%*

D "# $ #%&"#t'(&

) % %& ¥ + $%

%

+ % # # +

w %% % % -, .
% * # #- %

+ (%

1 / 1 #(1%|

% * # + +

% * o %% % % -, + % 0% % -

City University London

Department of Computing

Approximate Dynamic Programming with

Parallel Stochastic Planning Operators

Christopher H. T. Child

A thesis submitted for the degree of

Doctor of Philosophy at City University London

July 2011

1

Approximate Dynamic Programming with Parallel Stastic Planning Operators

Contents

% # $

%

Approximate Dynamic Programming with Parallel Stastic Planning Operators

Il&
% "
!
&
%
!! n n
! $
&]
%
% &
! 1
! n
%
nr & 1" # '

% (

Approximate Dynamic Programming with Parallel Stastic Planning Operators

' &
%
n (!
(
(&&
&
&

%

Approximate Dynamic Programming with Parallel Stastic Planning Operators

%
% "
' !
r& " ‘
)
&
%
| %II
%
%
(%
%
L # " &
&
&
% &

Approximate Dynamic Programming with Parallel Stastic Planning Operators

! #1 % " & !
%
(
% % "
(
" g
1# %
% "&
(n
% % n
(nn
%
1 | ") I*
& I % '
! !
1 1
! | | |
1 !
1 1
%

Approximate Dynamic Programming with Parallel Stastic Planning Operators

_ T # " & !
1o "
& % % '
& .
& L}
& %
%
& % % '
& L}
& % &&
%
!
& |
&
% *
(n
(
")

%

%

Approximate Dynamic Programming with Parallel Stastic Planning Operators

Approximate Dynamic Programming with Parallel Stastic Planning Operators

List of Figures

% %

%

%

%

%

%

%

% -

%

%

10

%

%

%

% &

+ % $

%

Approximate Dynamic Programming with Parallel Stastic Planning Operators

% , %

% # $

%) #/ 0/ % $

&& &&& &&& &&&& &&&& &&&E& &&&&&

! # $ (
&& &&& &&& &&&& &&&& &&&& &&&&&
%

&& &&& &&& &&&& &&&& &&&& &&&&&

% && &&& , %

&& &&& &&& &&&& &&&& &&&E& &&&&&

! # $ (
&& &&& &&& &&&& &&&& &&&& &&&&& "
%

&& &&& &&& &&&& &&&& &&&& &&&&&

11

Approximate Dynamic Programming with Parallel Stastic Planning Operators

(# $ (%
* & &&&
& %
&& &&& &&& &&&& &&&& &&&& &&&&&

& & &&& %
&& &&& %
& & &&& %
&& &&& %
& (%
& &&& '
& | !
& &&& '
&" (%
& &&& '
& (!
& &&&
& %

&& &&& &&& &&&& &&&& &&&& &&&&&

&' (. & &&& (% "
& & (. & &&& (% &&

12

Approximate Dynamic Programming with Parallel Stastic Planning Operators

List of Tables

% %

&& &&& &&& &&&& &&&& &&&& &&&&&

(%

%
(! # $ (
&& &&& &&& &&E&& &&&& &&&& &&&E&&
(%
&& &&& &&& &&&& &&&& &&&& &&&&&
(%
&& &&& &&& &&&& &&&& &&&&
&&&&&

&& &&& &&& &&8&& &&&& &&&& &&&&&

(%

% "
(! # $ (
&& &&& &&& &&&& &&&& &&&& &&&&& "
(%
&& &&& &&& &&&& &&&& &&&& &&&&&
&(%
&& &&& &&& &&&& &&&& &&&& &&&&&

13

Approximate Dynamic Programming with Parallel Stastic Planning Operators

&(%
&& &&& &&& &&&& &&&& &&&& &&&&&

(. % (%

(%

14

Approximate Dynamic Programming with Parallel Stastic Planning Operators

List of Algorithms

(/ / /
(/ / / &
(% / / /

#S
% (* # 1 2%

H ~ ~

*(

(*(% !

15

Approximate Dynamic Programming with Parallel Stastic Planning Operators

1/ ! e/ !
" i ! i/ ! (

% (

16

Approximate Dynamic Programming with Parallel Stastic Planning Operators

(/ /
% # $
(
(% % # & I %
(
(% # $ / I (%

%

17

Approximate Dynamic Programming with Parallel Stastic Planning Operators

ACHNOWLEDGEMENTS:

I'd like to thank my tutor, Dr. Kostas Stathfier helping me to find both a fascinating
research area and a range of technigques to expitii@ it. Our meetings have been exactly
as academic research should be: inspiring, matigatnd resulting in the phrase “needs
further research”. | have also been fortunate irirfgga second tutor Dr. Artur Garcez who
provided the motivation to help me finish the tBeguidance on analysis techniques, and the
understanding that the life of a part-time studequires a subtle mix of carrot and stick. I'd
also like to thank Dr. Andrew Tuson for introducimg to City University and helping to
further my career as an academic. Thank you tinalstaff of the School of Informatics at
City University for your continued support and atasnce.

I'd like to thank my wife, Cecil, for her inexbstible patience and being the world’s best
girl. I couldn’t have done this without you. Thaysu to all the friends and house-mates
who've helped encourage and, more importantly, keegsane by distracting me. Finally, I'd
like to thank my family for their incredible suppoboth financially and emotionally, without
which I'd probably have given up and taken a jobamking.

18

Approximate Dynamic Programming with Parallel Stastic Planning Operators

Declaration

| hereby declare that:

my submission as a whole is not substantially #raeesas any that | have previously
made or am currently making, whether in publishedupnpublished form, for a

degree, diploma, or similar qualification at anyvensity or similar institution

the following parts of the work or works now subiit have previously been
submitted for a qualification at a university omgar institution (only brief details

required):

until the outcome of the current application tasthiniversity is known, the work or
works submitted will not be submitted for any gfiedition at another university or

similar institution.

19

Approximate Dynamic Programming with Parallel Stastic Planning Operators

20

Approximate Dynamic Programming with Parallel Stastic Planning Operators

ABSTRACT:

This thesis presents an approximate dynamicranogiing (ADP) technique for environment
modelling agents. The agent learns a set of pasitiehastic planning operators (P-SPOs) by
evaluating changes in its environment in respoosetions, using an association rule mining
approach. An approximate policy is then derivedtésatively improving state value aggregation
estimates attached to the operators using the B-8B@ model in a Dyna-Q-like architecture.

Reinforcement learning and dynamic programmnegpewerful techniques for automated agent
decision making in stochastic environments. Dyngonagramming is effective when there is a
known environment model, while reinforcement leagnis effective when a model is not
available. The techniques deriv@alicy: a mapping from each environment state to anmctio
which optimizes the long term reward the agentivese

The standard methods become less effectiveeastdle space for the environment increases
because they require values to be associated adth €ate, the storage and processing of which is
exponential to the number of state variables. Rasplhis “curse of dimensionality” is an
important topic of research amongst all communitiesking on this problem. Two key methods
are to: (i) derive an estimate of the value (appnate dynamic programming) using function
approximation or state aggregation; or (ii) builchedel of the environment from experience.

This thesis presents a method of combiningetia@proaches by exploiting structure in the state
transition and value functions captured in a s@afning operatorsvhich are learnt through
experience in the environment. Standard planniregaiprs define the deterministic changes that
occur in an environment in response to an actibis Work presents Parallel Stochastic Planning
Operators (P-SPOs), a novel form of planning opematoviding a structured model of the state
transition function in environments which are botm-deterministic and for which changes can
occur outside the influence of actions. Next, atomated method for extracting P-SPOs from
observations in an environment is explored usingdaptation of association rule mining. Finally,
methods of relating the state transition strucameapsulated in the P-SPOs to state values, using
the operators to store state value aggregatiomatets, are evaluated.

The framework described provides a method bykwhpproximate dynamic programming can
be applied by designers of Al agents and Al plagsystems for which they have minimal prior
knowledge. The framework and P-SPO based implertiensaare tested against standard
techniques in two bench-mark stochastic environmeat“slippery gripper” block painting robot;
and a “predator-prey” agent environment.

Experimental results show that an agent usiRgS®O-based approach is able to learn an
accurate model of its environment if successoestatiables exhibit conditional independence,
and an approximate model in the non-independert ¢esults also demonstrate that the agent’'s
ability to generalise to previously unseen stag#sgithe model allow it to form an improved
policy over an agent employing a standard Dyna-€¢btaechnique. Finally, an approximate
policy stored in state aggregation estimates atthth operators is shown to be optimal in
experiments for which the P-SPO set contains sefftdnformation for effective aggregations to

be formed.

21

Approximate Dynamic Programming with Parallel Stastic Planning Operators

22

Approximate Dynamic Programming with Parallel Stastic Planning Operators

1. Introduction

It has been the aim of many Al researchers to er@atautonomous agent that can be situated
in an environment and learn to act effectively tlgio discovery of the mechanics of the
world they inhabit. This has been termed “developaleAl” [40] or “constructivist Al”
[28][84] and is discussed as early as 1950 in Bsirpaper “Computing, Machinery &
Intelligence” [92] in which the idea of buildingsimulation of an infant’'s mind that could be
trained through interaction with the world was pepd as one method of constructing a

machine that could pass, what later became knowh@gd uring test.

Turing’s motivation for this aim was a practicaleoof solving issues with adaptability. It was
clear that an artificial intelligence could not pegrammed to respond to every eventuality
that it could encounter, and that even if this kiealge could be given, it would soon become
out of date as the environment changed. Some mischawmas therefore needed to adapt to
the changing conditions and the development of kedge by discovery promised an
approach that required minimal programmer effoapipropriately general principles could be

discovered.

This adaptability motivation is reflected in a nwnbof agent-based applications, and is
particularly apparent in the fields of adversaAaland non-player character Al (NPC Al) in
computer game applications. Computer games areglby humans, who continually adapt
their strategies to improve their performance. ifi@akness is found in an adversarial Al's
behaviour, then the game will quickly become unidéing if the Al opponent keeps re-
playing the same losing strategy. A developmemgl@ach could help the Al adapt to these
changing strategies. NPC’s in computer games caubersaries (e.g. bots in FPS games), in
which case the same argument applies, but theglsarbe helpers to the main character (e.g.
a war-horse in a role-playing game), or simply lggokind characters aimed at improving the
aesthetics of the environment (e.g. a villager ioven the character travels through). Each of
these agent types could benefit from a developrheqaroach that allows a designer to
specify the type of behaviour that is required with having to specify the means of

achieving it.

In this context amutonomous agens$ considered to be a decision-making entitys Hiiuated

in someenvironmentor world, and has a number aftionsthat it can carry out. It has a

method of perceiving its environment, and makesstets as to which of the available

actions it will select. It is autonomous in the sethat it can actively perform action selection
without external intervention. The agent has a gigecfunction which converts sensor data

23

Introduction

from the environment into a percept, and uses inébion contained within these percepts to

guide its actions through some form of deliberajisy.

The type of agent studied in this research build®del of its world by evaluating changes to
the received percepts over time, and models theetsfiof its available actions by evaluating
the changes in perception in response to the acBeltected. The agent is given a reward
mechanism, which indicates a preference that tbataghould have for perceiving that it is in
a particular state. The agent then uses its madehdke decisions by forming @an or
policy. A plan is a deterministic set of actions, whiehd the agent from its current state to a
reward state. In stochastic (random) environmemgsaigent cannot establish a deterministic
set of actions and must, instead, create a stratbgh takes into account every state it could
find itself in. This strategy is called a policyr (@niversal plan), and is a mapping from every
possible state to an action.

Planning in a stochastic environment in which adidave probabilistic outcomes, the
environment changes outside the agent’s contrdh@agent has uncertain knowledge about
the environment state, presents unique challenggshvare not present in classical planning
systems, such as STRIPS [31] or the situation kedc[67]. The random nature of the
environment, from the agent’s perspective, meansdtls a mechanism for selecting action in
situations or which are unexpected, or which it may have encountered before. For large
environments an exact definition of such a planobes impossible and approximation
techniques are required. Such techniques fall utidercategories of approximate dynamic
programming (ADP) [73] and Decision Theoretic Plag{7].

The work presented here investigates the creafian agent which:

Builds aplanning operatorbased model of its world through interaction. Rlag
operators describe the expected changes to theoameént in response to the agent’s
actions.

Uses the model, to attachility estimatesestimates of expected future rewards) to
the planning operators.

Uses theutility estimatesto provide a policy. The agent can select an actm
activate the operators with the highest utilityimate. Given an initial percept, the
agent can make a decision by finding the highebliedaaction available for that

percept.

24

Approximate Dynamic Programming with Parallel Stastic Planning Operators

The syntax of theplanning operatorsacquired by the agent will be covered in depth in
chapter 5. In order to introduce the concept, @knexample of an operator set for an agent

is given below.

The agent has two actionfip or doNothingin an environment consisting of a single coin
which can be showing either heads or tails. Itivesea reward of 1.0 if the coin is showing
heads and 0.0 otherwise:

doNothing: showinf) coin heayi® {1.0: showing coin hgad1.0]

doNothing: showing coin tai)® {1.0: showirfg coin tgils (0.0)

Each operator has:
An action: e.g.flip(coin).
A context: e.gshowing(coin, heads)

An outcome set with associated probabilities. €@5:showing(coin, heads),
0.5:showing(coin, tails)}

A utility: e.g. U(0.5).

The outcome set identifies the expected changdsetenvironment in response to the action
if the context holds. The utility is an estimatetbé expected future rewards if the action is
taken in the given context. The task in this casepisodic(has terminating states). The
episode length is one, with botshowing(coin, headspnd showing(coin, tails)being

terminating stares. This means that only immediatards affect the utility.

The agent can form a policy by selecting the actiith the best available utility in the given
context. If, for example, the coin is currently siog heads, then thiép action can be taken
(because it has no context) or th@Nothingaction can be taken (wihowing(coin, heads)
context). These have utilities of 0.5 and 1.0 respely, and an agent attempting to maximise
reward gather would, therefore, selectdio®lothingaction, resulting in an immediate reward.

A method of learning operators of this type, alowgh their more complex parallel
extensions, is defined in chapter 6, and evaluatezhapter 8. Methods of attaching utility

estimates to planning operators are investigatethapter 9, and evaluated in chapter 10.

Empirical learning of planning operators in stodltasnvironments is challenging because:

An action may have uncertain effects inherently.(the result of a “flip” action on a

coin).

25

Introduction

The effects of an action may be masked by extesieahents (e.g. multiple coins are
flipped simultaneously by others and the agent gisomttributes the result of their
others actions to its own).

The action conditions may be masked by externahetas (e.g. the state of the coin
the agent flips may randomly match the state ofarbe other coins before the flip
action, and the agent incorrectly concludes that state of the other coin is an

important condition for the flip action).

Each of these issues can be tackled, to some exigrmierforming statistical significance
testing, and the planning operator learning medmrbresented in chapter 6 is based on this

technique.

Standard dynamic programming techniques can buiitlity map of a state space by cycling
through each state, taking the best available mdtacording to the current estimate, or a
random action in order to explore) and, when a rdvimencountered in the following state,
feeding this reward back to the previous state.ihmaber or values which must be calculated
is, however, exponential to the number of featpresent in the state space. This is referred
to as the “curse of dimensionality” [73]. Attachinglities to the operators removes the need

for storage of these values, but poses a new s#tadienges:

Each planning operator’'s conditions represent amlgmall proportion of all the
possible conditions of each state. The utility mate attached to the operator is

therefore armggregationof many states from the full state-space.

Planning operators are applied in parallel to dateuthe following state. The agent
therefore needs a mechanism for deciding the dmriton made by each operator to

the utility of taking a particular action.

Total utility in a reinforcement learning systemcrieéases (or decreases) as the
learning progresses. Operators with fewer conditiasill increase (or decrease) in
utility as a consequence of being applied more legtyl while those with more

conditions will learn more slowly.

The general framework of utility-based action-statis provided by dynamic programming
(for model-based approaches), and reinforcememntiteg (for model-free approaches) [87].
The approach used in this research is initially etdke, learning the model from experience
and can therefore be seen as fitting into botlifieThe utilities learned by the agent provide
estimates of the utility of being in a particuldate and the approach therefore fits into the

field of approximate dynamic programming (ADP) [73]

26

Approximate Dynamic Programming with Parallel Stastic Planning Operators

A range of model-based learning techniques have peeposed for agent-based planning

mechanisms. The work presented here builds onibatitms from several sources:
Model based reinforcement learning: Dyna-Q [88].

Planning operator learning: multi-stream dependethetection [64], noisy deictic
rules [67] and association rule mining [1].

Factored state mode approaches for decision theptahning [10].

Approximate Dynamic Programming [73].

1.1 Motivation

The hypothesis of this thesis is that utility esties attached to acquired parallel stochastic
planning operators, describing the dynamics ofeistably probabilistic environment, can

be used to compactly model the effectiveness afgadctions in that environment.

The general motivation for the work is to createrdg that are both autonomous learners and
who’s behaviour is comprehensible by human desgyngne drive comes largely from the
author's commercial background in computer gameniageogramming. Games companies
are generally reticent to use black-box technigisesh as a neural network), despite their
obvious ability to deliver complex Al with reducee@signer input, because a bug found in a
solution requires a complete re-train. This neveytrained solution can itself contain errors,
and the risks are perceived as too great when éomsidered that the error may only be

discovered a week away from shipping a title withwti-million dollar budget [12].

The use of rule-based models allows designers tioereire-write rules by hand or,
alternatively, interpret the errors by investigatiand make adjustments to parameters or

learning conditions when generating new rules.

Attaching values to rules means that the poliogifitsan be interpreted by designers, because

they can see which actions and rules are favowetebsystem in certain situations.

The particular properties of many computer gamenagmvironments that make this

technology applicable are that:

An accurate model of the dynamics of the envirortmgom the perspective of an
individual agent, is not known in advance, and roftannot be created due to the
stochastic nature of the environment or the unptabie actions of agents within it.

Experience can be gathered through trial runs néligible cost, as opposed to the
cost of, for example, robot trials in potentiallgzardous environments.

27

Introduction

Some of the properties of the system that provid@dvantage as a computer game agent

controller include:

Intelligible rules: the system creates rules ttzait loe read and understood by a human

designer.
The rules can be modified by hand if necessary.

The system can generalise over unseen states amefaite produce intelligent

behaviour based on knowledge gained in similaatiitns.
Limited processing power is required at run-timéhwhe learning occurring off-line.

The design of Al agent controllers for computer gars an expensive process, often
requiring highly skilled and experienced developexith extensive domain
knowledge of each game. Automating this procesddctead to significant cost

savings and improvements in computer games.

1.2 Aims & Objectives

Techniques exist for creating effective agent aulgrs which exhibit some of the properties
outlined above, but not all. The overall aim iptoduce an effective and practical technology
that inherits aspects of the best of these syswmmisexhibits each of the above desirable

properties.

Create a framework for environment modelling agetite framework should be
adaptable, in that a variety of environment modgllsystems and action selection

mechanisms can be incorporated.

Design a rule-based environment modelling systéma: system should have the
expressive power to model the environment frompgbmt of view of the agent. It
must, therefore be able to model events that happ#side the agents control
(environment actions), unpredictable/stochastiéoacbutcomes, outcomes that are
both independent and non-independent, and combitatf these. The rule system
also needs to be in a human readable form andrpbdyein a form familiar to Al

researchers in order to enable “glass-box” integpian.

Design a system for learning the rule-based enviremt modelling system from
experiencehuman designers are not adept at creating prastabitule systems by
hand. The environment modelling system should He &b acquire a model by

analysing the environments response to action. $fstem should build a set of

28

Approximate Dynamic Programming with Parallel Stastic Planning Operators

operators by discovering patterns in changes temlh@onment in response to actions

(or when no action is taken).

Design a system for attaching utility estimatetherules:allowing compact storage
and human interpretable values to be attachedlés.rlihe system should have the
capacity to build rule utility estimates from susser rule utility estimates, without

the need to enumerate the value of every statata-action pair in the environment.

1.3 Framework

The framework for the agent’s learning consisttheffollowing elements:

1)

2)

3)

Embodimentithe agent is embodied, and situated in an envirotmecan select
actions (behaviours) available through its body aexkives percepts, which are a

function of the current environment state.

Modelling: the agent builds a model of its perception of theirenment using
parallel stochastic planning operators (P-SPOsks&hare learnt empirically by
observing the effects of actions through perceftg percepts before and after each
action are used as training data for a P-SPO Iegraigorithm. Note that the
environment itself may be deterministic, but vieviletbugh the agent’s percepts, can

appear stochastic.

Policy generation:the agent builds a policy by simulating actionsngsthe
environment model encapsulated in the rules. liainiests, the agent uses standard
dynamic programming to build a policy from simulh&xperience extracted from the
model. In the full system, value estimates arechtd to each operator. The operators
contain actions and are therefore acting as a d$etaggregation estimates
encapsulating information in the form: taking amti@, under conditionsg, has
utility, u.

A useful property of the framework is that the pglgeneration phase is entirely simulated

and can therefore be seen as “free” in terms of tmsthe agent in the environment.

Additionally, the agent’s goals can be changed,thatrules describing the environment’s

dynamics remain unchanged. It can therefore baasgttasks or goal without the need to re-

model the environment [90].

1.4 Contributions

The research makes contributions in the followirana:

29

Introduction

A framework for developmental Al is createm:world model learning phase is
followed by a planning phase using approximate dyngrogramming. Extensions

for in-line learning are explored.

Parallel Stochastic Planning Operators (P-SPOs) defined:an extension of Noisy

Deictic Rules [67] to include provision for indeemt outcomes.

Apriori Stochastic Dependency Detection (ASDD) éireed & evaluateda fast
stochastic rule learning algorithm for constructimnP-SPOs from observation data

using statistical significance and data mining rodth

Rule Value Reinforcement Learning (RVRL) is defidedevaluated: a state
aggregation method for approximate dynamic programgmusing P-SPOs as

aggregation estimates for a state aggregationiumct
Experimentation is performed to evaluate:

The performance of P-SPOs as an environment madel flynamic programming

based policy generator.

The performance of RVRL in generating policiesdgent action.

1.5 Structure

Chapters 2 and 3 provide background for environmantelling techniques from the
perspective of agents, and methods of plannindgojp@drmation) using the model. Chapter 4
provides the overall model-based learning framewa#d in the research. Chapter 5 defines
parallel stochastic planning operators (P-SPOsap@r 6 defines the ASDD algorithm and
associated functions for learning P-SPOs from dakmpter 7 defines the test environments
used in this research. Chapter 8 provides thetsesfithe ASDD rule learning algorithm in
terms of environment modelling and policy generatiosing a standard dynamic
programming algorithm. Chapter 9 then defines thi&®R algorithm for attaching rule values
to operators. Chapter 10 shows the results of timeptete system, with values attached to
operators learned in the framework and used as laypdcChapter 11 discusses the
achievements of the system, related work and futopeovements to the system.

1.6 Previous Publications

The framework presented in chapter 4 and evaluaéohnique (chapter 8) have previously

been presented and evaluated in conjunction wittuli-stream dependency detection based

30

Approximate Dynamic Programming with Parallel Stastic Planning Operators

technique for planning operator learning "8MART (Stochastic Model Acquisition with

ReinforcemenT) Learning Agents: A Preliminary Repgt7].

The ASDD method for learning stochastic logic rulelsapter 6) was defined and evaluated
in "The Apriori Stochastic Dependency Detection (ASBIprithm for Learning Stochastic
Logic Rules." [18]

Rule Value Reinforcement Learning (RVRL) for attech values to planning operators
(chapter 9) was first presented"Rule Value Reinforcement Learning for Cognitiveeiig"
[16] and further evaluation in the context of anbewiied agent environment modelling
framework was published ifiLearning to Act with RVRL Agents[15]. Peer review
comments from this and extensions to widen the iegiplity of the system have been
incorporated in the approximate dynamic programmbaged update functions for RVRL

presented in this work.

31

Introduction

32

Approximate Dynamic Programming with Parallel Stastic Planning Operators

2. Background I: Agents, Environments & Models

This chapter introduces the agent and environmefihidons which underpin this work.
Embodied agents, with environment interaction nedighrough action selection in an agent
body, are defined and presented in the context ath deterministic and stochastic
environments. Techniques for representing an enment model from the perspective of an
agent are presented. The model representatiorchasen because they define the evolution
of the environment in response to agent actiom\atlg planning) and can be can be acquired

from data.

2.1 Agents

The purpose of the system presented in this workoisreate effective controllers for

autonomous agents. A broad definition of an agengiven by Wooldridge [98], is:

“An agentis a computer system thatsguatedin someenvironmentand that is capable of

autonomous actioin this environment in order to meet its desigjeotives”.

This definition puts no requirements on the ageriid part of a multi-agent system, to be able
to communicate, or any of the other uses for whigénts are employed. It simply defines an

agent as a decision maker, situated in an envirame

T

Figure 2.1: An agent and its environment. The ageatluces actions in response to sensory

input.

Figure 2.1 shows that the agent responds to sémsot from the environment with actions.
This definition is broad in that there is no reguient for the agent to respond with intelligent
decisions, and the type of environment is not @efirThe agent is situated in an environment,
but is also separate from it in that it's decisimaking process is outside the environment.

33

Background I: Agents, Environments & Models

If the agent is treated as a separate decisionngadatity, outside the environment, then
flexible agent architectures can be produced (assiigated by the EU SOCS project [85]). A
good analogy is to consider a human playing a ceengame. The human has a view of the
world and can select actions through the controbat these actions do not directly change
the environment. Instead, they are stored asm#x¢ actionthat will be taken by the player
when the game-world updates. The human player eailyebe replaced by an artificial
intelligence. If we give the Al a view of the worlthd allow it to trigger the same actions,
then it should require no further change to the gavorld to integrate the Al. This view of

embodiment is explored further in section 2.1.4.

The following section gives an abstract definitafragents and environments. The term agent
is, in general, somewhat loosely defined and han hesed in the definition of complex
environments and interactions. Rather than debagset points, the intention here is to
provide a useful definition of agency based aroamd embodied “perceive, deliberate,
execute” framework, which will enable definition®i dynamic programming to be set in an

agent context.

2.1.1 Agent: Action Selection within an Environment

A useful starting point for defining agents andiesrvments is given by Wooldridge [98]. An
environment is assumed to have a set of possibikl wtatesS, whereS = {s, . %, ..., $}-

At any given time the environment can be in on¢heke states. Environments can have an
infinite or a discrete number of states. An agead & set of actiong, which can influence

this state, wheré = {a,, &, &, ..., &}.

The agent’s purpose is to choose an action (makecision). An agent can be viewed as a

function, mapping a history of environment stafs,to an action.

action: S® / (2.1)

A reactiveagent is an agent with no memory, which can oatg taccount of the current state
of the environment when deciding upon its next actilt is, therefore, defined by the

function:

action: S® £ (2.2)

A deterministic environment can be modelled asration mapping the current state of the

environment and the agent’s action to a new state:

env.:S A& ¢ (2.3)

34

Approximate Dynamic Programming with Parallel Stastic Planning Operators

Starting from a state/ S, the execution of the environment function on atioa a/ A
produces a new state. A non-deterministic envirortngan be modelled as a mapping from

state and action to a set of next states:

env. S ® J((2.4)

This model appears simple but succinctly definesatpent as being a decision making entity,
separate from its environment, but able to inflgetkhe environment. The environment

function can be as complex as is required, comtginiultiple agents or just one single agent.

This abstract definition is simple and can be usedescribe almost any agent, but it does not

help in the practical construction of an agent.

Wooldridge provides a next step, which is to adt@gtion to the agent, which captures the
agent’s ability to sense its environment, and the sensing is an incomplete representation
of the environment state. The see function takssi@ and outputs a percept, where P57
P2, Ps, -, R}

see B F (2.5)

The action function is then altered to become a function hef history of percepts for a

cognitive agent, or a single percept for a readiigent:

action: P ® A (2.6)

Note that the mapping from states to percepts ieigdly not one-to-one. The number of

possible percepts is less than or equal to the rumibpossible states, with several different
states may mapping to the same percept. From #&’'agerspective, two states that map to
the same percept are indistinguishable. If eaate shaps to exactly one percept, then the

environment is said to be fully observable.

The agent architecture employed in this work ués form, with the additional layer of
separation provided by the agent body, which i¢ pathe environment and is the agent’s

only method of interaction with the environmentg(section 2.1.4).

2.1.2 Agent: Perceive, Deliberate and Execute

A second perspective on the basic agent archiedcsugiven by Ferber [30]. The definition,
again, separates the agent’s decision making psotes the environment, but is more
explicit in including multiple agents making simarieous decisions in the environment. The

agent is considered as three functions:

Perceive

35

Background I: Agents, Environments & Models

Deliberate
Execute.

The perceivefunction is defined separately for each the agerihe system. It associates a
percept with each state of the world and can baeldfas a mapping from the state of the
environment to a set of available percepts for ggena An agentg, has a perceive function
defined as:

perceivg : SR F 2.7)

The deliberatefunction for a reactive agent is equivalent to tefined by Wooldridge. It
takes a history of percepts and produces an ad®eactive agents have no memory or state
and therefore thdeliberatefunction consists simply of a reaction, modelledehby mapping

a percept directly to action:

deliberatg : P® £ (2.8)

Cognitive agents have the ability to retain infotima, and thus act on the basis of
perceptions and past experiences. Their delibergiiocess is therefore divided into memory
and decision functions. The agent’'s capacity fommiy can be characterised by an internal
states,/ S, (the set of internal states of agag)t Memorising an experience is defined as
moving from one internal state to another. The nmégation function takes an internal state

and a percemnd produces a new internal state:
mem: P° §® ¢ (2.9)
The deliberate function of a cognitive agent takggrcept and an internal state and produces
an action to perform:
deliberatg: P° §® 4 (2.10)
The “execute” function in Ferber’'s definition, takes an indivaluagent’s action and the

current environment state and produces a set hfeinfes, which will be combined by the

environment function to transform the world’s state
execute: A° ®G (2.112)
These influences are intended to resolve issuels widlering of execution in the agent

environment. If execution order is not an issuentthe execute function can be adapted to

directly transform the environment state:

executge: A ® (2.12)

36

Approximate Dynamic Programming with Parallel Stastic Planning Operators

The environment function (action of the environmeran be represented as a special type of

agent producing influences:

environment ® A

(2.13)
executg: S MG

If execution order is not an issue, then the emwitent function can be mapped as a direct

translation from state to state:

environment ® . (2.14)

2.1.3Environment Update Function: Direct Action, Discrete Tme

An environment update function using the directcexien of actions for multiple agents
(adapted from [30]) is presented below. The alparitupdates the state by processing the
action of all agents in the environment, and thpdaties the state using the environment
function. The environment function in this caselddoe replaced by a functi@xecutg but

keeping the function explicit will aid explanationthe following sections.

directEnvironmentUpdate(S,AE)
forall(a A{ 1
p = perceive (S);
a = deliberate (p);
S = execute (S,a); ,
}

S = environment(S,E);

a

a

Algorithm 2-1: directEnvironmentUpdate. S = stades agent, E = environment definition

A variation on this algorithm forms the update fiimc at the core of almost all current
computer games (see [59] and [38] for examplesin@aer games use discrete time updates
so that a predictable performance occurs each tirealgorithms are executed (avoiding
differences due to precision errors). These disdiate-steps can be set to varying amounts
for different aspects of the update, such thatatient’'s decision process may execute in 100

millisecond steps, while fast moving objects arawated every 10 milliseconds.

For computer game simulations, the agent decisiaking processes is required to be
flexible, such that a human could take the plachefagent as decision maker, with minimal
code changes. This can be achieved using the estbadient concept (below), in that the
agent’s execute function has the effect of chantiiegagent’s body state, so that a new action

of behaviour is selected, which is executed asgdatte environment update.

37

Background I: Agents, Environments & Models

2.1.4Embodied agents

The concept of an agent body is often useful irwihrg the boundary between agent and
environment in both robot control [11] and reinfemzent learning. Sutton and Barto make the

following observation [87]:

“In particular, the boundary between agent and eonment is not often the
same as the physical boundary of a robot’s or afigriaody. Usually, the
boundary is drawn closer to the agent than that. &mample the motors and
mechanical linkages of a robot and its sensing taré should usually be

considered parts of the environment rather thartgaf the agent...

Anything which cannot be changed arbitrarily by #gent is considered to
be outside of it and thus part of the environment.”

The agent perceives the world through the sensbiki® body and acts in the world by
triggering actions (behaviours) in the body. Therdgtself is therefore detached from the

environment in two ways:

The agent’s actions do not have a direct effecthenenvironmentthe effects of an

agent body on the environment mediate them.

The agent's perception of its environment is notc@mplete picture of the
environment:t is a reflection of the state of that environrnas filtered through the

agent body’s sensors.

Embodied agents make explicit the distinction betwe¢he agent, its interface with the
environment, and the environment itself. The ageotily means of gaining input from the
environment is through sensors, which the envirarirapdates. The perceive function maps
these sensors to a percept. The agent's only mekmsitput to the environment is by
selecting actions. The selected action is storethénbody state. These actions are then
executed by the agent body through its update ifiomcThe agent body is, in this respect, no

different from any other object in the environment.

38

Approximate Dynamic Programming with Parallel Ststic Planning Operators

R

N

Figure 2.2: Embodied agents. The agent is a sepatatision making entity whose contact
with the environment is mitigated through an adeody. The agent selects the next action to
be executed by the body and receives input by damysensor information into percepts.

Sensors gather information from the environmerdididing the agent’s body).

The agent itself can be thought of as the mindhefliody. If the required interface exists
between the agent and its body, the mind coulddrsidered to be operating outside the
environment. The environment can proceed withotgriention from the agent, with the

environment acting as an external control mechani@me agent body would, of course, be
inactive without the agent’'s selection of actiohst its state can still be changed by the

environment.

At a high level, the logical representation of tigent is unchanged from that presented in
section 2.1.1, because the agent’s body is pdheoénvironment, and therefore remains part
of the environment function. It is now possiblewlewer, to be more explicit in modelling the

environment as a set of objects with state, ancdgieat body as a special object with a set of

available actions and a sensing mechanism.

The environment function below takes as input theent stateS, the set of agent#, and

the environment definitiork.

39

Background I: Agents, Environments & Models

environment(S,A,E)
forall(o0 SY 1
S = update (S);
}
S = update (S); .
forall(a AY{ 1
a.body.sensors sense €5);

}

o

Algorithm 2-2: environment. S = state, A = agent; Environment definition.

The environment (including the agent body) is miedieas a set of objects, which are updated
each time the environment updates. If the envirarinopdates by a uniform amount each

time, this is referred to as a discrete time emnrent.

update: S®

(2.15)
update : S®

trAn N

Initially, all objects update the state of the eamment. Next, the environment function
updates all objects. Finally, all agent sensorsugidated by mapping the current state of all
environment objects (including the agent body) lie tensors using each agergense
function.

