

���������	
���������������������������
������

�������� ����������������������� ��!���"�#��
�$���#�%�&�'��##��'�(����&�����
��
)�%�����%�&������'�*�
������������+����
��$%�������
�������������	
���������� �

����������
�����
%���
��	
���������
����
���

�����	
���������
���+��%�����#�������
����#���
���������+����
��
	
������

��	
������	������	�������� ������,,�
��%%
���%�����%��-,���.,

�������������������	��� ��

����	���������	����� ������
�
��%��*����
���#����#�-
��
�
��%��
������������������	
��������������	����+�
�����(��
������
�%
��
�����'�������/������'�����
#����(������
�������� ����,��%����'���
���
�����������#�������
�
��%��*����
�#���+
���

���������+��
������
���-
����

������
�
��%��*����
������������� �����,,�
��%%
���%�����%��-, ������������ ��+��%�����0%�����%��-

������
�
��%��*����

1

City University London

Department of Computing

Approximate Dynamic Programming with

Parallel Stochastic Planning Operators

Christopher H. T. Child

A thesis submitted for the degree of

Doctor of Philosophy at City University London

July 2011

2

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

3

Contents

�� � ������	
��� ��� �������������������� �

��� � � ��������� ��� ��� �������������� �

��� � � ���� � �� ���
����� ��� ��� ����� �

�� � � �������� ��� ��� �������������� �

��� �
 ������	����� ��� ��� ���������� �

��� � � ��	
�	�� ��� ��� ���������������� �

��� � �����	�� 	�!�
������ ��� ��� �

�� � ��
�"��	����#��"����$��������������������!��������� ��� �

��� � � "���� ��� ��� �������������������� �

������ � ���	
�� �	��� � ����	�����	������� � ��������	 ��� ������������

������ � ���	
�� ������� ��� �������	������ � ����	� ��� ������������������������

������ � ��������	� � ���	�� � ���	��
�� ����	� � �	�� ��� �����	�� 	 ��� ��

������ � �����������	� ��� ��� ������� �

��� � � ����������� � ���! ��� ��� � �

������ � ��!�� � ���� ��� ��� ����������

������ � �����	���� � ��� ��� ��� �������

�� � � ���!� � � ����������� ��� ��� �

������ � ��	���� � 	�	�� � ���� ��� ��"�

������ � ��������� � ������� ��� ��� ��� �

������ � ��������	��� �	���� �����	��� #�� � $��

������ � ��%� � ���	��� � ����� #��� � $��

��� � � 	����% ��� ��� ������������������ �

� � ��
�"��	�����#�����!�!������"��� !�����"����������� ��� �

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

4

�� � � ���!� ! ������" ��� ��� �������� �

������ � �������� � ��	���� � 	�	�� � ���� ��� ���������������������������������� �

������ � �������� �� ����	��	��� ���� �� ����	�� ��� �������������������"&�

������ � ��	�� ��� ��� ������������������������"��

������ 	 ��� � ������ � ����	������ � �����	��� � ���� � ����� ��� ���"��

������ � �������� � ��%� � ���	��� � ����� #��� � $���"��

�� � !�����" ��� ��� ������������������ �

������ � ���������� � ���� ��� ��� ����" �

������ � ��	��� � �	������� � ��!�� � ������� � ������� ��� �����"'�

������ � ����������	� � ������� ��� ���&�

������ � �������� � �	� ��� ��� ��������������

� � � 	����% ��� ��� ������������������ �

�� � ����������������!!��"��"��������������������������� �� �

��� � ����"������ !�����" $��
���"����� ! ������" ��� ������������������ �

��� � � ��
&� ��
������ � ����������� � ���!!��"����� !�����" ��� �

������ � 	���� �
 �� ���� � ��������	 ��� ���������������������������������������"�

������ � 	���� �
 �� ��� � ���% ��� ��� ���

������ � 	���� �
 �� ����	�� � ���% ��� �� &�

�� � � ��
	��������� � ���! '� ����� � ������
������ ! ������" ��� ���� �

��� � ��
� �	�!� � ����������� � ���!!��" ��� ���������������������������� �

��� � � 	����% ��� ��� ������������������ �

�� � ���!!�!����
&����
� !�����"�� �������#� '� ������� ��� �

��� � ������	
���� ��� ��� ������������ �

��� � � %���(��� ��� ���������������������� �

������ � �����	����� � 	�	�� � �������	�	�� ��� ������������������������������� ��

������ � ��!������ ! ������� ��� �� "�

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

5

������ � �������� � 	����	��� � �������� ����	�� � �������	�	�� �� ��

������ � �������	� �	���� ��� ��' &�

������ � ������ � �	��� � ��	���	�� ��� ��'��

����"� � �	��� � �����	��� ��� ��� ���'��

�� � � 	

������ ��
� �� " ��������� ��� ������������������������������������� �

������ � �����	���� � ������ � �������� � �����	 ��� �������������������������'��

������ � �����	������ � �������� � �����	������ � �������	��� ��� �����'��

������ � ��	����%� � ��������� ��� ��� �'��

��� � � 	

������ ��
� �� " ���������� � (�� !�� ��� ���������������������� �

������ � �����	������� � �������� � �����	���	����� � ���������� ����	� ���������������������������������'��

������ � �����	���� � �������� � �����	����	�� � ��	����� � � (� �����	���� ����	�� �������������������''�

������ � ������	���� � �������� � �����	� � �������	������	�� �(�� � ���&&�

������ � �����	���� ����	�� �	���� ��� ��������������������������������&��

������ � ����� �������� � 	�	�� ��� ��&��

��� � � ����� � ��	� ���� ��� ��� ��� �

��� � 	��� � ����������� �
����� ��� ��� �

��� � � ����������� � ������� ��� ��� �

��� � � 	����% ��� ��� ����������������� �

�� � !������"� ���!!�!����
&����
� !�����"�� ����������� �� �

��� � � �� ������� ! ������"� !�����"� � ������������� � (�����
� �� �

��� � ! ������"� '� � �����&� ��� ��� �

�� � � ��	� ����� ��� ��� ������������ �

��� � ����# �� ������ � ��
&����
� � � �����
%� � ���
���� ��� ��������� �

"����� � ����	� � ����� � �	�� � �����	�	� � �����	���� � ��	���� � ���� ���

"����� � �����	���� � �	�� �	���� #��� � $��

"����� � ���� � �����	� � �	� ��� ��� �������

"����� � ���� ��� ��� ��������������������������

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

6

"����� � ���� � �	� � ������% ��� ��� ������

"���"� � ���������� � �������%� ��������� � ���� � �����	� � �	� ��� ��"�

"����� 	 ��� ���� ������	�� ��� ��� ��

"��� � 	 ��������� � ��� � ���	�� ��� ��� �

"���'� � ����� � ��	�� ��� ��� ���������������

"����&� � ���	����� ������������ ��� ���

"������ � �	���	���� ��� � ���� � �����	� � �	������ ��� � ��� ��������������

"������ � ��� � ���� � �������	� ��� ��

��� �
 ������ '� � ������� � 	!�� ��� ��� �

��� � � ����!��&��"� '� � � ��
����
� ��� ����������������������������������� �

"�"��� � ���	� ��� �� ������ ��� ��� ����

"�"��� �	���� � �	���� � �)������	���	������ ��� �������������������������

��� � ���� � #�� �����"�	 � ���� ����&� � ��� � ������� ��� ����������� �

��� � � 	����% ��� ��� ���������������� �

�� � ��� ��� ��������������� �

��� � � &�� � !� ��%� " �� ��� � ���������� ��� ������������������������������ �

������ � 	�����	��� � ������%� � ������� � ��������	 ��� ������������������

��� � � &�� �������� ��%� � ���������� ��� ��������������������������������� �

������ � 	�����	��� � ����	� (� ��%� � ��������	 ��� ��������������������

�� � � 	����% ��� ��� ����������������� �

�� � ��������
�����	!��#��"�����������������&���������� ������������������������������������ �

��� � ��������
��
�� ������� ��� �� �

 ����� 	 ������� � �	��� ��� ��� �����&�

 ����� ��� ��� ���������������������������������&�

 ����� � ���������� � ���%�����	��� � ��� ��� �������������������������������&�

 ����� � ���� � ������ ��� ��� �����������

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

7

 ����� 	 ���� 	 �!��� � ������� ��� ���

��� � � ��	!�� #�� !� ��%� " �� ������&� � ��������!� � � �����
��� ��� �

 ����� � ���� � ������% ��� ��� ���������

 ����� � ������� �(�� �� �	� � ������� ��� ��

 ����� � ������ � �	�������%��� � ���%� � �����������	��� � �	� ��� ��"�

 ����� � ���� � ���������� ��� ����	��� � 	�	��� � ����	���� ��� �����������

 ����� � ���������� � ��������� ��� �	���� �(�� �� �	 ��� �������������� �

 ���"� � ����	�� � �������� ��� ��� ���"&�

�� � � ��	!�� #� �������� ��%� � ���������� ��� �������������������������� �

 ����� � ���� � ������% ��� ��� ������"&�

 ����� � ������� �(�� �� �	� � ������� ��� ���������������������������������������"��

 ����� � ������ � �	�������%��� � ���%� � �����������	��� � �	� ��� �"��

 ����� � �����	����� � ������� �(�� �� �	 ��� ��������������������������������""�

 ����� � ����	�� � �������� ��� ��� ���"��

��� � � 	����% ��� ��� ����������������� �

�� � �	!����!	���������
������!������"�)���!*����������� �� �

��� � � ���
&��"� 	 ��!��%���� '� � � ��� �� �

'����� 	 �� � ��� � ���������	�� � ��������	� ����	�� ��� ����������

��� � � ����"�� � 	!�� � �!	�� 	 ����� � 	�
���� ��� �������������������������� �

�� � � 	!�� � �!	�� ��������� ��� ��� �

��� � � ���� �
���� ��� ��� �������������� �

��� � � �����
� '� ����� � 	!�� � �!	�� � ��!	������ � 	�
���� ��� �������� �

��� � � �������� � �����
� ��� ��� ���� �

��� � � �����
�� � 	!�� � �!	�� ��������� ��� ������������������������������������ �

��� � � �������
� � �!	�� ������!������� ��� ������������������������������������ �

��� � � 	����% ��� ��� ����������������� �

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

8

��� � ��������
�����	!��#��"�����������������&���������� ���!���������������������� �

���� � � !� ��%� " �� ��� � ���������� ��� ����������������������������������� �

�&����� � ������ � �	�������%��� � ���%� � �����������	��� � �	� �� '�

�&����� � ���� � ���������� ��� ����	��� � 	�	��� � ����	���� ��� ������'��

�&����� � ��������� ����	�� � ����	����� ��� ������������������������'��

�&����� � ����������� � ������%� � ������� ���� �� ����	� ��� �������������'"�

���� � �������� ��%� � ���������� ��� ������������������������������������� �

�&����� � ������ � �	�������%��� � ���%� � �����������	��� � �	� ��' ��

�&����� � ��������� ����	�� � ����	����� ��� ������������������������' �

�&����� � ����������� ���� �� ����	�� � ��%� � ����	� ��� ���������������&&�

��� � � 	����% ��� ��� ��������������� �

��� �
��
!	��� ��� ������������������� �

���� � � ��������� � ���
����� ��� �� �

���� �
 �� ����������&� � �!����� � ��� ��� �������������������������������� �

������� � �������� ����	�� ��� ���&� �

������� � ��������� � ���� ��� ��� ����

������� � �������� � �������� ����	������� � ��������� ��� �����������

������� � 	�	�� � ������	��� � �	��� ��� ���������������������������������������

��� � � 	�	��� � ��� ��� ��� ��������� �

������� � ����� � �������	�� � %������ � ���������� � ���	�� 	 �����*��� �������������������������������������

������� � ����������	����� ��� ���"�

������� � � (����� ��� ��� ���������������"�

������� � ������������	�	�	������ ��� ���������������������������������������"�

������� � �������� �(�� ����	�� � ��������������� �	��	� ��� �����������

�����"� � �������� � �����	� � �)� ��� ��� �

������� � �����	���� ����	�����	�� � ���� � ����������� ��� ����� �

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

9

���� � � 	����% ��� ��� ��������������� �

��� � "!�����%��� ��� ����������������������� �

�� � �������
��� ��� ��������������������� �

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

10

List of Figures

� ������ ���
 �� ������	������	�����������	 ��	 �������	�����������	���������������	������%�

����	 ��� ��� ��������������������������������

� ������ ���
 �� �����������	� ��	 �������	������������	������������!������	�	%����� ���	��	���	��

	������������	������	���	���	�������������	���% ��	 �������	������	��	������	���	���	�

��������	����%�	�����%������������������	��%������ 	����������������	�����	�������	� ��

� ��������	����������	�������	������������	� #����������	�������	 +����% $��������������'�

� ������ ���
 �� 	�	���	�����	���������������������������������	 ��� 	�	���������������	����%������

������	�����%������ ��� ��������������	����	��	��	�	��	�	��������	�	��� �������	�������

��	��������������	������������	% ��� ��������������������������������������

� ������ ���
 �� ��	�����	�	��	�����	��������������������������� �����	���	���������	�����

� ����������������������	�	��	�����������	������ ����	%� &�� ������	�����	�� ��

��������	������	�������	 +����	�� ��� ���������������������������������������

� ������ ���
 �� 	�	��	�����	��������������	��������������������	 ���	���������	����������������

���	��� ��	 �����������	�������	��� , ���	���� - ���	����������� ��� ������	�����������	����

������		�� ��� ��� ������������������� �

� ������ ��"
 ����������� � ���������������	���������	�����	�	������������� ����������������	 ���'�

� ������ ���
 �� 	���	����� ��	 ���������	�	���������	�������������	%�	������� ������������

�������� ��� ��� �����������������������'�

� ������ ��
 ��� ���������	�	�����	��� � ������	�� ��� ����������������������

� ������ ��'
 ��� ���������	�	�����	���� � 	�������	�� ��� ����������

� ������ ���
 �� ���		��������������*���	��	�� (��	����	��������	�������������������	������	���

��	����� ��	 ����������������	������������	�� (��	�����	�����������������	�����		����

����	�����������	����	�������������������������� �����	��	�� (��	 �������������������������������"��

� ������ ���
 ���	����	����������� ����	���������������� ��� ����������������

� ������ ���
 �� �	�� � ��� *� �	 ����������������	�������������������������%���� �	���

#�������� $��	���� ��	 �������%�������������	������	���	�������������� �	�������	�����������

����	������������	 ��� ��� ���"�

� ������ ���
 �	 ��� , �������%�������� - ����������	 ��	 �����	 +��	��!����	�����	����!���������������

��������%������	 ��������������	������!����������	�� ��� �� ��

� ������ ���
 �� ��!������!�����������	��� , �������%�������� - ����������	 ������������������������������ ��

� ������ ���
 �	 ��� �(�� ���	����	��� , �������%�������� - ����������	 �� '�

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

11

� ������ ���
 �� ���	��	�����	������	��� , �������%�������� - ���������	������	������������������

��	������	����� #	���������������%�����������	����	������!�������� 	�� $����������������������'&�

� ������ "��
 �� ����	���	��������� � ������������	���	������	���	�	�����%�����	������	 ��� , �������%�

������� - ������ ��� ��� �������������

� ������ ���
 �	 ��� , �������%�������� - ����������	 ��� �����������������������'�

� ������ ���
 �� ��!������!�����������	��� , �������%�������� - ����������	���	������	�����

, ����� - �������	�������	��� ��� ���

� ������ ���
 �	 ��� �(�� ���	������ , �������%�������� - ����������	���	������	�%�������!��������

������� ��� ��� ����������������������������

� ������ ���
 ���	����������� �������	��� , �������%�

������� - ����������	 ��	 �������	�������������	%� #��	$ �	��������	��� �� �������������������

�������� �� 	���� ��	 �� #��		�����������	% $�������������������������	 ������������������������

� ������ ���
 ��� ����	���������%������ �.� ������ #��/ ������	������	 0��/ ����%�����	 $��	 ���������

������	������	��������	� ���� ���������	�	�������	� #� �/ ����� ��� �/ ����	% ��� �/ ����%�

����	 $��� ����������������������������"�

� ������ ��
 �� ����������������������������	����	�	���������	�� �����������������	����

������	�������	������� �&&���&&&���&&&���&&&&���&&&&���&&&&����� �&&&&&�������

���� ��� ��� �����������������������������

� ������ ��
 �� �������	����	�!��� #��������� $�	��������� �(�� ���	���	��������������	����	��

�����	������� �&&���&&&���&&&���&&&&���&&&&���&&&&����� �&&&&&����������� ���������"�

� ������ ��
 �� ����������������	��������	�����������������%��� �������������������������

������	�������	������� �&&���&&&���&&&���&&&&���&&&&���&&&&����� �&&&&&�������

���� ��� ��� �����������������������������

� ������ ��
 ��(�� ��������	����%� ���� ���	����	����������	����	��� �&&�&&&����	��� , �������%�

������� - ������ ��� ��� �����������'�

� ������ ��
 �� ����������������������������	����	�	���������	�� �����������������	����

������	�������	������� �&&���&&&���&&&���&&&&���&&&&���&&&&����� �&&&&&�������

���� ��� ��� ��������������������������"��

� ������ �"
 �� �������	����	�!��� #��������� $�	��������� �(�� ���	���	��������������	����	��

�����	������� �&&���&&&���&&&���&&&&���&&&&���&&&&����� �&&&&&����������� ��������"��

� ������ ��
 �� ����������������	��������	�����������������%��� �������������������������

������	�������	������� �&&���&&&���&&&���&&&&���&&&&���&&&&����� �&&&&&�������

���� ��� ��� ��������������������������"��

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

12

� ������ �
 �� �	������ �(�� �����	������ #��	� $���	������	��������	� (���%����������	����

����	�������	�����*���������� �&�&&&���� ������������� ��""�

� ������ �&��
 �� ����������������	��������	�����������������%��� �������������������������

������	�������	������� �&&���&&&���&&&���&&&&���&&&&���&&&&����� �&&&&&�������

���� ��� ��� ��������������������������'��

� ������ �&��
 �� �������	�����������	��� �&�&&&��	���	������ ���� ���	���������	����%���������

����	�������������������������� ���� ����� �&&�&&&���� �����	����������%���������

���������	 ��� ��� ���������������'��

� ������ �&��
 �� �������	�����������	��� �&�&&&��	���	������ ���� ���	���������	����%�

�������������	�������������������������� ���� ����� �&&�&&&���� �����	����������%���������

���������	 ��� ��� ���������������'��

� ������ �&��
 ��(�� ���	����	�����%�����	�����	����������������	������ �������������������	��

��	������������� �&�&&&���� � ��� ���'��

� ������ �&��
 ��(�� ���	����	������!�����	�����	����������������	����� ����������������

����	����	������������� �&�&&&���� � ��� �������������������������'��

� ������ �&�"
 ��(�� ���	����	�����%�����	�����	����������������	������ �������������������	��

��	������������� �&�&&&���� � ��� ���'��

� ������ �&��
 ��(�� ���	����	������!�����	�����	����������������	����� ����������������

����	����	������������� �&�&&&���� � ��� �������������������������'"�

� ������ �&�
 �� ����������������	��������	����������������%����� �����������������������

������	�������	������� �&&���&&&���&&&���&&&&���&&&&���&&&&����� �&&&&&�������

���� ��� ��� ��������������������������' �

� ������ �&�'
 ��(�� ����*���������� �&�&&&���� �����	��������	� (���%����������	 ���������������''�

� ������ �&��&
 ��(�� ����*���������� �&�&&&���� �����	��������	� (���%����������	 �������������&&�

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

13

List of Tables

	 ����� �(�
 �� �	���������������������	��%������������	�	������� �������������������� ������������������"�

	 ����� �(�
 �� ��� � �������� � ���� � ������������	�������������	�����	�	������ ��	 ����	�	����	���

�����������������������%�	����	�	������������	�� ����	�����	��	�����������	 �����%���������

���������	������������	�	�� ��� ��"�

	 ����� �(�
 �� ����������	������������������%������������	�	���� ����������������������� ������������� �

	 ����� "(�
 �� ����������������	������	���	�������	��� , �������%�������� - ����!�����	��������	 ����&�

	 ����� (�
 �� ��������������������	����	�	���������	���������� �����������������	��

�����	������� �&&���&&&���&&&���&&&&���&&&&���&&&&����� �&&&&&����������� ������������

	 ����� (�
 ��� ��������	�	����� ����	����	�	���������	����%���������� ��	 �������	����������������

��������	�������������	�	���������������	������� �����	����������������������	�����	���

�	�	���������	����%�	������� ��� ���

	 ����� (�
 ��	 ����	�!��� #��������� $�	��������� �(�� ���	���	��������������	����	�������	���

���� �&&���&&&���&&&���&&&&���&&&&���&&&&����� �&&&&&����������� �������������������������"�

	 ����� (�
 ��� ��������	��������	�����������������%����������� ������������������������	��

�����	������� �&&���&&&���&&&���&&&&���&&&&���&&&&����� �&&&&&����������� �����������

	 ����� (�
 ��� ��������������� �������	����	�	��������	�������	���������������� �%���������

��������������������������	�������	������� �&&���&&&���&&&���&&&&���&&&&���&&&&�

���� �&&&&&����������� ��	 �������	������������������������������������� ��	 ���������

���������������	����	�	��������	���� ��� ���������������������������� �

	 ����� ("
 �� ��������������������	����	�	���������	���������� �����������������	��

�����	������� �&&���&&&���&&&���&&&&���&&&&���&&&&����� �&&&&&����������� ���������"��

	 ����� (�
 ��� ��������	�	����� ����	����	�	���������	����%���������� ��	 �������	����������������

��������	�������������	�	���������������	������� �����	����������������������	�����	���

�	�	���������	����%�	������� ��� ��"��

	 ����� (
 ��	 ����	�!��� #��������� $�	��������� �(�� ���	���	��������������	����	�������	���

���� �&&���&&&���&&&���&&&&���&&&&���&&&&����� �&&&&&����������� ������������������������"��

	 ����� ('
 ��� ��������	��������	�����������������%����������� ������������������������	��

�����	������� �&&���&&&���&&&���&&&&���&&&&���&&&&����� �&&&&&����������� ��������"��

	 ����� �&(�
 ��� ��������	��������	�����������������%����������� ����������������������

��	�������	������� �&&���&&&���&&&���&&&&���&&&&���&&&&����� �&&&&&����������� �

��� ��� ������������������������������������'&�

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

14

	 ����� �&(�
 ��� ��������	��������	�����������������%����������� ����������������������

��	�������	������� �&&���&&&���&&&���&&&&���&&&&���&&&&����� �&&&&&����������� �

��� ��� ������������������������������������'��

	 ����� ��(�
 ��.� ���	������%�	��������	���� (������������������% ���

	 ����� ��(�
 �� ��������������������������%� � ����������	��� � ��	�	��	���	��	 ��

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

15

List of Algorithms

� ����	��� �(�
 ������	 � ��������	 � ���	� ��� �/ ��	�	� ��� �/ �����	 ��� �/ ����������	�������	�� ��������

� ����	��� �(�
 ����������	 ��� �/ ��	�	� ��� �/ �����	 ��� �/ ����������	�������	�� ���������������������������&�

� ����	��� �(�
 ���% � ��������	 � ���	� ��� �/ ����������	 ��� �/ �����	 ��� �/ ����������	�

������	�� ��� ��� ����������������������&�

� ����	��� �(�
 �� ��	� (� 	����� � ��������%� � �	��	��� #����$� �� �/ ���	��������	������	���	��� ����

/ ����������	�������	�� ���������� / �	����������������	��	��������������� ��������������"��

� ����	��� �(�
 ����	�� #�$���/ ������	����	����������	�������������	���	� ����������������������������������"��

� ����	��� �(�
 �	 ��� � %�� (* ������	��������	�������	������������	�� #����	������� 1 �2$��

���� #� �� $����	���	�����	��	����	������� ��	 ����	����������	������� #� �� $��	���

��������	���	�������	������� *(�������� ��	 ��������������	������������	������������

�������� ��� ��� ��������������������������

� ����	��� �(�
 ���	�� � ��� *(� ��� � ��������	 ��	 ��������	��������	���%�	�!���������

��	�������������������	�	��������������	�������� ������	������	���	���� #��� � $����� ������

�����	����������������������	�����������������	�� ��� �������

� ����	��� �(�
 ���	�� � ��� *(��� � ����� � ���% ��� �/ �	������������	����� ���� / �������	����

������	 ���� / �������	������	�� ��	 ��������	�������������������	����������	�����	�� �������

���	����������������������������������	��������� ���� ��� �

� ����	��� �(�
 ���	�� � ��� *(��� � ��	����	�� � ���% ��� �/ �	������������	����� ���� / ����

���	����������	 ���� / �������	������	�� ��	 ��������	���������%�����������������	�����	��

�	�	� (��	�������������	������������	�����	���������� ��������	������������� �������������'�

� ����	��� �(�
 ���	�� � ��� � ������ (��� � ��	����	�� � ���% ��� �/ �	������������	����� ���� / �

������	����������	 ��	 ��������	��������������������	���	�����	���	�	���� ��������	������� �

��� ��� ��������������������������������������'�

� ����	��� �("
 ������% � �	�� ��� �/ �	������������	��������	��������	��������� ���� / �������	����

������	 ��	 ��������	�����	�����	���������	����������	�������� ��������	���������	 ��������� &�

� ����	��� �(�
 �������	� � ����� � �����	 ���/ ����	����������	 ��� �/ ���	�� ����� �� / ��(�� ���	 ��� �

�������������	������	����� ��� ��'��

� ����	��� �(�
 �������	� � �����	� � �� � ��� ��� �/ �������	 ��� �/ ���	�� ����� �� / ��������������	��

��	 ��� ��� ��������������������������������'��

� ����	��� �(�
 ������ � %� ��������� ����� �� / ��������������	����	 ���'"�

� ����	��� "(�
 ������ �� �/ ���	��������������	������	���	��� ��� ���

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

16

� ����	��� "(�
 ������	 ��� �/ ��������	�������������	���	� ����� �/ �������	������	���	�� ������������������ �

� ����	��� "(�
 ������� � �� ��� ! (� �/ ��������	����	�������! (�� ��������� �

� ����	��� "(�
 �3�� ��� �/ ������������	���	���	�������������� ��� ����&�

� ����	��� "(�
 ������� � ���� ��� !� / ��������	����	�������! ��� ! (� �/ ������������	���	���	�������! ������&�

� ����	��� "("
 ������� � ��	�� ��� !� / ��������	����	�������! ��� ! (� �/ ��������	����	�������! (�� �� � ����� / �

� (�	�	��	�������������������������	��	� ��� �������������������������������

� ����	��� "(�
 ���	���	 �� � ��� � �����	 � �	� ���/ ��	��������������	������	���	��� ��������������������

� ����	��� "(
 ���� � ��� � �������	� ��� �/ ������	���������	 ��� �/ ���	��������������	������	��

�	��� ��� ��� �����������������������������"�

� ����	��� "('
 �����	� ��� � ��� �/ ������	���������	 ��� �/ ���	���������������	���	��� ��	 ���

�����	�����	����� �� �����	��� �(�� ������������	����������	 �� �

� ����	��� "(�&
 ����������� ����� � / 	�������	����	 ��� �/ �������	������	���	��� ��	 ��������	���

��	��	����������������	�������������	�� ��� ����������������������������	���������������

���	����������������	 ��� ��� ������&�

� ����	��� "(��
 ���	����� ����� �/ �	����������������	����	 ����� �/ ����������������	������	��

�	�� ��	 ��������	�����	�����	��������	����������������	 �����	����	��	�������	���

��	������	��� ��� ��� �������������&�

� ����	��� "(��
 �����	 ���� ������ ������ ����� ���� �/ �	����������������	���	����	��	�� ��� �

/ �	�����	���������	������	���	��� ��	 ��������	�����	����	�������	�������	� �(�� �����������

����������������	��	����������	������������������ ����	 ��� ���

� ����	��� "(��
 ������� � ���� ��� ����������	��� ���� ���	�����	������ ������������������������������

� ����	��� (�
 ����� � ��� � ��� ���/ �����	����������� ��	 �������	�����	�����	��������

�����������	��������	������������������	������� ���	����	���������������	��������

���������	 ��� ��� ������������������

� ����	��� '(�
 ������ ���	� #��� � ��� ��� $���� / �������	 ���� / ���	�� ���

� ����	��� '(�
 ����� � ���� �	���	�� ����� � / 	����������������	����	 ��� / ���	����������	 ��

� / ���	������	�� ��	 ��������	���	�!�������	��� �(�� �������	���	����%���������	����	���	%�

��	���	��������	�����	�����������	������ (�	��� ��� ��������'�

� ����	��� '(�
 ����	 � �	�� ����� � / 	����������������	����	 ��� / ���	����������	 ��	 ��������	���

��	�����	������	���	������	���������������	 ��� ����������������� &�

� ����	��� '(�
 ���������� � ��� � ���� �	���	�� ����� � / 	����������������	����	 ��� / ���	����

������	 ��� / ���	������	�� ��	 ��������	���	�!�������	��� �(�� �������	���	����%���������	���

�	���	%���	���	��������	�����	�����������	����� � (�	��� ��� "�

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

17

� ����	��� ��(�
 �� ��	�	��	�� ��� � �/ ������������� ��� � �/ �������������� ��������	��������	����	����	���

��������	�������������	� ��������	��������	����	����	�����%� #����	��� $���	�����������

	�������������	� ��	 ��������	�����	�����	��� � ��	�	��	��������������� (�������������

��	������ � ������ ��� ��� �����������

� ����	��� ��(�
 �����% � %� ����� #������$� �� �/ ����	����������	 ����� �/ �	��� �(�� �	�����% ��	 ���

�����	�����	��������������������	���	�������	��� �	�������	��� �(�� ���������������

���������	����������� ��� ��� ����

� ����	��� ��(�
 �����% � �� �	���� #������� �� �� $��� �/ �����	�������	 ����� �/ ��(�� �	�����% ��

� ��� / ���������	%�������	�����	�����	����������	� ��	 �������	�����������	����	�������

�������	����	��� (��	����	��� �(�� ����	����	�	���������	 ��������	���������	���

������	����	��������	�����������	��� ��� �����������������������������"�

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

18

ACHNOWLEDGEMENTS:
 I’d like to thank my tutor, Dr. Kostas Stathis, for helping me to find both a fascinating
research area and a range of techniques to explore within it. Our meetings have been exactly
as academic research should be: inspiring, motivating and resulting in the phrase “needs
further research”. I have also been fortunate in having a second tutor Dr. Artur Garcez who
provided the motivation to help me finish the thesis, guidance on analysis techniques, and the
understanding that the life of a part-time student requires a subtle mix of carrot and stick. I’d
also like to thank Dr. Andrew Tuson for introducing me to City University and helping to
further my career as an academic. Thank you to all the staff of the School of Informatics at
City University for your continued support and assistance.
 I’d like to thank my wife, Cecil, for her inexhaustible patience and being the world’s best
girl. I couldn’t have done this without you. Thank you to all the friends and house-mates
who’ve helped encourage and, more importantly, keep me sane by distracting me. Finally, I’d
like to thank my family for their incredible support, both financially and emotionally, without
which I’d probably have given up and taken a job in banking.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

19

Declaration

I hereby declare that:

· my submission as a whole is not substantially the same as any that I have previously

made or am currently making, whether in published or unpublished form, for a

degree, diploma, or similar qualification at any university or similar institution

· the following parts of the work or works now submitted have previously been

submitted for a qualification at a university or similar institution (only brief details

required):

.

.

.

· until the outcome of the current application to this University is known, the work or

works submitted will not be submitted for any qualification at another university or

similar institution.

Date: . Signature: .

Print Name: .

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

20

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

21

ABSTRACT:

 This thesis presents an approximate dynamic programming (ADP) technique for environment

modelling agents. The agent learns a set of parallel stochastic planning operators (P-SPOs) by

evaluating changes in its environment in response to actions, using an association rule mining

approach. An approximate policy is then derived by iteratively improving state value aggregation

estimates attached to the operators using the P-SPOs as a model in a Dyna-Q-like architecture.

 Reinforcement learning and dynamic programming are powerful techniques for automated agent

decision making in stochastic environments. Dynamic programming is effective when there is a

known environment model, while reinforcement learning is effective when a model is not

available. The techniques derive a policy: a mapping from each environment state to an action

which optimizes the long term reward the agent receives.

 The standard methods become less effective as the state space for the environment increases

because they require values to be associated with each state, the storage and processing of which is

exponential to the number of state variables. Resolving this “curse of dimensionality” is an

important topic of research amongst all communities working on this problem. Two key methods

are to: (i) derive an estimate of the value (approximate dynamic programming) using function

approximation or state aggregation; or (ii) build a model of the environment from experience.

 This thesis presents a method of combining these approaches by exploiting structure in the state

transition and value functions captured in a set of planning operators which are learnt through

experience in the environment. Standard planning operators define the deterministic changes that

occur in an environment in response to an action. This work presents Parallel Stochastic Planning

Operators (P-SPOs), a novel form of planning operator providing a structured model of the state

transition function in environments which are both non-deterministic and for which changes can

occur outside the influence of actions. Next, an automated method for extracting P-SPOs from

observations in an environment is explored using an adaptation of association rule mining. Finally,

methods of relating the state transition structure encapsulated in the P-SPOs to state values, using

the operators to store state value aggregation estimates, are evaluated.

 The framework described provides a method by which approximate dynamic programming can

be applied by designers of AI agents and AI planning systems for which they have minimal prior

knowledge. The framework and P-SPO based implementations are tested against standard

techniques in two bench-mark stochastic environments: a “slippery gripper” block painting robot;

and a “predator-prey” agent environment.

 Experimental results show that an agent using a P-SPO-based approach is able to learn an

accurate model of its environment if successor state variables exhibit conditional independence,

and an approximate model in the non-independent case. Results also demonstrate that the agent’s

ability to generalise to previously unseen states using the model allow it to form an improved

policy over an agent employing a standard Dyna-Q based technique. Finally, an approximate

policy stored in state aggregation estimates attached to operators is shown to be optimal in

experiments for which the P-SPO set contains sufficient information for effective aggregations to

be formed.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

22

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

23

1. Introduction

It has been the aim of many AI researchers to create an autonomous agent that can be situated

in an environment and learn to act effectively through discovery of the mechanics of the

world they inhabit. This has been termed “developmental AI” [40] or “constructivist AI”

[28][84] and is discussed as early as 1950 in Turing’s paper “Computing, Machinery &

Intelligence” [92] in which the idea of building a simulation of an infant’s mind that could be

trained through interaction with the world was proposed as one method of constructing a

machine that could pass, what later became known as, the Turing test.

Turing’s motivation for this aim was a practical one of solving issues with adaptability. It was

clear that an artificial intelligence could not be programmed to respond to every eventuality

that it could encounter, and that even if this knowledge could be given, it would soon become

out of date as the environment changed. Some mechanism was therefore needed to adapt to

the changing conditions and the development of knowledge by discovery promised an

approach that required minimal programmer effort if appropriately general principles could be

discovered.

