near future.

An interesting feature of the predicted flows inside axisymmetric 360° models is

that the flow patterns assume asymmetric characteristics which may be attributed to a

mathematical bifurcation occurring in the numerical solution. To investigate this phe-

nomenon a large, number of simulations over the frequency range needs to be performed.

Because of the prohibitive computer cost only a few frequency values have been invest-

igated so far. Further studies will be carried out using a new Supercomputer Resource

Grant recently awarded.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

In the present thesis, numerical studies have been carried out on model SMVs

with the major objective of providing a powerful and reliable comprehensive analysis

tool for the design of model SMVs. Most of the work presented in this Thesis has been

focused on the validation of the numerical predictions computed by CFDS-FLOW3D. A

comprehensive set of validations has been carried out.

Firstly, a validation exercise of the moving wall capability of both single- and multi-

block versions of CFDS-FLOW3D has been presented. Predicted flows in an expanding

or contracting semi-infinite pipe have been compared with an available analytical solution

of good validity. Very good agreement between the predictions of both versions of the

code and the analytical solution have been achieved.

Subsequently, two numerical model SMVs have been studied. For the simple ri-

gid/compliant model, the predicted flow fields have been shown to be in good agreement

over the cycle with the experimental flow fields from the in vitro study for a similar

model. For the spherical-end rigid/compliant model, the predicted flow structures have

shown that the number of vortex rings formed at the time of maximum ventricular volume

is a function of the frequency of the wall motion. The number of vortices increases with

the frequency. A similar connection between vortex structure and frequency has been

seen in the in vitro model SMVs. These results have indicated that modern CFD codes,

such as CFDS-FLOW3D, are probably capable of simulating physiological flows in actual

SMVs.

As a next step, the numerical predictions of model SMVs driven by experimental

wall motion have been qualitatively compared with the general features of the flow pat-

terns in the experiments. In order to study the dynamics of the formation of the vortices

(the striking feature of the flow inside model SMVs), sigmoidal filling curves have been

used to drive the ventricular wall motion. A range of numerical simulations has been

performed in order to validate the numerical solution against the experimental in vitro

data of the flow inside a ventricle into which fluid was drawn following a sigmoidal filling

sequence. Qualitative and quantitative comparisons have been analysed for two models:

1) an experimental wall motion model, and 2) an analytical wall motion model.

Although the basic features of the flow patterns revealed in the experiments are

predicted by FLOW3D, the numerical solutions have to be viewed with some caution. The

best agreement was obtained for slow filling of the ventricle. Predicted results have shown

that the numerical solution is most sensitive to the way in which the wall motion is defined.

The development of an analytical wall motion model with smooth wall motion profiles in

space and in time, has produced a closer quantitative agreement of the predictions with

the experimental data.
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It could be argued that the assumed axisymmetry of the flow should be investigated

by modelling the full ventricle, and not a two-dimensional slice; however, this would

increase the size of the grid to such an extent that the cost of the computation would

be high and the scope for grid or time stepping refinement would be limited. In the

design of model SMVs, it is very important to consider its three-dimensionality. Some

3-D models have been presented as proposals for potential designs for an SMV. Different

shapes and inlet/outlet configurations have been analysed and resulting flow fields have

been discussed in the light of design considerations. One significant finding with respect

to inlet geometry is that a curved inlet appears to produce in the SMV a purging type

of flow, similar to that seen in the normal left ventricle. This would promote mixing of

the blood components and reduce significantly the residence times of particles.

An interesting feature of the pre1icted flows inside axisymmetric 3-D models is that

the flow patterns assume asymmetric characteristics which may be attributed to a math-

ematical bifurcation occurring in the numerical solution. To investigate this phenomenon

a large number of simulations over the frequency range needs to be performed. Because of

the prohibitive computer cost only a few frequency values have been investigated so far.

Further studies will be carried out using a new Supercomputer Resource Grant recently

awarded.

From the results discussed in the preceding chapters, we can conclude that both

qualitative and quantitative aspects of reliability of the numerical predictions have been

established by critical validation against experimental data. This agreement was only

reached after considerable effort spent varying several computational parameters, includ-

ing grid density and time step. Validation with geometry of a more complex character

(not axisymmetric arid hence only with 3-D models) will require further investigation.

Also prediction of residence times and shear stresses will require the development and

use of new programs. A critical evaluation of the predicted results may be obtained by

a validation of the shear stresses against in vitro measurements. In order to investigate

particle tracks and residence times, which are clinically relevant, a visualization of the

predicted results is intended to be performed using the most advanced visual techniques.

Finally, in this thesis numerical studies have modelled only the fluid dynamics of

model SMVs, the wall motion being prescribed by analytical functions or experimental

data. However, the SMV behaviour is a solid-fluid coupled problem. The review has

included consideration of the solid-fluid coupled approaches and of ventricle modelling

with special attention paid to muscle modelling. Muscles are not passive tissues, and

therefore, in a coupled approach, not only are the fluid and solid mechanics equations

coupled, but so also are the muscle mechanics equations. Following Peskin's approach

our initial thoughts on solid-iluid coupling modelling involved considering the solid as

a quasi-fluid. However, more recently other approaches have been tested in our group

where the solid behaviour is based on classical solid mechanics equations. Modelling the

solid-muscle behaviour in this way is felt to be very promising for coupled solid-fluid

modelling in the future.
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APPENDIX A

Derivation of Hill's Equation

The original derivation of Hill's equation for characterization of the mechanical

properties of muscles comes from the equation of balance of energy:

E= A+S+W

where	 E is the rate of energy release,

A is the activation or maintenance heat per unit of time,

W is the rate of work done, equal to P x v,

S is the shortening heat.

In the isometric condition the rate of energy release is equal to the activation energy

(E=A). When the muscle contracts, an additional chemical reaction takes place, and it

releases an amount of 'extra energy' equal to the sum of the shortening heat and the work

done (SW). By measuring E and A, Hill identified the term S+W, and showed that it

is represented by the empirical equation

S+W==b(Po—P)	 (A—i)

He asserted further that empirically

S = av
	

(A-2)

where a and b are the same constants defined in section 2.4.4.

Combining equations (A-i) and (A-2) and rearranging terms we obtain eq. (2.5). Hill's

major contribution lies in his ingenious methods for accurately measuring the heats E,

A,S,W.

To describe muscle mechanics, other equations have been proposed in the past.

However Hill's equation remains the most popular. Many years later, Hill (i970) admitted

that it is better to think of eq. (2.5) directly as a force-velocity relationship, and not as a

thermomechanical expression, because improved experiments do not always support eqs.

(A-i) and (A-2).
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APPENDIX B
Derivation of the Basic Dynamic Equations for Hill's Three-Element

Model

Mathematical derivation of the basic dynamic equations for Hill's three-element

model follows. We may express the geometric change of a muscle sarcomere in terms of

the actin and myosin fibres as shown in Fig.B-1 where

M is myosin filament length

C is actin filament length

is insertion of actin filaments (overlap between actin and myosin filaments)

H is H-band width

I is I-band width

L is total length of sarcomere

L0 is length of sarcomere at zero stress

is extension of the series elastic element in a sarcomere

L

______________________	 ____________________ I
t --Hi- 'L,	

M	
2

F

tMyosiri	 Actin,.