The body based update function can now be defifibd.update for all agents is altered to
reflect the fact that the agent can only updatpétsept based on the contents of its sensors,
and can only influence the environment throughd@nges to its body state. The execution
of actions is no longer part of the agent, andsseiad part of the environment update function
(defined above). The individual agent’'s action desthe agent’s body state by selecting
actions.

bodyEnvironmentUpdate(S,AE)
forall(a A 1
p = perceive (a.body.sensors);
a = deliberate (p); a
a.body.state = execute (a.body.staf e,a);

}

S = environment(S,A,E);

Algorithm 2-3: bodyEnvironmentUpdate. S = environié = agent, E = environment

definition.

40

Approximate Dynamic Programming with Parallel Ststic Planning Operators

The agent uses it's perceive function to receiper@ept from the sensors and sends a choice
of action to the agent body each time the envirorineeupdated. The effects of the agent’s
actions are mediated through the agent body anphtigsactions with other objects in the

environment.

Note that this is an approximate architecture, dirate showing the interface between the
agent and its body. Simulated environments sudh@se used in computer games can add
multiple levels of complexity to incorporate facosuch as collision detection, event
propagation and network capabilities. The aim her® provide the simplest environment
definition which demonstrates the separation betvibe agent and its environment, while

being flexible enough to incorporate more complehigectures.

This distinction between agent body and environnghbtoadly similar to that defined by the
PROSOCS agent template [86]. The architectureigiie in that it can be applied equally to
agents embodied in robots, virtual agents (e.g. §PE computer game environments
embodied in avatars, or to any system in whigfeas andcontroller separates the agent from

its environment.

Although more sophisticated formal definitions afeacy exist, these are mainly geared
toward refinements for individual agent types. Thpresentation used is complete for the
purposes of this research and is compatible wigh gised by Markov models which form a

key element of the framework presented in chapter 4

2.2 Environment Model

The term environment model is used to describenatiion which can provide simulated
experience of an environment. For a fully observadiéterministic environment, this is a

function mapping states and actions to succesatasst

An environment model, from the perspective of aenagcan refer to any system that the
agent can use to predict the outcome of its actiGigen an input states, and actiona, a
model gives a prediction of the successor statd;®’ a deterministic environment this will

take the same form as a sample model:

sampleModel s @ ' (2.16)

If the environment is stochastic (random) then estetie and action can lead to a set of
possible next state§;, with each member of the set having an assocjatelbbility, Pr. A
distribution modelis a model that produces all possible successoessi@nd associated

probabilities:

41

Background I: Agents, Environments & Models

1
distributionModet § ® {{ s g{ s Br..{ .S 3 where @0 (2.17)

A samplemodel is one that produces a single successor atatereward combination,

sampled according to the probability of the suamestate occurring. A distribution model of

a coin flip would produce the output s{a{theadsO.S},{ tailQ.S}} .

A samplemodel for the same situation would produce ong¢hef outputs at random. For

example: peads.

An accuratesamplemodel is one that produces a perfect simulatiothef experience an
agent would gather if it were to actually take atipalar action in a particular state. An
accurate distribution model generates all possRferiences that the agent would gather if it
took a particular action in a particular state vatborrect probability associated with each.

2.2.1 Markov Models

The environment model presented above can equilialba described in the language of
Markov models. Markov models are used to matethastic dynamic systeniehese are
systems that are in one of a distinct number déstat a particular time, and which change
states in response #&wents Events can be outside the agent’s control, knasvanvironment

events or exogenous events [7], or can be undexgbet’s control (its actions).

A Markov model defines a set of probability distiilons describing the transition between a
current state and next state depending on thestatss. The system evolves in stages, where

each event produces a transition from the staimet-1 to the state at time

In general, a discrete-time, stochastic dynamitesysnodels the probability that the system

with be in a particular state at tirhgiven a history of previous states:
Prs|e.8,... 8 (2.18)

A common simplifying assumption, applicable to y&arange of systems, is that the current
state contains enough information to predict the g&ate. This assumption is known as the
Markov assumptianif this assumption holds, the history of statesdmes irrelevant to the

prediction of the future state:

PrS|9, 8. 8)= Pr('$ 'S (2.19)

If the effects of the event are independent oftithe at which the event occurred, and depend
only on the current state of the environment, tttes model is said to be stationary. The

models presented in this research assume thatateetsansitions can be modelled using the

42

Approximate Dynamic Programming with Parallel Ststic Planning Operators

Markov assumption, and are stationary, finite-stadescrete-time, stochastic dynamic

systems.

Perceptions

If we assume an implicit event model (where exogsnevents are modelled as part of the
agent action) and we assume observations are indepe of time. The probability of

receiving a particular percept at time t can depend
The state of the system at time t-1,
The action taken by the agent at time t-1.

This model can be used to describe a variety afraggons about the sensing capabilities of
the agent. Each of these assumptions correspordiype of Markov decision process.

Fully observableMDP (FOMPD): The agent's observations exactly dbsche state
that it is in at time t. The agent, in effect olvesr the complete state of its
environment (P = S). The agent therefore receiesfegt feedback about the results

of its actions and the effects @ogenougvents (events outside its control).

Non-observabldDP (NOMDP): The agent receives no perceptualrinfdion from
its sensors. This can be modelled as P = {p}, mtitig that the agent receives the
same percept at all times or as P = {} (indicattbat the agent receives no useful

perceptual information).

Partially observableMDP (POMDP): The agent receives incomplete or ynois

information about the state of its environment.

This research treats all environments as FOMDPpideshe fact that we are making
incomplete observations on the state of the enmigort. Environments are treated as FOMDP
because the agent does not have any world moda ththn that it can gather from evidence.
Therefore the problem is fully observable in temhshe possible models that the agent can
construct. The world to be modelled by the agentccbe inherently stochastic or, in fact be
deterministic, but adhering to laws of which thestghas no knowledge and must therefore
approximate by use of probabilistic rules. For ladiscussion of these distinctions see Pearl
[69].

2.2.2 Perceptual Model

The separation of the agent from its environmeilvigies a useful abstraction for agent

modelling because the agent’s environment is dfiercomplex to model completely.

43

Background I: Agents, Environments & Models

The sole contact an agent has with its environnerthrough the percepts received and
actions selected. The agents in this research maist a model of their environment through
interaction. This model must be based on the kndydeof the actions it has selected and the
percepts that it has received. The agent's tastois therefore, to model the environment

itself, but rather to model its perception of tin@ieonment.

A perceptual model is logically equivalent to awiemnment model from the point of view of
the agent. It models the successor percept itredéive, given an initial percept or action.
Given an input percepp, and actiona, the perceptual model gives a prediction of the
successor percept, p’. If the function is deterstiaior a sample mode is used this will be of

the form:

samplePerceptualModel ‘p ®a (2.20)

The perceptual model can be deterministic evehdfdnvironment itself is stochastic. The
mapping of states to percepts may make the elenwntise environment which contain
stochastic properties map to the same perceptsexaonple, a tic-tac-toe agent controlling a
robot may have a percept that is a function ofciimeent board state. Taking an action would
predictably change the percept, but the state efwbrld outside the percept (including
whether its opponent had decided to stop playing)dcchange randomly.

As is the case with the state-based mode, if thie@mment is stochastic from the perspective
of the agent, then each percept and action cantéeadet of possible next percefs, with

each member of the set having an associated piiypabr:

distributionPerceptualModel p @ {{ ,p p{ .0 Wr.{ n. bk}
1 (2.21)
where pr=1.0

A sample model chooses a single percept fR®¥mdistributed according to the associated
probability.

The environment may be deterministic, but appeachststic from the point of view of the
agent, because its mapping is not one to one. $S@®la probability based approach enables
the agent to model complex environments at a hegbllof abstraction. It also enables it to
model events which occur randomly, and model evaitieh are not random, but which

appear random from the limited perspective of dena

For each actiorg, taken at time, after receiving a history of percegfs, ..., g} an accurate
model predicts the percep,;. A perceptual model exhibits the Markov propeftgll the

information required to predict percept; is present irp. Often the Markov property will

44

Approximate Dynamic Programming with Parallel Ststic Planning Operators

not hold for the agent’s perception of its envir@mty but the agent can make an approximate

model of the environment using the Markov assunmptio

2.3 Model Representation

A model of an environment is a representation bstraction, which captures essential details
of the environment. For an agent, these essertallsl should contain everything it needs to
know in order to make decisions to move the envirent towards its preferred state (goals).
For an agent to be able to makplan, it must be able to model its environment in ortder

predict the result of each action it takes.

Models represent the expected transition for aectirstate to a successor state, in response to
an action. A simpléabular methodor representing this transition, presented in DENEB8],
contains a table entry for each state action paligwed by all possible successor states and
their associated probabilities. This tabular metbad be referred to as a “state-action” map.

For a deterministic environment, each table entmtains a single transitiog,a ® s,;. If

the environment is stochastic, then there may berakfollowing states with a probability of

reaching each one.

A simple example will help to illustrate these cepts. Consider an agent in an environment
containing a coin, showing either heads or taile &gent has two possible actioftig: or do
nothing If the agent chooses ttigp action, then the result will be heads 50% of iheet

(probability 0.5) and tails otherwise. If it choegedo nothingthe coin will remain as it was

0.5

Figure 2.3: States transition diagram for a coiipfling agent. States are represented by
ovals and actions by arrows. Arrows lead from ttagtsstate to the end state for a particular

action labelled with a probability.

Figure 2.3 shows a state transition diagram forcthia flipping agent. Nodes correspond to
states. Arcs show possible transitions betweeresstat response to actions. Each arc is

labelled with the action and associated probabifftthe state transition.

Table 2-1 gives an example of a tabular world moejetesentation of this environment.

45

Background I: Agents, Environments & Models

Table 2-1: A tabular world model built by labellisgates using empirical evidence

State Action | Next Stat Prob
Head: | Do Nothinc | Head: 1.C
Heads| Flip Head: 0.5
Tails 0.t
Tails | Do Nothinc | Tails 1.C
Tails | Flip Head: 0.5
Tails 0.5

The do nothingaction is an example of geterministicaction: an action that always has the
same result. Thilip coin action is an example ofstochasticaction because it can have more

than one outcome, each with a probability of odogtr
The agent could equivalently model its perceptibthe environment using table entries for
the transitiongy,a ® Rp,,. If the environment is fully observable, then #tate transition

diagram and tabular world model are identical fathistate models and perceptual models.

2.3.1Factored State Models

The statesof the environment can be described by a numb&adéires The model presented
above has only two states, and the only featuteasfe states is thmin side Further features
could be added to the model to describe, for exanipke current wind speed. Alternatively

each state can be given a separate label. Tabkh2w?s these two equivalent representations.

Table 2-2: Coin Side and Wind Speed are featuresfattored state model. The state of the
world can be described by the states of each ofeidteires that describe it, or by a label

defining the combined states.

Coin Side| Wind Speed Labelled States

Heads Strong COIN HEADS WIND STRONC(
Heads Weak COIN_HEADS_WIND_WEAK
Tails Strong COIN_TAILS WIND_STRONG
Tails Weal COIN_TAILS WIND WEAK

Factored state models are useful for agent plansygiems for the following reasons

(adapted from Sanner [79]):
A world model can be described compactly usingctofed state transition model.

The agent’s goals may be dependent upon only d gaudlof the world model. An
incomplete model may describe the part of the emvirent influencing the agent’s

goal well, despite being a poor model of the comepémvironment.

Structure in the model can be used to find stredituthe utility function.

46

Approximate Dynamic Programming with Parallel Ststic Planning Operators

The factored model can be learned more efficieintiyn data.

If, for example, the agent’s goal is for the carbe showing heads, then the wind speed may
be found to be irrelevant to its preferred statesuining the agent has an accurate description
of the affects of its actions on the world it casewa model with poorly evaluated transition

probabilities for wind speed, but which is an aeteimodel for the agent’s purposes.

Figure 2.4 shows how the factored state transtiiagram for the coin, with the additional
wind speed element, can compactly represent thigiacll feature. The diagram accurately

represents the feature as being outside the agemttsol and having no effect on the coin

1.0 Q.5 1.0
0.9 0.1 0.9

Figure 2.4: Factored state transition diagram of@in flipping agent with an additional
Boolean wind speed component that changes withapitily 0.1 each time step, irrespective

of the agent's action.

side state.

Figure 2.5 shows the equivalent state transiti@grdim for the coin flipping agent with the
additional wind speed feature. This graph is qoiteplex, even with only two state features.
The complexity is, in part, caused by the needtler arrows showing state transitions to

incorporate the effects of environmental actiorsn@itions outside the agent’s control).

a7

Background I: Agents, Environments & Models

Figure 2.5: State transition diagram for the cdiipping agent with an additional wind speed
feature. The probabilities for the “do nothing” aah are shown. Flip action probabilities are

omitted.

If the agent is attempting to model the effectgoéctions, it can be useful to know the limits
of each action’s influence. This can also be ussh#n the agent is trying to plan. The agent
can plan more effectively if its model takes inttc@unt the fact that some parts of the

environment are beyond its control.

2.3.2Influence Diagrams

Influence diagrams give a visual representatioa fafctored state model which clearly shows
the dependencies between state variables. Thesespagion is a graphical method with a
similar structure to a Bayesian network [68]. I& ttnvironment model is stationary (does not
change over time) and displays the Markov propéréxt state is dependent only on current
state and action), then the model can be reprabdmyte two-tier network, with a layer of
nodes for the current state and a layer for theessor state, known as a temporal Bayesian

network [7] or two-tier-Bayesian network (2TBN) [8]

48

Approximate Dynamic Programming with Parallel Ststic Planning Operators

Act

| »
| Action Heads Tails

Flip Heads 0.5 0.5

Flip Tails 0.5 05

Heads 1.0 0.0

Tails 0.0 1.0

i t+1)
Weak
0.9 0.1
| Weak 0.1 0.9

Figure 2.6: Influence Diagram representing a faetistate model for a coin flipping agent.

Figure 2.6 shows an influence diagram represemtaifathe coin flipping agent in factored
state model form. Each output node has an assdotateditional probability table, which
shows the probability that each feature will takeagparticular value, depending on the input.
The diagram is a useful visualisation tool becatisaows explicitly the connection between
actions and state variables. There is also a rietiué storage in comparison to a non-
factored representation. In this example the fiasle stores eight values and tH& bur
(totalling 12). A non-factored CPT would requirex22 x 2 rows (combinations of action,

coin side, wind speed) and 2 x 2 rows (coin sidkwimd speed outputs) totalling 32 entries.

Notice that the CPT displays some wasted stordge flip action has entries depending upon
the input being heads or tails. In fact this ielevant, and the CPT can be further simplified
by using a tree representation for the conditigmebability, known as a structured CPT [7].
Figure 2.7 shows this representation.

) VRN

Action Heads Tails
Flip Heads 0.5 0.5
Flip Tails 05 05 ’/ >\
Heads 1.0 0.0 / \t
Tails 0.0 1.0
y o« K N
1.0 1.0 0.5 0.5

Figure 2.7: Structured CPT representation of coiotial probability tables for influence

diagrams.

49

Background I: Agents, Environments & Models

Influence diagrams are aaxplicit eventrepresentation of two-tier-Bayesian networks
(2TBN). Explicit event representations allow evemds be represented as inputs to the
network. Figure 2.6 shows an example of an infleetiagram in which the agent’s action is
the only event input, represented as a special modee network that is under the agent’'s
control. The influence diagram representation adldar multiple events to be input, which

would be represented as additional rectangular sxotlee events must be external to the
features of the state space, because the model irequired to predict the occurrence of
future events, and indeed the external input ohtigentrol is necessary to the use of the

model.

An alternative form of representation is to buildegpparate 2TBN for each action. A 2TBN is
an implicit eventrepresentation and, therefore, does not contgutiavent nodes. Implicit

event models include the influence of external &vas changes to the transition probabilities
in the network. The selection of an action requttes selection of a separate 2TBN model
because there is no mechanism for actions (evémt®e input. For a discussion of this

representation, see Boultilier et al [7].

In this research, the agent’s action is the onnétype allowed in the model. The planning
operator representation defined in chapter 5 allagditional event inputs but, because these
are outside the agent's control, the model coultl b used unless there was a way of
predicting their occurrence. Instead, an impligiér® model is preferred for all events except
the agent action, with the model including the atulity that external events will change the

environment state in the transition function.

Closed vs. Open World Assumptions

The closed world assumption is defined in logicgpaonming as the assumption that anything
that cannot be shown to be true in the world isefgd4]. The opposite of this is the open
world assumption, which limits the deductions aerdgcan make to only those that it can
show to be true or false (negation as failure isused). If a deduction in the open world

assumption cannot be shown to be true or falsa,ith&s unknown value.

The systems presented in this work are closedhénsense that everything that can be
perceived in the world is present in the initiatgept in one of the possible states, making
negation as failure possible. The models are giem,oin the sense that negation as failure is
not used because all facts can be shown to betrisdse at all times. The fixed percept size
is a restrictive condition, but is useful in thiatéduces the possible percept space to be static
and non-infinite. The result is that there are mu/delete operators, only changes of

perceptual features from one state to another. plaening operator system and operator

50

Approximate Dynamic Programming with Parallel Ststic Planning Operators

learning methods presented in chapters 5 and 6hangever, easily adapted to learning

add/delete operators, and this is an interestieg for future research (section 11.3).

2.3.3Probabilistic STRIPS operators (PSOs)

Influence diagrams represent the stochastic ewsluir persistence of each state variable in
response to actions. Often, however, the agentisrechave influence on only a limited
subset of the environment features. Figure 2.6 shamvexample of an influence diagram in

which one of the state variables, wind speed, islependent upon the agent’s action.

In a wide variety of agent environments, there aneumber of state variables that do not
change unless the agent acts upon them, anddiv@antageous to planning system to have a
representation that models this persistence incananical way. Influence diagrams require
that each variable must be explicitly assertedeasigting in value if unaffected by an action.

This is an example of the well knovinrame problemand is discussed in section 5.5.

One solution to this persistence problem, firstaligwed for STRIPS operators [31], is to
describe the outcomes of an action in terms of gbarto the current state, leaving all

unchanged variables unaffected.

A classical (deterministic) STRIPS operator hasaation, a set ofpreconditions(pre),
which define the situations in which the operatan e applied, and a set effects which
describe thehangeto the environment if the action is taken. Tharge is defined in terms
of deletions(del) andadditions(add), to the current state of the world. An example ofmera

which turns a coin from heads to tails is showrowel

operator turn(X)
pre: showing(X, heads)
del: showing(X, heads)
add: showing(X, tails)
operator turn(X)
pre: showing(X, tails)
del: showing(X, tails)
add: showing(X, heads)

Probabilistic STRIPS operators (PSOs) are a prtibtabiextension to STRIPS introduced by
Hanks [25][34]. The operators allow actions to beresented by multiple operators with
different effects (such that an action can havieiht effects depending upon the context in
which it is used) and include probabilistic effefits model both stochastic actions and those

for which the effects are not certain).

51

Background I: Agents, Environments & Models

The conditions of operators in a PSO setratgually exclusivdonly one operator can be
applied to a particular state) aeghaustivgeach state has exactly one applicable operator).
The context of each operator determines the camdituinder which the (stochastic) effects of
the operator will be applied. The effects are miedehs change sets, which define a set of
additions and subtractions from the current steEch member of the change set has an
associated probability. The probability of the mensbof the change sets sums to one. Figure
2.8 shows a decision tree PSO representation flip aaction. Figure 2.9 shows a PSO
representation of thdoNothingaction. Each action has a separate PSO. The adi#onbe
represented by decisions trees because they araliguexclusive. Each branch of the tree
represents @recondition The leaves of the tree contain additions (+) ambtractions (-)
from the state, equivalent to tloeletionsand additionsof STRIPS operators (abbreviated

such that heads = H, tails= T, strong = S and we¥k).

/\
p A
0.05 0.45
0.45 0.05
0.05 0.45
0.45 0.05

Figure 2.8: PSO representation of the Flip action.

N
w.
' A
nil 0.9 nil 0.9
-S+W 0.1 +S-W 0.1

Figure 2.9: PSO representation of the doNothingasct

The example shows both the strength and the weskmieshe PSO representation. The
doNothingaction is compactly represented, because theradties not change the state of the
coin side, and its persistence needs no furtheeseptation by the action. The flip action,
however, has to include each of the outcomes fadwpeed in its change sets, despite the
change being outside the influence of the oper&80s, much like STRIPS operators, can
give a compact representation of an environmentchvichanges solely in response to an

agent’s action, but become complex if the enviromnebanges outside the agent’s control.

52

Approximate Dynamic Programming with Parallel Ststic Planning Operators

2.3.4Noisy Deictic Rules (NDRs)

Noisy deictic rules (NDRs) are a relational extensiof PSOs which include deictic
references and relax the frame assumption by imgudoise to model changes to the
environment outside the agent’s control. NDRs [@Fg an extension of Probabilistic
Relational Planning Rules [66][100]. NDR'’s are alsmwn as noisy in-deterministic deictic
rules, or NID rules [53][54].

Similarly to PSOs, NDRs require that the rule ctinds are mutually exclusive, such that
any given state-action pair is covered by at most le. An example of a set of NDRs
representing the coin flipping agent is given below

flip(X):showind X heads

0.5:showing(X, tail§,@ showing X hea¢
® 0.4:nochange

0.1:noise
flip(X):showind X tail3

0.5:showing(X, headsd showirng X ta)
® 0.4:nochange

0.1:noise
default:

0.9:no chamge

0.1:noise

The probabilistic outcome set is similar to thagdiby the PSO representation. There are

three rules in the rule set above. Each rule costai
An action: e.gflip(X).
A precondition: e.gshowing(X, heads)

An outcome set with associated probabilities (iathd by the arrow® , with the

sum of the outcome probabilities being 1.0).

Actions contain parameters which can be matcheéldet@nvironment state to form rules. This

allows generalisation in that the rules can beiaggb many objects as long as the conditions
of the rule hold. In the rule set above, the patam¢€of theflip action can be matched to any

coin in the environment, with the choice betwee fihst and second rule dependent upon
whether the coin was previously showing heads its. tBxactly one rule can match each

possible state/action combination of the envirorimeamd the outcome set determines the
changes to the current environment state in regpanthe action.

53

Background I: Agents, Environments & Models

The frame assumption is relaxed, in that each caiehave aoisecomponent, as well as a
no changecomponent. In the above example, the change ofl wpeed is handled by the
noise component of the rules, simplifying the #ligtion. Thedo nothingaction has no effect
and does not need to be included in this repreSentdecause it is handled by the default

rule.

The outcome of the noise result is not modelledNBRs. If the noise outcome occurs, then
the state transitions to one of the other posgibléronment states with equal probability, or a
probability defined by a simple distribution (epyoportional to the observed occurrences of
the state in training data). In the case of the ¢dbp environment, this results in a poor

model, but has been shown to be an effective meihahvironments for which the noise

component need only introduce a random elemenhdoagent’s planning mechanism to

simulate that its plan may fail with a defined paiblity [67].

Deictic references are used to model variablesatatrequired as context to the action, but
are not required as parameters. If, for examplewaeted to improve our model of the flip
action to include information on whether or not #yent is wearing a glove (which makes the

action less likely to succeed) while attemptingftheaction, we can model this as follows:

flip(X):{Y: wearing Y, gloue ¥
showingd X heads
0.2:showing(X, tail9,@ showing X heag
® 0.7:nochange
0.1:noise

The parameterised actioftip(X), and contextshowing(X, headsyemain unchanged, but an
extra line of deictic referencgY: wearing(Y),glove(Y)}allows the action definition to be
applied with greater contextual information. In geal, the term deictic reference follows the
terminology of Agre and Chapman [2] in adding thdity to refer to objects on which an
action is being performed. They can be used, fampte, to refer to an object which is under
the one that is referred to in the parameter fishe action; or the object currently in-front of

the agent.

The restriction that only a single rule can be igabin a given situation is useful in planning
terms, but, as the difficulty with the wind-speat/ieconment-variable shows, is restrictive in
terms of the ability to model a wide range of ditras compactly. Although it is possible to
model the environment accurately by adding extrad@&mns to the rules to include new
operators for each wind-speed, this would requireumber of rules exponential to the

variables which change outside the agent’s control.

54

Approximate Dynamic Programming with Parallel Stagfic Planning Operators

Chapter 5 defines a rule syntax which solves theeiof state features which change outside
the agent’s control by allowing the applicatiorrolies in parallel, and through the addition of

anenviron menbperator.

2.4 Summary

This chapter has presented the background for thenimg operator based environment
modelling system that will be presented in chaptefn initial definition of an agent and its

environment was followed by the introduction of emvironment model based on embodied
agents. The agent was defined as a decision makitity, separate from an environment, but
able to influence it. The agent’s only method afitcol is to select actions (behaviours) in the

agent body, which are then carried out in the emvirent update cycle.

With the agent’s interaction with its environmerstablished, it was possible to define an
environment model in terms of simulated environmaknésponse to action. If the agent’s
access to the environment state is mitigated thratsgperception, then the model is of the

agent’s future percepts.

Methods of representing the model were presentedimple tabular representation with
probabilistic extension; probabilistic graphical aets; and probabilistic planning operator
representations, including probabilistic STRIPS rafigs (PSOs) and noisy deictic rules
(NDRS).

55

Background I: Agents, Environments & Models

56

Approximate Dynamic Programming with Parallel Stagfic Planning Operators

3. Background II: Model Learning & Planning

This chapter introduces the required backgroundHerstochastic planning operator based
model learning algorithm used in this research, thedbackground in planning for stochastic

environments based on dynamic programming.

3.1 Model Learning

If it is not possible to provide the agent withaaturate world model, then the agent can be
tasked to learthis information from interaction in the environmefhis can be achieved in
simple environments through observation of the abilliies of transitions between labelled
states. In more complex environments it is necgsikatearn a factored state model, or a

probabilistic relational model.

The simpleabular modelpresented in section 2.3 can be learned by the{0y{B88] method.
Each state is labelled as it is encountered, améis built of the following state after each

action.

After each experientially encountered transitipng ® $,;, the model records a table entry

for s,a with the prediction thas.; will follow. If the model is queried with a previsly

encountered state-action pair, it returns thedastessor state as the model prediction.

If the environment is stochastic, then there magdoeeral following states with a probability
of reaching each one. The model can be extendedctwporate this by recording each
successor state encountered, with a count of thrauof times it has been visited. The ratio

of each encountered successor provides an empgrcbability for the model.

The coin flipping agent presented previously isnapée environment with two statedigads,
tails}. This form of model is relatively easy for an ag¢o build from empirical evidence. It
builds a list of all the states it has observed thedactions it took in each state. It then records

the state it observes subsequently.

The number of times the next state occurred foh esiate-action pair, divided by the total
number of occurrences of the state action pairsgilie empirical probability. Table 2-1 gives

an example of an agent’s representation of a waddel built in this way:

57

Background II: Model Learning & Planning

Table 3-1: Building a tabular world model by labe{ states using empirical evidence

State Action Next Stat Obs | Empirical Prob

Heads | Do Nothinc | Head: 2104 | 21042104 = 1.

Heads | Flip Head: 1024 | 1024/(1024+97¢=.512
Tails 97€ | 976/(1024+97€ = .48¢

Tails | Do Nothinc | Tails 197¢|1978/1978 = 1.

Tails | Flip Head: 99t [995/(995+100z = .49¢
Tails 1002| 1002/(995+1002) =.50p

The agent can equivalently model its perceptiothefenvironment by recording table entries

for the transitiong, a4 ® p,;.

If the environment is complex this method beconmagractical because the number of states
that a world can be in is exponential to the nundddiactors involved. For example: adding
the two-state variablevind speedo the model, increases the total number of states 2
(headsor tails) to 4 (2 x 2). If a further variable is addedkight of coinwith statesheavy

mediumandlight then the number of states increases from 4 t@4 2.

The situation is compounded by the addition of cuatus variables (variables with infinite,
rather than discrete values). For exampleight of coirmay be represented in kg. It can have

an infinite number of states and the total numletates is therefore infinite (4 x=).

3.1.1Learning Factored State Models
In order to model the environment using featuress inecessary to create a model of the
features which are dependent upon each other. Antagttempting to build a world model in
complex environments, must be able to determinehvf@atures are important and which to
disregard. For example, the agent can take a nuwibip coin actions, and observe the
following information before and after each action:

agent actionf{ip coin or do nothing,

coin side,

wind speed,

wind direction,

coin weight.
Humans are adept at making rules such as:

If the action isdo nothing the final coin will be heads if it was heads poegly and

tails if it was tails previously.

If the action isflip coin, half the time the result will be heads and thHeephalf the

result will be tails.

58

Approximate Dynamic Programming with Parallel Stagfic Planning Operators

Features such as coin weight and wind speed apsutited from our rules because we
assume that they do not havsignificanteffect. For an effect to be significant it musvéa
an observable impact on the outcome.

The process of building a factored state mode feonpirical data requires the identification
of conditions relevant to the probabilities of ti@gcomes. The task for the learning process is
to find the minimal set of conditions which accetatcapture the outcome probabilities for

each operator. Finding an operator set with minicoalditions is important because:

(i) All relevant data to the probability of an indiveluoutcome can be included in the
rule.

(i) Associating utilities with the rules requires thales group together related areas of

the state-action space.

Several methods exist for learning factored stadeets. Influence diagrams are an example
of a Bayesian network, and can therefore be leatrsiag methods for learning Bayesian

network structure. This thesis focuses on a plapraperator based representation, and
Bayesian network learning is therefore beyond tbeps of this research. The interested
reader is referred to the Bayesian network learmilggprithm developed by Friedman and

Goldszmidt [32], which outputs a network from datad uses decision trees to represent
conditional probability tables.

A noisy deictic rule (NDR) learning mechanism [@¥s been developed which uses an
adaptation of inductive logic programming [62] &t ¢ore. This method is not able to model
parallel rules with multiple variables changingsidé the agents control and is, therefore not
directly considered background to this researctsutnmary of the method is provided in
section 3.1.5.

Section 3.1.2 outlines the Multi-Stream Dependeridgtection (MSDD) algorithm: a
probabilistic STRIPS operator (PSO) learning methbdt has been developed using a
combination of structured search and statisticalificance.

Section 3.1.4 outlines the Apriori algorithm: a hmad for extracting probabilistic association
rules from large databases. This is an active afeasearch in data mining, with the Apriori

algorithm forming the basis of several methods.

A combination of the MSDD and Apriori methods fotire core of the Apriori Stochastic
Dependency Detection (ASDD) algorithm, defined liayater 6.

59

Background II: Model Learning & Planning

3.1.2Learning PSOs with the MSDD Algorithm

The Multi-Stream Dependency Detection algorithm I8 is an algorithm developed by
Oates and Cohen that has previously been emplaykzhtn probabilistic STRIPS operators
[65]. The algorithm requires that the percept isdixed size and that the possible values of
each percept element and action are known in agvaM8DD is a batch algorithm and uses
the history of perceptual data observed by the tageform probabilistic STRIPS operators.
Each item in the history contains the initial pgrcection taken and successor percept.

The algorithm starts with a single operator matgtah conditions (the most general operator

possible) and performs a search from general toifspever the possible dependencies.

The function,f, evaluates the best node to expand next. A typiedsumre would be to find
the node with the highest occurrence in the histbgy counting the co-occurrence of the
node’s preconditions in the initial percept andeef§ in the successor percept. This requires a

complete pass over the data set of perceptual Data,
The coin flip agent environment has actions, A, partepts, P, defined as:

A = {flip, doNothing}

P = {CoinSide, WindSpeed, Reward}
P.s= {heads, tails}

R,<= {strong, weak}

P, = {pos, neg}

As an example of a PDI produced by the agent in énivironment, the &7element of the
percept history, D, could be:

R, = {tails, weak, neg}

Ass = {flip}

R, ={heads, strong, pos}

A rule in MSDD is essentially a PSO of the forgaction, conditions><*, effects>

probability>.

Each rule must contain all elements of the perdagtcan contain a special wildcard element
(*), which matches anything. Actions are includedome of the condition elements, with this
element forced to be a wildcard in the effects. Ginne rules for theoNothingaction would
be represented in MSDD as:

Conditions = <doNothing, *, weak, *>

Effects = <* * strong, *>

Probability = 0.1

60

Approximate Dynamic Programming with Parallel Stagfic Planning Operators

The above rule can be written as:
<doNothing, *, weak, *><*, * strong, *> Pr: 0.1
PSOs do not change any variable which is not meation the effects. The rule above does

not, therefore, change the conditimeakfor wind speedvith probability 0.9 (the remaining

probability).

MSDD(D,f, maxnodes)
1. expanded =0
2. nodes = ROOT-NODE()

3. while NOT-EMPTY(nodes) and expanded < maxnodes d o]
a. remove from nodes the node n maxi mising f(D,n)
b. EXPAND(n), adding its child ren to nodes

c. increment expanded by the number of
children generated in (b)

EXPAND(n)
1. for i from m down to 1 do
a. if n.preconditions[i] "' then L
return children
b.fort p 1 ossible values of n.preconditions[i] do

i. child = COPY-NODE(n)

ii. child.preconditions][i] =t

iii. push child onto children
2. repeat (1) for the effects of n
3. return children

Algorithm 3-1: Multi-Stream Dependency DetectiorS@D). D = set of perpetual data

items, f = an evaluation function, maxnodes = tleximum nodes that can be explored.

The algorithm does not specify which children skook generated before others, but does
ensure that each dependency is explored only dineefinal node list is output in general-to-

specific order as a natural consequence of theitiga

The experiments comparing MSDD to the ASDD algonitfchapter 7) make three additions
to the above algorithm.

The first is in EXPAND (3.b) in which a check is deathat the generated child matches at
least one observation in the percept history, Doreeadding it to children. This stage is
equivalent to the “REMOVE_PRUNABLE" stage in thegimal MSDD algorithm [64].

61

Background II: Model Learning & Planning

For example, MSDD can generate the rule:

<doNothing, tails, *, pos><*, tails, *, *> Pr: n/kk

In the coin flip environment, the agent cannot nezea positive reward when the coin is
showing tails. A check against the data set wileg¢ that the generated rule has no matches
and can be eliminated from the node list, alonghwis children (which will never be

generated).

The second change is to preclude the generatichilofren of rules which have a probability
of 1.0. In other words, rules with an output thataiready predicted with certainty by the
input. In this case, no more accurate predictiankma made and there is no need to generate

further children.

The third change is that the effect part of the tiglallowed to have only one effect element.
This change has been made to match rules gendmatdte ASDD algorithm, in exhibiting
conditional independence. Combining individual eféecan generate complete successor
states. If this single outcome restriction was matuded, a large number of rules can be
generated by standard MSDD. The disadvantage efathilitional restriction is that illegal
states can be created when multiple rules areexppii parallel, such as one containifg

tails, *, pos>. These rules are eliminated using constraints @eé&i4.5).

Thefilter process of MSDD removes specific rules with eBeghich are covered by more

general rules.

3.1.3Filter

Thefilter function (Oates and Cohen [65]) is an extensiaiméoMSDD algorithm. It removes

rules that aresubsumedindcoveredby more general ones:

Subsumeda rule, i is subsumed by a rule, if the PDIs matched by are subset or
equal to the PDIs matched by In other words,ris a more specific version of. r

Covered:a rule, § is covered by a rulep,rif r; is subsumed by, and there is no

statistically significant difference between théeru

If a rule is covered by another rule, then theénased specificity of the conditions does not
have a significant bearing on the rules outcome Statistical test for non-independence is

achieved by using the G statistic (Wickens [978e &ppendix section A.2 for a definition.