This adaptability motivation is reflected in a number of agent-based applications, and is

particularly apparent in the fields of adversarial AI and non-player character AI (NPC AI) in

computer game applications. Computer games are played by humans, who continually adapt

their strategies to improve their performance. If a weakness is found in an adversarial AI’s

behaviour, then the game will quickly become uninteresting if the AI opponent keeps re-

playing the same losing strategy. A developmental approach could help the AI adapt to these

changing strategies. NPC’s in computer games can be adversaries (e.g. bots in FPS games), in

which case the same argument applies, but they can also be helpers to the main character (e.g.

a war-horse in a role-playing game), or simply background characters aimed at improving the

aesthetics of the environment (e.g. a villager in a town the character travels through). Each of

these agent types could benefit from a developmental approach that allows a designer to

specify the type of behaviour that is required without having to specify the means of

achieving it.

In this context an autonomous agent is considered to be a decision-making entity. It is situated

in some environment or world, and has a number of actions that it can carry out. It has a

method of perceiving its environment, and makes decisions as to which of the available

actions it will select. It is autonomous in the sense that it can actively perform action selection

without external intervention. The agent has a perceive function which converts sensor data

Introduction

24

from the environment into a percept, and uses information contained within these percepts to

guide its actions through some form of deliberation [49].

The type of agent studied in this research builds a model of its world by evaluating changes to

the received percepts over time, and models the effects of its available actions by evaluating

the changes in perception in response to the actions selected. The agent is given a reward

mechanism, which indicates a preference that the agent should have for perceiving that it is in

a particular state. The agent then uses its model to make decisions by forming a plan or

policy. A plan is a deterministic set of actions, which lead the agent from its current state to a

reward state. In stochastic (random) environments the agent cannot establish a deterministic

set of actions and must, instead, create a strategy which takes into account every state it could

find itself in. This strategy is called a policy (or universal plan), and is a mapping from every

possible state to an action.

Planning in a stochastic environment in which actions have probabilistic outcomes, the

environment changes outside the agent’s control, or the agent has uncertain knowledge about

the environment state, presents unique challenges which are not present in classical planning

systems, such as STRIPS [31] or the situation calculus [57]. The random nature of the

environment, from the agent’s perspective, means it needs a mechanism for selecting action in

situations or which are unexpected, or which it may not have encountered before. For large

environments an exact definition of such a plan becomes impossible and approximation

techniques are required. Such techniques fall under the categories of approximate dynamic

programming (ADP) [73] and Decision Theoretic Planning [7].

The work presented here investigates the creation of an agent which:

· Builds a planning operator based model of its world through interaction. Planning

operators describe the expected changes to the environment in response to the agent’s

actions.

· Uses the model, to attach utility estimates (estimates of expected future rewards) to

the planning operators.

· Uses the utility estimates to provide a policy. The agent can select an action to

activate the operators with the highest utility estimate. Given an initial percept, the

agent can make a decision by finding the highest valued action available for that

percept.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

25

The syntax of the planning operators acquired by the agent will be covered in depth in

chapter 5. In order to introduce the concept, a simple example of an operator set for an agent

is given below.

The agent has two actions: flip or doNothing in an environment consisting of a single coin

which can be showing either heads or tails. It receives a reward of 1.0 if the coin is showing

heads and 0.0 otherwise:

 { }
{ }

0.5 : (,)
() :{} (0.5)

0.5 : (,)

: (,) 1.0 : (,) (1.0)

: (,) 1.0 : (,) (0.0)

showing coin heads
flip coin U

showing coin tails

doNothing showing coin heads showing coin heads U

doNothing showing coin tails showing coin tails U

� �
® � �

� �
®

®

Each operator has:

· An action: e.g. flip(coin).

· A context: e.g. showing(coin, heads).

· An outcome set with associated probabilities. e.g. {0.5:showing(coin, heads),

0.5:showing(coin, tails)}

· A utility: e.g. U(0.5).

The outcome set identifies the expected changes to the environment in response to the action

if the context holds. The utility is an estimate of the expected future rewards if the action is

taken in the given context. The task in this case is episodic (has terminating states). The

episode length is one, with both showing(coin, heads) and showing(coin, tails) being

terminating stares. This means that only immediate rewards affect the utility.

The agent can form a policy by selecting the action with the best available utility in the given

context. If, for example, the coin is currently showing heads, then the flip action can be taken

(because it has no context) or the doNothing action can be taken (with showing(coin, heads)

context). These have utilities of 0.5 and 1.0 respectively, and an agent attempting to maximise

reward gather would, therefore, select the doNothing action, resulting in an immediate reward.

A method of learning operators of this type, along with their more complex parallel

extensions, is defined in chapter 6, and evaluated in chapter 8. Methods of attaching utility

estimates to planning operators are investigated in chapter 9, and evaluated in chapter 10.

Empirical learning of planning operators in stochastic environments is challenging because:

· An action may have uncertain effects inherently (e.g. the result of a “flip” action on a

coin).

Introduction

26

· The effects of an action may be masked by external elements (e.g. multiple coins are

flipped simultaneously by others and the agent wrongly attributes the result of their

others actions to its own).

· The action conditions may be masked by external elements (e.g. the state of the coin

the agent flips may randomly match the state of one of the other coins before the flip

action, and the agent incorrectly concludes that the state of the other coin is an

important condition for the flip action).

Each of these issues can be tackled, to some extent, by performing statistical significance

testing, and the planning operator learning mechanism presented in chapter 6 is based on this

technique.

Standard dynamic programming techniques can build a utility map of a state space by cycling

through each state, taking the best available action (according to the current estimate, or a

random action in order to explore) and, when a reward is encountered in the following state,

feeding this reward back to the previous state. The number or values which must be calculated

is, however, exponential to the number of features present in the state space. This is referred

to as the “curse of dimensionality” [73]. Attaching utilities to the operators removes the need

for storage of these values, but poses a new set of challenges:

· Each planning operator’s conditions represent only a small proportion of all the

possible conditions of each state. The utility estimate attached to the operator is

therefore an aggregation of many states from the full state-space.

· Planning operators are applied in parallel to calculate the following state. The agent

therefore needs a mechanism for deciding the contribution made by each operator to

the utility of taking a particular action.

· Total utility in a reinforcement learning system increases (or decreases) as the

learning progresses. Operators with fewer conditions will increase (or decrease) in

utility as a consequence of being applied more regularly, while those with more

conditions will learn more slowly.

The general framework of utility-based action-selection is provided by dynamic programming

(for model-based approaches), and reinforcement learning (for model-free approaches) [87].

The approach used in this research is initially model-free, learning the model from experience

and can therefore be seen as fitting into both fields. The utilities learned by the agent provide

estimates of the utility of being in a particular state and the approach therefore fits into the

field of approximate dynamic programming (ADP) [73].

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

27

A range of model-based learning techniques have been proposed for agent-based planning

mechanisms. The work presented here builds on contributions from several sources:

· Model based reinforcement learning: Dyna-Q [88].

· Planning operator learning: multi-stream dependency detection [64], noisy deictic

rules [67] and association rule mining [1].

· Factored state mode approaches for decision theoretic planning [10].

· Approximate Dynamic Programming [73].

1.1 Motivation

The hypothesis of this thesis is that utility estimates attached to acquired parallel stochastic

planning operators, describing the dynamics of a predictably probabilistic environment, can

be used to compactly model the effectiveness of taking actions in that environment.

The general motivation for the work is to create agents that are both autonomous learners and

who’s behaviour is comprehensible by human designers. The drive comes largely from the

author’s commercial background in computer game agent programming. Games companies

are generally reticent to use black-box techniques (such as a neural network), despite their

obvious ability to deliver complex AI with reduced designer input, because a bug found in a

solution requires a complete re-train. This newly re-trained solution can itself contain errors,

and the risks are perceived as too great when it is considered that the error may only be

discovered a week away from shipping a title with a multi-million dollar budget [12].

The use of rule-based models allows designers to either re-write rules by hand or,

alternatively, interpret the errors by investigation and make adjustments to parameters or

learning conditions when generating new rules.

Attaching values to rules means that the policy itself can be interpreted by designers, because

they can see which actions and rules are favoured by the system in certain situations.

The particular properties of many computer game agent environments that make this

technology applicable are that:

· An accurate model of the dynamics of the environment, from the perspective of an

individual agent, is not known in advance, and often cannot be created due to the

stochastic nature of the environment or the unpredictable actions of agents within it.

· Experience can be gathered through trial runs with negligible cost, as opposed to the

cost of, for example, robot trials in potentially hazardous environments.

Introduction

28

Some of the properties of the system that provide an advantage as a computer game agent

controller include:

· Intelligible rules: the system creates rules that can be read and understood by a human

designer.

· The rules can be modified by hand if necessary.

· The system can generalise over unseen states and therefore produce intelligent

behaviour based on knowledge gained in similar situations.

· Limited processing power is required at run-time, with the learning occurring off-line.

· The design of AI agent controllers for computer games is an expensive process, often

requiring highly skilled and experienced developers with extensive domain

knowledge of each game. Automating this process could lead to significant cost

savings and improvements in computer games.

1.2 Aims & Objectives

Techniques exist for creating effective agent controllers which exhibit some of the properties

outlined above, but not all. The overall aim is to produce an effective and practical technology

that inherits aspects of the best of these systems and exhibits each of the above desirable

properties.

· Create a framework for environment modelling agents: the framework should be

adaptable, in that a variety of environment modelling systems and action selection

mechanisms can be incorporated.

· Design a rule-based environment modelling system: the system should have the

expressive power to model the environment from the point of view of the agent. It

must, therefore be able to model events that happen outside the agents control

(environment actions), unpredictable/stochastic action outcomes, outcomes that are

both independent and non-independent, and combinations of these. The rule system

also needs to be in a human readable form and preferably in a form familiar to AI

researchers in order to enable “glass-box” interpretation.

· Design a system for learning the rule-based environment modelling system from

experience: human designers are not adept at creating probabilistic rule systems by

hand. The environment modelling system should be able to acquire a model by

analysing the environments response to action. The system should build a set of

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

29

operators by discovering patterns in changes to the environment in response to actions

(or when no action is taken).

· Design a system for attaching utility estimates to the rules: allowing compact storage

and human interpretable values to be attached to rules. The system should have the

capacity to build rule utility estimates from successor rule utility estimates, without

the need to enumerate the value of every state, or state-action pair in the environment.

1.3 Framework

The framework for the agent’s learning consists of the following elements:

1) Embodiment: the agent is embodied, and situated in an environment: it can select

actions (behaviours) available through its body and receives percepts, which are a

function of the current environment state.

2) Modelling: the agent builds a model of its perception of the environment using

parallel stochastic planning operators (P-SPOs). These are learnt empirically by

observing the effects of actions through percepts. The percepts before and after each

action are used as training data for a P-SPO learning algorithm. Note that the

environment itself may be deterministic, but viewed through the agent’s percepts, can

appear stochastic.

3) Policy generation: the agent builds a policy by simulating actions using the

environment model encapsulated in the rules. In initial tests, the agent uses standard

dynamic programming to build a policy from simulated experience extracted from the

model. In the full system, value estimates are attached to each operator. The operators

contain actions and are therefore acting as a set of aggregation estimates

encapsulating information in the form: taking action, a, under conditions, c, has

utility, u.

A useful property of the framework is that the policy generation phase is entirely simulated

and can therefore be seen as “free” in terms of cost to the agent in the environment.

Additionally, the agent’s goals can be changed, but the rules describing the environment’s

dynamics remain unchanged. It can therefore be set new tasks or goal without the need to re-

model the environment [90].

1.4 Contributions

The research makes contributions in the following areas:

Introduction

30

· A framework for developmental AI is created: a world model learning phase is

followed by a planning phase using approximate dynamic programming. Extensions

for in-line learning are explored.

· Parallel Stochastic Planning Operators (P-SPOs) are defined: an extension of Noisy

Deictic Rules [67] to include provision for independent outcomes.

· Apriori Stochastic Dependency Detection (ASDD) is defined & evaluated: a fast

stochastic rule learning algorithm for construction of P-SPOs from observation data

using statistical significance and data mining methods.

· Rule Value Reinforcement Learning (RVRL) is defined & evaluated: a state

aggregation method for approximate dynamic programming, using P-SPOs as

aggregation estimates for a state aggregation function.

Experimentation is performed to evaluate:

· The performance of P-SPOs as an environment model for a dynamic programming

based policy generator.

· The performance of RVRL in generating policies for agent action.

1.5 Structure

Chapters 2 and 3 provide background for environment modelling techniques from the

perspective of agents, and methods of planning (policy formation) using the model. Chapter 4

provides the overall model-based learning framework used in the research. Chapter 5 defines

parallel stochastic planning operators (P-SPOs). Chapter 6 defines the ASDD algorithm and

associated functions for learning P-SPOs from data. Chapter 7 defines the test environments

used in this research. Chapter 8 provides the results of the ASDD rule learning algorithm in

terms of environment modelling and policy generation using a standard dynamic

programming algorithm. Chapter 9 then defines the RVRL algorithm for attaching rule values

to operators. Chapter 10 shows the results of the complete system, with values attached to

operators learned in the framework and used as a policy. Chapter 11 discusses the

achievements of the system, related work and future improvements to the system.

1.6 Previous Publications

The framework presented in chapter 4 and evaluation technique (chapter 8) have previously

been presented and evaluated in conjunction with a multi-stream dependency detection based

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

31

technique for planning operator learning in "SMART (Stochastic Model Acquisition with

ReinforcemenT) Learning Agents: A Preliminary Report." [17].

The ASDD method for learning stochastic logic rules (chapter 6) was defined and evaluated

in "The Apriori Stochastic Dependency Detection (ASDD) Algorithm for Learning Stochastic

Logic Rules." [18].

Rule Value Reinforcement Learning (RVRL) for attaching values to planning operators

(chapter 9) was first presented in "Rule Value Reinforcement Learning for Cognitive Agents"

[16] and further evaluation in the context of an embodied agent environment modelling

framework was published in “Learning to Act with RVRL Agents" [15]. Peer review

comments from this and extensions to widen the applicability of the system have been

incorporated in the approximate dynamic programming based update functions for RVRL

presented in this work.

Introduction

32

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

33

2. Background I: Agents, Environments & Models

This chapter introduces the agent and environment definitions which underpin this work.

Embodied agents, with environment interaction mediated through action selection in an agent

body, are defined and presented in the context of both deterministic and stochastic

environments. Techniques for representing an environment model from the perspective of an

agent are presented. The model representations are chosen because they define the evolution

of the environment in response to agent action (allowing planning) and can be can be acquired

from data.

2.1 Agents

The purpose of the system presented in this work is to create effective controllers for

autonomous agents. A broad definition of an agent, as given by Wooldridge [98], is:

“An agent is a computer system that is situated in some environment, and that is capable of

autonomous action in this environment in order to meet its design objectives”.

This definition puts no requirements on the agent to be part of a multi-agent system, to be able

to communicate, or any of the other uses for which agents are employed. It simply defines an

agent as a decision maker, situated in an environment.

Figure 2.1: An agent and its environment. The agent produces actions in response to sensory

input.

Figure 2.1 shows that the agent responds to sensor input from the environment with actions.

This definition is broad in that there is no requirement for the agent to respond with intelligent

decisions, and the type of environment is not defined. The agent is situated in an environment,

but is also separate from it in that it’s decision making process is outside the environment.

Background I: Agents, Environments & Models

34

If the agent is treated as a separate decision making entity, outside the environment, then

flexible agent architectures can be produced (as investigated by the EU SOCS project [85]). A

good analogy is to consider a human playing a computer game. The human has a view of the

world and can select actions through the controller, but these actions do not directly change

the environment. Instead, they are stored as the next action that will be taken by the player

when the game-world updates. The human player can easily be replaced by an artificial

intelligence. If we give the AI a view of the world and allow it to trigger the same actions,

then it should require no further change to the game world to integrate the AI. This view of

embodiment is explored further in section 2.1.4.

The following section gives an abstract definition of agents and environments. The term agent

is, in general, somewhat loosely defined and has been used in the definition of complex

environments and interactions. Rather than debate these points, the intention here is to

provide a useful definition of agency based around an embodied “perceive, deliberate,

execute” framework, which will enable definitions from dynamic programming to be set in an

agent context.

2.1.1 Agent: Action Selection within an Environment

A useful starting point for defining agents and environments is given by Wooldridge [98]. An

environment is assumed to have a set of possible world states S, where S = {s1, s2, s3, …, sn}.

At any given time the environment can be in one of these states. Environments can have an

infinite or a discrete number of states. An agent has a set of actions, A, which can influence

this state, where A = {a1, a2, a3, …, an}.

The agent’s purpose is to choose an action (make a decision). An agent can be viewed as a

function, mapping a history of environment states, S*, to an action.

 *:action S A® (2.1)

A reactive agent is an agent with no memory, which can only take account of the current state

of the environment when deciding upon its next action. It is, therefore, defined by the

function:

 :action S A® (2.2)

A deterministic environment can be modelled as a function mapping the current state of the

environment and the agent’s action to a new state:

 :env S A S´ ® (2.3)

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

35

Starting from a state sÎ S, the execution of the environment function on an action aÎ A

produces a new state. A non-deterministic environment can be modelled as a mapping from

state and action to a set of next states:

 : ()env S A SJ´ ® (2.4)

This model appears simple but succinctly defines the agent as being a decision making entity,

separate from its environment, but able to influence the environment. The environment

function can be as complex as is required, containing multiple agents or just one single agent.

This abstract definition is simple and can be used to describe almost any agent, but it does not

help in the practical construction of an agent.

Wooldridge provides a next step, which is to add perception to the agent, which captures the

agent’s ability to sense its environment, and that this sensing is an incomplete representation

of the environment state. The see function takes a state and outputs a percept, where P = {p1,

p2, p3, …, pn}.

 :see S P® (2.5)

The action function is then altered to become a function of the history of percepts for a

cognitive agent, or a single percept for a reactive agent:

 *:action P A® (2.6)

Note that the mapping from states to percepts is generally not one-to-one. The number of

possible percepts is less than or equal to the number of possible states, with several different

states may mapping to the same percept. From the agent’s perspective, two states that map to

the same percept are indistinguishable. If each state maps to exactly one percept, then the

environment is said to be fully observable.

The agent architecture employed in this work uses this form, with the additional layer of

separation provided by the agent body, which is part of the environment and is the agent’s

only method of interaction with the environment (see section 2.1.4).

2.1.2 Agent: Perceive, Deliberate and Execute

A second perspective on the basic agent architecture is given by Ferber [30]. The definition,

again, separates the agent’s decision making process from the environment, but is more

explicit in including multiple agents making simultaneous decisions in the environment. The

agent is considered as three functions:

· Perceive

Background I: Agents, Environments & Models

36

· Deliberate

· Execute.

The perceive function is defined separately for each the agent in the system. It associates a

percept with each state of the world and can be defined as a mapping from the state of the

environment to a set of available percepts for an agent. An agent, g, has a perceive function

defined as:

 g gperceive : S P® (2.7)

The deliberate function for a reactive agent is equivalent to that defined by Wooldridge. It

takes a history of percepts and produces an action. Reactive agents have no memory or state

and therefore the deliberate function consists simply of a reaction, modelled here by mapping

a percept directly to action:

 :g gdeliberate P A® (2.8)

Cognitive agents have the ability to retain information, and thus act on the basis of

perceptions and past experiences. Their deliberation process is therefore divided into memory

and decision functions. The agent’s capacity for memory can be characterised by an internal

state sgÎ Sg (the set of internal states of agent g). Memorising an experience is defined as

moving from one internal state to another. The memorisation function takes an internal state

and a percept and produces a new internal state:

 :g g g gmem P S S´ ® (2.9)

The deliberate function of a cognitive agent takes a percept and an internal state and produces

an action to perform:

 :g g g gdeliberate P S A´ ® (2.10)

The “execute” function in Ferber’s definition, takes an individual agent’s action and the

current environment state and produces a set of influences, which will be combined by the

environment function to transform the world’s state.

 :g gexecute A S´ ® G (2.11)

These influences are intended to resolve issues with ordering of execution in the agent

environment. If execution order is not an issue, then the execute function can be adapted to

directly transform the environment state:

 :g gexecute A S S´ ® (2.12)

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

37

The environment function (action of the environment) can be represented as a special type of

agent producing influences:

:

:
E

e E

environment S A

execute S A

®

´ ® G
 (2.13)

If execution order is not an issue, then the environment function can be mapped as a direct

translation from state to state:

 :environment S S® (2.14)

2.1.3 Environment Update Function: Direct Action, Discrete Time

An environment update function using the direct execution of actions for multiple agents

(adapted from [30]) is presented below. The algorithm updates the state by processing the

action of all agents in the environment, and then updates the state using the environment

function. The environment function in this case could be replaced by a function executee, but

keeping the function explicit will aid explanation in the following sections.

 for all (a A) {

 p = perceive (S);

 a = deliberate (p);

 S = execute (S,a);

 }

 S = environment(S,E);

a

a

a

Î

directEnvironmentUpdate(S,A,E)

Algorithm 2-1: directEnvironmentUpdate. S = state, A = agent, E = environment definition

A variation on this algorithm forms the update function at the core of almost all current

computer games (see [59] and [38] for examples). Computer games use discrete time updates

so that a predictable performance occurs each time the algorithms are executed (avoiding

differences due to precision errors). These discrete time-steps can be set to varying amounts

for different aspects of the update, such that the agent’s decision process may execute in 100

millisecond steps, while fast moving objects are simulated every 10 milliseconds.

For computer game simulations, the agent decision making processes is required to be

flexible, such that a human could take the place of the agent as decision maker, with minimal

code changes. This can be achieved using the embodied agent concept (below), in that the

agent’s execute function has the effect of changing the agent’s body state, so that a new action

of behaviour is selected, which is executed as part of the environment update.

Background I: Agents, Environments & Models

38

2.1.4 Embodied agents

The concept of an agent body is often useful in drawing the boundary between agent and

environment in both robot control [11] and reinforcement learning. Sutton and Barto make the

following observation [87]:

“In particular, the boundary between agent and environment is not often the

same as the physical boundary of a robot’s or animal’s body. Usually, the

boundary is drawn closer to the agent than that. For example the motors and

mechanical linkages of a robot and its sensing hardware should usually be

considered parts of the environment rather than parts of the agent…

Anything which cannot be changed arbitrarily by the agent is considered to

be outside of it and thus part of the environment.”

The agent perceives the world through the sensors of this body and acts in the world by

triggering actions (behaviours) in the body. The agent itself is therefore detached from the

environment in two ways:

· The agent’s actions do not have a direct effect on the environment: the effects of an

agent body on the environment mediate them.

· The agent’s perception of its environment is not a complete picture of the

environment: it is a reflection of the state of that environment as filtered through the

agent body’s sensors.

Embodied agents make explicit the distinction between the agent, its interface with the

environment, and the environment itself. The agent’s only means of gaining input from the

environment is through sensors, which the environment updates. The perceive function maps

these sensors to a percept. The agent’s only means of output to the environment is by

selecting actions. The selected action is stored in the body state. These actions are then

executed by the agent body through its update function. The agent body is, in this respect, no

different from any other object in the environment.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

39

Figure 2.2: Embodied agents. The agent is a separate decision making entity whose contact

with the environment is mitigated through an agent body. The agent selects the next action to

be executed by the body and receives input by converting sensor information into percepts.

Sensors gather information from the environment (including the agent’s body).

The agent itself can be thought of as the mind of the body. If the required interface exists

between the agent and its body, the mind could be considered to be operating outside the

environment. The environment can proceed without intervention from the agent, with the

environment acting as an external control mechanism. The agent body would, of course, be

inactive without the agent’s selection of actions, but its state can still be changed by the

environment.

At a high level, the logical representation of the agent is unchanged from that presented in

section 2.1.1, because the agent’s body is part of the environment, and therefore remains part

of the environment function. It is now possible, however, to be more explicit in modelling the

environment as a set of objects with state, and the agent body as a special object with a set of

available actions and a sensing mechanism.

The environment function below takes as input the current state, S, the set of agents, A, and

the environment definition, E.

Background I: Agents, Environments & Models

40

o

E

a

 for all (o S) {

 S = update (S);

 }

 S = update (S);

 for all (a A) {

 a.body.sensors sense (S);

 }

Î

Î

=

environment(S,A,E)

Algorithm 2-2: environment. S = state, A = agent, E = environment definition.

The environment (including the agent body) is modelled as a set of objects, which are updated

each time the environment updates. If the environment updates by a uniform amount each

time, this is referred to as a discrete time environment.

:

:
o

E

update S S

update S S

®

®
 (2.15)

Initially, all objects update the state of the environment. Next, the environment function

updates all objects. Finally, all agent sensors are updated by mapping the current state of all

environment objects (including the agent body) to the sensors using each agent’s sense

function.

The body based update function can now be defined. The update for all agents is altered to

reflect the fact that the agent can only update its percept based on the contents of its sensors,

and can only influence the environment through the changes to its body state. The execution

of actions is no longer part of the agent, and is instead part of the environment update function

(defined above). The individual agent’s action changes the agent’s body state by selecting

actions.

a

a

a

 for all (a A) {

 p = perceive (a.body.sensors);

 a = deliberate(p);

 a.body.state = execute(a.body.stat e,a);

 }

 S = environment(S,A,E);

Î

bodyEnvironmentUpdate(S,A,E)

Algorithm 2-3: bodyEnvironmentUpdate. S = environment, A = agent, E = environment

definition.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

41

The agent uses it’s perceive function to receive a percept from the sensors and sends a choice

of action to the agent body each time the environment is updated. The effects of the agent’s

actions are mediated through the agent body and its interactions with other objects in the

environment.

Note that this is an approximate architecture, aimed at showing the interface between the

agent and its body. Simulated environments such as those used in computer games can add

multiple levels of complexity to incorporate factors such as collision detection, event

propagation and network capabilities. The aim here is to provide the simplest environment

definition which demonstrates the separation between the agent and its environment, while

being flexible enough to incorporate more complex architectures.

This distinction between agent body and environment is broadly similar to that defined by the

PROSOCS agent template [86]. The architecture is flexible in that it can be applied equally to

agents embodied in robots, virtual agents (e.g. NPCs) in computer game environments

embodied in avatars, or to any system in which a view and controller separates the agent from

its environment.

Although more sophisticated formal definitions of agency exist, these are mainly geared

toward refinements for individual agent types. The representation used is complete for the

purposes of this research and is compatible with that used by Markov models which form a

key element of the framework presented in chapter 4.

2.2 Environment Model

The term environment model is used to describe a function which can provide simulated

experience of an environment. For a fully observable deterministic environment, this is a

function mapping states and actions to successor states.

An environment model, from the perspective of an agent, can refer to any system that the

agent can use to predict the outcome of its actions. Given an input state, s, and action, a, a

model gives a prediction of the successor state, s’. For a deterministic environment this will

take the same form as a sample model:

 : 'sampleModel s a s´ ® (2.16)

If the environment is stochastic (random) then each state and action can lead to a set of

possible next states, S’, with each member of the set having an associated probability, Pr. A

distribution model is a model that produces all possible successor states and associated

probabilities:

Background I: Agents, Environments & Models

42

 { }
1

1 1 2 2: { , },{ , }, ... { , } 1.0n n n
n

distributionModel s a s pr s pr , s pr where pr´ ® =� (2.17)

A sample model is one that produces a single successor state and reward combination,

sampled according to the probability of the successor state occurring. A distribution model of

a coin flip would produce the output set: { }{ ,0.5},{ ,0.5}heads tails .

A sample model for the same situation would produce one of the outputs at random. For

example: {heads}.

An accurate sample model is one that produces a perfect simulation of the experience an

agent would gather if it were to actually take a particular action in a particular state. An

accurate distribution model generates all possible experiences that the agent would gather if it

took a particular action in a particular state with a correct probability associated with each.

2.2.1 Markov Models

The environment model presented above can equivalently be described in the language of

Markov models. Markov models are used to model stochastic dynamic systems. These are

systems that are in one of a distinct number of states at a particular time, and which change

states in response to events. Events can be outside the agent’s control, known as environment

events or exogenous events [7], or can be under the agent’s control (its actions).

A Markov model defines a set of probability distributions describing the transition between a

current state and next state depending on the past states. The system evolves in stages, where

each event produces a transition from the state at time t-1 to the state at time t.

In general, a discrete-time, stochastic dynamic system models the probability that the system

with be in a particular state at time t given a history of previous states:

 0 1 1Pr(, ,...,)t tS S S S- (2.18)

A common simplifying assumption, applicable to a large range of systems, is that the current

state contains enough information to predict the next state. This assumption is known as the

Markov assumption. If this assumption holds, the history of states becomes irrelevant to the

prediction of the future state:

 0 1 1 1Pr(, ,...,) Pr()t t t tS S S S S S- -= (2.19)

If the effects of the event are independent of the time at which the event occurred, and depend

only on the current state of the environment, then the model is said to be stationary. The

models presented in this research assume that the state transitions can be modelled using the

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

43

Markov assumption, and are stationary, finite-state, discrete-time, stochastic dynamic

systems.

Perceptions

If we assume an implicit event model (where exogenous events are modelled as part of the

agent action) and we assume observations are independent of time. The probability of

receiving a particular percept at time t can depend on:

· The state of the system at time t-1,

· The action taken by the agent at time t-1.

This model can be used to describe a variety of assumptions about the sensing capabilities of

the agent. Each of these assumptions corresponds to a type of Markov decision process.

· Fully observable MDP (FOMPD): The agent’s observations exactly describe the state

that it is in at time t. The agent, in effect observes the complete state of its

environment (P = S). The agent therefore receives perfect feedback about the results

of its actions and the effects of exogenous events (events outside its control).

· Non-observable MDP (NOMDP): The agent receives no perceptual information from

its sensors. This can be modelled as P = {p}, indicating that the agent receives the

same percept at all times or as P = {} (indication that the agent receives no useful

perceptual information).

· Partially observable MDP (POMDP): The agent receives incomplete or noisy

information about the state of its environment.

This research treats all environments as FOMDP, despite the fact that we are making

incomplete observations on the state of the environment. Environments are treated as FOMDP

because the agent does not have any world model other than that it can gather from evidence.

Therefore the problem is fully observable in terms of the possible models that the agent can

construct. The world to be modelled by the agent could be inherently stochastic or, in fact be

deterministic, but adhering to laws of which the agent has no knowledge and must therefore

approximate by use of probabilistic rules. For a full discussion of these distinctions see Pearl

[69].

2.2.2 Perceptual Model

The separation of the agent from its environment provides a useful abstraction for agent

modelling because the agent’s environment is often too complex to model completely.

Background I: Agents, Environments & Models

44

The sole contact an agent has with its environment is through the percepts received and

actions selected. The agents in this research must make a model of their environment through

interaction. This model must be based on the knowledge of the actions it has selected and the

percepts that it has received. The agent’s task is not, therefore, to model the environment

itself, but rather to model its perception of the environment.

A perceptual model is logically equivalent to an environment model from the point of view of

the agent. It models the successor percept it will receive, given an initial percept or action.

Given an input percept, p, and action, a, the perceptual model gives a prediction of the

successor percept, p’. If the function is deterministic or a sample mode is used this will be of

the form:

 : 'samplePerceptualModel p a p´ ® (2.20)

The perceptual model can be deterministic even if the environment itself is stochastic. The

mapping of states to percepts may make the elements of the environment which contain

stochastic properties map to the same percepts. For example, a tic-tac-toe agent controlling a

robot may have a percept that is a function of the current board state. Taking an action would

predictably change the percept, but the state of the world outside the percept (including

whether its opponent had decided to stop playing) could change randomly.

As is the case with the state-based mode, if the environment is stochastic from the perspective

of the agent, then each percept and action can lead to a set of possible next percepts, P’, with

each member of the set having an associated probability, Pr:

{ }1 1 2 2

1

: { , },{ , }, ... { , }

1.0

n n

n
n

distributionPerceptualModel p a p pr p pr ,p pr

where pr

´ ®

=�
 (2.21)

A sample model chooses a single percept from P’, distributed according to the associated

probability.

The environment may be deterministic, but appear stochastic from the point of view of the

agent, because its mapping is not one to one. The use of a probability based approach enables

the agent to model complex environments at a high level of abstraction. It also enables it to

model events which occur randomly, and model events which are not random, but which

appear random from the limited perspective of the agent.

For each action, at, taken at time t, after receiving a history of percepts {p1, …, pt} an accurate

model predicts the percept, pt+1. A perceptual model exhibits the Markov property if all the

information required to predict percept pt+1 is present in pt. Often the Markov property will

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

45

not hold for the agent’s perception of its environment, but the agent can make an approximate

model of the environment using the Markov assumption.

2.3 Model Representation

A model of an environment is a representation, or abstraction, which captures essential details

of the environment. For an agent, these essential details should contain everything it needs to

know in order to make decisions to move the environment towards its preferred state (goals).

For an agent to be able to make a plan, it must be able to model its environment in order to

predict the result of each action it takes.

Models represent the expected transition for a current state to a successor state, in response to

an action. A simple tabular method for representing this transition, presented in Dyna-Q [88],

contains a table entry for each state action pair, followed by all possible successor states and

their associated probabilities. This tabular method can be referred to as a “state-action” map.

For a deterministic environment, each table entry contains a single transition, 1,t t ts a s+® . If

the environment is stochastic, then there may be several following states with a probability of

reaching each one.

A simple example will help to illustrate these concepts. Consider an agent in an environment

containing a coin, showing either heads or tails. The agent has two possible actions: flip or do

nothing. If the agent chooses the flip action, then the result will be heads 50% of the time

(probability 0.5) and tails otherwise. If it chooses to do nothing the coin will remain as it was.

Figure 2.3: States transition diagram for a coin flipping agent. States are represented by

ovals and actions by arrows. Arrows lead from the start state to the end state for a particular

action labelled with a probability.

Figure 2.3 shows a state transition diagram for the coin flipping agent. Nodes correspond to

states. Arcs show possible transitions between states in response to actions. Each arc is

labelled with the action and associated probability of the state transition.

Table 2-1 gives an example of a tabular world model representation of this environment.

Background I: Agents, Environments & Models

46

Table 2-1: A tabular world model built by labelling states using empirical evidence

State Action Next State Prob.
Heads Do Nothing Heads 1.0
Heads Flip Heads 0.5

Tails 0.5
Tails Do Nothing Tails 1.0
Tails Flip Heads 0.5

Tails 0.5

The do nothing action is an example of a deterministic action: an action that always has the

same result. The flip coin action is an example of a stochastic action because it can have more

than one outcome, each with a probability of occurring.

The agent could equivalently model its perception of the environment using table entries for

the transitions 1,t t tp a p+® . If the environment is fully observable, then the state transition

diagram and tabular world model are identical for both state models and perceptual models.

2.3.1 Factored State Models

The states of the environment can be described by a number of features. The model presented

above has only two states, and the only feature of those states is the coin side. Further features

could be added to the model to describe, for example, the current wind speed. Alternatively

each state can be given a separate label. Table 2-2 shows these two equivalent representations.

Table 2-2: Coin Side and Wind Speed are features in a factored state model. The state of the

world can be described by the states of each of the features that describe it, or by a label

defining the combined states.

Coin Side Wind Speed Labelled States
Heads Strong COIN_HEADS_WIND_STRONG
Heads Weak COIN_HEADS_WIND_WEAK
Tails Strong COIN_TAILS_WIND_STRONG
Tails Weak COIN_TAILS_WIND_WEAK

Factored state models are useful for agent planning systems for the following reasons

(adapted from Sanner [79]):

· A world model can be described compactly using a factored state transition model.

