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Stochastic models of kleptoparasitism

G.E. Yates M. Broom

April 24, 2007

Abstract

In this paper we consider a model of kleptoparasitism amongst a small group of
individuals, where the state of the population is described by the distribution of its
individuals over three specific types of behaviour (handling, searching for or fighting
over, food). The model used is based upon earlier work which considered an equivalent
deterministic model relating to large, effectively infinite, populations. We find explicit
equations for the probability of the population being in each state. For any reasonably
sized population, the number of possible states, and hence the number of equations,
is large. These equations are used to find a set of equations for the means, variances,
covariances and higher moments for the number of individuals performing each type
of behaviour. Given the fixed population size, there are five moments of order one or
two (two means, two variances and a covariance). A normal approximation is used
to find a set of equations for these five principal moments. The results of our model
are then analysed numerically, with the exact solutions, the normal approximation
and the determistic infinite population model compared. It is found that the original
deterministic models approximate the stochastic model well in most situations, but
that the normal approximations are better, proving to be good approximations to the
exact distribution, which can greatly reduce computing time.

1 Introduction

There are many biological situations in which a population is divided amongst a number of

sites. These sites may be physical locations, such as patches of food, or may categorise the

population in some way, perhaps by their activity or whether they have a particular disease

or not. The rates at which individuals leave each site depend on the current location of the

individual in question, and are also often dependent on the location of other members of the

population.
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A feature of interest in such situations is the expected proportion of the population

at each site at equilibrium. This is often calculated using a deterministic model, which

assumes that the population is large. Individual movements in a small population have a

much larger effect on transition rates than in a large population, and can also result in

large differences between the expected proportion of the population on each site given by

the two models. As a result of this, stochastic models are generally more appropriate when

considering small populations. The use of stochastic models also enables the variance of the

number of individuals at each site to be calculated, which is not possible using deterministic

models. Examples of such models include:

1) The SIS epidemic. This is one of the simplest epidemic models, in which individuals are

either susceptible or infective, and once they recover from the disease they are immediately

susceptible again (see Weiss and Dishon 1971; Nasell 1996, 1999; Kryscio and Lefevre 1989).

2) Coagulation-fragmentation processes. The model population contains N individuals who

are grouped into clusters of various sizes, where possible events are the merging of two groups

into one and the separation of a group into two smaller groups. These processes have many

applications including animal grouping; see Durrett et al (1998) and Durrett et al (1999)

and their references.

3) The Ideal Free Distribution (Fretwell and Lucas1970) which describes the distribution of

animals among a number of patches of a resource, such as prey or mates (see, for example,

Jackson et al 2004; Hugie and Grand 1998; Houston and McNamara 1988; Yates and Broom

2005).

We focus in this paper on the modelling of food stealing, or kleptoparasitism. Many au-

thors have observed various animals stealing food from others. For example Brockmann and

Barnard (1979) reviewed literature from the previous 40 years and found such occurrences

among a variety of bird species. Such kleptoparasitic behaviour can be intraspecific, when

food is stolen from members of the same species, or interspecific, when food is stolen from

members of a different species. Although kleptoparasitism is particularly well documented

among birds, it occurs in many species. For example, Vollrath (1979) conducted both field

and laboratory research into the theridiid spider, which steals from two other spider species,

while Homer et. all. (2002) have observed the behaviour in hyenas.

Recently a series of game-theoretic models of kleptoparasitic behaviour (e.g. Broom and

Ruxton, 2003; Luther and Broom, 2004; Broom, Luther and Ruxton, 2004) have been de-

veloped investigating the strategic choices of individuals in a variety of circumstances. They

took as their basis the paper Ruxton and Moody (1997) where behaviour was completely de-

terministic in character, due to the large population assumed and the lack of decisions of the

individuals involved, and its refinement in Broom and Ruxton (1998). Indeed, conditional
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on individuals’ decisions, all of these models were essentially deterministic. In this paper we

consider the refinement of Ruxton and Moody (1997) in Broom and Ruxton (1998) where

no decisions are allowed by individuals, and introduce a stochastic version of this model,

comparing the large population situation to the non-deterministic stochastic version.

2 The models

We first recall the structure of the basic model from Ruxton and Moody (1997) and Broom

and Ruxton (1998).

They considered a population where the density of individuals is P . This population

is divided into three different activities; searching for food items, which we label state S1

(state S in the original papers), handling a food item, state S2 (originally state H), and

involved in an aggressive contest, state S3 (originally state A). We shall label the number of

individuals in Si as Xi for i = 1, 2 and the number of fighting pairs in S3 as X3. Thus if the

total population size is n, then

X1 + X2 + 2X3 = n

The number of available food items per unit area is given by f . Individuals were able to

search an area νf for food in unit time, so that the rate at which individual searchers found

food (and so moved from state S1 to S2) was λ12 = νff . At the end of handling, the handler

resumed searching. It was assumed that food items take a time to handle drawn from an

exponential distribution with mean th, so that individuals move from state S2 to S1 at rate

λ21 = 1/th. Individuals also searched for handlers, being able to search an area of size νh

per unit time. When a searcher encountered a handler, it challenged for the food item and

a fight ensued, and one individual from each of S1 and S2 moved to the fighting state S3,

this occurred at rate λ13 = νh per pair of individuals. Contest times were drawn from an

exponential distribution with mean time ta/2. At the end of a contest, the winner started

handling the food, and the loser resumed searching, so that a fighting pair splits, one of each

moving from S3 to the states S1 and S2, at rate λ31 = 2/ta. These are summarised in Figure

1.

2.1 The deterministic model

We further define the proportion of individuals in state Si as zi for all i and

thus if the total population size is n, then z1 = X1/n, z2 = X2/n and z3 = 2X3/n. The

transition rates are as in Figure 2.