62

Approximate Dynamic Programming with Parallel Stagfic Planning Operators

For example, take the rule:

<doNothing, tails, strong, pos><*, tails LY *>Pr: 1.0
The above rule is a more specific version of:

<doNothing, tails, *, pos><*, tails, *, *>Pr: 1.0

The second rulsubsumeshe first. If the extra condition has no signifiteffect on the
probability of the rule then it isoveredby the more general rule (and therefore unnecgssar

In this example the additional conditistronghas no significant effect.

More general operators are preferred because:dteynore likely to apply to rules outside
the original data set; a reduced number of rules @aver the same information; and the

empirical probabilities of the leaned rules are enaccurate (containing more samples).

The filter algorithm in this research adds an adddl step to remove rule element sets that
have no head. The ASDD algorithm (chapter 6) camegde rules without an outcome

because it is searching for sets of rule eleméatisdccur together, irrespective of whether an
outcome is present. These partial rule elementaset®f no further use after the generation

stage.

filter(R)
/Isort R in non-increasing order of generality
sortByGenerality(R);
S — .

while (R !={})
s = pop(R);
push (S, s); -
forall(r R){ I
if (head(r)={}) //lremov e if no outcome
remove r from R;
else if (subsumes(s, r) and gSt atistic(s, r) < GLOBAL_G)
remove r from R;

return S;

Algorithm 3-2: filter(R). R= complete set of canaliel rule element sets.
R: a set of rule element sets.
subsumg®y, R): returns true if ruldR; is a generalisation ¢,.

gStatisti€dR;, R,): returns the G statistic to determine whether twmditional
probability of the outcome d#; given its conditions is significantly differenpfn the
probability of the outcome dR, given its conditions. The outcome is the same for
both rules because they pass Hubsumegest. This is, therefore, a test that the
probabilityo|R;.x and the probability 0b| R..x are significantly different.

63

Background II: Model Learning & Planning

The constanGLOBAL_Gis used as a threshold, which the G statistic raxseed before,d
and d are considered different. A value f@LOBAL G of 3.84 tests for statistical
significance at the 5% level, while a value of A#@sts for significance at 10% (used for
smaller data sets).

See appendix section A.2 for explanation, pseudtecsignificance levels and explanation of
the G-statistic. For a discussion of the issueatirg) to use of statistical significance in

association rule mining, see Webb [96].

3.1.4The Apriori Algorithm for Association Rule Mining

The Apriori algorithm addresses the problem of agering association rules between items
in a large database of sales transactions. An ithdi record in a database of this type
generally consists of mansaction dateand thetems boughtn the transaction (referred to as
basketdata). An example of an association rule is ti88 ®f customers purchasing tyres and

car accessories also purchase a car service [.c@h be written as a rule of the form:

{tyres car accessories { car seivi

Association rules find interesting relations betweariables in the database. Two key forms
of interesting relation arsupportandconfidence

Supportis defined as the proportion of records in theabase that contain the set of items in
the rule. If 147 of the 7500 transactions in theéadase contain all three items (tyres,

accessories and car service), then the rule hagped value of 1.96% (147/7500).

Confidencds defined as the probability that the conclusidthe rule follows the conditions.
If there are 150 occurrences of transactions ceimigiiboth tyres and accessories, then the
probability of a car service being purchased atstmae time is 147/150 = 98%.

The key feature of the Apriori algorithm for assdimn rule mining is that it is able to
generate and eliminate candidates of increasingptaxity using less complex rules as a
basis without the need to query the entire dataftassach new rule. It achieves this using the

concept ofdownward-closure

Downward-closures the observation that for a frequent item-sitpfaithe subsets of the
item-set must also be frequent. For an infrequemh-iset, all of its supersets must also be
infrequent. The Apriori algorithm exploits this pperty to avoid multiple passes over the
transaction data when generating new rules. Firsty item-sets of sizé& elements are
generated by combining item-sets of diz&for which all but one element are equal. Next the
k-1 size item-sets are searched to check that alletsilisf each new sizk item-set are

64

Approximate Dynamic Programming with Parallel Stagfic Planning Operators

present. If ank-1 size subset of a sizeitem-set is not present, then the item-set cahaoe

minimum support. Figure 3.1 shows this as a latifceequent item-sets.

tyres
768 567 450
tyres & tyres
150 298 148
tyres
147

Figure 3.1: A lattice showing frequent item-setthveissociated occurrences in a transaction
database. The occurrence count of combined itemiséhe lower levels of the lattice cannot
be higher than the minimum occurrences of a patent-set.

Apriori and its descendants have been shown t@ sgalto large databases [41] and several
adaptations have been developed for incrementptiating the learned rules. Typically these
adaptations maintain a setfofhge rules for which additional data may provide evicerior
inclusion to the set of significant rules [14]. Fosurvey of recent adaptations, see [4].

These features are highly desirable for model lagrrwith the need to process a potentially
large database of perceptual data, and to increiferimprove the model as the agent

receives new data.

The algorithm is the basis of Apriori Stochasticppedency Detection (ASDD) and is

explained in chapter 6.

3.1.5Learning Noisy Deictic Rules (NDRs)

Pausla et al use an inductive logic programming)linethod to learn the noisy-deictic rules
(NDRs) described in section 2.3.4 [67].

The algorithm uses three levels of search:
Learn Rulesthe outermost level, searches through the spacgestets.

Induce Outcomesghe middle level, constructs the outcome setsrgi& context and

an action.

Learn Parameterstearns the probability of an outcome set.

65

Background II: Model Learning & Planning

Learn rulesuses a greedy search in the spagaraerrules. A rule set is defined as proper if

every example in the data set has exactly onewhieh matches it. Each item in the data set
consists of a state and action followed by a swsorestate. Rules of this form can describe
the data set because every effect that is poggiNg® a context and an action is described in a

single rule.

The search uses a heuristic scoring mechanisntédha rule sets as they are generated by
penalising rule sets with more complexity (conditocand effects) than are necessary, and
scoring the set highly if it is able to reprodube tata (i.e. if the probability of a next state
given a previous state in the data matches theapility generated by the rules).

The search is initialised by creating the most Bjpecule set: defined as a rule whose
conditions are the state and actiand for every pair in the data. This is a proper red¢ as

there is exactly one rule matching every stateoagiair from the data.

The output of the initial stage of the algorithm iis effect, a tabular model of the form
described in section 2.3. Each rule contains aevétu every variable in the state in its
conditions, and is followed by every possible sgsoe state. A single rule for the coin flip

example would be:

flip(penny) :{}
showind penny healls

0.5:showing(penny tails
0.5:showing(penny head

The showing(penny, headspndition is not relevant and will be removed ngralisation

operators (below).

Learn rules proceeds by finding and applying arratpe that will increase the score of the
rule set (decrease the complexity while maintaimggroduction of the data) [54]. Four types
of operators are used, based on operations usedrufer search in inductive logic
programming (ILP) [55].

The two generalisation operators are:
() Remove a condition from the rule.
(ii) Replace a constant with a variable.
The two specialisation operators are:

() Add a condition to the rule.

66

Approximate Dynamic Programming with Parallel Stagfic Planning Operators

(i) Replace a variable with a constant.

Once a new rule context has been created, a rtd®rme is generated by finding the set of
atoms which changed from the context to the outso@eto s) for each item from the data
set matching the context. The set of outcome seisd the basis of a proper outcome set for

the rule.

This ILP based method can be used to create argiiymsule set. However, as pointed out
by Pasula et al [67], it suffers from the drawbd#uét it is only guaranteed to create proper
rule sets for the data in the training exampleso8ely, the “induce outcomes” method and
heuristic rule scoring system are slow, each régyia full pass over the data set for every
new rule. The generated rules also have to inchwd®y possible outcome for a given rule,
with the result that rules require an exponentiainber of outcome sets to the number of
outcome atoms which have independent probabilitypther words, the method is not able to
learn parallel rules with independent outcomes ¢Wwhiéan be learned using the ASDD
algorithm presented in chapter 6).

3.2 Planning

Planning in artificial intelligence is the procdsswhich an agent creates a plan that will take
it from its current state to a goal state. In dlzsplanning problems, the agent has an
accurate deterministic model of an environment Whiacan use prior to execution to find a
set of steps that will achieve a solution. Thetsta can be formed using a search through the
available actions and resulting states after exatudf each action using a brute-force
method, such as a depth first or breadth firstcbedrhe search space for a planning problem
is, however, exponential to the number of variabteshe state-space in the worst case,
necessitating the use of search optimisation mettsogth as heuristic search (e.g. the A*
algorithm [35]).

In stochastic environments, it is not possible @kena single plan and follow the steps to
completion because actions can lead to non-detesticirsuccessor states. If the random
occurrences are caused by occasional interrupitioms otherwise deterministic environment,

classical planning methods can be employed, withlaening stages when an unexpected
state is reached. Planning in inherently stochastidronments requires the formation of a
policy. A policy is a universal plan which prescribes aticecwhich should be taken in any

state that the agent can reach. Rather than aftempi reach a single goal, a policy

maximises the future rewards that an agent wikkirerin an environment.

67

Background II: Model Learning & Planning

If an environment model is known, policy formatioan be achieved by using methods such
as dynamic programming (referred to as decisioordte planning [7] when used in the
context of planning problems), or, more recenthygrté Carlo tree search [19]. If a model is
not known, a policy can be formed by model-free hods such as temporal-difference
learning [89], which achieve the same goal of &itag values to states, or state-action pairs.
These techniques are collectively known as reimfiorent learning methods because they aim
to reinforce the selection of actions which leaddwards [87]. The techniques can also be
used when a model is known, and are often moreiefii because they require less

processing to update a state-value in a singlatiter [73]).

3.2.1Reward and Value

The problem facing a decision-making agent is tectethe action which maximises its
expected future rewards at each stage on the loésés history of observations. In an
environment displaying the Markov property, the tngtate is a function of the current state,
so a history of size one contains equivalent infdiom to any history of states for the

decision maker.

A Markov Decision Process (MDP) is one which assigalue to taking each action in each
state. In the MDP frameworkwalue functiorestimates how beneficial it is for an agent to be
in a given state (equivalent to the quality of tekthe best available action in that state). The

benefit of being in a state is defined in term$utdire expected rewards.
A reward functionR: S® F, associates a rewand,with being in a states,
A cost functionC: S” A& F, associates a cost with performing actanin states.

In order to evaluate a course of action, it is aeagy to define how many stages it will take to
execute. If the course of action has an infinitenbar of stages it is known as anfinite-
horizon problemor acontinuing task If the number of stages is discrete, it is knaagna

finite-horizon problenor anepisodic task.

An example of arepisodic taskvould be a chess game, in which there is a wioner draw
at the end of each episode. An example of a comtisdask would be an investment agent
tasked with maximising profit with no time limit.h€ agent’s task is to continually pick an

action which will maximise its expected future preft each time step.

The value of a historyh] of observations of length T defined for &inite-horizon problem
as the sum of rewards gathered"R@t each stage, t, and costs incurred for eatibraat

each stage C(sd) over the history. There is no action taken in fihal, terminating, state,

68

Approximate Dynamic Programming with Parallel Stagfic Planning Operators

but a reward is gathered, so the equation contaiigal addition of reward in stag, with
no associated cost.

T-1
V(= {R9-C5 3+ R} (3.1)
t=0
The value of annfinite-horizon problemmay be unbounded. A common solution to this is to
employ adiscount factor (), where < 1.0 which ensures that rewards (and costs) at later
stages are less than those at earlier stages. Xffexted value function for a discounted

reward problem is defined as follows:

V(= ¢(R- a5 9) 32)

t

3.2.2 Solution Methods for Markov Decision Processes

The standard solution method for finding an optipalicy for a Markov Decision Process is
value iteration(see below). Modern methods use value iteratioa basis, with approximate
or efficient adaptations. For a discussion of tiaesof the art in current solution methods, see
Powell [73].

Value lIteration

An optimal policy can be generated by repeatedlgutating the value of a state, based on
the best action that can be taken in that states. bthod is callegalue iteration[5][6] and
works by feeding back rewards when they are redeivearticular states to refine the values
of the state leading to the rewards. An optimaiqgyois one that picks the action with the
maximum value from the current state calculatedioyming the probabilities of going from
state,s, to the set of possible states that the actionreanoh, multiplied by the rewards for

each of these statg’).

The value iteration algorithm works by making aieenf approximations to the true value of
the optimal policy by repeated application of egura(3.3). Value iteration can only be used
if a full model (as opposed to sampling model) taf Environment exists because it requires
the probabilities of all successor states to besnd he update equation for value iteration is
given by the Bellman equation [87]:

Vi (9 = maaX A R R+ Vi(9]

sl s
P2 = probability of moving from state te' \gin execution of actiom (3.3)
RZ =reward received when actian is takestates and leads to stast

s

69

Background II: Model Learning & Planning

An alternative form can be used if rewards are ddpst on taking an action in a state, rather
than the action leading to a next state.
Via(9=max(R +g B\(9)
sl S
P2 = probability of moving from state te' \gn actiona (3.4)
R¢ =reward received when actian is taken in state

The value of stats on passk +1 of value iteration is calculated by taking the maxm

valued action. The value of the action is equahtosum for all the action’s following states,
s’ (wheres’l S), of the probability of the action leading fromats to s’ (shown af),
multiplied by the discounted value of stateon pask (shown asv(s)), plus the reward for
taking actiona in states (R'). The discount factor, must be less that 1.0 and is generally a

number close to 1.0 (e.g. 0.95).

In order to generate a value map, the agent skdttisa state generated at random and adds
this to the value map. A single entry in the vatuap is stored asState Value}. There is one
entry for each state that the system can rea¢helagent has a complete value map, a policy

can be generated by simply choosing the action tghighest value for that state.

Once the value map has been generated, a pokguisalent to finding the maximum valued

action in a given state.

3.2.3Reinforcement Learning

If a model of the environment is not known in ads@nin terms of either the state transition
or the reward function, then reinforcement learrtighniques can be used to acquire a state-
action-value map from direct interaction with thevieonment. The standard reinforcement
learning techniques are based around Q-learning fmdow). For an introduction to

reinforcement learning see Sutton and Barto [87].

Q-Learning

Q-Learning was introduced by Watkins [94][95]. Thelue of a state-action pair is
calculated, rather than the value of the statdf.it$@ere is an efficiency benefit, in policy
calculation and policy use for an agent, in tha itot necessary to calculate all the following
states for every possible action in a current statrder to evaluate which action should be
taken next. The agent need only search the avaikattions in the table for the given state

and pick the maximum valued state-action pair.

70

Approximate Dynamic Programming with Parallel Stagfic Planning Operators

The update function for Q-learning is as follows:
Qu(s d=Q(sa+al R+gmax Q§ 8- A ¥ (3.5)

The equation containsdiscount factor () (defined previously in the Bellman equation), and
a step size,. This is an example of an update rule, where giadimproving estimates are
made on a value function. Theparameter is a step size indicating how quickly tiew
estimate should change the old one. In Q-learrihiy, parameter is known as the learning
rate. If a step size of 1 is used, then the updadguivalent to the deterministic environment

form of the Bellman equation (3.3). The equati@psize must be in the rang®ef a £ 10.

The update rule is only necessary if a model ofeheironment is not known. In practice,
however, computing all possible successor statad associated probabilities can be
prohibitive in terms of processing requirementsd dinis often only feasible to compute

sample updates.

If the agent continually follows an optimal poli¢gicks the best action at each stage) with
some error introduced in order to allow it to explathe Q-learning algorithm will converge
on an optimal policy with a probability close t®187].

3.2.4Learning Rate

The learning rate,, for an update rule such as Q-learning does nat tabe fixed. Often it

is advantageous to use a high learning rate ilyitaadd then reduce the learning rate in the
later stages, when the value estimates becomeestdble initial Q-values will be a
predetermined number (either zero or an arbitratimate of average value). Any update is
likely to be an improvement on this initialised wa] with the consequence that it is
advantageous to use a learning rate close to t.théofirst update. Later estimates need to
converge gradually, and require a low learning.rate

McClain’s formula [58] was used for the learnirade in experiments in chapters 8 and 10.
This is a deterministic formula which begins wittearning rate of 1.0, allowing maximum

information to be extracted from the first iterati@nd gradually decreases to a set minimum.
The minimum has been set at 0.1 to keep the varibatween iterations at a reasonably high

level, while allowing convergence.

McClain’s formula is given by:

— an-l
a, Tra.,-a (3.6)

71

Background II: Model Learning & Planning

ais a parameter specifying the minimum step sizeh(is case 0.1) which the function will
tend towards .Withg = 0.1, the step size is roughly 0.2 after twoaitens and will be close

to & after ten iterations.

3.3 Summary

This chapter introduced model learning and plant&egniques. The simplest model learning

technique is a tabular method, which keep a recbavyery state encountered, action taken in
the state and the frequency of each successorrstthed. Given a state and an action the
frequency of successor states can be read fromalheto give a model of possible successor

states.

Techniques of learning factored state models famlissn planning operator learning
techniques, such as MSDD and an ILP method foniegmoisy deictic rules (NDRs). The
Apriori algorithm was also introduced, which wilbri the basis of the ASDD operator
learning algorithm defined in chapter 6.

The concept of Al planning was then discussedh@ndassical sense of forming a strategy
for taking an agent from a current state to a gtatk in a deterministic environment, and then
in the decision theoretic planning sense of fornangiversal plan, or policy, which provides

an agent with an action to take in any reachakble & an environment.

72

Approximate Dynamic Programming with Parallel Stastic Planning Operators

4. Environment Modelling Agent Framework

This chapter presents the environment agent madedind planning framework used in this
research. The framework is built on the embodieshaignvironment model (section 2.1.4).

The agent'’s task is to build a perceptual moddtsoenvironment and then plan using this
model. Initially the agent has knowledge of thea it can perform, but not the effects, and
has aperceivefunction that maps the sensory input it receivea percept (performing basic
pre-processing). The agent's task is to discoveichvhtelements of the percept are
(stochastically) affected by its actions, the ctinds under which these effects will occur,
and an associated probability. The agent can usertbdel to develop a plan (or policy) to

achieve its goals using reinforcement learningymaghic programming techniques.

This section first introduces Dyna-Q [88], whichtsaas a starting point for the modelling
framework, then defines the batch processed madellpolicy learning, and action
framework used in this research.

The framework was previously presented by the authooutline form in “SMART
(Stochastic Model Acquisition with Reinforcemeng&arning Agents: A Preliminary Report”
[17].

4.1 Integrated Planning, Acting and Learning

Figure 4.1 shows how the Dyna-Q framework defirtes rielationship between planning,
acting and learning for an on-line learning procéstapted from [87]). This process uses
experience from the environment to create a woddeh and integrates real experience from
the environment with simulated experience produsgdhe model as training data for a

reinforcement learning algorithm.

Figure 4.1: Integrated planning, acting and leargin

73

Environment Modelling Agent Framework

A planning agent can use experience to improve atwuracy of its world model and,
simultaneously, to directly improve a value funotigia reinforcement learning. Simulated
experience from the world model can be used inuwatjon with new experience as it arrives
to provide input to the reinforcement learning aitdyon.

Algorithm 4-1 gives the Dyna-Q algorithm. The algfam stores a tabular model, matching
previously seen states and actions to succesdes.stdf the environment is deterministic,
each state-action pair will match to exactly onecsssor state. The algorithm can include a
stochastic tabular model by recording successtesstand frequencies and, when the model is
queried, retrieving a sample successor state é&ios 2.3).

The model can produce a biased Q-value map, beeaulyeexperience and choices of action
are repeated more often than later experience miyne@l execution of the model-based steps
with each new experience gathered. The valuedstermines the number of times the model
is used to update Q for each additional input af veorld experience. A high value farcan
speed up convergence in environments with a limgede-space, but will bias Q-values
towards the area of the environment explored lhitia large state-spaces. A further issue is
that the random model sample step will often béfizient, updating areas of the Q-value
map that contain no useful information becauseemeard state has yet been encountered in a
trajectory from the initial or successor statese@olution to this is to use thmioritised
sweepingtechnique, which updates only the parts of theehadhich can lead to a state that
has previously changed value [60], although this haen shown to perform poorly in
environments containing easily reachable sub-optimiations [39].

The e-greedy(s,Q¥tep provides exploration, by ensuring that thenagloes not always take
the current estimate of best action.gfeedyaction is one which takes the action with the
highest Q-value for the current state, whileeagreedyaction will, with a defined probability,
e, take a random action. Initially the Q-value esties will be inaccurate and it is important
to ensure exploration occurs in the early stagiegh (brobability of a random action), but that
exploitation occurs when the estimates becomeest@dnv probability of a random action).
The e value can be fixed at a low probability (e.g. Otd)ensure this balance, or can be
gradually reduced as the Q values stabilise. Flis@ussion of fixed and variable values éor
see [87] and [73].

74

Approximate Dynamic Programming with Parallel Stastic Planning Operators

Dyna-Q
while (true)
S cutrent state
a e-greedy(s,Q)

execute action a, observe followin g state s' and reward r
Q(s,a) Q(sma)+ [+ max, Q(s'a)-Q(s,a)]
model(s,a) s'.r Hup date model

repeat n times:
s randem previously observed state
a randem action previously taken in s
s',r model(s,a)

Q(s,a) Q(s,ap+ [r+ max, Q(s',a)-Q(s,a)]

Algorithm 4-1: The Dyna-Q algorithm for determimisénvironments (adapted from [87]).
model(s,a) denotes the contents of the model.{€pe before the model(s,a) step implement

standard tabular Q-learning. The remaining stepplement model based learning.

4.2 Batch Processed Environment Modelling and Planning

Figure 4.2 shows how the framework used in thisaesh adapts Dyna-Q to perform a batch
process for environment model learning. The maagkind planning processes are separated,
while taking action in the real world involves edtion of the best action for the given
percept from the policy (universal plan). The safian of modelling and learning steps is
necessary because the algorithm used to buildl#mnipg-operator-based world model is a
batch process (see section 6). Extensions to gogitdm to include in-line operator learning
and refinement are discussed in section 11.3nméperator learning would allow a standard
Dyna-Q architecture to be employed. An advantageepfration of environment modelling
and reinforcement learning steps is that the model be re-used if the reward function is

changed (see section 4.3).

75

Environment Modelling Agent Framework

Figure 4.2: BatchModelQ. The process separates irledming and policy formation
(planning) stages. The policy can be used to sel&ains in response to percepts received

from the environment.

4.2.1 Stage 1: Model Environment

Initially, the agent takes random actions in thegimmment for a fixed period and receives
percepts in response. The environment is assumébée # discrete time environment and a
percept is received in response to each action.ageat actions can include a “do nothing”
action for a time step, which is treated in the samay as any other action and a percept is

received in response.

A list of perceptual data items (PDIs) is storedmprising the initial percept, action and

successor percept (stored as the next initial petoeavoid repetition). A second list stores
the rewards received at each time step. The PDIrewdrd list are next passed to a batch
modelling process, such as the tabular model syddined in section 3.1, or the planning

operator learning algorithm defined later in chapte

The output of this stage is an environment modéthvthe agent can use to simulate percepts
it will receive in response to an initial perceptaction.

76

Approximate Dynamic Programming with Parallel Stastic Planning Operators

batchModelQ - ModelEnvironment()
initialise:model,M,
perceptual dataitems,PDls
reward record,Rr
p initial percept
a generate random action
add(PDls,p,a);
rep eat n times {
execute action, a, observe resulta nt percept & reward: p', r
add(Rr, r);
add(PDls,p,a);
a (gewerate random action;
}
learnModel(M, PDIs, Rr);
return M;

Algorithm 4-2: batchModelQ-ModelEnvironment. Thgalthm repeatedly takes random
actions in an environment to build up a databaspesteptual data items (PDIs). PDIs are

used to learn a model via a batch learning algarith

Note that the model is initially empty and the mlodelearned in a single batch learning
process. A simple, model agnostic, method of piagidbackground knowledge to the system
would be to provide an initial PDI and reward selich can then be built upon using real-
world experience. A similar method could also bedi® provide a model agnostic method of
on-line learning by generating a sample set of RDI& rewards to feed into the next model
from previous models. On-line methods of updathmg planning-operator-based model used

in this research are discussed in section 11.3.3.
4.2.2 Stage 2: Form Policy
The second stage of tBatchModelQprocess enables the agent to generate a policy the

acquired model to provide simulated experience.

A standard tabular reinforcement learning algorittan use the model to simulate experience
and learn a table of state-action values. In thiecvalues can be associated with each state-

action pair in the model.

Alternatively, the RVRL algorithm can be employexl dssociate approximate state-values
with a rule-based model (chapter 9). Values areedton the model using the function

store(M,p,a,vand retrieved usingetrieve(M,p,a)whereM is the modelp is the percepa is

77

Environment Modelling Agent Framework

the action, and is the updated state-action value (or alternatigédte value using a similar

function with thea parameter omitted).

Form Sample Policy

Algorithm 4-3 shows how estimates of state-actialu@ can be iteratively improved by using
simulated successor percepts and rewards in respora input percept and action. The use
of sample updates and a standard reinforcememntitgpalgorithm requires that angreedy
action selection mechanism be used in order foagent to explore. Each update uses a Q-
Learning update function (section 3.2.3), whichlides, , an update speed parameter,

because the algorithm is continuously improvingnestes of the Q-values.

batchModelQ -formSamplePolicy(M, p,a)
repeat n times {

p',r sampleModel(p,a);

Qval = retrieve(M,p,a);

Qval = Qval+ [+ Q(p'.a)-Qvall;

store(M,p,a,Qval);

PP

if (ra ndom < e-value)
a randem action;

else //retrieve best Qval action f orp
a greedyAction(M,p);

}

Algorithm 4-3: batchModelQ-formSamplePolicy. M =thnvironment model, p = an initial
percept, a = an initial action. The algorithm ugeinforcement learning to update values in

the model from sample successor percepts and reward

Form Distribution Policy

Algorithm 4-4 shows how a policy can be formed Ising a distribution model to generate a
set of simulated successor percepts and rewardis asgociated probability in response to
input percepts and actions. The use of a distobuthodel update function is similar to the
Bellman update introduced in section 3.2 but umatate-action pairs, rather than state
values. There is no need to use an update spebdcause full updates are used (rather than
e-greedy action based sample updates) resultititgintilities being distributed according to
the probabilities provided by the model. A valuebetween 0.9 and 0.95 is typically used for
(discount for future rewards) in systems of thipet The algorithm is similar to value
iteration [87], but evaluates random percept-actiains (or equivalently state-action pairs for

fully-observable environments), rather than evahgatstates in order. The algorithm also

78

Approximate Dynamic Programming with Parallel Stastic Planning Operators

attaches values to percept-action pairs rather geanepts (analogous to using the post-

decision state variable in approximate dynamic @ogning [73]).

batchModelQ -formDistributionPolicy(M, p,a)
repeat n times {
{p'.r.pr,..,p"rpr} disfributionMed el(p,a);
newValue = prir + max retrieve(Mp'a , "
[T
store(M,panewVal ue);
p random selection from {p',...,p'}; J

a random action;

Algorithm 4-4: batchModelQ-formDistributionPolicil = the environment model, p = an

initial percept, a = an initial action. The algohin uses dynamic programming to update
state-action values in the model from the set ofessor percepts and rewards.
Note that the performance of the algorithm could itmproved by using a prioritised-
sweeping-based method to choose state action phicse values have previously been
updated to avoid wasteful updates of unexploredsacé the value map (as discussed in the

Dyna-Q algorithm above).

Algorithm 4-5 shows how Bellman updates can be teddrm a policy using a distribution
model. The algorithm has an amended update functissociating values with states (or
equivalently percepts), rather than a state aridracthe form of the algorithm is equivalent
to a standard Bellman update with the maximum adteing found through thgreedyAction
function (seestage 3below). The algorithm is equivalent to using vaitieeation with a fixed

number of steps.

batchModelBellman -formDistributionPolicy(M, p)
repeat n times {
a greedyAction(M,p);

{p',r,pr,,...Q",r,pr} distrjpugjonV - odel(p,a);
newValue = prir + retrieve(M,p i
i=p'tep’
store(M,p,newValue);
p random selection from {p',...,p'}; 1 N

}

Algorithm 4-5: batchModelBellman-formDistributioniy. M = the environment model, p =

an initial percept. The algorithm uses bellman ueddo update state values in the model.

79

Environment Modelling Agent Framework

4.2.3 Stage 3: Execute Policy

The third stage of the process enables the agargetdts policy to select actions in response
to percepts received from the environment. Stagessdciated a value with each state, or
state-action pair accessible via the model. Exenutif a policy means selecting the action

with the highest value from those available in ogse to the current percept.

Algorithm 4-6 shows how the highest value action ba extracted from the model.

greedyAction(M,p)
maxAction = null;
maxActionValue = 0;
foralla A{ 1
actionValue = retrieve(M, p, a);
if (actionValue >= maxActionValue) {

maxActionValue = actionV alue;
maxAction = a;
}
}
if (maxAction == null) //no model sto red for p

action = random action;
return maxAction;

Algorithm 4-6: greedyAction. M = the environmentdabwith associated values, p = an

initial percept. The algorithm returns the highgatued action available for the percept.

4.3 Discussion of Model-Based Reinforcement Learning

The main advantage of a model-based learning tqubnis that it often requires reduced real-
world experience to form an effective policy in qumson to standard reinforcement
learning. With standard reinforcement learninguealipdates are only passed back from a
single state, or state action pair, to the preggdine. The process of learning a policy
requires repeating action sequences several timfesebthe knowledge is acquired by the

agent.

Models can also be used in conjunction with appnaxé dynamic programming methods to
form compact policies. Dynamic programming in achkastic environment requires full
backups and cannot be used in either a model fragext or a sampling model context.
Distribution model techniques can only be usedufhsa model exists, or can be acquired

through experience.

A model of the dynamics of an environment can besed when the reward changes. A

predator with an effective model of the dynamicst®fenvironment can use the model if its

80

Approximate Dynamic Programming with Parallel Stastic Planning Operators

reward function changes (e.g. it becomes a prey)exXample of this would be the ghosts in
the arcade classic Pac Man, that begin the garpesdators, but become prey when the Pac
Man eats a pill. A policy learned directly from tle@vironment becomes useless in this
situation, while one learned from the model canrédearned from the same model by

altering the reward function.

The separation of model learning, planning, anthgqihases used in this research provides a
useful framework to simplify the modelling procdes the agent, but this is not a necessary
restriction for the framework in general. An indiprocess could be used to improve the
model as new experience is acquired, and reinfaeoéntearning can be performed to

improve value estimates using the improved model.

If the acquired model is a true representationllo&xperience learned then it should not be
necessary to integrate real experience (as usetheinDyna-Q framework). The main
advantage of the real experience steps is thahtreogerience can have a greater influence
on the policy learned if the environment is notist§87]. This could also be achieved by
biasing the model learning process towards morenteexperience using, for example, a

Bayesian update function for probabilities [68].

The main disadvantage of environment modelling washover direct reinforcement learning
is that errors in the design of the model, or & lniathe sample used to make the model, can
cause incorrect simulated experience. The methdsils iacrease the complexity of the

learning algorithm through the additional modetihéag process.

A disadvantage of the batch modelling method ig tlamdom actions are taken in the
modelling phase. This method of environment moadglican be problematic if parts of the
environment are only accessible through guidedactor example, the chances of winning
an adversarial game through random action can béeshiagly small (e.g. winning chess
against a grand master). This disadvantage is atgiigto some extent by modelling the
environment through planning operators (e.g. it rhaypossible to learn the rules of chess

through random action, even if a winning stateeigan achieved).

4.4 Perceptual Environment Modelling

The separation between agent and environment thranggent body (section 2.1.4) requires
that the agent body contains sensors, which aratepgdas part of the environment update
cycle and represent direct measurements of thecgmaent state (including the agent body).

The agent'perceivefunction converts sensor data into a percept. pereeive function can

81

Environment Modelling Agent Framework

be a one-to-one mapping from sensor feature toceparal feature, or can include some pre-

processing to convert the percept into a more Ufafion for the environment modeller.

Chapter 5 demonstrates the use of the perceiveidanto convert the sensor data into
axioms, which form the basis of parallel stochagptEnning operators. Other uses of pre-

processing through perception could include extaaif object data from raw image files.

The agent’s model of the environment is at thegyrtevel, rather than the sensor level. This
means that it is modelling the expected percepilitreceive in the following time step in

response to an action taken. The agent does ndtanfection to convert the percept back to
sensor data, because its environment model isegbealcept level and it can make decisions

based on predictions of future percepts.

4.5 Summary

This chapter presented a batch process framewarlagent environment modelling and

policy formation. The agent selects random actioran environment and receives percepts
and rewards in response. The record of percepbraceward is used to build a model of the
environment. A policy learning stage uses the méalsimulate environment experience and
reinforcement learning or dynamic programming igpkyed to update value estimates stored
in the model. Finally, values stored in the modeh de used to select optimal actions in

response to an input percept or state.

82

Approximate Dynamic Programming with Parallel Stastic Planning Operators

5. Parallel Stochastic Planning Operators: P-SPOs

This chapter defines the syntax of Parallel Staghd&anning Operators (P-SPOs) and the
associated algorithms for generating successoepexrgiven a current percept and action. P-
SPOs are used as an environment model in the &gemgwork presented in section 4.1. The
operators are designed with the aim of enablingraated acquisition from experience, but

they may alternatively be designed by hand.

The operators are garallel extension of Noisy Deictic Rules (NDRs) [67], aliog more
than one operator to be applied in a given tim@ $te generate a successor state. The
representation is powerful in terms of modellingesavironment and the result of an agent’s
action within it, because operators can expnedependengas well asconditional outcomes.

An outcome is independent if its probability is affected by the value of any other outcome
and conditional otherwise. The syntax has a stracthat facilitates acquisition from data
(chapter 6) and the representation can be usestp garts of a state (or percept) space for a

state-aggregation based value map (chapter 9).

P-SPOs model a mapping from precursor to succ@esoepts in response to an action. Each
percept contains a humber of perceptual featureshwnay be a direct mapping from sensor
data, or a more complex pre-processing providedthey agentperceive function. The

available actions and perceptual features of tir@mment can be provided as background

knowledge, or acquired through the P-SPO learninggss.

During planning, each perceptual feature can takg one value in each simulated future
percept. Probabilistic outcomes are modelled a&t afdully realised future possible percepts,
rather than percepts with probability distributiomeer perceptual features. E.g. a Boolean

perceptual feature will be eithue or falsein each possible future percept.

As discussed in section 2.2, sample perceptual intale the form:

samplePerceptualModel “p ®a

A distribution model returns a set of successocqgets with associated probabilities:

distributionPerceptualModel p @ {{ ,p p{ .0 Jpr.{ n. bk}

n

where pr=1.0

i=1

This chapter first defines the syntax of P-SPOlpvieed by algorithms for successor percept
generation with worked examples, and finally dedieavironmentoperators, which enable
compact operator set representation in stochasticomments.