· The agent’s goals may be dependent upon only a small part of the world model. An

incomplete model may describe the part of the environment influencing the agent’s

goal well, despite being a poor model of the complete environment.

· Structure in the model can be used to find structure in the utility function.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

47

· The factored model can be learned more efficiently from data.

If, for example, the agent’s goal is for the coin to be showing heads, then the wind speed may

be found to be irrelevant to its preferred state. Assuming the agent has an accurate description

of the affects of its actions on the world it can use a model with poorly evaluated transition

probabilities for wind speed, but which is an accurate model for the agent’s purposes.

Figure 2.4 shows how the factored state transition diagram for the coin, with the additional

wind speed element, can compactly represent this additional feature. The diagram accurately

represents the feature as being outside the agent’s control and having no effect on the coin

side state.

Figure 2.4: Factored state transition diagram of a coin flipping agent with an additional

Boolean wind speed component that changes with probability 0.1 each time step, irrespective

of the agent’s action.

Figure 2.5 shows the equivalent state transition diagram for the coin flipping agent with the

additional wind speed feature. This graph is quite complex, even with only two state features.

The complexity is, in part, caused by the need for the arrows showing state transitions to

incorporate the effects of environmental actions (transitions outside the agent’s control).

Background I: Agents, Environments & Models

48

Figure 2.5: State transition diagram for the coin flipping agent with an additional wind speed

feature. The probabilities for the “do nothing” action are shown. Flip action probabilities are

omitted.

If the agent is attempting to model the effects of its actions, it can be useful to know the limits

of each action’s influence. This can also be useful when the agent is trying to plan. The agent

can plan more effectively if its model takes into account the fact that some parts of the

environment are beyond its control.

2.3.2 Influence Diagrams

Influence diagrams give a visual representation of a factored state model which clearly shows

the dependencies between state variables. The representation is a graphical method with a

similar structure to a Bayesian network [68]. If the environment model is stationary (does not

change over time) and displays the Markov property (next state is dependent only on current

state and action), then the model can be represented by a two-tier network, with a layer of

nodes for the current state and a layer for the successor state, known as a temporal Bayesian

network [7] or two-tier-Bayesian network (2TBN) [8].

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

49

Figure 2.6: Influence Diagram representing a factored state model for a coin flipping agent.

Figure 2.6 shows an influence diagram representation of the coin flipping agent in factored

state model form. Each output node has an associated conditional probability table, which

shows the probability that each feature will take on a particular value, depending on the input.

The diagram is a useful visualisation tool because it shows explicitly the connection between

actions and state variables. There is also a reduction in storage in comparison to a non-

factored representation. In this example the first table stores eight values and the 2nd four

(totalling 12). A non-factored CPT would require 2 × 2 × 2 rows (combinations of action,

coin side, wind speed) and 2 × 2 rows (coin side and wind speed outputs) totalling 32 entries.

Notice that the CPT displays some wasted storage. The flip action has entries depending upon

the input being heads or tails. In fact this is irrelevant, and the CPT can be further simplified

by using a tree representation for the conditional probability, known as a structured CPT [7].

Figure 2.7 shows this representation.

Figure 2.7: Structured CPT representation of conditional probability tables for influence

diagrams.

Background I: Agents, Environments & Models

50

Influence diagrams are an explicit event representation of two-tier-Bayesian networks

(2TBN). Explicit event representations allow events to be represented as inputs to the

network. Figure 2.6 shows an example of an influence diagram in which the agent’s action is

the only event input, represented as a special node in the network that is under the agent’s

control. The influence diagram representation allows for multiple events to be input, which

would be represented as additional rectangular nodes. The events must be external to the

features of the state space, because the model is not required to predict the occurrence of

future events, and indeed the external input of agent control is necessary to the use of the

model.

An alternative form of representation is to build a separate 2TBN for each action. A 2TBN is

an implicit event representation and, therefore, does not contain input event nodes. Implicit

event models include the influence of external events as changes to the transition probabilities

in the network. The selection of an action requires the selection of a separate 2TBN model

because there is no mechanism for actions (events) to be input. For a discussion of this

representation, see Boutilier et al [7].

In this research, the agent’s action is the only event type allowed in the model. The planning

operator representation defined in chapter 5 allows additional event inputs but, because these

are outside the agent’s control, the model could not be used unless there was a way of

predicting their occurrence. Instead, an implicit event model is preferred for all events except

the agent action, with the model including the probability that external events will change the

environment state in the transition function.

Closed vs. Open World Assumptions

The closed world assumption is defined in logic programming as the assumption that anything

that cannot be shown to be true in the world is false [74]. The opposite of this is the open

world assumption, which limits the deductions an agent can make to only those that it can

show to be true or false (negation as failure is not used). If a deduction in the open world

assumption cannot be shown to be true or false, then it has unknown value.

The systems presented in this work are closed, in the sense that everything that can be

perceived in the world is present in the initial percept in one of the possible states, making

negation as failure possible. The models are also open, in the sense that negation as failure is

not used because all facts can be shown to be true or false at all times. The fixed percept size

is a restrictive condition, but is useful in that it reduces the possible percept space to be static

and non-infinite. The result is that there are no add/delete operators, only changes of

perceptual features from one state to another. The planning operator system and operator

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

51

learning methods presented in chapters 5 and 6 are, however, easily adapted to learning

add/delete operators, and this is an interesting area for future research (section 11.3).

2.3.3 Probabilistic STRIPS operators (PSOs)

Influence diagrams represent the stochastic evolution or persistence of each state variable in

response to actions. Often, however, the agent’s actions have influence on only a limited

subset of the environment features. Figure 2.6 shows an example of an influence diagram in

which one of the state variables, wind speed, is not dependent upon the agent’s action.

In a wide variety of agent environments, there are a number of state variables that do not

change unless the agent acts upon them, and it is advantageous to planning system to have a

representation that models this persistence in an economical way. Influence diagrams require

that each variable must be explicitly asserted as persisting in value if unaffected by an action.

This is an example of the well known frame problem and is discussed in section 5.5.

One solution to this persistence problem, first developed for STRIPS operators [31], is to

describe the outcomes of an action in terms of changes to the current state, leaving all

unchanged variables unaffected.

A classical (deterministic) STRIPS operator has an action, a set of preconditions (pre),

which define the situations in which the operator can be applied, and a set of effects, which

describe the change to the environment if the action is taken. The change is defined in terms

of deletions (del) and additions (add), to the current state of the world. An example operator

which turns a coin from heads to tails is shown below:

operator turn(X)

 pre: showing(X, heads)

 del: showing(X, heads)

 add: showing(X, tails)

operator turn(X)

 pre: showing(X, tails)

 del: showing(X, tails)

 add: showing(X, heads)

Probabilistic STRIPS operators (PSOs) are a probabilistic extension to STRIPS introduced by

Hanks [25][34]. The operators allow actions to be represented by multiple operators with

different effects (such that an action can have different effects depending upon the context in

which it is used) and include probabilistic effects (to model both stochastic actions and those

for which the effects are not certain).

Background I: Agents, Environments & Models

52

The conditions of operators in a PSO set are mutually exclusive (only one operator can be

applied to a particular state) and exhaustive (each state has exactly one applicable operator).

The context of each operator determines the conditions under which the (stochastic) effects of

the operator will be applied. The effects are modelled as change sets, which define a set of

additions and subtractions from the current state. Each member of the change set has an

associated probability. The probability of the members of the change sets sums to one. Figure

2.8 shows a decision tree PSO representation of a flip action. Figure 2.9 shows a PSO

representation of the doNothing action. Each action has a separate PSO. The actions can be

represented by decisions trees because they are mutually exclusive. Each branch of the tree

represents a precondition. The leaves of the tree contain additions (+) and subtractions (-)

from the state, equivalent to the deletions and additions of STRIPS operators (abbreviated

such that heads = H, tails= T, strong = S and weak = W).

Figure 2.8: PSO representation of the Flip action.

Figure 2.9: PSO representation of the doNothing action.

The example shows both the strength and the weakness of the PSO representation. The

doNothing action is compactly represented, because the action does not change the state of the

coin side, and its persistence needs no further representation by the action. The flip action,

however, has to include each of the outcomes for wind speed in its change sets, despite the

change being outside the influence of the operator. PSOs, much like STRIPS operators, can

give a compact representation of an environment which changes solely in response to an

agent’s action, but become complex if the environment changes outside the agent’s control.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

53

2.3.4 Noisy Deictic Rules (NDRs)

Noisy deictic rules (NDRs) are a relational extension of PSOs which include deictic

references and relax the frame assumption by including noise to model changes to the

environment outside the agent’s control. NDRs [67] are an extension of Probabilistic

Relational Planning Rules [66][100]. NDR’s are also known as noisy in-deterministic deictic

rules, or NID rules [53][54].

Similarly to PSOs, NDRs require that the rule conditions are mutually exclusive, such that

any given state-action pair is covered by at most one rule. An example of a set of NDRs

representing the coin flipping agent is given below:

() : (,)

0.5 : (,), (,)

0.4 :

0.1:

() : (,)

0.5 : (,), (,)

0.4 :

0.1:

:

0.9 :

flip X showing X heads

showing X tails showing X heads

no change

noise

flip X showing X tails

showing X heads showing X tails

no change

noise

default

no chan

Ø�
�

® �
�
�

Ø�
�

® �
�
�

®
0.1:

ge

noise
�
�
�

The probabilistic outcome set is similar to that used by the PSO representation. There are

three rules in the rule set above. Each rule contains:

· An action: e.g. flip(X).

· A precondition: e.g. showing(X, heads).

· An outcome set with associated probabilities (indicated by the arrow, ® , with the

sum of the outcome probabilities being 1.0).

Actions contain parameters which can be matched to the environment state to form rules. This

allows generalisation in that the rules can be applied to many objects as long as the conditions

of the rule hold. In the rule set above, the parameter X of the flip action can be matched to any

coin in the environment, with the choice between the first and second rule dependent upon

whether the coin was previously showing heads or tails. Exactly one rule can match each

possible state/action combination of the environment and the outcome set determines the

changes to the current environment state in response to the action.

Background I: Agents, Environments & Models

54

The frame assumption is relaxed, in that each rule can have a noise component, as well as a

no change component. In the above example, the change of wind speed is handled by the

noise component of the rules, simplifying the flip action. The do nothing action has no effect

and does not need to be included in this representation, because it is handled by the default

rule.

The outcome of the noise result is not modelled by NDRs. If the noise outcome occurs, then

the state transitions to one of the other possible environment states with equal probability, or a

probability defined by a simple distribution (e.g. proportional to the observed occurrences of

the state in training data). In the case of the coin flip environment, this results in a poor

model, but has been shown to be an effective method in environments for which the noise

component need only introduce a random element to the agent’s planning mechanism to

simulate that its plan may fail with a defined probability [67].

Deictic references are used to model variables that are required as context to the action, but

are not required as parameters. If, for example, we wanted to improve our model of the flip

action to include information on whether or not the agent is wearing a glove (which makes the

action less likely to succeed) while attempting the flip action, we can model this as follows:

() :{ : (), ()}

(,)

0.2 : (,), (,)

0.7 :

0.1:

flip X Y wearing Y glove Y

showing X heads

showing X tails showing X heads

no change

noise

Ø�
�® �
�
�

The parameterised action, flip(X), and context, showing(X, heads), remain unchanged, but an

extra line of deictic reference, {Y: wearing(Y),glove(Y)}, allows the action definition to be

applied with greater contextual information. In general, the term deictic reference follows the

terminology of Agre and Chapman [2] in adding the ability to refer to objects on which an

action is being performed. They can be used, for example, to refer to an object which is under

the one that is referred to in the parameter list of the action; or the object currently in-front of

the agent.

The restriction that only a single rule can be applied in a given situation is useful in planning

terms, but, as the difficulty with the wind-speed environment-variable shows, is restrictive in

terms of the ability to model a wide range of situations compactly. Although it is possible to

model the environment accurately by adding extra conditions to the rules to include new

operators for each wind-speed, this would require a number of rules exponential to the

variables which change outside the agent’s control.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

55

Chapter 5 defines a rule syntax which solves the issue of state features which change outside

the agent’s control by allowing the application of rules in parallel, and through the addition of

an environment operator.

2.4 Summary

This chapter has presented the background for the planning operator based environment

modelling system that will be presented in chapter 5. An initial definition of an agent and its

environment was followed by the introduction of an environment model based on embodied

agents. The agent was defined as a decision making entity, separate from an environment, but

able to influence it. The agent’s only method of control is to select actions (behaviours) in the

agent body, which are then carried out in the environment update cycle.

With the agent’s interaction with its environment established, it was possible to define an

environment model in terms of simulated environmental response to action. If the agent’s

access to the environment state is mitigated through its perception, then the model is of the

agent’s future percepts.

Methods of representing the model were presented: a simple tabular representation with

probabilistic extension; probabilistic graphical models; and probabilistic planning operator

representations, including probabilistic STRIPS operators (PSOs) and noisy deictic rules

(NDRs).

Background I: Agents, Environments & Models

56

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

57

3. Background II: Model Learning & Planning

This chapter introduces the required background for the stochastic planning operator based

model learning algorithm used in this research, and the background in planning for stochastic

environments based on dynamic programming.

3.1 Model Learning

If it is not possible to provide the agent with an accurate world model, then the agent can be

tasked to learn this information from interaction in the environment. This can be achieved in

simple environments through observation of the probabilities of transitions between labelled

states. In more complex environments it is necessary to learn a factored state model, or a

probabilistic relational model.

The simple tabular model presented in section 2.3 can be learned by the Dyna-Q [88] method.

Each state is labelled as it is encountered, and a map is built of the following state after each

action.

After each experientially encountered transition, 1,t t ts a s+® , the model records a table entry

for st,at with the prediction that st+1 will follow. If the model is queried with a previously

encountered state-action pair, it returns the last successor state as the model prediction.

If the environment is stochastic, then there may be several following states with a probability

of reaching each one. The model can be extended to incorporate this by recording each

successor state encountered, with a count of the number of times it has been visited. The ratio

of each encountered successor provides an empirical probability for the model.

The coin flipping agent presented previously is a simple environment with two states {heads,

tails}. This form of model is relatively easy for an agent to build from empirical evidence. It

builds a list of all the states it has observed and the actions it took in each state. It then records

the state it observes subsequently.

The number of times the next state occurred for each state-action pair, divided by the total

number of occurrences of the state action pair gives the empirical probability. Table 2-1 gives

an example of an agent’s representation of a world model built in this way:

Background II: Model Learning & Planning

58

Table 3-1: Building a tabular world model by labelling states using empirical evidence

State Action Next State Obs. Empirical Prob:
Heads Do Nothing Heads 2104 2104/2104 = 1.0
Heads Flip Heads 1024 1024/(1024+976) =.512

Tails 976 976/(1024+976) = .488
Tails Do Nothing Tails 1978 1978/1978 = 1.0
Tails Flip Heads 995 995/(995+1002) = .498

Tails 1002 1002/(995+1002) =.502

The agent can equivalently model its perception of the environment by recording table entries

for the transitions 1,t t tp a p+® .

If the environment is complex this method becomes impractical because the number of states

that a world can be in is exponential to the number of factors involved. For example: adding

the two-state variable wind speed to the model, increases the total number of states from 2

(heads or tails) to 4 (2 × 2). If a further variable is added, weight of coin, with states heavy,

medium and light then the number of states increases from 4 to 4 × 3 = 12.

The situation is compounded by the addition of continuous variables (variables with infinite,

rather than discrete values). For example, weight of coin may be represented in kg. It can have

an infinite number of states and the total number of states is therefore infinite (4 × � = �).

3.1.1 Learning Factored State Models

In order to model the environment using features, it is necessary to create a model of the

features which are dependent upon each other. An agent, attempting to build a world model in

complex environments, must be able to determine which features are important and which to

disregard. For example, the agent can take a number of flip coin actions, and observe the

following information before and after each action:

· agent action (flip coin or do nothing),

· coin side,

· wind speed,

· wind direction,

· coin weight.

Humans are adept at making rules such as:

· If the action is do nothing, the final coin will be heads if it was heads previously and

tails if it was tails previously.

· If the action is flip coin, half the time the result will be heads and the other half the

result will be tails.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

59

Features such as coin weight and wind speed are discounted from our rules because we

assume that they do not have a significant effect. For an effect to be significant it must have

an observable impact on the outcome.

The process of building a factored state mode from empirical data requires the identification

of conditions relevant to the probabilities of the outcomes. The task for the learning process is

to find the minimal set of conditions which accurately capture the outcome probabilities for

each operator. Finding an operator set with minimal conditions is important because:

(i) All relevant data to the probability of an individual outcome can be included in the

rule.

(ii) Associating utilities with the rules requires that rules group together related areas of

the state-action space.

Several methods exist for learning factored state models. Influence diagrams are an example

of a Bayesian network, and can therefore be learned using methods for learning Bayesian

network structure. This thesis focuses on a planning operator based representation, and

Bayesian network learning is therefore beyond the scope of this research. The interested

reader is referred to the Bayesian network learning algorithm developed by Friedman and

Goldszmidt [32], which outputs a network from data and uses decision trees to represent

conditional probability tables.

 A noisy deictic rule (NDR) learning mechanism [67] has been developed which uses an

adaptation of inductive logic programming [62] at its core. This method is not able to model

parallel rules with multiple variables changing outside the agents control and is, therefore not

directly considered background to this research. A summary of the method is provided in

section 3.1.5.

Section 3.1.2 outlines the Multi-Stream Dependency Detection (MSDD) algorithm: a

probabilistic STRIPS operator (PSO) learning method that has been developed using a

combination of structured search and statistical significance.

Section 3.1.4 outlines the Apriori algorithm: a method for extracting probabilistic association

rules from large databases. This is an active area of research in data mining, with the Apriori

algorithm forming the basis of several methods.

A combination of the MSDD and Apriori methods form the core of the Apriori Stochastic

Dependency Detection (ASDD) algorithm, defined in chapter 6.

Background II: Model Learning & Planning

60

3.1.2 Learning PSOs with the MSDD Algorithm

The Multi-Stream Dependency Detection algorithm (MSDD) is an algorithm developed by

Oates and Cohen that has previously been employed to learn probabilistic STRIPS operators

[65]. The algorithm requires that the percept is of a fixed size and that the possible values of

each percept element and action are known in advance. MSDD is a batch algorithm and uses

the history of perceptual data observed by the agent to form probabilistic STRIPS operators.

Each item in the history contains the initial percept, action taken and successor percept.

The algorithm starts with a single operator matching all conditions (the most general operator

possible) and performs a search from general to specific over the possible dependencies.

The function, f, evaluates the best node to expand next. A typical measure would be to find

the node with the highest occurrence in the history, by counting the co-occurrence of the

node’s preconditions in the initial percept and effects in the successor percept. This requires a

complete pass over the data set of perceptual data, D.

The coin flip agent environment has actions, A, and percepts, P, defined as:

CS

WS

R

A = {flip, doNothing}

P = {CoinSide, WindSpeed, Reward}

P = {heads, tails}

P = {strong, weak}

P = {pos, neg}

As an example of a PDI produced by the agent in this environment, the 67th element of the

percept history, D, could be:

66

66

67

P = {tails, weak, neg}

A = {flip}

P = {heads, strong, pos}

A rule in MSDD is essentially a PSO of the form <action, conditions><*, effects>

probability>.

Each rule must contain all elements of the percept, but can contain a special wildcard element

(*), which matches anything. Actions are included as one of the condition elements, with this

element forced to be a wildcard in the effects. One of the rules for the doNothing action would

be represented in MSDD as:

Conditions = <doNothing, *, weak, *>

Effects = <*, *, strong, *>

Probability = 0.1

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

61

The above rule can be written as:

 <doNothing, *, weak, *><*, *, strong, *> Pr: 0.1

PSOs do not change any variable which is not mentioned in the effects. The rule above does

not, therefore, change the condition weak for wind speed with probability 0.9 (the remaining

probability).

1. expanded = 0

2. nodes = ROOT-NODE()

3. while NOT-EMPTY(nodes) and expanded < maxnodes d o

 a. remove from nodes the node n maxi mising f(D,n)

 b. EXPAND(n), adding its child

MSDD (D, f, maxnodes)

ren to nodes

 c. increment expanded by the number of

 children generated in (b)

1. for i from m down to 1 do

 a. if n.preconditions[i] '*' then

 return children

 b. for t p

¹

Î

EXPAND (n)

ossible values of n.preconditions[i] do

 i. child = COPY-NODE(n)

 ii. child.preconditions[i] = t

 iii. push child onto children

2. repeat (1) for the effects of n

3. return children

Algorithm 3-1: Multi-Stream Dependency Detection (MSDD). D = set of perpetual data

items, f = an evaluation function, maxnodes = the maximum nodes that can be explored.

The algorithm does not specify which children should be generated before others, but does

ensure that each dependency is explored only once. The final node list is output in general-to-

specific order as a natural consequence of the algorithm.

The experiments comparing MSDD to the ASDD algorithm (chapter 7) make three additions

to the above algorithm.

The first is in EXPAND (3.b) in which a check is made that the generated child matches at

least one observation in the percept history, D, before adding it to children. This stage is

equivalent to the “REMOVE_PRUNABLE” stage in the original MSDD algorithm [64].

Background II: Model Learning & Planning

62

For example, MSDD can generate the rule:

 <doNothing, tails, *, pos><*, tails, *, *> Pr: n/k

In the coin flip environment, the agent cannot receive a positive reward when the coin is

showing tails. A check against the data set will reveal that the generated rule has no matches

and can be eliminated from the node list, along with its children (which will never be

generated).

The second change is to preclude the generation of children of rules which have a probability

of 1.0. In other words, rules with an output that is already predicted with certainty by the

input. In this case, no more accurate prediction can be made and there is no need to generate

further children.

The third change is that the effect part of the rule is allowed to have only one effect element.

This change has been made to match rules generated by the ASDD algorithm, in exhibiting

conditional independence. Combining individual effects can generate complete successor

states. If this single outcome restriction was not included, a large number of rules can be

generated by standard MSDD. The disadvantage of this additional restriction is that illegal

states can be created when multiple rules are applied in parallel, such as one containing <*,

tails, *, pos>. These rules are eliminated using constraints (section 5.4.5).

The filter process of MSDD removes specific rules with effects which are covered by more

general rules.

3.1.3 Filter

The filter function (Oates and Cohen [65]) is an extension to the MSDD algorithm. It removes

rules that are subsumed and covered by more general ones:

· Subsumed: a rule, r1, is subsumed by a rule, r2, if the PDIs matched by r1 are subset or

equal to the PDIs matched by r2. In other words, r1 is a more specific version of r2.

· Covered: a rule, r1, is covered by a rule, r2, if r1 is subsumed by r2 and there is no

statistically significant difference between the rules.

If a rule is covered by another rule, then the increased specificity of the conditions does not

have a significant bearing on the rules outcome. The statistical test for non-independence is

achieved by using the G statistic (Wickens [97]). See appendix section A.2 for a definition.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

63

For example, take the rule:

 <doNothing, tails, strong, pos><*, tails , *, *> Pr: 1.0

The above rule is a more specific version of:

 <doNothing, tails, *, pos><*, tails, *, *> Pr: 1.0

The second rule subsumes the first. If the extra condition has no significant effect on the

probability of the rule then it is covered by the more general rule (and therefore unnecessary).

In this example the additional condition strong has no significant effect.

More general operators are preferred because: they are more likely to apply to rules outside

the original data set; a reduced number of rules can cover the same information; and the

empirical probabilities of the leaned rules are more accurate (containing more samples).

The filter algorithm in this research adds an additional step to remove rule element sets that

have no head. The ASDD algorithm (chapter 6) can generate rules without an outcome

because it is searching for sets of rule elements that occur together, irrespective of whether an

outcome is present. These partial rule element sets are of no further use after the generation

stage.

 //sort R in non-increasing order of generality
 sortByGenerality(R);
 S = {};
 while (R != {})
 s = pop(R);
 push (S, s);
 for all (r R){
 if (head(r)={}) //remov

Î

filter (R)

e if no outcome
 remove r from R;
 else if (subsumes(s, r) and gSt atistic(s, r) < GLOBAL_G)
 remove r from R;
 }
 return S;

Algorithm 3-2: filter(R). R= complete set of candidate rule element sets.

· R: a set of rule element sets.

· subsumes(R1, R2): returns true if rule R1 is a generalisation of R2.

· gStatistic(R1, R2): returns the G statistic to determine whether the conditional

probability of the outcome of R1 given its conditions is significantly different from the

probability of the outcome of R2 given its conditions. The outcome is the same for

both rules because they pass the subsumes test. This is, therefore, a test that the

probability o|R1.x and the probability of o| R2.x are significantly different.

Background II: Model Learning & Planning

64

The constant GLOBAL_G is used as a threshold, which the G statistic must exceed before d1

and d2 are considered different. A value for GLOBAL_G of 3.84 tests for statistical

significance at the 5% level, while a value of 2.706 tests for significance at 10% (used for

smaller data sets).

See appendix section A.2 for explanation, pseudo-code, significance levels and explanation of

the G-statistic. For a discussion of the issues relating to use of statistical significance in

association rule mining, see Webb [96].

3.1.4 The Apriori Algorithm for Association Rule Mining

The Apriori algorithm addresses the problem of discovering association rules between items

in a large database of sales transactions. An individual record in a database of this type

generally consists of a transaction date and the items bought in the transaction (referred to as

basket data). An example of an association rule is that 98% of customers purchasing tyres and

car accessories also purchase a car service [1]. This can be written as a rule of the form:

 { , } { }tyres car accessories car service	

Association rules find interesting relations between variables in the database. Two key forms

of interesting relation are support and confidence.

Support is defined as the proportion of records in the database that contain the set of items in

the rule. If 147 of the 7500 transactions in the database contain all three items (tyres,

accessories and car service), then the rule has a support value of 1.96% (147/7500).

Confidence is defined as the probability that the conclusion of the rule follows the conditions.

If there are 150 occurrences of transactions containing both tyres and accessories, then the

probability of a car service being purchased at the same time is 147/150 = 98%.

The key feature of the Apriori algorithm for association rule mining is that it is able to

generate and eliminate candidates of increasing complexity using less complex rules as a

basis without the need to query the entire database for each new rule. It achieves this using the

concept of downward-closure.

Downward-closure is the observation that for a frequent item-set, all of the subsets of the

item-set must also be frequent. For an infrequent item-set, all of its supersets must also be

infrequent. The Apriori algorithm exploits this property to avoid multiple passes over the

transaction data when generating new rules. First, new item-sets of size k elements are

generated by combining item-sets of size k-1 for which all but one element are equal. Next the

k-1 size item-sets are searched to check that all subsets of each new size k item-set are

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

65

present. If any k-1 size subset of a size k item-set is not present, then the item-set cannot have

minimum support. Figure 3.1 shows this as a lattice of frequent item-sets.

Figure 3.1: A lattice showing frequent item-sets with associated occurrences in a transaction

database. The occurrence count of combined item-sets in the lower levels of the lattice cannot

be higher than the minimum occurrences of a parent item-set.

Apriori and its descendants have been shown to scale up to large databases [41] and several

adaptations have been developed for incrementally updating the learned rules. Typically these

adaptations maintain a set of fringe rules for which additional data may provide evidence for

inclusion to the set of significant rules [14]. For a survey of recent adaptations, see [4].

These features are highly desirable for model learning, with the need to process a potentially

large database of perceptual data, and to incrementally improve the model as the agent

receives new data.

The algorithm is the basis of Apriori Stochastic Dependency Detection (ASDD) and is

explained in chapter 6.

3.1.5 Learning Noisy Deictic Rules (NDRs)

Pausla et al use an inductive logic programming (ILP) method to learn the noisy-deictic rules

(NDRs) described in section 2.3.4 [67].

The algorithm uses three levels of search:

· Learn Rules: the outermost level, searches through the space of rule sets.

· Induce Outcomes: the middle level, constructs the outcome sets, given a context and

an action.

· Learn Parameters: learns the probability of an outcome set.

Background II: Model Learning & Planning

66

Learn rules uses a greedy search in the space of proper rules. A rule set is defined as proper if

every example in the data set has exactly one rule which matches it. Each item in the data set

consists of a state and action followed by a successor state. Rules of this form can describe

the data set because every effect that is possible given a context and an action is described in a

single rule.

The search uses a heuristic scoring mechanism to rate the rule sets as they are generated by

penalising rule sets with more complexity (conditions and effects) than are necessary, and

scoring the set highly if it is able to reproduce the data (i.e. if the probability of a next state

given a previous state in the data matches the probability generated by the rules).

The search is initialised by creating the most specific rule set: defined as a rule whose

conditions are the state and action (s, a) for every pair in the data. This is a proper rule set as

there is exactly one rule matching every state action pair from the data.

The output of the initial stage of the algorithm is, in effect, a tabular model of the form

described in section 2.3. Each rule contains a value for every variable in the state in its

conditions, and is followed by every possible successor state. A single rule for the coin flip

example would be:

() :{}

(,)

0.5 : (,)

0.5 : (,)

flip penny

showing penny heads

showing penny tails

showing penny heads
�

® �
�

The showing(penny, heads) condition is not relevant and will be removed by generalisation

operators (below).

Learn rules proceeds by finding and applying an operator that will increase the score of the

rule set (decrease the complexity while maintaining reproduction of the data) [54]. Four types

of operators are used, based on operations used for rule search in inductive logic

programming (ILP) [55].

The two generalisation operators are:

(i) Remove a condition from the rule.

(ii) Replace a constant with a variable.

The two specialisation operators are:

(i) Add a condition to the rule.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

67

(ii) Replace a variable with a constant.

Once a new rule context has been created, a rule outcome is generated by finding the set of

atoms which changed from the context to the outcomes (st-1 to st) for each item from the data

set matching the context. The set of outcome sets forms the basis of a proper outcome set for

the rule.

This ILP based method can be used to create any possible rule set. However, as pointed out

by Pasula et al [67], it suffers from the drawback that it is only guaranteed to create proper

rule sets for the data in the training examples. Secondly, the “induce outcomes” method and

heuristic rule scoring system are slow, each requiring a full pass over the data set for every

new rule. The generated rules also have to include every possible outcome for a given rule,

with the result that rules require an exponential number of outcome sets to the number of

outcome atoms which have independent probability. In other words, the method is not able to

learn parallel rules with independent outcomes (which can be learned using the ASDD

algorithm presented in chapter 6).

3.2 Planning

Planning in artificial intelligence is the process by which an agent creates a plan that will take

it from its current state to a goal state. In classical planning problems, the agent has an

accurate deterministic model of an environment which it can use prior to execution to find a

set of steps that will achieve a solution. The strategy can be formed using a search through the

available actions and resulting states after execution of each action using a brute-force

method, such as a depth first or breadth first search. The search space for a planning problem

is, however, exponential to the number of variables in the state-space in the worst case,

necessitating the use of search optimisation methods such as heuristic search (e.g. the A*

algorithm [35]).

In stochastic environments, it is not possible to make a single plan and follow the steps to

completion because actions can lead to non-deterministic successor states. If the random

occurrences are caused by occasional interruptions in an otherwise deterministic environment,

classical planning methods can be employed, with re-planning stages when an unexpected

state is reached. Planning in inherently stochastic environments requires the formation of a

policy. A policy is a universal plan which prescribes an action which should be taken in any

state that the agent can reach. Rather than attempting to reach a single goal, a policy

maximises the future rewards that an agent will receive in an environment.

Background II: Model Learning & Planning

68

If an environment model is known, policy formation can be achieved by using methods such

as dynamic programming (referred to as decision theoretic planning [7] when used in the

context of planning problems), or, more recently, Monte Carlo tree search [19]. If a model is

not known, a policy can be formed by model-free methods such as temporal-difference

learning [89], which achieve the same goal of attaching values to states, or state-action pairs.

These techniques are collectively known as reinforcement learning methods because they aim

to reinforce the selection of actions which lead to rewards [87]. The techniques can also be

used when a model is known, and are often more efficient because they require less

processing to update a state-value in a single iteration [73]).

3.2.1 Reward and Value

The problem facing a decision-making agent is to select the action which maximises its

expected future rewards at each stage on the basis of a history of observations. In an

environment displaying the Markov property, the next state is a function of the current state,

so a history of size one contains equivalent information to any history of states for the

decision maker.

A Markov Decision Process (MDP) is one which assigns value to taking each action in each

state. In the MDP framework a value function estimates how beneficial it is for an agent to be

in a given state (equivalent to the quality of taking the best available action in that state). The

benefit of being in a state is defined in terms of future expected rewards.

· A reward function, :R S R® , associates a reward, r, with being in a state, s.

· A cost function, :C S A R´ ® , associates a cost with performing action, a, in state, s.

In order to evaluate a course of action, it is necessary to define how many stages it will take to

execute. If the course of action has an infinite number of stages it is known as an infinite-

horizon problem or a continuing task. If the number of stages is discrete, it is known as a

finite-horizon problem or an episodic task.

An example of an episodic task would be a chess game, in which there is a winner or a draw

at the end of each episode. An example of a continuous task would be an investment agent

tasked with maximising profit with no time limit. The agent’s task is to continually pick an

action which will maximise its expected future profit at each time step.

The value of a history (h) of observations of length T is defined for a finite-horizon problem

as the sum of rewards gathered R(st), at each stage, t, and costs incurred for each action at

each stage C(st, at) over the history. There is no action taken in the final, terminating, state,

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

69

but a reward is gathered, so the equation contains a final addition of reward in state sT, with

no associated cost.

 (3.1)

The value of an infinite-horizon problem may be unbounded. A common solution to this is to

employ a discount factor (�), where � < 1.0, which ensures that rewards (and costs) at later

stages are less than those at earlier stages. The expected value function for a discounted

reward problem is defined as follows:

 (3.2)

3.2.2 Solution Methods for Markov Decision Processes

The standard solution method for finding an optimal policy for a Markov Decision Process is

value iteration (see below). Modern methods use value iteration as a basis, with approximate

or efficient adaptations. For a discussion of the state of the art in current solution methods, see

Powell [73].

Value Iteration

An optimal policy can be generated by repeatedly calculating the value of a state, based on

the best action that can be taken in that state. This method is called value iteration [5][6] and

works by feeding back rewards when they are received in particular states to refine the values

of the state leading to the rewards. An optimal policy is one that picks the action with the

maximum value from the current state calculated by summing the probabilities of going from

state, s, to the set of possible states that the action can reach, multiplied by the rewards for

each of these state (s’).

The value iteration algorithm works by making a series of approximations to the true value of

the optimal policy by repeated application of equation (3.3). Value iteration can only be used

if a full model (as opposed to sampling model) of the environment exists because it requires

the probabilities of all successor states to be known. The update equation for value iteration is

given by the Bellman equation [87]:

1 ' '
'

'

'

() max [(')]

probability of moving from state to given execution of action

reward received when action is taken in state and leads to state

a a
k ss ss ka

s S

a
ss

a
ss

V s P R V s

P s s' a

R a s s'

g+
Î

= +

=

=

�
 (3.3)

1

0

() { () (,)} ()
T

t t t T

t

V h R s C s a R s
-

=

= - +�

0

() (() (,))t t t t

t

V h R s C s ag
¥

=

= -�

Background II: Model Learning & Planning

70

An alternative form can be used if rewards are dependent on taking an action in a state, rather

than the action leading to a next state.