We can thus find the large population transition rates λ′
ij in terms of λij as follows:

3



X2S2 2X3 S3

!
λ13X1X2

"
2λ31X3

#
#

#
#

#
#

#
#

#
#

##

#
#

#
#

#
#$

#
#

#
#

#
#

#
##

#
#

#%

&
&

&
&

&
&

&
&

&
&

&&'

&
&

&
&

&
&

&
&

&
&

&&&&
&

&
&

&
&&(

X1

S1

λ13X1X2

2λ31X3λ12X1

λ21X2

Figure 1: The Stochastic Kleptoparasitism Model. The sites are indicated by the boxes,
transition rates are given on the arc with the arrow in the appropriate direction between the
states. Both rates into S3 are identical, as are those leaving S3. Individuals enter state S3

in pairs, one each from S1 and S2. Similarly, pairs leave S3 simultaneously, with one going
to each of S1 and S2.

The transition rate from S1 to S2 is given by

λ12X1 = λ12(nz1) = n(λ′
12z1) for large n⇒ λ′

12 = λ12.

Similarly λ′
21 = λ21,

while 2λ31X3 = 2λ31(nz3/2) = n(λ′
31z3) for large n⇒ λ′

31 = λ31

and λ13X1X2 = λ13(nz1)(nz2) = n(λ′
13z1z2) for large n⇒ λ′

13 = nλ13

Following Broom and Ruxton (1998) we see that for an essentially infinite population,

the proportions of the population in each site satisfy the differential equations

dz1

dt
= λ′

21z2 + λ′
31z3 − λ′

12z1 − λ′
13z1z2, (1)

dz2

dt
= λ′

12z1 + λ′
31z3 − λ′

21z2 − λ′
13z1z2, (2)

dz3

dt
= 2λ′

13z1z2 − 2λ′
31z3. (3)

Note that Equation (3) can be obtained from a linear combination of Equations (1) and (2).

At equilibrium dz1
dt = dz2

dt = dz3
dt = 0, and substituting z3 = 1− z1− z2 into Equations (1) and

(2) and rearranging gives
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Figure 2: The Deterministic Kleptoparasitism Model. The states are indicated by the boxes,
transition rates are given on the arc with the arrow in the appropriate direction between the
states per individual; thus the actual transition rate of movement in a large population of
size n is n× this individual rate. Both rates into S3 are identical, as are those leaving S3.
Individuals enter state S3 in pairs, one each from S1 and S2.

(λ′
12 + λ′

31)z1 + (λ′
31 − λ′

21)z2 + λ′
13z1z2 − λ′

31 = 0,

(λ′
31 − λ′

12)z1 + (λ′
21 + λ′

31)z2 + λ′
13z1z2 − λ′

31 = 0.

Therefore

z1 =
λ′

21

λ′
12

z2, (4)

while z2 solves

λ′
13λ

′
21z

2
2 + λ′

31(λ
′
12 + λ′

21)z2 − λ′
12λ

′
31 = 0. (5)

Since the coefficients of z2
2 and z2 in this equation are positive, z2 is given by the positive

root, meaning that

z2 =
−λ′

31(λ
′
12 + λ′

21) +
√

λ′
31

2(λ′
12 + λ′

21)
2 + 4λ′

12λ
′
13λ

′
21λ

′
31

2λ′
13λ

′
21

.

Note that z2 is the handling ratio, which is directly related to the food consumption rate

per individual. In fact this consumption rate is z2/th = λ′
21z2.
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2.2 The stochastic kleptoparasitism model

Following the description of transitions at the start of this section, we can see that the

transition rates for this model are as shown in Figure 1. The numbers of individuals in S1 and

S2 are X1 and X2 respectively, while X3 gives the number of pairs in S3. There are only four

possible movements. recall that the population size n is fixed, and that X1 + X2 + 2X3 = n.

The probability that X1(t) = x1 and X2(t) = x2 is denoted by px1,x2(t). The Kolmogorov

forward equations for px1,x2(t) for this process are

d

dt
px1,x2(t)

=λ13(x1 + 1)(x2 + 1)px1+1,x2+1(t) + λ31(n− x1 − x2 + 2)px1−1,x2−1(t)

+ λ12(x1 + 1)px1+1,x2−1(t) + λ21(x2 + 1)px1−1,x2+1(t)

− [λ13x1x2 + λ31(n− x1 − x2) + λ12x1 + λ21x2]px1,x2(t).

(6)

∀x1, x2 ∈ {0, 1, . . . , n}, where by convention px1,x2 = 0 if any of x1 < 0, x2 < 0 or x1 +x2 > n

occur. In addition, since the number of individuals in S3 must be even, px1,x2(t) = 0 if

n− x1− x2 is odd. At equilibrium d
dtpx1,x2(t) = 0 ∀ x1, x2 and these equations become a set

of linear equations for the joint equilibrium distribution of X1 and X2.

2.2.1 The number of distinct states of the stochastic model

Under the model, n−x1−x2 must be even; the number of states for which X1 = x1 depends

on whether n − x1 is odd or even. If n − x1 is odd, there are n−x1+1
2 such states, otherwise

there are n−x1
2 + 1 states. Since n−x1+1

2 = n−(x1+1)
2 + 1, the number of states when n is even

is

n

2
+ 1 +

n/2∑

i=1

2

(
n− 2i

2
+ 1

)
=

n

2
+ 1 +

n/2∑

i=1

n− 2i + 2 =
n

2
+ 1 + (n + 2)

n

2
− n

2

(n

2
+ 1

)

=
(n

2
+ 1

)2

.

If n is odd the total number of states is

(n+1)/2∑

k=1

2

(
n− (2k − 1)

2
+ 1

)
= (n + 3)

n + 1

2
− 2

(n+1)/2∑

k=1

k

= (n + 3)
n + 1

2
− n + 1

2

(
n + 1

2
+ 1

)
=

(n + 1)(n + 3)

4
.
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In either case the number of states is of order n2

4 .

2.2.2 Equations for the moments of X1 and X2

It is not practical to solve the equations for px1,x2 . Instead we find equations for the princi-

pal moments of the process, namely the means, variances and the covariance of the random

variables X1 and X2 (from which the moments involving X3 can also be found). We begin

by obtaining a partial differential equation for the cumulant generating function of X1 and

X2, from which equations for the above moments can be derived. The cumulant generating

function is denoted K(s1, s2) and is defined to be log M(s1, s2), where M(s1, s2) is the mo-

ment generating function. From this it is possible to obtain equations for the cumulants of

X1 and X2. The cumulant ki,j is the coefficient of si
1sj

2
i!j! in the series expansion of K(s1, s2).