83

Parallel Stochastic Planning Operators: P-SPOs

5.1 Introduction

Parallel Stochastic Planning Operators model charigean environment in response to
actions through the use @lutcome setsThe outcomes define the changes to perceptual
features (as opposed to adding or deleting elements

Each Parallel Stochastic Planning Operators has:

An action one of the available actions selectable by thenagthe special
environmentoperator (used to model the action of the enviremiy or empty, {},
indicating that the outcomes are independent afitageenvironment action.

A context a (possibly empty) set of conditions which deteerwhen the operator
can be applied.

An outcome set, with associated probahilidetermines the expected value of
perceptual features in the successor percept ifattien is applied in the context.
Each outcome has an associated probability, wisura of 1.0 for the complete

outcome set.

P-SPOs are parallel in that more than one operaorbe applied in the same time step.
Operators can be defined with conflicting outcorats,sbut may not be applied in parallel if
there is a conflict. A further restriction on paehloperator application is that at each time

step only one action can be selected by the agent.

This parallel extension provides the ability to rabthultiple independent outcomes with a
minimal set of operators. An outcome conflict oscwhen the outcome sets of two
applicable operators refer to the same percepaslfe. If a conflict occurs then operator
precedence is applied. Operator precedence (sebtibd) provides a conflict resolution
technique that will, in general, favour the mosedfic operator applicable to the current
world state, but is generated using a heuristia @eaflicting data sets (section 6.6). All
actions can be attempted in all environment stades.action which has no effect in a

particular state has an empty outcome set.

5.2 Syntax

Parallel stochastic planning operators and thegméscto which they are applied are defined
using a restricted form of standard first-ordeliddggat does not include negation, disjunction
or existential quantification. Functions are in@dd but are restricted to immutable
background knowledge. Negation is not includedhwvat preference for Boolean axioms,

which have the same expressive power but allow rgération to multi-valued variables.

84

Approximate Dynamic Programming with Parallel Ststic Planning Operators

The syntax is a parallel adaptation of that usedriobabilistic Relational Planning Rules
[66][100] and Noisy Deictic Rules (NDRSs) [67].

In the following sections an example of a blockapaig robot is used. The robot is able to
observe several features of its environment thatrelevant to its task. This is known as the

“slippery gripper” problem as adapted in [65]. Figu5.1 is a representation of the
environment, which consists of:

A block: There is exactly one block at all times. The blazn be painted or
unpainted.

A gripper: There is exactly one gripper, which can be dryet. The gripper can be
holding the block.

A reward: There is a positive reward each time a painted kbiscdelivered, a

negative reward each time an unpainted block iseleld, and no reward otherwise.
I

—P

O

Figure 5.1: The “slippery gripper” environment. Thebot’s task is to paint blocks which

arrive on a conveyer belt, and deliver the blockseopainted.

5.2.1Percept and State Representation

The following section defines the percept represem for P-SPOs. Percept representation is

equivalent to state representation in a fully obsele environment.

The percept description below (5.1) represents ghting robot's perception of its
environment when the block, is not paintedpainted(b, falsg) the gripperg, is wet(dry(g,
false), the robot is holding the blockd@lding(b, true) and it received no reward in the
previous time stepréward(none). The robot has four perceptual features. The fiisee

(painted dry andholding are Boolean, while the fourthreward, can take three valugsgs,
negandnone

painted(b, false), dry(g, false), holdilb, true), reward(non: (5.1)

85

Parallel Stochastic Planning Operators: P-SPOs

The agent’s percept is represented by a conjundigrositive ground literals encoding the
value of all perceptual elements. Each percepteahent can take on one of a set number of
values defined by background knowledge (providedamuired empirically). Constants map
to all observable elements in the percept, whitgdis encode positively observed properties
of environment features. A percept is a concresgamtiation, giving a finite set of observed

features, a finite set of literaland is described by a set of positive grounddiser

Negation is not included to allow a concise degimip of perceptual features without
recourse to negation by failure. If a state halsetdully defined using negation, each percept
would have to contain all elements that are noteruly observed as well as those that are.
This is a particular issue for non-Boolean variablé, for example, the robot's current
reward isnone a percept definition (without negation by failureould have to state that the
robot’s current reward is npbsand notneg.

In the current example the percept could be defiwgth an implicit gripper and block
because there is only one gripper and one block. dperators are presented with defined

gripper and block because this representation altbe flexibility to add additional blocks.

5.2.2 Background Knowledge

Background knowledge for an environment defines:
The possible values of the perceptual elements.

A set of conflicts, which are used to restrict $imulated successor percepts to

contain a valid set of perceptual features.

The functionconflicted(P)takes a percepE, and returndrue if the percept is in a conflicted

state.

Figure 5.2 gives an example of the background kedu# for the *“slippery gripper”

environment.

86

Approximate Dynamic Programming with Parallel Ststic Planning Operators

reward(X)~ X { pos neg nohe
boolear{ Y = X { true fal3e
painted(X,Y» block(X),booleén)Y
dry(X,Y)= gripper(X),boolegn)Y
holding(X,Y)» block(X), booledn)Y
conflicted P - painted(X,trde) P, painted@dlse) P
conflicted B- dry(X,truk) P,dry(X, fdlse) P
conflicted D= holding(X,trde) P, holding(Xalse) P
conflicted BD- reward(X) P,reward(z) P,X Z

Figure 5.2: Background knowledge for the “slippenypper” environment.

Background knowledge is represented as set of logies defining properties of the
observable features of the environment. A percegtid to be valid if there are no conflicts.

Conflicts define the possible values of each pdredgeature.

5.2.3 Parallel Stochastic Planning Operator Representation

P-SPOs model both the effects of agent actionsrolagent's expected next percept and
external changes caused by the environment. lageat has direct access to the environment

state (a fully observable environment) then theP®$ model is equivalent to a state model.
A P-SPO set is a set of operators.
Eachpspol P-SPOss a five-tuple, 4, Pc, Po, Per, Po>.

Pa: the operator action is a positive literal, wittpreedicate representing the action,

and terms representing constants in the percepgtaction may be empty (shown as

-

Pc: the operator context is a conjunction of posititerals, or empty.

Po: a set of outcomesPp; ..., Pon} Where each outcome is a set of positive literals

that define the possible values of percept eleniaritee successor percept.

Per: @ set of probabilitiesRpy4, .., Pprn} associated withPo, giving the probability that
each of the outcomeBy, will occur. Variables in the outcome set muspbesent in
the action parameters or context of the operatarder for resolution to be possible

(and for the operator to be valid).

Pp: a set of P-SPOs that this rule defers to in sitna for which they are in conflict.
This set can be inferred empirically when the ofmesaare learned from data (see

section 6.6)

87

Parallel Stochastic Planning Operators: P-SPOs
Variables are denoted with capital letters. Cortstafunctions and literals are denoted by
characters or strings with an initial lower cadeele

The subset of the P-SPO set for frent action in the slippery gripper domain is shown

below:

paint(X, Y): holding Y trup® {1.0: painted Y trje

. . . 0.1: painted(Y, trug
aint(X, Y): painte fal holdirig,Y fa)
paint(X,Y): p 4y false o e 0.9:painted(Y, falsé
0.4:dry (X ,true)

int(X,Y): d truge®
paini(X, Y): dn{ X trug 0.6:dry (X, false)

Each operator has:
An action: e.gpaint(X, Y)
A context: e.gholding(Y, true).

A set of outcomes with associated probabilitiesy. §0.1: painted(Y, true)
0.9:painted(Y, false)}

Figure 5.3 gives the full P-SPO set for the “sligpgripper” domain. The P-SPOs describe an
environment in which the robot’s actions are:

Paint: paints blocks. It results in a painted block if tbbot is holding the block in its
gripper 100% of the time. If the robot is not halglithe block, the block has a 10%
chance of becoming painted. The gripper will becovee40% of the time.

Dryer: dries the gripper. It results in a wet gripperdraing dry 90% of the time.

Pickup: picks up blocks. It results in the block being hilthe gripper is dry. The
block will be held if it was not held and the grgspvas wet 60% of the time.

New: used to deliver a block and receive a new oneeslilts in a positive reward if
the block was painted and a negative one if it m@s A new block arrives which is

not painted or held in the gripper.

88

Approximate Dynamic Programming with Parallel Stagtic Planning Operators

paint(X, Y): holding Y trup® {1.0: paintetl Y trje 1)

painted Y, falsg 0.1: paintef Y trge

int(X,Y): ® i ?
PN hoiding(Y, falsy © 0.9 painted Y falge

aint(X,Y): dry X trug® 0.4:dry (X ,true) -
P o 0.6:dry (X, false)

‘ 0.9:dry (X ,true)
dryer(X): dry X, fals¢® 0.1:dry (X , false “)

dry(X, true),

pickup(X, Y):holding(Y,_)® {1.0: holdind Y trup (5)
. dry(X, false, 0.6: holdind Y, tru
pickup(X Y):holo)lli(ng(Y, fae)lsez® 0.4: holdigg(IY, falst) ©)
new(Y): painted Y fal3® {1.0: rewa(d ngg (7)
new(Y): painted Y trge® {1.0: reward pps (8)
newY): painted Y)® {L.0: holding Y falge 9)
new Y): painted Y)® {1.0: paintdd,Y falge (20)
envirorment {} ® {L.0: reward nong (11)

Figure 5.3: The P-SPO set for the “slippery grippenvironment.

The last two P-SPOs referring to thew action contain thgainted(Y,_)condition. This
ensures that th& variable is only matched to blocks. The" indicates a “don’t care”
condition to allow the operator to be matched,sppective of whether the block is painted.
The painted(Y,_)could be replaced byldock(Y)condition, but this would require additional
background knowledge to define blocks. Using théhod above ensures that all conditions
can be learned from the data present in a perddpse rules could have, equivalently,
included theholding(Y,)condition. Rule (5) shows an example of this Fa pickup action.

The P-SPOs also contain an example of an environaparator (an operator that defines the
evolution of a percept element if no action is &aldle). An environment operator for the

“slippery gripper” domain is:
environment {} ® {1.0: reward nope

A full explanation of environment operators is given section 5.5. This environment
operator provides a similar mechanism to the framsumption in that models perceptual
features that are not affected by actions. Therenment operator above tells us that the
reward will change tmone(or remain asong if no other action has affected the perceptual
element. This is a more powerful mechanism thanfrids@e assumption, which would keep
the value of each element the same (eegard(pos)would remain aseward(pos)until an
action changed it). Environment operators can bésaised to contain important state-value

89

Parallel Stochastic Planning Operators: P-SPOs

aggregation information for the Rule Value Reintarent Learning (RVRL) system (chapter
9).

5.2.4Dependent Outcomes

Figure 5.3 gave an example of the operators regjirelescribe an environment in which all
outcomes exhibit conditional independence. The tamdito the representation needed to

include dependencies between outcomes is defined/be

Dependencies between outcomes are modelled by B-SROoperators with multiple
perceptual features in each outcome. If a percéfgature is present in one outcome it must

be present in all outcomes for that operator.

An example of this would be to alter our environinguch that the gripper always becomes
wet if we use the paint action and the block becopainted. This can be by achieved by
altering the operator set as follows:

paint(X, Y): holding Y trug® {1.0: paintef Y trje (1)
paint(X, Y): holding Y trug dry X)® {1.0: drg X falje (1a)
paint(X, Y): painted Y, fals)3® .1: painted Y trge @

holding(Y, fals¢ ~ .9: paintel Y fal3e

1: painted(Y, trug, dry X fal
painted Y, falsp painted(Y, trug, dry X falsp

paint(X,Y): . ® .36:painted(Y, falsg, dry X trup (2a)
holding(Y, falsg d t .
olding(Y, falsg, dry X U). inted(Y, false, dry X false
inted Y, trug, A:dry(X, fal
paint(X, Y): painted ¥, trug ® (X, falsg (3a)

holding(Y, falsg, dr{ X tru¢ .6:dry(X,true)

Figure 5.4: Update to operators in the “slipperyigper’ domain with additional
dependencies between outcomes (the gripper alwexgies wet if the block is painted).

In the operator set above:

P-SPO (1a) has been added to indicate that theeagripecomes wetry(X,
false) as a definite result of thmint action if the robot is holding the block. This
is not dependent on whether the gripper was drywigusly and there is,
therefore, no need to adddey(X, true)condition. The variablX in the outcome
does, however, need to be matched with an elemehieafonditions (or action)

which is achieved using thary(X,)condition (“_”" indicates “don’t care” and is

matched irrespective of whether it is wet or dry).

P-SPO (2a) has been added with the condiijiX, true)and the outcome set

includesdry(X, false)for outcome sets in which the block is paintéd/(X, true)

90

Approximate Dynamic Programming with Parallel Stotiea3lanning Operators

is present if the block is not painted with prolipi0.4 as with the previous
rules. The probability of the combined outcome iseréfore, 0.36 (after
multiplication by the 0.9 chance of the block remagnunpainted). Similarly the
probability for the combined outconpainted(Y, false), dry(X, false 0.54.

P-SPO (3a) is required to cover the situation wtien gripper is dry and the
block is painted. This can occur after a blockasmpd, and thdry action is used.
The original rule (3) does not cover this becauseill also match the situation
when the paint action is used and the block becopsisted, altering the

probability that the gripper will become wet.

5.2.5Single Action Restriction

P-SPOs are restricted such that only one actiorbeaaken in a single time step. This has the
consequence that variables in the action definitan only be resolved once for a single
action. If, for example we were working in a worlittwtwo blocks,b1 andb2, the variables

in the pickup action can only be matched once. Tfezaiors are:

pickup(X, Y): drg X trug holding Y)® {1.0: holding Y trje (5

0.6:holding(Y, true

pickug(X, Y): dry X falsg holding Y falg® 0.4:holding(Y, falsg ©

An example state for a world with two blocks is:

painted(bl,true), holding(bl, falsepipted(b2, false), holding(b2, fals¢
dry(g, false), reward(none)

The single action restriction allows the followiagtion variable resolution to be valid:

)) 0.6:holding (b, true)
icku d): d falsg holdin falg®
pickup(g): dr(g falsg: 6D 1% 4 holding(u., false
A second resolution (below) is also valid, but tleeyld not both be resolved in the same
time step. These resolutions therefore represenséparate actions.
. . 0.6:holding(b2,true)
icku 2): dr falsg holdin falg®
pickup(g [2): dry(g falsk 62 %€ 4-holding(b2, false
Note that the operator set defined allows more tranblock to be held in a gripper with no
change to the probabilities. This is a slightly atumal situation, but will suffice to keep the
explanation simple. A more natural definition wouidlude an extra condition in timlding

percept to define which gripper was holding theckjand would have additional conditions

91

Parallel Stochastic Planning Operators: P-SPOs

on the pickup action operators to alter the prdhmlaf a successful pickup if the robot is

already holding a block in the gripper.

5.2.6 Action Parameters

Actions are selected explicitly by the agent, whiels the consequence that all variables are
instantiated before attempting to match conditiansthe environment. This can be
demonstrated by examining thewoperators. Th@ewaction can be performed on blook

or blockb2, but not both simultaneously.

Selecting thaewaction forb1 gives:

new(H): painted b trup® {1.0: reward pds
new d): block)® {1.0: holding by falsg
new d): block b)® {1.0: painted b falgg

Selecting thaewaction forb2 gives:

new(t2): painted B, falsg® {1.0: rewarfl né
new [2): block R)® {1.0: holding B, fal9g
new [2): block R)® {1.0: painted & fal9g

The parameteY could not be set tbl andb2 simultaneously. This is not overly restrictive in
terms of syntax, because an additiamalvaction could be defined that allows the delivery of
two blocks in a single time step. Care must bertakben creating (or learning) operator
definitions that the same variable is used to dertbe same element between action

operators.

5.3 Successor Percept Generation

In order to build a complete successor perceptyvéhee of each perceptual feature must be
determined using the P-SPOs. The frame assumpétamndines that each perceptual feature
of the successor percept will be unchanged foctimeent percept unless it is contained in the
outcome set of a matching P-SPO (including therenmient operator). The starting point for
our successor percept is, therefore, a copy ottimeent percept. In situations where more
than one rule can be applied to the same succpssmept element, a conflict resolution must
be applied via precedence between operators (segiiod). P-SPOs, includirgnvironment
operators, have defined precedence between therallangerators have precedence over the
frame rule.

92

Approximate Dynamic Programming with Parallel Ststic Planning Operators

If the frame assumption was not employed, and thess no recourse to environment
operators, P-SPOs would have to explicitly defile tvalues of successor variables

unaffected by an action for each action using rsileh as:
pickug{ X, Y): dry X trup® {1.0: dry X trup.

5.3.1Generate a Sample Successor Percept

generateSamplePercept takes as input, a percgptan actiora, and the set of P-SPOs
and returns a sample successor percept. This dunctin be used to generate an output for

thesamplePerceptualModé&linction of the framework presented in chapter 4.

generateSamplePercept(P,A,PSPOs)
ResolvedMatchingPSPOs = matchingAndRe solved(PSPOs,P,A);
filterByPrecedence(ResolvedMatchingPSPOs);
do {
OutputPercept = P;
for (Pm ResblvedMatching PSPOs)
applyBySample(OutputPercept, Pm);
} while (invalid(OutputPercept));
return OutputPercept;

Algorithm 5-1: generateSamplePercept. P= initiafqept, A = action, PSPOs = P-SPO set.
A sample percept is returned.

The algorithm first finds all resolved operatorstching the percep®, and actionA. E.g. if
the percept containedry(g,true) and the action ipickup(g,b)then the relevant matching

operator is:
pickup(X, V): dry X trug, holding Y)® {L.0: holdir(g,Y trjk
The resolved operator can be found by resolvingtfervariableX andY giving:
pickup(g B: drf g trug, holding b falg® {1.0: holdifig,b &}
Again, the “_" can be matched to eithiding(b,falsepr holding(b,true)

Next, conflicting P-SPOs are removed usiitigrByPrecedence (section 5.3.3). This
function checks for conflicts between outcome sétevery resolved matching P-SPO. If a
conflict is found, the operator with precedencedtined, while the deferring operator is
removed. The output of this step is a set of rezblmatching operators with no conflicts in
the outcome sets.

93

Parallel Stochastic Planning Operators: P-SPOs

The successor percept is generated by applying @aefator in turn to a copy of the input

percept. The copy of the input percept retainargut perceptual features unless they are
changed by an operator, thus implementing the frassimption. A sample successor is
generated by taking a random sample output fronotiteut set, §, of each P-SPO.

A final check is made to ensure that the generatggut percept is not in an invalid state
(section 5.4.5). If this is the case, new percaptsgenerated until a valid successor is created.

5.3.2Generate all Successor Percepts and Probabilities

The generatePerceptsAndProlignction generates a full set of possible sucaepsocepts
with associated probabilities. A set of successates is built by applying each outcome for
each operator in turn to the initial percept. nf @erator has more than one outcome, the
outcome set will generate multiple intermediatecppts, which form the input for the next

operator.

Again, a final check is made to ensure that theeggad output percepts are not in an invalid
state using background knowledge (section 5.4f)elcepts are found to be in an invalid
state, these are removed from the output set angrivbabilities of the remaining successor
percepts are normalised. The function can be usedgenerate output for the

distributionPerceptualModédlinction of the agent framework presented in obiagpt

94

Approximate Dynamic Programming with Parallel Stsiic Planning Operators

generatePerceptsAndProbs(P, A,PSPOs)
Current={};
ResolvedMatchingPSPOs = matchingAndResolved(PSPO s,PA);
filterByPrecedence(PSPOS);
push(Current{P,1.0});//push perceptand prob ability
forPSPO P3SPOs)
Next={};//empty stack for thei ntermediate precepts
while({Perceptltt,Prob}= pop(Current}
/ladd alistof perceptand probability pa irs
[lafte rapplication of each outputfrom PSPO.P o
push(Next,applyAllOutcomes(Per ceptlit,PSPO,Prob));
}
Current= Next;
}
/ffinally,checkforinvalid states
for({Percept,Prob} C T urrent)
ifinvalid(Percept))
remove(Percept,Current);
}
normaliseProbabilities(Current);
return Current;

Algorithm 5-2: generatePerceptsAndProbs. P = petcép= action, PSPOs = planning

operator set.

Sections 5.4.1, 5.4.2 and 5.4.3 give examples @fatpplication of these algorithms to the
“slippery gripper’domain.

5.3.3Filter by Precedence

Filtering of rules by precedence is an importagbathm for understanding the operation of
the system. The algorithm removes all operatorsdeer to other operators in the P-SPO set
and would not, therefore, have any effect on thpupercept.

95

Parallel Stochastic Planning Operators: P-SPOs

filterByPrecedence(PSPOSs)
orderByOutcomes(PSPOs);
for (Pspol PSPOs)
/Istart from next PSPO to avoid repetition
for (Pspo2 = next(Pspol); Pspo2 PSPOs){ 1
/Icheck for conflicts i n outcomes
if (conflicted(Pspol.P ~ Pspo2.P)){E o
//has precedence if not a member of "de fers to" set
if (Pspo2 Pspol.P)i{ 5
/lcheck that precedence has been set
/lif precedence not set t hen remove 2 if 1 more general
if (Pspol Pspo2.P) 1 5
I(Pspol.P <= |Pspo2.P o)} | d
/lIremove conflictin g operator
Pspo2 = prev(Pspo2);
remove (PSPOs, next(Pspo2));
}
}else {
/liff operators have equal number of
llou tcomes then 2nd can supersede
//(with check that precedence set)
if (Pspol Pspo2.P) 1 5
I Pspol.P <= |Pspo2.P o)} | d
if (|Pspol.P| == |Pspo o 2.PP{
/fremove and continue with nex t
Pspol = next(Pspol);
Pspo2 = next(Pspol);
remove (PSPOs, prev(Pspol));
}
}
}

}else {
/lif already checked conflicting output s at this output
llcount then no further conf licts can occur at this level.
Skip to the next output count (pseudoco de omitted)

}

}
}

Algorithm 5-3: filerByPrecedence. PSPOs = plannapgrator set.

96

Approximate Dynamic Programming with Parallel Staslic Planning Operators

The algorithm first orders the operators by outceniecall from section 5.3.1 that all P-
SPOs passed téilerByPrecedencehave resolved variables (there are no free vasabl

because all have been matched to the input percept)

Order by outcomes orders the operators: first gy nthmber of perceptual features in the
outcome set of the operator, and next by the unidastifiers of the ordered perceptual
features within the outcome set. The result isaer@d list with operators with the greatest
number of outcomes at the start of the list, amee&t operators at the end of the list. Outcome
sets with greater numbers of outcomes always takeedence over those with fewer,
enabling the filtering from greatest to least outes. Outcome sets with the same number of

outcomes can be skipped if they do not cover theesautcomes.

The functionconflictedis defined in the background knowledge and is usedetermine
whether the outcome sets of two operators arernifiico If the union of the two outcome sets

passed t@onflicts(P)returns true, then the operators are in conflict.

If the operators are in conflict then one of themsinbe removed. In general, the rule with
precedence will remove the rule that defers tmisome cases, however, precedence will not
have been set due to insufficient training dataHe€8PO learning. If this is the case then it is
still necessary to remove one of the conflictingrgpors. The most general operator (the
operator with the highest support count or altéveat the least conditions) is kept because

this is the one created from the greatest quantitsaining data.

5.4 Successor Percept Generation Examples

The following sections show how successor perceptsgenerated from the rules and the
current percept in particular situations.

5.4.1 Generation of a Successor Percept with one Applicable Oyagor

The simplest example of successor percept generatours when a single operator is

applicable and has a single outcome. In this imgtan

The successor percept is initialised to be a cdgliecurrent percept (implementing

the frame rule because all successor perceptsiahanged).

The percept element that conflicts with the outcarhéhe rule is replaced with the

outcome percept element.

Example 1: Single Outcome

Thepickup(g,b)action is applied to an initial percept:

97

Parallel Stochastic Planning Operators: P-SPOs

painted b falsg dry g trie holding,b false rewdndne)

Examining the “slippery griper” operators we seattbnly one, rule (5) matches the input

percept and action. The matched version of thisatpeis:

pickug(g B: dry g trup holding b fal3® {1.0: holdirfg, b e

The outcome of this operatorhslding(b,true) If we apply the outcome to the initial percept
the conflicting percept element lding(b,false) (defined by theconflict function in the
background knowledge)his element is removed and replacedhoyding(b,true).In this
instance there is only one outcome, so the sampjfaubwill be equivalent to generating all

outputs. The changed output is in bold:

painted b falsg dryy g trugholding(b,true), reward noj

An operator with more than one outcome can genematgple possible successor percepts. A
sample percept will produce a single successoepgraccording to the probability of each
outcome, while a full percept set will include pdissible successor percepts and their

associated probabilities.

Example 2: Multiple Outcomes
Thedryer(g)action is applied to an initial percept given by:

painted b falsg dry g falge holdirfg, b trije rewdndne)

Examining the “slippery gripper” operators we de@ tonly one, operator (4), matches the

actiondryer and conditions containirgdry(g, false)

0.9:dry (X ,true)

d X):d fals¢®
yer(x): di X, falsg 0.1:dry(X, false

The variableX in the parameter is instantiatedgdy the action, giving the outcomdsy(g,
true) (probability 0.9) anddry(g, false) (probability 0.1). The successor percepts are
generated by copying the initial percept and madifythe features in the outcomes that
would cause a conflicted state.

Features are defined by tkhenflicted function in the background knowledge, whichhiis t

case, indicates that tldey(g, false)iteral in the initial state should be replacetieTsuccessor
percepts and probabilities are shown below. Thgg, false)literal can be re-asserted
without conflict.

98

Approximate Dynamic Programming with Parallel Staslic Planning Operators

painted(b, false), dry(g, false), holdiib, true),reward(none) (pr:O0.
painted(b, false), dry(g,true), holdifigtrue),reward(none) (pr:O0.

Note:the first percept is unchanged from the initiaigegt. It would, therefore, be possible to
re-write the P-SPO for thdryer action as:

0.9:dry (X ,true)

dryer(X): dry(X, falsg®
0.1:no change

P-SPOs do not employ this form in the current nesebecause:

(i) There is no restriction that perceptual featuraténoutcome set must be contained in
the conditions of the operator. In the general ctse means that the operator cannot
define a perceptual feature as unchanged becaesaitlal value is not known.
Examples of operators from the “slippery grippeghthin which do not contain the
output feature in the conditions operators are: @) (9), (10) and (11) (see Figure
5.3).

(i) Outcome sets must contain all values for any peéuedfeature defined in any part of
the outcome set for tHéterByPrecedencalgorithm to be well defined (discussed in
section 5.3.3).

5.4.2 Generating Successor Percepts with Multiple Non-Cornifiting Operators

Multiple P-SPOs can be applied in parallel to gateesuccessor percepts with the restriction
that only one operator can be applied to an indafidperceptual feature. Conflicts are
identified via theconflicted(P)function. A successor percept is generated by iogpthe

initial percept and applying all operators matchimg action and conditions.
Example
Thepaint(g,b)action is applied to the initial percept:

painted(b, false), dry(g, true), holdifgtrue), reward(none

Examining the “slippery gripper” domain operators see that P-SPOs (1) and (3) apply to
the percept and action combination.

paint(X,Y): holding Y trup® {1.0: paintedl Y trje (1)

_ _ 4:dry(X,true)
paint(X,Y): dry X trug® 6:dry(X, false) ©

Operator (1) states that application of gfent action while holding the block results in the

block being painted. Notice that we do not needdaheditionpainted(Y, falsepecause the

99

Parallel Stochastic Planning Operators: P-SPOs

block will always be painted in the successor dfatiee paint action is used when holding a

block, irrespective of the initial painted conditio

Operator (3) states that tpaint action withdry(X, true)results indry(X, false)60% of the
time anddry(X, true)40% of the time. These operators are not in acnfthey refer to
different percept features). We therefore resohe free variables to those in the current
percept and apply both rules to find the succesisoe.

After application of operator (1) there is a singigput percept (probability 1.0):
painted(b,true) dry(g,true), holding b tru¢, reward noje (prl.0

Application of operator (3) to the percept genetaby operator (1) gives two possible

successor percepts:

painted b tru¢, dry(g, false) holding b trug reward nope (pi0.6)
painted b tru¢, dry(g,true), holding b trug reward nohe (p10.4)

A sample output will apply one of the outcomes olier(3) according to the probability,

producing a single successor percept.

Generation of all successor percepts will producdisa of successors and associated
probabilities, calculated by multiplying the prollaies of each outcome in turn. The

outcome set for operator (Painted(b, truepiven has a probability of 1.0. The probability of
the output states is therefore equal to the prdibabf the outcome set of operator (3). The
probabilities are 0.6, the probability ofry(g, false)given in operator (3), and 0.4, the
probability ofdry(g, true)

5.4.3 Calculating Successor Percept Probabilities with P-SPOs

The probability of two independent events occurmirgultaneously is calculated by finding
the product of the probabilities of each indepen@sent (see appendix section A.1). P-SPOs
model dependent events using combined outcomesoMaet sets can always, therefore, be
treated as independent events to find the proliabkiliof successor percepts, with

dependencies modelled within the outcome set.

Examining the “slipper gripper” domain operator, setan be seen that tipaint(g,b)action

has multiple probabilistic outcomes. Take, for egleman initial percept given by:
painted b falsg dry g true holding,b false rewdndne)

Operators (2) and (3) apply:

100

Approximate Dynamic Programming with Parallel Staslic Planning Operators

painted Y, falsg 0.1: painte@ Y trge

paint(X, Y): holding(Y, trug ® 0o painted Y falge @

. 0.4:dry (X ,true)
aint(X,Y): dr trug® 3
paint(X, ¥): dn{ X trug® 5 <. iry (X , false) ®)
When resolved, operator (2) states that using#iet(g,b)action with the percept elements
holding(b, false)and painted(b, false)esults inpainted(b, true)with probability 0.1 and
painted(b, false)with probability 0.9. Applying operator (2) outgutwo partial successor

percepts and associated probabilities, which bedomaputs for the next operator.

painted(b, false)dry(g,true), holding(b, false),rewardgne) (pr:0.9
painted(b, true)dry(g,true), holding(b, false),reward{ne) (pr:0.1

When resolved, operator (3) states that usingptiat action withdry(g, true)results in
dry(g, falsewith probability0.6, anddry(g, true)with probability 0.4. If we apply this rule to
the first percept above, the conflicting elementdig(g, true). The output percepts are
constructed by removing ttiy(g, true)element and replacing it with the outcomes for rule
(3). The probability is the product of the probdpilof the partial percept, 0.9, and the
probabilities of the outcomes of rule (3) givingettpercepts below. Notice that the
probabilities sum to give 0.9, the probability béffirst of the partial percepts above.

painted(b, falselry(g, false) , holding(b, false), raxd(none) (pr:0.5¢
painted(b, falselry(g,true) , holding(b, false),raxd(none) (pr:0.3t

Similarly, if we apply operator (3) to the secorattfal percept the output percepts are:

painted(b,true)ry(g, false), holding(b, false),revagnone) (pr:0.0¢
painted(b,true)iry(g,true) , holding(b, false),remdnone) (pr:0.0¢

There are no further matching operators to applyr @ossible successor percepts are
therefore the four combined operators above. Thra el all possible successor percept

probabilities is always 1.0.

5.4.4 Conflicting Operator Outcomes

Conflicting operator outcomes occur when more tle outcome refers to the same
perceptual feature, which will happen regularlycomplex environments. An example based

on conflicts in operators learned from data willused here to demonstrate the concept.

The planning operators used in this research asggmied to be: (i) machine learnable; (ii)
applicable across novel environments beyond th&linraining set. Operators with multiple

conditions (specific) are built from those with fwconditions (general). The general

101

Parallel Stochastic Planning Operators: P-SPOs

operators are kept when a more specific one istedebecause the general operator may
apply to novel situations which were not part o tinaining set. This can only occur in
percepts with non-Boolean features, because ati@uli condition would only be learned if

it added information. The operator learning aldornitcan be tasked to learn tbenflicted
function (given as background knowledge in thispteg with the result that it may be
incomplete and the model will not necessarily defai values of a perceptual feature if they

have not been encountered.

Recall thepaint action’s effect on thpaintedperceptual element defined by operators (1) and

(2) from the “slipper gripper” domain operator set:

paint(X, Y): holding Y trug® {1.0: painted Y trije 1)
paint(X,Y):painFedY’ fals)3® 0.1: painted Y trge @
holding(Y, fals¢ = 0.9: painted Y falge
While learning the paint action described by the operatbes operator learning algorithm

would also derive an operator with fewer conditions, such as

0.3: painted(Y, trug

paint(X,): painted Y falg 0.7 :painted(Y, fals¢

This operator describes the result of the paint actioanomnpainted block over the available
evidence, irrespective of whether the block is held in thipegr. This operator should be kept
in the final rule set in-case we have not seen asipte values thkolding perceptual feature.
For exampleholding(X, Y)may have three values fgirather than the two we have observed:
holding(X, true) holding(X, false)and holding(X, partial) (to indicate that the block is
partially held). If we only retained operators witblding(X, true) or holding(X, falsethere

would be no applicable rule for this previously unseeragan.

Both the more specific and less specific versions ofdherator are applicable to any state
with matching conditions, but only one may be appliegrtmluce successor percepts because

they apply to the same perceptual feature.

The conflict resolution strategy employed is to give opesasm order of supremacy over
each other. This is established empirically by giving gideace to the operator that provides
the most accurate probability distribution over outcoieeshe combined conditions. This
method will tend to give supremacy to the more spediflie. ISee section 6.6 for a definition

of theprecedencalgorithm.

102

Approximate Dynamic Programming with Parallel Stochastic Pten@iperators

5.4.5Remove Invalid States

The final step in the percept generation algorithms pteden 5.3 is to remove invalid states.

These can be generated if the model of the envirahiméncomplete.

The learned operator set can be incomplete due to icisutftraining data or restrictions on
the operator outcome size during learning (causingrikgesies in the outcome sets to be
omitted). If the P-SPO set it incomplete, background kadgé can be employed to identify
generated percepts that are in an invalid state. The stegagen function resolves this issue
by removing invalid percepts from the output set andmalising the remaining outcomes

such that the combined probability sums to 1.0.

An example of a constraint from the two block world iatth is not possible to be holding
block bl and holding block2 simultaneously. The operator set does not state thist eray

be that an incomplete operator set, such as this, igajedefrom the available evidence
(although it is easy to see that this is not a deficiefichensyntax because we could add an
extra condition tgpickup to indicate that the gripper must not already be holdirgock).
This is distinct from the use abnflicted(P)in the background knowledge, which tells us that
individual perceptual features cannot be in a conflistate.

Theinvalid function can be defined for ttslipper gripperscenario such that:

invalid(P)- holding(X,true) P, holdiny(trde) P, X

Applying the pickup action to the two block scenario gima example of this function. If the

initial percept is given by:

painted(b1,true), holding(bl,true),ipged(b2, false), holding(b2, false
dry(g, false), reward(none)

The resolved pickup operator matching these condifmmis? is:

0.6:holding(b2,true)

ick ®): d falsg holdi faly@
pickup(g [?): dry g falsp holdingd faly 0.4:holding(b2, false)

This would produce the successor percepts:

painted(bl, true), holding(b1, true), painted(bzlse), (br:0.6)
dry(g, false), reward(none),holding(b2, true), pr- %
painted(bl,true), holding(bl,true), painted(b&lsg),

. (pr:0.4)
dry(g, false), reward(nong) hdihg(b2, false),

103

Parallel Stochastic Planning Operators: P-SPOs

The percept in bold is removed because it is idydéaving the second percept, which has
probability 0.4. Probabilities are normalised byiding the probability of each valid percept

by the total probability of the valid percepts. this case, there is only one valid percept,
giving 0.4/0.4 = 1.0.

