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1. Introduction

With rapid development, the Dijkgraaf-Vafa Programme [1, 2, 3] of establishing a

correspondence between a wide class of four dimensional N = 1 gauge theories and

certain bosonic matrix models has withstood extensive tests (q. v. [4] to [26]).

The original proposal was that an N = 1 U(Nc) gauge theory with a tree level

superpotential Wtree(Φi, ga) in adjoint fields Φi and couplings ga has a complete

effective superpotential

Weff(S, Λ, ga) = WVeneziano-Yankielowicz + WPerturbative

= NcS(1 − log(
S

Λ3
)) + Nc

∂F0(S, ga)

∂S

where S := − 1
32π2 Tr WaW

a is the glueball superfield, Λ, the cutoff scale, and F0 is

the genus-zero (i.e., planar) partition function (at large rank M) of the matrix model

whose potential is formally the tree-level superpotential:

F0 := Fχ=2 = −
S2

M2
log Z

= −
S2

M2
log

∫
[DΦi] exp

(
−

M

S
Wtree(Φi, ga)

)
.

The addition of flavour to the above story has also been performed [13, 14,

16, 18, 19]. Let us adhere to the conventions of [13]. Now an U(Nc) N = 1 the-

ory with adjoint Φ and Nf fundamentals Qf and Q̃f with tree-level superpotential
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Wtree(Φi, Qf , Q̃
f , ga) has, according to the correspondence, the effective superpoten-

tial

Weff(S, Λ, ga) = WVeneziano-Yankielowicz + W2 + W1

:= NcS(1 − log(
S

Λ3
)) + Nc

∂Fχ=2(S, ga)

∂S
+ Fχ=1(S, ga) (1.1)

where

−
M2

S2
Fχ=2(S, ga)−

M

S
Fχ=1(S, ga) = log

∫
[DΦDQfDQ̃f ] exp

(
−

1

gs
Wtree(Φi, Qf , Q̃

f , ga)

)
.

In other words, Fχ=2(S, ga) is the genus zero planar contribution and Fχ=1(S, ga),

the boundary contribution from flavours. We remark that in these above computa-

tions the matrix model is of rank M (which is to be taken to infinity), a parametre

unrelated to Nc and Nf .

With these pieces of information, together with the already existent literature

on the full non-perturbative pure U(Nc) SUSY gauge theory, viz., the Affleck-Dine-

Seiberg superpotential [27], an immediate check presents itself to us, namely Seiberg

Duality [28]. This was done by the first author in [26].

In particular the check was performed thus. The archetypal example of a Seiberg

dual pair wherein both the electric and magnetic sides have tree level superpotentials

involve mass deformations of the following type

Electric
Seiberg

↔ Magnetic

Wele =
Nf∑
i=1

QjmjQ̃
j Wmag =

Nf∑
i=1

1
µ
Xj

i qj q̃
j + Tr(Xm)

Weff = Nc(Λ̂
3Nc)

1
Nc = Nc(Λ

3Nc−Nf det(m))
1

Nc

where m are the non-degenerated mass matrix of the fundamental squarks Qj , Q̃
j

on the electric side (the matrix m is thus diagonal with entries mj), µ, a dynamical

scale, Λ, the UV cutoff scale, Λ̂, the IR cutoff scale, qj , q̃
j, the dual quarks and X,

the dual meson. In [26] the matrix model computations were carried out for Wele

and Wmag individually according to (1.1), and Weff was retrieved for both, whereby

beautifully supporting the validity of the Dijkgraaf-Vafa Correspondence once more.

The story however, is not complete. To fully understand Seiberg duality one

needs to consider cases without mass deformations, and thus indeed flat directions

in the moduli space. This is to say that whereas [26] addressed the case where the

mass matrix m was maximal rank, we need to explore the more subtle case when

m has zero eigenvalues. This purpose of this writing is to supplant the analysis of

[26] by showing that in this case of flat directions the Dijkgraaf-Vafa Programme

continues to hold. It is important to study this example because it enpowers us

with techniques as to what to do when the field theory has a non-trivial IR moduli
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space; moreover, theories which have no tree-level superpotentials which seem per

definitio to elude the Programme can be treated by certain addition of appropriate

constraints.

The organization of this paper is follows. We commence with a short review of

the field theory results in Seiberg Duality in Section 2. Then, in Section 3, we di-

rectly integrate the corresponding electric and magnetic matrix models and show that

they reproduce the known field theory results whereby supporting the Dijkgraaf-Vafa

Programme for Seiberg duality in this more general and illustrative case. Finally, in

Section 4, we give a discussion on some interesting problems and prospects.