The partial differential equation for K(s1, s2) is

nλ31(e
s1+s2 − 1) + [λ12(e

s2−s1 − 1) + λ31(1− es1+s2)]
∂K

∂s1

+ [λ21(e
s1−s2 − 1) + λ31(1− es1+s2)]

∂K

∂s2

+ λ13(e
−(s1+s2) − 1)

(
∂2K

∂s1∂s2
+

∂K

∂s1

∂K

∂s2

)
= 0. (7)

This is derived in Appendix A.

Differentiating K(s1, s2) with respect to s1 i times and s2 j times and setting s1 = s2 = 0

in the function obtained gives the (i, j) cumulant of X1 and X2.

For example, ∂K
∂s1

∣∣∣
s1=s2=0

= E(X1),
∂2K
∂s2

1

∣∣∣
s1=s2=0

= V ar(X1) and ∂2K
∂s1∂s2

∣∣∣
s1=s2=0

= Cov(X1, X2).

Applying this to Equation (7) gives the following set of equations:

nλ31 − λ31µ1 − λ31µ2 − λ13σ12 − λ13µ1µ2 = 0, (8)

λ12µ1 − λ21µ2 = 0, (9)

nλ31 − λ31µ1 + (λ21 − λ31)µ2 − (λ12 + λ31)σ
2
1 + (λ21 − λ31)σ12 − λ13k2,1 − λ13µ1σ12

− λ13µ2σ
2
1 = 0, (10)

λ12µ1 + λ21µ2 − λ12σ
2
1 − λ21σ

2
2 + (λ12 + λ21)σ12 = 0, (11)
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nλ31 + (λ12 − λ31)µ1 − λ31µ2 − (λ21 + λ31)σ
2
2 + (λ12 − λ31)σ12 − λ13k1,2 − λ13µ2σ12

− λ13µ1σ
2
2 = 0. (12)

These 5 equations contain the 7 unknowns µ1, µ2, σ2
1, σ2

2, σ12, k2,1 and k1,2, where µi = E(Xi),

σ2
i = V ar(Xi), σ12 = Cov(X1, X2), k2,1 = E[(X1 − µ1)2(X2 − µ2)] and k1,2 = E[(X1 −

µ1)(X2−µ2)2]. Further equations can be obtained, but the number of unknowns would also

be increased.

It is possible to obtain expressions for µ1 and σ12 in terms of µ2 from the first two of

these equations. These are

µ1 =
λ21

λ12
µ2 (13)

and

σ12 = −λ21

λ12
µ2

2 −
λ31(λ12 + λ21)

λ13λ12
µ2 +

nλ31

λ13
(14)

and are derived in Appendix B.

We now show two results relating these moments.

Result 1 The signs of nz1 − µ1 and nz2 − µ2 are the same.

The proof follows from the fact that expression (4) for z1, with the substitutions λ′
12 = λ12

and λ′
21 = λ21 can be rearranged to give

λ12z1 − λ21z2 = 0.

Multiplying this equation by n and subtracting (9) gives

λ12(nz1 − µ1) = λ21(nz2 − µ2).

Since λ12 and λ21 are both positive, it follows that nz1−µ1 and nz2−µ2 have the same sign.

Thus the number of searchers and handlers are either both overestimated or both under-

estimated by the deterministic model.

Result 2 The signs of nz2 − µ2 and σ12 are the same (and so are also the same as that

of nz1 − µ1)

Making the substitutions λ′
12 = λ12, λ′

13 = nλ13, λ′
21 = λ21 and λ′

31 = λ31 into Equation

(5) and multiplying by n gives

λ13λ21(nz2)
2 + λ31(λ12 + λ21)nz2 − nλ12λ31 = 0.

8



Substituting the expression for µ1 into (8) and multiplying by λ12 gives

nλ12λ31 − λ31(λ12 + λ21)µ2 − λ12λ13σ12 − λ13λ21µ
2
2 = 0.

Adding these two equations gives

λ13λ21((nz2)
2 − µ2

2) + λ31(λ12 + λ21)(nz2 − µ2)− λ12λ13σ12 = 0.

⇒ (nz2 − µ2)(λ13λ21(nz2 + µ2) + λ31(λ12 + λ21)) = λ12λ13σ12.

This shows that the signs of nz2 − µ2 and σ12 are the same, since the λijs and µ2 are all

positive.

Thus if X1 and X2 are negatively correlated, as we would naively assume should usually

be the case since the total number of individuals in the three categories is fixed, then this

would indicate that the deterministic model would underestimate the number of searchers

and handlers.

2.2.3 The normal approximation

If one assumes that X1 and X2 are bivariate normal, then k2,1 and k1,2 are both 0. This

method is described by Whittle (1957) and has been applied more recently by Nasell (2003)

with the stochastic logistic model, of which the SIS epidemic is an example. Using this

approximation it is possible to derive expressions for σ̂2
1 and σ̂2

2 in terms of µ̂2, and a quartic

equation for µ̂2, where theˆabove each variable denotes the normal approximation. These

are derived in Appendix B.

The variances are given by

σ̂2
1 =

λ2
21

λ2
12

µ̂2
2 +

2λ21(λ31 − λ21)

λ12λ13
µ̂2 +

λ21 − λ31

λ13
+

2λ2
21 − 3λ21λ31 + λ2

31

λ2
13

− λ21λ31(n + 1)

λ12λ13

+
λ21λ31(λ21 − λ31)

λ12λ2
13

+
λ31((2λ21 − λ31)n + λ12 + λ31)− λ12λ21

λ13(λ12 + λ31 + λ13µ̂2)

+
λ31n

λ12 + λ31 + λ13µ̂2
+

(λ31 − λ21)(3λ21λ31 + 2λ12λ21 − λ2
31 − λ12λ31)

λ2
13(λ12 + λ31 + λ13µ̂2)

+
λ21λ2

31(n + 1)

λ12λ13(λ12 + λ31 + λ13µ̂2)
+

λ21λ2
31(λ31 − λ21)

λ12λ2
13(λ12 + λ31 + λ13µ̂2)

