
This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: http://openaccess.city.ac.uk/963/

Link to published version:

Copyright and reuse: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.
The Mass Spectrum and Coupling in Affine Toda Theories

A. Fring, H.C. Liao and D.I. Olive
The Blackett Laboratory, Imperial College, London, SW7 2BZ, UK
May 1991

Abstract
We provide a unified derivation of the mass spectrum and the three point coupling of the classical affine Toda field theories, using general Lie algebraic techniques. The masses are proportional to the components of the right Perron-Frobenius vector and the three point coupling is proportional to the area of the triangle formed by the masses of the fusing particles.

The affine Toda field theory is a relativistic field theory describing the coupling of r independent scalar fields. It has been known for about ten years that in two dimensions its classical equations exhibit remarkable integrability properties [1,2,3].

There is such a theory for each affine root system but we shall consider only those associated with the root systems of an untwisted affine Kac-Moody algebra g. Then r, the number of fields, equals the rank of the finite dimensional simple Lie algebra g.

Interest in this theory was intensified by the observation of Hollowood and Mansfield [4] that affine Toda field theories were integrable deformations (both classically and quantum mechanically) of a conformally invariant theory, namely the ordinary Toda field theory associated with g. In accordance with general ideas of Zamolodchikov [5], the infinite number of conservation laws associated with the integrability are relics of the broken conformal symmetry.

It was then noticed on the basis of case-by-case computation [1,6,7,8,9] that the masses \(m_1,m_2,\ldots,m_r\) and the three point coupling \(C_{ijk}\) of the fields occurring in the classical equations of motion display remarkable patterns that are independent of the magnitude of the symmetry breaking and seem to be preserved in the quantum theory, at least if g is simply laced. The masses are proportional to the components of the Perron-Frobenius vector and the coupling has modulus proportional to the area of the triangle formed by the masses of the three coupling particles.

The object of this letter is to provide a unified derivation of these remarkable results, extended to be valid for any simple Lie algebra, whether simply laced or not, using results in Lie algebra theory and developing further ideas of Freeman [10] concerning the explanation of the mass pattern.

The Lagrangian of the affine Toda theory reads

\[
\mathcal{L} = \mathrm{tr}\left( \frac{1}{2} \partial_\mu \Phi \partial^\mu \Phi' - e^{\Phi} \Phi' e^{-\Phi} E \right)
\]

where \(\Phi\) is an element of the Cartan subalgebra \(h\). Let \(T_3\) be the generator in \(h\) of a maximal SU(2) subalgebra embedded in \(g\). Then if \(h\) denotes the Coxeter number of \(g\), that is one less than the quotient of the dimension of \(g\) by its rank, or equivalently one more than the height of its highest root \(\Phi\), the quantity

\[
S := e^{2\pi i T_3/h}
\]

furnishes a \(\mathbb{Z}_h\) grading of \(g\):

\[
g = g_0 \oplus g_1 \oplus \cdots \oplus g_{h-1} \quad \text{where} \quad S g_n S^{-1} = e^{2\pi in/h} g_n = \omega^n g_n.
\]

We have

\[
g_0 = h \quad , \quad g_1 = \{E_1, \ldots, E_n, E_{-1}\}
\]

where \(\alpha_1, \ldots, \alpha_n\) are the simple roots of \(g\) with respect to \(h\). Then \(E\) occurring in the Lagrangian (1) is an element of \(g_1\) which has to commute with its hermitian conjugate \(E^\dagger\) in order that the term linear in \(\Phi\) in (1) disappears, and \(\Phi = 0\) correctly describes the ground state.
It is known that $E$ is a "regular element" of $g$ so that the set of elements commuting with it forms a unique second Cartan subalgebra, $h'$ (containing $E'$). The interplay between these two Cartan subalgebras $h$ and $h'$, said by Kostant [11] to be in apposition, is crucial to what follows and is known to be relevant in the construction of the conserved currents, [3], which is achieved by gauging the zero curvature potentials into $h'$ so that their duals become conserved.

We denote by $h_i$ and $e_{a}$ the generators of $h'$ and the corresponding step operators in a Cartan-Weyl basis, respectively. It then follows that $S_{a} \cdot h S^{-1} = \sigma(x) \cdot h \cdot S^{-1} S_{a} \cdot S^{-1} \sim e_{a} \cdot (x)$, where $\sigma$ must be an element of the Weyl group of $g$ (and so orthogonal) of order $h$, $\sigma^h = 1$, as $S_{a}$ commutes with $g$. It is possible to choose phases so that, for all $\alpha$,