2. A Review of the Field Theory

The phase structure of SU(Nc) SUSY gauge theory with Nf flavors Qi, Q̃i and no

superpotential has been analyzed in [29] (q. v. [30] for a more pedagogic review). In

general the theory will have a moduli space described by gauge invariant operators,

namely the meson field M j
i = QiQ̃j and the baryon fields B and B̃. The baryons exist

only when Nf ≥ Nc because they are constructed as being totally antisymmetric in

the color index.

In the case at hand, M j
i , B, B̃ are not independent and satisfy some constraints,

whereby parametrising a moduli space. Three cases need to be addressed separately:

• Nf > Nc: The constraints are not modified by quantum correction;

• Nf = Nc: The only classical constraint is modified by quantum effects as

det(M) − (∗B)(∗B̃) = 0 ⇒ det(M) − (∗B)(∗B̃) = Λ2Nc , (2.1)

where ∗ is the contraction of all flavor indices with the totally antisymmetric

tensor on Nf indices.

• Nf < Nc: Only the M j
i ’s exist and they are independent variables in the

moduli space. However, quantum correction will generate the famous Affleck-

Dine-Seiberg super-potential

W = (Nc − Nf)(
Λ3Nc−Nf

det(M)
)

1
Nc−Nf . (2.2)

The reason why the term (2.2) can only be generated1 in the case Nc > Nf is

that when Λ → 0, (2.2) will become singular if Nc < Nf .

1Λ is the dynamical scale of the asymptotically free (AF) theory. When the energy scale is less

than Λ, the gauge coupling becomes strong. So when Λ → 0, the gauge theory is weakly coupled

at any energy scale and there should not be any quantum corrections.
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Since for Nc ≥ Nf , there are complicated constraints among variables M j
i , B, B̃

(i.e., non-trivial moduli space) which make the problem less tractable, we will con-

sider the simpler case by adding some mass terms such that the remaining massless

flavors are less than Nc. For example, we set only

mj 6= 0 j = K + 1, ..., Nf

with K < Nc and add a term into the superpotential as

Welec =
Nf∑

j=K+1

QjmjQ̃
j . (2.3)

We shall call (2.3) a degenerate mass deformation in contrast to [26] where all mj

were non-zero.

After integrating out these massive flavors the theory becomes effectively SU(Nc)

with K flavors, so the exact effective superpotential is

W = (Nc − K)(
Λ̂3Nc−K

det(M)
)

1
Nc−K (2.4)

where M j
i , i, j = 1, ..., K is the meson constructed from the remaining massless flavors

and the cut-off scale Λ̂ in IR matches the Λ in UV by

Λ̂3Nc−K = det(m)Λ3Nc−Nf . (2.5)

After refreshing the reader’s memory with the above review, we can set up our

Seiberg dual pair under the degenerate mass deformation. The electric theory is

SU(Nc) with Nf flavors and superpotential (2.3) with K < Nc. The corresponding

magnetic theory is SU(Nf − Nc) ≡ SU(Ñc) with Nf flavors, a meson Xj
i , i, j =

1, ..., Nf and superpotential

Wmag =
1

µ
Xj

i qj q̃
i + Tr(Xm) (2.6)

where µ is a scale and m is same mass matrix in (2.3). Our aim is to do the matrix

model integration for both electric and magnetic theories and to show that they

reproduce the results (2.4) and (2.5).

3. The Matrix Model

3.1 The Electric Side

We first do the matrix model integrations for the electric field theory. Unlike the case

discussed in [26], here the mass matrix is degenerate and there are some massless

fields left in the IR. To do it correctly, we must take care of these zero modes as
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emphasized in [11]. The way to do this is advocated in [19] where we add a delta-

function into the matrix model integration so that we are only integrating fields

subjects to the constraint given by the moduli space equation of corresponding field

theory.

More concretely, in our example, we have a U(N) matrix model at large N (we

emphasize that at the stage of computing free-energies, this N is unrelated to the

Nc and Nf of the field theory), and we should modify the näıve integration for the

partition function

Z =
1

Vol(U(N))

∫ Nf∏

j=1

dQjdQ†
je

− 1
gs

Nf∑
j=K+1

QjmjQ†j

=
1

Vol(U(N))

∫ K∏

j=1

dQjdQ†
j

∫ Nf∏

l=K+1

dQldQ†
l e

− 1
gs

Nf∑
j=K+1

QjmjQ†j

into the form

Z =
1

Vol(U(N))

∫ K∏

j=1

dQjdQ†
jδ(M

j
i −QiQ

†j)
∫ Nf∏

l=K+1

dQldQ†
l e

− 1
gs

Nf∑
j=K+1

QjmjQ†j

(3.1)

where we have split the integration into massive and massless parts and inserted

the delta-function constraint in light of the fact that the meson is composed of the

fundamental squarks.