H

Figure B-i Geometric nomenclature of various elements of a muscle sarcomere
unit. From Fung (1981)

The insertion i is defined by the equation

=M—H=2C—I

and the length L without elastic extension

L=M+I=M+2C-

and with elastic extension

L=M+I+i=M+2C—L+i1	 (B—i)

On differentiating eq. (B-i) with respect to time, we obtain the basic kinematic

relation
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dL_ d	 di7
dt	 dt+dt (B-2)

The strain in the parallel elastic element can be defined as (L - Lo)/Lo; but since

L0 is constant, the stress contributed by the parallel elastic element is:

= P(L)

Similarly the stress contributed by the activated actin-myosin filaments is:

r(S) = S(ij, )

and

S(i7,)O

S(ij,t)=O

The total tensile stress is the sum of the contributions from the series and parallel

elements:

r=	 = P(L)+S(i7,z)

If the stress varies with time, we have:

dr dP dL I c9S \ dr1 / 0S \ d	
(B-3)

On substituting eq.(B-2) into eq.(B-3) we obtain the basic dynamic equation

dr dPdL I OS\ (dL d\ I OS\ dz

IdP IOS\ \ dL (Ii9S\	 /OS\ '\ dL
= 'diJ j—)) +	 —)+ j )) --

Two special cases of great interest are:

1. Isometric contraction: L=constant, and dL/dt=O

dr - ((t9S'\	 (S\ '\ d
.-

2. Isotonic contraction: r=constant, and dr/dt = 0

IdP Ic9S\ \ dL (i'as\	 (i9S\ \ d

+ -)	 +	 +	 -- =0

Experimental methods to determine the characteristics of the series elastic element

are discussed in more detail in (Fung, 1984).
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APPENDIX C

Constitutive Models for Blood Rheology

Functional forms for the constitutive equation of blood to model its non-Newtonian

behaviour as discussed above, are: the general power law, Bingham model, Casson model,

biviscosity model, and Walburn and Schneck model.

Power Law

The expression of the shear stress T as a general power law function of the shear

rate y is as follows:

where is the shear rate, and m and n are consistency and non-Newtonian indices

respectively; m and n are constant for a given hematocrit and chemical composition. To

allow for the presence of a yield stress, the power law expression can easily be extended

by adding the yield stress r:

r = m'y + T

Bingham Model

The Bingham fluid's shear stress expression is a linear relation, the line not passing

through the origin.

T=Ty+7iy	 ITI^y

7=0	 Irkr

where i is a constant.

Casson Model

This model attempts to describe both the yield stress property of Bingham plastic

fluid and the pseudoplastic behaviour, as shown in Fig.C-1. The Casson fluid's shear

stress expression (Casson, 1959) is given as follows:

IT h/2=T2+j,1/2	 IT l^ r

70	 ITI<Ty

where 'rj,, is the Casson viscosity.

Biviscosity Model

This is a modified Bingham model developed to simulate the pulsatile flow behaviour

in slurries (Nakamura and Sawada, 1987). The difference between this model and the

Bingham model is that when the velocity gradient tends to zero, the apparent viscosity
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coefficient tends to infinity in a Bingham model, while having a finite value in a biviscosity

model. The constitutive equation is written as follows:

Ti 	 2(j + Ty(27r)h/2)eij	 ir ^ 7r

2(/LB + ry (2lrc ) h/2 )etj	ir < 1r

where r,j is the (i,j) component of the deviatoric stress tensor,	 is the (i,j) component

of the deformation rate tensor, ILB is the plastic viscosity, and 7r is a constant satisfying

the relation ,LB(27rc) 1 ' 2	 1.0

Walburn and Schneck model

This is a general power law modef modified to account for the various factors that

influence whole blood behaviour such as the shear rate, the hematocrit, and the total

protein minus albumin (TPMA) (Walburn and Schneck, 1976). The resulting expression

of the shear stress is:

r CieC2H[eC4(TPMA/H2)]1_C3hi

where C1 , C2 , C3 , C4 are constants, and H is the hematocrit.

CASSON FLUID

- BINCHAM FLUID

PSEUDOPLASTIC FLUIDU,
U, n>1	 NEWTONIAN FLUIDw

DOPSTIC FLUIDLi
I n<1
(I).

STRAIN RATE

Figure c-i Rheogram for different types of flow behaviour assuming constant
pressure and temperature.
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APPENDIX D
Stress Distribution in a Thick-Walled Ellipsoidal Ventricle Model

Wong and Rautaharju (1968) calculated the stress distribution within the left

ventricular wall approximated as a thick ellipsoidal shell. They assumed that:

1. the left ventricle was a thick ellipsoidal shell, with two equal minor semi-axes;

2. the myocardium was an elastic, isotropic, and homogeneous material. Thus, the
strain tensor	 can be expressed as:

1ii =	 o•ij -	 (D - 1)

where ji is Poisson's ratio, E is Yoing's modulus, ajj is the stress tensor.

3. the myocardial distorsion was a purely radial displacement, and the intraventricular
pressure acting normal to the surface is the only load on the heart;

4. bending moments and shears were neglected because of the symmetrical geometry;

5. inertia effects were neglected;

6. the ventricle wall is in equilibrium and the following stresses act: (i) the radial stress
RR which acts normal to the surface, and is balanced by (ii) the radial components

of the longitudinal stress a and the latitudinal stress oge acting within the wall.

The contour at any point P on the endocardial surface of the ventricle is given by

the principal radii of curvature r and R (Fig. D-1), related by the following expression:

r = (1 + Asin2q5)R

where is the angle between the semirnajor axis OA and R or r. ) is a parameter < 1.

A shell element is shown in Fig. D-2(a). When subjected to the radial, latitudinal, and

longitudinal stresses, the shell will be distorted by a displacement a, which is a function of

R only, like the stresses. From eq.(D-1) stresses and strains are related by the equations:

du	 I
1RR =	 = (aRR - i(oeG + c))

U	 1
lee - = (a ee - /1(a + ORR))

U	 1
= = (a - I(RR + aee))

The equilibrium condition for the volume element shown in Fig. D-2(b) is:

(aRRrR) -	 - ro = 0	 (D - 2)

Combining eq.(D-2) with eq.(D-1), 0_RR, o, and 0_99 are obtained:

PR02	 R'T ( - (R
0 + T)' \

0_RR (R0 + T) - RG	 R' )
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(a) (b)

t	 rRR]d9d

n+3

1	 PR02	 n-3 n+1	 ______________
' (Ro + T)	 R	

(( 2 - ci) + 
(c1 -	 ) ( R0 + T)fl)

RT
R

n+3

1	 PR02	 n—a	 _________—n C1 \ (R0+T)RT
=	 (R0+T) —R	

((c0 1 +) - (c01 2 +T) R	 )

where

4kji(1 —k)+ (1—ii)(4+5k2)
n=

	

	 k= 1+Asin2,
k2(1—j)

c	
k+	 (1—k)

1+k

P is the internal pressure, R0 the endocardia radius of curvature of the meridian

for a certain constant value q5, and T the thickness. For a spherical shell A = 0, n 3,

and k = 1. The longitudinal, and the latitudinal stresses are:

PR	 / (R0+T'3
aRR= 

(R0+T)3—Rg \1_
	

R )

PR	 / I R0-FT\\=	
(R + T) 3 - R + ( R ) )

Figure D-1 Schematic represantion of the coordinate system.