5.5 Frame Assumption

The frame problem, first identified in logic-baggldnning by McCarthy & Hayes [57], is the

problem of expressing the dynamics of a systemawitthaving to expressly state every
aspect of the environment that is not affectedrbgeion. The term derives from a technique
in cartoon animation in which a static image (ttenfe) depicting the background of a scene

is superimposed with the animated aspects of #eesc

The frame problem in logic is that specifying ttenditions changed by an action does not
allow you to conclude that all other aspects of éhgironment are unchanged. An obvious
solution is to provide a rule for each action thiattes, for example, that ifpackup action is
used on a block it does not change whether thekhfopainted. The number of these frame
axioms is equal to the product of the number ofufiess of the environment and the number
of actions available. The problem with this solatis that each of these must be asserted at

every time step, taking up a large amount of unsgary processor time.

The solution proposed by Fikes & Nilsson [31] ismmve the generation of future world
states outside the standard logic using “extrackdggystems”. Essentially this allows a future
world state to be a copy of the current state arything that is changed is removed or added
by the operators. They use the term STRIPS for tygrators in reference to the comic strip
animation (or cartoon) basis of the frame problsith the solution being to remove the
changed feature and add the new feature. The femswmption used here employs the same
solution method, by copying the current percept #reh replacing any changed features

using the outcomes of the operators.

The syntax of parallel stochastic planning opesatdtows the inclusion of operators with
outputs but with no action and no conditions. Ijegbese are always present in a rule set
learned from experience by ASDD (section 5.8) bsediey form the building blocks of
later rules, and can be used as a default if roisuhpplicable. These operators always match
the current environment and we therefore need aaodedf preserving the compact modelling
power of the frame rule, while allowing the fledityi afforded by operators with empty
actions or conditions. This is achieved througlaxielg the frame assumption to allow a
specialenvironmentoperator type, which often defers to an actiorh# action affects the

same output variable. Environment operators hagatgxpressive power and can model both

104

Approximate Dynamic Programming with Parallel Stasfic Planning Operators

static environments (those that stay the samedmatisence of agent action) and non-static

environments (those that change irrespective aftaggion).

The revised frame assumption is given below. Ne&t énvironment operators do not model
the complete mechanics of the agent’'s environmautt,rather, model the evolution of the
agent’s perception of its environment in the absesicaction, or when its action does not

affect particular environment features.

P-SPO Frame Assumption: elements of the agent's successor percept will irema
unchanged from the current percept if they arepnesent in the outcomes of any operator
matching the selected action and current perceypl tleey are not present in the outcome
set of any environment operator matching the ctipercept.

Several other solutions within the standard logarfework have been proposed. The most
relevant is the successor-state axiom solutionqeeg by Reiter [56][75]. This states that an

environment feature will be true after the exeautsd an action if and only if:
(i) the action causes the environment feature to lee dmu

(i) the environment feature was already true and thieradoes not cause it to become

false.

5.6 Pure Environment Actions

The syntax for P-SPOs allows the action to be erfnefgresented by {}). This is referred to
as apure environment action, because it defines the effetthe environment on perceptual
features that are not part of the outcomes of a@tipra These are environment features that
are entirely beyond the agent’s control and candsel to model, for example, the weather or
random noise events.

An example in the “slippery gripper” domain is tddaa newweather(X) environmental
feature, whereX {sunny, cloudy, raining}The environment variable could be modelled by

the additional operators.

.3:weathel(sunny
{}: weathdr cloudy® .4: weather cloudy
.3:weathel raining

.7 :weather(cloud
{}: weathgf raining ® (- y
.3:weathel raining

.5:weathel(sunny

{}: weathgr sunpy® .5:weather cloudy

105

Parallel Stochastic Planning Operators: P-SPOs

Operators with an empty action can only be usethédlel situations in which there is no
agent action effect on the environment featurghig was not the case, the pure operators

would interfere with the frame assumption.

5.7 Environment Operators

Environment operators are special case rules teaised to model environment features that
can be affected by agent actions, but for whichctireently selected action has no effect. The
empty action condition cannot be used for this beeat matches all actions and will contain
the probabilities associated with the action ad aglthe probabilities when the action is not

taken.

If, for example, we wished to model the environmaction that a wet dripper may become
dry with probability .05 each time step irrespeetif the action taken, it would be tempting
to model this as:

.05:dry (X ,true

0: drf X falsp® ry (X, true)

.95:dry (X, false)
The empty action, however, matches all the actiortee environment, and would therefore
also match situations that change the state alhieature, such as thry andpaint actions.
This would give us probabilities based on the carabisituations in whiclry(X, false)was

present in the percept.

The environmenwperator can be used to overcome this. The opelts us what happens

when the currently selected action does not affexgiven feature. The syntax is:

.05:dry (X ,true)

environment dryy X falge®
.95:dry (X, false)

This is a powerful feature of the syntax, becausallows the compact representation of
features that are not affected by domain operatrsn if they are subject to change. The
frame assumption does not provide this flexibilijply allowing us to model features that

remain unchanged.

Figure 5.3 shows that the initial set of P-SPOstlfier “slipper gripper” domain contain the

operator:

environment {} ® {L.0: reward nojie

106

Approximate Dynamic Programming with Parallel Stasfic Planning Operators

This operator allows us to succinctly model thareward is given unless tmewoperator is
called. If we did not have recourse to environnap#rators, a separate rule would have to be
given for each operator to state this fact, becaligeenvironment feature does not remain
unchanged.

If, for example, thenew action was selected in the previous time stepaapdsitive reward
was received, the selection of ttiey action would, in effect, change the state of eaeard

feature fronreward(positiveXo reward(none)

When using P-SPOs learned from data, it is necg$sarse theenvironmenboperator in all
situations to replace the frame assumption bectheséearned rule set will contain partial

operators which would produce incorrect output.

Take for example, the operator:

0.9:dry (X ,true)

d X): d fals¢®
ryer(x): dn(X, falsg 0.1:dry(X, false)

When learning this operator, the rule learning atgm will develop partial rules, such as:

0.95:dry (X ,true
dryer(X):{} ® v)
0.05:dry (X , false)
This rule has no conditions and its outcome prdhisi are, therefore, built from a
combination of all observations of ttdry outcome for thedryer action, including the

operator which is implied by the frame assumption:
dryer(X): dry(X, trug¢® {1.0: dry(X trug
The environment operator for this is:
environment dry X trye® {1.0: dry X trde

The environment operator can be given precedeneetbg partiatiryer operator above, if its
outcome probabilities are a more accurate reprasentof the data. The frame assumption
defines what happens in the absence of an opemtdrthus cannot be given precedence.
Environment operators represent a relatively compgatution in dynamic environments,
because we only need one operator for each peeddpature, rather than one for each action

and feature combination.

107

Parallel Stochastic Planning Operators: P-SPOs

5.8 Summary

This chapter has defined the syntax of parallettsstic planning operators and algorithms
for successor percept generation using them. Theratgrs have advantages over other
stochastic rule representations in dynamic enviemisin that they can model both an
environment and the action of an agent within theirenment using a minimal set of

operators. The compact representation is impoitahe operators are to be acquired from
data because all available evidence can be usadhlnating probabilities. The representation
is also useful in splitting the state-space therafpes represent into meaningful sections for

the RVRL algorithm (presented in chapter 9).

108

Approximate Dynamic Programming with Parallel Stasfic Planning Operators

6. Learning Parallel Stochastic Planning Operators

This chapter presents the Apriori Stochastic Depeng Detection (ASDD) algorithm and an
optimised variant (ASDDs). ASDD is an efficient atghm for constructing parallel
stochastic planning operators (P-SPOs) from ob8ervadata using a combination of
statistical significance and association-rule ngnmethods. The algorithm and its variant are
novel contributions of this research. ASDD wastfpresented in [18]. ASDDs is presented

here for the first time.

ASDD uses a fast association rule mining methosgetb@an the Apriori algorithm (defined by
Agrawal and Srikant [1]) to generate candidates,udad then filters the generated rules using

statistical significance to generate a minimalzée
The process of learning P-SPOs from data condisteedollowing five steps:

1) Find rule setsfind common occurrences attion andcontextleading tooutcomein

a set of perceptual data gathered from experienaa environment.

2) Establish empirical probabilityfind the empirical probability of the outcome lifet
action and context are observed.

3) Filter the generated rules to remove conditiong tiv@ not statistically significant:

() Filter candidate rules as they are generated, Bgithe generation of
redundant candidates.

(ii) Filter after completion of the candidate generapoocess to remove rules.

4) Combine rule sets to form P-SPQ@ambine rule sets with the same context which

refer to the same perceptual feature(s) to forniPBsS

5) Establish P-SPO precedencestablish precedence between operators for conflict

resolution.

The P-SPO set is used as an environment modegiframework presented in chapter 4, and
the process of learning the operators is, thereforaodel learning process. As discussed in
section 3.1, a simple model can be learned by kegepirecord of the successor states that
follow from a state and action, or, in the caseao$ituated agent, the successor percept
following a percept and action. The process oP®3earning takes this concept as a starting
point, and builds the model by finding commonly wting sets of features within the
percepts.

109

Learning Parallel Stochastic Planning Operators

For example, an agent in the slippery gripper danj@efined in chapter 5) can build a set of
perceptual data items by taking random actionsiieravironment. The perceptual data items

contain:
The percept before the action was taken.
The action taken.
The percept received after the action was taken.

Table 6-1 gives a subset of an agent’s percephitalittms is the slippery gripper domain.
The process of learning P-SPOs involves findingastand context (elements of the percept)
that commonly occur with elements of the succegsorept. In this case, there is a set of
commonly occurring elements (highlighted in bolgt}éndicating that taking the action
dryer(g), in the context that the gripper was previously,\d@gy(g, false) leads to the

successor percefty(g, true) In one instance, the successor containgg,false) This

follows from the fact that thdryer action in the slippery gripper domain is stoclaatid will
sometimes fail. The algorithm must be able to owmjtle these stochastic outcomes.

Table 6-1: A sample of perceptual data items fer8lippery gripper” block painting agent.

Percept Action \ Successor Percept

;jrly(g), false) z?lding)(b, true), painted(b, dry(g) ;jrly(g), false) z?lding)(b, true), painted(b,
alse), reward(none alse), reward(none

;Jrly(g), false),drzoldin?(b, true), painted| paint(b) ;jrly(g), false),drzolding):](b, true), painted|
alse), reward(none alse), reward(none

dry(g, false, holding(b, true), pinted(b, dry(g) dry(g, true), holding(b, true), painted(t
true), reward(none) Y9 true), reward(none)

dry(g, false) holding(b, false), painted(b, dry(g) dry(g, true) holding(b, true), painted(b,
true), reward(none) Y9 true), reward(none)

dry(g, false) holding(b, true), painted(b, dry(g) dry(g, true) holding(b, true), painted(b,
true), reward(none) Y9 true), reward(none)

Based on the evidence in the sample data, theprabebility of the outcome can be found
empirically by finding the number of times the autte occurs following the context and the
action, and the number of times the outcome dicbnotrr following the context and the

action. If all of the examples of the pattern arespnt in the above table, we have:

dry(g,false)follows from observingdry(g,false)and taking actiomryer(g)in 1 out
of the 4 examples, giving probability 0.25.

110

Approximate Dynamic Programming with Parallel Stasfic Planning Operators

dry(g,true)follows from observingdry(g,false)and taking actiomlryer(g)in 3 out of
the 4 examples, giving probability 0.75.

Combining these partial rules, a P-SPO can beexteat

0.25:dry (g true)
ryer(g): dr(g falsg 0.75:dry (g, false)

The following sections:
Present the ASDD algorithm for rule set discovery.

Present the supplementary algorithms needed to ioemble sets in P-SPOs and to
establish supremacy between P-SPOs

Present a variant of the algorithm for fast setdeag.

The slipper gripper domain will be used to dematstthe rule learning concepts.

6.1 A Note on Learning Planning Operators from Experierce

The majority of work in the planning community hesntred on search optimisation, via
techniques such as constraint satisfaction [3][18lese techniques assume that a human
designer is able to provide the required plannipgrators. Often, the design of these
operators is difficult because the mechanics ofatint’s environment are poorly understood,
or in the case of stochastic environments, the aam@lements are difficult to model.
Stochastic planning operators can, however, prosideseful level of generalisation for an
agent in a deterministic environment, in additian modelling environments that are

inherently random.

Empirical learning of parallel stochastic plannogerators is challenging because:
An action may have uncertain outcomes inherently.
The outcomes of an action may be masked by exterteaference.
The action conditions may be masked by externahefts.

The key point is that the planning operator strieetmust be one that can be learned through
empirical data. The P-SPOs defined are learnabtause they do not rely on hidden
variables, or random variables in the conditions @&eich as those found in Poole’s
independent choice logic [71]). The rule structaifews the agent to learn both the outcomes

of its actions, and the influence of the environtr(@rhich is beyond its control).

111

Learning Parallel Stochastic Planning Operators

The ability to model independent outcomes usinglperoperators is useful when operators
are acquired from experience because it allowsaakeevidence to influence the estimate of
the probability of the operator output.

6.2 Learning P-SPOs with ASDD

ASDD is an algorithm for learning parallel stocl@gianning operators, based on the Apriori
algorithm for mining association rules [1], and thRilti-Stream Dependency Detection
(MSDD) algorithm for finding dependencies in muléipstreams of data [64]. The algorithm
is one of the main contributions of this researod avas presented previously in [18]. In
previous research by the author, MSDD has beerneabfu the task of learning probabilistic
planning operators with a similar syntax to P-SRO4. Probabilistic STRIPS operators
have been learned using MSDD by Oates and Cohén [65

6.3 Assumptions

Several simplifying assumptions are made to opetaswning using the ASDD algorithm:

Operators are acquired from batch training dataaining data will be presented to
the ASDD algorithm in batch form (extensions foflime operator acquisition are

discussed in section 11.3.3).

Operators are learned in ground formASDD learns the P-SPOs from ground
example data, and outputs a set of operators inngrdorm (extensions to the

algorithm to enable the substitution of variablesdiscussed in section 11.3.4).

Conditional independenc&he outcomes of actions and environment operatobe t
modelled by ASDD are conditionally independent. Twerent implementation of
ASDD therefore learns a single output for each ajper(extensions to the algorithm

to learn non-independent outputs are discusseecting 11.3.5).

Conditional independence is a strong assumptionditees not hold for some of the examples
used in this thesis. Issues created by this amvex to some extent, by the use of the
invalid(P) function defined in background knowledge (secBoh5).

6.4 ASDD: Apriori Stochastic Dependency Detection

The language used to describe ASDD reflects thed us[1]. The main algorithm is similar,
with an additionabprioriFilter step which removes potential conditions from riflékey are
shown to have no significant effect on their praligb There is also a findilter step, which

is equivalent to that used in MSDD and removes itimm$ at a higher level of significance to

112

Approximate Dynamic Programming with Parallel Stasfic Planning Operators

produce a final operator set. Apriori usgport(a measure of the percentage of the data
which contains a rule), while ASDDsessupport countwhich is a count of the number of

occurrences of a rulsection 6.4.2).

At the highest level the tasks of the ASDD algaritare to:
1) Efficiently generate candidate operators which tmgignificant to the outcome set.
2) Remove operators which are not significant to tie@me set.

Supplemental algorithms learn specific P-SPO babkadents, including:

CreateP-SPOsThe ASDD algorithm creates an individual rule facke outcome set.

P-SPOsare created by combining these individual rulest{en 6.4.12).

AddMissing:an algorithm to add missing parts of an operatotiszome set. A P-
SPO with an outcome set with probabilities whichnad sum to 1.0 indicates a rule

was missed which should have formed part of a P-SPO

Precedence:an algorithm for defining precedence between P-SPQgerator

precedence defines which rule should be appliechwbeflicting outcomes occur.

Frame and Environment Operatorngerceptual features in the outcome set which are
unaffected by actions must be identified by theoathm. If the feature retains its
value in all circumstances unless affected by &iomdt is captured by a set &me
rules If a feature changes independently of actioris, ithcaptured bgnvironment

operators.

Association rules generated by algorithms such pgsoA have precedence based on a
confidencemeasure Confidenceindicates the probability of the rule’s outcoméven its
conditions. Outcome sets in P-SPOs have an outcpraobability which is generated
empirically in the same way asnfidencebut the rules need a further measure of the itsalid
of the rule. This is achieved by first filteringles that have unnecessary complexity, using
the aprioriFilter function (section 6.4.9). Once a minimal rule sa$ bbeen established, the

precedencalgorithm establishes supremacy between rulesnfiict situations (section 6.6).

The task of learning P-SPOs from data (in the gooase) is that of finding significant
associations between sets of perceptual featurdsaations at timd-1, and perceptual

features at timé

113

Learning Parallel Stochastic Planning Operators

6.4.1 Convert Sensor Data Percept to Perceptual Feature Axioms

The agent body’s sensors are updated each timeastagfunction of the current state of the
environment. This sensor data is in a raw form Wwiscnot specific to the type of agent that is
interpreting it. The agent’perceivefunction maps sensor data to a percept, and can be
defined in any appropriate way for the intended efloty mechanism. In this case, raw
sensor data must be converted into a set of peralefdgature axioms in order to enable P-
SPO learning. The definition of theerceivefunction is domain dependent (see chapter 7 for
examples) and the following section are therefoesgnted using the post-processed percept
in perceptual feature axiom form.

6.4.2 Perceptual Data Items (PDIs)

A percept,P, is a set of perceptual feature axioms. A peradmata item (PDI) contains the

percept received and action taken at titrdieand percept received at tirne

The PDI data seD is defined as a set of perceptual data iteridl§) for an agent where
eachPDl is a triplet of the form P4, A1, P.

The PDI received at timeis defined as:

d ={p.,. a0} (6.1)

6.4.3Rule Element Sets

The possible elements BfE A are collectively known asile elementsA PDI contains the

rule element set, if xI p.1 E a. E 0, whereo is anoutcomerule element, and1 p..

The rule element sex, hassupport count, sdn the perceptual data item detif sc of the

PDIs inD containx.

The constanMINSUP defines the minimum support count a rule elementnsust display
before it is admissible as a candidate for the riexition of the algorithm, or to the rule base.
Thesupport countn ASDD replacesupportin the Apriori algorithmSupportis defined as a
percentage of the PDIs I containingx, rather than a count. The change to sspport
count in ASDD is made to aid discovery of rare outcomdsch may be statistically
significant.

Two additional features are present in size-one elément sets:

114

Approximate Dynamic Programming with Parallel Stasfic Planning Operators

id: an additional integer identifier field, used tpesd up comparison between
individual rule elements identified in the data $kthe identifier is stored as a string,

theid can be calculated as a hash function on the string

pfs perceptual feature set. The set of “one rulenele” perceptual features which
this rule element belongs to. Size-one rule elersetd are grouped into perpetual
feature sets. These sets are equal in all butiteelement and can be identified from
data (see section 6.4.11). For example, the relmahtdry(g, false)anddry(g, true)
are only different in the last element and themfbelong to the same perceptual
feature set.

6.4.4Rules

A rule is a rule element set which contains an outcome.

Using syntax similar to that used in stochastiégd@yogramming [61]:
Theheadof the rule is the outcome,
Thebodyof the rule is the remaining rule elements (thedtions).
Theprobability of the head occurring given that the body is oleipr.

The probability can be calculated empirically as thumber of PDIs in the data sé,
containing theneadandbody,divided by the number of PDIs that contain boaly. In other

words, the number of times the outcome followsdheditions of the rule.
6.4.5Rule Set Discovery
The problem of discovering a rule set can be sépadiiato four sub-problems:
1) Discover regularly occurring rule element setfiscover sets at levdd exhibiting

support countsc, aboveMINSUP. The level of a rule element set is defined as the

number of rule elements it contains (section 6.4.6)

2) Combine rule element setsile elements at levd are combinedo form a list of
candidate sets for levéd+1 using aprioriGen which removes all candidates that

cannot have minimum support (section 6.4.8).

3) AprioriFilter: after level 3, theAprioriFilter filter function is applied to remove
candidate rules (rule element sets containing docome element) at levéd which

arecoveredby an operator at lev&t3 (section 6.4.9).

115

Learning Parallel Stochastic Planning Operators

4) Filter: Finally, thefilter function is applied to the remaining rules to remaules

which arecoveredby a rule at any level (section 3.1.3).

Sub-problems (1) and (2) are as defined by theokpaigorithm with a change to usapport
countin place ofsupport Sub-problem (3) is a new addition for ASDD. Subkpem (4) is a
new addition using a function defined in MSDD [64].

The notation used in ASDD and the associated dlgosi is:

L[K]: the set of rule element sets of skavhich display minimum support. Each

member of this set has four fields:
(i) x:asetofrule elements.

(i) sc: support count (number of times the rule elementsmatched the
database). Ix does not contain an outcome, this will be equal tobs

(below).

(i) bs: the support count of the body (the rule element seéxcluding the
outcome o), of the rule (the number of times the body ofrile matched the

database).

(iv) pSet:a set of references to other rules with the sasnditions and matching

output perceptual feature(s), which will be combine form a P-SPO.

C[K]: the set of candidate rule element sets of kiZeets with potentially large

support count). Fields are identicalljk] .

The empirical probabilitypr, of a rule is a function returnirgg divided bybs

6.4.6 Discovering Regularly Occurring Rule Element Sets

Discovering regularly occurring rule element sett;g the Apriori method involves making
multiple passes over the perceptual dataDsdh the first pass (levek = 1) the support of
each rule element set of size one is counted termi@ie which of them occurs regularly
enough in the data to be included (i.e. has mininawpport). In each subsequent pass,
regularly occurring rule element sets from the es pass (levek-1) are used to create
candidaterule element sets.

The support for each of these candidate sets istedun a pass over the data. Candidates that
do not have minimum support are removed and thairéng candidates are used to generate

candidates for the next level.

116

Approximate Dynamic Programming with Parallel Stasfic Planning Operators

Atfter the third pass, rule element sets that hawveudcome element (rule head) carfiliered

by rules at thek-3° level with the same outcome, in order to evaludwe additional
conditions. If the additional conditions do not bBaw significant effect on the probability of
the outcome (section 6.4.9) they are discardeds plocess continues until no new sets of

rule elements are found.

The AprioriGen algorithm (adapted from [1]) generates the carididale element sets to be
counted in a pass by combing the rule elementvsigishigh support count in the previous
pass. Candidates withrule elements are generated by combining rule ehérsets at thk-1
level. Any generated candidates at ldvebntaining a subset at levell which does not have
minimum support are then removed in the prune diepause any subset of a large set must
also be large. Each candidate removed by thisastejuls the need for an expensive pass over

the data set when generating candidates.

6.4.7 The ASDD algorithm

ASDD(D)
L[1]=extractOneRuleElementSets(D);
fortk=2;L[k-1] {:k++f 1

C =gprioriGen(L[k-1]); /(step 1)
forall(pdi DY | /(step 2)
C =subset(C ,pdi)
fora llc Ct)
C.SC++;

}L[k]:{c C |c.scl MINSUP} 3 I(step 3)

if(k > 3) I(step4)
L[K]=aprioriFilter(L[K],L[K- 3],APRIORI_G);

}ruIeSet ={};

for(k = LLIK] {3;K++)

ruleSet=ruleSet L[K]; E
returnfilter(ruleSet,FINAL_G);

Algorithm 6-1: ASDD. D = database of perceptualadaéms

The first line of the ASDD algorithm counts the ooences of single rule elements in D to
determine one-rule element-sets that have a higposti count (this step has been altered
slightly from that used in Apriori to extract pepteal feature information from the data).

Each repeat of the loop consists of the followiogrfsteps:
1) Large rule element setsk-1] found in the passk{l) are used to generate the

candidate rule element s€fk], using theaprioriGenfunction (section 6.4.8).

2) Thesupport counbf candidates ilC[K] is determined by performing a database scan
using thesubsetfunction, which returns the subset of the candisl&[k], contained
in each PDI.

117

Learning Parallel Stochastic Planning Operators

3) Rule element sets with below minimum support aneoeed.

4) Rules (rule element sets containing an outcomeatnare filtered against rules that

subsume them at the ledeB by theaprioriFilter function (section 6.4.9).

The loop is repeated until: (i) no further candedatre generated; (ii) a maximum level has
been reached (resulting in rules with a maximum lmemof conditions); or (iii) a maximum

number of rules has been generated.

Finally, rules at all levels are combined into ag# list (sorted by generality) and are tested
for statistical significance by théter function. Thefilter function tests for significance at a
higher significance thamprioriFilter, and tests for rules that are covered at all previo

levels.

The slowest part of the algorithm is the loop facke PDI around theubsefunction. Section
6.6 shows an algorithm for increasing the speethisf function which has a trade-off of

requiring additional storage.

The initial implementation o$ubsetcycles through all candidate rule sets, and tessee if

the rule elements are contained in the PDI (thdeémpntation used for the standard Apriori

algorithm).
subset(C,PDI)
subsetC = {}; R
forall(c C) |
if cx PDI) I

subsetC.add(c);
return subsetC;

Algorithm 6-2: subset. C = candidate rule elemezissPDI = perceptual data item.

6.4.8 The aprioriGen Function

The aprioriGen function generates a set of potentially large mléanent sets of sidzefrom

rule element sets of sikel.

aprioriGen(Lk-1)
Ck = join(Lk-1);
return aprioriPrune(Ck, Lk-1);

Algorithm 6-3: aprioriGen. Lk-1 = candidates at &hk-1

There are two steps, taken directly from the Api@tgorithm:

118

1)

2)

Approximate Dynamic Programming with Parallel Stasfic Planning Operators

Join: L[k-1] rule element sets are combined with otHdgk-1] rule element sets to
form candidate rule set§[k]. Join uses unique ids in the rule elements todavoi

repeated candidates.

Apriori-Prune: generated candidates for which a rule element swbsézek-1is not

present irL[k-1] are deleted.

ASDD adds the following steps to tjuen function:

1)

2)

3)

Restrict to single outcomeutcomes are restricted to a single perceptuaufe (see
assumptions, section 6.3). If botfk-1] rules have an outcome rule element (rule

head) they are not combined.

Restrict to probability < 1 parentgarents with an outcome (rule head) and a rule
probability of 1 are restricted from producing dnén because they already identify a

definite outcome (no further improvement can be enacthe rule).

Copy body support countules (rule element sets containing an outcornle ru
element) will have a body that is equal to oneheftules element sets that is used to
form them. In this casdys the body support count is copied from the suppount,

sG of previous rule element set in order to resttiiet number of database passes

required.

119

Learning Parallel Stochastic Planning Operators

join(L)
C - .

forall (@ L){ 1
//do not generate if p is a rule with prob=1
if (head(p) {} and pbs == p.sc)

next p .
forall (@ Lwherelp q){ 1

//do not generat e if g is a rule with prob=1
if (head(q) {} and g.b% == q.sc)

next q
/lignore if both have an outcome
if (head(p) {} and head(q) {}) '

next q;
/lonl y generate if last element id of p.x > g.x
if (last(p.x).id > last(q.x).id){

next q;
/lonly generate if all elements equal except last
for(i=0;i< [p-xL; i++) {

it (p.x[] a.x{i]) { !

next g;

/lcombine elements (last is different)
newC.x = add(p.x, last(q.x));
if (head(newC) {}){ 1
if (body(newC) == p.x)
newC.bs = p.sc;
else if (body(newC) == .Xx)
newC.bs = qg.sc;

}
add(C, newC);

return C;

Algorithm 6-4: join. L = rule element sets at prews level.

Note: The functiorbodyreturns all rule elements excluding outcome eldm@nle head).

TheaprioriPrune algorithm (as defined in [1]) removes candidatesnfthe newly generated

set by checking whether all sub-sets of the camnelidhave minimum support count. If a

subset exists that does not have minimum suppamtcdhen the candidate cannot have

minimum support count.

aprioriPrune(Ck, Lk-1)

forall(c Ck) |
forall (k-1 size subsets s of c)
if (s Lk-1) |

delete ¢ from Ck;

Algorithm 6-5: aprioriPrune. Ck = candidates at k. Lk-1 = rule element sets at level k.

Example of aprioriGen candidate rule element set generation

The example shows the generation of level 3 rideneht sets from level 2 sets. A subset of

the level 2 rule element sets for the “slipperypér” painting robot domain are given below.

120

Approximate Dynamic Programming with Parallel Stasfic Planning Operators

The subset shown is the rule elements are thoatedeto thedryer action (those that will
contribute towards building the full rules). Rudeement sets can be created in any order,
with the result that the outcome rule element maypbsitioned at any point in the set.
Outcome elements are indicated by tRe symbol, showing that this is an implication to a
rule head. Probabilities can be generated for amgsrwith a rule head, but these are not

relevant to the algorithm and are therefore ndusted until the filter step.

The level 2 rule element sets are:

(@) {dryer(g), dry(g falsg
(2) {dryer(g),® dry(g trug}

(3) {dryer(g),® dry g falsg
(4) {dry(g, falsg,® dry g trug
(5) {dry(g, falsg,® dry g falsg
(6) {dry(g, true,® dry g trug}
(7) {dry(g, true,® dry g &lse}
(8) {dryer(g, dry(g trug}

Figure 6.1: Subset of the level 2 rule element s#tted to the dryer action in the “slippery
gripper” domain

Join: the join step creates the level 3 candidate rigment sets from the level 2 set by
combining pairs of rule element sets if they mbetdonditions:

(i) The two rule element sets have a matching firsnete and a non-matching®2
element (in the general case, the algorithm withbme rules that are matching

in all but the final element).
(i) Only one of the pairs to be combined has an outcome

All level 2 candidates have outcomes except rideneht sets (1) and (8). The application of
condition (ii) has the result that rules (1) anYl4& the only rules that can be combined with

rules (2) through (7) to create level 3 rules.

Rule element set (1) can be combined with other elément sets with the same first element,
giving:

from (1) & (2) {dryer(g), dry(g falsg ® dr¢ g trug
from (1) & (3) {dryer(g), dry(g falsg® dry g falog

Rule element set 8 can be combined with othereldment sets with the same first element,

giving:

121

Learning Parallel Stochastic Planning Operators

from (1) & (8) {dryer(@), dry(g fals¢, dry g trug
from (2) & (8) {dryer(@), dry g trug,® dry g trug
from (3) & (8) {dryer(g), dry(g trug,® dry g falsg

Notice that the rule generated from (1) and (&nly generated once. Each rule element has a
uniqueid (not shown), and rule element sets are only coetbif the last element of the
combining rule element set has a higigethan the last element of the rule element settib i

be combined with.

aprioriPrune: TheapriorPrune step deletes candidate rule element sets for waigto rule

element subset does not exist. Examining the gtatkrales:

The rule generated from (1) & (8) contains the sti§dry(g,false), dry(g,true)}
which is not present in the level 2 rules. Thiserus, therefore, removed by

aprioriPrune

In the full data set, this level 2 rule elementisehot observed (there is no PDI containing
{dry(g,false),dry(g.true)} rule elemenfs because the gripper cannot be dry and wet
simultaneously. ThaprioriPrune function is able to draw this conclusion withoutuather
pass through the data.

The rule generated from rules (3) and (8) is alsbpmesent in the data, but all of its subsets
are present and it cannot, therefore, be prunedpoipriPrune. Immediately following the
aprioriGen function call in the ASDD algorithm, the suppodunt of the generated rule
element sets is counted via a pass through the &®&. The rule element set
{drye(9, dry g trug ® dry g fal9g will have support count zero after this data s

will therefore be removed by step 3 of the ASDDoailighm.

6.4.9 AprioriFilter

The aprioriFilter function test for conditional independence is Bmto thefilter function
defined in MSDD (see section 3.1.3). It checks wdate rules at levek (parameterCk)
against rules at levet-3 (parameterLk-3) to evaluate whether the three additional rule
conditions have a significant influence on the aitality of the rule’s outcome. ThglLevel
parameter defines the G statistic level at whidbsrare filtered. The G statistic is a statistical

test for non-independence (see section 6.4.10).

122

Approximate Dynamic Programming with Parallel Stasfic Planning Operators

aprioriFilter(Ck,Lk-3,gLevel)
S=Ck; ~
rulesLk-3={I Lk-3 | hasOutcome(l)};
forall(s S where hasEffect(s))
forall (Ir rulesLk-3)
if (subsumes(lr,s) and gTest(s,Ir) < gLev el) {
remove s from S;
nexts;

return S;

Algorithm 6-6: aprioriFilter. Ck = candidates atVel k, Lk-3 = candidates at level k-3,

glLevel = g-statistic level for significance tests.

Rules filtered by theaprioriFilter function are removed in the same way as prunee rul

element sets, and therefore take no further parttlengeneration.

If, for example, the rule defined by the level relement set{li ® § is removed by this
method, then no further rules will be generatechwiiéada and bodyb (e.g{b G® & and
{b d® &) could not be present in the final rule set (nthe: commas indicate that these are

sets of rule elements).

The removal of rule element sets in this way camseaa problem when the effectlofs a
condition fora is not immediately apparent (e.g. the XOR functiorwhich the output is
determined by a combination of each input, withdheervation of a single input appearing to

have no bearing on the output).

The problem was resolved by setting the signifieaparameter to 0.445 (50% significance).
The standard filter is set at 3.84 for 5% significa, while for low sample sizes 2.706 is used
(10% significance). In addition, rules are notefitdd usingaprioriFilter until level 4 (i.e. the

rule {hcd® & can be filtered bf{® &), and by filtering against rules with three less

conditions k-3). The significance levels used in this researchtlie standard filter process
match those used in MSDD [64]. The 50% significalesel for theaprioriFilter process was
chosen to minimise the risk of eliminating usefulerconditions early in the process. Further

experimentation in this area is a subject for feitwork.

The aprioriFilter function alters the speed of completion of thes rgéneration part of the

ASDD algorithm when compared to the Apriori algbnit, because rules that are not
significant at each level are removed and, as aemrence, generate no children. The Apriori
algorithm halts when there are no further rules tlaa be generated above minimum support.

ASDD halts with the additional criteria that thare likely to be no further significant rules.

123

Learning Parallel Stochastic Planning Operators

6.4.10 Conditional Independence

The filter and aprioriFilter functions use the G statistic [96] to determinendittonal
independence (defined in appendix section A.2)uitiwely, the method measures the

significance of additional rule conditions to th&@me probability of a rule.

The P-SPO set below shows five candidates fodtiier P-SPO when acquired empirically

from observation data:

dryer(g): dry(g trug¢® {1.0: dry(g trug
0.91:dry (g true)
0.09:dry (g, false)
0.96:dry (g true)

0.04.dry (g, false)

dryer(g): dry(g fals¢®

dryer(g):{} ®

0.92:dry(g,true)

0.08:dry (g, false)
0.88:dry (g true)
0.12:dry (g, false)

dryer(g): dry(g falsg¢ painted(b,tru@®

dryer(g): dry(g falsg painted(b, fals®)

The first two operators reflect the correct, cortgleonditions for thelryer action, in that
usingdryerwhen the gripper is already dry will cause it tmaén dry, and usingryer when
the gripper is wet will cause it to become dry 90P4he time. The 0.91 probability reflects
the empirical estimate of the probability from théad@vith the actual probability being 0.9).