We wish to emphasize that the above treatment should apply for more general

cases such as Nf > Nc without any mass deformations. We only need to include

proper delta-function constraints into the matrix model integration. These cases

without tree-level superpotential which seemingly defy the rules of the Dijkgraaf-

Vafa Programme can thus be addressed. The difficult part is that when we include

these delta-functions, it is hard to do the integration in general. Developing this

technique will be very important to the matrix model - field theory correspondence.

For the integral (3.1) there are three contributions. The volume contributes a

factor of Vol(U(N)) = N
N2

2 = e
N2

2
log N = e

1

g2
s

S2

2
log S

gs . As we argued in [26], to get

the proper dimensions, we need to replace gs = Λ3e3/2 and get the contribution to

the effective superpotential as

∂(S2

2
log S

gs
)

∂S
= Nc[S log

S

Λ3
− S]. (3.2)

The second piece comes from the massive field integration and it is as in [26]:

eN(Nf−K) log(πgs)−N log(det(m)) = e
1
gs

[S(Nf−K) log(πgs)−S log(det(m))].
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Again, dimensional analysis allows us to replace πgs by Λ and we get the next

contribution to the effective superpotential:

[S(Nf − K) log(Λ) − S log(det(m))] . (3.3)

The third piece comes form the integration of the massless modes subject to the

delta-function constraint. The contribution is e−KN log N+(N−K) log det(M) [19] with the

method of Wishart models. Since in the matrix model, we need to take N → ∞

and N − K ∼ N in the second term. When translating into the field theory, we

need to put back the proper dimensionful parametres as before to obtain the last

contribution:

−K[S log
S

Λ3
− S] + S log(

det(M)

Λ2K
) . (3.4)

Adding the three pieces (3.2) (3.3) (3.4) together, we get

−Welec; eff = Nc[S log
S

Λ3
− S] + [S(Nf − K) log(Λ) − S log(det(m))]

−K[S log
S

Λ3
− S] + S log(

det(M)

Λ2K
)

= (Nc − K)[S log
S

(det(m)Λ
3Nc−Nf

det(M)
)

1
Nc−K

− S] . (3.5)

Minimizing (3.5) with respect to S we get

S = (
det(m)Λ3Nc−Nf

det(M)
)

1
Nc−K (3.6)

so the exact superpotential, upon integrating out S is

Welec; eff = (Nc − K)(
det(m)Λ3Nc−Nf

det(M)
)

1
Nc−K , (3.7)

which is exactly the result in the field theory (2.4) and (2.5).

As we emphasized above, this calculation is suitable only for the case of K < Nc

because only in this case, the independent variables are just M j
i and there are no

baryonic fields; this is reflected in our matrix calculation since we would otherwise

need to insert extra delta-function constraints to capture the moduli space. Indeed

this restriction also gives a hint of how the matrix model actually sees different

behavior in the field theory for the cases Nc > Nf and Nc ≤ Nf because of the

necessity of putting in different constraints.

3.2 The Magnetic Side

Now let us move to the dual magnetic side. The tree-level superpotential is given

in (2.6). Again, since the mass matrix m is degenerate, we need to modify the
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matrix model integration by including the proper delta-function as in the previous

subsection. In particular, we have

Z =
1

Vol(U(N))

∫
dX

∏

j

dqjdq†j [
K∏

i,j=1

δ(Xj
i −M j

i )] exp(
−1

gs
[Tr(mX)+

Nf∑

i,j=1

1

µ
Xj

i qjq
†i]) .

(3.8)

After finishing the integration of X as was done in [26], (3.8) becomes

Z =
1

Vol(U(N))

∫ K∏

j=1

dqjdq†je
− 1

gsµ

K∑
i,j=1

Mj
i
qjq†i ∫ Nf∏

l=K+1

dqldq†l δ(µmp
l + qlq

†p) . (3.9)

Once again, the whole integration (3.9) is reduced to three contributions. The

first one comes from the volume and as in (3.2) gives the contribution to the super-

potential as

Ñc[S log
S

Λ̃3
− S] , (3.10)

where we use Ñc, Λ̃ to indicate that it is in the dual magnetic theory.

The second piece is simply the Gaussian integration for massive fields because

here M j
i are just the mass parameters and upon comparison with (3.3) we obtain the

contribution

[SK log(Λ̃) − S log(det(
M j

i

µ
))] . (3.11)

The third piece is the same constrained integration as given by [19] and the

contribution is (comparing with (3.4))

−(Nf − K)[S log
S

Λ̃3
− S] + S log(

det(−µm)

Λ̃2(Nf−K)
) . (3.12)

It is interesting to notice that the mass integration (3.11) and constraint integra-

tion (3.12) in the magnetic field theory are exactly the opposite of the corresponding

electric field theory ((3.3) for the mass and (3.4) for the constraint integrals). This

of course is no coincidence and is in fact a result of Seiberg duality.