Figure D-2 (a) Shell element. (b) Volume element.
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APPENDIX E

Finite Element Continuum Mechanics Approach for Left Ventricle

Modelling

Finite Element Methods for Continuum Anal ysis of the Left Ventricle

Hunter et al. (1988) derived the Galerkin finite element equations for three-

dimensional finite elasticity in prolate spheroidal coordinates. These equations generally

represent the equations for the formulation of virtual work. Neglecting body forces and

inertia, the virtual work principle is expressed as:

J
P1 F5u0, Ii dV L2 s .	 (E-1)

where

F -	 and	 -	 - rs
0iJ - &vJ

where
ô I ôx'"l ae'3

=	 .	
= ;i [;j

On the left hand side, pL are contravariant components of the second Piola-

Kirchhoff stress tensor referred to fibre zi - coordinates in the undeformed body, whereas

are covariant components of the virtual displacement vector referred to prolate spher-

oidal geometric ga - coordinates in the deformed state. F' are components of the de-

formation gradient tensor that maps an undeformed vector referred to fibre coordinates

into a deformed vector referred to geometric coordinates. Because the covariant derivat-

ives are with respect to fibre coordinates, the Christoffel symbols F are not symmetric

with respect to the lower two indices. g° and g(0)1 are covariant and contravariant

base vectors of the geometric coordinates. x' are rectangular cartesian coordinates in the

deformed state. In keeping with the Bubnov-Galerkin finite element method, both the

geometric coordinates and the virtual displacements in eq.(E-1) were approximated by

finite element interpolations

n(e)
a ()	 'n(e) ()	 and	 SUa () = Wn(e) ()	 (E - 2)

where and are prolate spheroidal coordinates and virtual displacements at a

local node n in element (e), and '4'n(e) are trilinear Lagrangian basis functions of element

e - coordinates. When assuming eqs(E-2) substituted in eq.(E-1), the volume integral

becomes the sum of element volume integrals and the right hand sides are integrated over

the element boundaries A2 on which components of the surface traction vector s act.

Diastolic Constitutive Law

For passive loading of the ventricular wall, a strain energy potential W was chosen

that was an exponential function of Lagrangian-Green's strain tensor components Ejj
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referred to fibre coordinates:

W =	 - 1)

and
(Ox" Ox"

Ejj =	 -

where Q is given below and öij is the Kronecker delta. The stress components pL in

the virtual work equation (E-1) are obtained from the strain energy function using the

constitutive relation

1/OW OW\
Pjj	

+ OEji) —
	 (E - 4)

where
(v)' — 9v1 9v

—;

The hydrostatic pressure p was introduced, as the Lagrangian multiplier needed, to en-

force the kinematic constraint that the third principal strain invariant equals one. Follow-

ing Guccione et al. (1991), the following form for exponent Q was chosen to describe the

special case of three-dimensional transverse isotropy with respect to fibre, v 1 , cross-fibre,
,2 and transmural, v3 , coordinates:

Material constants C, b1 , b, bj3 may be found in (Guccione et al., 1991). These allowed a

cylindrical model of the left ventricle to match strains measured in an intact canine heart

preparation during passive left ventricular filling.

Active Contraction Model

Systolic contraction was modelled by defining the stress tensor in eq.(E-1) as the

sum of the passive component and an active fibre-directed component T, which was a

function of external calcium concentration Ca0 and sarcomere length 1 (Guccione et al.,

1993b; 1993c):
Ca

T = Tmar hCa0 + ECa0

where Tmax is the peak tension developed at maximum Ca0 and h is the Hill coefficient.

The calcium sensitivity ECa50 was treated as a length-dependent relation:

ECa0 - (Cao)ax
- e[B ( l_bol — 1

where B is a constant and l is the sarcomere length at which no active tension is de-

veloped. The parameters of the active contraction model are based on experimental

measurements of sarcomere length and peak active tension in isolated cat trabeculae.

-
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APPENDIX F

The Immersed Boundary Method

The Immersed Boundary Method considers the problem of a viscous incompressible

fluid containing an immersed system of elastic or contractile fibres. The fibres are massless

force-generating elements, and form a composite material with the fluid in which they

are immersed, for which the equations of motion are

lou
+u.Vu)+V=iV2u+F

Vu=O

F(x, t) = J f(q, r, s, t)83(x - X(q, r, s, t))dqdrds

OX(q, r, s, t) 
= u(X(q, r, s,t), t) J u(x, t)ö3 (x - X(q, r, s, t))d3x

O(T)

Os

T	
(18X	

t)=
Os

- - OX/Os

- ax/oS

(F—i)

(F-2)

(F-3)

(F-4)

(F-5)

(F-6)

(F-7)

These equations are based on a mixed Eulerian-Lagrangian description of the motion. The

Eulerian variables are the velocity u(x, t), the pressure p(x, t), and the force F(x, t)d3x

which is applied by the fibres to the fluid in which they are immersed. X denotes position

in space, d3x is the volume element, and t is the time. The Lagrangian variables are the

fibre point position X(q, r, s, t), the fibre tension T(q, r, s, t)dqdr, the unit tangent to the

fibres f(q, r, s, t) and the resultant fibre force f(q, r, s, t)dqdrds. q, r, and .s are curvilinear

coordinates chosen in such a way that (q, r) labels a particular fibre and (q, r, s) labels a

particular material point.

Eqs ((F-i) - (F-7)) may be divided into three groups. Eqs (F-i) and (F-2) are the

Navier-Stokes equations in the independent variables (x, t), where the force density F

arises fromthe fibres immersed in the fluid. Eqs ((F-5) - (F-7)) are the fibre equations in

the independent variables (q, r, s, t), that may be used to determine the Lagrangian fibre

force density I from the fibre configuration X at time t. In eq.(F-6) I OX/Os determines

the fibre strain, and the function u defines the (possibly nonlinear) stress-strain relation

of the fibres. Eqs (F-3) and (F-4) are the interaction equations that connect the functions

of (x, t) and the functions of (q, r, s, t). Both involve integral trasformation in which the

Dirac delta function appears as a kernel. Eq. (F-4) is the familiar no-slip condition,

which plays the unfamiliar role of an equation of motion for the fibres, because the fibre

motion is not specified in advance.

The equations ((F-i) - (F-7)) are solved by using the immersed boundary method.

In this method, the Eulerian (fluid) variables are defined on the fixed cubic computational
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lattice, the structure of which is not altered or interrupted in any way by the presence

of the fibres. Lagrangian variables are defined on discrete computational fibres, each of

which is a list of discrete fibre points that are thought of as being connected by (possibly

nonlinear) springs, the elastic parameters of which may be time-dependent. The fibres

move freely through the computational lattice of the fluid: there is no requirement that

the fibre points and the lattice points should coincide.

At the beginning of each time step, the fluid velocity u is given. These quantities

are updated as follows:

1. Use the fibre configuration X to determine the Lagrangian density f of the fibre

force, applying eqs ((F-5) - (F-7)) in the finite difference form. Only the fibre data

are involved.