1 '
'

'

() max(('))

probability of moving from state to given action

reward received when action is taken in state

a a
k s ss ka

s S

a
ss

a
s

V s R P V s

P s s' a

R a s

g+
Î

= +

=

=

�
 (3.4)

The value of state s on pass k +1 of value iteration is calculated by taking the maximum

valued action. The value of the action is equal to the sum for all the action’s following states,

s’ (where s’Î S), of the probability of the action leading from state s to s’ (shown as '
a

ssP),

multiplied by the discounted value of state s’ on pass k (shown as Vk(s’)), plus the reward for

taking action a in state s (a
sR). The discount factor, � , must be less that 1.0 and is generally a

number close to 1.0 (e.g. 0.95).

In order to generate a value map, the agent starts with a state generated at random and adds

this to the value map. A single entry in the value map is stored as: {State, Value}. There is one

entry for each state that the system can reach. If the agent has a complete value map, a policy

can be generated by simply choosing the action with the highest value for that state.

Once the value map has been generated, a policy is equivalent to finding the maximum valued

action in a given state.

3.2.3 Reinforcement Learning

If a model of the environment is not known in advance, in terms of either the state transition

or the reward function, then reinforcement learning techniques can be used to acquire a state-

action-value map from direct interaction with the environment. The standard reinforcement

learning techniques are based around Q-learning (see below). For an introduction to

reinforcement learning see Sutton and Barto [87].

Q-Learning

Q-Learning was introduced by Watkins [94][95]. The value of a state-action pair is

calculated, rather than the value of the state itself. There is an efficiency benefit, in policy

calculation and policy use for an agent, in that it is not necessary to calculate all the following

states for every possible action in a current state in order to evaluate which action should be

taken next. The agent need only search the available actions in the table for the given state

and pick the maximum valued state-action pair.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

71

The update function for Q-learning is as follows:

 1 '
'

(,) (,) [max (', ') (,)]a
k k ss k k

a A
Q s a Q s a R Q s a Q s aa g+

Î
= + + - (3.5)

The equation contains a discount factor (�) (defined previously in the Bellman equation), and

a step size, � . This is an example of an update rule, where gradually improving estimates are

made on a value function. The � parameter is a step size indicating how quickly the new

estimate should change the old one. In Q-learning, the � parameter is known as the learning

rate. If a step size of 1 is used, then the update is equivalent to the deterministic environment

form of the Bellman equation (3.3). The equation step size must be in the range: 0 1a£ £ 0.

The update rule is only necessary if a model of the environment is not known. In practice,

however, computing all possible successor states with associated probabilities can be

prohibitive in terms of processing requirements, and it is often only feasible to compute

sample updates.

If the agent continually follows an optimal policy (picks the best action at each stage) with

some error introduced in order to allow it to explore, the Q-learning algorithm will converge

on an optimal policy with a probability close to 1.0 [87].

3.2.4 Learning Rate

The learning rate, � , for an update rule such as Q-learning does not have to be fixed. Often it

is advantageous to use a high learning rate initially and then reduce the learning rate in the

later stages, when the value estimates become stable. The initial Q-values will be a

predetermined number (either zero or an arbitrary estimate of average value). Any update is

likely to be an improvement on this initialised value, with the consequence that it is

advantageous to use a learning rate close to 1.0 for the first update. Later estimates need to

converge gradually, and require a low learning rate.

McClain’s formula [58] was used for the learning rate in experiments in chapters 8 and 10.

This is a deterministic formula which begins with a learning rate of 1.0, allowing maximum

information to be extracted from the first iteration, and gradually decreases to a set minimum.

The minimum has been set at 0.1 to keep the variance between iterations at a reasonably high

level, while allowing convergence.

McClain’s formula is given by:

 1

11
n

n
n

aa
a a

-

-

=
+ -

 (3.6)

Background II: Model Learning & Planning

72

a is a parameter specifying the minimum step size (in this case 0.1) which the function will

tend towards .With a = 0.1, the step size is roughly 0.2 after two iterations and will be close

to a after ten iterations.

3.3 Summary

This chapter introduced model learning and planning techniques. The simplest model learning

technique is a tabular method, which keep a record of every state encountered, action taken in

the state and the frequency of each successor state reached. Given a state and an action the

frequency of successor states can be read from the table to give a model of possible successor

states.

Techniques of learning factored state models focussed on planning operator learning

techniques, such as MSDD and an ILP method for learning noisy deictic rules (NDRs). The

Apriori algorithm was also introduced, which will form the basis of the ASDD operator

learning algorithm defined in chapter 6.

The concept of AI planning was then discussed, in the classical sense of forming a strategy

for taking an agent from a current state to a goal state in a deterministic environment, and then

in the decision theoretic planning sense of forming a universal plan, or policy, which provides

an agent with an action to take in any reachable state in an environment.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

73

4. Environment Modelling Agent Framework

This chapter presents the environment agent modelling and planning framework used in this

research. The framework is built on the embodied agent environment model (section 2.1.4).

The agent’s task is to build a perceptual model of its environment and then plan using this

model. Initially the agent has knowledge of the actions it can perform, but not the effects, and

has a perceive function that maps the sensory input it receives to a percept (performing basic

pre-processing). The agent’s task is to discover which elements of the percept are

(stochastically) affected by its actions, the conditions under which these effects will occur,

and an associated probability. The agent can use this model to develop a plan (or policy) to

achieve its goals using reinforcement learning or dynamic programming techniques.

This section first introduces Dyna-Q [88], which acts as a starting point for the modelling

framework, then defines the batch processed modelling, policy learning, and action

framework used in this research.

The framework was previously presented by the author in outline form in “SMART

(Stochastic Model Acquisition with ReinforcemenT) Learning Agents: A Preliminary Report”

[17].

4.1 Integrated Planning, Acting and Learning

Figure 4.1 shows how the Dyna-Q framework defines the relationship between planning,

acting and learning for an on-line learning process (adapted from [87]). This process uses

experience from the environment to create a world model, and integrates real experience from

the environment with simulated experience produced by the model as training data for a

reinforcement learning algorithm.

Figure 4.1: Integrated planning, acting and learning.

�����

����	���
��

����
����

�����
�� ���
��

�����������
��

�
����
�������

Environment Modelling Agent Framework

74

A planning agent can use experience to improve the accuracy of its world model and,

simultaneously, to directly improve a value function via reinforcement learning. Simulated

experience from the world model can be used in conjunction with new experience as it arrives

to provide input to the reinforcement learning algorithm.

Algorithm 4-1 gives the Dyna-Q algorithm. The algorithm stores a tabular model, matching

previously seen states and actions to successor states. If the environment is deterministic,

each state-action pair will match to exactly one successor state. The algorithm can include a

stochastic tabular model by recording successor states and frequencies and, when the model is

queried, retrieving a sample successor state (see section 2.3).

The model can produce a biased Q-value map, because early experience and choices of action

are repeated more often than later experience by continual execution of the model-based steps

with each new experience gathered. The value of n determines the number of times the model

is used to update Q for each additional input of real world experience. A high value for n can

speed up convergence in environments with a limited state-space, but will bias Q-values

towards the area of the environment explored initially in large state-spaces. A further issue is

that the random model sample step will often be inefficient, updating areas of the Q-value

map that contain no useful information because no reward state has yet been encountered in a

trajectory from the initial or successor states. One solution to this is to use the prioritised

sweeping technique, which updates only the parts of the model which can lead to a state that

has previously changed value [60], although this has been shown to perform poorly in

environments containing easily reachable sub-optimal solutions [39].

The e-greedy(s,Q) step provides exploration, by ensuring that the agent does not always take

the current estimate of best action. A greedy action is one which takes the action with the

highest Q-value for the current state, while an e-greedy action will, with a defined probability,

e, take a random action. Initially the Q-value estimates will be inaccurate and it is important

to ensure exploration occurs in the early stages (high probability of a random action), but that

exploitation occurs when the estimates become stable (low probability of a random action).

The e value can be fixed at a low probability (e.g. 0.1) to ensure this balance, or can be

gradually reduced as the Q values stabilise. For a discussion of fixed and variable values for e

see [87] and [73].

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

75

a'

 while (true)

 s current state

 a e-greedy(s,Q)

 execute action a, observe followin g state s' and reward r

 Q(s,a) Q(s,a)+ � [r+ � max Q(s',a')-Q(s,a)]

 model(s,a) s',r //up

¬

¬

¬

¬

Dyna- Q

a'

date model

 repeat n times:

 s random previously observed state

 a random action previously taken in s

 s',r model(s,a)

 Q(s,a) Q(s,a)+ � [r+ � max Q(s',a')-Q(s,a)]

¬

¬

¬

¬

Algorithm 4-1: The Dyna-Q algorithm for deterministic environments (adapted from [87]).

model(s,a) denotes the contents of the model. The steps before the model(s,a) step implement

standard tabular Q-learning. The remaining steps implement model based learning.

4.2 Batch Processed Environment Modelling and Planning

Figure 4.2 shows how the framework used in this research adapts Dyna-Q to perform a batch

process for environment model learning. The modelling and planning processes are separated,

while taking action in the real world involves extraction of the best action for the given

percept from the policy (universal plan). The separation of modelling and learning steps is

necessary because the algorithm used to build the planning-operator-based world model is a

batch process (see section 6). Extensions to the algorithm to include in-line operator learning

and refinement are discussed in section 11.3. In-line operator learning would allow a standard

Dyna-Q architecture to be employed. An advantage of separation of environment modelling

and reinforcement learning steps is that the model can be re-used if the reward function is

changed (see section 4.3).

Environment Modelling Agent Framework

76

Figure 4.2: BatchModelQ. The process separates model learning and policy formation

(planning) stages. The policy can be used to select actions in response to percepts received

from the environment.

4.2.1 Stage 1: Model Environment

Initially, the agent takes random actions in the environment for a fixed period and receives

percepts in response. The environment is assumed to be a discrete time environment and a

percept is received in response to each action. The agent actions can include a “do nothing”

action for a time step, which is treated in the same way as any other action and a percept is

received in response.

A list of perceptual data items (PDIs) is stored, comprising the initial percept, action and

successor percept (stored as the next initial percept to avoid repetition). A second list stores

the rewards received at each time step. The PDI and reward list are next passed to a batch

modelling process, such as the tabular model system defined in section 3.1, or the planning

operator learning algorithm defined later in chapter 6.

The output of this stage is an environment model which the agent can use to simulate percepts

it will receive in response to an initial percept and action.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

77

initialise: model, M,

 perceptual data items, PDIs

 reward record, Rr

 p initial percept

 a generate random action

 add(PDIs,p,a);

rep

¬

¬

batchModelQ- ModelEnvironment()

 eat n times {

 execute action, a, observe resulta nt percept & reward: p', r

 add(Rr, r);

 add(PDIs,p,a);

 a generate random action;

 }

 learnModel(M, PDIs, Rr);

 return M;

¬

Algorithm 4-2: batchModelQ-ModelEnvironment. The algorithm repeatedly takes random

actions in an environment to build up a database of perceptual data items (PDIs). PDIs are

used to learn a model via a batch learning algorithm.

Note that the model is initially empty and the model is learned in a single batch learning

process. A simple, model agnostic, method of providing background knowledge to the system

would be to provide an initial PDI and reward set, which can then be built upon using real-

world experience. A similar method could also be used to provide a model agnostic method of

on-line learning by generating a sample set of PDIs and rewards to feed into the next model

from previous models. On-line methods of updating the planning-operator-based model used

in this research are discussed in section 11.3.3.

4.2.2 Stage 2: Form Policy

The second stage of the BatchModelQ process enables the agent to generate a policy using the

acquired model to provide simulated experience.

A standard tabular reinforcement learning algorithm can use the model to simulate experience

and learn a table of state-action values. In this case, values can be associated with each state-

action pair in the model.

Alternatively, the RVRL algorithm can be employed to associate approximate state-values

with a rule-based model (chapter 9). Values are stored in the model using the function

store(M,p,a,v) and retrieved using retrieve(M,p,a), where M is the model, p is the percep, a is

Environment Modelling Agent Framework

78

the action, and v is the updated state-action value (or alternatively state value using a similar

function with the a parameter omitted).

Form Sample Policy

Algorithm 4-3 shows how estimates of state-action value can be iteratively improved by using

simulated successor percepts and rewards in response to an input percept and action. The use

of sample updates and a standard reinforcement learning algorithm requires that an e-greedy

action selection mechanism be used in order for the agent to explore. Each update uses a Q-

Learning update function (section 3.2.3), which includes, � , an update speed parameter,

because the algorithm is continuously improving estimates of the Q-values.

k

 repeat n times {

 p',r sampleModel(p,a);

 Qval = retrieve(M,p,a);

 Qval = Qval+ � [r+ � Q (p',a')-Qval];

 store(M,p,a,Qval);

 p p';

 if (ra

¬

¬

batchModelQ-formSamplePolicy(M, p, a)

ndom < e-value)

 a random action;

 else //retrieve best Qval action f or p

 a greedyAction(M,p);

 }

¬

¬

Algorithm 4-3: batchModelQ-formSamplePolicy. M = the environment model, p = an initial

percept, a = an initial action. The algorithm uses reinforcement learning to update values in

the model from sample successor percepts and rewards.

Form Distribution Policy

Algorithm 4-4 shows how a policy can be formed by using a distribution model to generate a

set of simulated successor percepts and rewards with associated probability in response to

input percepts and actions. The use of a distribution model update function is similar to the

Bellman update introduced in section 3.2 but updates state-action pairs, rather than state

values. There is no need to use an update speed, � , because full updates are used (rather than

e-greedy action based sample updates) resulting in the utilities being distributed according to

the probabilities provided by the model. A value of between 0.9 and 0.95 is typically used for

� (discount for future rewards) in systems of this type. The algorithm is similar to value

iteration [87], but evaluates random percept-action pairs (or equivalently state-action pairs for

fully-observable environments), rather than evaluating states in order. The algorithm also

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

79

attaches values to percept-action pairs rather than percepts (analogous to using the post-

decision state variable in approximate dynamic programming [73]).

1 n

1 1 1 n n n

i i i
a'

i=p' to p'

 repeat n times {

 {p',r ,pr ,...,p' ,r ,pr } distributionMod el(p,a);

 newValue = pr[r + � max retrieve(M,p' ,a ')];

 store(M,p,a,newVal

¬

�

batchModelQ-formDistributionPolicy(M, p, a)

1 n

ue);

 p random selection from {p',...,p' };

 a random action;

 }

¬

¬

Algorithm 4-4: batchModelQ-formDistributionPolicy. M = the environment model, p = an

initial percept, a = an initial action. The algorithm uses dynamic programming to update

state-action values in the model from the set of successor percepts and rewards.

Note that the performance of the algorithm could be improved by using a prioritised-

sweeping-based method to choose state action pairs whose values have previously been

updated to avoid wasteful updates of unexplored areas of the value map (as discussed in the

Dyna-Q algorithm above).

Algorithm 4-5 shows how Bellman updates can be used to form a policy using a distribution

model. The algorithm has an amended update function, associating values with states (or

equivalently percepts), rather than a state and action. The form of the algorithm is equivalent

to a standard Bellman update with the maximum action being found through the greedyAction

function (see stage 3 below). The algorithm is equivalent to using value iteration with a fixed

number of steps.

1 n

1 1 1 n n n

i i
i=p' to p'

 repeat n times {

 a greedyAction(M,p);

 {p',r ,pr ,...,p' ,r ,pr } distributionM odel(p,a);

 newValue = pr[r + � retrieve(M,p

¬

¬

�

batchModelBellman-formDistributionPolicy(M, p)

i

1 n

')];

 store(M,p,newValue);

 p random selection from {p',...,p' };

 }

¬

Algorithm 4-5: batchModelBellman-formDistributionPolicy. M = the environment model, p =

an initial percept. The algorithm uses bellman updates to update state values in the model.

Environment Modelling Agent Framework

80

4.2.3 Stage 3: Execute Policy

The third stage of the process enables the agent to use its policy to select actions in response

to percepts received from the environment. Stage 2 associated a value with each state, or

state-action pair accessible via the model. Execution of a policy means selecting the action

with the highest value from those available in response to the current percept.

Algorithm 4-6 shows how the highest value action can be extracted from the model.

 maxAction = null;

 maxActionValue = 0;

 for all a A {

 actionValue = retrieve(M, p, a);

 if (actionValue >= maxActionValue) {

 maxActionValue = actionV

Î

greedyAction(M,p)

alue;

 maxAction = a;

 }

 }

 if (maxAction == null) //no model sto red for p

 action = random action;

 return maxAction;

Algorithm 4-6: greedyAction. M = the environment model with associated values, p = an

initial percept. The algorithm returns the highest valued action available for the percept.

4.3 Discussion of Model-Based Reinforcement Learning

The main advantage of a model-based learning technique is that it often requires reduced real-

world experience to form an effective policy in comparison to standard reinforcement

learning. With standard reinforcement learning, value updates are only passed back from a

single state, or state action pair, to the preceding one. The process of learning a policy

requires repeating action sequences several times before the knowledge is acquired by the

agent.

Models can also be used in conjunction with approximate dynamic programming methods to

form compact policies. Dynamic programming in a stochastic environment requires full

backups and cannot be used in either a model free context or a sampling model context.

Distribution model techniques can only be used if such a model exists, or can be acquired

through experience.

A model of the dynamics of an environment can be re-used when the reward changes. A

predator with an effective model of the dynamics of its environment can use the model if its

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

81

reward function changes (e.g. it becomes a prey). An example of this would be the ghosts in

the arcade classic Pac Man, that begin the game as predators, but become prey when the Pac

Man eats a pill. A policy learned directly from the environment becomes useless in this

situation, while one learned from the model can be re-learned from the same model by

altering the reward function.

The separation of model learning, planning, and acting phases used in this research provides a

useful framework to simplify the modelling process for the agent, but this is not a necessary

restriction for the framework in general. An in-line process could be used to improve the

model as new experience is acquired, and reinforcement learning can be performed to

improve value estimates using the improved model.

If the acquired model is a true representation of all experience learned then it should not be

necessary to integrate real experience (as used in the Dyna-Q framework). The main

advantage of the real experience steps is that recent experience can have a greater influence

on the policy learned if the environment is not static [87]. This could also be achieved by

biasing the model learning process towards more recent experience using, for example, a

Bayesian update function for probabilities [68].

The main disadvantage of environment modelling methods over direct reinforcement learning

is that errors in the design of the model, or a bias in the sample used to make the model, can

cause incorrect simulated experience. The methods also increase the complexity of the

learning algorithm through the additional model learning process.

A disadvantage of the batch modelling method is that random actions are taken in the

modelling phase. This method of environment modelling can be problematic if parts of the

environment are only accessible through guided action. For example, the chances of winning

an adversarial game through random action can be vanishingly small (e.g. winning chess

against a grand master). This disadvantage is mitigated to some extent by modelling the

environment through planning operators (e.g. it may be possible to learn the rules of chess

through random action, even if a winning state is never achieved).

4.4 Perceptual Environment Modelling

The separation between agent and environment through an agent body (section 2.1.4) requires

that the agent body contains sensors, which are updated as part of the environment update

cycle and represent direct measurements of the environment state (including the agent body).

The agent’s perceive function converts sensor data into a percept. The perceive function can

Environment Modelling Agent Framework

82

be a one-to-one mapping from sensor feature to perceptual feature, or can include some pre-

processing to convert the percept into a more useful form for the environment modeller.

Chapter 5 demonstrates the use of the perceive function to convert the sensor data into

axioms, which form the basis of parallel stochastic planning operators. Other uses of pre-

processing through perception could include extraction of object data from raw image files.

The agent’s model of the environment is at the percept level, rather than the sensor level. This

means that it is modelling the expected percept it will receive in the following time step in

response to an action taken. The agent does not need a function to convert the percept back to

sensor data, because its environment model is at the percept level and it can make decisions

based on predictions of future percepts.

4.5 Summary

This chapter presented a batch process framework for agent environment modelling and

policy formation. The agent selects random actions in an environment and receives percepts

and rewards in response. The record of percept, action, reward is used to build a model of the

environment. A policy learning stage uses the model to simulate environment experience and

reinforcement learning or dynamic programming is employed to update value estimates stored

in the model. Finally, values stored in the model can be used to select optimal actions in

response to an input percept or state.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

83

5. Parallel Stochastic Planning Operators: P-SPOs

This chapter defines the syntax of Parallel Stochastic Planning Operators (P-SPOs) and the

associated algorithms for generating successor percepts given a current percept and action. P-

SPOs are used as an environment model in the agent framework presented in section 4.1. The

operators are designed with the aim of enabling automated acquisition from experience, but

they may alternatively be designed by hand.

The operators are a parallel extension of Noisy Deictic Rules (NDRs) [67], allowing more

than one operator to be applied in a given time step to generate a successor state. The

representation is powerful in terms of modelling an environment and the result of an agent’s

action within it, because operators can express independent as well as conditional outcomes.

An outcome is independent if its probability is not affected by the value of any other outcome

and conditional otherwise. The syntax has a structure that facilitates acquisition from data

(chapter 6) and the representation can be used to group parts of a state (or percept) space for a

state-aggregation based value map (chapter 9).

P-SPOs model a mapping from precursor to successor percepts in response to an action. Each

percept contains a number of perceptual features, which may be a direct mapping from sensor

data, or a more complex pre-processing provided by the agent perceive function. The

available actions and perceptual features of the environment can be provided as background

knowledge, or acquired through the P-SPO learning process.

During planning, each perceptual feature can take only one value in each simulated future

percept. Probabilistic outcomes are modelled as a set of fully realised future possible percepts,

rather than percepts with probability distributions over perceptual features. E.g. a Boolean

perceptual feature will be either true or false in each possible future percept.

As discussed in section 2.2, sample perceptual models take the form:

 : 'samplePerceptualModel p a p´ ®

A distribution model returns a set of successor percepts with associated probabilities:

{ }1 1 2 2

1

: { , },{ , }, ... { , }

1.0

n n

n

i
i

distributionPerceptualModel p a p pr p pr ,p pr

where pr
=

´ ®

=�

This chapter first defines the syntax of P-SPOs, followed by algorithms for successor percept

generation with worked examples, and finally defines environment operators, which enable

compact operator set representation in stochastic environments.

Parallel Stochastic Planning Operators: P-SPOs

84

5.1 Introduction

Parallel Stochastic Planning Operators model changes to an environment in response to

actions through the use of outcome sets. The outcomes define the changes to perceptual

features (as opposed to adding or deleting elements).

Each Parallel Stochastic Planning Operators has:

· An action: one of the available actions selectable by the agent; the special

environment operator (used to model the action of the environment); or empty, {},

indicating that the outcomes are independent of agent or environment action.

· A context: a (possibly empty) set of conditions which determine when the operator

can be applied.

· An outcome set, with associated probability: determines the expected value of

perceptual features in the successor percept if the action is applied in the context.

Each outcome has an associated probability, with a sum of 1.0 for the complete

outcome set.

P-SPOs are parallel in that more than one operator can be applied in the same time step.

Operators can be defined with conflicting outcome sets, but may not be applied in parallel if

there is a conflict. A further restriction on parallel operator application is that at each time

step only one action can be selected by the agent.

This parallel extension provides the ability to model multiple independent outcomes with a

minimal set of operators. An outcome conflict occurs when the outcome sets of two

applicable operators refer to the same perceptual feature. If a conflict occurs then operator

precedence is applied. Operator precedence (section 5.4.4) provides a conflict resolution

technique that will, in general, favour the most specific operator applicable to the current

world state, but is generated using a heuristic over conflicting data sets (section 6.6). All

actions can be attempted in all environment states. An action which has no effect in a

particular state has an empty outcome set.

5.2 Syntax

Parallel stochastic planning operators and the percepts to which they are applied are defined

using a restricted form of standard first-order logic that does not include negation, disjunction

or existential quantification. Functions are included but are restricted to immutable

background knowledge. Negation is not included, with a preference for Boolean axioms,

which have the same expressive power but allow generalization to multi-valued variables.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

85

The syntax is a parallel adaptation of that used in Probabilistic Relational Planning Rules

[66][100] and Noisy Deictic Rules (NDRs) [67].

In the following sections an example of a block-painting robot is used. The robot is able to

observe several features of its environment that are relevant to its task. This is known as the

“slippery gripper” problem as adapted in [65]. Figure 5.1 is a representation of the

environment, which consists of:

· A block: There is exactly one block at all times. The block can be painted or

unpainted.

· A gripper: There is exactly one gripper, which can be dry or wet. The gripper can be

holding the block.

· A reward: There is a positive reward each time a painted block is delivered, a

negative reward each time an unpainted block is delivered, and no reward otherwise.

Figure 5.1: The “slippery gripper” environment. The robot’s task is to paint blocks which

arrive on a conveyer belt, and deliver the blocks once painted.

5.2.1 Percept and State Representation

The following section defines the percept representation for P-SPOs. Percept representation is

equivalent to state representation in a fully observable environment.

The percept description below (5.1) represents the painting robot’s perception of its

environment when the block, b, is not painted (painted(b, false)), the gripper, g, is wet (dry(g,

false)), the robot is holding the block (holding(b, true)) and it received no reward in the

previous time step (reward(none)). The robot has four perceptual features. The first three

(painted, dry and holding) are Boolean, while the fourth, reward, can take three values, pos,

neg and none.

 painted(b, false), dry(g, false), holding(b, true), reward(none) (5.1)

Parallel Stochastic Planning Operators: P-SPOs

86

The agent’s percept is represented by a conjunction of positive ground literals encoding the

value of all perceptual elements. Each perceptual element can take on one of a set number of

values defined by background knowledge (provided or acquired empirically). Constants map

to all observable elements in the percept, while literals, encode positively observed properties

of environment features. A percept is a concrete instantiation, giving a finite set of observed

features, a finite set of literals, and is described by a set of positive ground literals.

Negation is not included to allow a concise description of perceptual features without

recourse to negation by failure. If a state has to be fully defined using negation, each percept

would have to contain all elements that are not currently observed as well as those that are.

This is a particular issue for non-Boolean variables. If, for example, the robot’s current

reward is none, a percept definition (without negation by failure) would have to state that the

robot’s current reward is not pos and not neg.

In the current example the percept could be defined with an implicit gripper and block

because there is only one gripper and one block. The operators are presented with defined

gripper and block because this representation allows the flexibility to add additional blocks.

5.2.2 Background Knowledge

Background knowledge for an environment defines:

· The possible values of the perceptual elements.

· A set of conflicts, which are used to restrict the simulated successor percepts to

contain a valid set of perceptual features.

The function conflicted(P) takes a percept, P, and returns true if the percept is in a conflicted

state.

Figure 5.2 gives an example of the background knowledge for the “slippery gripper”

environment.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

87

{ , , }

() { , }

()

()

()

()

reward(X) X pos neg none

boolean X X true false

painted(X,Y) block(X), boolean Y

dry(X,Y) gripper(X),boolean Y

holding(X,Y) block(X), boolean Y

conflicted P painted(X, true) P, painted(X,false) P

¬ Î

¬ Î

¬

¬

¬

¬ Î Î

()

()

()

conflicted P dry(X,true) P, dry(X, false) P

conflicted P holding(X,true) P, holding(X, false) P

conflicted P reward(X) P, reward(Z) P, X Z

¬ Î Î

¬ Î Î

¬ Î Î ¹

Figure 5.2: Background knowledge for the “slippery gripper” environment.

Background knowledge is represented as set of logic rules defining properties of the

observable features of the environment. A percept is said to be valid if there are no conflicts.

Conflicts define the possible values of each perceptual feature.

5.2.3 Parallel Stochastic Planning Operator Representation

P-SPOs model both the effects of agent actions on an agent’s expected next percept and

external changes caused by the environment. If the agent has direct access to the environment

state (a fully observable environment) then the P-SPOs model is equivalent to a state model.

A P-SPO set is a set of operators.

· Each pspo Î P-SPOs is a five-tuple, <PA, PC, PO, PPr, PD>.

· PA: the operator action is a positive literal, with a predicate representing the action,

and terms representing constants in the percept. The action may be empty (shown as

{}).

· PC: the operator context is a conjunction of positive literals, or empty.

· PO: a set of outcomes {PO1, …, POn} where each outcome is a set of positive literals

that define the possible values of percept elements in the successor percept.

· PPr: a set of probabilities {PPr1, .., PPrn} associated with PO, giving the probability that

each of the outcomes, PO, will occur. Variables in the outcome set must be present in

the action parameters or context of the operator in order for resolution to be possible

(and for the operator to be valid).

· PD: a set of P-SPOs that this rule defers to in situations for which they are in conflict.

This set can be inferred empirically when the operators are learned from data (see

section 6.6)

Parallel Stochastic Planning Operators: P-SPOs

88

Variables are denoted with capital letters. Constants, functions and literals are denoted by

characters or strings with an initial lower case letter.

The subset of the P-SPO set for the paint action in the slippery gripper domain is shown

below:

{ }(,) : (,) 1.0 : (,)
0.1: (,)

(,) : (,), (,)
0.9 : (,)

0.4 : (,)
(,) : (,)

0.6 : (,)

paint X Y holding Y true painted Y true
painted Y true

paint X Y painted Y false holding Y false
painted Y false

dry X true
paint X Y dry X true

dry X false

®
� �

® � �
� �

� �
® � �

� �

Each operator has:

· An action: e.g. paint(X, Y).

· A context: e.g. holding(Y, true).

· A set of outcomes with associated probabilities: e.g. {0.1: painted(Y, true)

0.9:painted(Y, false)}

Figure 5.3 gives the full P-SPO set for the “slippery gripper” domain. The P-SPOs describe an

environment in which the robot’s actions are:

· Paint: paints blocks. It results in a painted block if the robot is holding the block in its

gripper 100% of the time. If the robot is not holding the block, the block has a 10%

chance of becoming painted. The gripper will become wet 40% of the time.

· Dryer: dries the gripper. It results in a wet gripper becoming dry 90% of the time.

· Pickup: picks up blocks. It results in the block being held if the gripper is dry. The

block will be held if it was not held and the gripper was wet 60% of the time.

· New: used to deliver a block and receive a new one. It results in a positive reward if

the block was painted and a negative one if it was not. A new block arrives which is

not painted or held in the gripper.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

89

{ }(,) : (,) 1.0 : (,) (1)

(,), 0.1: (,)
(,) : (2)

(,) 0.9 : (,)

0.4 : (,)
(,) : (,)

0.6 : (,)

paint X Y holding Y true painted Y true

painted Y false painted Y true
paint X Y

holding Y false painted Y false

dry X true
paint X Y dry X true

dry X false

®

� �
® � �

� �

�
®

{ }

(3)

0.9 : (,)
() : (,) (4)

0.1: (,)

(,),
(,) : 1.0 : (,) (5)

(, _)

(,), 0.6 : (,)
(,) :

(,) 0.4 :

dry X true
dryer X dry X false

dry X false

dry X true
pickup X Y holding Y true

holding Y

dry X false holding Y true
pickup X Y

holding Y false holdin

�
� �
� �

� �
® � �

� �

®

®

{ }
{ }

(6)
(,)

() : (,) 1.0 : () (7)

() : (,) 1.0 : () (8)

() : (, _) {1.0 : (,)} (9)

() : (, _) {1.0 : (,)} (10)

g Y false

new Y painted Y false reward neg

new Y painted Y true reward pos

new Y painted Y holding Y false

new Y painted Y painted Y false

environ

� �
� �
� �

®

®

®

®

{ }: {} 1.0 : () (11)ment reward none®

Figure 5.3: The P-SPO set for the “slippery gripper” environment.

The last two P-SPOs referring to the new action contain the painted(Y,_) condition. This

ensures that the Y variable is only matched to blocks. The “_” indicates a “don’t care”

condition to allow the operator to be matched, irrespective of whether the block is painted.

The painted(Y,_) could be replaced by a block(Y) condition, but this would require additional

background knowledge to define blocks. Using the method above ensures that all conditions

can be learned from the data present in a percept. These rules could have, equivalently,

included the holding(Y,_) condition. Rule (5) shows an example of this for the pickup action.

The P-SPOs also contain an example of an environment operator (an operator that defines the

evolution of a percept element if no action is applicable). An environment operator for the

“slippery gripper” domain is:

 { }: {} 1.0: ()environment reward none®

A full explanation of environment operators is given in section 5.5. This environment

operator provides a similar mechanism to the frame assumption in that models perceptual

features that are not affected by actions. The environment operator above tells us that the

reward will change to none (or remain as none) if no other action has affected the perceptual

element. This is a more powerful mechanism than the frame assumption, which would keep

the value of each element the same (e.g. reward(pos) would remain as reward(pos) until an

action changed it). Environment operators can also be used to contain important state-value

Parallel Stochastic Planning Operators: P-SPOs

90

aggregation information for the Rule Value Reinforcement Learning (RVRL) system (chapter

9).

5.2.4 Dependent Outcomes

Figure 5.3 gave an example of the operators required to describe an environment in which all

outcomes exhibit conditional independence. The addition to the representation needed to

include dependencies between outcomes is defined below.

Dependencies between outcomes are modelled by P-SPOs as operators with multiple

perceptual features in each outcome. If a perceptual feature is present in one outcome it must

be present in all outcomes for that operator.

An example of this would be to alter our environment such that the gripper always becomes

wet if we use the paint action and the block becomes painted. This can be by achieved by

altering the operator set as follows:

{ }
{ }

(,) : (,) 1.0 : (,) (1)

(,) : (,), (, _) 1.0 : (,) (1a)

(,), .1: (,)
(,) : (2)

(,) .9 : (,)

paint X Y holding Y true painted Y true

paint X Y holding Y true dry X dry X false

painted Y false painted Y true
paint X Y

holding Y false painted Y false

pai

®

®

� �
® � �

� �
.1: (,), (,)

(,),
(,) : .36 : (,), (,) (2a)

(,), (,)
.54 : (,), (,)

(,),
(,) :

(

painted Y true dry X false
painted Y false

nt X Y painted Y false dry X true
holding Y false dry X true

painted Y false dry X false

painted Y true
paint X Y

holding

� �
� �® � �
� �
� �
.4 : (,)

(3a)
,), (,) .6 : (,)

dry X false

Y false dry X true dry X true
� �

® � �
� �

Figure 5.4: Update to operators in the “slippery gripper” domain with additional

dependencies between outcomes (the gripper always becomes wet if the block is painted).

In the operator set above:

· P-SPO (1a) has been added to indicate that the gripper becomes wet, dry(X,

false), as a definite result of the paint action if the robot is holding the block. This

is not dependent on whether the gripper was dry previously and there is,

therefore, no need to add a dry(X, true) condition. The variable X in the outcome

does, however, need to be matched with an element of the conditions (or action)

which is achieved using the dry(X, _) condition (“_” indicates “don’t care” and is

matched irrespective of whether it is wet or dry).

· P-SPO (2a) has been added with the condition dry(X, true) and the outcome set

includes dry(X, false) for outcome sets in which the block is painted. dry(X, true)

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

91

is present if the block is not painted with probability 0.4 as with the previous

rules. The probability of the combined outcome is, therefore, 0.36 (after

multiplication by the 0.9 chance of the block remaining unpainted). Similarly the

probability for the combined outcome painted(Y, false), dry(X, false) is 0.54.

· P-SPO (3a) is required to cover the situation when the gripper is dry and the

block is painted. This can occur after a block is pained, and the dry action is used.

The original rule (3) does not cover this because it will also match the situation

when the paint action is used and the block becomes painted, altering the

probability that the gripper will become wet.