(15)
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and

σ̂2
2 = µ̂2

2 +
2(λ31 − λ12)

λ13
µ̂2 +

λ12 − λ31

λ13
+

2λ2
12 − 3λ12λ31 + λ2

31

λ2
13

− λ12λ31(n + 1)

λ13λ21

+
λ12λ31(λ12 − λ31)

λ2
13λ21

+
λ12[λ31((2λ12 − λ31)n + λ21 + λ31)− λ12λ21]

λ13(λ21λ12 + λ31λ12 + λ21λ13µ̂2)

+
λ12λ31n

λ21λ12 + λ31λ12 + λ21λ13µ̂2
+

λ12(λ31 − λ12)(3λ31λ12 + 2λ21λ12 − λ2
31 − λ21λ31)

λ2
13(λ21λ12 + λ31λ12 + λ21λ13µ̂2)

+
λ2

12λ
2
31(n + 1)

λ13λ21(λ21λ12 + λ31λ12 + λ21λ13µ̂2)
+

λ2
12λ

2
31(λ31 − λ12)

λ2
13λ21(λ21λ12 + λ31λ12 + λ21λ13µ̂2)

, (16)

while the quartic equation for µ̂2 is

2λ3
13λ

2
21(λ12 + λ21)µ̂

4
2

+ λ2
13λ21(3λ31(λ

2
12 + λ2

21) + 2λ12λ21(λ12 − λ13 + λ21 + 5λ31))µ̂
3
2

+ λ13

[
λ31(λ12 + λ21)(λ31(λ

2
12 + λ2

21) + λ21λ12(3(λ12 + λ21)− 2λ13(n + 2) + 8λ31))

−2λ2
12λ13λ

2
21

]
µ̂2

2

+ λ12λ31

[
2(λ12 + λ21)

2λ2
31 − λ13λ31((λ

2
12 + λ2

21)(n + 1) + 2λ12λ21(3n + 2))

+λ31(λ12 + λ21)
3 − λ12λ13λ21(λ12 + λ21)(2n + 3) + 2nλ12λ

2
13λ21

]
µ̂2

+−λ2
12λ31n(λ31(λ12 + λ21)(λ12 − λ13 + λ21 + 2λ31)− 2λ12λ13λ21)

= 0. (17)

These equations are of course rather cumbersome, but can be used to find numerical

results, as we do in the following section.

3 Numerical evaluations

Tables 1 - 4 show the results of evaluations of both the stochastic and deterministic models,

along with the normal approximation to the stochastic model, for a variety of parameter

values. Those in Tables 1 and 2 were chosen specifically to give a range of sets of values, so

that different features of the model might be demonstrated. The λijs used in Tables 3 and

4 were randomly generated; λ12, λ21, λ31 ∼ U(0, 50) and λ13 ∼ U(0, 2.5), the distributions

chosen to ensure that the transition rates were, on average, of similar order (λ13 being

associated with the only quadratic transition). Tables 1 and 3 show µ1, µ2, σ2
1, σ2

2, σ12, k2,1

and k1,2, while Tables 2 and 4 show µ3, σ2
3, σ13 and σ23.

Since µ̂2 satisfies a quartic equation, the normal approximation gives 4 values for µ̂2. Only
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Model λ12 λ13 λ21 λ31 µ1 µ2 σ12 σ2
1 σ2

2 k2,1 k1,2

S 1.5 2 1.5 3 7.3247 7.3247 -0.63 6.70 6.70 -0.56 -0.56
D 1.5 2 1.5 3 7.2892 7.2892
N 1.5 2 1.5 3 7.3267 7.3267 -0.66 6.67 6.67
S 5 2 5 3 7.3247 7.3247 -0.63 6.70 6.70 -0.56 -0.56
D 5 2 5 3 7.2892 7.2892
N 5 2 5 3 7.3267 7.3267 -0.66 6.67 6.67
S 1 0.06 1 1 16.7296 16.7296 -4.20 12.53 12.53 -2.62 -2.62
D 1 0.06 1 1 16.6667 16.6667
N 1 0.06 1 1 16.7302 16.7302 -4.24 12.49 12.49
S 50 0.06 1 1 0.9304 46.5218 -0.82 0.91 5.34 -0.80 0.56
D 50 0.06 1 1 0.9296 46.4782
N 50 0.06 1 1 0.9304 46.5219 -0.82 0.91 5.33
S 1 3 1 1 3.7815 3.7815 -0.15 3.63 3.63 -0.15 -0.15
D 1 3 1 1 3.7627 3.7627
N 1 3 1 1 3.7840 3.7840 -0.17 3.61 3.61
S 1 0.06 1 50 24.6428 24.6428 -11.97 12.67 12.67 -0.50 -0.50
D 1 0.06 1 50 24.6358 24.6358
N 1 0.06 1 50 24.6428 24.6428 -11.97 12.67 12.67
S 1 2 3 4 13.8421 4.6140 -0.78 11.50 4.35 -0.62 -0.73
D 1 2 3 4 13.7764 4.5921
N 1 2 3 4 13.8448 4.6149 -0.81 11.48 4.32

Table 1: The mean, variance and covariance of X1 and X2 for a variety of transition rates.
n = 50 in all cases. The letters in the Model column correspond to each of the models. S
stands for stochastic, D for deterministic and N for normal approximation. The values for
the deterministic model in the ’mean’ columns are nz1 and nz2 respectively. The stochastic
model and normal approximation are described in Sections 2.2 and 2.2.3 respectively.
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Description λ12 λ13 λ21 λ31 µ3 σ13 σ23 σ2
3