2. Determine the Eulerian force density F from f, by discretizing eq. (F-3).

3. Update the fluid velocity u under the influence of F, by numerically integrating of

eqs (F-i) and (F-2), using the projection method (Chorin, i967).

4. Interpolate the fluid velocity at the fibre points and update the fibre configuration

X, by discretizing equation (F-4).
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APPENDIX G

Calculation of Vortex Core Position from the Velocity Vector Field

The position of the vortex core was determined using a computer program which

estimates the position of the minimum velocity in a limited, predefined, area.

The velocities in all cells are dumped to a file at the end of the numerical calcu-

lations. The dump file is then read and the velocity field displayed on the workstation

screen at each time step, using a Gino program. This allows visual determination of

the approximate position of the vortex core, at that particular time. A surrounding box

is then placed around the vortex core. The physical coordinates of the grid node with

the minimum velocity within this area is then determined. This nodal location is then

selected to be the origin of a local coordinate system, in computational space, spanning

the eight neighbouring nodes. A biquadratic function is then fitted to the nine points

and the location of the minimum of this function determined.

This biquadratic function may be written as:

11) = a1 + a2e + a3'r + a4E + ase2 + a6 7)2 + a7e27) + asE?72 + a92'q2

where	 e(x, r) and 97 = i(x, r) are coordinates in computational space (see Fig. G-1).

The coefficients a 1 , a2 ...a9 are found from the nodal values of velocity.

The location, in computational space, of the minimum velocity is determined by

differentiating the above equation by and by 9 separately, and then setting the resulting

equations to zero. i.e.,

= a2 +a4 97+ase+2a7e97+as97 2 +2a9 2 = o

2	 2—=a3+ a4+ a697+ a7 +2asij+2agi=O

Rearranging gives,
2

C-

- 2a + 2a7i + 2agi2

- —a3—a4—a2
- 2a6 + 2a8e + 2a9e2

Then the position in physical space relative to the grid node with minimum velo-

city, x and r, is found using:

ox	 Ox
Lx=

oy	 fly
L^y=

The overbar denotes an average value over and 77.
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a)

(b)

(c)

Figure G-1 (a) Computational domain in the physical space. (b)Computational
domain in the computational space. (c) Location of the minimum
velocity point ('s', ii') in the computational space
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APPENDIX H
Calculation of the fluid shear stress fields in a tube and

in an expanding/contracting pipe

Comparisons of numerically predicted and analytical distributions of shear stress in

a rigid tube and in a semi-infinite expanding/contracting pipe are presented below. This

study was performed to check the ability of CFDS-FLOW3D to predict shear stresses,

particularly over grid inter-block boundaries. The computational grid used for these cal-

culations was topologically similar to that used for the SMV predictions discussed in

Chapter 7.

Calculatidn of Shear Stress

The components of the shear stress are:

- (th ôz
Txy - JL	 +

/av ow
Tyz =1L(\+ -7;.

(Ow Ou
Tzx = 1tL	 + -

\UX	 liz

The shear stresses in the flow are not printed out by CFDS-FLOW3D, although

they are computed internally as part of the solution. On the recommendation of CFDS

staff, the stresses were initially calculated using the utility subroutine GRADDV, which

calculates the spatial gradients of a specified velocity component at the centre of each

control volume. The routine was called from USRTRN, where shear stresses were then

calculated from the velocity gradients. Details on the use of GRADDV subroutine are in

the user manual (Anonymous, 1994a). The velocity gradients are stored by the code in

the arrays UGRAD, VGRAD, and WGRAD.

An alternative method of obtaining the shear stresses from velocity gradients is to

calculate the latter in a uniformly spaced computational domain and then transform them

to the physical space. If (x, y, z) are the generic coordinates in the physical space and

(, ij, () are the generic coordinates in the computational space, a general transformation

of the form

77= r/(x,y,z)

(= ((x,y,z)

can be used to transform the governing equations from the physical domain (x, y, z) to

the computational domain (, 77, ). The gradient of the generic velocity component 4'
may be written as	 -	

o
- aox++ax
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5q5 - 0q5 O	 Oq Oij + 0q5 t9(

(Dy

aaa
- 

O	
+ 

ôz ( ôz

where

- 1 (9yOz 9yi9Z

1 (0xi9z 0x8z

dy	 i\mioe ôth

- 1 (9xt9y axi9y
9zi \ ar9( O(ôi

th	 ljayaz ôy9z
Joa(	 ca4

8	 1 (9xaz t9x0z
l3y - J3'8(	 3c;a

1 (axay ôxOy
8z	 Jôô( aa

- 1 (Oy8z 9yt3z

OX J'ae

a(_ 1(OOZ OX

t9y	 J\ath1 8i8

- 1 (l9xOy OxOy

and where J is the Jacobian of the transformation

0j 8z

J!L21Q!l
r9.v 8y	 8z

&x a	 az

Velocity gradients are calculated at the centres of the volumes of the computational

grid by using central difference approximations in the inner grid points and forward and

backward difference approximations at the block grid boundaries. This procedure may

be summarized for	 as follows:

,.... 4+i -	 1 < i < NI
2

-44+i + 4+2
2

—34's + 44+ i - 4+2
2

as L=1. NI is the number of cells in the I direction.

j=1

i=NI-2
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Fully-developed Flow in a Rigid Tube

Analytical Solution

For steady, fully-developed laminar flow in a circular tube, the velocity profile

is parabolic. Hence, the shear stress distribution, being proportional to the velocity

gradient, is linear, with a maximum value at the wall and zero at the tube centreline.

The wall value is given by:

= --GR

where R is the radius of the tube and G is the pressure gradient along the pipe length.

For a horizontal tube, the pressure gradient is found to be proportional to the volume

flow rate Q:

xQ

where is the kinematic viscosity.

For example, a pipe of 10 mm radius, through which is flowing a fluid with viscosity

4.0 x i0 Pa.s, and density p = 1.0 x Kg/rn3, at a mass flow rate of Q =

94.2 x 10_6 m3/s would experience a wall shear stress of r = 4.8 x 10_i Pa (r = 4.8

dynes/cm2 ). The corresponding Reynolds number is Re=1500, which is comparable to

the one calculated in the aorta under normal conditions or as the mean value in the

SMV's duct, for the same pipe.

Numerical Predictions

While it is not necessary to use a multi-block grid to solve for the flow in a tube,

this type of grid was used because a similar grid was employed in the SMV calculations.

The solution domain comprised a quarter of the tube in cross section similar to the

grid employed in the SMV calculations, of 10 mm in radius, and 40 cm in length. The

grid comprised three blocks (see Fig. H-i). This allowed a check of CFDS-FLOW3D's

numerical solution at interblock interfaces. A symmetry plane boundary condition was

applied on the perpendicular planes which bounded a quarter of the tube. Fully developed

flow conditions were applied to both ends of the tube. The mass flow rate was set to be

Qm = 94.2 x i0 Kg/s. The grid was constructed with the objective of having a more

uniform grid spacing over the cross-sectional plane. Each block had 8 x 8 x 8 grid cells;

the total number of cells being 1536.