5.2.5 Single Action Restriction

P-SPOs are restricted such that only one action can be taken in a single time step. This has the

consequence that variables in the action definition can only be resolved once for a single

action. If, for example we were working in a world with two blocks, b1 and b2, the variables

in the pickup action can only be matched once. The operators are:

{ }(,) : (,), (, _) 1.0 : (,) (5)

0.6 : (,)
(,) : (,), (,) (6)

0.4 : (,)

pickup X Y dry X true holding Y holding Y true
holding Y true

pickup X Y dry X false holding Y false
holding Y false

®
� �

® � �
� �

An example state for a world with two blocks is:

painted(b1, true), holding(b1, false), painted(b2, false), holding(b2, false),

dry(g, false), reward(none)

The single action restriction allows the following action variable resolution to be valid:

0.6 : (1,)

(, 1) : (,), (1,)
0.4 : (1,)

holding b true
pickup g b dry g false holding b false

holding b false
� �

® � �
� �

A second resolution (below) is also valid, but they could not both be resolved in the same

time step. These resolutions therefore represent two separate actions.

0.6 : (2,)

(, 2) : (,), (2,)
0.4 : (2,)

holding b true
pickup g b dry g false holding b false

holding b false
� �

® � �
� �

Note that the operator set defined allows more than one block to be held in a gripper with no

change to the probabilities. This is a slightly unnatural situation, but will suffice to keep the

explanation simple. A more natural definition would include an extra condition in the holding

percept to define which gripper was holding the block, and would have additional conditions

Parallel Stochastic Planning Operators: P-SPOs

92

on the pickup action operators to alter the probability of a successful pickup if the robot is

already holding a block in the gripper.

5.2.6 Action Parameters

Actions are selected explicitly by the agent, which has the consequence that all variables are

instantiated before attempting to match conditions in the environment. This can be

demonstrated by examining the new operators. The new action can be performed on block b1

or block b2, but not both simultaneously.

Selecting the new action for b1 gives:

{ }(1) : (1,) 1.0 : ()

(1) : (1) {1.0 : (1,)}

(1) : (1) {1.0 : (1,)}

new b painted b true reward pos

new b block b holding b false

new b block b painted b false

®

®

®

Selecting the new action for b2 gives:

{ }(2) : (2,) 1.0 : ()

(2) : (2) {1.0 : (2,)}

(2) : (2) {1.0 : (2,)}

new b painted b false reward neg

new b block b holding b false

new b block b painted b false

®

®

®

The parameter Y could not be set to b1 and b2 simultaneously. This is not overly restrictive in

terms of syntax, because an additional new action could be defined that allows the delivery of

two blocks in a single time step. Care must be taken when creating (or learning) operator

definitions that the same variable is used to denote the same element between action

operators.

5.3 Successor Percept Generation

In order to build a complete successor percept, the value of each perceptual feature must be

determined using the P-SPOs. The frame assumption determines that each perceptual feature

of the successor percept will be unchanged for the current percept unless it is contained in the

outcome set of a matching P-SPO (including the environment operator). The starting point for

our successor percept is, therefore, a copy of the current percept. In situations where more

than one rule can be applied to the same successor percept element, a conflict resolution must

be applied via precedence between operators (section 5.4.4). P-SPOs, including environment

operators, have defined precedence between them and all operators have precedence over the

frame rule.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

93

If the frame assumption was not employed, and there was no recourse to environment

operators, P-SPOs would have to explicitly define the values of successor variables

unaffected by an action for each action using rules such as:

 { }(,) : (,) 1.0: (,) .pickup X Y dry X true dry X true®

5.3.1 Generate a Sample Successor Percept

generateSamplePercept takes as input, a percept p, an action a, and the set of P-SPOs

and returns a sample successor percept. This function can be used to generate an output for

the samplePerceptualModel function of the framework presented in chapter 4.

 ResolvedMatchingPSPOs = matchingAndRe solved(PSPOs,P,A);

 filterByPrecedence(ResolvedMatchingPSPOs);

 do {

 OutputPercept = P;

 for (Pm ResolvedMatchingÎ

generateSamplePercept(P, A, PSPOs)

PSPOs)

 applyBySample(OutputPercept, Pm);

 } while (invalid(OutputPercept));

 return OutputPercept;

Algorithm 5-1: generateSamplePercept. P= initial percept, A = action, PSPOs = P-SPO set.

A sample percept is returned.

The algorithm first finds all resolved operators matching the percept, P, and action, A. E.g. if

the percept contained dry(g,true) and the action is pickup(g,b) then the relevant matching

operator is:

 ()(,) : , , (, _) {1.0 : (,)}pickup X Y dry X true holding Y holding Y true®

The resolved operator can be found by resolving for the variables X and Y giving:

 () (){ }(,) : , , (,) 1.0 : ,pickup g b dry g true holding b false holding b true®

Again, the “_” can be matched to either holding(b,false) or holding(b,true).

Next, conflicting P-SPOs are removed using filterByPrecedence (section 5.3.3). This

function checks for conflicts between outcome sets of every resolved matching P-SPO. If a

conflict is found, the operator with precedence is retained, while the deferring operator is

removed. The output of this step is a set of resolved matching operators with no conflicts in

the outcome sets.

Parallel Stochastic Planning Operators: P-SPOs

94

The successor percept is generated by applying each operator in turn to a copy of the input

percept. The copy of the input percept retains all input perceptual features unless they are

changed by an operator, thus implementing the frame assumption. A sample successor is

generated by taking a random sample output from the output set, PO, of each P-SPO.

A final check is made to ensure that the generated output percept is not in an invalid state

(section 5.4.5). If this is the case, new percepts are generated until a valid successor is created.

5.3.2 Generate all Successor Percepts and Probabilities

The generatePerceptsAndProbs function generates a full set of possible successor percepts

with associated probabilities. A set of successor states is built by applying each outcome for

each operator in turn to the initial percept. If an operator has more than one outcome, the

outcome set will generate multiple intermediate percepts, which form the input for the next

operator.

Again, a final check is made to ensure that the generated output percepts are not in an invalid

state using background knowledge (section 5.4.5). If percepts are found to be in an invalid

state, these are removed from the output set and the probabilities of the remaining successor

percepts are normalised. The function can be used to generate output for the

distributionPerceptualModel function of the agent framework presented in chapter 4.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

95

 Current = {};

 ResolvedMatchingPSPOs = matchingAndResolved(PSPO s, P,A);

 filterByPrecedence(PSPOs);

 push(Current, {P, 1.0}); //push percept and prob ability

generatePerceptsAndProbs(P, A, PSPOs)

 for (PSPO PSPOs) {

 Next = {}; //empty stack for the i ntermediate precepts

 while ({PerceptItt, Prob} = pop(Current) {

 //add a list of percept and probability pa irs

 //afte

Î

Or application of each output from PSPO.P

 push(Next, applyAllOutcomes(Per ceptItt, PSPO, Prob));

 }

 Current = Next;

 }

 //finally, check for invalid states

 for ({Percept, Prob} C Î urrent) {

 if (invalid(Percept))

 remove(Percept, Current);

 }

 normaliseProbabilities(Current);

 return Current;

Algorithm 5-2: generatePerceptsAndProbs. P = percept, A = action, PSPOs = planning

operator set.

Sections 5.4.1, 5.4.2 and 5.4.3 give examples of the application of these algorithms to the

“slippery gripper” domain.

5.3.3 Filter by Precedence

Filtering of rules by precedence is an important algorithm for understanding the operation of

the system. The algorithm removes all operators that defer to other operators in the P-SPO set

and would not, therefore, have any effect on the output percept.

Parallel Stochastic Planning Operators: P-SPOs

96

 orderByOutcomes(PSPOs);

 for (Pspo1 PSPOs){

 //start from next PSPO to avoid repetition

 for (Pspo2 = next(Pspo1); Pspo2 PSPOs) {

 //check for conflicts i

Î

Î

filterByPrecedence(PSPOs)

O O

D

n outcomes

 if (conflicted(Pspo1.P Pspo2.P)) {

 //has precedence if not a member of "de fers to" set

 if (Pspo2 Pspo1.P) {

 //check that precedence

È

Ï

D

C C

has been set

 //if precedence not set t hen remove 2 if 1 more general

 if ((Pspo1 Pspo2.P)

 ||(Pspo1.P <= Pspo2.P)){

 //remove conflictin

Î

g operator

 Pspo2 = prev(Pspo2);

 remove (PSPOs, next(Pspo2));

 }

 } else {

 //iff operators have equal number of

 //ou

D

C C

O

tcomes then 2nd can supersede

 //(with check that precedence set)

 if ((Pspo1 Pspo2.P)

 ||(Pspo1.P <= Pspo2.P)){

 if (|Pspo1.P| == |Pspo

Î

O2.P|) {

 //remove and continue with nex t

 Pspo1 = next(Pspo1);

 Pspo2 = next(Pspo1);

 remove (PSPOs, prev(Pspo1));

 }

 }

 }

 } else {

 //if already checked conflicting output s at this output

 //count then no further conf licts can occur at this level.

 Skip to the next output count (pseudoco de omitted)

 }

 }

 }

Algorithm 5-3: filerByPrecedence. PSPOs = planning operator set.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

97

The algorithm first orders the operators by outcomes. Recall from section 5.3.1 that all P-

SPOs passed to filerByPrecedence have resolved variables (there are no free variables

because all have been matched to the input percept).

Order by outcomes orders the operators: first by the number of perceptual features in the

outcome set of the operator, and next by the unique identifiers of the ordered perceptual

features within the outcome set. The result is an ordered list with operators with the greatest

number of outcomes at the start of the list, and fewest operators at the end of the list. Outcome

sets with greater numbers of outcomes always take precedence over those with fewer,

enabling the filtering from greatest to least outcomes. Outcome sets with the same number of

outcomes can be skipped if they do not cover the same outcomes.

The function conflicted is defined in the background knowledge and is used to determine

whether the outcome sets of two operators are in conflict. If the union of the two outcome sets

passed to conflicts(P) returns true, then the operators are in conflict.

If the operators are in conflict then one of them must be removed. In general, the rule with

precedence will remove the rule that defers to it. In some cases, however, precedence will not

have been set due to insufficient training data for P-SPO learning. If this is the case then it is

still necessary to remove one of the conflicting operators. The most general operator (the

operator with the highest support count or alternatively the least conditions) is kept because

this is the one created from the greatest quantity of training data.

5.4 Successor Percept Generation Examples

The following sections show how successor percepts are generated from the rules and the

current percept in particular situations.

5.4.1 Generation of a Successor Percept with one Applicable Operator

The simplest example of successor percept generation occurs when a single operator is

applicable and has a single outcome. In this instance:

· The successor percept is initialised to be a copy of the current percept (implementing

the frame rule because all successor percepts are unchanged).

· The percept element that conflicts with the outcome of the rule is replaced with the

outcome percept element.

Example 1: Single Outcome

The pickup(g,b) action is applied to an initial percept:

Parallel Stochastic Planning Operators: P-SPOs

98

 (,), (,), (,), ()painted b false dry g true holding b false rewardnone

Examining the “slippery griper” operators we see that only one, rule (5) matches the input

percept and action. The matched version of this operator is:

 { }(,) : (,), (,) 1.0: (,)pickup g b dry g true holding b false holding b true®

The outcome of this operator is holding(b,true). If we apply the outcome to the initial percept

the conflicting percept element is holding(b,false) (defined by the conflict function in the

background knowledge). This element is removed and replaced by holding(b,true). In this

instance there is only one outcome, so the sample output will be equivalent to generating all

outputs. The changed output is in bold:

 (,), (,), , ()painted b false dry g true reward noneholding(b,true)

An operator with more than one outcome can generate multiple possible successor percepts. A

sample percept will produce a single successor percept, according to the probability of each

outcome, while a full percept set will include all possible successor percepts and their

associated probabilities.

Example 2: Multiple Outcomes

The dryer(g) action is applied to an initial percept given by:

 (,), (,), (,), ()painted b false dry g false holding b true rewardnone

Examining the “slippery gripper” operators we see that only one, operator (4), matches the

action dryer and conditions containing dry(g, false).

0.9 : (,)

() : (,)
0.1: (,)

dry X true
dryer X dry X false

dry X false
� �

® � �
� �

The variable X in the parameter is instantiated to g by the action, giving the outcomes dry(g,

true) (probability 0.9) and dry(g, false) (probability 0.1). The successor percepts are

generated by copying the initial percept and modifying the features in the outcomes that

would cause a conflicted state.

Features are defined by the conflicted function in the background knowledge, which in this

case, indicates that the dry(g, false) literal in the initial state should be replaced. The successor

percepts and probabilities are shown below. The dry(g, false) literal can be re-asserted

without conflict.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

99

painted(b, false), dry(g, false), holding(b, true),reward(none) (pr : 0.1)

painted(b, false), dry(g, true), holding(b, true),reward(none) (pr : 0.9)

Note: the first percept is unchanged from the initial percept. It would, therefore, be possible to

re-write the P-SPO for the dryer action as:

0.9 : (,)

() : (,)
0.1:

dry X true
dryer X dry X false

no change
� �

® � �
� �

P-SPOs do not employ this form in the current research because:

(i) There is no restriction that perceptual features in the outcome set must be contained in

the conditions of the operator. In the general case, this means that the operator cannot

define a perceptual feature as unchanged because the initial value is not known.

Examples of operators from the “slippery gripper” domain which do not contain the

output feature in the conditions operators are: (7), (8), (9), (10) and (11) (see Figure

5.3).

(ii) Outcome sets must contain all values for any perceptual feature defined in any part of

the outcome set for the filterByPrecedence algorithm to be well defined (discussed in

section 5.3.3).

5.4.2 Generating Successor Percepts with Multiple Non-Conflicting Operators

Multiple P-SPOs can be applied in parallel to generate successor percepts with the restriction

that only one operator can be applied to an individual perceptual feature. Conflicts are

identified via the conflicted(P) function. A successor percept is generated by copying the

initial percept and applying all operators matching the action and conditions.

Example

The paint(g,b) action is applied to the initial percept:

 painted(b, false), dry(g, true), holding(b, true),reward(none)

Examining the “slippery gripper” domain operators we see that P-SPOs (1) and (3) apply to

the percept and action combination.

{ }(,) : (,) 1.0 : (,) (1)

.4 : (,)
(,) : (,) (3)

.6 : (,)

paint X Y holding Y true painted Y true
dry X true

paint X Y dry X true
dry X false

®
� �

® � �
� �

Operator (1) states that application of the paint action while holding the block results in the

block being painted. Notice that we do not need the condition painted(Y, false) because the

Parallel Stochastic Planning Operators: P-SPOs

100

block will always be painted in the successor state if the paint action is used when holding a

block, irrespective of the initial painted condition.

Operator (3) states that the paint action with dry(X, true) results in dry(X, false) 60% of the

time and dry(X, true) 40% of the time. These operators are not in conflict (they refer to

different percept features). We therefore resolve the free variables to those in the current

percept and apply both rules to find the successor state.

After application of operator (1) there is a single output percept (probability 1.0):

 , (,), (,), () (: 1.0)dry g true holding b true reward none prpainted(b,true)

Application of operator (3) to the percept generated by operator (1) gives two possible

successor percepts:

(,), , (,), () (: 0.6)

(,), , (,), () (: 0.4)

painted b true holding b true reward none pr

painted b true holding b true reward none pr

dry(g, false)

dry(g,true)

A sample output will apply one of the outcomes of rule (3) according to the probability,

producing a single successor percept.

Generation of all successor percepts will produce a list of successors and associated

probabilities, calculated by multiplying the probabilities of each outcome in turn. The

outcome set for operator (1), painted(b, true) given has a probability of 1.0. The probability of

the output states is therefore equal to the probability of the outcome set of operator (3). The

probabilities are 0.6, the probability of dry(g, false) given in operator (3), and 0.4, the

probability of dry(g, true).

5.4.3 Calculating Successor Percept Probabilities with P-SPOs

The probability of two independent events occurring simultaneously is calculated by finding

the product of the probabilities of each independent event (see appendix section A.1). P-SPOs

model dependent events using combined outcomes. Outcome sets can always, therefore, be

treated as independent events to find the probabilities of successor percepts, with

dependencies modelled within the outcome set.

Examining the “slipper gripper” domain operator set, it can be seen that the paint(g,b) action

has multiple probabilistic outcomes. Take, for example, an initial percept given by:

 (,), (,), (,), ()painted b false dry g true holding b false rewardnone

Operators (2) and (3) apply:

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

101

(,), 0.1: (,)
(,) : (2)

(,) 0.9 : (,)
0.4 : (,)

(,) : (,) (3)
0.6 : (,)

painted Y false painted Y true
paint X Y

holding Y true painted Y false
dry X true

paint X Y dry X true
dry X false

� �
® � �

� �
� �

® � �
� �

When resolved, operator (2) states that using the paint(g,b) action with the percept elements

holding(b, false) and painted(b, false) results in painted(b, true) with probability 0.1 and

painted(b, false) with probability 0.9. Applying operator (2) outputs two partial successor

percepts and associated probabilities, which become the inputs for the next operator.

, dry(g,true), holding(b, false),reward(none) (pr :0.9)

, dry(g,true), holding(b, false),reward(none) (pr : 0.1)

painted(b, false)

painted(b,true)

When resolved, operator (3) states that using the paint action with dry(g, true) results in

dry(g, false) with probability 0.6, and dry(g, true) with probability 0.4. If we apply this rule to

the first percept above, the conflicting element is dry(g, true). The output percepts are

constructed by removing the dry(g, true) element and replacing it with the outcomes for rule

(3). The probability is the product of the probability of the partial percept, 0.9, and the

probabilities of the outcomes of rule (3) giving the percepts below. Notice that the

probabilities sum to give 0.9, the probability of the first of the partial percepts above.

painted(b, false), , holding(b, false),reward(none) (pr :0.54)

painted(b, false), , holding(b, false),reward(none) (pr :0.36)

dry(g, false)

dry(g,true)

Similarly, if we apply operator (3) to the second partial percept the output percepts are:

painted(b,true), , holding(b, false),reward(none) (pr : 0.06)

painted(b,true), , holding(b, false),reward(none) (pr : 0.04)

 dry(g, false)

dry(g,true)

There are no further matching operators to apply. Our possible successor percepts are

therefore the four combined operators above. The sum of all possible successor percept

probabilities is always 1.0.

5.4.4 Conflicting Operator Outcomes

Conflicting operator outcomes occur when more than one outcome refers to the same

perceptual feature, which will happen regularly in complex environments. An example based

on conflicts in operators learned from data will be used here to demonstrate the concept.

The planning operators used in this research are designed to be: (i) machine learnable; (ii)

applicable across novel environments beyond the initial training set. Operators with multiple

conditions (specific) are built from those with fewer conditions (general). The general

Parallel Stochastic Planning Operators: P-SPOs

102

operators are kept when a more specific one is created because the general operator may

apply to novel situations which were not part of the training set. This can only occur in

percepts with non-Boolean features, because an additional condition would only be learned if

it added information. The operator learning algorithm can be tasked to learn the conflicted

function (given as background knowledge in this chapter) with the result that it may be

incomplete and the model will not necessarily define all values of a perceptual feature if they

have not been encountered.

Recall the paint action’s effect on the painted perceptual element defined by operators (1) and

(2) from the “slipper gripper” domain operator set:

{ }(,) : (,) 1.0 : (,) (1)

(,), 0.1: (,)
(,) : (2)

(,) 0.9 : (,)

paint X Y holding Y true painted Y true

painted Y false painted Y true
paint X Y

holding Y false painted Y false

®

� �
® � �

� �

While learning the paint action described by the operators, the operator learning algorithm

would also derive an operator with fewer conditions, such as:

0.3: (,)

(,) : (,)
0.7 : (,)

painted Y true
paint X Y painted Y false

painted Y false
� �

® � �
� �

This operator describes the result of the paint action on an unpainted block over the available

evidence, irrespective of whether the block is held in the gripper. This operator should be kept

in the final rule set in-case we have not seen all possible values the holding perceptual feature.

For example, holding(X, Y) may have three values for Y rather than the two we have observed:

holding(X, true), holding(X, false) and holding(X, partial) (to indicate that the block is

partially held). If we only retained operators with holding(X, true), or holding(X, false) there

would be no applicable rule for this previously unseen situation.

Both the more specific and less specific versions of this operator are applicable to any state

with matching conditions, but only one may be applied to produce successor percepts because

they apply to the same perceptual feature.

The conflict resolution strategy employed is to give operators an order of supremacy over

each other. This is established empirically by giving precedence to the operator that provides

the most accurate probability distribution over outcomes for the combined conditions. This

method will tend to give supremacy to the more specific rule. See section 6.6 for a definition

of the precedence algorithm.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

103

5.4.5 Remove Invalid States

The final step in the percept generation algorithms presented in 5.3 is to remove invalid states.

These can be generated if the model of the environment is incomplete.

The learned operator set can be incomplete due to insufficient training data or restrictions on

the operator outcome size during learning (causing dependencies in the outcome sets to be

omitted). If the P-SPO set it incomplete, background knowledge can be employed to identify

generated percepts that are in an invalid state. The state generation function resolves this issue

by removing invalid percepts from the output set and normalising the remaining outcomes

such that the combined probability sums to 1.0.

An example of a constraint from the two block world is that it is not possible to be holding

block b1 and holding block b2 simultaneously. The operator set does not state this, and it may

be that an incomplete operator set, such as this, is generated from the available evidence

(although it is easy to see that this is not a deficiency of the syntax because we could add an

extra condition to pickup to indicate that the gripper must not already be holding a block).

This is distinct from the use of conflicted(P) in the background knowledge, which tells us that

individual perceptual features cannot be in a conflicted state.

The invalid function can be defined for the slipper gripper scenario such that:

 invalid(P) holding(X, true) P, holding(Y, true) P, X Y.¬ Î Î ¹

Applying the pickup action to the two block scenario gives an example of this function. If the

initial percept is given by:

painted(b1, true), holding(b1, true), painted(b2, false), holding(b2, false),

dry(g, false), reward(none)

The resolved pickup operator matching these conditions for b2 is:

0.6 : (2,)

(, 2) : (,), (2,)
0.4 : (2,)

holding b true
pickup g b dry g false holding b false

holding b false
� �

® � �
� �

This would produce the successor percepts:

,

painted(b1, true), holding(b1, true), painted(b2, false),

dry(g, false), reward(none) hol

painted(b1, true), holding(b1, true), painted(b2, false),
(pr : 0.6)

dry(g, false), reward(none),holding(b2, true),

(pr : 0.4)
ding(b2, false),

Parallel Stochastic Planning Operators: P-SPOs

104

The percept in bold is removed because it is invalid, leaving the second percept, which has

probability 0.4. Probabilities are normalised by dividing the probability of each valid percept

by the total probability of the valid percepts. In this case, there is only one valid percept,

giving 0.4/0.4 = 1.0.

5.5 Frame Assumption

The frame problem, first identified in logic-based planning by McCarthy & Hayes [57], is the

problem of expressing the dynamics of a system without having to expressly state every

aspect of the environment that is not affected by an action. The term derives from a technique

in cartoon animation in which a static image (the frame) depicting the background of a scene

is superimposed with the animated aspects of the scene.

The frame problem in logic is that specifying the conditions changed by an action does not

allow you to conclude that all other aspects of the environment are unchanged. An obvious

solution is to provide a rule for each action that states, for example, that if a pickup action is

used on a block it does not change whether the block is painted. The number of these frame

axioms is equal to the product of the number of features of the environment and the number

of actions available. The problem with this solution is that each of these must be asserted at

every time step, taking up a large amount of unnecessary processor time.

The solution proposed by Fikes & Nilsson [31] is to move the generation of future world

states outside the standard logic using “extra-logical systems”. Essentially this allows a future

world state to be a copy of the current state and anything that is changed is removed or added

by the operators. They use the term STRIPS for their operators in reference to the comic strip

animation (or cartoon) basis of the frame problem with the solution being to remove the

changed feature and add the new feature. The frame assumption used here employs the same

solution method, by copying the current percept and then replacing any changed features

using the outcomes of the operators.

The syntax of parallel stochastic planning operators allows the inclusion of operators with

outputs but with no action and no conditions. Indeed, these are always present in a rule set

learned from experience by ASDD (section 5.8) because they form the building blocks of

later rules, and can be used as a default if no rule is applicable. These operators always match

the current environment and we therefore need a method of preserving the compact modelling

power of the frame rule, while allowing the flexibility afforded by operators with empty

actions or conditions. This is achieved through relaxing the frame assumption to allow a

special environment operator type, which often defers to an action if the action affects the

same output variable. Environment operators have great expressive power and can model both

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

105

static environments (those that stay the same in the absence of agent action) and non-static

environments (those that change irrespective of agent action).

The revised frame assumption is given below. Note that environment operators do not model

the complete mechanics of the agent’s environment, but rather, model the evolution of the

agent’s perception of its environment in the absence of action, or when its action does not

affect particular environment features.

· P-SPO Frame Assumption: elements of the agent’s successor percept will remain

unchanged from the current percept if they are not present in the outcomes of any operator

matching the selected action and current percept, and they are not present in the outcome

set of any environment operator matching the current percept.

Several other solutions within the standard logic framework have been proposed. The most

relevant is the successor-state axiom solution proposed by Reiter [56][75]. This states that an

environment feature will be true after the execution of an action if and only if:

(i) the action causes the environment feature to be true; or

(ii) the environment feature was already true and the action does not cause it to become

false.

5.6 Pure Environment Actions

The syntax for P-SPOs allows the action to be empty (represented by {}). This is referred to

as a pure environment action, because it defines the effects of the environment on perceptual

features that are not part of the outcomes of any action. These are environment features that

are entirely beyond the agent’s control and can be used to model, for example, the weather or

random noise events.

An example in the “slippery gripper” domain is to add a new weather(X), environmental

feature, where X � {sunny, cloudy, raining}. The environment variable could be modelled by

the additional operators.

.3 : ()

{}: () .4 : ()

.3 : ()

.7 : ()
{}: ()

.3: ()

.5 : ()
{}: ()

.5 : ()

weather sunny

weather cloudy weather cloudy

weather raining

weather cloudy
weather raining

weather raining

weather sunny
weather sunny

weather cloudy

� �
� �

® � �
� �
� �

� �
® � �

� �

�
®

�
� �
� �

Parallel Stochastic Planning Operators: P-SPOs

106

Operators with an empty action can only be used to model situations in which there is no

agent action effect on the environment feature. If this was not the case, the pure operators

would interfere with the frame assumption.

5.7 Environment Operators

Environment operators are special case rules that are used to model environment features that

can be affected by agent actions, but for which the currently selected action has no effect. The

empty action condition cannot be used for this because it matches all actions and will contain

the probabilities associated with the action as well as the probabilities when the action is not

taken.

If, for example, we wished to model the environment action that a wet dripper may become

dry with probability .05 each time step irrespective of the action taken, it would be tempting

to model this as:

.05: (,)

{}: (,)
.95: (,)

dry X true
dry X false

dry X false
� �

® � �
� �

The empty action, however, matches all the actions in the environment, and would therefore

also match situations that change the state of the dry feature, such as the dry and paint actions.

This would give us probabilities based on the combined situations in which dry(X, false) was

present in the percept.

The environment operator can be used to overcome this. The operator tells us what happens

when the currently selected action does not affect the given feature. The syntax is:

.05: (,)

: (,)
.95: (,)

dry X true
environment dry X false

dry X false
� �

® � �
� �

This is a powerful feature of the syntax, because it allows the compact representation of

features that are not affected by domain operators, even if they are subject to change. The

frame assumption does not provide this flexibility, only allowing us to model features that

remain unchanged.

Figure 5.3 shows that the initial set of P-SPOs for the “slipper gripper” domain contain the

operator:

 { }: {} 1.0: ()environment reward none®

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

107

This operator allows us to succinctly model that no reward is given unless the new operator is

called. If we did not have recourse to environment operators, a separate rule would have to be

given for each operator to state this fact, because the environment feature does not remain

unchanged.

If, for example, the new action was selected in the previous time step and a positive reward

was received, the selection of the dry action would, in effect, change the state of the reward

feature from reward(positive) to reward(none).

When using P-SPOs learned from data, it is necessary to use the environment operator in all

situations to replace the frame assumption because the learned rule set will contain partial

operators which would produce incorrect output.

Take for example, the operator:

0.9 : (,)

() : (,)
0.1: (,)

dry X true
dryer X dry X false

dry X false
� �

® � �
� �

When learning this operator, the rule learning algorithm will develop partial rules, such as:

0.95 : (,)

() :{}
0.05 : (,)

dry X true
dryer X

dry X false
� �

® � �
� �

This rule has no conditions and its outcome probabilities are, therefore, built from a

combination of all observations of the dry outcome for the dryer action, including the

operator which is implied by the frame assumption:

 { }() : (,) 1.0: (,)dryer X dry X true dry X true®

The environment operator for this is:

 { }: (,) 1.0: (,)environment dry X true dry X true®

The environment operator can be given precedence over the partial dryer operator above, if its

outcome probabilities are a more accurate representation of the data. The frame assumption

defines what happens in the absence of an operator, and thus cannot be given precedence.

Environment operators represent a relatively compact solution in dynamic environments,

because we only need one operator for each perceptual feature, rather than one for each action

and feature combination.

Parallel Stochastic Planning Operators: P-SPOs

108

5.8 Summary

This chapter has defined the syntax of parallel stochastic planning operators and algorithms

for successor percept generation using them. The operators have advantages over other

stochastic rule representations in dynamic environments in that they can model both an

environment and the action of an agent within the environment using a minimal set of

operators. The compact representation is important if the operators are to be acquired from

data because all available evidence can be used in evaluating probabilities. The representation

is also useful in splitting the state-space the operators represent into meaningful sections for

the RVRL algorithm (presented in chapter 9).

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

109

6. Learning Parallel Stochastic Planning Operators

This chapter presents the Apriori Stochastic Dependency Detection (ASDD) algorithm and an

optimised variant (ASDDs). ASDD is an efficient algorithm for constructing parallel

stochastic planning operators (P-SPOs) from observation data using a combination of

statistical significance and association-rule mining methods. The algorithm and its variant are

novel contributions of this research. ASDD was first presented in [18]. ASDDs is presented

here for the first time.

ASDD uses a fast association rule mining method, based on the Apriori algorithm (defined by

Agrawal and Srikant [1]) to generate candidate rules, and then filters the generated rules using

statistical significance to generate a minimal rule-set.

The process of learning P-SPOs from data consists of the following five steps:

1) Find rule sets: find common occurrences of action and context leading to outcome in

a set of perceptual data gathered from experience in an environment.

2) Establish empirical probability: find the empirical probability of the outcome if the

action and context are observed.

3) Filter the generated rules to remove conditions that are not statistically significant:

(i) Filter candidate rules as they are generated, avoiding the generation of

redundant candidates.

(ii) Filter after completion of the candidate generation process to remove rules.

4) Combine rule sets to form P-SPOs: combine rule sets with the same context which

refer to the same perceptual feature(s) to form P-SPOs.

5) Establish P-SPO precedence: establish precedence between operators for conflict

resolution.

The P-SPO set is used as an environment model in the framework presented in chapter 4, and

the process of learning the operators is, therefore, a model learning process. As discussed in

section 3.1, a simple model can be learned by keeping a record of the successor states that

follow from a state and action, or, in the case of a situated agent, the successor percept

following a percept and action. The process of P-SPO learning takes this concept as a starting

point, and builds the model by finding commonly occurring sets of features within the

percepts.

Learning Parallel Stochastic Planning Operators

110

For example, an agent in the slippery gripper domain (defined in chapter 5) can build a set of

perceptual data items by taking random actions in an environment. The perceptual data items

contain:

· The percept before the action was taken.

· The action taken.

· The percept received after the action was taken.

Table 6-1 gives a subset of an agent’s perceptual data items is the slippery gripper domain.

The process of learning P-SPOs involves finding actions and context (elements of the percept)

that commonly occur with elements of the successor percept. In this case, there is a set of

commonly occurring elements (highlighted in bold text) indicating that taking the action

dryer(g), in the context that the gripper was previously wet, dry(g, false), leads to the

successor percept dry(g, true). In one instance, the successor contains, dry(g,false). This

follows from the fact that the dryer action in the slippery gripper domain is stochastic and will

sometimes fail. The algorithm must be able to cope with these stochastic outcomes.

Table 6-1: A sample of perceptual data items for the “slippery gripper” block painting agent.

Percept Action Successor Percept
… … …
dry(g, false), holding(b, true), painted(b,
false), reward(none) dry(g)

dry(g, false), holding(b, true), painted(b,
false), reward(none)

dry(g, false), holding(b, true), painted(b,
false), reward(none) paint(b) dry(g, false), holding(b, true), painted(b,

false), reward(none)
dry(g, false), holding(b, true), painted(b,
true), reward(none) dry(g)

dry(g, true), holding(b, true), painted(b,
true), reward(none)

… … …
dry(g, false), holding(b, false), painted(b,
true), reward(none) dry(g)

dry(g, true), holding(b, true), painted(b,
true), reward(none)

…
dry(g, false), holding(b, true), painted(b,
true), reward(none) dry(g)

dry(g, true), holding(b, true), painted(b,
true), reward(none)

… … …

Based on the evidence in the sample data, the rule probability of the outcome can be found

empirically by finding the number of times the outcome occurs following the context and the

action, and the number of times the outcome did not occur following the context and the

action. If all of the examples of the pattern are present in the above table, we have:

· dry(g,false) follows from observing dry(g,false) and taking action dryer(g) in 1 out

of the 4 examples, giving probability 0.25.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

111

· dry(g,true) follows from observing dry(g,false) and taking action dryer(g) in 3 out of

the 4 examples, giving probability 0.75.

Combining these partial rules, a P-SPO can be created:

0.25: (,)

() : (,)
0.75: (,)

dry g true
dryer g dry g false

dry g false
� �

® � �
� �

The following sections:

· Present the ASDD algorithm for rule set discovery.

· Present the supplementary algorithms needed to combine rule sets in P-SPOs and to

establish supremacy between P-SPOs

· Present a variant of the algorithm for fast set searching.

The slipper gripper domain will be used to demonstrate the rule learning concepts.

6.1 A Note on Learning Planning Operators from Experience

The majority of work in the planning community has centred on search optimisation, via

techniques such as constraint satisfaction [3][78]. These techniques assume that a human

designer is able to provide the required planning operators. Often, the design of these

operators is difficult because the mechanics of the agent’s environment are poorly understood,

or in the case of stochastic environments, the random elements are difficult to model.

Stochastic planning operators can, however, provide a useful level of generalisation for an

agent in a deterministic environment, in addition to modelling environments that are

inherently random.

Empirical learning of parallel stochastic planning operators is challenging because:

· An action may have uncertain outcomes inherently.

· The outcomes of an action may be masked by external interference.

· The action conditions may be masked by external elements.

The key point is that the planning operator structure must be one that can be learned through

empirical data. The P-SPOs defined are learnable because they do not rely on hidden

variables, or random variables in the conditions set (such as those found in Poole’s

independent choice logic [71]). The rule structure allows the agent to learn both the outcomes

of its actions, and the influence of the environment (which is beyond its control).

Learning Parallel Stochastic Planning Operators

112

The ability to model independent outcomes using parallel operators is useful when operators

are acquired from experience because it allows relevant evidence to influence the estimate of

the probability of the operator output.