S 1.5 2 1.5 3 35.3505 -6.07 -6.07 12.15
D 1.5 2 1.5 3 35.4216
N 1.5 2 1.5 3 35.3467 -6.01 -6.01 12.01
S 5 2 5 3 35.3505 -6.07 -6.07 12.15
D 5 2 5 3 35.4216
N 5 2 5 3 35.3467 -6.01 -6.01 12.01
S 1 0.06 1 1 16.5408 -8.33 -8.33 16.67
D 1 0.06 1 1 16.6667
N 1 0.06 1 1 16.5396 -8.25 -8.25 16.51
S 50 0.06 1 1 2.5477 -0.09 -4.51 4.61
D 50 0.06 1 1 2.5923
N 50 0.06 1 1 2.5477 -0.09 -4.51 4.60
S 1 3 1 1 42.4370 -3.47 -3.47 6.95
D 1 3 1 1 42.4745
N 1 3 1 1 42.4321 -3.44 -3.44 6.87
S 1 0.06 1 50 0.7144 -0.69 -0.69 1.39
D 1 0.06 1 50 0.7283
N 1 0.06 1 50 0.7144 -0.69 -0.69 1.39
S 1 2 3 4 31.5439 -10.72 -3.57 14.29
D 1 2 3 4 31.6315
N 1 2 3 4 31.5403 -10.66 -3.51 14.17

Table 2: The mean and variance of the number of individuals on Site 3, along with the
covariances of the number on Site 3 with the numbers of individuals on Sites 1 and 2,
for a variety of transition rates. n = 50 in all cases. The letters in the Model column
correspond to each of the models. S stands for stochastic, D for deterministic and N for
normal approximation. The value for the deterministic model in the ’mean’ column is nz3.
The stochastic model and normal approximation are described in Sections 2.2 and 2.2.3
respectively.
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Model λ12 λ13 λ21 λ31 µ1 µ2 σ12 σ2
1 σ2

2 k2,1 k1,2

S 26.39 1.297 23.80 11.81 13.4338 14.8958 -2.78 10.92 11.81 -2.06 -1.98
D 26.39 1.297 23.80 11.81 13.3769 14.8327
N 26.39 1.297 23.80 11.81 13.4348 14.8968 -2.83 10.88 11.76
S 13.50 2.380 13.96 3.281 7.1911 6.9542 -0.58 6.59 6.39 -0.52 -0.53
D 13.50 2.380 13.96 3.281 7.1562 6.9204
N 13.50 2.380 13.96 3.281 7.1931 6.9561 -0.61 6.56 6.36
S 17.47 2.300 32.69 30.01 20.9940 11.2195 -3.47 14.51 9.37 -1.89 -2.63
D 17.47 2.300 32.69 30.01 20.9123 11.1758
N 17.47 2.300 32.69 30.01 20.9950 11.2200 -3.51 14.47 9.33
S 49.44 1.516 35.76 9.751 10.7328 14.8386 -2.13 9.19 11.89 -1.72 -1.57
D 49.44 1.516 35.76 9.751 10.6853 14.7730
N 49.44 1.516 35.76 9.751 10.7338 14.8400 -2.18 9.15 11.84
S 46.02 1.274 46.33 4.207 10.0455 9.9783 -1.25 8.79 8.74 -1.05 -1.06
D 46.02 1.274 46.33 4.207 9.9983 9.9314
N 46.02 1.274 46.33 4.207 10.0470 9.9798 -1.29 8.75 8.70
S 44.00 0.2067 34.01 21.19 19.7018 25.4890 -9.16 12.62 13.64 -3.16 -1.40
D 44.00 0.2067 34.01 21.19 19.6698 25.4476
N 44.00 0.2067 34.01 21.19 19.7019 25.4890 -9.17 12.61 13.63
S 23.63 1.273 16.87 40.05 16.0989 22.5499 -5.91 11.88 14.27 -3.39 -2.38
D 23.63 1.273 16.87 40.05 16.0499 22.4813
N 23.63 1.273 16.87 40.05 16.0992 22.5503 -5.94 11.85 14.25
S 49.66 0.1327 2.763 13.47 2.5746 46.2746 -2.33 2.45 4.41 -2.10 1.79
D 49.66 0.1327 2.763 13.47 2.5735 46.2538
N 49.66 0.1327 2.763 13.47 2.5746 46.2746 -2.33 2.44 4.42
S 17.15 0.9662 10.15 0.9526 4.6964 7.9353 -0.42 4.45 7.22 -0.40 -0.38
D 17.15 0.9662 10.15 0.9526 4.6734 7.8964
N 17.15 0.9662 10.15 0.9526 4.6979 7.9379 -0.45 4.43 7.18
S 5.771 0.2995 19.09 28.51 35.3951 10.7001 -7.02 12.16 8.58 1.53 -4.44
D 5.771 0.2995 19.09 28.51 35.3468 10.6855
N 5.771 0.2995 19.09 28.51 35.3952 10.7001 -7.03 12.18 8.56
S 26.27 1.606 15.26 27.52 12.6004 21.6915 -4.15 10.19 14.54 -2.95 -2.08
D 26.27 1.606 15.26 27.52 12.5542 21.6120
N 26.27 1.606 15.26 27.52 12.6008 21.6922 -4.19 10.15 14.51

Table 3: The mean, variance and covariance of X1 and X2 for a variety of transition rates.
n = 50 in all cases. The letters in the Model column correspond to each of the models. S
stands for stochastic, D for deterministic and N for normal approximation. The values for
the deterministic model in the ’mean’ columns are nz1 and nz2 respectively. The stochastic
model and normal approximation are described in Sections 2.2 and 2.2.3 respectively.
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Model λ12 λ13 λ21 λ31 µ3 σ13 σ23 σ2
3