The results of the calculations for the fluid shear stresses are shown in Figs. H-2 and

H-3 for the two different methods used. As can be seen, for both methods predicted shear

stresses are distributed around the analytical solution over the entire radius. However,

when the first method was used (use of the GRADDV subroutine) closer inspection of

the predicted values for the individual blocks shows that the predictions in block 1 (the

centre block) match the analytical solution in the 'inner' cells, but become a little less

accurate in the interblock cells, and significant deviation is seen for the cell that is at

the interface with the other two blocks. Similar trends are seen in blocks 2 and 3. It
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may be concluded that although an accurate result was expected as the grid appeared

uniformly spaced, the prediction appeared to be sensitive to the grid distortion presented

(non-orthogonal faces).

Figure H-i Cross sectional view of the grid.

Radius

Figure H-2 Comparison of the predicted shear stresses with the analytical solu-
tion when the subroutine GRADDV was used.

Predicted shear stresses are compared with the analytical distribution in Fig. H-

3 when the second method (calculation in the computational space) was used. As can

be seen, this method produced an improvement in the values of predicted shear stress

compared with the analytical solution. Therefore, this was used to calculate the shear
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stresses for the following problem of flow with moving boundaries.

Figure H-3 Comparison of the predicted shear stresses with the analytical solu-
tion when the interpolation in the computational space was used.

Transient Flow in an Expanding/Contracting Pipe

Analytical Solution

The analytical solution of the transient flow in an expanding/contracting pipe has

been extensively discussed in Chapter 4. For such a solution, flow shear stresses may be

calculated (Uchida and Aoki, 1977) from:

/ dv du\ pv2x (F

Because the radial velocity profiles are similar in x, = 0. Therefore only the

axial velocity component is required to calculate the shear stress. This can be determined

for each case considered from u/Urn (calculated in Chapter 4) for given axial location and

time. Considering eqs. (4.6) and (4.11), r can be calculated as

- du - d(U/Um) 1 (_2vx
T_/1d_/1 di1	 ik a2

where a is given by eq. (4.8).

By differencing U/Urn (calculated previously) at discrete points, and using a central

difference approximation in the inner points and forward and backward difference ap-

proximations in the boundary points, the shear is calculated as a function of i for a given

time and location. Shear stress profiles are shown in Fig. H-4 as continuous lines for

three cases with different expansion and contraction rates.
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Numerical Predictions

Initial calculations were performed on a 'one-block' grid as used to validate the flow

patterns in Chapter 4. The same simulation parameters were used. Three cases were

considered at different wall Reynolds number a: (a) a = 1.0, (b) a = —10, and (c) a =

1.67. Results are shown in Fig. H-4 where they are compared with the analytical solution.

Very good agreement was reached between the numerical and analytical solutions. For

the 'three-block' configuration the grid is shown in Fig. H-i. Simulation parameters were

identical to the 'one-block' case except the cross sectional grid. Numerical results have

been compared in Chapter 7.

Particular attention was required in the choice of the axial location in order to

have a good matching. The numerical model of the theoretical semi-infinite geometry

is actually a finite pipe. Although velocity profiles were similar for quite a good axial

extension far either from the closed end or the outlet of the numerical finite pipe, velocity

gradients appeared to be very sensitive to the axial location. While a certain time of

simulation is required to have a similar solution in time, it is also necessary to consider

the flow patterns far from the closed end and outlet to have an axial similarity. Because

the more the pipe expands or contracts the more the condition at the outlet is transported by

convection toward the closed of the pipe, it is also necessary to consider an appropriate

time of simulation. A compromise to overcome these two inconveniences requires the

performance of simulations for different times and pipe lengths and subsequently to pick

the shear distribution at various axial locations until a satisfactory matching solution is

reached. Details of the time of simulation and location used for each of the cases shown

in Fig. H-4 and Fig.7.61 are indicated in the figures.

The results discussed above lead to the conclusion that predicted shear stresses

agree in general with the analytical solution. Small differences may be seen at the grid

block interfaces due to the manner in which the flow variables are interpolated over the

interfaces. However, some caution is required at grid-block interfaces especially when

considering the calculation of the velocity gradient from GRADDV. The main reason for

the inaccuracy at the interfaces is believed to be due to the way in which cell information is

interpolated over the interfaces, and how this affects the calculation of velocity gradients.
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Figure H-4 Comparisons of the distributions of ow shear stress. (a) Expansion
at Re=1.O; axial location X=O.046 m; time of simulation T1.O s.
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Abstract

Numerical prcdictions of the flow created by a closed-
end pipe expanding or contracting radially were com-
pared with an analytical solution. Both single- and
multi-block versions of the finite volume code FLOWSD
were used. Flows of this type are of interest because
they can be used as simple models of the flow in poten-
hal assist devices known as Skeletal Muscle Ventricles
(SMVs). The work to be discussed is part of a compre-
hensive research programme on SMVs which comprises
in vivo, in vitro and numerical studies. The main ob-
jective of the numerical study is to help in the design
or streamline of an optimum ventricle shape and in-
let/outlet configuration. Predictions of the flow fields
inside simple model SMVs are presented.

1.	 Introduction

During systole, contraction of muscle in the wall of
the left ventricle reduces the vessel's internal volume
and force the blood through the aortic valve. Through-
out this pumping stage, the mitral valve is closed,
and hence the ventricle resembles a closed-end cylinder
which is contracting radially. In diastole, the muscle
relaxes, the aortic valve closes, the mitral valve opens,
and the ventricle refills. Again, the ventricle resembles
a closed-end cylinder, but in this case the cylinder is
expanding.

Similar physiological flows occur in a potential car-
diac assist device known as a Skeletal Muscle Ventri-
cle (SMV). An SMV is constructed by diverting a pa-
tient's own skeletal muscle from its normal function to
perform a cardiac assist role [1,2]. Knowledge of the
dynamics of the flow in such devices is of interest as
high shear stresses can lead to haemolysis and platelet

activation, while regions of stagnant flow can lead to
thrombosis [3].

The purpose of the work to be described in this pa-
per was to study numerically the flow in simple model
SMVs, and to Lest whether the Computational Fluid
Dynamics (CFD) code chosen to perform these calcula-
tions could predict accurately flows that are driven by
the movement of the vessel wall. Calculations for the
flow in a semi-infinite pipe which is either expanding
or contracting are first compared with the analytical
solution due to Uchida and Aoki [4]. Then calcula-
tions due to flow in somewhat more realistic models
are presented and compared with in vitro data.

2.	 Model 1.
The expanding/contracting pipe

The problem considered by Uchida and Aoki [4] was
that of unsteady laminar flow in a semi-infinite con-
tracting or expanding pipe. The closed end of the pipe
was idealized as a compliant membrane which prevents
axial motion of the fluid, but allows radial motion.

All calculations to be discussed were performed us-
ing Harwell-FLOW3D, which is a general purpose CFD
code. The code uses body-fitted coordinates, and has
a moving wall/grid facility. Since the flows consid-
ered were generated by moving boundaries, the lat-
ter feature was essential. Details of the code may be
found in references [5-7]. Calculations using both the
single-block version (Release 2.4), and the more ver-
satile multi-block version (Release 3.1.2) of FLOW3D
were tested against the solution of Uchida and Aoki [4].
Because of the simplicity of the solution domain, a grid
comprising only a single axisymmetric block was in
fact used in the multi-block calculations, which meant
that the grids used in the two versions were identical.
Also, polar coordinates were used in physical space in
both versions.