The third rule has no conditions and gives the abily of finding the gripper dry or wet
after adryer action, irrespective of the initial dry state bétgripper. This will be the summed

probabilities of all data matching the first twoesl

The fourth and fifth rules contain an additiopainted(b, true)or painted(b, falsefondition
and the associated probabilities are, again, thehmatfor the full rule divided by the matches
for the rule conditions.

Given the rule set above, the G statistic measunebeaused to conclude that the additional
dry(X, true)anddry(X, false)conditions are significant to the outcome probtbdifor the

dry(X) action, but that thpainted(b,true)pr painted(b, falsefonditions are not significant.

Note that the discussion above is a simplificatibne G statistic is a statistical test of non-
independence, computed for a 2x2 contingency tabl@bserved occurrences (rather than

probabilities).

124

Approximate Dynamic Programming with Parallel Stotiea3lanning Operators

6.4.11 Extracting One Rule Element Sets from PDlIs

PDIs are made up of sets of actions and percefgasiires. Each element of the PDI is a
ground instance. Single elements are, therefore,lgithp extracted features of the data set.
The task of theextractOneRuleElementSéignction is to identify these elements and to
assign each a unique identifier to optimise set @impn operations. The function makes a
single pass through the database of PD)s;hecking that each element of the PDI is present
in the current set of single rule element setd. if present, its support count is incremented,;

otherwise, it is added (with support count 1).

extractOneRuleElementSets(D)
REF = {}; //single rule elements
L1 = {J; //singe rule element sets

id=0; -
forall (pdi D) I
forall i pdi){_ |
if (i L1){ | .
R={r RE I Fr.x=i}
R.sc++; /lincrement support count of R;
}else {
NewR.x = i; //Add a new one rule elemen t set
NewR.id = id; //one rule ele ment sets have unique id
NewR.sc = NewR.bs = 1; //bs and sc initialised to 1

add (L1, NewR);

}

Algorithm 6-7: extractOneRuleElementSets. D=databafyperceptual data items.

In addition, the algorithm can identify the possiblalues of a perceptual feature, by
examining the value of extracted single rule elemiéakioms) that match in all but the last
field (not shown). The syntax definition of pertggd features identifies this as the variable
field. For example, a Boolean perceptual featureh aasdry(g, X) whereX can take values
true or false This information can, optionally, be given as kground knowledge (by the

conflictedfunction).

6.4.12 Add Rule Complements

Rule sets required to form a full P-SPO can somethedaacomplete because:
Thefilter function can filter rules and not their complements.
Rules with low probability outcomes can have a suppount,sc, belowMINSUP.

For example, for the perceptual featpeented(g,X) X can take the valudsue or falseand

the rule generation process can generate the lareeat sets:

1) {pain(gl), painted b falge holdifg b fajs® painfedrue)} pr:0.1

125

Learning Parallel Stochastic Planning Operators

2) {pain{ g b, painted b fal3e holdifg b fajs® painfedfalse} pr:0.C

The filter process could filter rule 1 above, bedve rule 2. This would cause a problem for
the successor percept state generation algoriteatige 5.3), because the set of rules will not

generate percepts wighainted (b,truepresent.

The addRuleComplementsinction iterates through all rules in learneceraét,R, checking
that all possible values of each rules outcome iinerepresent iR already or do not match
any observations in the ddia If a missing rule is found, it is addedRo The body support,

bs of the rule is set to equal the body supporhefexisting rule because they have the same

rule body.
addRuleComplements(R, D)
for(r R)do
0 = head(r);
/Noop for all possible output values of the rule
for (ovValue possibleValues(0)) {
if (oValue 0) 1
newRule = copy of r with o replaced by oValue
if (newRule R) //if the new rule doesn 't exist
matches = countMatches(newRule, D);
if (matches 0) { 1
/it was missed so add it
newRule.bs =r.bs; //b ody support will be the same
newRule.sc = matches;
R=R newRule; E
}
}

Algorithm 6-8: addRuleComplements. R = complete sgt. D = database of perceptual data

items.

possibleValuesthis can be defined by background knowledge, or lwarstored in
each one-rule element set extracted by éh&ractOneRuleElementSetsnction

(above).

6.5 Create P-SPOs from Rules

The ASDD algorithm creates an individual rule focle@utcome seP-SPOsare created by
combining these individual rules. The algorithm tfisgarches for rules that have the same

conditions, then checks whether they refer to #mesperceptual feature in their outcome.

Take, for example, the rule element sets:

1) {pain(gh, dry g trupg® dry g trug

2) {pain(gh, dy gtrup® dy g falgp

126

Approximate Dynamic Programming with Parallel Stotiea3lanning Operators

These sets have outcome rule elements (indictetido@wt symbol) and are therefore rules.

The rule element sets in rule form are:

paint(g, b): dry(g trug® {0.4: dry g trug
paint(g, b: dry(g trué® {0.6: dry g falsg

These rules are combined by tireateP-SPOslgorithm to form the P-SPO:

0.4:dry(g,true)

int(g, b): dry(g tru¢®
paini(g.B: A g UB® 1 ¢ iy (g, fals®

P-SPOs are sets of rules with the same conditiomie pody) which apply to the same

perceptual feature in their outcome.

createPSPOgakes as input a set of rulég, and possible actions, A, and returns a set of P-
SPOsP. The algorithm iterates through all rules, chegk#ach one against all other rules for
which: the body of the rule matches, and the hdaleorule (outcome element) refers to the
same perceptual feature. If the rules pass thighes they are part of the same P-SPO set.
The P-SPOs are then created by combining the colesined in the P-SPO sets.

127

Learning Parallel Stochastic Planning Operators

createPSPOs(R, A)
PS = {}; /list of rules in same PSO set
P = {}; list of PSOs

/lcycle through all rules adding them to PSPO se ts
/lif they have matching bodies and conflicting o utcomes
for r R){
if (r.pSet {}) fr already part of a PSPO
nextr;

forall (c = next(r);c R){ 1
if (body() body(c)) *

next c; /Inot the same body
if (head(r) possibleValues(head(c)))
next c; /Ino conflicting out come
[lthese rules are parts of the same PSPSO
r.pSet=r.pSet c;//add c t&the PS PO set
c.pSet =r.pSet; /lc refers to PSPO o fr
if (r.pSet PS) //PSPO not previously defined
PS =PS r.pSet; fadd it to the set of PSPOs
}/nextc
}inextr

/lconstruct the PSPOs from the rule sets

for (ps PS)I{
P.add(newPSPO); R
newPSPO.P ={fitst(ps).x x A};//set|tHe action

/lcontextisrule elemenents withouthead and R actio n
newPSPO.P =first(ps).x minus newPSPO.P head(ps) E h
forall (pi ps){]
add(newPSPOP ,head(pi)); //add each outc ome
add(newPSPOP ,pi.sc/pi.bs);//and associate d probabilit
}
return P;

Algorithm 6-9: createPSPOs. R = complete rule Bet. set of possible agent actions. The

algorithm returns P, a set of P-SPOs build from tthie set.

The final section of the algorithm creates the ®§Psuch that each contains:

An action, R: the action contained in the rule element set. #ks in the set have the

same context, so the first rule is used to detezrttirs.

A context, R the rule element set with the action and the mate removed. Again,

all rules in the set have the same context, séirdteule is used.

A set of outcomesPthe heads of each the rules, added in order.

A set of probabilities, # the support count for the rule divided by the bedpport

for the rule, added in the same ordePas

6.6 Establishing P-SPO Precedence

The precedencealgorithm provides a method for resolving confligthen P-SPOs matching

the input percept have conflicting outcomes. A totiig outcome occurs when the outcome

refers to the same perceptual feature (as discussattion 5.3.3). The algorithm establishes

128

Approximate Dynamic Programming with Parallel Staslic Planning Operators

which P-SPOs defer to, and which P-SPOs have peacedover, other P-SPOs in the case of

a conflict.

Conflicting operators can be the result of a phrtiadel being acquired from the data by
ASDD due to a small learning data set, or can bedbkult of operator conditions which give

differing evidence of the outcome.

Two P-SPOs are shown below:

new B : painted b falge® {1.0: paintéd b faj
_ painted b fals¢® 0.02: painted b true
¥ holding(kh fals¢ ~ 0.98: painted b false

The first of the above operators is the P-SPOHemnewaction’s effect on theainted(b,X)
perceptual feature. The second P-SPO is a paut@| which could be created if there is not

enough evidence to correctly learn the rule forpiat action from the original rule-set:

painted Y, fals)3® 0.1: paintefl Y trge

paint(X,Y): .
holding(Y, fals¢ 0.9: painted(Y, falsg

Conflict resolution for these operators would needccur if, for example, the actiorew(b)

was chosen for an initial percept:
painted b falsg dry g true holding,b false rewdndne)

The precedencealgorithm defines how conflicts of this type aesaelved. The algorithm

evaluates the precedence of a generated set 0OB;BBPOsover a set of PDIE).

All PDls in the database are examined. If two P-SR@ply to the same PDI and refer to the
same perceptual feature in the outcome, the opefatecedence is defined using the
firstPSPOSuperiofunction, which finds the subset of PDIs for whiwtth rule sets apply and
uses a heuristic error measure to define the aperath the most accurate performance for
the subset (section 6.6.1).

129

Learning Parallel Stochastic Planning Operators

precedence(PSPOs,D)
for (pdi D){ |
matchedPSPOs = matching(PSPOs, pdi);
for all (pspol matchedPSPOs) { ~
for (pspo2 = next(psol); pso2 .| matchedPSPOs) {
if (Iconflic ted(pspol.P iSpo2.P))
next psoz2;
if (precedenceSet(psol, pso2)
next psoz;
if (firstPSPOSetSuperior(psol, pso2))
setPrecedenceOver(pos2 , psol);
else
setPrecedenceOver(psol, pso2);
}

}
}

Algorithm 6-10: precedence. PSPOs=the operatorBet.perceptual data items. The
algorithm sets the precedence between all operaRmecedence defines which operator will
be used if there is a conflict.

1) D can be either the same set of data used to lbarogerators, or a separate set used
to establish precedence between operators. Ifdime slata set is used, the speed of
the algorithm can be increased by the observatiahd specific rule set (one which
matches fewer examples in the PDI set) will alwiagse precedence over a general

one according to the error measure used (sectéh)6.

2) Thematchingfunction returns the subset of P-SPOs with a bodiching the percept
and action from the PDI. This is similar to the setbfunction defined for rule
element sets in section 6.4.7, but is defined feBP®s (which have multiple

outcomes).

matching(PSPOs,PDI)
subsetP = {}; ~
forall(p PSPQs)
forall(po p.P | o) .
if ((c.P PDI) apdi(c.P PDI)) c | {
subsetP.add(p);
next p;

return sub setP;

Algorithm 6-11: matching. PSPO = the planning ogeraset. PDI = a single perceptual data
item. The algorithm returns the subset of planrapgrators with context and action
matching the PDI.

3) Theconflictedfunction is as defined by background knowledge r@tdrnstrue if the
outcome sets of the two P-SPOs have conflictingnefgs (see section 5.2.1).

130

Approximate Dynamic Programming with Parallel Staslic Planning Operators

6.6.1First PSPO Superior

The firstPSPOSuperiofunction returns true if the first P-SPO shouldidgrecedence in

situations where the two P-SPOs are in conflicpfago the same outcome perceptual

feature).
firstPSPOSuperior(PSPO1,PSPO2,D)

/lcheckiftheruleisalready part of the defer sset
if(PSPO2 PSIPO1.P)

return true;
/[create a new combined PSPO
newC.P ,RPSPO1.P; /laction must be the same
newC.P = PSPOl P P‘EPOZ P ; /lconditions are combin ed
newC.P = PSPOl P PEPOZ P ; /lqutcomes are combined
newC.P = PSPOl P PEPOZ P; //set size of outcome s et
/ffind body support for PSPO and support count for outcomes
sc[newC.P] =ps = 0;
forall (pdi D) 1 R

if (newC.P new®&P pdijl

bs++;i=0; .
forall (0 newC.P){ o
if (0 pdi) I
scfil++;
i++;

}}
/Iset the probabilities of the combined outcome set
for i=0to newC.P

newC.P[i] = scli]/bs;
/ffind rule with the least error against the co mbined set
if (errorMeasure(PSPO1, newC) errorMefsure(PSPO2, newC))X{

PSPO2.P PBRsSPO2.P PSEO1;

return true;
return false;

Algorithm 6-12: firstPSPOSuperior. PSPO1 and PSRQRe planning operators to be
tested. D = the set of perceptual data items. Tgerdahm return true if the first P-SPO will
have precedence in situations where the rulesramnflict.

131

Learning Parallel Stochastic Planning Operators

The algorithm compares the probability values fer dutcomes of the P-SPOs with a new P-
SPO generated by combining the conditions of theraiprs. The probabilities for the new P-
SPO (which are collections of rule sets) are gaadrampirically in the same manner as all
other rule sets (section 6.4.18¥pb = sc/bs.

The P-SPO that has the least error when compartbe tmombined P-SPO is given
precedence. The error measure used in this reseamtroduced by the author in [18]:

For each non-matching outcomadd +0.5. A non matching outcome is one that is
present in the combined rule but not in the originke, or present in the original rule

but has probability zero in the combined rule.

For each matching outcomeadd the absolute difference between the empirical

probability for the combined rule and that for tireginal rule.

The use of the combined outcomes provides a meadutee accuracy of each operator in
situations for which the P-SPOs conflict. This diddi of 0.5 for missing/additional outcomes
to the error measure penalises rules which faitedjegnerate all outcomes for a P-SPO,
however low the probability of the outcome.

Note 1: For a rule set which subsumedby a more general rule set, the specific rulendiet
always have precedence over a general one, if vesing the same data set to test rule sets
as to create them. This is because the combinedsetiwill be equal to the more specific rule
set. For example, if we have a rule with conditifgb} and a rule with conditions {a}, the
combined rule has conditions {a,b}.

Note 2:If the combined rule set applies to a limited nembf examples from the data this
method is likely to produce spurious results.

Example 1:

The P-SPOs (1) and (2) below are generated fromatad have the condition (non-outcome)

rule elementgpaint(g,b), painted(b,false}nd{paint(g,b), holding(b,false)espectively:

0.31:painted(b, true

1) paint(g b): painted b falsg® oo inted(b, falsd

0.42:painted(b, true

2) paint(g, b holding b fal i
) paint(g,b: holdind b falsp® 0.58:painted(b, fals

Combining the two sets of conditions and the asdéedioutcomes (rule heads) gives the new

P-SPO (initially unknown probabilities indicated yestion marks):

132

Approximate Dynamic Programming with Parallel Staslic Planning Operators

_painted b fals¢® ?: painte@l b trge

paint(g, b:) .
holding(h fals¢ ~ ?:painted(k false

If the conditions of this combined P-SPO are eqodhe conditions of one of the P-SPOs in
the P-SPO set generated by ASDD, then the probabikssociated with each outcome can
be taken from the operator, otherwise, a new pgassigh the data will be required to find the

empirical probabilities of the combined operator.

In this instance, an operator with the combineddd@ns is likely to have been discovered by
ASDD, given a reasonably large data set, and thecésted outcomes and probabilities can

be found from that operator:

paint(g.b: painFecK h falsg ® 0.09: p.ainte(i b true
holding(h fals¢ 0.91:painted(b, fals§
Using the error measure, rule (1) has an error of:

|0.31- 0.09= 0.22:fopainted(b,true +
|0.79- 0.9f 0.12:fopainted(b, false

Total error for rule (1):0.34.
Using this error measure, rule (2) has an error of:

|0.42- 0.09= 0.33:fopainted(b,true +
|0.58- 0.9f= 0.33:fopainted(b, false

Total error for rule (2):0.66.

Rule (1) would, therefore, have precedence over (2.

Example 2

A similar example illustrating the error measure f@n-matching outcomes is given below

for the paint rule when the robot is holding thedil.

The P-SPOs (1) and (2) below are generated fromatad have the condition (non-outcome)

rule elementgpaint(g,b), painted(b,false}and{paint(g,b), holding(b,true)espectively:

0.31:painted(b, true

1) paint(g b: painted b false®
) paini(gb: painted b falsg) 5 inted(b, fals

133

Learning Parallel Stochastic Planning Operators

2) paint(g, : holding b trup® {1.0: painte@ b trde
Combining the two sets of conditions and the as¢edioutcomes gives the new P-SPO:

painted b fals¢,® ?: painte@ b trge

paint(g, b): . .
holding(h trug ?:painted(h falsé

In this instance, ASDD will not have produced a FESwith the combined conditions,
because the rule element sets needed to form #ratop would have been filtered due to the
extra painted(b,false)condition having no significant effect on the prbitisy of rule (2)

above.

The probabilities of the combined operator can @enél from data (or by adjusting the
algorithm to take probability 1.0 subsets into aodd The combined operator probabilities

will be found to be:

int fal 1.0: int t
paint(g,b: pain _ec(o as¢,® p(j;un ed b true
holding(h trug 0.0: painted(b falsé
Using the error measure, rule (1) has an error of:

|0.31- 1.0= 0.79:fopainted(b,true +
0.5: for thepainted(b, false)outcome which was not praserthe combined PSF
Total error for rule (1):1.29.

Rule (2) has an error of:
[1.0- 0.¢= 0.0:forpainted(b,true +
0:for painted(b, falsejvhich was (correctly) not presémthe combined PSF
Total error for rule (2):0.0

Rule (2) would, therefore have precedence over(fle

Special Situations:

There are some exceptions to choosing the rule twéHowest error measure, which help to
keep the model accurate in the general case, dpdtine RVRL algorithm (chapter 9) to

gather useful information.

The following special conditions are applied in@nrd

134

Approximate Dynamic Programming with Parallel Staslic Planning Operators

1) If the P-SPOs have an equal error measure (eybibtd have a single outcome with
probability 1.0), themore generalrule is given precedence because it has more
supporting evidence.

2) If the P-SPOs being compared are both determinipticbability 1.0) and one is a
“frame rule”, then the frame rule is given supregdiecause rules of this type can be
combined into environment operators.

3) If each of the outcomes contained in the two P-SB@sconditionally independent
(using the G statistic measure), timore generalone is used because, again, the

general rule has more supporting evidence.

A simple definition ofmore generals: the P-SPO with the most conditions. Howeveme
P-SPOs may contain rare conditions which make thmeme specific. Generality can, instead,
be induced from the training data, by using bodypsut, bs the most general P-SPO is the

one whose conditions match the greatest numbebtsf ffom the training data.

Note: To aid comprehension, these exceptions are not rshiawthe firstPSPOSuperior
algorithm (algorithm 6-12).

6.6.2 0utcome Sets of Size greater than one

Outcome sets with size one (dependent outcomeb)alviblys take precedence over single
outcome sets, because the single outcome opethgirshey are generated from must have
equal conditions. Generation of rules of this typdeyond the scope of this work, but is
discussed in the future work (section 11.3.5). €hare two methods: (i) the rules can be
generated by ASDD, which would require the parem¢s to be matching in all but one

element (the additional outcome); (ii) an additiopass can be made through the rules for
those that have the same conditions, and have metdor which the additional dependency

of the outcomes passes the G-test.

This equality in conditions means that that botteparules can be safely set to defer to the

combined rule because they cover the same sitigation

6.7 ASDDs: Speeding up ASDD with Set Operators

The ASDDs algorithm is an optimisation of ASDD whimcreases the speed of the support
count operation by using set operations to finérsgctions between the PDIs covered by
each rule-element set. There is an overhead instaf the storage required by each rule
because each single item set must be associatbédtidt PDIs that it is present in. The

optimisation is an adaptation of tégrioriTID algorithm [1], using a similar method of set

135

Learning Parallel Stochastic Planning Operators

counting, but associating each single item set wighPDIs it contains to perform set counts.
Extensions to overcome overheads in memory regeingsnare beyond the scope of this
work, but could be achieved by partitioning the PRtabase into smaller sets (e.g. by use of
thePartition algorithm [81]).

Set intersections can be used to count item-setBeirfollowing way (explanation adapted
from [42]).

A PDI reference is a unique identifier for a petoap data item. For single rule element set
(set of size one), the PDI list is the set of idf@rs corresponding to the PDIs in which it is
present. Each rule element set (sets of size ¥s@)has a corresponding PDI list. The PDI list
for a newly generated candid&egenerated from parent rule element 3etmdY, has a PDI
list equal to the intersection of the PDI list #=@nd the PDI list folY. The support count of

the candidate is equal to number of items in thelRD

Storage required for a PDI list for each rule eletnget quickly becomes an issue as the
database becomes large and the candidate setdasrdde PDI lists can be generated on the
fly by keeping track of the parents of each ruenent set. Each parent’s PDI list can then be
generated as an intersection of the PDI's of iteqiz until a stored PDI list it found (e.g. the
PDI set fora single rule elemerdet). The method used in this research was te §bDi list

for eachtwo rule element sefhis offered the best compromise between stoeaglespeed.

This was not a focus of the research and furthemigations are a subject for future work.
Steps of the algorithm:

1) On the initial pass of the database, used to desceize-one rule element sets in the
standard algorithm, each level one rule elemensteegs a set of PDIs that it appears

in. The size of this set is the support count.

2) The aprioriPrune algorithm is amended such that a reference tonthe rule’s
parents is recorded by the surviving (non-prunedidadates. If this is a two item set,
the generated candidate’s PDI set is equal tontteesiection of the parent PDI set and
the support count is the size of the PDI set.dfihle set is of size > 2, the PDI set is
generated as the intersection of the parent’s B3l Support count is the size of the

intersection. The new PDI set is not stored foe $i2 sets.

136

Approximate Dynamic Programming with Parallel Staslic Planning Operators

aprioriPrune(Ck,Lk-1)

forall(c Ck) |
forall (k-1 size subsets s of c)
if(s Lk-1) |

delete ¢ from CKk;

forall(c Ck) T
PDlset = c.mother.PDlset
c.sc = PDlset E
if (c.x | ==2)
c.PDlset = PDlset;

c.father. C

PDlset

Algorithm 6-13: aprioriPrune. Modified for the ASBDptimisation for ASDD.

Support count has been counted in advance (theositee PDI set). Step 2 of the ASDD

algorithm is, therefore, no longer necessary andemoved. The algorithm is otherwise

unchanged.

6.8 Summary

This chapter defined the ASDD algorithm for thetfgeneration of stochastic rules from a

database of perceptual data, and the support tidgmrirequired for generation of P-SPOs

from these rules. Precedence between operatostailslished for situations in which the rules

conflict. Finally an optimisation to the algorithimsing set-based techniques was given.

137

Learning Parallel Stochastic Planning Operators

138

Approximate Dynamic Programming with Parallel Stagtic Planning Operators

7. Test Environments

This chapter defines the test environments for béh ASDD algorithm (chapter 6) and
RVRL algorithm (chapter 9) including characteristiand challenges that these test
environments present. These test environments sed to evaluate the performance of
ASDD in chapter 8 and the performance of RVRL iapter 10.

Two test environments were selected to evaluatpén®rmance of the system under a range
of conditions. The “slippery gripper” environmerst fully observable and all outcomes are
independent. The environment can be completelynddfby a set of PSPOs. The “predator-
prey” environment is partially observable, containslependent outcomes, and changes
outside the direct control of the agent. An acaRHSPO set for the environment cannot be
learned by ASDD, but an approximation can be aeguir

7.1 The Slippery Gripper Environment

The “slippery gripper” test environment presentedn adaptation of the environment defined
by Oates and Cohen [65]. The environment has aitiaulal “gripper clean” environment
feature from the one used in the explanation oPB®$®perators given in section 5.2 and has

slightly increased complexity in its dynamics.

This is a discrete time step environment. The @mvirent changes state in response to each
selected action with no external events. The enwirent is, therefore, completely defined by

the actions available to the agent.
I

—P

O

Figure 7.1: The “slippery gripper” environment.
Paint: paints blocks.

o If the robot is holding the block then the blocKIvilecome painted and the
gripper will become dirty 100% of the time.

139

Test Environments

(0]

If the robot is not holding the block then thedXavill become painted 10%
of the time and the gripper will become dirty 20%hee time.

If the gripper was clean and the block was not tteésh the gripper becomes
dirty 20% of the time.

If the gripper was clean and the block was heldttiee gripper becomes
dirty 100% of the time.

Dryer: dries the gripper.

(0]

If the gripper was wet then it will become dry 9@¥#the time.

Pickup: picks up blocks.

(0]

If the gripper is dry, the block was not held, ahd block was not painted
then the action results in the block being held @3§%e time.

If the gripper is dry, the block was not held, ahd block was painted then
the action results in the block being held 75%heftime.

If the gripper is not dry, the block was not hefdianot painted then the block
will be held 15% of the time.

If the gripper is not dry, the block was not hefdianot painted then the block
will be held 5% of the time.

If the gripper was clean and the block was paities it becomes dirty 20%

of the time.

New. used to deliver a block and receive a new one.

(o]

The action results in a positive reward if the Blo@s painted and a negative
one if it was not.

A new block arrives which is clean, and not pairdetield in the gripper.

The gripper will be dry after the action is comptet30% of the time and is

wet the remaining 70% of the time.

140

Approximate Dynamic Programming with Parallel Stagtic Planning Operators

The sensors are defined as:

S = {BP, GC, GD, HB, R }

Sep = {BP, -BP }

Ssc = {GC, —|GC}

Seo = {GD, -GD}

S = {HB, -HB }

Sz = {pos, neg, none }
Where:

BP = block painted;

GC = gripper clean;

GD = gripper dry;

HB = holding block;

R = reward.
Thesensdunction returns the current state of each eleroétiie sensor array.
The agent’erceivefunction converts the sensor information into acppt. In this case this

is a simple one-to-one mapping between the sendormation and the percept. The

background knowledge required to describe thisrenuent is given below:

reward(X)-~ X { pos neg nohe

boolearf X = X { true falje

painted(X)- booleah X

dry(X)- boolearf X

holding(X)-~ booleaf X

clean X) = booleaq ¥

conflicted B~ painted(trde) P, painted(fh)seP
conflicted B - dry(trugl P,dry(falsé) P
conflicted B - holding(true) P, holding(fdlse P
conflicted B~ clean(true) P,clean(false) P
conflicted - reward(X) P,reward(Z) P,X

Figure 7.2: Background knowledge for the “slippemypper” environment with additional

“clean” perceptual feature.

The background knowledge is similar to that givensection 5.2 with the addition of the
cleanperceptual feature.

141

Test Environments

Figure 7.1 presets a situation in which the robatat holding the block. If the block has not
been painted @=-BP), the gripper is wet £5=-GD), the gripper is clean £&&=GC) and no
reward was received £S= none) in the previous time step, the sensorrimédion can be

converted into a percept given by:

painted(false), dry(false), clean(trub@lding(false), reward(non
The key features of the test environment are:

It is a fully observable Markov decision process f@atures of the environment can

be observed, and the next state is dependent artlyegprevious state).

The perceptual features of the environment areitondlly independent (the values
of the features in the successor state are nondepéon the values of other features

in the successor state).
The environment is stationary (the model does hahge over time).

The environment is continuous (the task is assumedntinue infinitely, as opposed
to episodic tasks, which are re-started after @oriing state has been reached).

These features mean that it is possible to modektivironment perfectly with a set of P-
SPOs, and it should, therefore provide a usefulclhmrark for performance tests of the

algorithm.

The P-SPO set for the standard environment is aetefrdm those given in section 5.2. The
P-SPO set does not require variables for the grippd block, because it assumed that there
is only ever one current block and one gripper ¢mag the environment definition above).
There is also an additioneleanenvironment feature and altered probabilities fer dutputs.
Figure 7.3: The P-SPO set for a “slippery grippenironment with exactly one block and
one gripper.

142

Approximate Dynamic Programming with Parallel Stagtic Planning Operators

paint: holding tru¢ ® {1.0: painteq tru} 1)
paint: holding tru¢ ® {1.0: cleag falsp (2)
) i 0.8:clean(true
aint: holding fals@® 3
pat ind ¥ 0.2:clean(falsg S
paint: painFec{ fals¢® 0.1: pz.slinte(i true @
holding(fals¢ 0.9:painted falsg
paint: clefelr(trueg, 0.2: clear trug)
holding(fals¢ 0.8:clean(falsg
paint: holding tru¢ ® {1.0: cleag falsp (6)
0.9:dry (true)
dryer: dry(falsg ® 7
yer: dn(false® 1 - dry (false) %

piCkup:dry(true),.paintec(fals)e® 0.95: hoIQing true ®
holding(fals¢ 0.05: holdind falsg

pickup:dry(true)'_ painted tru}z® 0.75: hOId-InQ trup ©)
holding(fals¢ 0.25: holdind falsg

pickup:dry(false),_ pained(false),® 0.15: holdfng[trug (10)
holding(fals¢ 0.85: holdind falsg

pickup:dry(false)_, painted tru)3® 0.05: hoI.ding true (11)
holding(falsg 0.95:holding (false)

pickup: painted trug, 0.20:clean(true) (12)

clearn(trug 0.80:clean(fals@

new: painted false® {1.0: rewarfl ndg (13)

new. painteq trup® {1.0: reward pgs (14)

new.{} ®{1.0: holding fal3p (15)

new.{} ®{L.0: painted fal¥e (16)

new) ® 0.3:dry (true) (17)

0.7 .dry (false)
environment {} ® {L.0: reward nodje (18)

Figure 7.3: The P-SPO set for a “slippery grippeghvironment with exactly one block and

one gripper.

Figure 7.4 shows the influence diagram for the mmwnent. The diagram highlights

dependencies between variables in the domain.

143

Test Environments

Act

Pr(BP,,;)

“['Action | BP | HB BP [-BP
Paint | BP | HB 10 | 00
Paint | “BP | HB 10 | 00
Dy | BP | HB 10 | 00
Dy | BP | HB | 00 | 10
BP | HB 10 | 00
=-BP | HB | 00 | 1.0
New | BP | HB | 00 | 1.0
New | -BP | HB | 00 | 1.0
Paint | BP | -HB | 10 | 00
Paint | -BP | -HB | 0.1 0.9
Dy | BP [-HB | 10 | 00
Dy | BP | -HB | 00 | 10
BP | -HB | 10 | 00
-BP | -HB | 00 | 1.0
New | BP | -HB | 00 | 1.0
New | -BP [-HB | 0.0 | 1.0

G

GD

olololc

SIoloIe

Figure 7.4: Influence diagram showing dependenbitsveen variables for the “slippery
gripper” environment. The conditional probabilit¢PT) table for the BP variable has been
included. Other CPTs (omitted for brevity) woultlde a similar format.

7.1.1 Notes on the Slippery Gripper Environment

The environment is challenging for a reinforcemésdrning algorithm because slight
differences in the estimations of state action eslcan result in sub-optimal performance. For

example:

A strategy of painting a block without picking ip,uthen delivering the block as soon
as it has been painted leads to the quickest pa#im immediate reward, but with a
low probability of success and therefore will nohieve the maximum reward in the

long run.

144

Approximate Dynamic Programming with Parallel Stagtic Planning Operators

A strategy of picking up a block, painting it arfteh delivering it will lead to a
marginally better level of reward, but the pickugtien often fails if the gripper is
wet. In addition, the value of a strategy may beresstimated or underestimated if

the available evidence of state transition prolit&slis limited.

The optimal strategy is to dry the gripper if itviset. Pickup the block when the
gripper is dry, then paint the block and deliveiDespite having the most steps, this
strategy has the highest probability of deliver@ngainted block per action used.

The clean perceptual feature has no influence on the reviiamdtion, but the rule
learning mechanism will attempt to learn it's dyriesnbecause the system does not
relate rule-learning to rewards.

7.2 The Predator Prey Environment

The predatory-prey environment consists of a 4xd gurrounded by a “wall”. There e
predator agent anohe prey agent which take simultaneous moves. Theapoedatches the
prey (gains a reward) if the predator and prey@arehe same square. The prey selects a
random action at each move.

Both predator and prey have four available actiom®ze(north), move(east), move(sowthdl
move(west)An action has the effect of moving the agent sagare in the selected direction,

unless there is a wall, in which instance the achias no effect.

The environment is continuous: the predator ang pmitinue to move after the predator
catches the prey.

The agent body’sensefunction detects the contents of the four squadbsining it and the

square under it. Each square can be either emmtyaio an agent, or contain a wall. Squares
can be in only one of these states (the agentmimtesee its own body in this instance). Figure
7.5 gives an example situation in which the preda&s a wall to the west and a prey to the

east.

145

Test Environments

=
i

Figure 7.5: Predator and prey in a 4x4 grid (P *quator agent; A= prey agent). The
sensor information for the predator, P, is showthte right (W = wall. E = empty, A = prey
agent).

The sensors are defined as:

S=NESWU }
Sy= fEmpty_N, Wall_N, Agent N}
S SsS. S | follow the same fom as

Where:
S\ = see north, and can take the values:
Empty N: the square to the north is empty.
Wall_N: the square to the north contains a wall.
Agent_N: the square to the north contains an agent.
Ss, Sy and $ are similarly defined.

The agent'erceivefunction converts the sensor information into acppt. In this case this
is a simple one-to-one mapping between the sengamiation and the percept. For example
a value for §of Empty_N converts to the perceptual featsee(north, empty)n accordance
with the P-SPO definition, the last parameter opeaceptual feature defines the value,

meaningsee(north, X)can only take one value f&r in a given percept.
The background knowledge required to describeaihigronment is given below:

item(X)-= X { wall empty agent

direction(X) = X { north east south west unj
see(X,Yy direction(X),itegm)Y

conflicted B- see(X]Y) P,see{X,2)* P,Y Z

(7.1)

The background knowledge states that the agensearthe square contents in each of the

available directions, and that each square caragoakactly one item.

146

Approximate Dynamic Programming with Parallel Stagtic Planning Operators

Figure 7.5 contains an example of sensor informatichich can be converted into a percept

given by:

see(north, empty), see(east,agent), see(soutty)esae(west, wall), see(l@rgempty

The key features of the test environment are:

It is partially observable (not all features of tBevironment are contained in the

percept)

The probability of a successor percept is not cetept dependent on the previous
percept and action selected (the environment doesxhibit the Markov property).
An increased history would improve the probabiéistimates of the following states.

The perceptual features of the environment areitiondlly dependent (the values of
the features in the successor state are dependehewalues of other features in the
successor state). This requires the additionahiiefn of aninvalid(P) function for

the environment (as defined in section 5.4.5).
The environment is stationary (the model does hahge over time).

The predator-prey environment does not displayMiaekov property and it is therefore not
possible to represent it accurately as an influetiagram or as a set of P-SPOs. The P-SPO

set learned by ASDD will be an approximation of ém¥ironment’s dynamics.