S 26.39 1.297 23.80 11.81 21.6704 -8.14 -9.02 17.16
D 26.39 1.297 23.80 11.81 21.7904
N 26.39 1.297 23.80 11.81 21.6685 -8.05 -8.93 16.98
S 13.50 2.380 13.96 3.281 35.8547 -6.01 -5.81 11.82
D 13.50 2.380 13.96 3.281 35.9235
N 13.50 2.380 13.96 3.281 35.8508 -5.95 -5.75 11.70
S 17.47 2.300 32.69 30.01 17.7865 -11.04 -5.90 16.94
D 17.47 2.300 32.69 30.01 17.9119
N 17.47 2.300 32.69 30.01 17.7850 -10.96 -5.82 16.78
S 49.44 1.516 35.76 9.751 24.4286 -7.06 -9.76 16.81
D 49.44 1.516 35.76 9.751 24.5417
N 49.44 1.516 35.76 9.751 24.4263 -6.98 -9.66 16.64
S 46.02 1.274 46.33 4.207 29.9763 -7.54 -7.49 15.03
D 46.02 1.274 46.33 4.207 30.0702
N 46.02 1.274 46.33 4.207 29.9732 -7.46 -7.41 14.87
S 44.00 0.2067 34.01 21.19 4.8092 -3.46 -4.48 7.94
D 44.00 0.2067 34.01 21.19 4.8826
N 44.00 0.2067 34.01 21.19 4.8091 -3.44 -4.46 7.90
S 23.63 1.273 16.87 40.05 11.3511 -5.97 -8.36 14.33
D 23.63 1.273 16.87 40.05 11.4688
N 23.63 1.273 16.87 40.05 11.3506 -5.91 -8.31 14.22
S 49.66 0.1327 2.763 13.47 1.1508 -0.12 -2.08 2.20
D 49.66 0.1327 2.763 13.47 1.1727
N 49.66 0.1327 2.763 13.47 1.1507 -0.11 -2.09 2.20
S 17.15 0.9662 10.15 0.9526 37.3683 -4.02 -6.79 10.81
D 17.15 0.9662 10.15 0.9526 37.4301
N 17.15 0.9662 10.15 0.9526 37.3642 -3.97 -6.73 10.70
S 5.771 0.2995 19.09 28.51 3.9048 -5.13 -1.55 6.69
D 5.771 0.2995 19.09 28.51 3.9677
N 5.771 0.2995 19.09 28.51 3.9047 -5.14 -1.52 6.67
S 26.27 1.606 15.26 27.52 15.7081 -6.04 -10.39 16.43
D 26.27 1.606 15.26 27.52 15.8337
N 26.27 1.606 15.26 27.52 15.7069 -5.96 -10.32 16.28

Table 4: The mean and variance of the number of individuals on Site 3, along with the
covariances of the number on Site 3 with the numbers of individuals on Sites 1 and 2,
for a variety of transition rates. n = 50 in all cases. The letters in the Model column
correspond to each of the models. S stands for stochastic, D for deterministic and N for
normal approximation. The value for the deterministic model in the ’mean’ column is nz3.
The stochastic model and normal approximation are described in Sections 2.2 and 2.2.3
respectively.
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one of the solutions of Equation (17) was a plausible value for µ̂2 for each set of parameters

used here. The normal approximation is very accurate and all of the estimates of σ2
3, σ13

and σ23 are fairly good. In particular, the normal approximation agrees more closely with

the stochastic model than does the deterministic model for each parameter set.

The deterministic model, stochastic model and its normal approximation were evaluated

for 400 sets of parameters with the results summarised in Tables 5 and 6. In each case the

population size was either 10, 20, 30, 40 or 50. For the first 200 sets (Table 5) λ12, λ21

and λ31 ∼ U(0, n) and λ13 ∼ U(0, 3) so that the transition rates were of similar order. The

covariance between X1 and X2, σ12, is negative for each of these sets of parameters. In the

last 200 parameter sets (Table 6) λ12 ∼ U(0.5, 1.5), λ13, λ21 ∼ U(106, 1.0001 × 1010) and

λ31 ∼ U(0, 0.1). These distributions were chosen to give parameter sets for which σ12 may

be positive. If σ12 is to be positive it must be when µ2 is small, since expression (14) for σ12

in terms of µ2 is decreasing in µ2. Also, nλ31
λ13

must be larger than λ21
λ12

µ2
2 + λ31(λ12+λ21)

λ13λ12
µ2. They

were chosen as a result of carrying out some evaluations for which σ12 was close to zero.

When the normal approximation provided more than one set of values for the cumulants,

the set which gave the means closest to those given by the deterministic model were used.

From Tables 1,3 and 5 we can see that generally the deterministic model underestimates

the number of individuals in states S1 and S2, i.e. that nz1 < µ1 and nz2 < µ2. Thus there

is a consistent bias when using the large population approximation, when the values of the

transition rates are broadly comparable. Associated with this, the covariance of X1 and X2

was negative in each case (as we may expect because there is a total of n individuals to divide

between these categories). However, the covariance between X1 and X2 was positive in 180

out of the 200 cases from Table 6 (which used values evaluated in order to try to make this

occur). It follows from Results 1 and 2 in Section 2.2 that nz1 > µ1 and nz2 > µ2 in these

cases, and so sometimes the more usual result above does not occur. Note that, as can be

seen, the bias is very small and the large population approximation predicts the expectation

of the number of individuals in these states well (although the variance can be quite large).

The use of deterministic models for the various previous works on kleptoparasitism such as

Broom and Ruxton (1998) thus seems reasonable.

The other two covariances were not positive for any of the parameter sets investigated.

Thus the number in the fighting category S3 seems always negatively correlated with the

numbers in either of the other categories. It was found that σ2
1 < σ2

2 ⇐⇒ µ1 < µ2 and

σ2
1 > σ2

2 ⇐⇒ µ1 > µ2 for all cases evaluated. This again makes sense; the larger the

expected number of a given site, the larger the magnitude of the variance of this number.

We have not been able to prove the generality of these results.

For every set of parameters tested µi ≤ µ̂i, i=1,2 and σ12 > σ̂12. µ̂i and σ̂12 are the
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Characteristic Number of Evaluations
Total evaluations 200
σ12 > 0 0
µ1 < µ2 and σ2

1 > σ2
2 0

µ2 < µ1 and σ2
2 > σ2

1 0
µ1 > µ̂1 0

k2,1 < 0 & σ2
1 < σ̂2

1 11

k2,1 > 0 & σ2
1 > σ̂2

1 0

k1,2 < 0 & σ2
2 < σ̂2

2 3

k1,2 > 0 & σ2
2 > σ̂2

2 1
σ13 > 0 0
σ23 > 0 0
Multiple possible sets of parameters 7
under normal approximation

Table 5: A summary of numerical evaluations of the model with paired movements into and
out of S3. n=10, 20, 30, 40 or 50. λ12, λ21, λ31 ∼ U(0, n), λ13 ∼ U(0, 3).