0276.6547/93 $3.00 © 1993 IEEE
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In the numerical model, the pipe was defined to be
fifteen diameters in length. The closed end was mod-
elled as a symmetry plane, and the inlet/outlet plane
was taken to be at athmospheric pressure. While the
latter was not consistent with the analytical solution,
it was found not to affect the predictions away from
the boundary. Following Uchida and Aoki [4], the tem-
poral variation of the pipe radius, a, was defined using
the following formula.

a/ao =	 + 2a(zii/a)	 (1)

where a0 is the initial pipe radius, taken as 10 mm,

a = a'a/z, = a'0ao/&,

u is the kinematic viscosity, taken as 4 x i0 rn2/s
(the viscosity of the liquid used in the in vitro work),

is the time, and a' is the time rate of change of the
radius. The parameter aI is a constant and can be
taken to represent the Reynolds number of the flow.
The sign of a indicates whether the pipe is contract-
ing or expanding; e.g., a is negative when the tube is
contracting.

In this paper only one case will be presented; an ex-
pansion with a Reynolds number equal to 1.67. This
is an interesting case as a (small) reverse flow region
was predicted analitically (Fig.6 in [4]). Various other
rates of expansion and contraction were studied and
these are discussed in ludicello et at. [8]. Numerical
and analytical results, in terms of axial and radial ve-
locities, are given in Figs. 1 and 2 for the single-block
version, and in Figs. 3 and 4 for the multi-block ver-
sion. It can be seen that the predictions match well the
analytical curves. However, it was found necessary to
have a larger simulation time to establish the correct
velocity profiles for this case, namely 3.0 s as opposed
to 1.0 s used for the other cases. This was found to be
true for both single-and multi-block grids.

The current numerical predictions are entirely con-
sistent with Uchida and Aoki's solution [4], the chief
feature of which is similarity in both in both x, the ax-
ial direction, and time. While the solution is restricted
to a type of wall motion that does not represent well
that of an SMV; i.e., it is not periodic, but is either
expanding or contracting, and the Reynolds number
(based on the wall speed) is rather low, it does offer
some useful features. For instance, it is not restricted
to small wall movements, in contrast to the solution
of a flow in a channel with pulsating walls given by
Secomb [9). Also, being a solution of the full Navier-
Stokes equations, it represents the viscous nature of
blood flow as opposed to the model of Jones [10] for the
unsteady flow of an inviscid fluid in pulsating bulbs.
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3.	 Model 2.
The rigid/compliant pipe

The obvious limitation of the model considered in
the previous section is that an SMV has a finite length,
and hence a similarity solution in z cannot be devel-
oped. Also, the pulsatile motion of the SMV wall
means that a similarity solution in time is not possi-
ble. Further, it is likely that the SMV will be fed by a
rigid tube. While an analytical solution encompassing
the preceding features is almost certainly unattainable,
the authors have performed in vitro studies with which
numerical predictions can be compared. The preced-
ing model was modified to include a rigid inlet/outlet
tube, and the wall motion was made sinusoidal. This
will be referred to as the rigid/compliant pipe model.

In the in vitro studies, the flow fields inside elas-
tomer models were visualized throughout the cycle us-
ing a plane of laser light illuminating suspended par-
ticles in the fluid, and photographs were taken in di-

ametral planes [11]. A typical in vitro model SMV is
shown in Fig.5. All the model SMVs studied to date
have rigid inlet tubes, and hence, over part of the cycle
at least, the flow geometry resembles that of a sudden
pipe expansion. As would be expected, this produces
flow separation and recirculation. The primary recir-
culation is usually accompanied by a second and possi-
bly a third recirculating region. This complex pattern
occurs when the ventricle's volume is approaching its
maximum value.

The essential features of the flow in an SMV can be
compared with a channel with a symmetrical inden-
tation. Numerical and experimental works have been
presented on the flow in channels with indentation.
Tutty [12] studied pulsatile flows through a plane chan-
nel with an indentation and his predicted results are
supported by the experimental finding of Sobey [13].
The flow fields show trains of counter-rotating vortices
which show different features for different frequencies
and Reynolds numbers of the upstream flow8. Fur-
thermore, Pedley [14] has described experimental and
theoretical two-dimensional unsteady flows in a chan-
nel with a time-dependent indentation which moves
sinusoidally.

Predictions using the single-block version of the code
are given in Figs 6 and 7 of the flow in the rigid/com-
pliant pipe models for a time of maximum ventricular
volume; the model in Fig.7 represents a ventricle of
twice the length of the model in Fig.6. Note only part
of the ventricle is shown in Fig.7 in order to better
show the recirculation regions. The moving boundary
in the compliant section undergoes a sinusoidal vari-
ation of the radius of Ar = 40%, and of the length
of z = 20%. It is noted that the characteristic two-
vortex structure can be seen in both figures.

Work is underway to describe more accurately the
geometry of the in vitro model SMYS. Wall movement
data taken from photographs of the in vitro models are
being used to drive the numerical simulations.

0.2 0.4 0.6 0.8	 1.0
ri'R

Figure 5. In vitro model SMV.
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Both single- and multi-block models are being con-

structed. To date, while these more realistic models

predict most of the features seen in the experimental

data, they do not predicted the second vortex at max-

imurn ventricular volume. The reason, or reasons, for

this disparity is currently being investigated.

(f,

Figure 6. Rigid/compliant model SMV

(Lventricie = 3 X

-Figure 7. Rigid/compliant model SMV

(Lvemtrjce	 6 X

4.	 Conclusion

Predictions of the flow generated by a semi - in-
finite expanding pipe have been performed and have
been shown to agree with an analytical solution due
to Uchida and Aoki [4]. Also, predictions of the flow
within model SMVS using sinusoidally prescribed mo-
tion of the wall are presented. The predicted flow fields
show good agreement over the period with the experi-
mental flow field seen in the in vitro study for a similar
model. This work is being extended by simulating the
flow in the same model SMV analyzed above using the
in vitro data for the wall position throughout the cy-
cle.

Acknowledgements

This work has been supported by grants from the
British Heart Foundation.

References
[1] Acker MA, Hammond RL, Mannion ID, Salmons

S, Stephenson LW. Skeletal muscle as the potential
power source for a cardiovascular pump: assessment
in vivo. Science 1987; 236;324-327

[2] Salmons S, Jarvis JC. Cardiac assistance from skeletal
muscle: a critical appraisal of the various approaches.
Br Heart J 1992;68:333-338.

[3] Stein PD, Sabbah HN. Measured turbulence and its
effect on thrombus formation. Circ Res 1974; 35:608-
614.

[4] Uchida 5, Aoki H. Unsteady flows in a semi-infinite
contracting or expanding pipe. I Fluid Mech 1977;
82:371-387

[5] Hawkins IR, Wilkes NS. Moving Grids in Harwell
FLOW3D. AEA Industrial Technology, Harwell Lab-
oratory, Oxfordshire, U.K 1991.

[6] Anonymous. FLOW3D Release 2.4: User Manual.
AEA Industrial Technology, Harwell Laboratory, Ox-
fordshire, U.K 1991.

[7] Anonymous. FLOW3D Release 3.1.2: User Manual.
AEA Industrial Technology, Harwell Laboratory, Ox-
fordshire U.K. 1991.