$$S_{\alpha} S^{-1} = e_{\alpha} \, .$$

The action of $\sigma$ on the system of $hr$ roots splits them into $s$ disjoint orbits, say, each composing at most $h$ elements. Hence $hs \geq hr$. But the quantities $\sum_{\alpha} e_{\alpha} \cdot (x)$ associated with each orbit are linearly independent and commute with $S$ and so, by (4) lie in $h = g_{\alpha}$. Hence $s \leq r$. We conclude that the number of orbits is precisely $r$, the rank of $g$, and that each orbit composed $h$ roots. We define

$$A_i := \frac{1}{\sqrt{h}} \sum_{a=1}^{h} e_{a} \cdot (x) \, \quad i = 1, \ldots, r$$

where $\gamma_i$ is a representative of the $i$-th orbit $\Omega_i$. Let us specify later (see (21)). $\Omega_i$ is also an orbit and so must coincide with $\Omega_i$, say, where $i$ is a permutation of order $2$ of the numbers $1, \ldots, r$. We then have

$$[A_i, A_j] = 0 \quad \text{and} \quad \text{tr}(A_i A_j) = \delta_{ij} \, .$$

in view of our chosen normalizations. Since $A_i \in h$ we can expand the Lie algebra valued fields

$$\Phi = \sum_{i=1}^{r} A_i, \quad \text{so} \quad \Phi_i = \Phi \, .$$

The significance of this expansion is that the $\Phi_i$ are the mass eigenstates as we now see, by considering the term in the Lagrangian (1) quadratic in $\Phi$. After rearrangement it is

$$-\frac{\beta^2}{2} \text{tr} \left( \Phi \Phi^\dagger \right) = -\frac{\beta^2}{2} \sum_{i} A_i \Phi_i \text{tr} \left( A_i \Phi_i \right) \, .$$

Given $E \in h'$ we can write $E = \eta \cdot h$ and calculate

$$[E_i, [E, A_j]] = [\eta, \gamma_i] A_j$$

so that the above quadratic term reads

$$-\frac{\beta^2}{2} \sum_{i} [\eta, \gamma_i]^2 \text{tr} \Phi_i \Phi_i$$

and we recognise the particle masses

$$m_i = \beta [\eta, \gamma_i] \, \quad i = 1, \ldots, r \, .$$

It is intriguing that this is the Higgs formula for the masses of gauge particles for a specific Higgs field in the complex adjoint representation $\eta$.

To proceed further we need to know more about $\eta$ and $\gamma$. As $E \in g_i \cap h'$, $\eta$ is an eigenvector of $\sigma$ with eigenvalue $\omega = \exp(2\pi i / h)$. Kostant [11] has confirmed, what is strongly suggested by the properties of $\sigma$ already demonstrated, that $\sigma$ is a "Coxeter element" of the Weyl group of $g_i$ that is, it is conjugate to a product of reflections $a_i$ in the simple roots $a_i$ (henceforth with respect to $h$ rather than $h$), each taken just once:

$$\sigma(a_i) = a_j - 2 \frac{a_j \cdot a_i}{a_i^2} = a_j - K_{ij} a_i$$

where $K_{ij}$ is the Cartan matrix of $g_i$.

The simple roots correspond to the points of the Dynkin diagram of $g_i$ which can always be "bicoloured" so that each point is either 'black' or 'white' and the lines link no two points of the same colour. It is then possible to choose a system of simple roots with respect to $h$ so that

$$\sigma = \sigma_{h} \sigma_{w}$$

where $\sigma_{h}$ is a product of the reflections in the simple black roots, whose ordering is irrelevant as they commute, and similarly $\sigma_{w}$. Then it is possible to verify the identity [12]

$$(\sigma_{h} + \sigma_{w}) a_i = \sum_{j=1}^{r} (2k_{ij} - K_{ij}) a_j$$

As $$(\sigma_{h} + \sigma_{w}) a_i^2 = 2 + \sigma + \sigma^{-1}$$ this relates eigenvalues of $\sigma$ and the Cartan matrix $K$. Let $x$ denote the left eigenvector of $K$, to eigenvalue $2 - 2 \cos \theta$, so

$$\sum_{i=1}^{r} x_i K_{ij} = 2(1 - \cos \theta) x_j$$

Because of the bicolourisation we also have

$$\sum_{i=1}^{r} c(i) x_i K_{ij} = 2(1 + \cos \theta) c(j) x_j$$

where $c(i) = \pm 1$ as $i$ is black or white. Then, defining

$$q_{w} := \sum_{i \in w} x_i a_i, \quad q_{b} := \sum_{i \in b} x_i a_i$$

we have, trivially

$$\sigma_{w} \cdot q_{w} = -q_{w} \quad \sigma_{b} \cdot q_{b} = -q_{b}$$

and by (15) and (17)

$$\sigma_{w} \cdot q_{b} = q_{w} + 2 \cos \theta q_{w} \quad \text{and} \quad \sigma_{b} \cdot q_{w} = q_{w} + 2 \cos \theta q_{b}$$

$$3$$
Thus both $\sigma_B$ and $\sigma_W$ act on the plane in root space spanned by $q_B$ and $q_W$ and we can readily find the eigenvector of $\sigma$ in this plane. We have

$$\sigma(q) = e^{i\theta q}, \quad q = e^{-i\theta q_B} + e^{i\theta q_B}$$

and can then calculate

$$q \cdot \sigma_q = i \omega(q) \sin \theta \, e^{i\theta q_B} e^{-i\theta q_B} = e^{i\theta}$$  \hspace{1cm} (22)