Characteristic Number of Evaluations
Total evaluations 200
σ12 > 0 180
µ1 < µ2 and σ2

1 > σ2
2 0

µ2 < µ1 and σ2
2 > σ2

1 0
µ1 > µ̂1 0

k2,1 < 0 & σ2
1 < σ̂2

1 0

k2,1 > 0 & σ2
1 > σ̂2

1 17

k1,2 < 0 & σ2
2 < σ̂2

2 6

k1,2 > 0 & σ2
2 > σ̂2

2 2
σ13 > 0 0
σ23 > 0 0
Multiple possible sets of parameters 196
under normal approximation

Table 6: A summary of numerical evaluations of the model with paired movements into
and out of S3. n=10, 20, 30, 40 or 50. λ12 ∼ U(0.5, 1.5), λ13, λ21 ∼ U(106, 1.0001 × 1010),
λ31 ∼ U(0, 0.1).
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estimates of µi and σ12 under the normal approximation. Thus the normal approximation

seems to always overestimate µ1 and µ2 (although this overestimate is very small). It has,

again, not been possible to prove the generality of this result.

4 Discussion

This paper considers both a deterministic and a stochastic model for kleptoparasitism, along

with a normal approximation to the stochastic model. The deterministic model is that of

Broom and Ruxton (1998), for which explicit solutions for the equilibrium proportion of

the population on each site can be found. The forward Kolmogorov equations were derived

for the equilibrium distribution of the stochastic model. It is not practical to solve these

explicitly, but numerical solutions have been obtained for many sets of parameters.

A partial differential equation for the cumulant generating function was derived for the

stochastic model. A set of 5 equations for the means, variances and covariance of the

number of individuals on sites 1 and 2 has been obtained from this. These equations contain

7 unknowns, since they also contain the cumulants k2,1 and k1,2. The normal approximation

reduces the number of unknowns, since k2,1 and k1,2 are assumed to be zero under this

approximation. These equations are not linear, and the solution is given in the form of a

quartic equation for µ2 and expressions for µ1, σ2
1, σ2

2 and σ12 in terms of µ2.

The stochastic model generally gave larger numbers of individuals on sites 1 and 2 than

the deterministic model. This corresponds to a larger number of searchers and handlers,

and a smaller number of individuals fighting. Thus, the deterministic approximation will

often overestimate the number of individuals involved in a contest, and we may expect to

see less conflict than is predicted by our models, especially in the case of small populations,

where the differences with the infinite population approximation will be largest. One possible

reason for this is as follows: if the number of individuals on S1 and S2 in equilibrium were

equal, then any movement between the two would reduce the product X1X2, and so the rate

of movement towards the fighting state S3 would generally be reduced by this variability.

This argument may still hold when X1 and X2 are of similar order. The differences between

stochastic and deterministic models were always small however, indicating the validity of

the use of the deterministic model for these kind of systems. The difference between these

values is related to the sign of the covariance between the numbers of individuals on sites 1

and 2 as shown in Section 3. There were some cases for which this covariance is positive,

meaning that the deterministic model gives the larger numbers of individuals on sites 1 and

2. These were associated when the numbers in S1 and S2 were very uneven (in particular

X2 was small), so the above argument may be reversed, and variability may increase X1X2

17



on average.

The normal approximation performs well, particularly for estimating the means, where

these were a lot closer to the means given by the stochastic model than were those given by

the deterministic model. In fact the differences between the actual means and the normal

approximations were almost zero. The approach of using Normal approximations to simplify

the analysis of such systems seems a possible way forward. For any such system of equations

we would have a multivariate normal random variable of dimension k, the total number of

sites. Although the quartic equation and expressions for the variances are long, they can

be evaluated numerically much more quickly than the equilibrium Kolmogorov equations

can be solved. This will be especially true if, as in our kleptoparasitism model, we are

interested in the distribution of the number of individuals involved in a particular behaviour,

for an intermediately sized population (for a very small population, we could find numerical

solutions to the Kolmogorov equations themselves).
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Appendices

A Derivation of Equation (7)

The first step in deriving this equation is to multiply Equations (6) by exp{s1x1 + s2x2} and

add over all values of X1 and X2. This gives

n∑

x1=0

n−x1∑

x2=0

exp {s1x1 + s2x2}
d

dt
px1,x2(t)

=
n∑

x1=0

n−x1∑

x2=0

exp {s1x1 + s2x2} [λ13(x1 + 1)(x2 + 1)px1+1,x2+1(t)

+ λ31(n− x1 − x2 + 2)px1−1,x2−1(t) + λ12(x1 + 1)px1+1,x2−1(t) + λ21(x2 + 1)px1−1,x2+1(t)

−[λ13x1x2 + λ31(n− x1 − x2) + λ12x1 + λ21x2]px1,x2(t)] . (18)

At equilibrium, the left hand side of this equation reduces to 0, while each sum on the

right can be expressed in terms of M(s1, s2),
∂M
∂s1

, ∂M
∂s2

and ∂2M
∂s1∂s1

. The first term on the right

hand side is equivalent to

n−2∑

x1=0

n−x1−2∑

x2=0

λ13(x1 + 1)(x2 + 1)px1+1,x2+1 exp {s1x1 + s2x2}

= λ13

n−1∑

x1=1

n−x1∑

x2=1

x1x2px1,x2 exp{s1(x1 − 1) + s2(x2 − 1)}.

Since

M(s1, s2) =
n∑

x1=0

n−x1∑

x2=0

exp{s1x1 + s2x2}px1,x2 ,

this is equivalent to

λ13 exp{−(s1 + s2)}
∂2M

∂s1∂s2
.

The second term on the right hand side of Equation (18) is equivalent to

n−1∑

x1=1

n−x1∑

x2=1

λ31(n− x1 − x2 + 2)px1−1,x2−1 exp {s1x1 + s2x2}

= λ31

n−2∑

x1=0

n−x1−2∑

x2=0

(n− x1 − x2)px1,x2 exp {s1(x1 + 1) + s2(x2 + 1)}.
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Since n− x1− x2 = 0 when x1 + x2 = n and px1,x2 = 0 when x1 + x2 = n− 1, the sum above

is equivalent to

λ31

n∑

x1=0

n−x1∑

x2=0

(n− x1 − x2)px1,x2 exp {s1(x1 + 1) + s2(x2 + 1)}

= λ31 exp{s1 + s2}
(

nM − ∂M

∂s1
− ∂M

∂s2

)
.