[8] Secomb TW. Flow in a channel with pulsating walls.
J Fluid Mccli 1977; 88: 273-288

[9] Jones RT. Motions of a liquid in a pulsating bulb with
application to problems of blood flow. Med & J3ioI Eng
1970, 8:45-51

[10] ludicello F, Henry FS, Collins MW. A Comparison be-
tween numerical and analytical solutions of unsteady
flows in a contracting or expanding pipe. Internal Re-
port, City University, London, U.K 1993.

(11] Shortland AP, ludicello F, Jan'is IC, Henry FS, Black
RA, Coffins MW, Salmons S. Physical and numerical
simulation of blood flow within a skeletal muscle ven-
tricle. Paris: Proc World Symp Cardiomyoplasty and
Biomechanical Assist 1993.

[12] Tutty OR. Pulsatile flow in a constricted channel.
ASME J Biomech Eng 1992; 114:50-54

[13] Sobey Ii. Observation of waves during oscillatory flow.
J. Fluid Mech 1985; 151: 395-426

[14] Pedley Ti. Flow along a channel with a time-
dependent indentation in one waiF the generation of
vorticity waves. I Fluid Mccli 1985; 160: 337-367

Adresa for correspondence.

Francesca Tudicello
Thermo-Fluids Engineering Research Centre,
City University, Northampton Square,
London EC1V ORB, U.K..

380



FLOW STRUCTURES PREDICTED IN MODEL
SKELETAL MUSCLE VENTRICLES

F. ludicello', F.S. Henry', M.W. Collins',
A. Shortland 2 , J.C. Jarvis3 , R.A. Black2, S. Salmons3

'Thermo-Fluids Engineering Research Centre, City University, London, U.K.
2 Department of Clinical Engineering, University of Liverpool, Liverpool, U.K.

3Dcpartment of Human Anatomy & Cell Biology, University of Liverpool, U.K.

INTRODUCTION

Computational Fluid Dynamics" (CFD) represents a new method of research into
blood flow in the cardiovascular system [1]. Modern CFD codes solve the equations
govcrning unsteady, three-dimensional flows in complex, moving geometries. Numerical
simulations of flows in cardiac assist devices can be used to study the effect on the flow
of the shape and size of the device, and of the orientation of inlet and outlet ducts.
The objective is to optimize performance , while at the same time minimizing the risk
of haemolysis and thrombogenesis. Among such devices the Skeletal Muscle Ventricle
(SMV) shows much promise. An SMV is obtained by diverting a patient's own skeletal
muscle from its normal function and configuring it as an auxiliary pump [2,3].

The essential features of the flow in an SMV are (i) flow separation and (ii) regions
of recirculation. Similar features have been shown to exist, both experimentally [4] and
numerically [5], in pulsatile flows in channels with rigid constrictions. These flow fields
show trains of counter-rotating vortices whose features are related to the frequency and
Reynolds number of the upstream flow. Further, Pedley [6] has shown similar flow patterns
in an experimental and theoretical study of two-dimensional unsteady flow in a channel
with a time-dependent indentation that moves sinusoidally.

Flow in an SMV is driven by the movement of the ventricle wall, and it is there-
fore essential to use a CFD code with a moving wall/grid facility. The general purpose
code CFDS-FLOW3D provides this in both the single-block version (Release 2.4) and
multi-block versions (Release 3.2.1). A multi-block grid allows problems with complex
geometries to be gridded more efficiently. Details of the code can be found in references
[6,7]. Validation of the moving-grid capability of the single- and multi-block versions of
CFDS-FLOW3D was performed by the authors [9,101 for the flows in a semi-infinite ex-
panding/contracting pipe. Good agreement was found between predictions and analytical
solution.

In this paper, flow patterns in two numerical model SMVs are presented: a simple
rigid/compliant model and a spherical-end rigid/compliant model. Calculations were
performed using both single- and multi-block versions of CFDS-FLOW3D.

SIMPLE RIGID/COMPLIANT MODEL

The simple model comprises a compliant closed-end cylinder attached to a rigid
inlet tube. An example of the predicted flow field in this model is shown in Fig.1. The
walls of the compliant section were prescribed to expand radially in a simple sinusoidal



fashion. The radius changed from a minimum of 11.5 mm, to a maximum of 16.1 mm,
while the length was fixed at 30 mm. The ejected volume was approximately 28% of the
minimum ventricular volume. More details of this model may be found in reference [10].

The flow field shown in Fig.1 was predicted using the multi-block version of CFDS-
FLOW3D, and represents the flow at maximum ventricular volume, that is, at the time
when the ventricle is passing from the filling to the pumping phase. The cycle frequency
is 1.33 Hz. A clear two vortex structure is visible, while a third weaker vortex ring
is shown close to the wall of the straight compliant tube. This configuration was not
significantly affected by a change in frequency between 1.0 and 2.0 Hz. The same results
were predicted by the single-block version of the code with the same grid and simulation
parameters.

SPHERICAL-END COMPLIANT/RIGID MODEL

This model was defined by reference to data from the first series of in vitro SMV
studies [3]. The model is similar to th& above simple model, but it has a spherical rather
than a square end. The model undergoes a significant change in shape, from a cylinder
with a spherical end at minimum ventricular volume to an almost totally spherical shape,
at maximum ventricular volume (Fig.2). The wall expands radially in the same fashion
as in the simple model. The cycle frequency was changed within the range of 0.3-3Hz.
The same grid was used for both single- and multi-block versions of the code.

As in the previous case, the chief feature of the predicted flows in the spherical-end
model is the formation of recirculation regions, or vortex rings, at the time of maximum
ventricular volume. In this case, however, different flow structures are predicted as the
frequency of the wall motion varies. At low frequencies, only the primary recirculation,
close to the inlet wall, is predicted to occur. This is shown in the flow field given in Fig.3,
which represents the flow structure at the time of maximum ventricular volume with the
ventricle driven at a frequency of 0.3 Hz. Above this frequency, a second recirculation
forms. Two vortex rings can be seen in the flow field given in Fig.4, which represents the
flow in the ventricle at a frequency of 1.25 Hz. At a frequency between 1.25 and 1.33
Hz, a third vortex is formed. The three-vortex flow structure can be seen in Fig. 5, for
a frequency of 1.33 Hz. The frequency was increased to 3.0 Hz without further vortices
appearing. The result for a frequency of 3.0 Hz is shown in Fig.6.

The flow fields presented in Figs. 3 to 6 were predicted using the multi-block
version of the code. Predictions using the single-block version were performed for the
same frequency range. While the predicted flow fields agreed in general, the frequency
at which three vortices were formed was found to be somewhat lower than in the multi-
block version. Table 1 summarizes the predicted results for the flow structures over the
frequency range 0.3-3.0 Hz for both versions of the code. The reason for the differences
is as yet unexplained.

CONCLUSIONS

Numerical simulations of the flow in model SMVs were performed. The flows are
driven by prescribed sinusoidal motion of the wall in both radial and axial directions.
The predicted flow structures show that the number of vortex rings formed at the time
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of maximum ventricular volume is a function of the frequency of the wall motion. The
number of vortices increased with the frequency.