Theinvalid(P) function for the predator prey environment (7.haates successor percepts

in which more than one agent is present, or foctviwalls are present in opposite directions.

invalid(P)- see(X,ageht) P,see(Y,dderPiX Y
invalid(P)- see(north,wdll) P,see(sbywvall) P (7.2)
invalid(P)- see(east,wall) P,see(westiwall) P

7.2.1Notes on the Predator-Prey Environment

The predator prey environment is challenging toAB®DD algorithm because it has a range
of features which are outside the modelling cajité#sl of the basic algorithm. In order to
form a perfect model, the algorithm requires tha¢ Markov property holds, that the
environment is fully observable and that outputialdes are independent. Using the
algorithm in an environment for which these regmieats do not hold shows how the
algorithm can perform (to some extent) in theseutirstances by using probabilities to model

external factors.

147

Test Environments

Observation of an optimal policy for this environmeeveals that the best strategy is to keep

the prey agent visible at all times:
If on top of the prey and next to a wall — moveittie wall.

If the prey agent is in the percept, but not undatin the prey, move onto the prey so

that it will remain in sight in the next move
If on top of the prey and not next to a wall —rathves are equal

If the prey agent is not in sight and the predaarext to a wall — move into space so

that more squares are visible

This is a particularly challenging environment tbe ASDD learning algorithm in its current
implementation, because the assumption of indeperalgécomes means that it is not able to
predict one of the key features of the environmtrett moving onto a prey will always result

in the prey being somewhere within the predatogisept.

7.3 Summary

This chapter presented the test environments useelvaluate the partial agent learning
framework using a P-SPO set acquired by ASDD (&raf) and the full agent learning
framework with the addition of the RVRL algorithch@pter 10).

The “slippery gripper” environment is fully obsebla and can be completely defined by a set
of action rules because all outcomes are (stodadig) defined by the actions of the agent.
Additionally, each outcome is independent. It sdpuherefore, be possible to learn a
completely accurate P-SPO definition of the enwvinent using ASDD given a large enough

data set.

The “predator-prey” environment is more challengibgcause it contains independent
outcomes, is partially observable, and the envimmnthanges outside the direct control of
the agent. These features have the effect thatcemrate P-SPO set cannot be learned by

ASDD. An approximation can, however, be acquired.

RVRL will attach utility estimate values to the P@Ss generated for these environments, and
the challenges presented by each environment $nrélspect will be discussed in sections 9
and 10.

148

Approximate Dynamic Programming with Parallel Stagtic Planning Operators

8. Performance Results: Agent Framework with ASDD

This chapter presents the results of the ASDD aBiDBs (ASDD with set optimisation)
algorithms in learning P-SPO sets for the testrenvinents presented in chapter 7. The tests
examine the validity of the learned model in congmar to both a tabular method and rule
sets learned by MSDD. The tests also examine tHerpgance of the model when used to
derive a policy for the test environment in thechaprocessed environment modelling and
learning framework described in chapter 4.

In this context, performance measures test:

The ASDD algorithm’s capacity to accurately learnset of parallel stochastic

planning operators which model the test environment

0 Model accuracy is defined in terms of the modebdity to predict future
percept probabilities given an initial percept aation when compared to a
perfect model.

0 The accuracy of the model provided by the opersebvtearned by ASDD is
compared to the model learned by tabular methods anthe MSDD
algorithm, given varying levels of environmentapexience.

0 The “slippery gripper” environment is defined inres of a P-SPO set. The
learned P-SPOs can, therefore, be compared toitba gperators. For the
predator-prey environment, an exemplar of the aeduioperators is

discussed.

The speed of the ASDD and ASDDs algorithms in legyoperator sets is compared
to MSDD for each of the test environments with @as levels of environmental

experience.

The performance of the policy derived from an ASDBBsed model in the test
environment, given a limited training data samjgecompared to that of a policy
derived from a tabular model, and that provideddoy MSDD operator set. All
models are derived, and policies formed, using BachModelQ framework

described in chapter 4. Tests are performed taiatal

0 The agent’s ability to achieve goal states anddhdimasterstates. A disaster
state is one which provides poor or possibly cedpkic performance, such

as delivery of an unpainted block in the “slippgripper” environment.

149

Performance Results: Agent Framework with ASDD

0 The agent's ability to maximise the rewards it cgather from the

environment over a test period.

When learning the model, ASDD minimum support wetst@ 1 (any occurrence means a rule
set is not discarded), and significanceaprioriFilter was set to 0.445 (50% significance).
For both ASDD and MSDDthe G level for théfilter function was set to 3.841 (5%

significance).

8.1 Performance comparisons

The following sections define the learning methosed in performance comparisons.

8.1.1 Tabular Methods

Tabular modelling methods, such as Dyna-Q [87]im@robabilistic adaptation presented in
section 2.3 use labelled states to model the emviemt. The relative frequency of each
successor state is used to provide an empiricélgtnibty of the results of each action in each
state. This method provides a useful benchmarkusec# has the modelling power to create
a perfect model of a Markov environment given sigfiit training data. The method suffers
from the “curse of dimensionality” [5], because thble size is exponential to the number of

perceptual features in the environment.

8.1.2MSDD

The MSDD algorithm, defined in section 3.1.2, hasrbused to learn a P-SPO set in previous
research by the author [16]. MSDD learns individudes, which are combined to form P-
SPOs using the ASDD supplementary algorithms (ddfin chapter 6).

8.1.3Learning a Policy from the Model

A tabular policy can be generated from a world nhdale using standard reinforcement
learning or dynamic programming techniques (sect®B). These methods have been
evaluated by the author in [17]. Reinforcementrear methods map state-action pairs to
values, while dynamic programming methods can ntete-sction pairs to values, or can map
states to values and use the model to evaluatéighest valued action. The method is
agnostic to the type of model used, with the rethdt a direct comparison of the quality of

policy produced by each model can be made.

Each test used a fixed model, and a learning fateOocan, therefore, be used for the policy
learning algorithm if full-backups are performeds (described in section 3.2.2). This is
equivalent to dynamic programming using a postgleni state variable representation, as
described by Powel [73]. Discount rates for futteward were set at 0.9 for all tests.

150

Approximate Dynamic Programming with Parallel Stagtic Planning Operators

8.1.4Error Measure

The error measure provides an indication of the emof states (or equivalently percepts)
missing from the successor states generated byntdel, the number of additional states

generated by the model and the differences in foibthas indicated by the model.

The measure is that defined in section 6.6 for uatalg the supremacy between P-SPO

operators:

For each non-matching outcomadd +0.5. A non-matching outcome is one that is
present in the combined rule but not in the oribinke, or present in the original rule

but has probability zero in the combined rule.

For each matching outcomeadd the absolute difference between the empirical

probability for the outcome, and that for the omeogenerated by the perfect model.

The error measure requires that we have an accwedel available with which to compare
the states and probabilities generated by the motelbe tested. Theseomparison
environment modelwere generated from very large data sets, usingattidar method, by
running the test model for 3 million moves. It slibbe noted that these models will contain
inaccuracies, due to unreliable empirical probgbijeneration for rarely visited states, but
these will be minor in models of these size usethéntests.

Algorithm 8-1 was used for error measure generafidre algorithm cycles through all the
sate-action pairs contained in the comparison madelreturns the sum of tieerorMeasure

evaluation of the difference between the genersti@gs and the comparison model states.

151

Performance Results: Agent Framework with ASDD

findModelError(M)

initialise C with comparison model

E=0;

/lcycle through all percept action pairs in C

forall{pa} C){ 1
/ffind the outputs and associated probabiliti es
/ffor co mparison model C and model M
distributionModel :.p a {O..P}; ® . .
distributionModel :.p a {O,,P} ® ,

/ladd error measure for incorrect outputs or probabilities
E +=errorMeasure({O ,P}L{ . Qu.P3);

}

return E;

Algorithm 8-1: findModelError. M=model to be compak. The function returns the error
measure for the model to be compared against aawstive tabular model for the same

environment.

8.1.5Time Taken Comparison

Performance timings of the algorithms were takeradhGHz Intel Centrino processor with
2GB of RAM. A comparison was made of the time takgreach model learner for the given

data set. All comparisons are for the same inpt# skets of perceptual data items (PDIs).
8.2 Results: Slippery Gripper with Additional Dependendges
The slippery gripper environment with additionapdadencies has:
States: 20
State-action pairs: 80 (20 states times 4 actigaable in the environment)
State-action following states: 148

8.2.1 Model Accuracy

Table 8-1 shows the error measure for the modeérgéed by each of the model learning
methods. The error for ASDDs is equal to that f@DD because the same training data set
was used for all experiments and the ASDDs meth@ds$entially the same algorithm with an

optimised counting method.

152

Approximate Dynamic Programming with Parallel Stagfic Planning Operators

Table 8-1: Error measure of generated states gaeedrfrom rules learned from data
collected over 100, 1000, 5000, 10000, 20000, 5@®@D100000 random moves.

100 500(5000(| 1000(0
Tabula 24.1c 7.84 7.04 3.5¢ 1.1¢€ 1.5t
MSDD 66.40 17.85 6.76 5.41 4.25 0.77 0.30

ASDD
ASDDs

75.90 17.06 4.95 3.57 2.32 0.73 0.27
75.90 17.06 4.95 3.57 2.32 0.73 0.27

The error measure values show that P-SPOs are leapltearning an improved model in
comparison to a tabular method for all but the niiosted training data. It is possible to learn
a perfect model of the environment using P-SPOaumthe domain has independent output

variables. The table shows that the ASDD and MSorahms are capable of learning this
model from data.

Figure 8.1 shows the graph of these data valueBDAgerforms poorly on the initial data set
but, with a training data size of 1000 or more RDie ASDD algorithm learns the most
accurate model. The main difference between the ledrning capabilities of MSDD and
ASDD is theaprioriFilter function in ASDD, which removes rules with lowgsificance

early in the process. This has the effect of remgvules that would over-fit the data in this
domain.

AR
"& & \
&& \\

\ —o— 456748
&&

++,+ -./0+- .10-

& &
& & =x= 9

&& i\\

&& T T T T IV —
&& &&& &&& &&&& &&&& &&&& &&&&&
2. .341- 56-

Figure 8.1: Graph of error measure of generatedtetagenerated from models generated
from data collected over 100, 1000, 5000, 1000002050000 and 100000 random moves.

Table 8-2 shows the extra states and missing stgesrated by each of the models. The
numbers are reflected in the error measure beasarse extra/missing state adds 0.5 to the

153

Performance Results: Agent Framework with ASDD

error measure. The tabular method cannot geneddigamal states because this would mean

generating states that cannot be reached.

The states missed by the tabular methods for as#ataf 100,000 random moves are those

for the actiomewwith initial percept:
{ painted(true), clean(true), dry(false), holding@ju reward(none)}

The percept is rarely seen with random moves beddesgripper always becomes dirty if the
paint actionis used while holding the block, and often becorigy if not holding the block.
The percept can only occur in the unlikely everatt tthe block was painted while not held,
and then was picked up while the gripper was diso(anlikely because dryer action is
required after the initigbaint). This percept and action combination has not heeserved

and the model is not able to generate any succes#es. The correct successors are:
{painted(false), clean(true), dry(false), holdind¢t), reward(pos)} Pr: (0.75)
{ painted(false), clean(true), dry(true), holdingéa}, reward(pos)} Pr: (0.25)

The P-SPO based methods are prone to generatingondd states initially, but will
gradually learn a completely correct model becdiseenvironment’s characteristics allow it

to be modelled by operators of this type.

An example of incorrect states generated by operatith insufficient data from the 100 trial

ASDD rule set is for the actigmaintwith initial percept:
{ painted(true), clean(false), dry(false), holdingé), reward(noné)

The correct successor percept is for the staternmain unchanged (because the block was
already painted and the gripper was wet). The P-S&tChowever, generated two states, with

the additional one being:
{ painted(true), clean(falsediry(true), holding(true), reward(nong)

This was caused by the following ASDD generated:rul

0.8:dry(false)

{}: cleat trup reqv pgs® 0.2:dry (true)

154

Approximate Dynamic Programming with Parallel Stagfic Planning Operators

Table 8-2: Missing states vs. extra states geedraty each model. The first number in each
cell is the number of states missing from the madel the second number indicates extra

states generated by the model.

100 1000 5000 10000 20000 50000 | 100000
101-0 35-0 11-0 10-0 10-0 1-0 2-0
75-67 22-0 7-0 1-0 4-0 1-0 0-0
72-48 22-0 7-0 2-0 4-0 1-0 0-0

Tabular
ASDD
MSDD

An anomaly in this table is that ASDD learns a maceurate rule set than MSDD with a
model generated from 10,000 data items. The esrfarithe actiomewwith initial percept:

{painted(false), clean(false), dry(false), holdimgé), reward(nong) Pr(0.7)
The correct successors for the percept are:

{painted(false), clean(truediry(false),holding(false), reward(neg)Pr(0.7)

{painted(false), clean(true), dry(true), holdingée}, reward(neg)Pr(0.3)

The MSDD-based model missed the first of theseest@he one witldry(false), because it

used an over specific P-SPO that predicigtrue)with probability 1.0:
new. painted(false),clean(false),dry(fal$mlding(true)® {1.0: dr;(true}

This operator had been filtered by taprioriFilter function in ASDD, leaving the simple
(and correct) rule to have precedence:
0.7 :dry (false)

new.{} ®
0.3:dry (true)

8.2.2 Speed of P-SPO Set Learning

Table 8-3 shows the time taken by each model legraigorithm. The tabular rule learning
method makes a single pass through the data ahdrisfore very fast in comparison to both
rule learning methods. MSDD, ASDD and ASDDs arehesgproximately linear in time to
the size of the data set. Intuitively, this is ected because each method has to perform a
count of the number of times the rules match thea dat. MSDD has to perform the count
more often than ASDD, while ASDDs has a faster tiognmechanism than ASDD,
requiring only one full pass through the PDI datzba

155

Performance Results: Agent Framework with ASDD

Table 8-3: Time taken (in seconds) to learn a ®SEt or tabular model with data collected
from 100, 1000, 5000, 10000, 20000, 50000 and 1®E&dom moves.

100 500(1000(¢ 2000(‘ 5000C | 10000(
Tabular 0.02 0.02 0.07 0.02 0.08 0.08 0.16
MSDD 1.03 13.09 63.49 181.38 430.J0 1018|92 1957.41
ASDD 1.76 4.04 8.74 14.2y 29.25 61.12 152{05
ASDDs 1.06 1.67 2.24 4.1y 11.58 28.02 72)51

Figure 8.2 shows the graph of these data valuethéooperator learning methods. The graph
is shown with a scale of LoglO time in seconds. Bime of the training set is an
approximately logarithmic scale.

It is clear from the graph that the learning tina&etn for all rule learning methods is
approximately proportional to the training dataesiASDD is approximately 13 times faster
than MSDD and ASDDs is approximately double theedpaf ASDD for larger training sets.

s &
@
5 2
L0
B &
(qV]
~
™ \
& -x= 9
& =
C d
A/_ ===
&&__x‘l T T T T T 1
&& 8&& &&& &&&& &&&E& &&&E& &&&&S&
2. .341- 56-

Figure 8.2: Graph of time taken (in seconds) tatea P-SPO set or tabular model with data
collected from 100, 1000, 5000, 10000, 20000, 5GH@D100000 random moves.

8.2.3Reward Gathered by a Policy Learned from the Data

Rewards are +1 for a painted block delivered, atl for an unpainted block delivered.
Policies are learned using dynamic programming t®et10,000 iterations. Dynamic

programming builds a table of state to value (nathan state-action to value).

Discount level, , is set to 0.9.

156

Approximate Dynamic Programming with Parallel Stagfic Planning Operators
There is no learning rate required (equivalenterding rate 1.0) because this is a
model based technique with full backups.

The policy is taken to be the action with the higthexpected future rewards (see

section 3.2.2 for definitions).

Table 8-4. Reward gathered after following a pgliterived from a model learned from data
collected from 100, 1000, 5000, 10000, 20000, 5GH@D100000 random moves.

100 1000 5000 20000 50000 100000
679¢ 2613¢ 2609¢ 2613¢ 2607¢ 2616¢ 2609
2609¢ 2605(2613 26112 2612(2607¢ 2610¢
26121 2612¢ 2607¢ 2612; 2607: 2612(2612¢

Tabula
MSDD
ASDD

Figure 8.3 shows the graph of these data values giéph shows that P-SPO sets are able to
learn a perfect policy with a very small amoungegrperience, using the same training data for
which the tabular method is not able to performths level. The small differences in

“perfect” policies are due to random experimentaiation.

&&&& &

k=== ———A————h———p———A

&&& &

2<-+-:

&&&& &

T &&& & /
&&&& &

&&& &

\\

—— 456748

&& T T T T T T 1
&& &&& &&& &&&& &&&& &&&& &&&&&

1-.+8587 .2. .341- 56-

Figure 8.3: Graph of reward gathered after follogia policy derived from a model learned
from data collected from 100, 1000, 5000, 1000@020 50000 and 100000 random moves.

8.2.4 Goals Achieved vs. Disaster States Encountered

Table 8-5 shows the number of painted blocks dediveand the number of unpainted blocks
delivered. The tabular method performs poorly whigited experience is available, because
it must take a random action if it has not encowgdethe state before. At this level of

experience, some of the states are not visited mdel contains only 20 states, but some of

157

Performance Results: Agent Framework with ASDD

them are rarely visited, and it is therefore urlikdat they will be encountered with limited
experience. The rule based model is able to mdueleffects of actions at this limited

experience level and can, therefore, always avadlisaster states.

Table 8-5: Goals achieved vs. disaster statesameoed after following a policy derived
from a model learned from data collected from 10@)0, 5000, 10000, 20000, 50000 and
100000 random moves. The first number in eachicgibals achieved. The second number is

disaster states encountered.

100 1000 5000 10000 | 20000 & 50000 100000
ELVIETY 24348-1755(26136-0 26095{0 26139-0 26076-0 2616@6097-0
26099-0| 26050-Q 261330 261120 26120-0 26079-0 026N
261210 | 2612¢-0 | 2607¢0 | 26127-0 | 260720 | 2612(-0 | 2612:-0

8.2.5Comparison of Learned vs. Actual P-SPO Set

Figure 8.4 show the learned P-SPO set for 100,@08 items. The rule set shown includes
only those rules that are used in successor gémerghose that have precedence in at least
one state-action situation). Environment operadmesnot shown for clarity. The operator set
is an almost completely accurate representatioth@fP-SPO set for the environment. The
errors shown in the graph in section 8.2.1 aresome cases, reflecting small errors in the
comparison environment modéhe tabular model generated from a data-set ofilBon

PDIs), demonstrating the improved modelling powessible with the algorithm.

Two of the rules below have slightly incorrect pabbity estimates due to differences in the

base probabilities in the sample (shown in bold).

158

Approximate Dynamic Programming with Parallel Stagfic Planning Operators

paint: holding(tru¢ ® {1.0: painteq truj
paint: holding tru¢ ® {1.0: cleag falsp
0.8:clean(true
0.2:clean(falsg
_painted falsag® 0.1: painted true
holding(fals¢ 0.9: painted 1ae)

clean(true, 0.2: cleard tr
paint: n(trug 1 trug

“holding(fals¢ ~ 0.8:clean(fals@
paint: holding tru¢ ® {1.0: cleag falsp
0.9:dry (t
dryer: dry(falsg@ ® ry (true)
0.1:dry (false)

dry(true), painted(false)® 0.93: holding(true)

paint: holding fals¢®

paint

pickup : i .
holding(false) 0.07 : holding(false)
pickup:dry(true)’, painted tru¢,® 0.75: holqing trug
holding(fals¢ 0.25: holdind falsg
dry(fal inted(fal 0.1%olding(t
pickup - ry(ase)., painte (asegej o] |.ng(rue)
holding(false) 0.85: holding(false)
pickup:dry(false)., painted tru)e® 0.05: hol_ding true
holding(fals@ 0.95:holding (false
pickup - palnted(true),® 0.17 : clean(true)
clean(true) 0.83: clean(false)

new. painted false® {1.0: rewartl ndg
new: painteq trup® {1.0: rewar@ pgs
new.{} ®{L.0: holding fal3g
new.{} ®{L.0: painted fal¥e

_ 0.3:dry (true)
Bge 0.7 :dry (false)

environment {} ® {L.0: reward nojje

Figure 8.4: P-SPOs generated by ASDD with a trajrilata set of 100,000 for the “slippery
gripper” domain.

There is a difference in theewaction’s effect on thdry state of the gripper. The rule should

have an output:

0.3:dry(t
new.{} ® ry (irue)
0.7 :dry (false)

159

Performance Results: Agent Framework with ASDD

The action of drying a wet gripper, coincidentalhgs exactly the same probability as the
background probability of the gripper being dry dasim with a rule with no action or

conditions).

0.3:dry (true)

g @ 0.7 :.dry(false)

This is a more general rule, and the backgrountaghitity therefore has precedence over the
dryer action. This does not cause any damage tmduel, because any operators that have a
significantly different output probability to thebe chance will have precedence.

8.2.6 Results Discussion

The P-SPO based model is extremely effective insthpgpery gripper environment. With a
small amount of environmental experience, operatarsbe learned which have a low error

measure and from which an optimal policy can bévddr

Both MSDD and ASDD are effective at operator leagnin this test-case, with the ASDD
based operators showing improved performance byirgiting over-specific rules, and being
learned in a reduced amount of the time. The sstdaptimisation shows useful speed

improvements at this level.

The rule sets learned by MSDD and ASDD methodsrately capture the properties of the
original rule set, given sufficient experience, ard able to capture a low fidelity model of

the environment given reduced training data.

8.3 Results: Predator Prey Environment

An implementation of the ASDD algorithm has beestdd against the MSDD algorithm for

speed of model learning, accuracy of the model thagholicy achieved by the agent.
The predator-prey environment has:
States: 42
State-action pairs: 168 (42 x 4 actions availablié environment)
State-action following states: 732

8.3.1 Model Accuracy

Table 8-6 gives the error measure of the staterggae ability of ASDD, MSDD and a state
map against an empirical measure of the stateiti@ngrobabilities taken from a state map

of 3 million random moves (a “perfect” state map).

160

Approximate Dynamic Programming with Parallel Stagfic Planning Operators

The performance of both rule-learning methods @ @mainst a state map generated from the
same number of trials, with the exception of theecahere there is a limited amount of data.
The performance of the rule sets generated by AS&id MSDD are, however,

approximately equal in model performance.

The error for ASDDs is, again, exactly the sameéA8®D because the ASDDs method is

essentially the same algorithm with an optimisednting method.

Table 8-6: Error measure of generated states gaeedrfrom rules learned from data
collected over 100, 1000, 5000, 10000, 20000, 5@@@D100000 random moves.

100| 1000 \ 5000 10000 20000 50000 100000
Tabular 49.95| 18.24 4.88 3.94 1.55
MSDD 123.5¢ | 141.9¢ | 84.62| 66.6(43.2¢
ASDD 175.4¢ | 204.2¢ | 130.5: | 103.3¢ 42.0:
ASDDs 175.4¢ | 204.2¢ | 130.5: | 103.3¢ 42.0:

Figure 8.5 shows the graph of these data values.dgfaph shows that a large amount of
experience is required by the P-SPO learning dlyos to achieve an accurate model. This is
a natural consequence of the properties of theremvient. Most output variables in the

environment are interdependent. If, for example, ghedator moves onto the prey’s square,
then the prey must be present in the predator'sessor percept. It will be in only one

square, and all other squares will therefore betergr contain a wall). The only squares
which are not dependent in this way are the wHlla.predator moves along, or into, a wall,
the wall will remain in the square with probabilityO.

A further issue is that output probabilities angeledencies require knowledge of several
inputs, with, in some cases, dependencies hiddemnlies with multiple conditions (similar to

the XOR problem mentioned in chapter 6).

161

Performance Results: Agent Framework with ASDD

& &
&& &

& & ——\\
&& &

\W
&& \ +— 456748

&& & \ -
\/\

&& & \ . == 9
&& -

& & T T T T T FI ’_\
&& &&& &&& &&&& &&&& &&&& &&&&&

2. .341- 56-

++,+ -./0+- .10-

Figure 8.5: Graph of error measure of generatedtetagenerated from models generated
from data collected over 100, 1000, 5000, 1000002050000 and 100000 random moves.

Table 8-7 shows the extra states and missing fjeteeyated by each of the models. Both the
ASDD and MSDD algorithms perform poorly on thisrlgiag task. The accuracy of the rules
improves as the data sample size increases, demmgtthat it is possible to learn
reasonable rules in this form, but the environniexg multiple dependencies between inputs
as well as outputs, making it difficult to makeesffive rule-based generalisations. The ASDD
algorithm’s aprioriFilter step compounds this issue because important depeied are
filtered at an early stage, with required condisiaiten not significant until multiple state’s
conditions have been added. The tabular modelféstefe in this environment because it
equates to rules with multiple dependencies betveegoomes, and for which all inputs are

present in the conditions.

Table 8-7: Missing states vs. extra states geedraly each model. The first number in each

cell is the number of states missing from the madel the second number indicates extra
states generated by the model.

100 1000 5000 10000 20000 50000 100000

Tabular 432-0 91-0 28-0 0-0 0-0 0-0

NIJo N 56(-15€ | 356-8€ | 61-171 | 27C-111| 1554 | 122-68 | 0-79
\SIejpl 556-16€ | 301-12€ | 11(-228 | 235-32 | 20€-37 | 98-3C 0-82

162

Approximate Dynamic Programming with Parallel Stagfic Planning Operators

8.3.2Speed of P-SPO Set Learning

Table 8-8 shows the time taken by each model Iegraigorithm. The tabular rule learning
method makes a single pass through the data ahédrisfore very fast in comparison to rule
learning methods. MSDD, ASDD and ASDDs are eachraymately linear in time to the
size of the data set, as was the case with thpp&ly gripper” environment. This makes
intuitive sense because each method has to pedarount of the number of times the rules
match the data set.

Table 8-8: Time taken (in seconds) to learn a ®SEt or tabular model with data collected
from 100, 1000, 5000, 10000, 20000, 50000 and 10@&dom moves.

1000 5000 10000 20000/ 50000 100000
Tabular . 0.08 0.09 0.16
MSDD . 884.57 2300181 4558.42
ASDD I . 54.23 13329 322.80
ASDDs . . . 21.4i 61.1] 153.9:

Figure 8.6 shows the graph of these data valuestalyular learning method is very fast and
therefore cannot be represented at the scale gfréidh. The graph shows that there is a slight
overhead for ASDD on small training sets, after stshASDD and ASDDs show dramatic
increases in speed over MSDD.

ASDD is approximately 15 times faster than MSDD learning an operator set, with
variations in the initial speeds. ASDDs is approxiety two times faster than ASDD with,
again, variations in the initial speeds.

&
;5_
2 &
[o0)
L0
Iy - h—
Ln ’I
N e , A" A
N~ ’/
-7 —o‘ -i-

——*’
sl
A= —— 9
& 7
'd
//—a/
& y
&& T T T T T T 1
&& &&& &&& &&&& &&&& &&&& &&&E&&
2. .341- 56-

Figure 8.6: Graph of time taken (in seconds) tatea P-SPO set or tabular model with data
collected from 100, 1000, 5000, 10000, 20000, 5GH@D100000 random moves.

163

Performance Results: Agent Framework with ASDD

The time taken to learn a full P-SPO set at eath slample size and by each algorithm is
approximately double that taken to learn the “siypgripper” environment P-SPO sets. No
firm conclusions can be drawn from this, but it irgeresting to note that the two

environments have the same number of perceptualrésa but the rules generated for the
predator-prey environment are more complex, dejirém environment with an increased

number of possible states and greater dependemegde variables.

8.3.3Reward Gathered by a Policy Learned from the Data

Rewards were set at +1 for each time-step in wthielpredator was on-top of the prey at the
start of its move and O otherwise. Policies arenleé using dynamic programming set to
10,000 iterations.

Discount level, , is set to 0.9.

There is no learning rate required (equivalentetarning rate 1.0) because this is a

model based technique with full backups.
The policy is taken to be the action with the highexpected future rewards.

The test was run over 100,000 iterations, with thaximum achievable reward being
received if the predator follows a policy of followg the prey every move. The predator will
then receive a reward each time the prey moves amall (therefore staying in the same
square). This happens approximately 1 in 4 moveswarage (probability 0.25) giving a
maximum expected reward of 25,000. A minimum expéatward policy is achieved by
taking random moves, in which case the predatdriwilon-top of the prey 1 in 16 moves,

giving a reward of 6,250.

Table 8-9: Reward gathered after following a pplaerived from a model learned from data
collected from 100, 1000, 5000, 10000, 20000, 5@@D100000 random moves.

100| 1000 5000 10000 20000 50000 100000
JELVIETY 7939.0(9466.0 D 11078.0 1844p.0 20473.0 20921

[SIoJpl 8126.0] 9470.Q 9257.p0 10117,0 9040.0 6137.0 114p7.0
7041.0| 6181. 8114.p 9407|0 11355.0 11813.0 15956.0

Figure 8.7 shows the graph of these data values.graph shows that the tabular method
offers the most successful model for policy formaati This is expected because the
environment contains multiple dependencies betwee#oomes and is challenging to model
via P-SPOs. Neither ASDD nor ASDD are able to lemmerfect model of the environment

which means they are also unable to learn an opfioiey.

164

Approximate Dynamic Programming with Parallel Stsiic Planning Operators

88&8 &

v

N

=-+- &&& & /\ ,A

+ / \/ R —o— 456748

a---4&
8888 & x” e
— bae
& - -
‘u-‘l
888 &
& & T T T T T T 1

&& &&& &&& &&&& &&&& &&&& &&&&&
1-.+8587 .2. .341- 56-

Figure 8.7: Graph of reward gathered after follogia policy derived from a model learned
from data collected from 100, 1000, 5000, 10000020 50000 and 100000 random moves.

A point of interest in the reward graph is that AB3 able to lean a more effective policy
from the rule set learned, despite the error measbhowing that MSDD'’s rules are more
accurate. This is caused by over-specific ruleatirej to the position of the prey agent in
response to a move. This is the most importantcaspfethe model, so small changes can

cause problems.

Another key point is that MSDD’s performance at 8000 data level drops to worse than
that of a random policy. On examination of the @geactions under this policy, it was found
that the agent moved to the north east cornereofrtp and stayed in that square, irrespective

of the prey agent’s moves.

Examining the agent’s action under the policy ledrasing the ASDD rules, acquired from
100,000 PDIs, shows that the agent moves on-tofhefprey in most situations, but will

occasionally move into a wall, rather than chading prey as it moves into open space,
causing the prey to go out of view and be loststareral moves. This policy is optimal given
the agent’s incomplete world model, because thatagymodel does not capture the fact that

moving onto the prey keeps it in the percept (sdleviing section).

Overall, this is a challenging environment in tewh®oth modelling and policy formation for
a P-SPO-based system, with the assumption of imdieme output variables, but the system is

still able to learn an effective, if not optimagljzy.

165

Performance Results: Agent Framework with ASDD

8.3.4Inspection of Learned P-SPO Set

The predator prey environment is a simulation emrnent and is not based on a P-SPO set.
It is not therefore possible to compare the acquigerator set with the actual set. The full
set is also large, due to the difficulty in reprasey dependent output variables with
independent outcomes. Figure 8.8 gives a samplleeobperators learned from 50,000 PDIs
to give an example of the type of rules the sydeams.

Given an actioomove(southand an initial percept:

sed north wall, see east wall dee squth agent (s, empty, see under emj]

The matching operators after filtering by precedeaie:

0.24 :see(north agent
0.76:see(north empty

0.23: t
mové south: sé€e soyth aggnt (see west ©all see(east ager)
0.77 :see(east emply

0.24: th t
movd south: sde north wall qeeush ageni® see(south ager)
0.76:see(south emply

move soutft s¢e west we® {1.0: ee west Vall

move south: sée south agest

sed north wal), see south agént 0.25: dee under age

move soutf
¢ n sed west wall 0.75: sefe undempty)

Figure 8.8: Matching P-SPOs for the move(southjcscin the predator-prey environment
for a set of operators acquired from 50,000 PDIgegiences.

The above operators are a compact representatitite girobabilities for each outcome and
contain no unnecessary conditions. The second topefar example, gives the probability of
seeing the prey-agent to the east if the predaismmoved south, sees the prey to the south,
and sees a wall to the west. The square to themaasttbe empty with these conditions, and
the predator is vacating the square which will lneedghe square to the north next. The prey
takes a simultaneous move, during which it may miove the vacant square to the east
(randomly taking a move in one of four directiongjjich is accurately captured by the

conditions (with a small sampling error).

The first operator has only one condition, but aatly finds the probability that the prey
will move into the square vacated by the predatiorfurther conditions are required because
this square is certain to be empty and the prey ttemefore, move into it with probability
0.25. The empirical probability of 0.24 given byethule matches this closely because all
available evidence can contribute to the estimate.

166

Approximate Dynamic Programming with Parallel Stagtic Planning Operators

The states generated by the rules above, aftervambinvalid states (e.g. those containing
more than one agent) are:

sed north emply sée east enjpty (see south gmpty see wegt walhdee emptyPr(0.33
sed north emply sée east enmpty (see south §mpty see wekt whlhdse agenjPr(0.11
sed north emply séast, empty, sde south agent 6ee west)vall (see ynder gRmidy11)
sed north emply sée east aggnt (see south mpty see wekt walhdss, emptyPr(0.08
sed north agent sée east enjpty (see soumptyy, se€ west wgll s€e under emRy(0.11)

Normalising the above state probabilities (summamgbabilities and dividing each by the

sum so that state probabilities sum to 1), gives:

see(north,empty), see(east,empty), see(south,emegvest, wall), see(under,emg®y}0.45)
sed north emply sée east enjpty (see south @mpty see wekgt walhdse ageny Pr(0.15
sed north emply séas, empty, sde south agent 6ee west Wwall (see yunder gRMOy15
sed north emply sée east agent (see south empty see wejkt walhdss, emptyPr(0.10
sed north agent sée east empty (see soumbtyd, seé west wall s€e under emity(0.15

The first of these output states (shown in boldhhights the issue with treating non-
independent variables as if they were independksti{ssed in chapter 6). It is not possible
for the prey agent to be outside the percept opthdator if it moved onto the prey square.
Treating the outputs as independent, however téte with no agent present is predicted to

be the most likely successor state. Methods ofviegpthis are addressed in section 11.3.

It should be noted that there are no environmestaiprs in the predator prey environment

because all actions can influence all perceptwdlfes.

8.3.5Results Discussion

The key element missing from the predator prey rhadquired using the limited P-SPOs
acquired by ASDD and MSDD is that a predator mowntp the prey’s square cannot result
in the prey moving outside the predator’s view. Ti@del produces multiple possible outputs

with no prey present.

The predator prey environment used was challengamgboth MSDD and ASDD rule
learning algorithms in that it contains exogenousnés and dependencies between outputs.
The current implementation of the rule learningoathms does not include dependencies
between outputs and is therefore unable to leamcaarate model in this circumstance. This
results in poor performance against a state mapeasiodel data size becomes larger. Model
accuracy results are varied for ASDD becauseattréoriFilter step can remove important

rule elements from later consideration.

167

Performance Results: Agent Framework with ASDD

The implementation of the ASDD algorithm (sectiaB)5assumes independent outputs and
therefore generates a set of rules with only omegmptual feature in the outcome set of each
operator. This form of the algorithm can substdigtieeduce the search space of possible
operators for environments with independent outratthe cost of reduced performance in
environments with dependent outcomes, but canral$oce over-fitting of data by removing

over-specific rules.