The third term on the right hand side of Equation (18) is equivalent to

n−1∑

x1=0

n−x1∑

x2=1

λ12(x1 + 1)px1+1,x2−1 exp {s1x1 + s2x2}

= λ12

n∑

x1=1

n−x1∑

x2=0

x1px1,x2 exp {s1(x1 − 1) + s2(x2 + 1)} = λ12
∂M

∂s1
.

Similarly
n∑

x1=0

n−x1∑

x2=0

λ21(x2 + 1)px1−1,x2+1 exp {s1x1 + s2x2} = λ21
∂M

∂s2

and

n∑

x1=0

n−x1∑

x2=0

[λ13x1x2 + λ31(n− x1 − x2) + λ12x1 + λ21x2]px1,x2 exp {s1x1 + s2x2}

= λ13
∂2M

∂s1∂s2
+ λ31

(
nM − ∂M

∂s1
− ∂M

∂s2

)
+ λ12

∂M

∂s1
+ λ21

∂M

∂s2
.

Inserting each of these expressions into Equation (18) gives the following partial differ-

ential equation for M(s1, s2):

nλ31(e
s1+s2 − 1)M + [λ12(e

s2−s1 − 1) + λ31(1− es1+s2)]
∂M

∂s1

+ [λ21(e
s1−s2 − 1) + λ31(1− es1+s2)]

∂M

∂s2
+ λ13(e

−(s1+s2) − 1)
∂2M

∂s1∂s2
= 0. (19)

Since K(s1, s2) = logM(s1, s2),

∂K

∂si
=

1

M

∂M

∂si
, i = 1, 2 and

∂2K

∂s1∂s2
=

1

M

∂2M

∂s1∂s2
− 1

M2

∂M

∂s1

∂M

∂s2
.

20



Thus
∂M

∂si
= M

∂K

∂si
, i = 1, 2

and
∂2M

∂s1∂s2
= M

(
∂2K

∂s1∂s2
+

1

M2

∂M

∂s1

∂M

∂s2

)
= M

(
∂2K

∂s1∂s2
+

∂K

∂s1

∂K

∂s2

)
.

These expressions can be substituted into Equation (19) to give Equation (7).

B Derivation of the expressions for µ1, σ2
1, σ2

2 and σ12

in terms of µ2 and the quartic equation for µ2 under

the normal approximation

Firstly, expressions for µ1 and σ12 are derived from Equations (8) and (9). Since neither

equation includes the terms k2,1 and k1,2, the expressions for µ̂1 and σ̂12 are identical to

those for µ1 and σ12, except that µ2 is replaced by µ̂2 in each. It is clear from Equation (9)

that

µ1 =
λ21µ2

λ12
.

Substitution of this expression for µ1 into Equation (8) gives

nλ31 − λ31
(λ12 + λ21)

λ12
µ2 −

λ13λ21

λ12
µ2

2 − λ13σ12 = 0,

which can be rearranged to give

σ12 = −λ21

λ12
µ2

2 −
λ31(λ12 + λ21)

λ13λ12
µ2 +

nλ31

λ13
.

Setting k2,1 = k1,2 = 0 in Equations (10) - (12) gives

nλ31−λ31µ̂1 +(λ21−λ31)µ̂2− (λ12 +λ31)σ̂
2
1 +(λ21−λ31)σ̂12−λ13µ̂1σ̂12−λ13µ̂2σ̂

2
1 = 0, (20)

λ12µ̂1 + λ21µ̂2 − λ12σ̂
2
1 − λ21σ̂

2
2 + (λ12 + λ21)σ̂12 = 0 (21)

and

nλ31 +(λ12−λ31)µ̂1−λ31µ̂2− (λ21 +λ31)σ̂
2
2 +(λ12−λ31)σ̂12−λ13µ̂2σ̂12−λ13µ̂1σ̂

2
2 = 0. (22)

When the above expressions for µ̂1 and σ̂12 are substituted into Equation (20) the fol-
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lowing equation involving µ̂2 and σ̂2
1 is obtained:

− (λ12 + λ31 + λ13µ̂2)σ̂
2
1 +

λ13λ2
21

λ2
12

µ̂2
3 +

λ21(λ21λ31 + 2λ12λ31 − λ12λ21)

λ2
12

µ̂2
2

− λ31(λ13λ21(n + 1) + λ12λ13 + λ2
21 + λ12λ21)− λ2

31(λ12 + λ21)− λ12λ13λ21

λ12λ13
µ̂2

+
λ31(λ13 + λ21 − λ31)n

λ13
= 0.

The coefficient of σ̂2
1 in this equation is negative, since λ12 λ13 and λ31 are all positive and

µ̂2 ≥ 0. This means that the equation can be rearranged, to give an expression for σ̂2
1 in

terms of µ̂2. Expression (15) is the partial fraction expansion of this.

Similarly, substituting the expressions for µ̂1 and σ̂12 into Equation (22) gives

−
(

λ21 + λ31 +
λ13λ21

λ12
µ̂2

)
σ̂2

2 +
λ13λ21

λ12
µ̂3

2 +
λ12λ31 + 2λ21λ31 − λ12λ21

λ12
µ̂2

2

− λ31(λ12λ13(n + 1) + λ2
12 + λ12λ21 + λ13λ21)− λ2

31(λ12 + λ21)− λ12λ13λ21

λ12λ13
µ̂2

+
λ31(λ12 + λ13 − λ31)n

λ13
= 0.

Since all of the λijs are positive and µ̂2 ≥ 0, this equation can be rearranged to give σ̂2
2 in

terms of µ̂2. Expression (16) is the partial fraction expansion of this.

Finally, the quartic equation for µ̂2 is obtained by inserting the expressions for µ̂1, σ̂12,

σ̂2
1 and σ̂2

2 into Equation (21). When all terms on the left hand side of this equation are

placed over a common denominator, we have the left hand side of Equation (17) as the

numerator and λ12λ13(λ12 + λ31 + λ13µ̂2)(λ12λ21 + λ12λ31 + λ13λ21µ̂2) as the denominator.

This denominator can be removed, since it is always positive.
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