6.2 Learning P-SPOs with ASDD

ASDD is an algorithm for learning parallel stochastic planning operators, based on the Apriori

algorithm for mining association rules [1], and the Multi-Stream Dependency Detection

(MSDD) algorithm for finding dependencies in multiple streams of data [64]. The algorithm

is one of the main contributions of this research and was presented previously in [18]. In

previous research by the author, MSDD has been applied to the task of learning probabilistic

planning operators with a similar syntax to P-SPOs [17]. Probabilistic STRIPS operators

have been learned using MSDD by Oates and Cohen [65].

6.3 Assumptions

Several simplifying assumptions are made to operator learning using the ASDD algorithm:

· Operators are acquired from batch training data: training data will be presented to

the ASDD algorithm in batch form (extensions for in-line operator acquisition are

discussed in section 11.3.3).

· Operators are learned in ground form: ASDD learns the P-SPOs from ground

example data, and outputs a set of operators in ground form (extensions to the

algorithm to enable the substitution of variables are discussed in section 11.3.4).

· Conditional independence: The outcomes of actions and environment operators to be

modelled by ASDD are conditionally independent. The current implementation of

ASDD therefore learns a single output for each operator (extensions to the algorithm

to learn non-independent outputs are discussed in section 11.3.5).

Conditional independence is a strong assumption that does not hold for some of the examples

used in this thesis. Issues created by this are resolved, to some extent, by the use of the

invalid(P) function defined in background knowledge (section 5.4.5).

6.4 ASDD: Apriori Stochastic Dependency Detection

The language used to describe ASDD reflects that used in [1]. The main algorithm is similar,

with an additional aprioriFilter step which removes potential conditions from rules if they are

shown to have no significant effect on their probability. There is also a final filter step, which

is equivalent to that used in MSDD and removes conditions at a higher level of significance to

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

113

produce a final operator set. Apriori uses support (a measure of the percentage of the data

which contains a rule), while ASDD uses support count, which is a count of the number of

occurrences of a rule (section 6.4.2).

At the highest level the tasks of the ASDD algorithm are to:

1) Efficiently generate candidate operators which may be significant to the outcome set.

2) Remove operators which are not significant to the outcome set.

Supplemental algorithms learn specific P-SPO based elements, including:

· CreateP-SPOs: The ASDD algorithm creates an individual rule for each outcome set.

P-SPOs are created by combining these individual rules (section 6.4.12).

· AddMissing: an algorithm to add missing parts of an operator’s outcome set. A P-

SPO with an outcome set with probabilities which do not sum to 1.0 indicates a rule

was missed which should have formed part of a P-SPO.

· Precedence: an algorithm for defining precedence between P-SPOs. Operator

precedence defines which rule should be applied when conflicting outcomes occur.

· Frame and Environment Operators: perceptual features in the outcome set which are

unaffected by actions must be identified by the algorithm. If the feature retains its

value in all circumstances unless affected by an action it is captured by a set of frame

rules. If a feature changes independently of actions, this is captured by environment

operators.

Association rules generated by algorithms such as Apriori have precedence based on a

confidence measure. Confidence indicates the probability of the rule’s outcome, given its

conditions. Outcome sets in P-SPOs have an outcome probability which is generated

empirically in the same way as confidence, but the rules need a further measure of the validity

of the rule. This is achieved by first filtering rules that have unnecessary complexity, using

the aprioriFilter function (section 6.4.9). Once a minimal rule set has been established, the

precedence algorithm establishes supremacy between rules in conflict situations (section 6.6).

The task of learning P-SPOs from data (in the ground case) is that of finding significant

associations between sets of perceptual features and actions at time t-1, and perceptual

features at time t.

Learning Parallel Stochastic Planning Operators

114

6.4.1 Convert Sensor Data Percept to Perceptual Feature Axioms

The agent body’s sensors are updated each time step as a function of the current state of the

environment. This sensor data is in a raw form which is not specific to the type of agent that is

interpreting it. The agent’s perceive function maps sensor data to a percept, and can be

defined in any appropriate way for the intended modelling mechanism. In this case, raw

sensor data must be converted into a set of perceptual feature axioms in order to enable P-

SPO learning. The definition of the perceive function is domain dependent (see chapter 7 for

examples) and the following section are therefore presented using the post-processed percept

in perceptual feature axiom form.

6.4.2 Perceptual Data Items (PDIs)

A percept, P, is a set of perceptual feature axioms. A perceptual data item (PDI) contains the

percept received and action taken at time t-1, and percept received at time t.

The PDI data set, D is defined as a set of perceptual data items (PDIs) for an agent where

each PDI is a triplet of the form {Pt-1, At-1, Pt}.

The PDI received at time t is defined as:

 { }t 1 1d , , t t tp a p- -= (6.1)

6.4.3 Rule Element Sets

The possible elements of P È A are collectively known as rule elements. A PDI contains the

rule element set x, if x Í pt-1 È at-1 È o, where o is an outcome rule element, and o Î pt.

The rule element set, x, has support count, sc, in the perceptual data item set D if sc of the

PDIs in D contain x.

The constant MINSUP defines the minimum support count a rule element set must display

before it is admissible as a candidate for the next iteration of the algorithm, or to the rule base.

The support count in ASDD replaces support in the Apriori algorithm. Support is defined as a

percentage of the PDIs in D containing x, rather than a count. The change to use support

count in ASDD is made to aid discovery of rare outcomes which may be statistically

significant.

Two additional features are present in size-one rule element sets:

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

115

· id: an additional integer identifier field, used to speed up comparison between

individual rule elements identified in the data set. If the identifier is stored as a string,

the id can be calculated as a hash function on the string.

· pfs: perceptual feature set. The set of “one rule element” perceptual features which

this rule element belongs to. Size-one rule element sets are grouped into perpetual

feature sets. These sets are equal in all but the last element and can be identified from

data (see section 6.4.11). For example, the rule elements dry(g, false) and dry(g, true)

are only different in the last element and therefore belong to the same perceptual

feature set.

6.4.4 Rules

A rule is a rule element set which contains an outcome.

Using syntax similar to that used in stochastic logic programming [61]:

· The head of the rule is the outcome, o.

· The body of the rule is the remaining rule elements (the conditions).

· The probability of the head occurring given that the body is observed, pr.

The probability can be calculated empirically as the number of PDIs in the data set, D,

containing the head and body, divided by the number of PDIs that contain the body. In other

words, the number of times the outcome follows the conditions of the rule.

6.4.5 Rule Set Discovery

The problem of discovering a rule set can be separated into four sub-problems:

1) Discover regularly occurring rule element sets: discover sets at level k exhibiting

support count, sc, above MINSUP. The level of a rule element set is defined as the

number of rule elements it contains (section 6.4.6).

2) Combine rule element sets: rule elements at level k are combined to form a list of

candidate sets for level k+1 using aprioriGen, which removes all candidates that

cannot have minimum support (section 6.4.8).

3) AprioriFilter: after level 3, the AprioriFilter filter function is applied to remove

candidate rules (rule element sets containing an outcome element) at level k, which

are covered by an operator at level k-3 (section 6.4.9).

Learning Parallel Stochastic Planning Operators

116

4) Filter: Finally, the filter function is applied to the remaining rules to remove rules

which are covered by a rule at any level (section 3.1.3).

Sub-problems (1) and (2) are as defined by the Apriori algorithm with a change to use support

count in place of support. Sub-problem (3) is a new addition for ASDD. Sub-problem (4) is a

new addition using a function defined in MSDD [64].

The notation used in ASDD and the associated algorithms is:

· L[k] : the set of rule element sets of size k which display minimum support. Each

member of this set has four fields:

(i) x: a set of rule elements.

(ii) sc: support count (number of times the rule elements x, matched the

database). If x does not contain an outcome, o, this will be equal to bs

(below).

(iii) bs: the support count of the body (the rule element set, x, excluding the

outcome, o), of the rule (the number of times the body of the rule matched the

database).

(iv) pSet: a set of references to other rules with the same conditions and matching

output perceptual feature(s), which will be combined to form a P-SPO.

· C[k] : the set of candidate rule element sets of size k (sets with potentially large

support count). Fields are identical to L[k] .

The empirical probability, pr, of a rule is a function returning sc divided by bs.

6.4.6 Discovering Regularly Occurring Rule Element Sets

Discovering regularly occurring rule element sets using the Apriori method involves making

multiple passes over the perceptual data set D. In the first pass (level k = 1) the support of

each rule element set of size one is counted to determine which of them occurs regularly

enough in the data to be included (i.e. has minimum support). In each subsequent pass,

regularly occurring rule element sets from the previous pass (level k-1) are used to create

candidate rule element sets.

The support for each of these candidate sets is counted in a pass over the data. Candidates that

do not have minimum support are removed and the remaining candidates are used to generate

candidates for the next level.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

117

After the third pass, rule element sets that have an outcome element (rule head) can be filtered

by rules at the k-3rd level with the same outcome, in order to evaluate the additional

conditions. If the additional conditions do not have a significant effect on the probability of

the outcome (section 6.4.9) they are discarded. This process continues until no new sets of

rule elements are found.

The AprioriGen algorithm (adapted from [1]) generates the candidate rule element sets to be

counted in a pass by combing the rule element sets with high support count in the previous

pass. Candidates with k rule elements are generated by combining rule element sets at the k-1

level. Any generated candidates at level k containing a subset at level k-1 which does not have

minimum support are then removed in the prune step, because any subset of a large set must

also be large. Each candidate removed by this step avoids the need for an expensive pass over

the data set when generating candidates.

6.4.7 The ASDD algorithm

 L[1] = extractOneRuleElementSets(D);
 for (k = 2; L[k-1] {}; k++) {
 C = aprioriGen(L[k-1]); //(step 1)
 for all (pdi D) { //(step 2)
 C = subset(C , pdi)
 for a

K

t K

¹

Î

ASDD(D)

ll (c Ct)
 c.sc ++;
 }
 L[k] = {c C | c.sc MINSUP} //(step 3)
 if (k > 3) //(step 4)
 L[k] = aprioriFilter(L[k], L[k- 3], APRIORI_G);
 }
 ruleSet = {};
 for (k =

K

Î

Î ³

1; L[k] {}; k++)
 ruleSet = ruleSet L[k];
 return filter(ruleSet, FINAL_G);

¹
È

Algorithm 6-1: ASDD. D = database of perceptual data items

The first line of the ASDD algorithm counts the occurrences of single rule elements in D to

determine one-rule element-sets that have a high support count (this step has been altered

slightly from that used in Apriori to extract perceptual feature information from the data).

Each repeat of the loop consists of the following four steps:

1) Large rule element sets L[k-1] found in the pass (k-1) are used to generate the

candidate rule element sets C[k] , using the aprioriGen function (section 6.4.8).

2) The support count of candidates in C[k] is determined by performing a database scan

using the subset function, which returns the subset of the candidates, C[k], contained

in each PDI.

Learning Parallel Stochastic Planning Operators

118

3) Rule element sets with below minimum support are removed.

4) Rules (rule element sets containing an outcome element) are filtered against rules that

subsume them at the level k-3 by the aprioriFilter function (section 6.4.9).

The loop is repeated until: (i) no further candidates are generated; (ii) a maximum level has

been reached (resulting in rules with a maximum number of conditions); or (iii) a maximum

number of rules has been generated.

Finally, rules at all levels are combined into a single list (sorted by generality) and are tested

for statistical significance by the filter function. The filter function tests for significance at a

higher significance than aprioriFilter, and tests for rules that are covered at all previous

levels.

The slowest part of the algorithm is the loop for each PDI around the subset function. Section

6.6 shows an algorithm for increasing the speed of this function which has a trade-off of

requiring additional storage.

The initial implementation of subset cycles through all candidate rule sets, and tests to see if

the rule elements are contained in the PDI (the implementation used for the standard Apriori

algorithm).

 subsetC = {};
 for all (c C)
 if (c.x PDI))
 subsetC.add(c);
 return subsetC;

Î
Í

subset(C, PDI)

Algorithm 6-2: subset. C = candidate rule element sets. PDI = perceptual data item.

6.4.8 The aprioriGen Function

The aprioriGen function generates a set of potentially large rule element sets of size k from

rule element sets of size k-1.

 Ck = join(Lk-1);
 return aprioriPrune(Ck, Lk-1);

aprioriGen(Lk-1)

Algorithm 6-3: aprioriGen. Lk-1 = candidates at level k-1

There are two steps, taken directly from the Apriori algorithm:

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

119

1) Join: L[k-1] rule element sets are combined with other L[k-1] rule element sets to

form candidate rule sets C[k] . Join uses unique ids in the rule elements to avoid

repeated candidates.

2) Apriori-Prune: generated candidates for which a rule element subset of size k-1 is not

present in L[k-1] are deleted.

ASDD adds the following steps to the join function:

1) Restrict to single outcome: outcomes are restricted to a single perceptual feature (see

assumptions, section 6.3). If both L[k-1] rules have an outcome rule element (rule

head) they are not combined.

2) Restrict to probability < 1 parents: parents with an outcome (rule head) and a rule

probability of 1 are restricted from producing children because they already identify a

definite outcome (no further improvement can be made to the rule).

3) Copy body support count: rules (rule element sets containing an outcome rule

element) will have a body that is equal to one of the rules element sets that is used to

form them. In this case, bs, the body support count is copied from the support count,

sc, of previous rule element set in order to restrict the number of database passes

required.

Learning Parallel Stochastic Planning Operators

120

 C = {};
 for all (p L) {
 //do not generate if p is a rule with prob=1
 if (head(p) {} and p.bs == p.sc)
 next p
 for all (q L where p q) {
 //do not generat

Î

¹

Î ¹

join(L)

e if q is a rule with prob=1
 if (head(q) {} and q.bs == q.sc)
 next q
 //ignore if both have an outcome
 if (head(p) {} and head(q) {})
 next q;
 //onl

¹

¹ ¹

y generate if last element id of p.x > q.x
 if (last(p.x).id > last(q.x).id){
 next q;
 }
 //only generate if all elements equal except last
 for (i = 0; i < p.x -1; i++) {
 if (p.x[i] q.x[i]) {
 next q;
 }

 //combine elements (last is different)
 newC.x = add(p.x, last(q.x));
 if (head(newC) {}){

¹

¹
 if (body(newC) == p.x)
 newC.bs = p.sc;
 else if (body(newC) == q.x)
 newC.bs = q.sc;
 }
 add(C, newC);
 }
 return C;

Algorithm 6-4: join. L = rule element sets at previous level.

Note: The function body returns all rule elements excluding outcome elements (rule head).

The aprioriPrune algorithm (as defined in [1]) removes candidates from the newly generated

set by checking whether all sub-sets of the candidates have minimum support count. If a

subset exists that does not have minimum support count, then the candidate cannot have

minimum support count.

 for all (c Ck)
 forall (k-1 size subsets s of c)
 if (s Lk-1)
 delete c from Ck;

Î

Ï

aprioriPrune(Ck, Lk-1)

Algorithm 6-5: aprioriPrune. Ck = candidates at level k. Lk-1 = rule element sets at level k.

Example of aprioriGen candidate rule element set generation

The example shows the generation of level 3 rule element sets from level 2 sets. A subset of

the level 2 rule element sets for the “slippery gripper” painting robot domain are given below.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

121

The subset shown is the rule elements are those related to the dryer action (those that will

contribute towards building the full rules). Rule element sets can be created in any order,

with the result that the outcome rule element may be positioned at any point in the set.

Outcome elements are indicated by the ® symbol, showing that this is an implication to a

rule head. Probabilities can be generated for any rules with a rule head, but these are not

relevant to the algorithm and are therefore not included until the filter step.

The level 2 rule element sets are:

(1) { (), (,)}

(2) { (), (,)}

(3) { (), (,)}

(4) { (,), (,)}

(5) { (,), (,)}

(6) { (,), (,)}

(7) { (,), (,

dryer g dry g false

dryer g dry g true

dryer g dry g false

dry g false dry g true

dry g false dry g false

dry g true dry g true

dry g true dry g f

®

®

®

®

®

®)}

(8) { (), (,)}

alse

dryer g dry g true

Figure 6.1: Subset of the level 2 rule element sets related to the dryer action in the “slippery

gripper” domain

Join: the join step creates the level 3 candidate rule element sets from the level 2 set by

combining pairs of rule element sets if they meet the conditions:

(i) The two rule element sets have a matching first element and a non-matching 2nd

element (in the general case, the algorithm will combine rules that are matching

in all but the final element).

(ii) Only one of the pairs to be combined has an outcome.

All level 2 candidates have outcomes except rule element sets (1) and (8). The application of

condition (ii) has the result that rules (1) and (8) are the only rules that can be combined with

rules (2) through (7) to create level 3 rules.

Rule element set (1) can be combined with other rule element sets with the same first element,

giving:

from (1) & (2) { (), (,), (,)}

from (1) & (3) { (), (,), (,)}

dryer g dry g false dry g true

dryer g dry g false dry g false

®

®

Rule element set 8 can be combined with other rule element sets with the same first element,

giving:

Learning Parallel Stochastic Planning Operators

122

from (1) & (8) { (), (,), (,)}

from (2) & (8) { (), (,), (,)}

from (3) & (8) { (), (,), (,)}

dryer g dry g false dry g true

dryer g dry g true dry g true

dryer g dry g true dry g false

®

®

Notice that the rule generated from (1) and (8) is only generated once. Each rule element has a

unique id (not shown), and rule element sets are only combined if the last element of the

combining rule element set has a higher id than the last element of the rule element set it is to

be combined with.

aprioriPrune: The apriorPrune step deletes candidate rule element sets for which a two rule

element subset does not exist. Examining the generated rules:

· The rule generated from (1) & (8) contains the subset {dry(g,false), dry(g,true)}

which is not present in the level 2 rules. This rule is, therefore, removed by

aprioriPrune.

In the full data set, this level 2 rule element set is not observed (there is no PDI containing

{dry(g,false),dry(g,true)} rule elements), because the gripper cannot be dry and wet

simultaneously. The aprioriPrune function is able to draw this conclusion without a further

pass through the data.

The rule generated from rules (3) and (8) is also not present in the data, but all of its subsets

are present and it cannot, therefore, be pruned by aprioriPrune. Immediately following the

aprioriGen function call in the ASDD algorithm, the support count of the generated rule

element sets is counted via a pass through the PDI data. The rule element set

{ (), (,), (,)}dryer g dry g true dry g false® will have support count zero after this data pass and

will therefore be removed by step 3 of the ASDD algorithm.

6.4.9 AprioriFilter

The aprioriFilter function test for conditional independence is similar to the filter function

defined in MSDD (see section 3.1.3). It checks candidate rules at level k (parameter Ck)

against rules at level k-3 (parameter Lk-3) to evaluate whether the three additional rule

conditions have a significant influence on the probability of the rule’s outcome. The gLevel

parameter defines the G statistic level at which rules are filtered. The G statistic is a statistical

test for non-independence (see section 6.4.10).

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

123

S = Ck;
 rulesLk-3 = {l Lk-3 | hasOutcome(l)};
 for all (s S where hasEffect(s))
 for all (lr rulesLk-3)
 if (subsumes(lr,s) and gTest(s,lr) < gLev

Î
Î

Î

aprioriFilter(Ck, Lk-3, gLevel)

el) {
 remove s from S;
 next s;
 }
 return S;

Algorithm 6-6: aprioriFilter. Ck = candidates at level k, Lk-3 = candidates at level k-3,

gLevel = g-statistic level for significance tests.

Rules filtered by the aprioriFilter function are removed in the same way as pruned rule

element sets, and therefore take no further part in rule generation.

If, for example, the rule defined by the level rule element set: { , }b a® is removed by this

method, then no further rules will be generated with head a and body b (e.g.{ , , }b c a® and

{ , , }b d a®) could not be present in the final rule set (note: the commas indicate that these are

sets of rule elements).

The removal of rule element sets in this way can cause a problem when the effect of b as a

condition for a is not immediately apparent (e.g. the XOR function in which the output is

determined by a combination of each input, with the observation of a single input appearing to

have no bearing on the output).

The problem was resolved by setting the significance parameter to 0.445 (50% significance).

The standard filter is set at 3.84 for 5% significance, while for low sample sizes 2.706 is used

(10% significance). In addition, rules are not filtered using aprioriFilter until level 4 (i.e. the

rule { , , , } b c d a® can be filtered by{ }a®), and by filtering against rules with three less

conditions (k-3). The significance levels used in this research for the standard filter process

match those used in MSDD [64]. The 50% significance level for the aprioriFilter process was

chosen to minimise the risk of eliminating useful rule conditions early in the process. Further

experimentation in this area is a subject for future work.

The aprioriFilter function alters the speed of completion of the rule generation part of the

ASDD algorithm when compared to the Apriori algorithm, because rules that are not

significant at each level are removed and, as a consequence, generate no children. The Apriori

algorithm halts when there are no further rules that can be generated above minimum support.

ASDD halts with the additional criteria that there are likely to be no further significant rules.

Learning Parallel Stochastic Planning Operators

124

6.4.10 Conditional Independence

The filter and aprioriFilter functions use the G statistic [96] to determine conditional

independence (defined in appendix section A.2). Intuitively, the method measures the

significance of additional rule conditions to the outcome probability of a rule.

The P-SPO set below shows five candidates for the dryer P-SPO when acquired empirically

from observation data:

{ }() : (,) 1.0: (,)

0.91: (,)
() : (,)

0.09: (,)

0.96: (,)
() :{}

0.04: (,)

0.92:
() : (,),

dryer g dry g true dry g true

dry g true
dryer g dry g false

dry g false

dry g true
dryer g

dry g false

d
dryer g dry g false painted(b,true)

� �� �
� �
� �� �

� �� �
� �
� �� �

®

®

®

®
(,)

0.08: (,)

0.88: (,)
() : (,),

0.12: (,)

ry g true
dry g false

dry g true
dryer g dry g false painted(b, false)

dry g false

� �� �
� �
� �� �

� �� �
� �
� �� �

®

The first two operators reflect the correct, complete, conditions for the dryer action, in that

using dryer when the gripper is already dry will cause it to remain dry, and using dryer when

the gripper is wet will cause it to become dry 90% of the time. The 0.91 probability reflects

the empirical estimate of the probability from the data (with the actual probability being 0.9).

The third rule has no conditions and gives the probability of finding the gripper dry or wet

after a dryer action, irrespective of the initial dry state of the gripper. This will be the summed

probabilities of all data matching the first two rules.

The fourth and fifth rules contain an additional painted(b, true) or painted(b, false) condition

and the associated probabilities are, again, the matches for the full rule divided by the matches

for the rule conditions.

Given the rule set above, the G statistic measure can be used to conclude that the additional

dry(X, true) and dry(X, false) conditions are significant to the outcome probabilities for the

dry(X) action, but that the painted(b,true) or painted(b, false) conditions are not significant.

Note that the discussion above is a simplification. The G statistic is a statistical test of non-

independence, computed for a 2×2 contingency table of observed occurrences (rather than

probabilities).

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

125

6.4.11 Extracting One Rule Element Sets from PDIs

PDIs are made up of sets of actions and perceptual features. Each element of the PDI is a

ground instance. Single elements are, therefore, simply the extracted features of the data set.

The task of the extractOneRuleElementSets function is to identify these elements and to

assign each a unique identifier to optimise set comparison operations. The function makes a

single pass through the database of PDIs, D, checking that each element of the PDI is present

in the current set of single rule element sets. If it is present, its support count is incremented;

otherwise, it is added (with support count 1).

 REF = {}; //single rule elements
 L1 = {}; //singe rule element sets
 id = 0;
 for all (pdi D)
 for all (i pdi) {
 if (i L1) {
 R = {r RE

Î
Î

Î
Î

extractOneRuleElementSets(D)

F r.x=i};
 R.sc++; //increment support count of R;
 } else {
 NewR.x = i; //Add a new one rule elemen t set
 NewR.id = id; //one rule ele ment sets have unique id
 NewR.sc = NewR.bs = 1; //bs and sc initialised to 1
 add (L1, NewR);
 }
 }

Algorithm 6-7: extractOneRuleElementSets. D=database of perceptual data items.

In addition, the algorithm can identify the possible values of a perceptual feature, by

examining the value of extracted single rule elements (axioms) that match in all but the last

field (not shown). The syntax definition of perceptual features identifies this as the variable

field. For example, a Boolean perceptual feature, such as dry(g, X), where X can take values

true or false. This information can, optionally, be given as background knowledge (by the

conflicted function).

6.4.12 Add Rule Complements

Rule sets required to form a full P-SPO can sometimes be incomplete because:

· The filter function can filter rules and not their complements.

· Rules with low probability outcomes can have a support count, sc, below MINSUP.

For example, for the perceptual feature painted(g,X), X can take the values true or false and

the rule generation process can generate the rule element sets:

1) { (,), (,), (,), (,)} paint g b painted b false holding b false paintedb true pr :0.1®

Learning Parallel Stochastic Planning Operators

126

2) { (,), (,), (,), (,)} paint g b painted b false holding b false paintedb false pr :0.9®

The filter process could filter rule 1 above, but leave rule 2. This would cause a problem for

the successor percept state generation algorithm (section 5.3), because the set of rules will not

generate percepts with painted (b,true) present.

The addRuleComplements function iterates through all rules in learned rule set, R, checking

that all possible values of each rules outcome are either present in R already or do not match

any observations in the data D. If a missing rule is found, it is added to R. The body support,

bs, of the rule is set to equal the body support of the existing rule because they have the same

rule body.

 for (r R) do
 o = head(r);
 //loop for all possible output values of the rule
 for (oValue possibleValues(o)) {
 if (oValue o)
 newRule =

Î

Î
¹

addRuleComplements(R, D)

copy of r with o replaced by oValue
 if (newRule R) //if the new rule doesn 't exist
 matches = countMatches(newRule, D);
 if (matches 0) {
 //it

Ï

¹
 was missed so add it

 newRule.bs = r.bs; //b ody support will be the same
 newRule.sc = matches;
 R = R newRule;
 }
 }

È

Algorithm 6-8: addRuleComplements. R = complete rule set. D = database of perceptual data

items.

· possibleValues: this can be defined by background knowledge, or can be stored in

each one-rule element set extracted by the extractOneRuleElementSets function

(above).

6.5 Create P-SPOs from Rules

The ASDD algorithm creates an individual rule for each outcome set. P-SPOs are created by

combining these individual rules. The algorithm first searches for rules that have the same

conditions, then checks whether they refer to the same perceptual feature in their outcome.

Take, for example, the rule element sets:

1) { (,), (,), (,)}paint g b dry g true dry g true®

2) { (,), (,), (,)}paint g b dry g true dry g false®

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

127

These sets have outcome rule elements (indicted by the ® symbol) and are therefore rules.

The rule element sets in rule form are:

(,) : (,) {0.4 : (,)}

(,) : (,) {0.6 : (,)}

paint g b dry g true dry g true

paint g b dry g true dry g false

®

®

These rules are combined by the createP-SPOs algorithm to form the P-SPO:

0.4 : (,)
(,) : (,)

0.6 : (,)

dry g true
paint g b dry g true

dry g false
� �

® � �
� �

P-SPOs are sets of rules with the same conditions (rule body) which apply to the same

perceptual feature in their outcome.

createPSPOs takes as input a set of rules, R, and possible actions, A, and returns a set of P-

SPOs, P. The algorithm iterates through all rules, checking each one against all other rules for

which: the body of the rule matches, and the head of the rule (outcome element) refers to the

same perceptual feature. If the rules pass this test then they are part of the same P-SPO set.

The P-SPOs are then created by combining the rules contained in the P-SPO sets.

Learning Parallel Stochastic Planning Operators

128

 PS = {}; //list of rules in same PSO set
 P = {}; list of PSOs

 //cycle through all rules adding them to PSPO se ts
 //if they have matching bodies and conflicting o utcomes
 for

createPSPOs(R, A)

 (r R) {
 if (r.pSet {}) //r already part of a PSPO
 next r;
 for all (c = next(r); c R) {
 if (body(r) body(c))
 next c; //not the same body

Î
¹

Î
¹

 if (head(r) possibleValues(head(c)))
 next c; //no conflicting out come
 //these rules are parts of the same PSPSO
 r.pSet = r.pSet c; //add c to the PS

Ï

È PO set
 c.pSet = r.pSet; //c refers to PSPO o f r
 if (r.pSet PS) //PSPO not previously defined
 PS = PS r.pSet; //add it to the set of PSPOs
 } //next c

Ï
È

A

 } //next r

 //construct the PSPOs from the rule sets
 for (ps PS) {
 P.add(newPSPO);
 newPSPO.P ={first(ps).x x A}; //set the action
 //context is rule elemenents without head and actio

Î

Î

{C A

O

P

n
 newPSPO.P =first(ps).x minus newPSPO.P head(ps) };
 for all (pi ps) {
 add(newPSPO.P ,head(pi)); //add each outc ome
 add(newPSPO.P ,pi.sc/pi.bs);//and associate d probabilit

È
Î

y
 }
 }
 return P;

Algorithm 6-9: createPSPOs. R = complete rule set. A = set of possible agent actions. The

algorithm returns P, a set of P-SPOs build from the rule set.

The final section of the algorithm creates the P-SPOs, such that each contains:

· An action, PA: the action contained in the rule element set. All rules in the set have the

same context, so the first rule is used to determine this.

· A context, PC: the rule element set with the action and the outcome removed. Again,

all rules in the set have the same context, so the first rule is used.

· A set of outcomes, PO: the heads of each the rules, added in order.

· A set of probabilities, PP: the support count for the rule divided by the body support

for the rule, added in the same order as Po.

6.6 Establishing P-SPO Precedence

The precedence algorithm provides a method for resolving conflicts when P-SPOs matching

the input percept have conflicting outcomes. A conflicting outcome occurs when the outcome

refers to the same perceptual feature (as discussed in section 5.3.3). The algorithm establishes

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

129

which P-SPOs defer to, and which P-SPOs have precedence over, other P-SPOs in the case of

a conflict.

Conflicting operators can be the result of a partial model being acquired from the data by

ASDD due to a small learning data set, or can be the result of operator conditions which give

differing evidence of the outcome.

Two P-SPOs are shown below:

() : (,) {1.0 : (,)}

(,), 0.02 : (,)
{}:

(,) 0.98: (,)

new b painted b false painted b false

painted b false painted b true

holding b false painted b false

®

� �
® � �

� �

The first of the above operators is the P-SPO for the new action’s effect on the painted(b,X)

perceptual feature. The second P-SPO is a partial rule, which could be created if there is not

enough evidence to correctly learn the rule for the paint action from the original rule-set:

(,), 0.1: (,)
(,) :

(,) 0.9 : (,)

painted Y false painted Y true
paint X Y

holding Y false painted Y false
� �

® � �
� �

Conflict resolution for these operators would need to occur if, for example, the action new(b),

was chosen for an initial percept:

 (,), (,), (,), ()painted b false dry g true holding b false rewardnone

The precedence algorithm defines how conflicts of this type are resolved. The algorithm

evaluates the precedence of a generated set of P-SPOs, PSPOs, over a set of PDIs, D.

All PDIs in the database are examined. If two P-SPOs apply to the same PDI and refer to the

same perceptual feature in the outcome, the operator precedence is defined using the

firstPSPOSuperior function, which finds the subset of PDIs for which both rule sets apply and

uses a heuristic error measure to define the operator with the most accurate performance for

the subset (section 6.6.1).

Learning Parallel Stochastic Planning Operators

130

 for (pdi D){
 matchedPSPOs = matching(PSPOs, pdi);
 for all (pspo1 matchedPSPOs) {
 for (pspo2 = next(pso1); pso2 matchedPSPOs) {
 if (!conflic

Î

Î
Î

precedence(PSPOs, D)

ted(pspo1.P pspo2.P))O O
 next pso2;
 if (precedenceSet(pso1, pso2)
 next pso2;
 if (firstPSPOSetSuperior(pso1, pso2))
 setPrecedenceOver(pos2

È

, pso1);
 else
 setPrecedenceOver(pso1, pso2);
 }
 }
 }

Algorithm 6-10: precedence. PSPOs=the operator set. D = perceptual data items. The

algorithm sets the precedence between all operators. Precedence defines which operator will

be used if there is a conflict.

1) D can be either the same set of data used to learn the operators, or a separate set used

to establish precedence between operators. If the same data set is used, the speed of

the algorithm can be increased by the observation that a specific rule set (one which

matches fewer examples in the PDI set) will always have precedence over a general

one according to the error measure used (section 6.6.1).

2) The matching function returns the subset of P-SPOs with a body matching the percept

and action from the PDI. This is similar to the subset function defined for rule

element sets in section 6.4.7, but is defined for P-SPOs (which have multiple

outcomes).

 subsetP = {};
 for all (p PSPOs)
 for all (po p.P
 if ((c.P PDI) and (c.P PDI)) {
 subsetP.add(p);
 next p;
 }
 return sub

Î
Î
Î Ì

matching(PSPOs, PDI)

O

O C

)

setP;

Algorithm 6-11: matching. PSPO = the planning operator set. PDI = a single perceptual data

item. The algorithm returns the subset of planning operators with context and action

matching the PDI.

3) The conflicted function is as defined by background knowledge and returns true if the

outcome sets of the two P-SPOs have conflicting elements (see section 5.2.1).

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

131

6.6.1 First PSPO Superior

The firstPSPOSuperior function returns true if the first P-SPO should have precedence in

situations where the two P-SPOs are in conflict (apply to the same outcome perceptual

feature).

D

A A

 //check if the rule is already part of the defer s set
 if (PSPO2 PSPO1.P)
 return true;
 //create a new combined PSPO
 newC.P PSPO1.P ; //action

Ï

=

firstPSPOSuperior(PSPO1, PSPO2, D)

C C C

O O O

P P P

must be the same
 newC.P = PSPO1.P PSPO2.P ; //conditions are combin ed
 newC.P = PSPO1.P PSPO2.P ; //outcomes are combined
 newC.P = PSPO1.P PSPO2.P ; //set size of outcome s et

 //find body

È
È
È

O

C A

O

 support for PSPO and support count for outcomes
 sc[newC.P] = bs = 0;
 for all (pdi D)
 if (newC.P newC.P pdi){
 bs++; i = 0;
 for all (o newC.P) {
 if (o pdi)

Î
È Î

Ï
Î

O

P

 sc[i]++;
 i++;
 }
 }
 //set the probabilities of the combined outcome set
 for (i = 0 to newC.P)
 newC.P[i] = sc[i]/bs;
 //find rule with the least error against the co

D D

mbined set
 if (errorMeasure(PSPO1, newC) errorMeasure(PSPO2, newC)){
 PSPO2.P PSPO2.P PSPO1;
 return true;
 }
 return false;

£
= È

Algorithm 6-12: firstPSPOSuperior. PSPO1 and PSPO2 = the planning operators to be
tested. D = the set of perceptual data items. The algorithm return true if the first P-SPO will

have precedence in situations where the rules are in conflict.

Learning Parallel Stochastic Planning Operators

132

The algorithm compares the probability values for the outcomes of the P-SPOs with a new P-

SPO generated by combining the conditions of the operators. The probabilities for the new P-

SPO (which are collections of rule sets) are generated empirically in the same manner as all

other rule sets (section 6.4.10) prob = sc/bs.