The possible values of $\theta$ are $n\pi/h$ where $n_1, \ldots, n_n$ are the exponents of $g$ taking values between 1 and $h - 1$. The eigenvalue $n_1 = 1$, i.e. $\theta = \pi/h$ yields the smallest eigenvalue of $K$. By the Perron-Frobenius theorem the corresponding components of $x_i$ never vanish and can all taken to be positive. Taking into account these facts, one can deduce that the roots $\alpha(i)$ are on distinct orbits of $\sigma$. Hence we can choose as our representative of the orbit $\Omega_i$

$$\eta_i = e(i)\alpha_i$$  \hspace{1cm} (23)

By (22) and (23) the mass terms (12) are now given by

$$m_i = \beta \pi \omega_i \sin \frac{\pi}{h}$$  \hspace{1cm} (24)

and are thus proportional to the components of the right Perron-Frobenius vector. (At $K$ is not symmetric if $g$ is not simply laced the left and right eigenvalues to the same eigenvalue may differ.)

We can now examine the three point coupling by expanding the Lagrangian (1) to get the cubic term

$$\frac{1}{3!} C_{i,j,k} \Phi^i \Phi^j \Phi^k = \frac{\beta^3}{6} \text{tr} \left( [\Phi, [E, A_i], [E, A_j]] \right)$$  \hspace{1cm} (25)

Expanding $\Phi$ by (8) we see

$$C_{i,j,k} = \beta^3 \text{tr} \left( [A_i, [E, A_j], [E, A_k]] \right)$$  \hspace{1cm} (26)

It is necessary to check that this is totally symmetric in the indices. This follows remembering that the $A_i, A_j$ and $E, E^j$ mutually commute. In fact, as the commutator in (26) commutes with $S$, defined in equation (2), we can write

$$[E, A_i], [E^j, A_j] = \beta^3 C_{i,j,k} A_k$$  \hspace{1cm} (27)

But

$$[E, A_i], [E^j, A_j] = \frac{(\eta \cdot \kappa)(\eta^* \cdot \kappa)}{h} \sum_{\alpha} \omega^\alpha \left( e(\alpha) \kappa_{\alpha}, e(\alpha_{\eta'}) \kappa_{\alpha_{\eta'}} \right)$$  \hspace{1cm} (28)

which we rearrange as

$$\frac{(\eta \cdot \kappa)(\eta^* \cdot \kappa)}{h} \sum_{\alpha} \omega^\alpha \left( \sum_{\eta'} \omega^\eta \left( e(\eta) \kappa_{\eta}, e(\eta_{\eta'}) \kappa_{\eta_{\eta'}} \right) \right) S_{-\eta}$$  \hspace{1cm} (29)

The commutator of two step operators is non zero either when the roots concerned add to zero or add to a third root. In the first case we have

$$e_{\eta}, e_{\eta_{\eta'}} = \eta \cdot \kappa$$  \hspace{1cm} (30)

As the result of the calculation must commute with $S$, and this does not, we expect these terms to sum up to zero. Indeed

$$\sum_{\eta} S^\eta \eta \cdot \kappa = \left( 1 - \sigma^h \right) \left( 1 - \sigma \right)^{-1} \eta \cdot \kappa = 0$$  \hspace{1cm} (31)

as $\sigma^h = 1$ and $\sigma \neq 1$.

In the second case the commutator may give a step operator for a root in the orbit $\Omega_\kappa$ and hence contribute to $C_{i,j,k}$. Defining

$$Q(i, j, k) := \{ q \in \mathbb{Z} \mid \eta \cdot \kappa + \sigma^h(\eta) \in \Omega_\kappa \}$$  \hspace{1cm} (32)

we have

$$[E, A_i], [E^j, A_j] = \frac{(\eta \cdot \kappa)(\eta^* \cdot \kappa)}{h} \sum_{\alpha} \omega^\alpha \left( e(\alpha) \kappa_{\alpha}, e(\alpha_{\eta'}) \kappa_{\alpha_{\eta'}} \right) S_{-\eta}$$  \hspace{1cm} (33)

where $e(i, j, q)$ is the structure constant defined by

$$e_{\eta, e^\alpha(\eta')} = e(i, j, q) \kappa_{\alpha_{\eta'}}$$  \hspace{1cm} (34)

This is the confirmation of Dorey's rule [13] for the coupling of particle $k$ to particle $i$ and $j$.