A similar connection between vortex structure and frequency has been seen in the
in vitro model SMVs [11]. These results indicate that modern CFD codes, such as CFDS-
FLOW3D, are probably capable of simulating physiological flows in actual SMVs.
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Table 1
Vortex structures, over the frequency range

Number of vortices 	 1	 2	 3
Single-block version below 0.3 Hz 0.3-1.38 Hz 1.38-3.0 Hz
Multi-block version below 0.3 Hz 0.3-1.25 Hz 1.25-3.0 Hz

Figure 1. Simple rigid/compliant model
	

Figure 2. Spherical-end model at
using the multi-block version of FLOW3D

	 minimum and maximum volume
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Figure 3. Spherical-end model:

f = 0.3 Hz

Figure 4. Spherical-end model:

f = 1.25 Hz



: .

\ \\
ill

Figure 5. Spherical-end model:
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ABSTRACT
Wall-driven flows are common in biofluid mechanics, but

detailed analysis of this class of flow has been hampered by the
general lack of closed-form solutions for viscous flows with
moving boundaries. Modem computational methods promise a
solution to these difficulties, and the results of a series of
calculations for a particular wall-driven flow are discussed in this
paper. It is concluded that while it is possible to calculate the
general features of such flows, great care should be exercised in
applying these methods to situations for which experimental data
does not exist.

INTRODUCTION

Wall-driven flows occur naturally in the heart, lungs, and
bladder. Flows in many artificial hearts and cardiac assist devices
are also generated by the setting of all or part of their walls in
motion. While this type of flow is evidently prevalent in biofluid
mechanics, analyses of such flows are few. Mathematical analysis
of wall-driven viscous flow is impossible for all but the simplest of
geometries. However, recent advances in computational methods
means that numerical analysis of such flow is possible, at least in
principle. In practice, the scope of an investigation may be
restricted by the available computing power, and a lack of data of
sufficient quality with which to validate the numerical predictions.
There are several Computational Fluid Dynamics (CFD) codes
available today that offer a moving grid/wall facility. The purpose
of this paper is to examine the ability of one such code to predict
the flow in a model cardiac assist device. Whole-field
measurements of the flow in the model device were available for
comparison.

THE PHYSICAL MODEL

The device considered is known as a Skeletal Muscle Ventricle
(SMV), see Salmons and Jarvis (1992). The in—vitro model SMV
comprises a thin-walled, translucent elastomer ventricle which is
submerged in a sealed, fluid-filled, chamber. The general shape of

the ventricle is that of a closed-end cylinder. The ventricle was
attached to a rigid inlet/outlet tube, which was in turn attached to a
constant head tank. The working fluid was a 40% aqueous-
glycerol solution. The fluid was seeded with a small amount of
150-200 micron diameter Rilsan Blue particles (Atochem,
Puteaux, France) to allow flow visualization. The tank was filled
with the same aqueous-glycerol solution. Wall movement was
generated by the action of a computer-driven, positive-
displacement, pump attached to the fluid-filled chamber. Video
and still photographs of the flow in the SMV were taken in
diametral planes which were illuminated by a sheet of laser light.
Measurements in different diametral planes, revealed the flows to
be axisymmetric. Various ventricle shapes and wall-movement
profiles have been studied.

THE NUMERICAL MODEL

The Navier-Stokes equations were solved on a moving grid
using CFDS-FLOW3D (AEA Technology, Harwell, UK). The
code is based on the finite volume method, and uses fully-implicit
time marching when the moving grid option is invoked. A variety
of pressure conection schemes, and several advection models are
available. As well as flow details, the experimental set up allowed
the wall position to be measured at 40 ms intervals. At each time
interval, the radial and axial positions of 40 equi-spaced points
along the vessel wall were recorded. These data were used to drive
the numerical solution. The entrance to the inlet/outlet tube was
assumed to be a plane of constant pressure. The flow was assumed
to be axisymmetric, and to remain laminar at all times.

RESULTS AND DISCUSSION

A common feature of the flow in the model SMV is the
appearance of a strong vortex ring downstream of the ventricle
entrance. The vortex forms in the filling phase, and is a
consequence of the main flow separating from the wall at the
ventricle entrance. In the case of oscillatory wall motion, a second
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vortex ring usually forms, downstream of the first. However, if the
ventricle wall motion is arrested at maximum volume, the second
vortex ring does not form, and the first vortex is seen to travel
down the ventricle towards the apical end, where it eventually
dissipates.

Given in Fig. 1 is a velocity vector plot of the predicted flow
field in a typical model SMV. The time history of a point on the
ventricle wall is given in Fig 2, and it can been seen that this is a
case where the wall motion is arrested at maximum volume.
Specifically, the wall follows a sigmoidal path and then remains at
the maximum value. The flow field of Fig. 1 is for a time of 480
mx which can be seen from Fig. 2 to be towards the end of filling
phase. Clearly, the vortex is well established at this point.

Figure 1. Flow at T = 480 ms

Given in Fig. 3 are the predicted and measured positions of the
vortex core as it moves towards the apical end. The curves
represent the distance travelled by the vortex core in one second,
starting from inception. The vortex appeared in the in—vitro model
at 280 mx, whereas it was discernible at 240 ins in the prediction.
Inspection of Fig. 3 reveals that the measured vortex core moves
closer to the ventricle centreline as the filling phase comes to an
end. The radial movement is well predicted for about a quarter of
the overall time, when it diverges to an overestimate of about 20%
However, no further divergence occurs. Also, the predicted overall
axial distance travelled is quite close to that measured.

0.2	 0.1	 0,6	 0.8	 1.0

Time (s)

Figure 2. Time history of typical wall point

Similar differences between experiment and prediction have
been found in the other ventricle shapes and wall-movement
profiles studied. Being able to predict accurately the dynamics of

the vorticies is important clinically, as this will affect the
prediction of residence times, and shear stresses at the wait and
within the flow. It is not possible to discuss fully here the details of
the other predictions, but some general points can be made. On the
positive side, the code appears able to predict the general features
of wall-driven flow. It has been found to be robust, and mass
conservative. However, the dynamics of the vortex rings have not
been well predicted, in general. The particular advection model
and pressure correction scheme used has been found to have only
marginal effects on the resulting predictions. The grid and
time-step dependency studies that have been carried out suggest
that the errors are not due to these types of inaccuracy. However,
due to computer CPU time and memory limitations, completely
grid and time-step independent solutions have not yet been
achieved in the oscillatory cases.

20

'-•1

(0

5,	 v Prediction
Experiment

(0

0. ___________
10 15 20 25 30 35 40
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Figure. Vortex core path 3

CONCLUSIONS

A general purpose CFD code with a moving grid capability has
been applied to the prediction of the flow in a model cardiac assist
device. It has been shown that while the code can predict the
qualitative features of the flow, quantitative differences of about
20% were found between the predictions and corresponding
experimental data. It is noted that the flows considered, being
axisymmetric, are somewhat simpler than would be found either in
nature, or in the in—vivo SMV. Modelling the whole flow field, as
opposed to a diametral slice, would greatly increase the size of the
grid, and hence, increase the cost of the computation. This would
further limit the amount of grid and time step refinement possible.
These considerations underline the need for a cautions approach to
the application of CFD to complex flow situations for which data
of sufficient accuracy is not available for validation purposes.
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