The P-SPO that has the least error when compared to the combined P-SPO is given

precedence. The error measure used in this research was introduced by the author in [18]:

· For each non-matching outcome: add +0.5. A non matching outcome is one that is

present in the combined rule but not in the original rule, or present in the original rule

but has probability zero in the combined rule.

· For each matching outcome: add the absolute difference between the empirical

probability for the combined rule and that for the original rule.

The use of the combined outcomes provides a measure of the accuracy of each operator in

situations for which the P-SPOs conflict. This addition of 0.5 for missing/additional outcomes

to the error measure penalises rules which failed to generate all outcomes for a P-SPO,

however low the probability of the outcome.

Note 1: For a rule set which is subsumed by a more general rule set, the specific rule set will

always have precedence over a general one, if we are using the same data set to test rule sets

as to create them. This is because the combined rule set will be equal to the more specific rule

set. For example, if we have a rule with conditions {a,b} and a rule with conditions {a}, the

combined rule has conditions {a,b}.

Note 2: If the combined rule set applies to a limited number of examples from the data this

method is likely to produce spurious results.

Example 1:

The P-SPOs (1) and (2) below are generated from data and have the condition (non-outcome)

rule elements {paint(g,b), painted(b,false)} and {paint(g,b), holding(b,false)} respectively:

1)
0.31: (,)

(,) : (,)
0.79 : (,)

painted b true
paint g b painted b false

painted b false
� �

® � �
� �

2)
0.42 : (,)

(,) : (,)
0.58: (,)

painted b true
paint g b holding b false

painted b false
� �

® � �
� �

Combining the two sets of conditions and the associated outcomes (rule heads) gives the new

P-SPO (initially unknown probabilities indicated by question marks):

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

133

(,), ? : (,)

(,) :
(,) ? : (,)

painted b false painted b true
paint g b

holding b false painted b false
� �

® � �
� �

If the conditions of this combined P-SPO are equal to the conditions of one of the P-SPOs in

the P-SPO set generated by ASDD, then the probabilities associated with each outcome can

be taken from the operator, otherwise, a new pass through the data will be required to find the

empirical probabilities of the combined operator.

In this instance, an operator with the combined conditions is likely to have been discovered by

ASDD, given a reasonably large data set, and the associated outcomes and probabilities can

be found from that operator:

(,), 0.09 : (,)

(,) :
(,) 0.91: (,)

painted b false painted b true
paint g b

holding b false painted b false
� �

® � �
� �

Using the error measure, rule (1) has an error of:

0.31 0.09 0.22 : for painted(b,true)- = +

0.79 0.91 0.12 : for painted(b, false)- =

Total error for rule (1): 0.34.

Using this error measure, rule (2) has an error of:

0.42 0.09 0.33 : for painted(b,true)- = +

0.58 0.91 0.33 : for painted(b, false)- =

Total error for rule (2): 0.66.

Rule (1) would, therefore, have precedence over rule (2).

Example 2

A similar example illustrating the error measure for non-matching outcomes is given below

for the paint rule when the robot is holding the block.

The P-SPOs (1) and (2) below are generated from data and have the condition (non-outcome)

rule elements {paint(g,b), painted(b,false)} and {paint(g,b), holding(b,true)} respectively:

1)
0.31: (,)

(,) : (,)
0.79 : (,)

painted b true
paint g b painted b false

painted b false
� �

® � �
� �

Learning Parallel Stochastic Planning Operators

134

2) { }(,) : (,) 1.0: (,)paint g b holding b true painted b true®

Combining the two sets of conditions and the associated outcomes gives the new P-SPO:

(,), ? : (,)

(,) :
(,) ? : (,)

painted b false painted b true
paint g b

holding b true painted b false
� �

® � �
� �

In this instance, ASDD will not have produced a P-SPO with the combined conditions,

because the rule element sets needed to form the operator would have been filtered due to the

extra painted(b,false) condition having no significant effect on the probability of rule (2)

above.

The probabilities of the combined operator can be found from data (or by adjusting the

algorithm to take probability 1.0 subsets into account). The combined operator probabilities

will be found to be:

(,), 1.0 : (,)

(,) :
(,) 0.0 : (,)

painted b false painted b true
paint g b

holding b true painted b false
� �

® � �
� �

Using the error measure, rule (1) has an error of:

0.31 1.0 0.79 : for painted(b,true)- = +

0.5: for the outcome which was not present in the combined PSPOpainted(b, false)

Total error for rule (1): 1.29.

Rule (2) has an error of:

1.0 0.0 0.0 : for painted(b,true)- = +

0: for which was (correctly) not present in the combined PSPOpainted(b, false)

Total error for rule (2): 0.0

Rule (2) would, therefore have precedence over rule (1).

Special Situations:

There are some exceptions to choosing the rule with the lowest error measure, which help to

keep the model accurate in the general case, and help the RVRL algorithm (chapter 9) to

gather useful information.

The following special conditions are applied in order:

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

135

1) If the P-SPOs have an equal error measure (e.g. they both have a single outcome with

probability 1.0), the more general rule is given precedence because it has more

supporting evidence.

2) If the P-SPOs being compared are both deterministic (probability 1.0) and one is a

“frame rule”, then the frame rule is given supremacy, because rules of this type can be

combined into environment operators.

3) If each of the outcomes contained in the two P-SPOs are conditionally independent

(using the G statistic measure), the more general one is used because, again, the

general rule has more supporting evidence.

A simple definition of more general is: the P-SPO with the most conditions. However, some

P-SPOs may contain rare conditions which make them more specific. Generality can, instead,

be induced from the training data, by using body support, bs: the most general P-SPO is the

one whose conditions match the greatest number of PDIs from the training data.

Note: To aid comprehension, these exceptions are not shown in the firstPSPOSuperior

algorithm (algorithm 6-12).

6.6.2 Outcome Sets of Size greater than one

Outcome sets with size one (dependent outcomes) will always take precedence over single

outcome sets, because the single outcome operators that they are generated from must have

equal conditions. Generation of rules of this type is beyond the scope of this work, but is

discussed in the future work (section 11.3.5). There are two methods: (i) the rules can be

generated by ASDD, which would require the parent rules to be matching in all but one

element (the additional outcome); (ii) an additional pass can be made through the rules for

those that have the same conditions, and have outcomes for which the additional dependency

of the outcomes passes the G-test.

This equality in conditions means that that both parent rules can be safely set to defer to the

combined rule because they cover the same situations.

6.7 ASDDs: Speeding up ASDD with Set Operators

The ASDDs algorithm is an optimisation of ASDD which increases the speed of the support

count operation by using set operations to find intersections between the PDIs covered by

each rule-element set. There is an overhead in terms of the storage required by each rule

because each single item set must be associated with the PDIs that it is present in. The

optimisation is an adaptation of the AprioriTID algorithm [1], using a similar method of set

Learning Parallel Stochastic Planning Operators

136

counting, but associating each single item set with the PDIs it contains to perform set counts.

Extensions to overcome overheads in memory requirements are beyond the scope of this

work, but could be achieved by partitioning the PDI database into smaller sets (e.g. by use of

the Partition algorithm [81]).

Set intersections can be used to count item-sets in the following way (explanation adapted

from [42]).

A PDI reference is a unique identifier for a perceptual data item. For a single rule element set

(set of size one), the PDI list is the set of identifiers corresponding to the PDIs in which it is

present. Each rule element set (sets of size > 1) also has a corresponding PDI list. The PDI list

for a newly generated candidate C, generated from parent rule element sets X and Y, has a PDI

list equal to the intersection of the PDI list for X and the PDI list for Y. The support count of

the candidate is equal to number of items in the PDI list.

Storage required for a PDI list for each rule element set quickly becomes an issue as the

database becomes large and the candidate set increases. The PDI lists can be generated on the

fly by keeping track of the parents of each rule element set. Each parent’s PDI list can then be

generated as an intersection of the PDI’s of its parents until a stored PDI list it found (e.g. the

PDI set for a single rule element set). The method used in this research was to store PDI list

for each two rule element set. This offered the best compromise between storage and speed.

This was not a focus of the research and further optimisations are a subject for future work.

Steps of the algorithm:

1) On the initial pass of the database, used to discover size-one rule element sets in the

standard algorithm, each level one rule element set stores a set of PDIs that it appears

in. The size of this set is the support count.

2) The aprioriPrune algorithm is amended such that a reference to the new rule’s

parents is recorded by the surviving (non-pruned) candidates. If this is a two item set,

the generated candidate’s PDI set is equal to the intersection of the parent PDI set and

the support count is the size of the PDI set. If the rule set is of size > 2, the PDI set is

generated as the intersection of the parent’s PDI sets. Support count is the size of the

intersection. The new PDI set is not stored for size > 2 sets.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

137

 for all (c Ck)
 forall (k-1 size subsets s of c)
 if (s Lk-1)
 delete c from Ck;

 for all (c Ck)
 PDIset = c.mother.PDIset c.father.

Î

Ï

Î
Ç

aprioriPrune(Ck, Lk-1)

;
2)

PDIset
 c.sc = PDIset
 if (c.x
 c.PDIset = PDIset;

==

Algorithm 6-13: aprioriPrune. Modified for the ASDDs optimisation for ASDD.

Support count has been counted in advance (the size of the PDI set). Step 2 of the ASDD

algorithm is, therefore, no longer necessary and is removed. The algorithm is otherwise

unchanged.

6.8 Summary

This chapter defined the ASDD algorithm for the fast generation of stochastic rules from a

database of perceptual data, and the support algorithms required for generation of P-SPOs

from these rules. Precedence between operators is established for situations in which the rules

conflict. Finally an optimisation to the algorithm using set-based techniques was given.

Learning Parallel Stochastic Planning Operators

138

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

139

7. Test Environments

This chapter defines the test environments for both the ASDD algorithm (chapter 6) and

RVRL algorithm (chapter 9) including characteristics and challenges that these test

environments present. These test environments are used to evaluate the performance of

ASDD in chapter 8 and the performance of RVRL in chapter 10.

Two test environments were selected to evaluate the performance of the system under a range

of conditions. The “slippery gripper” environment is fully observable and all outcomes are

independent. The environment can be completely defined by a set of PSPOs. The “predator-

prey” environment is partially observable, contains independent outcomes, and changes

outside the direct control of the agent. An accurate P-SPO set for the environment cannot be

learned by ASDD, but an approximation can be acquired.

7.1 The Slippery Gripper Environment

The “slippery gripper” test environment presented is an adaptation of the environment defined

by Oates and Cohen [65]. The environment has an additional “gripper clean” environment

feature from the one used in the explanation of P-SPO operators given in section 5.2 and has

slightly increased complexity in its dynamics.

This is a discrete time step environment. The environment changes state in response to each

selected action with no external events. The environment is, therefore, completely defined by

the actions available to the agent.

Figure 7.1: The “slippery gripper” environment.

· Paint: paints blocks.

o If the robot is holding the block then the block will become painted and the

gripper will become dirty 100% of the time.

Test Environments

140

o If the robot is not holding the block then the block will become painted 10%

of the time and the gripper will become dirty 20% of the time.

o If the gripper was clean and the block was not held then the gripper becomes

dirty 20% of the time.

o If the gripper was clean and the block was held then the gripper becomes

dirty 100% of the time.

· Dryer: dries the gripper.

o If the gripper was wet then it will become dry 90% of the time.

· Pickup: picks up blocks.

o If the gripper is dry, the block was not held, and the block was not painted

then the action results in the block being held 95% of the time.

o If the gripper is dry, the block was not held, and the block was painted then

the action results in the block being held 75% of the time.

o If the gripper is not dry, the block was not held and not painted then the block

will be held 15% of the time.

o If the gripper is not dry, the block was not held and not painted then the block

will be held 5% of the time.

o If the gripper was clean and the block was painted then it becomes dirty 20%

of the time.

· New: used to deliver a block and receive a new one.

o The action results in a positive reward if the block was painted and a negative

one if it was not.

o A new block arrives which is clean, and not painted or held in the gripper.

o The gripper will be dry after the action is completed 30% of the time and is

wet the remaining 70% of the time.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

141

The sensors are defined as:

{ }
{ }
{ }
{ }
{ }
{ }R

BP

GC

GD

HB

S = pos, neg, none

S = BP, GC, GD, HB, R

S = BP, ¬BP

S = GC, ¬GC

S = GD, ¬GD

S = HB, ¬HB

Where:

BP = block painted;

GC = gripper clean;

GD = gripper dry;

HB = holding block;

R = reward.

The sense function returns the current state of each element of the sensor array.

The agent’s perceive function converts the sensor information into a percept. In this case this

is a simple one-to-one mapping between the sensor information and the percept. The

background knowledge required to describe this environment is given below:

{ , , }

() { , }

()

()

()

() ()

()

()

reward(X) X pos neg none

boolean X X true false

painted(X) boolean X

dry(X) boolean X

holding(X) boolean X

clean X boolean Y

conflicted P painted(true) P, painted(false) P

conflicted P dry(true

¬ Î

¬ Î

¬

¬

¬

¬

¬ Î Î

¬

()

()

()

) P, dry(false) P

conflicted P holding(true) P, holding(false) P

conflicted P clean(true) P, clean(false) P

conflicted P reward(X) P, reward(Z) P, X Z

Î Î

¬ Î Î

¬ Î Î

¬ Î Î ¹

Figure 7.2: Background knowledge for the “slippery gripper” environment with additional

“clean” perceptual feature.

The background knowledge is similar to that given in section 5.2 with the addition of the

clean perceptual feature.

Test Environments

142

Figure 7.1 presets a situation in which the robot is not holding the block. If the block has not

been painted (SBP=¬BP), the gripper is wet (SGD=¬GD), the gripper is clean (SGC=GC) and no

reward was received (SR = none) in the previous time step, the sensor information can be

converted into a percept given by:

 painted(false), dry(false), clean(true), holding(false), reward(none)

The key features of the test environment are:

· It is a fully observable Markov decision process (all features of the environment can

be observed, and the next state is dependent only on the previous state).

· The perceptual features of the environment are conditionally independent (the values

of the features in the successor state are not dependent on the values of other features

in the successor state).

· The environment is stationary (the model does not change over time).

· The environment is continuous (the task is assumed to continue infinitely, as opposed

to episodic tasks, which are re-started after an absorbing state has been reached).

These features mean that it is possible to model the environment perfectly with a set of P-

SPOs, and it should, therefore provide a useful benchmark for performance tests of the

algorithm.

The P-SPO set for the standard environment is amended from those given in section 5.2. The

P-SPO set does not require variables for the gripper and block, because it assumed that there

is only ever one current block and one gripper (matching the environment definition above).

There is also an additional clean environment feature and altered probabilities for the outputs.

Figure 7.3: The P-SPO set for a “slippery gripper” environment with exactly one block and

one gripper.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

143

{ }
{ }

: () 1.0 : () (1)

: () 1.0 : () (2)

0.8 : ()
: () (3)

0.2 : ()

(), 0.1: ()
:

() 0.9 :

paint holding true painted true

paint holding true clean false

clean true
paint holding false

clean false

painted false painted true
paint

holding false

®

®

� �
® � �

� �

®

{ }

(4)
()

(), 0.2 : ()
: (5)

() 0.8 : ()

: () 1.0 : () (6)

0.9 : ()
: () (7)

0.1: ()

:

painted false

clean true clean true
paint

holding false clean false

paint holding true clean false

dry true
dryer dry false

dry false

pickup

� �
� �
� �

� �
® � �

� �
®

� �
® � �

� �
(), (), 0.95: ()

(8)
() 0.05: ()

(), (), 0.75: ()
: (9)

() 0.25: ()

(),
:

dry true painted false holding true

holding false holding false

dry true painted true holding true
pickup

holding false holding false

dry false pain
pickup

� �
® � �

� �

� �
® � �

� �
(), 0.15: ()

(10)
() 0.85: ()

(), (), 0.05: ()
: (11)

() 0.95: ()

(),
:

()

ted false holding true

holding false holding false

dry false painted true holding true
pickup

holding false holding false

painted true
pickup

clean true

� �
® � �

� �

� �
® � �

� �

®

{ }
{ }

0.20 : ()
(12)

0.80 : ()

: () 1.0 : () (13)

: () 1.0 : () (14)

:{} {1.0 : ()} (15)

:{} {1.0 : ()} (16)

0.3: ()
:{}

clean true

clean false

new painted false reward neg

new painted true reward pos

new holding false

new painted false

dry true
new

� �
� �
� �

®

®

®

®

®

{ }

(17)
0.7 : ()

: {} 1.0 : () (18)

dry false

environment reward none

� �
� �
� �

®

Figure 7.3: The P-SPO set for a “slippery gripper” environment with exactly one block and

one gripper.

Figure 7.4 shows the influence diagram for the environment. The diagram highlights

dependencies between variables in the domain.

Test Environments

144

Figure 7.4: Influence diagram showing dependencies between variables for the “slippery

gripper” environment. The conditional probability (CPT) table for the BP variable has been

included. Other CPTs (omitted for brevity) would follow a similar format.

7.1.1 Notes on the Slippery Gripper Environment

The environment is challenging for a reinforcement learning algorithm because slight

differences in the estimations of state action values can result in sub-optimal performance. For

example:

· A strategy of painting a block without picking it up, then delivering the block as soon

as it has been painted leads to the quickest path to an immediate reward, but with a

low probability of success and therefore will not achieve the maximum reward in the

long run.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

145

· A strategy of picking up a block, painting it and then delivering it will lead to a

marginally better level of reward, but the pickup action often fails if the gripper is

wet. In addition, the value of a strategy may be over-estimated or underestimated if

the available evidence of state transition probabilities is limited.

· The optimal strategy is to dry the gripper if it is wet. Pickup the block when the

gripper is dry, then paint the block and deliver it. Despite having the most steps, this

strategy has the highest probability of delivering a painted block per action used.

· The clean perceptual feature has no influence on the reward function, but the rule

learning mechanism will attempt to learn it’s dynamics because the system does not

relate rule-learning to rewards.

7.2 The Predator Prey Environment

The predatory-prey environment consists of a 4x4 grid surrounded by a “wall”. There is one

predator agent and one prey agent which take simultaneous moves. The predator catches the

prey (gains a reward) if the predator and prey are on the same square. The prey selects a

random action at each move.

Both predator and prey have four available actions: move(north), move(east), move(south) and

move(west). An action has the effect of moving the agent one square in the selected direction,

unless there is a wall, in which instance the action has no effect.

The environment is continuous: the predator and prey continue to move after the predator

catches the prey.

The agent body’s sense function detects the contents of the four squares adjoining it and the

square under it. Each square can be either empty, contain an agent, or contain a wall. Squares

can be in only one of these states (the agent does not see its own body in this instance). Figure

7.5 gives an example situation in which the predator has a wall to the west and a prey to the

east.

Test Environments

146

Figure 7.5: Predator and prey in a 4×4 grid (P = predator agent; A= prey agent). The

sensor information for the predator, P, is shown to the right (W = wall. E = empty, A = prey

agent).

The sensors are defined as:

{ }
{ }

follow the same form as
N

E S W U N

S = N, E, S, W, U

S = Empty_N, Wall_N, Agent_N

S , S , S , S S

Where:

SN = see north, and can take the values:

Empty_N: the square to the north is empty.

Wall_N: the square to the north contains a wall.

Agent_N: the square to the north contains an agent.

SS, SW and SU are similarly defined.

The agent’s perceive function converts the sensor information into a percept. In this case this

is a simple one-to-one mapping between the sensor information and the percept. For example

a value for SN of Empty_N converts to the perceptual feature see(north, empty). In accordance

with the P-SPO definition, the last parameter of a perceptual feature defines the value,

meaning see(north, X), can only take one value for X in a given percept.

The background knowledge required to describe this environment is given below:

{ , , }

() { , , , , }

()

()

item(X) X wall empty agent

direction X X north east south west under

see(X,Y) direction(X), item Y

conflicted P see(X,Y) P, see(X,Z) P, Y Z

¬ Î

¬ Î

¬

¬ Î Î ¹

 (7.1)

The background knowledge states that the agent can see the square contents in each of the

available directions, and that each square can contain exactly one item.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

147

Figure 7.5 contains an example of sensor information, which can be converted into a percept

given by:

 see(north, empty), see(east,agent), see(south, empty), see(west, wall), see(under, empty)

The key features of the test environment are:

· It is partially observable (not all features of the environment are contained in the

percept)

· The probability of a successor percept is not completely dependent on the previous

percept and action selected (the environment does not exhibit the Markov property).

An increased history would improve the probability estimates of the following states.

· The perceptual features of the environment are conditionally dependent (the values of

the features in the successor state are dependent on the values of other features in the

successor state). This requires the additional definition of an invalid(P) function for

the environment (as defined in section 5.4.5).

· The environment is stationary (the model does not change over time).

The predator-prey environment does not display the Markov property and it is therefore not

possible to represent it accurately as an influence diagram or as a set of P-SPOs. The P-SPO

set learned by ASDD will be an approximation of the environment’s dynamics.

The invalid(P) function for the predator prey environment (7.2) eliminates successor percepts

in which more than one agent is present, or for which walls are present in opposite directions.

invalid(P) see(X, agent) P, see(Y, agent) P, X Y

invalid(P) see(north, wall) P, see(south, wall) P

invalid(P) see(east, wall) P, see(west wall) P

¬ Î Î ¹

¬ Î Î

¬ Î Î

 (7.2)

7.2.1 Notes on the Predator-Prey Environment

The predator prey environment is challenging to the ASDD algorithm because it has a range

of features which are outside the modelling capabilities of the basic algorithm. In order to

form a perfect model, the algorithm requires that the Markov property holds, that the

environment is fully observable and that output variables are independent. Using the

algorithm in an environment for which these requirements do not hold shows how the

algorithm can perform (to some extent) in these circumstances by using probabilities to model

external factors.

Test Environments

148

Observation of an optimal policy for this environment reveals that the best strategy is to keep

the prey agent visible at all times:

· If on top of the prey and next to a wall – move into the wall.

· If the prey agent is in the percept, but not underneath the prey, move onto the prey so

that it will remain in sight in the next move

· If on top of the prey and not next to a wall – all moves are equal

· If the prey agent is not in sight and the predator is next to a wall – move into space so

that more squares are visible

This is a particularly challenging environment for the ASDD learning algorithm in its current

implementation, because the assumption of independent outcomes means that it is not able to

predict one of the key features of the environment: that moving onto a prey will always result

in the prey being somewhere within the predator’s percept.

7.3 Summary

This chapter presented the test environments used to evaluate the partial agent learning

framework using a P-SPO set acquired by ASDD (chapter 8) and the full agent learning

framework with the addition of the RVRL algorithm (chapter 10).

The “slippery gripper” environment is fully observable and can be completely defined by a set

of action rules because all outcomes are (stochastically) defined by the actions of the agent.

Additionally, each outcome is independent. It should, therefore, be possible to learn a

completely accurate P-SPO definition of the environment using ASDD given a large enough

data set.

The “predator-prey” environment is more challenging because it contains independent

outcomes, is partially observable, and the environment changes outside the direct control of

the agent. These features have the effect that an accurate P-SPO set cannot be learned by

ASDD. An approximation can, however, be acquired.

RVRL will attach utility estimate values to the P-SPOs generated for these environments, and

the challenges presented by each environment in this respect will be discussed in sections 9

and 10.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

149

8. Performance Results: Agent Framework with ASDD

This chapter presents the results of the ASDD and ASDDs (ASDD with set optimisation)

algorithms in learning P-SPO sets for the test environments presented in chapter 7. The tests

examine the validity of the learned model in comparison to both a tabular method and rule

sets learned by MSDD. The tests also examine the performance of the model when used to

derive a policy for the test environment in the batch processed environment modelling and

learning framework described in chapter 4.

In this context, performance measures test:

· The ASDD algorithm’s capacity to accurately learn a set of parallel stochastic

planning operators which model the test environment.

o Model accuracy is defined in terms of the model’s ability to predict future

percept probabilities given an initial percept and action when compared to a

perfect model.

o The accuracy of the model provided by the operator set learned by ASDD is

compared to the model learned by tabular methods and by the MSDD

algorithm, given varying levels of environmental experience.

o The “slippery gripper” environment is defined in terms of a P-SPO set. The

learned P-SPOs can, therefore, be compared to the given operators. For the

predator-prey environment, an exemplar of the acquired operators is

discussed.

· The speed of the ASDD and ASDDs algorithms in learning operator sets is compared

to MSDD for each of the test environments with various levels of environmental

experience.

· The performance of the policy derived from an ASDD based model in the test

environment, given a limited training data sample, is compared to that of a policy

derived from a tabular model, and that provided by an MSDD operator set. All

models are derived, and policies formed, using the BatchModelQ framework

described in chapter 4. Tests are performed to evaluate:

o The agent’s ability to achieve goal states and avoid disaster states. A disaster

state is one which provides poor or possibly catastrophic performance, such

as delivery of an unpainted block in the “slippery gripper” environment.

Performance Results: Agent Framework with ASDD

150

o The agent’s ability to maximise the rewards it can gather from the

environment over a test period.

When learning the model, ASDD minimum support was set to 1 (any occurrence means a rule

set is not discarded), and significance in aprioriFilter was set to 0.445 (50% significance).

For both ASDD and MSDD, the G level for the filter function was set to 3.841 (5%

significance).

8.1 Performance comparisons

The following sections define the learning methods used in performance comparisons.

8.1.1 Tabular Methods

Tabular modelling methods, such as Dyna-Q [87] and its probabilistic adaptation presented in

section 2.3 use labelled states to model the environment. The relative frequency of each

successor state is used to provide an empirical probability of the results of each action in each

state. This method provides a useful benchmark because it has the modelling power to create

a perfect model of a Markov environment given sufficient training data. The method suffers

from the “curse of dimensionality” [5], because the table size is exponential to the number of

perceptual features in the environment.

8.1.2 MSDD

The MSDD algorithm, defined in section 3.1.2, has been used to learn a P-SPO set in previous

research by the author [16]. MSDD learns individual rules, which are combined to form P-

SPOs using the ASDD supplementary algorithms (defined in chapter 6).

8.1.3 Learning a Policy from the Model

A tabular policy can be generated from a world model by using standard reinforcement

learning or dynamic programming techniques (section 3.2). These methods have been

evaluated by the author in [17]. Reinforcement learning methods map state-action pairs to

values, while dynamic programming methods can map state-action pairs to values, or can map

states to values and use the model to evaluate the highest valued action. The method is

agnostic to the type of model used, with the result that a direct comparison of the quality of

policy produced by each model can be made.

Each test used a fixed model, and a learning rate of 1.0 can, therefore, be used for the policy

learning algorithm if full-backups are performed (as described in section 3.2.2). This is

equivalent to dynamic programming using a post-decision state variable representation, as

described by Powel [73]. Discount rates for future reward were set at 0.9 for all tests.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

151

8.1.4 Error Measure

The error measure provides an indication of the number of states (or equivalently percepts)

missing from the successor states generated by the model, the number of additional states

generated by the model and the differences in probabilities indicated by the model.

The measure is that defined in section 6.6 for evaluating the supremacy between P-SPO

operators:

· For each non-matching outcome: add +0.5. A non-matching outcome is one that is

present in the combined rule but not in the original rule, or present in the original rule

but has probability zero in the combined rule.

· For each matching outcome: add the absolute difference between the empirical

probability for the outcome, and that for the outcome generated by the perfect model.

The error measure requires that we have an accurate model available with which to compare

the states and probabilities generated by the models to be tested. These comparison

environment models were generated from very large data sets, using the tabular method, by

running the test model for 3 million moves. It should be noted that these models will contain

inaccuracies, due to unreliable empirical probability generation for rarely visited states, but

these will be minor in models of these size used in the tests.

Algorithm 8-1 was used for error measure generation. The algorithm cycles through all the

sate-action pairs contained in the comparison model and returns the sum of the errorMeasure

evaluation of the difference between the generated states and the comparison model states.

Performance Results: Agent Framework with ASDD

152

initialise C with comparison model

 E = 0;

 //cycle through all percept action pairs in C

 for all ({p,a} C) {

 //find the outputs and associated probabiliti es

 //for co

Î

findModelError(M)

C C C

M M M

C C

mparison model C and model M

 distributionModel :p a {O ,P };

 distributionModel :p a {O ,P };

 //add error measure for incorrect outputs or probabilities

 E += errorMeasure({O ,P }, {

´ ®

´ ®

);M MO ,P }

 }

 return E;

Algorithm 8-1: findModelError. M=model to be compared. The function returns the error

measure for the model to be compared against an exhaustive tabular model for the same

environment.

8.1.5 Time Taken Comparison

Performance timings of the algorithms were taken on a 2 GHz Intel Centrino processor with

2GB of RAM. A comparison was made of the time taken by each model learner for the given

data set. All comparisons are for the same input data sets of perceptual data items (PDIs).

8.2 Results: Slippery Gripper with Additional Dependencies

The slippery gripper environment with additional dependencies has:

· States: 20

· State-action pairs: 80 (20 states times 4 actions available in the environment)

· State-action following states: 148

8.2.1 Model Accuracy

Table 8-1 shows the error measure for the model generated by each of the model learning

methods. The error for ASDDs is equal to that for ASDD because the same training data set

was used for all experiments and the ASDDs method is essentially the same algorithm with an

optimised counting method.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

153

Table 8-1: Error measure of generated states generated from rules learned from data

collected over 100, 1000, 5000, 10000, 20000, 50000 and 100000 random moves.

 100 1000 5000 10000 20000 50000 100000
Tabular 56.27 24.13 7.84 7.04 3.53 1.18 1.55
MSDD 66.40 17.85 6.76 5.41 4.25 0.77 0.30
ASDD 75.90 17.06 4.95 3.57 2.32 0.73 0.27
ASDDs 75.90 17.06 4.95 3.57 2.32 0.73 0.27

The error measure values show that P-SPOs are capable of learning an improved model in

comparison to a tabular method for all but the most limited training data. It is possible to learn

a perfect model of the environment using P-SPOs because the domain has independent output

variables. The table shows that the ASDD and MSDD algorithms are capable of learning this

model from data.

Figure 8.1 shows the graph of these data values. ASDD performs poorly on the initial data set

but, with a training data size of 1000 or more PDIs, the ASDD algorithm learns the most

accurate model. The main difference between the rule learning capabilities of MSDD and

ASDD is the aprioriFilter function in ASDD, which removes rules with low significance

early in the process. This has the effect of removing rules that would over-fit the data in this

domain.

Figure 8.1: Graph of error measure of generated states generated from models generated

from data collected over 100, 1000, 5000, 10000, 20000, 50000 and 100000 random moves.

Table 8-2 shows the extra states and missing states generated by each of the models. The

numbers are reflected in the error measure because each extra/missing state adds 0.5 to the

&�&

�&�&

�&�&

�&�&

�&�&

�&�&

"&�&

�&�&

 &�&

�&& �&&& �&&& �&&&& �&&&& �&&&& �&&&&&

�+
+

,+
��-

./0
+

-��
.1

0-

�.2.��.341-��56-

	456748

����

����

����9

Performance Results: Agent Framework with ASDD

154

error measure. The tabular method cannot generate additional states because this would mean

generating states that cannot be reached.

The states missed by the tabular methods for a data set of 100,000 random moves are those

for the action new with initial percept:

{ painted(true), clean(true), dry(false), holding(true), reward(none)}

The percept is rarely seen with random moves because the gripper always becomes dirty if the

paint action is used while holding the block, and often becomes dirty if not holding the block.

The percept can only occur in the unlikely event that the block was painted while not held,

and then was picked up while the gripper was dry (also unlikely because a dryer action is

required after the initial paint). This percept and action combination has not been observed

and the model is not able to generate any successor states. The correct successors are:

{ painted(false), clean(true), dry(false), holding(false), reward(pos)} Pr: (0.75)

{ painted(false), clean(true), dry(true), holding(false), reward(pos)} Pr: (0.25)

The P-SPO based methods are prone to generating additional states initially, but will

gradually learn a completely correct model because the environment’s characteristics allow it

to be modelled by operators of this type.

An example of incorrect states generated by operators with insufficient data from the 100 trial

ASDD rule set is for the action paint with initial percept:

{ painted(true), clean(false), dry(false), holding(true), reward(none)}.

The correct successor percept is for the state to remain unchanged (because the block was

already painted and the gripper was wet). The P-SPO set, however, generated two states, with

the additional one being:

{ painted(true), clean(false), dry(true), holding(true), reward(none)}.

This was caused by the following ASDD generated rule:

0.8 : ()

{}: (), ()
.0.2 : ()

dry false
clean true rew pos

dry true
� �

® � �
� �

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

155

Table 8-2: Missing states vs. extra states generated by each model. The first number in each

cell is the number of states missing from the model and the second number indicates extra

states generated by the model.

 100 1000 5000 10000 20000 50000 100000
Tabular 101-0 35-0 11-0 10-0 10-0 1-0 2-0
ASDD 75-67 22-0 7-0 1-0 4-0 1-0 0-0
MSDD 72-48 22-0 7-0 2-0 4-0 1-0 0-0

An anomaly in this table is that ASDD learns a more accurate rule set than MSDD with a

model generated from 10,000 data items. The error is for the action new with initial percept:

{ painted(false), clean(false), dry(false), holding(true), reward(none)} Pr(0.7)

The correct successors for the percept are:

{ painted(false), clean(true), dry(false), holding(false), reward(neg)} Pr(0.7)

{ painted(false), clean(true), dry(true), holding(false), reward(neg)} Pr(0.3)

The MSDD-based model missed the first of these states (the one with dry(false)), because it

used an over specific P-SPO that predicts dry(true) with probability 1.0:

 { }: 1.0 : ()new painted(false),clean(false),dry(false),holding(true) dry true®

This operator had been filtered by the aprioriFilter function in ASDD, leaving the simple

(and correct) rule to have precedence:

0.7 : ()

:{}
0.3: ()

dry false
new

dry true
� �

® � �
� �

8.2.2 Speed of P-SPO Set Learning

Table 8-3 shows the time taken by each model learning algorithm. The tabular rule learning

method makes a single pass through the data and is therefore very fast in comparison to both

rule learning methods. MSDD, ASDD and ASDDs are each approximately linear in time to

the size of the data set. Intuitively, this is expected because each method has to perform a

count of the number of times the rules match the data set. MSDD has to perform the count

more often than ASDD, while ASDDs has a faster counting mechanism than ASDD,

requiring only one full pass through the PDI database.

Performance Results: Agent Framework with ASDD

156

Table 8-3: Time taken (in seconds) to learn a P-SPO set or tabular model with data collected

from 100, 1000, 5000, 10000, 20000, 50000 and 100000 random moves.

 100 1000 5000 10000 20000 50000 100000

Tabular 0.02 0.02 0.02 0.02 0.03 0.08 0.16
MSDD 1.03 13.09 63.49 181.38 430.70 1018.92 1957.41
ASDD 1.76 4.04 8.74 14.27 29.25 61.12 152.05
ASDDs 1.06 1.67 2.24 4.17 11.58 28.02 72.51

Figure 8.2 shows the graph of these data values for the operator learning methods. The graph

is shown with a scale of Log10 time in seconds. The size of the training set is an

approximately logarithmic scale.

It is clear from the graph that the learning time taken for all rule learning methods is

approximately proportional to the training data size. ASDD is approximately 13 times faster

than MSDD and ASDDs is approximately double the speed of ASDD for larger training sets.

Figure 8.2: Graph of time taken (in seconds) to learn a P-SPO set or tabular model with data

collected from 100, 1000, 5000, 10000, 20000, 50000 and 100000 random moves.