We shall now show that when the set $Q$ (32) is not empty, it contains precisely two elements. The particle $k$ has mass

$$\beta | \eta \cdot \kappa | = \beta | \eta \cdot (\kappa + \sigma^h(\eta)) |$$  \hspace{1cm} (35)

which can be reexpressed as

$$m_k = |m_i + m_j e^{\theta z_{ij}}(0)|$$  \hspace{1cm} (36)

using (22) and the fact that $\eta \cdot \sigma^h(\eta) = \omega^\eta \eta \cdot \alpha_\eta$, where

$$\theta_{ij}(q) := \left( \frac{\eta - \eta_{ij}}{2} \right)$$  \hspace{1cm} (37)

So the mass squared is

$$m_k^2 = m_i^2 + m_j^2 + 2m_i m_j \cos \theta_{ij}(q)$$  \hspace{1cm} (38)

that is, $m_i, m_j, m_k$ form a triangle with the angle between sides $m_i$ and $m_j$, being $\pi - \theta_{ij}(q)$. Any other $q' \in Q(i, j, k)$ must also couple $\eta_i, \eta_j$ to the orbit $\Omega_\kappa$ and produce the same mass $m_k$. Thus $\cos \theta_{ij}(q) = \cos \theta_{ij}(q')$ and $q'$ must satisfy one of the two equations

$$\theta_{ij}(q) \pm \theta_{ij}(q') = 2\pi n \quad n \in \mathbb{Z}$$  \hspace{1cm} (39)

Since $0 \leq q, q' \leq h - 1$, the form of eq.(37) tells us that the second equation cannot be satisfied. Thus

$$q + q' + \frac{\eta - \eta_{ij}}{2} = nh = h$$  \hspace{1cm} (40)
The integer $n$ cannot be zero otherwise $i$ and $j$ would be of different colour and either $q$ or $q'$ is zero. It means that $\gamma_i + \gamma_j = e(\gamma_i - \gamma_j)$ is a root and $\alpha_i,\alpha_j$ are simple, which is of course impossible. Therefore we can have at most two elements in $Q$ related by eq. (40). On the other hand, the fact that $A_i, A_j$ commute implies that
\[ \sum_{i,j,q} \epsilon(i,j,q) = 0 \tag{41} \]
and $Q$ has to contain more than one element. As a result, when $Q$ is not empty,
\[ \epsilon(i,j,q) + \epsilon(i,j,q') = 0 \tag{42} \]
and
\[ \beta^* \left[ B_i, A_i \right] \left[ B^*_j, A_j \right] = \beta(\gamma_i - \gamma_j) \sum_{i,j,q} \epsilon(i,j,q) (\omega^* - \omega) A_i \]
\[ = \sum_k \frac{2i}{\sqrt{k}} m_i m_j \sin \theta_i(q) \epsilon(i,j,q) A_k \tag{43} \]
Comparing with equation (27) we finally obtain
\[ C_{ij} = \frac{4i \beta \epsilon(i,j,q)}{\sqrt{k}} \Delta_{ij} \tag{44} \]
where $\Delta_{ij}$ is the area of the triangle bounded by the sides of length $m_i, m_j,$ and $m_k = m_q$. The structure constants $\epsilon(i,j,q)$ are most easily specified by saying that, if $\phi$ is the highest root, $\sqrt{2}/\phi \epsilon(i,j,q)$ takes values $\pm 1$ unless $i, j$ and $k$ all correspond to short roots. Then the value is $\pm 1/\sqrt{2}$ for $B_i C$ and $F_4$ and $\pm 2/\sqrt{3}$ for $G_2$. (These facts are important for the vertex operator construction of non-simply laced Kac-Moody algebras [14].)

An easier way to see the coupling must be proportional to $\Delta_{ij}$ is to observe that in eq. (28), interchanging $i$ and $j$ has the effect $\omega^* \rightarrow -\omega^*$. Since the coupling is symmetric in $i$ and $j$, we are allowed to add such a term and produce a sign function. The 'colour term' in $\theta_i(q)$ also comes out correctly if we take care of the factor $(q \cdot \gamma_i)(q^* \cdot \gamma_i)$. However, the above argument is still necessary to give a correct factor in eq. (44).

Acknowledgement His Chung-Liao would like to thank the Croucher Foundation for financial support under which this work is done. Andreas Fring would like to thank the Science and Engineering Research Council and the University of London for financial support and D. Ellwood for discussions.

References