If dependencies between outcomes have not beerctgrrmodelled by the P-SPOs,
impossible successor percepts must be removedebygd of constraints (section 5.4.5). In
the predator-prey scenario, the operators may generpercept with two agents when there
is only one agent in the world. If we do not usesth constraints, the erroneous generated
states will propagate (e.g. predator agents, thweds etc.), and the model becomes
meaningless, because it is too far detached frenrehl world states. Currently the system
removes impossible states using thealid function to check that each generated state

contains only one agent, and does not contain wpl®site each other.

After elimination of illegal states, the probabdig of remaining states are normalised by
dividing the probability of each state by the tqiedbability of all generated states to give the

final states.

8.4 Summary

This chapter has presented performance resultedh$DD and ASDDs algorithms against a
standard tabular model and the MSDD algorithm fogesl of operator set learning, accuracy

of the operator sets, and performance of polices/dd from the operator sets.

ASDD and ASDDs were shown to be approximately 1db 2ttimes faster at learning P-SPO
sets than MSDD respectively, with variations forafin®DI training data samples. The speed
of all algorithms was approximately linear to thieesof the training data set. Differences
between the time taken to learn a slippery grifpe&SPO set versus time taken to learn a
predator-prey P-SPO set show a relation betweermplexity of operators required to model
the state-space and time taken for learning to tetep This result requires further

experimentation for effective conclusions to bendra

The P-SPO set learned by ASDD for the “slipperpger” environment produced an accurate
environment model with limited experience and wale éearn an optimal policy with only a
small sample of data from the environment. The rhadeuracy was slightly improved over
that learned by MSDD because thprioriFilter step was able to eliminate over-specific

operators which caused over-fitting of the datthenMSDD model.

168

Approximate Dynamic Programming with Parallel Stastic Planning Operators

The P-SPO set learned by ASDD for the predator-pryironment demonstrated the
effectiveness of the operator learning method inaeting a minimal rule set from data, but
also demonstrated the issues with attempting toetnerdvironments with large dependencies
between output variables using a system that doielsave this modelling capability.

The error-measure based accuracy of the modelddaog ASDD was, naturally, poor in
comparison to that learned by a tabular methodwasteffective in comparison to the MSDD
based model. The policy learned using the ASDD tedes, however, superior to that
learned by MSDD. The reasons for this are not diean the data, but investigation of the
policy employed by the agent shows that it has-6ivéhe data and therefore “expects” the
prey to pick the same moves it used in trainings dan lead to a policy of, for example,
staying in one corner of the map.

169

Performance Results: Agent Framework with ASDD

170

Approximate Dynamic Programming with Parallel Stastic Planning Operators

9. Rule Value Reinforcement Learning (RVRL)

This chapter presents Rule Value Reinforcementriegr(RVRL), an algorithm which uses
an approximate dynamic programming based techngtto attach values to a parallel-
stochastic planning operator model of an envirortmerhe operators can then be used to
compactly represent a policy for an agent, redutiiegneed for the exponentially large value

map required by standard dynamic programming method

Rule Value Reinforcement Learning (RVRL) was firgroduced in [16], and was presented

within an operator learning framework in [15].

The RVRL algorithm iteratively updates values dttt to P-SPOs. The principle is that
structure captured in the rules can be used tm lear approximate policy directly. The
resulting value attached to each operator representility estimate for taking an action if
the conditions of the operator are present in genes current percept. A set of P-SPOs are
used in parallel when generating successor perggpstates. This means that RVRL must
define the contribution between the values of egmérator to the overall value of taking an
action under the current conditions. This chaptefings the original RVRL approach (an
average over operator values), and alternativeritthgos (state aggregation techniques based

on approximate dynamic programming [73]).

The principles behind the RVRL algorithm are:

P-SPO learning algorithms capture structure inetindronment from the perspective
of actions within it.

The utility and reward associated with environmestates is related to the

environment structure.

Associating utility with the operators will captuttee utility structure, allowing useful
generalisations to be made between states (stgtegagions) and avoiding the need
for an exponentially large state-action utility mépith respect to the number of

features and actions in the environment).

It should be noted that there is currently no knaalgorithm for extracting useful state
aggregations from data. Finding appropriate aggi@gdunctions is, according to Sanner,
“more of an art than a science” [79], while Powpdints out that an appropriate state
aggregation function for an environment requiregersive domain knowledge and, when
discovered, constitutes a patentable result [78e @utomated state aggregation method
presented here constitutes a novel contributionth® field of approximate dynamic

programming.

171

Rule Value Reinforcement Learning (RVRL)

The following sections: introduce the process daciting values to P-SPOs; define the
average rule valueupdate function; and show how improved values bangenerated

iteratively. The process of following a policy geaied from the operator values is given, and
finally an alternativestate aggregationupdate function (based on approximate dynamic

programming techniques) is defined.

9.1 Attaching Utility to P-SPOs

The RVRL algorithm attaches a utility to each oparan the P-SPO model. The simple coin
flipping agent, introduced in chapter 2, will beedsas an example to demonstrate the basic

concepts.
The example environment consists of:
A single coin.
The agent can eithdip the coin ordoNothing
The reward for the coishowing headss 1 andshowingtails is O.

If the environment is episodic and the result ofation is a terminating state, then the utility
of theflip action can be calculated very simply by using dyiegmogramming, which sums
the immediate reward (1 if the resultisads,and O if it istails) multiplied by the probability
of each (giving 1x0.5 + 0x0.5) plus the discountedrards of all future actions from the

following states (0, because there are no fututierss).

The doNothingaction is deterministic, and does not change thte.slts utility is, therefore,

simply the reward received in the current state.

A full P-SPO set for the coin-flipping agent is shobelow:

0.5:showing(head
fip:p @ O-oshowing(heads .,
0.5:showing(tailg
doNothing: showinj hea)i® {1.0: showifig hepds(110) (9.1)
doNothing: showing tails® {1.0: showingTa(ls tajls (0.0)

If we have an initial state ofshowing(tails)} then the operators that match this state are:
doNothing(with the contexshowing(tails).

flip (with the empty contex{}).

The utility of thedoNothingaction in thglshowing(tails)}state is 0.0, while thiéip action has
utility 0.5. The agent should, therefore, take d@lséion with the highest utility (0.5) and flip
the coin. If the environment state wabhowing(heads)then the best option would be
doNothing(with utility 1.0).

172

Approximate Dynamic Programming with Parallel Stastic Planning Operators

If a full value-map is known, then the utilitiesrclbe derived from the value map of the states:

showind heads (1.0)

showind tail3: UO0.0)
The utility of thedoNothingaction is the utility of the resulting state aftiee action, leading
to the utilities of the twaloNothingoperators (9.1). The utility of tHkp action is the utility
of the resulting state after the action, whichhis tase is stochastic, so the probability of
reaching the resulting state multiplied by theitytibf the state is used, giving (0.5%1.0
+0.5x0.0 = 0.5).

The “curse of dimensionality” [5] means that itaften not possible to derive a full state-
value map for an environment with a large numbedeaftures. The RVRL algorithm provides
a method for attaching utility to operators withdbe need to build the value-map. The
RVRL algorithm iteratively improves estimates of eogtor utilities using the previous
estimate attached to the operators matching theesgor states.

9.1.1 Two Coin Example with Environment Operators

The coin flipping example can be extended to twiaxto demonstrate the intended output of
the algorithm as an aggregation of values oveestathe example also includesvironment

operators (introduced in chapter 5).
The example environment consists of:
Two coins.
The agent can eithdlip one of the coins atoNothing
The reward for both coirghowing headss 1.0.
The reward for both coirghowingtails is 0.0.

The environment is episodic, with the terminatingtess being: both coins show heads; or

both coins show tailSThe agent continues to take actions until a teatimg state is reached.
An initial state for an environment of this type is
{showing penny tal)s showifg pouynd tgil

The extension to two coins requires the additioramEnvironmentoperatorto model the

evolution of the parts of the environment thatraseaffected by an action.

As defined in section 5.7, trenvironmentoperator has the form of an acti@mvironment,
representing the progression of the variable tornbet state in the absence of any other

operator that affects it.

173

Rule Value Reinforcement Learning (RVRL)

The full P-SPO set, including environment operatarsl updating utilities for multiple coins
is:
flip(X):0 ® O.5:sh0ang(X h(-?‘ad)s 40.66)
0.5:showing(X, tailg
doNothing.{} ®{} (0.66) (9.2)
environment showirg X hedd® {1.0: show{ng X hdads (090

environment showirg X ta)® {1.0: showitg,X tdils (0.%)

The utilities for the operators are calculated bgraging over the states to which they are
applicable (see below). Notice that tli®Nothing action has no output, because the
environmenbperators handle the evolution of perceptual festthat are not affected by an

action.

The utility attached to each of the other operatoas changed to reflect the revised

environment:

Both coins show headshe best action is to do nothing and receive themediate
reward (1.0).

One coin shows headthe best action is to flip th@ils coin, with the result that the
environment will be in the reward state with prabgb0.5, or remain in the same
state with probability 0.5. If the agent is not anterminating state it can keep
selecting thdlip action until a reward is received. If there is.@ @iscount for future

rewards this results in a 0.91 value (see below).

Both coins show tailghe best action is to flip either coin, with a pabbity of 0.5 of
getting to the state in which one coin is showiegds (which has a utility of 0.91)
and a 0.5 chance of showing tails, in which casénawee a terminating state of two
tails and a reward of 0.0. With discounts includéds is equal to: 0x 0.5+ 0.5*0.9
*0.91=0.41.

The values of each state can be calculated usibhigp&gupdates:
Via(9=max B[R, +gV(9)]
s1 S
PZ = probability of moving from state te' given actien

R = reward received when acti@n is takesiates and leads to stagt

Terminating states are evaluated easily as: 0.0ddr coins showing tailsand 1.0 forboth
coins showing head§or theone coin showing headsate, the maximum valued action is to
flip thetails coin. The Bellman updates reach a stable state wieevalue of the state is =
0.91:

174

Approximate Dynamic Programming with Parallel Ststic Planning Operators

0.5 [1.0]

V,..(ht)=
ca(Y) 0.5 [0+ 0.9 0.91

(9.3)

The value of the two tails state is calculateddkjrtg the optimal action of flipping one of the
coins, which is the 0.5x0 + 0.5x0.82 (with 0.82ngethe discounted value of the heads tails
state above).

0.5 [0.0]

V. .. (t,t)=
catt) 0.5 [0+ 0.9 0.91

(9.4)

The values of the non-terminatirtpNothing state-action pairs are equivalent to the best
action from those states, multiplied by the disd¢sun

The output of the RVRL algorithm is an estimatetlud aggregate of utilities of the state-
action pairs which the P-SPOs match. The true agfisggcan be taken by creating a state-

action value map and finding the average of theestation-pairs that match the operator’s
conditions.

The full state-action map, generated by perfornBetiman updates in the state-action space,
for the two coins environment is:

doNothing,showing(penny, heads), showipgund, heads) : U(1.0)
doNothing, showing(penny, heads), showipgund, tails) : U(0.82)
doNothing, showing(penny, tails), showinggund, heads) : U(0.82)
doNothing,showinglenny,tails),showing(pound,tails) : U(0.0)
flip(penny), showing(penny, heads), shovgi(pound, heads) : U(0.91
flip(penny),showing(penny,tails),showing(poundsiaiy(0.41)
flip(penny), showing(penny, tails), sfwing(pound, heads) : U(0.91)
flip(penny),showing(penny,tails),showing(poundshail(0.41)
flip(pound), showing(penny, heads), showg(pound, heads) : U(0.91
flip(pound), showing(penny, heads), showing(pounetduds) : U(0.91
flip(pound),showing(penny,tails),showing(pound,&gad(0.41)
flip(pound),showing(penny,tails),showing(poundggil(0.41)

(9.5)

For each operator, a utility can be found by figdithe average of the values of the state-

action pairs which match the operator conditiore aetion.

Theflip action has no conditions and therefore matchesoénlye sate-action pairs
with flip. Its utility is: (0.91x4 + 0.41x4)/8 = 66.

The doNothingaction has no conditions, and matches any of ta-siction pairs
with thedoNothingaction. Its utility is therefore: (1.0+0.82x2+0D¥ 0.66.

175

Rule Value Reinforcement Learning (RVRL)

The environmenbperator with conditioshowing(X, headshatches alheadsstates
for doNothing and allheadsstates for which the flipction has been taken and the
other coin wasieads.These state-action pairs are shown in bold abowve ufility is
therefore = (1.0+0.82+0.82+0.91+0.91+0.91+0.91)(798.

Similarly, theenvironmentoperator with conditionshowingTails = (0.82 + 0.82 +
0.0+0.41+0.41+0.41+0.41)/7=0.47

RVRL uses an average of operator values to findutilgy of taking an action. If, for
example, the coins are in an initial state given{&lyowing(tails, pound), showing(heads,

penny)} then:

The utility of taking the action of flipping th@oundcoin is the sum of the flip action
and the environment operator withadsconditions = (0.66 + 0.90) /2 = 0.78.

The utility of taking the action of flipping the pey coin is the sum of the flip action
and the environment operator witils conditions = (0.66 + 0.47)/2 = 0.57.

The utility of thedoNothingaction is the sum of the two environment operatos
the doNothing action = (0.9 + 0.47 + 0.66)/3 = 0.68

The optimal action is, therefore, fip the coin that is showing tails (with value 0.78).

9.2 Average Rule Value Update Function

The discussion of state aggregation above assummddirect access to state values is
available. If this was, indeed, the case then theoalld be no need to perform state
aggregation because the full value-map could bd,usgher than an estimate. RVRL is a

method of estimating the state aggregation valassdon further state aggregations.

Dynamic programming uses the Bellman update equaticontinuously refine estimates of
the value of being in a particular state, untiliBogtium is reached. If the post decision state
variable is used, then updates can equivalentpebi®rmed on state-action pairs.

The Rule Value Reinforcement Learning (RVRL) algom uses an approximate value
iteration method to update a value associated &atth rule, rather than each state. The main
advantages of using a state-based aggregation dhesiech as RVRL, over a standard
reinforcement learning technique are that:

The agent does not have to store a value for guasgible state-action combination

in the environment.

176

Approximate Dynamic Programming with Parallel Ststic Planning Operators

The agent can generalise over many states, withrekelt that one value can
represent several states with similar propertied, asensible action can be taken in

previously unseen states.

The availability of the model (provided by the PE&® means that full backups can be used,
but we attach a learning rate so that the agg@mgastimates are not unfairly biased towards
the most recent update. Attaching a learning miellman updates gives an update function:

Vea(s @=\(s 3+ Ral R+gmax (s % ¥ .9)h

st s

PZ = probability of moving from state te' given actien (9.6)

RS, =reward received when acti@n is takestates and leads to stag
The rule values for stochastic planning operatarsmot be updated directly using the above
equation because more than one rule will matchnéxe stateg’) and maximum actiora().
The original RVRL algorithm (as presented in [1&{kes theaverageof the values attached

to the P-SPOs that are used to generate the foijpstates.

The rule learning function replac&4s’,a’) with an average value for all matching rules
which have precedence (and would therefore be isg@neration of the successor state).
The rules with precedence are used because theytlgvmost accurate representation of the

dynamics of the environment for that state andacti

The RVRL update function is given below. All rulestching the current state and action are
updated with the new estimate of the followingestat

RVRLUpdate(PSPOs, p, a)

for all (r maichingRules(PSPOs,p,a))

RV(r) = RV(r)+

Po [Ry + max avgRV(winningMatching(PSPOs, p',a) - RV(r)

piP

Algorithm 9-1: RVRLUpdate(PSPOs, p, a). p = percapt action.

matchingRules(PSPOs, p, @turns the rules with conditions matching the entrstate and
action. avgRV(winningMatching(PSPOs, p’, a')jeturns the average value of the winning

matching rules.

The two coin flipping example can be used to denrates this technique. The conditions
captured in the rule-set for calculation of nextestreflect structural characteristics of the
environment for calculation of a value-map. The rudues are updated using Bellman

updates using the rules matching the successoesstaiTheRV(r) approximations are

177

Rule Value Reinforcement Learning (RVRL)

initialised to a greedy estimate of 1.0 (the maximachievable utility in an episodic

environment with maximum reward of 1.0). The inifaSPO set is therefore initially:

) 0.5:showing(X, headp
flip(X):{} ®) i U(2.0)
0.5:showing(X tailg
doNothing.{} ®{} @.0)
environment showirg X head® {1.0: show{ng X hdads (1.0,

environment showirg X ta)® {1.0: showiig,X tdils (LO)

A single update takes a random initial state ang@ndom action, uses the model to calculate
the successor states and probabilities, and thdatep the immediate rewards and the rule

value estimates using the rules matching the ssocesates.

Taking an initial state ofshowing(penny, tails), showing(pound, tail§hd an action

flip(penny) the possible successor states (evaluated usig-8POs as a model) are:
{showing(penny, tails), showing(pound, tails)} RED
{showing(penny, heads), showing(pound, tails)} P 0

RVRL takes the value of the successor state thdaverage of the rules that would be used
if the maximum valued action was taken in thates{ajuivalent to dynamic programming).
For the first state above, the optimal action isflip either coin, which has the sum,

equivalent to the update in (9.4), of:

V({showind penny tails showifg pound tails lip pe)iy
0.5 [0.0]
=Su flip(penny):1.0

m
0.5 [0+ 0.9 Av
[g environment showing pound tajl<l.0

The optimal action is again taken in the non-teatiing successor state, giving an updated
value estimate = 0.5x0+0.5%0.9x1.0=0.45.

If an updated rate,, of 1.0 is used, then all rules matching the cool (shown in bold) are

updated with the new value estimate giving:

0.5 : showing(X,head
fip(X): { ® showing(X,heads) , o
0.5 : showing(X,tails)
doNothing : {}® {}U(1.0)
environment : showing(X,head®){ 1.0:showXgiead3) U(1.0

environment : showing(X,tails® { 1.0 : showiny(tails} U(0.45,

Continual updates of this form will improve theigsites, but will not settle on a value for

each rule, in the way that dynamic programming wdol state-action values, because each

178

Approximate Dynamic Programming with Parallel Stastic Planning Operators

rule is an aggregation of multiple states. Thesg B effect, estimates of the state, so an

update rule (similar to Q-learning updates) cander to continuously improve the estimates.

The coin-flipping environment provides a simple myxde of the RVRL update function, but
does not contain enough P-SPOs to demonstratessbes involved in RVRL from a state-

aggregation standpoint.

9.3 Rule Value lteration

Chapter 5 described the process of building suocestates using stochastic planning
operators as a model. If this process is combinigldl thhe RVRLUpdateunction, taking the
current estimate of best action for each succepsorept (section 9.4), it is possible to
continuously generate next states from an inittates and update the P-SPO values for
operators matching those states until satisfactahyes for the rules have been generated (or
a fixed number of updates), have been performed). This process is describedhé

following algorithm:

ruleValuelteration(PSPOs,p,a)
initialise RV(r) =0 forallr PSPOs;]
repeat for n steps {
{p'.r.pr.,...p',r.pr} distriputignModel(p,a) |5
totalValue = 0; totalReward = O;
for (i from 1 to n) {
totalReward +=r pr; ;’
a' = bestAction(PSPOs,p');

maxActionValue = avgRV(winningMatchi ng(PSPOs,p',a");
totalValue += maxActionValue pr'; ’ i
}
foreach (r matdhingRules(p,a))
RV(r)=RV(n+ " (totalReward +totalValue- RV(N));
p = pickarandom perceptfrom p',..p' ; { o

a = random action;

}

Algorithm 9-2: ruleValuelteration. PSPOs=the plangioperator set, p=initial percept,

a=initial action. The algorithm takes a set of P&Pand iteratively improves the utility

estimate associated with each operator for n-steps.

The sampling (temporal difference) equivalent dktmethod would take a sample next
percept,p’, rather than calculating the probability of eaclscgssor percept. The process is

otherwise the same.

179

Rule Value Reinforcement Learning (RVRL)

A high value should be used far initially, in order to remove initialisation bidom the rule
value estimates. As the updates progress, a smalleglue will allow the rules to settle on
the most accurate value for their state-aggregafibis can be achieved using the McLain
formula fora (discussed in section 3.2.4). For the purposddaifain updates, each P-SPO
stores a count), of the number of times it has been updated. &h#res that rarely matched
P-SPOs (those with specific conditions) are upd&&ty in comparison to those with fewer

conditions.

9.4 Best Action

ThebestActionfunction tests the available actions for the gipencept and returns the action
with the highest average operator value. The openatlues can be used as a policy by

selecting the maximum valued action given an ingautept.

bestAction(PSPOs,p)
maxActionValue = - ; ¥
maxAction = null;
For (eacha actibns) {

actionValue = avgRV(winningMatchin g(PSPOs, p,a));
if (actionValue > maxActionValue)
{

maxActionValue = actionValue;
maxAction = a;

}

return maxAction;

Algorithm 9-3: bestAction. PSPOs=the planning operaet, p=initial percept. The
algorithm returns the best action for the givenqagt.

If the environment is fully observable, then thegapt,p, above can be substituted for a state,

S.

9.5 Variance-Based Rule Value Evaluation Function

The use of an average across the winning matchiB§®s to determine the approximate
state-action values can be an effective methodrgironments in which each operator can be
seen to have an equal contribution to the finalestas demonstrated in [16]). There are a
range of situations, however, in which the aggregagiven by the algorithm is not an

effective estimate of the state-value or statesactalue.

The main issues with using an average over P-SR@wvare:

180

Approximate Dynamic Programming with Parallel Stagtic Planning Operators

Accuracy-based weightingtate-action utility estimates are not weightegards the

P-SPO which gives the most accurate predictiorxpéeted future reward.

Bias: P-SPOs utility estimate bias is not included invtegghting, with the result that
operators with poor initial utility estimates haegual influence on the utility

ave raged across operators.

Both of these issues can be resolved by using ghtexl average, favouring operators with

the least variance in their estimates.

A further point is that theamplesused to generate operator values need to be edbfas
the update rule to function correctly. Unbiased pias can be achieved by randomly

selecting the state-action combination to be uptifiten the available state action space.

Aggregation based approximate dynamic programmiathods store a set of value estimates
that cover multiple states, or state-action paither than a full look up table storing a value
for each state-action combination. A key featurthét the state transition model can use the
full set of features while the value function canliased on the aggregated state-action space.
The model, in this research, is provided by theP®§ which give a compact representation
of the state-transition function. An aggregationdiion can, in the general case, be any sub-
set of the features of state-action space. If tesen sub-sets overlap this is referred to as a
soft aggregatiorf73]. The conditions and actions in the P-SPOsoaexlapping sub-sets of
the features of the state-action space and weheaafore treat them as feature set selections

for soft aggregation.

Equation (9.7) represents the equal weighting @&r estimate of value. The bar above the
“v" in the equation is used to denote an estimate.vhe is calculated as the mean of the
utilities contained in all parallel stochastic piémy operators used to generate the next state.
The RV(r) function gives the utility estimate associated hwithe P-SPO, while
winningMatching(PSPOs, s, agturns the set of P-SPOs matching the state etimh&after

variables are resolved and conflicts removed).

Y r1 winningMatching(PSPQS,S)JWInnIngMatChInq PSPQS; S)|E
This was represented in the RVRL equation as:
Mn = angV(winningMatchinf PSPOS, s))a (9.8)

A possible weighting is to provide a weight basadtte number of times the aggregation has

been visited. This method can be used to overcaasedaused by states chosen initially for

181

Rule Value Reinforcement Learning (RVRL)

update, but the aggregate measure becomes depeandéme distribution of states visited.

Ideally, the weighting should reflect the accuratythe operator in predicting the true value
of the state-action pair, but, as this value isnawn, the accuracy compared to the current
estimate is used. This can be achieved by findimg (estimated) variance of the error

measure [73].

In general, a weighting of operators should surh émd can be given as:

m, .= w, RV(r) (9.9)

rl WinningMatching PSPQs,s)a

The equation tells us that there is an individuaighting, w, for each operator. The

weighting can be dependent on some property obpieeator. Equation (9.9) is equivalent to

(9.7) ifw, is equal to JvinningMatchingd PSPQs, s)

<.

The effectiveness of variance as a measure of acgwan be demonstrated by considering
an operator with no conditions and no action (a.gure environment operator representing a
random variable):

.4 :weathel(sunny
{3:{} ® .3: weathér cloujly
.3:weathel raining

This can be thought of as a maximum aggregationalse every state-action pair in the
environment is contained within its aggregation ¥éten updating the utility estimate of this
operator, we will, in some instances, gain exensptdrhigh valued state action pairs and at
others low valued state-action pairs. The variafadbe operator’s estimate of the value, with
respect to the observed values, will, thereforehighd. If, on the other hand, we have an
operator which contains every state variable reguio define the true value of an action, the
estimated value will exactly match the observedesl(if we have an accurate model and are
using full, rather than sample, backups). The waeabetween the observed value and

estimate will be zero.

In practice, we do not know in advance which of aggregations reflect the true value, and
the value estimates we are trying to improve ahemtelves, based on aggregates of
estimates. If the operators contain the requirddrimation for an effective aggregation,
however, the variance will settle over time, witbesific operators gaining weight (and

influence) over general ones.

182

Approximate Dynamic Programming with Parallel Stagtic Planning Operators

The weight aggregations contained in the P-SPOshimgf the state and action, are each
providing different estimates of the same quantify,s. As stated by Powell in [73],
statistics theory tells us that the weights thatimize the variance aff s 5)in equation (9.9)

are proportional to the variance of the estimatergby:

w, ((573)(”))_1 (9.10)

The weights need to sum to 1.0. We can therefok di set of proportional weights for a set

of operators by using:

1

o .) (n)
rT winningMatching(PSPQS,S)E(Sr)
W = (9.11)

| R
r

The bracketed above indicates that this is the weight for tfih iteration of the update,

rather than indicating an exponential.

An alternative weighting can be achieved by adpgsto remove the bias caused by the initial
operator values. We can do this by using the tedahtion (the variance plus the square of

the bias), giving the weights:

1

—_ 2
rT winningMatching(PSPQS,S){STrZ)(n) + (br(n))
W = (9.12)
—2 (n) (n) 2
(s7)" +(6)

r

Equation (9.11) is the weighting usedvierianceRVthe form used for the “variance update”
tests in the results section, and (9.12yasanceBiasRYthe form used in the “variance and
bias update” tests in the results section (chai®rThe use of bias relies on a more accurate
aggregation being available as a reference. Thieagmjregations in this research are not
guaranteed to be more accurate and it is therg@ftemesting to evaluate which of these gives
a more accurate value estimate. The initial tegigcate that there is no advantage in using
the “variance and bias update” form of the equathort further research is required in this

area.

Both equations can result in zero values for vaeainitially and, therefore, division by zero
errors. The equation used was amended slightlyive g minimum variance of 0.001 (a

variance of less than 0.001 was substituted fd1iDit occurred in the evaluation).

183

Rule Value Reinforcement Learning (RVRL)

9.6 Bias and Variance

A complete value map for a state-action space st@murrent estimate for every state-action
pair in the environment. The update equation gaesethod for improving this estimate
based on samples (evidence). The improved estimalledend to increase in value each time
if the value map has low (pessimistic) initial vakgimates, or tend to decrease in value if the
initial estimates are high (optimistic). The pb&t or negative difference between the
estimate and the real value is known aslitees The variance is the mean squared error

between the estimated and actual values.

The actual value for each state-action pair iskmaiwn, but the estimates of the value will
improve over time. We can therefore estimate bragabiance by using anpdate function
(9.13) on a current estimate of the bias or vasabased on the new evidence. The
aggregation estimates of utility contained in thkes also use an update function (iterations

provide improving utility estimates).
Using a notation based on that used in [73], witagover a variable meaning it is estimated
from sample observations, and a hat meaning aesiolgtervation, in general, an update

function for an estimatey , of a valueg has the form:
g™ =(1_ a(n-l))a(n Dy g(n o™ (9.13)

Where L}(“) is an unbiased observation @fand is assumed to be independent of the previous

estimate,g ™. The learning rata has the superscripb{1) to allow for variable step-sizes

(e.g. using McLain’s updates). Both the variance laias can be defined in terms of the error,

e, between the observation and actual valug of

g™ =g + " (9.14)
If this error is treated as an exogenous measurearesr between the actual valuegnd

the observed value, the variancegdf’ can be computed using equation (9.15).

Var g™ =/% 2
(9.15)

wheres? = Vafe™]

/ M is a function of the step size (learning rate)ha tipdate rule and can be computed using

the recursion:

2
/o) = (a(n-l)) , n=1 ©.16)

(l- a(n_l))zl (D4 éz " 1))2, n> 1.

184

Approximate Dynamic Programming with Parallel Stagtic Planning Operators

The value of the variance of the errsr?, is unknown, but it can be estimated from the data
with each iteration of the update rule. The fitsfpsis to obtain an estimate of the bias, which
can be found by using equation (9.17). This isjragam update rule, giving an estimate of the
(positive or negative) average difference betwden d@stimate and actual value of The
update rate has been givenasfor consistency of notation between update ruasjt must

be noted that this is a separate step size argutiseriptv is used to indicate that this value of
ais shared between the bias and variance. Thesitepcan be variable, but to simplify

calculations, a fixed step size of 0.1 has beed.use

B =(1- a,)b ™Y+ a,g " - g (9.17)
To estimate the variance, we can use a similartepdde. The first step is to compute the
total variance (including the bias), which can bgneated using a further update rule:

v =(1- a, W+ a,g " V- g™’ (9.18)

The variance ofe™ ,s2, can now be calculated using the estimate ofdta variance, by

removing the influence of the bias:

0 _ (B
(§(n))2 :n — /((n.1)) (9.19)

— 2
The estimate of the variance gf' can now be found by usir(g?”) in equation (9.15):

Var g™ =/® (9.20)

9.7 Variance Rule Value Iteration

Variance, or variance and bias, based updateseamcbrporated into rule value iteration by
associating extra values with each P-SPO (recortliegcurrent estimate of bias and/or
variance), which are updated with each iteratiohe Two values can also be assigned

associated learning rates and update counts fowitiséicLain’s formula.

The variance rule value iteration function is givieelow. This is almost identical to the
previousruleValuelterationfunction, but:

() Replaces thavgRV function withvarianceRMo find the state-action value estimate
from the winning matching P-SPOs (using equatiohl(p.

(i) Adds an update for the variance estimates, usiedglifierence between the current

rule value estimate and the observed (estimatddg {asing equation (9.18)):

185

Rule Value Reinforcement Learning (RVRL)

vn ©a- v ™ (RV() tetalReward totalya lug) 2

The equivalent update function for variance ands bigplaces equation (9.11) in (i) with
(9.12), and replaces equation (9.18) in (ii) wittuation (9.20).

varianceRuleValuelteration(PSPOs,p,a)
initialise RV(r)=0forallr PSPOs;]
repeat for n steps {

{p'.r.pr....p'sr .pr} distriputignModel(p,a) |5
totalValue = 0; totalReward = 0;
For (i from 1 ton){

totalReward +=r pr; ;" |

a' = varianceBestAction(PSPOs,p'); i

maxActionValue = varianceRV(winningM atching(PSPOs,p',a));
totalValue += maxActionValue pr’; ’ i

}

foreach (r matl chingRules(p,a)) {
v(r) =(1® V) OB (RV(r) totalReward totafyalue); 2
RV(r)=RV(r)+ (0 (totalReward +ogalValue - RV(N));

}

p = pickarandom perceptfrom p',...,.p" ; { 1 n}

a =rando m action;

}

Algorithm 9-4: variance RuleValuelteration. PSPOseplanning operator set, p=initial
percept, a=initial action. The algorithm takes & s€ P-SPOs and iteratively improves the

utility estimate associated with each operatorresteps.

9.8 Optimistic Value Initialisation

Operators are initialised witbptimistic value estimates to avoid local minima in the value
space. Aroptimisticinitialisation is one where all values are giveniritial value ofRyax/(1

9, which is the maxim value any state (or statesacpair) can reach under any policy.
Ruaxis the maximum reward available in the environm&ihe maximum value for a state is
equivalent to being in a state the gives the mawimeward, and continually taking an action
that remains in that state. Feeding this in toBb#man update equation it can be seen that
the maximum value is dependent on the maximum inme@deward and the discount level
for future rewards.

186

Approximate Dynamic Programming with Parallel Stagtic Planning Operators

9.9 Summary

This chapter defined Rule Value Reinforcement Lignan algorithm for associating state-
action utility value estimates with P-SPOs. Thadb#&mm of the algorithm uses an average of
the values associated with allinning operators applicable to a given state and action
(winning operators are those that would be usegetterate successor states). The variance
based forms use the observation that operatorslauthvariance give a consistent estimate
and are, therefore, likely to be more accurate thase with a high variance. Weighting the
total operator value in inverse proportion to theiance allows the most consistent estimators
to have greater influence on the state-action vasignate. This observation is tempered by

the fact that we do not have a real value of stalge to base the estimates on.

Once a value has been associated with each P-Sgilicwais implicitly contained within the
estimates and can be extracted using liastActionfunction, which iterates through all
available actions finding the highest valued actooording to the estimate contained in the

winningMatchingP-SPOs for the given percept.

187

Rule Value Reinforcement Learning (RVRL)

188

Approximate Dynamic Programming with Parallel Stagtic Planning Operators

10. Performance Results: Agent Framework with ASDD
and RVRL

This section compares the results of the each ®fuihdate functions for the Rule Value
Reinforcement Learning (RVRL) algorithm (defined chapter 9). The updates are:
aggregations by average; aggregation weighted tay variance; and aggregation weighted
by variance (total variance with estimated biasaesal).

Results are presented for the “slippery gripperd dpredator prey” environments. The P-
SPO sets for all comparisons were learned usingABBD algorithm (with set-based

counting method). These operator sets were showgrdduce accurate models and policy
performances in comparison to MSDD in chapter 8~ Nerceptual data item sets (PDIs)
were used to create the P-SPOs, and the perfornodreceabular value map based policy for

the new data set using the operators is givenmpaoson.

10.1Slippery Gripper Environment

The following sections give the reward gathereddach RVRL update function, goals
achieved vs. disaster states encountered, and ée@pfP-SPO sets with associated weights.
The results in this environment are discussedI|atioa to the performance of a tabular value

based policy.

10.1.1 Reward Gathered by a Policy Learned from the Data

Experimental conditions are unchanged from thosel us section 8.2, with rewards set at +1
for a painted block delivered, and -10 for an unfed block delivered. Policies were learned
using dynamic programming for the tabular ASDD roeth) or RVRL for all other methods,
set to 10,000 iterations.

Discount level, , is set to 0.9.

No learning rate is required for the tabular metleguivalent to learning rate 1.0)
because this is a model based technique with adkips.

Learning rate for RVRL was set using McLain’s folmdor all methods, with a
minimum value of 0.1: aggregations by average;regation weighted by total

variance; and aggregation weighted by variancal(t@riance with bias removed).

The policy for RVRL methods was taken to be theéoacfound using théestAction
function (section 9.4).

189