Putting the three pieces together we get

−W = Ñc[S log
S

Λ̃3
− S] + [SK log(Λ̃) − S log(det(

M j
i

µ
))]

−(Nf − K)[S log
S

Λ̃3
− S] + S log(

det(−µm)

Λ̃2(Nf−K)
)

= (Ñc − (Nf − K))[S log
S

Λ̃3
− S] + S log

(−)Nf−KµNf det(m)

det(M)Λ̃2Nf−3K

= (Ñc − (Nf − K))[S log
S

Λ̃3( (−)
Nf −K

µ
Nf det(m)

det(M)Λ̃
2Nf −3K )

−1

Ñc−(Nf−K)

− S] .

7



Minimizing the above superpotential with respect to S we obtain

S = Λ̃3(
(−)Nf−KµNf det(m)

det(M)Λ̃2Nf−3K
)

−1

Ñc−(Nf−K) ; (3.13)

after some algebra it can be shown that Smag = −Sele. The exact superpotential,

upon back substitution becomes

Wmag; eff = (Ñc − (Nf − K))Λ̃3(
(−)Nf−KµNf det(m)

det(X)Λ̃2N−f−3K
)

−1

Ñc−(Nf−K)

= (Ñc − (Nf − K))(
(−)Nf−KµNf det(m)

det(X)Λ̃3Ñc−Nf

)
−1

Ñc−(Nf−K) . (3.14)

Now using the relationships [30]

Λ3Nc−Nf Λ̃3Ñc−Nf = (−)Nf−NcµNf , Ñc − (Nf − K) = −(Nc − K) (3.15)

for the dual cut-off scales, we can recast (3.14) into

Wmag; eff = (Nc − K)(
det(m)Λ3Nc−Nf

det(M)
)

1
Nc−K ; (3.16)

note that the minus signs have been properly canceled.

We recognize (3.16) as precisely (3.7); therefore the matrix model computation

has again successfully reproduced Seiberg duality in this generalized case from the

one in [26].

4. Discussions and Prospects

In this paper, we have generalized the result in [26], from non-degenerate to de-

generated mass matrix and have shown that in the context of the Dijkgraaf-Vafa

Programme, the matrix model continues to perfectly reproduce the predictions of

Seiberg duality.

The techniques arising from this illustrative example extend beyond the present

framework. In fact they allow us to propose a general method of attack on the matrix

model integration when the corresponding field theory has a classical moduli space,

by generalizing the ideas presented in [11, 19].

In particular, we need to add into the partition function integral, proper delta-

function constraints in accordance with the explicit relations in the field theory mod-

uli space. In other words, one cannot näıvely integrate over the space of all matrices

but only subspaces relevant to the field theory. It is worth to emphasize that these

constraints we add are classical relationships. The matrix model will supply the

quantum correction to the moduli space. This can be seen by setting K = Nc in

equation (3.5), so the equation of motion of S gives det(M) − det(m)Λ3Nc−Nf = 0.
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Because for different number of flavors we will have different delta-functions, this pre-

scription solves the puzzle why the matrix model would know the different dynamical

behavior of the corresponding field theory.

Moreover, field theories without tree-level superpotential which ab initio seem-

ingly elude the Dijkgraaf-Vafa procedure, can be thus addressed. Indeed we merely

have to add appropriate delta-function constraints (and go to the dual electric/magnetic

theory if necessary) to perform the matrix integral.

However, as remarked in [26], we are still far from completely showing Seiberg

duality in the matrix model, even for the standard example of no mass deformations

at all. The difficulty is that we need to find proper delta-function constraints reflect-

ing the baryonic and mesonic branches of the moduli space, and more importantly,

to do the matrix integration in the presence of these constraints. This is a very

involved task and beckons for future work.

Many immediate checks are also conveniently at hand. The generalized Seiberg

dualities, such as the host of examples in toric dualities and quiver dualities addressed

in [31, 32] and [33] present as readily available case-studies. It is also interesting to

generalize our treatment from U(N) to SO/Sp gauge groups.

The works in [26] and herein are a nontrivial check of Seiberg duality in matrix

models. However, we would like to ask a more profound question: could we derive

Seiberg duality from the matrix model? In other words, we start with a known

electric field theory and translate it into the proper matrix model. Then could we

find a transformation in the matrix integration to change this electric matrix model

into another equivalent magnetic one, from which we can read out the superpotential

of the magnetic field theory directly? By this way, we would have derived Seiberg

duality from the matrix model and be granted the remarkable ability to see an N = 1

duality purely from a bosonic matrix integration.

There are some hints for this interesting issue in our calculations. Comparing

(3.1) and (3.9), we see the constrained integration in one model becomes direct

integration in another and vise versa. It is reminiscent of some kind of field theory

transformation with source such as Legendre transformations. Does this hold in

general? What is this transformation in the matrix model which we seek that would

derive Seiberg Duality?
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