8.2.3 Reward Gathered by a Policy Learned from the Data

Rewards are +1 for a painted block delivered, and -10 for an unpainted block delivered.

Policies are learned using dynamic programming set to 10,000 iterations. Dynamic

programming builds a table of state to value (rather than state-action to value).

· Discount level, � , is set to 0.9.

&�&

&��

��&

���

��&

���

��&

���

�&& �&&& �&&& �&&&& �&&&& �&&&& �&&&&&

!,7
���

25
3-

�5
8�

/-
9,

8:
/

�.2.��.341-��56-

����

����

����9

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

157

· There is no learning rate required (equivalent to learning rate 1.0) because this is a

model based technique with full backups.

· The policy is taken to be the action with the highest expected future rewards (see

section 3.2.2 for definitions).

Table 8-4: Reward gathered after following a policy derived from a model learned from data

collected from 100, 1000, 5000, 10000, 20000, 50000 and 100000 random moves.

 100 1000 5000 10000 20000 50000 100000
Tabular 6798 26136 26095 26139 26076 26166 26097
MSDD 26099 26050 26133 26112 26120 26079 26109
ASDD 26121 26129 26078 26127 26072 26120 26123

Figure 8.3 shows the graph of these data values. The graph shows that P-SPO sets are able to

learn a perfect policy with a very small amount of experience, using the same training data for

which the tabular method is not able to perform to this level. The small differences in

“perfect” policies are due to random experimental variation.

Figure 8.3: Graph of reward gathered after following a policy derived from a model learned

from data collected from 100, 1000, 5000, 10000, 20000, 50000 and 100000 random moves.

8.2.4 Goals Achieved vs. Disaster States Encountered

Table 8-5 shows the number of painted blocks delivered and the number of unpainted blocks

delivered. The tabular method performs poorly when limited experience is available, because

it must take a random action if it has not encountered the state before. At this level of

experience, some of the states are not visited. The model contains only 20 states, but some of

&�&

�&&&�&

�&&&&�&

��&&&�&

�&&&&�&

��&&&�&

�&&&&�&

�&& �&&& �&&& �&&&& �&&&& �&&&& �&&&&&

�-
;.+

:�"
.2

<
-+

-:

!-.+8587��.2.��.341-��56-

	456748

����

����

Performance Results: Agent Framework with ASDD

158

them are rarely visited, and it is therefore unlikely that they will be encountered with limited

experience. The rule based model is able to model the effects of actions at this limited

experience level and can, therefore, always avoid the disaster states.

Table 8-5: Goals achieved vs. disaster states encountered after following a policy derived

from a model learned from data collected from 100, 1000, 5000, 10000, 20000, 50000 and

100000 random moves. The first number in each cell is goals achieved. The second number is

disaster states encountered.

 100 1000 5000 10000 20000 50000 100000
Tabular 24348-1755 26136-0 26095-0 26139-0 26076-0 26166-0 26097-0
ASDD 26099-0 26050-0 26133-0 26112-0 26120-0 26079-0 26109-0
MSDD 26121-0 26129-0 26078-0 26127-0 26072-0 26120-0 26123-0

8.2.5 Comparison of Learned vs. Actual P-SPO Set

Figure 8.4 show the learned P-SPO set for 100,000 data items. The rule set shown includes

only those rules that are used in successor generation (those that have precedence in at least

one state-action situation). Environment operators are not shown for clarity. The operator set

is an almost completely accurate representation of the P-SPO set for the environment. The

errors shown in the graph in section 8.2.1 are, in some cases, reflecting small errors in the

comparison environment model (the tabular model generated from a data-set of 3 million

PDIs), demonstrating the improved modelling power possible with the algorithm.

Two of the rules below have slightly incorrect probability estimates due to differences in the

base probabilities in the sample (shown in bold).

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

159

{ }
{ }

: () 1.0 : ()

: () 1.0 : ()

0.8 : ()
: ()

0.2 : ()

(), 0.1: ()
:

() 0.9 : (

paint holding true painted true

paint holding true clean false

clean true
paint holding false

clean false

painted false painted true
paint

holding false painted fa

®

®

� �
® � �

� �

®

{ }

)

(), 0.2 : ()
:

() 0.8 : ()

: () 1.0 : ()

0.9 : ()
: ()

0.1: ()

lse

clean true clean true
paint

holding false clean false

paint holding true clean false

dry true
dryer dry false

dry false

� �
� �
� �

� �
® � �

� �
®

� �
® � �

� �
dry(true), painted(false),

pickup :

(), (), 0.75: ()
:

() 0.25: ()

dry true painted true holding true
pickup

holding false holding false

dry(false), painted(false), 0.15 :
pickup :

holding(false)

� �
® � �

� �

� �
® � �

� �

®

0.93 : holding(true)

holding(false) 0.07 : holding(false)

(), (), 0.05: ()
:

() 0.95: ()

holding(true)

0.85 : holding(false)

dry false painted true holding true
pickup

holding false holding false

� �
� �
� �

� �
® � �

� �

� �
® � �

� �

painted(true), 0.17 : clean(true)
pickup :

clean(true) 0.83 : clean(false)

{ }
{ }

{ }

: () 1.0 : ()

: () 1.0 : ()

:{} {1.0 : ()}

:{} {1.0 : ()}

0.3: ()
{}:{}

0.7 : ()

: {} 1.0 : ()

new painted false reward neg

new painted true reward pos

new holding false

new painted false

dry true

dry false

environment reward none

®

®

®

®

� �
® � �

� �
®

Figure 8.4: P-SPOs generated by ASDD with a training data set of 100,000 for the “slippery

gripper” domain.

There is a difference in the new action’s effect on the dry state of the gripper. The rule should

have an output:

0.3: ()

:{}
0.7 : ()

dry true
new

dry false
� �

® � �
� �

Performance Results: Agent Framework with ASDD

160

The action of drying a wet gripper, coincidentally, has exactly the same probability as the

background probability of the gripper being dry (shown with a rule with no action or

conditions).

0.3: ()

{}:{}
0.7 : ()

dry true

dry false
� �

® � �
� �

This is a more general rule, and the background probability therefore has precedence over the

dryer action. This does not cause any damage to the model, because any operators that have a

significantly different output probability to the base chance will have precedence.

8.2.6 Results Discussion

The P-SPO based model is extremely effective in the slippery gripper environment. With a

small amount of environmental experience, operators can be learned which have a low error

measure and from which an optimal policy can be derived.

Both MSDD and ASDD are effective at operator learning in this test-case, with the ASDD

based operators showing improved performance by eliminating over-specific rules, and being

learned in a reduced amount of the time. The set-based optimisation shows useful speed

improvements at this level.

The rule sets learned by MSDD and ASDD methods accurately capture the properties of the

original rule set, given sufficient experience, and are able to capture a low fidelity model of

the environment given reduced training data.

8.3 Results: Predator Prey Environment

An implementation of the ASDD algorithm has been tested against the MSDD algorithm for

speed of model learning, accuracy of the model, and the policy achieved by the agent.

The predator-prey environment has:

· States: 42

· State-action pairs: 168 (42 × 4 actions available in the environment)

· State-action following states: 732

8.3.1 Model Accuracy

Table 8-6 gives the error measure of the state generation ability of ASDD, MSDD and a state

map against an empirical measure of the state transition probabilities taken from a state map

of 3 million random moves (a “perfect” state map).

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

161

The performance of both rule-learning methods is poor against a state map generated from the

same number of trials, with the exception of the case where there is a limited amount of data.

The performance of the rule sets generated by ASDD and MSDD are, however,

approximately equal in model performance.

The error for ASDDs is, again, exactly the same as ASDD because the ASDDs method is

essentially the same algorithm with an optimised counting method.

Table 8-6: Error measure of generated states generated from rules learned from data
collected over 100, 1000, 5000, 10000, 20000, 50000 and 100000 random moves.

 100 1000 5000 10000 20000 50000 100000
Tabular 352.74 267.83 49.95 18.24 4.88 3.94 1.55
MSDD 389.86 260.79 123.58 141.98 84.62 66.60 43.25
ASDD 391.50 237.93 175.49 204.25 130.53 103.34 42.03
ASDDs 391.50 237.93 175.49 204.25 130.53 103.34 42.03

Figure 8.5 shows the graph of these data values. The graph shows that a large amount of

experience is required by the P-SPO learning algorithms to achieve an accurate model. This is

a natural consequence of the properties of the environment. Most output variables in the

environment are interdependent. If, for example, the predator moves onto the prey’s square,

then the prey must be present in the predator’s successor percept. It will be in only one

square, and all other squares will therefore be empty (or contain a wall). The only squares

which are not dependent in this way are the walls. If a predator moves along, or into, a wall,

the wall will remain in the square with probability 1.0.

A further issue is that output probabilities and dependencies require knowledge of several

inputs, with, in some cases, dependencies hidden for rules with multiple conditions (similar to

the XOR problem mentioned in chapter 6).

Performance Results: Agent Framework with ASDD

162

Figure 8.5: Graph of error measure of generated states generated from models generated

from data collected over 100, 1000, 5000, 10000, 20000, 50000 and 100000 random moves.

Table 8-7 shows the extra states and missing states generated by each of the models. Both the

ASDD and MSDD algorithms perform poorly on this learning task. The accuracy of the rules

improves as the data sample size increases, demonstrating that it is possible to learn

reasonable rules in this form, but the environment has multiple dependencies between inputs

as well as outputs, making it difficult to make effective rule-based generalisations. The ASDD

algorithm’s aprioriFilter step compounds this issue because important dependencies are

filtered at an early stage, with required conditions often not significant until multiple state’s

conditions have been added. The tabular model is effective in this environment because it

equates to rules with multiple dependencies between outcomes, and for which all inputs are

present in the conditions.

Table 8-7: Missing states vs. extra states generated by each model. The first number in each

cell is the number of states missing from the model and the second number indicates extra

states generated by the model.

 100 1000 5000 10000 20000 50000 100000
Tabular 671-0 432-0 91-0 28-0 0-0 0-0 0-0
ASDD 560-156 358-86 61-171 270-111 155-4 122-68 0-79
MSDD 558-169 301-128 110-225 235-32 209-37 98-30 0-82

&�&

�&�&

�&&�&

��&�&

�&&�&

��&�&

�&&�&

��&�&

�&&�&

��&�&

�&& �&&& �&&& �&&&& �&&&& �&&&& �&&&&&

�+
+

,+
��-

./0
+

-��
.1

0-

�.2.��.341-��56-

	456748

����

����

����9

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

163

8.3.2 Speed of P-SPO Set Learning

Table 8-8 shows the time taken by each model learning algorithm. The tabular rule learning

method makes a single pass through the data and is therefore very fast in comparison to rule

learning methods. MSDD, ASDD and ASDDs are each approximately linear in time to the

size of the data set, as was the case with the “slippery gripper” environment. This makes

intuitive sense because each method has to perform a count of the number of times the rules

match the data set.

Table 8-8: Time taken (in seconds) to learn a P-SPO set or tabular model with data collected

from 100, 1000, 5000, 10000, 20000, 50000 and 100000 random moves.

 100 1000 5000 10000 20000 50000 100000
Tabular 0.02 0.02 0.02 0.02 0.03 0.09 0.16
MSDD 1.58 39.03 218.88 390.70 884.57 2300.81 4558.42
ASDD 2.56 12.78 22.21 32.20 54.23 133.29 322.80
ASDDs 1.54 5.27 5.69 9.41 21.47 61.11 153.93

Figure 8.6 shows the graph of these data values. The tabular learning method is very fast and

therefore cannot be represented at the scale of the graph. The graph shows that there is a slight

overhead for ASDD on small training sets, after which ASDD and ASDDs show dramatic

increases in speed over MSDD.

ASDD is approximately 15 times faster than MSDD at learning an operator set, with

variations in the initial speeds. ASDDs is approximately two times faster than ASDD with,

again, variations in the initial speeds.

Figure 8.6: Graph of time taken (in seconds) to learn a P-SPO set or tabular model with data

collected from 100, 1000, 5000, 10000, 20000, 50000 and 100000 random moves.

&�&

&��

��&

���

��&

���

��&

���

��&

�&& �&&& �&&& �&&&& �&&&& �&&&& �&&&&&

!,7
���

25
3-

�5
8�

/-
9,

8:
/

�.2.��.341-��56-

����

����

����9

Performance Results: Agent Framework with ASDD

164

The time taken to learn a full P-SPO set at each data sample size and by each algorithm is

approximately double that taken to learn the “slippery gripper” environment P-SPO sets. No

firm conclusions can be drawn from this, but it is interesting to note that the two

environments have the same number of perceptual features, but the rules generated for the

predator-prey environment are more complex, defining an environment with an increased

number of possible states and greater dependency between variables.

8.3.3 Reward Gathered by a Policy Learned from the Data

Rewards were set at +1 for each time-step in which the predator was on-top of the prey at the

start of its move and 0 otherwise. Policies are learned using dynamic programming set to

10,000 iterations.

· Discount level, � , is set to 0.9.

· There is no learning rate required (equivalent to learning rate 1.0) because this is a

model based technique with full backups.

· The policy is taken to be the action with the highest expected future rewards.

The test was run over 100,000 iterations, with the maximum achievable reward being

received if the predator follows a policy of following the prey every move. The predator will

then receive a reward each time the prey moves onto a wall (therefore staying in the same

square). This happens approximately 1 in 4 moves on average (probability 0.25) giving a

maximum expected reward of 25,000. A minimum expected reward policy is achieved by

taking random moves, in which case the predator will be on-top of the prey 1 in 16 moves,

giving a reward of 6,250.

Table 8-9: Reward gathered after following a policy derived from a model learned from data

collected from 100, 1000, 5000, 10000, 20000, 50000 and 100000 random moves.

 100 1000 5000 10000 20000 50000 100000
Tabular 7939.0 9466.0 17137.0 11078.0 18440.0 20473.0 21921.0
MSDD 8126.0 9470.0 9257.0 10117.0 9040.0 6137.0 11467.0
ASDD 7041.0 6181.0 8114.0 9407.0 11355.0 11813.0 15956.0

Figure 8.7 shows the graph of these data values. The graph shows that the tabular method

offers the most successful model for policy formation. This is expected because the

environment contains multiple dependencies between outcomes and is challenging to model

via P-SPOs. Neither ASDD nor ASDD are able to learn a perfect model of the environment

which means they are also unable to learn an optimal policy.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

165

Figure 8.7: Graph of reward gathered after following a policy derived from a model learned

from data collected from 100, 1000, 5000, 10000, 20000, 50000 and 100000 random moves.

A point of interest in the reward graph is that ASDD is able to lean a more effective policy

from the rule set learned, despite the error measure showing that MSDD’s rules are more

accurate. This is caused by over-specific rules relating to the position of the prey agent in

response to a move. This is the most important aspect of the model, so small changes can

cause problems.

Another key point is that MSDD’s performance at the 50,000 data level drops to worse than

that of a random policy. On examination of the agent’s actions under this policy, it was found

that the agent moved to the north east corner of the map and stayed in that square, irrespective

of the prey agent’s moves.

Examining the agent’s action under the policy learned using the ASDD rules, acquired from

100,000 PDIs, shows that the agent moves on-top of the prey in most situations, but will

occasionally move into a wall, rather than chasing the prey as it moves into open space,

causing the prey to go out of view and be lost for several moves. This policy is optimal given

the agent’s incomplete world model, because the agent’s model does not capture the fact that

moving onto the prey keeps it in the percept (see following section).

Overall, this is a challenging environment in terms of both modelling and policy formation for

a P-SPO-based system, with the assumption of independent output variables, but the system is

still able to learn an effective, if not optimal, policy.

&�&

�&&&�&

�&&&&�&

��&&&�&

�&&&&�&

��&&&�&

�&& �&&& �&&& �&&&& �&&&& �&&&& �&&&&&

�-
;.+

:�"
.2

<
-+

-:

!-.+8587��.2.��.341-��56-

	456748

����

����

Performance Results: Agent Framework with ASDD

166

8.3.4 Inspection of Learned P-SPO Set

The predator prey environment is a simulation environment and is not based on a P-SPO set.

It is not therefore possible to compare the acquired operator set with the actual set. The full

set is also large, due to the difficulty in representing dependent output variables with

independent outcomes. Figure 8.8 gives a sample of the operators learned from 50,000 PDIs

to give an example of the type of rules the system learns.

Given an action move(south) and an initial percept:

 (,), (,), (,), (,), (,)see north wall see east wall see south agent see west empty see under empty

The matching operators after filtering by precedence are:

0.24 : (,)
() : (,)

0.76 : (,)

0.23: (,)
() : (,), (,)

0.77 : (,)

() : (,), (

see north agent
move south see south agent

see north empty

see east agent
move south see south agent see west wall

see east empty

move south see north wall see s

� �
® � �

� �

� �
® � �

� �

{ }

0.24 : (,)
,)

0.76 : (,)

() : (,) 1.0 : (,)

(,), (,), 0.25: (,)
() :

(,) 0.75: (

see south agent
outh agent

see south empty

move south see west wall see west wall

see north wall see south agent see under agent
move south

see west wall see under

� �
® � �

� �
®

®
,)empty

� �
� �
� �

Figure 8.8: Matching P-SPOs for the move(south) action in the predator-prey environment

for a set of operators acquired from 50,000 PDIs experiences.

The above operators are a compact representation of the probabilities for each outcome and

contain no unnecessary conditions. The second operator, for example, gives the probability of

seeing the prey-agent to the east if the predator has moved south, sees the prey to the south,

and sees a wall to the west. The square to the east must be empty with these conditions, and

the predator is vacating the square which will become the square to the north next. The prey

takes a simultaneous move, during which it may move into the vacant square to the east

(randomly taking a move in one of four directions), which is accurately captured by the

conditions (with a small sampling error).

The first operator has only one condition, but accurately finds the probability that the prey

will move into the square vacated by the predator. No further conditions are required because

this square is certain to be empty and the prey can, therefore, move into it with probability

0.25. The empirical probability of 0.24 given by the rule matches this closely because all

available evidence can contribute to the estimate.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

167

The states generated by the rules above, after removal of invalid states (e.g. those containing

more than one agent) are:

(,), (,), (,), (,), (,)Pr(0.33)

(,), (,), (,), (,), (,)Pr(0.11)

(,), (

see north empty see east empty see south empty see west wall see under empty

see north empty see east empty see south empty see west wall see under agent

see north empty see e,), (,), (,), (,)Pr(0.11)

(,), (,), (,), (,), (,)Pr(0.08)

(,), (,), (,

ast empty see south agent see west wall see under empty

see north empty see east agent see south empty see west wall see under empty

see north agent see east empty see south e), (,), (,)Pr(0.11)mpty see west wall see under empty

Normalising the above state probabilities (summing probabilities and dividing each by the

sum so that state probabilities sum to 1), gives:

(,), (,), (,), (,), (,)Pr(0.15)

(,), (

see north empty see east empty see south empty see west wall see under agent

see north empty see e

Pr(0.45)see(north,empty),see(east,empty),see(south,empty),see(west,wall),see(under,empty)

,), (,), (,), (,)Pr(0.15)

(,), (,), (,), (,), (,)Pr(0.10)

(,), (,), (,

ast empty see south agent see west wall see under empty

see north empty see east agent see south empty see west wall see under empty

see north agent see east empty see south e), (,), (,)Pr(0.15)mpty see west wall see under empty

The first of these output states (shown in bold) highlights the issue with treating non-

independent variables as if they were independent (discussed in chapter 6). It is not possible

for the prey agent to be outside the percept of the predator if it moved onto the prey square.

Treating the outputs as independent, however, the state with no agent present is predicted to

be the most likely successor state. Methods of resolving this are addressed in section 11.3.

It should be noted that there are no environment operators in the predator prey environment

because all actions can influence all perceptual features.

8.3.5 Results Discussion

The key element missing from the predator prey model acquired using the limited P-SPOs

acquired by ASDD and MSDD is that a predator moving onto the prey’s square cannot result

in the prey moving outside the predator’s view. The model produces multiple possible outputs

with no prey present.

The predator prey environment used was challenging for both MSDD and ASDD rule

learning algorithms in that it contains exogenous events and dependencies between outputs.

The current implementation of the rule learning algorithms does not include dependencies

between outputs and is therefore unable to learn an accurate model in this circumstance. This

results in poor performance against a state map as the model data size becomes larger. Model

accuracy results are varied for ASDD because the aprioriFilter step can remove important

rule elements from later consideration.

Performance Results: Agent Framework with ASDD

168

The implementation of the ASDD algorithm (section 5.8) assumes independent outputs and

therefore generates a set of rules with only one perceptual feature in the outcome set of each

operator. This form of the algorithm can substantially reduce the search space of possible

operators for environments with independent outcomes, at the cost of reduced performance in

environments with dependent outcomes, but can also reduce over-fitting of data by removing

over-specific rules.

If dependencies between outcomes have not been correctly modelled by the P-SPOs,

impossible successor percepts must be removed by the use of constraints (section 5.4.5). In

the predator-prey scenario, the operators may generate a percept with two agents when there

is only one agent in the world. If we do not use these constraints, the erroneous generated

states will propagate (e.g. predator agents, three walls etc.), and the model becomes

meaningless, because it is too far detached from the real world states. Currently the system

removes impossible states using the invalid function to check that each generated state

contains only one agent, and does not contain walls opposite each other.

After elimination of illegal states, the probabilities of remaining states are normalised by

dividing the probability of each state by the total probability of all generated states to give the

final states.

8.4 Summary

This chapter has presented performance results of the ASDD and ASDDs algorithms against a

standard tabular model and the MSDD algorithm for speed of operator set learning, accuracy

of the operator sets, and performance of policies derived from the operator sets.

ASDD and ASDDs were shown to be approximately 15 and 30 times faster at learning P-SPO

sets than MSDD respectively, with variations for small PDI training data samples. The speed

of all algorithms was approximately linear to the size of the training data set. Differences

between the time taken to learn a slippery gripper P-SPO set versus time taken to learn a

predator-prey P-SPO set show a relation between complexity of operators required to model

the state-space and time taken for learning to complete. This result requires further

experimentation for effective conclusions to be drawn.

The P-SPO set learned by ASDD for the “slippery gripper” environment produced an accurate

environment model with limited experience and was able learn an optimal policy with only a

small sample of data from the environment. The model accuracy was slightly improved over

that learned by MSDD because the aprioriFilter step was able to eliminate over-specific

operators which caused over-fitting of the data in the MSDD model.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

169

The P-SPO set learned by ASDD for the predator-prey environment demonstrated the

effectiveness of the operator learning method in extracting a minimal rule set from data, but

also demonstrated the issues with attempting to model environments with large dependencies

between output variables using a system that does not have this modelling capability.

The error-measure based accuracy of the model learned by ASDD was, naturally, poor in

comparison to that learned by a tabular method, but was effective in comparison to the MSDD

based model. The policy learned using the ASDD model was, however, superior to that

learned by MSDD. The reasons for this are not clear from the data, but investigation of the

policy employed by the agent shows that it has over-fit the data and therefore “expects” the

prey to pick the same moves it used in training. This can lead to a policy of, for example,

staying in one corner of the map.

Performance Results: Agent Framework with ASDD

170

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

171

9. Rule Value Reinforcement Learning (RVRL)

This chapter presents Rule Value Reinforcement Learning (RVRL), an algorithm which uses

an approximate dynamic programming based technique [87] to attach values to a parallel-

stochastic planning operator model of an environment. The operators can then be used to

compactly represent a policy for an agent, reducing the need for the exponentially large value

map required by standard dynamic programming methods.

Rule Value Reinforcement Learning (RVRL) was first introduced in [16], and was presented

within an operator learning framework in [15].

The RVRL algorithm iteratively updates values attached to P-SPOs. The principle is that

structure captured in the rules can be used to learn an approximate policy directly. The

resulting value attached to each operator represents a utility estimate for taking an action if

the conditions of the operator are present in the agent’s current percept. A set of P-SPOs are

used in parallel when generating successor percepts or states. This means that RVRL must

define the contribution between the values of each operator to the overall value of taking an

action under the current conditions. This chapter defines the original RVRL approach (an

average over operator values), and alternative algorithms (state aggregation techniques based

on approximate dynamic programming [73]).

The principles behind the RVRL algorithm are:

· P-SPO learning algorithms capture structure in the environment from the perspective

of actions within it.

· The utility and reward associated with environment states is related to the

environment structure.

· Associating utility with the operators will capture the utility structure, allowing useful

generalisations to be made between states (state aggregations) and avoiding the need

for an exponentially large state-action utility map (with respect to the number of

features and actions in the environment).

It should be noted that there is currently no known algorithm for extracting useful state

aggregations from data. Finding appropriate aggregation functions is, according to Sanner,

“more of an art than a science” [79], while Powell points out that an appropriate state

aggregation function for an environment requires extensive domain knowledge and, when

discovered, constitutes a patentable result [73]. The automated state aggregation method

presented here constitutes a novel contribution to the field of approximate dynamic

programming.

Rule Value Reinforcement Learning (RVRL)

172

The following sections: introduce the process of attaching values to P-SPOs; define the

average rule value update function; and show how improved values can be generated

iteratively. The process of following a policy generated from the operator values is given, and

finally an alternative state aggregation update function (based on approximate dynamic

programming techniques) is defined.

9.1 Attaching Utility to P-SPOs

The RVRL algorithm attaches a utility to each operator in the P-SPO model. The simple coin

flipping agent, introduced in chapter 2, will be used as an example to demonstrate the basic

concepts.

The example environment consists of:

· A single coin.

· The agent can either flip the coin or doNothing.

· The reward for the coin showing heads is 1 and showing tails is 0.

If the environment is episodic and the result of an action is a terminating state, then the utility

of the flip action can be calculated very simply by using dynamic programming, which sums

the immediate reward (1 if the result is heads, and 0 if it is tails) multiplied by the probability

of each (giving 1×0.5 + 0×0.5) plus the discounted rewards of all future actions from the

following states (0, because there are no future actions).

The doNothing action is deterministic, and does not change the state. Its utility is, therefore,

simply the reward received in the current state.

A full P-SPO set for the coin-flipping agent is shown below:

 { }
{ }

0.5 : ()
:{} (0.5)

0.5 : ()

: () 1.0 : () (1.0)

: () 1.0 : () (0.0)

showing heads
flip U

showing tails

doNothing showing heads showing heads U

doNothing showing tails showingTails tails U

� �
® � �

� �
®

®

 (9.1)

If we have an initial state of: {showing(tails)}, then the operators that match this state are:

· doNothing (with the context showing(tails)).

· flip (with the empty context, {}).

The utility of the doNothing action in the {showing(tails)} state is 0.0, while the flip action has

utility 0.5. The agent should, therefore, take the action with the highest utility (0.5) and flip

the coin. If the environment state was showing(heads), then the best option would be

doNothing (with utility 1.0).

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

173

If a full value-map is known, then the utilities can be derived from the value map of the states:

() : (1.0)

() : (0.0)

showing heads U

showing tails U

The utility of the doNothing action is the utility of the resulting state after the action, leading

to the utilities of the two doNothing operators (9.1). The utility of the flip action is the utility

of the resulting state after the action, which in this case is stochastic, so the probability of

reaching the resulting state multiplied by the utility of the state is used, giving (0.5×1.0

+0.5×0.0 = 0.5).

The “curse of dimensionality” [5] means that it is often not possible to derive a full state-

value map for an environment with a large number of features. The RVRL algorithm provides

a method for attaching utility to operators without the need to build the value-map. The

RVRL algorithm iteratively improves estimates of operator utilities using the previous

estimate attached to the operators matching the successor states.

9.1.1 Two Coin Example with Environment Operators

The coin flipping example can be extended to two coins to demonstrate the intended output of

the algorithm as an aggregation of values over states. The example also includes environment

operators (introduced in chapter 5).

The example environment consists of:

· Two coins.

· The agent can either flip one of the coins or doNothing.

· The reward for both coins showing heads is 1.0.

· The reward for both coins showing tails is 0.0.

The environment is episodic, with the terminating states being: both coins show heads; or

both coins show tails. The agent continues to take actions until a terminating state is reached.

An initial state for an environment of this type is:

 { (,), (,)}showing penny tails showing pound tails

The extension to two coins requires the addition of an environment operator to model the

evolution of the parts of the environment that are not affected by an action.

As defined in section 5.7, the environment operator has the form of an action, environment,

representing the progression of the variable to the next state in the absence of any other

operator that affects it.

Rule Value Reinforcement Learning (RVRL)

174

The full P-SPO set, including environment operators, and updating utilities for multiple coins

is:

{ }
{ }

0.5: (,)
() :{} (0.66)

0.5: (,)

:{} {} (0.66)

: (,) 1.0 : (,) (0.90)

: (,) 1.0 : (,) (0.4

showing X heads
flip X U

showing X tails

doNothing U

environment showing X heads showing X heads U

environment showing X tails showing X tails U

� �
® � �

� �
®

®

® 7)

 (9.2)

The utilities for the operators are calculated by averaging over the states to which they are

applicable (see below). Notice that the doNothing action has no output, because the

environment operators handle the evolution of perceptual features that are not affected by an

action.

The utility attached to each of the other operators has changed to reflect the revised

environment:

· Both coins show heads: the best action is to do nothing and receive the immediate

reward (1.0).

· One coin shows heads: the best action is to flip the tails coin, with the result that the

environment will be in the reward state with probability 0.5, or remain in the same

state with probability 0.5. If the agent is not in a terminating state it can keep

selecting the flip action until a reward is received. If there is a 0.9 discount for future

rewards this results in a 0.91 value (see below).

· Both coins show tails: the best action is to flip either coin, with a probability of 0.5 of

getting to the state in which one coin is showing heads (which has a utility of 0.91)

and a 0.5 chance of showing tails, in which case we have a terminating state of two

tails and a reward of 0.0. With discounts included, this is equal to: 0 × 0.5 + 0.5 * 0.9

* 0.91 = 0.41.

The values of each state can be calculated using Bellman updates:

1 ' '
'

'

'

() max [(')]

probability of moving from state to given action

reward received when action is taken in state and leads to state

a a
k ss ss ka

s S

a
ss

a
ss

V s P R V s

P s s' a.

R a s s'.

g+
Î

= +

=

=

�

Terminating states are evaluated easily as: 0.0 for both coins showing tails; and 1.0 for both

coins showing heads. For the one coin showing heads state, the maximum valued action is to

flip the tails coin. The Bellman updates reach a stable state when the value of the state is =

0.91:

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

175

 1

0.5 [1.0]
(,)

0.5 [0 0.9 0.91]kV h t+

´�
= �

´ + ´�
 (9.3)

The value of the two tails state is calculated by taking the optimal action of flipping one of the

coins, which is the 0.5×0 + 0.5×0.82 (with 0.82 being the discounted value of the heads tails

state above).

 1

0.5 [0.0]
(,)

0.5 [0 0.9 0.91]kV t t+

´�
= �

´ + ´�
 (9.4)

The values of the non-terminating doNothing state-action pairs are equivalent to the best

action from those states, multiplied by the discounts.

The output of the RVRL algorithm is an estimate of the aggregate of utilities of the state-

action pairs which the P-SPOs match. The true aggregation can be taken by creating a state-

action value map and finding the average of the state-action-pairs that match the operator’s

conditions.

The full state-action map, generated by performing Bellman updates in the state-action space,

for the two coins environment is:

doNothing,showing(

doNothing,showing(penny, heads),showing(pound, heads) :U(1.0)

doNothing,showing(penny, heads),showing(pound, tails) :U(0.82)

doNothing,showing(penny, tails),showing(pound, heads) :U(0.82)

penny,tails),showing(pound,tails) :U(0.0)

flip(penny),showing(penny,tails),showing(pound,tails) :U(0.41)

flip(penny),showing(penny, heads),showing(pound, heads) :U(0.91)

flip(penny),showing(penny, tails),sh

flip(penny),showing(penny,tails),showing(pound,tails) :U(0.41)

owing(pound, heads) :U(0.91)

flip(pound),showing(penny, heads),showing(pound, heads) :U(0.91)

flip(pound),showing(penny,heads),showing(pound, h

flip(pound),showing(penny,tails),showing(pound,heads) :U(0.41)

flip(pound),showing(penny,tails),showing(pound,tails) :U(0.41)

eads) :U(0.91)

 (9.5)

For each operator, a utility can be found by finding the average of the values of the state-

action pairs which match the operator conditions and action.

· The flip action has no conditions and therefore matches any of the sate-action pairs

with flip. Its utility is: (0.91×4 + 0.41×4)/8 = 0.66.

· The doNothing action has no conditions, and matches any of the state-action pairs

with the doNothing action. Its utility is therefore: (1.0+0.82×2+0.0)/4 = 0.66.

Rule Value Reinforcement Learning (RVRL)

176

· The environment operator with condition showing(X, heads) matches all heads states

for doNothing, and all heads states for which the flip action has been taken and the

other coin was heads. These state-action pairs are shown in bold above. The utility is

therefore = (1.0+0.82+0.82+0.91+0.91+0.91+0.91)/7 = 0.90.

· Similarly, the environment operator with conditions showingTails = (0.82 + 0.82 +

0.0 + 0.41 + 0.41 + 0.41 + 0.41)/7 = 0.47

RVRL uses an average of operator values to find the utility of taking an action. If, for

example, the coins are in an initial state given by {showing(tails, pound), showing(heads,

penny)}, then:

· The utility of taking the action of flipping the pound coin is the sum of the flip action

and the environment operator with heads conditions = (0.66 + 0.90) /2 = 0.78.

· The utility of taking the action of flipping the penny coin is the sum of the flip action

and the environment operator with tails conditions = (0.66 + 0.47)/2 = 0.57.

· The utility of the doNothing action is the sum of the two environment operators and

the doNothing action = (0.9 + 0.47 + 0.66)/3 = 0.68.

The optimal action is, therefore, to flip the coin that is showing tails (with value 0.78).

9.2 Average Rule Value Update Function

The discussion of state aggregation above assumed that direct access to state values is

available. If this was, indeed, the case then there would be no need to perform state

aggregation because the full value-map could be used, rather than an estimate. RVRL is a

method of estimating the state aggregation values based on further state aggregations.

Dynamic programming uses the Bellman update equation to continuously refine estimates of

the value of being in a particular state, until equilibrium is reached. If the post decision state

variable is used, then updates can equivalently be performed on state-action pairs.

The Rule Value Reinforcement Learning (RVRL) algorithm uses an approximate value

iteration method to update a value associated with each rule, rather than each state. The main

advantages of using a state-based aggregation method, such as RVRL, over a standard

reinforcement learning technique are that:

· The agent does not have to store a value for every possible state-action combination

in the environment.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

177

· The agent can generalise over many states, with the result that one value can

represent several states with similar properties, and a sensible action can be taken in

previously unseen states.

The availability of the model (provided by the P-SPOs) means that full backups can be used,

but we attach a learning rate so that the aggregation estimates are not unfairly biased towards

the most recent update. Attaching a learning rate to Bellman updates gives an update function:

1 ' '
' '

'

'

max
'

(,) (,) [(', ') (,)]

probability of moving from state to given action

reward received when action is taken in state and leads to state

a a
k k ss ss k k

s S

a
ss

a
ss

a
V s a V s a P R V s a V s a

P s s' a.

R a s s'

a g+
Î

= + + -

=

=

�

.

 (9.6)

The rule values for stochastic planning operators cannot be updated directly using the above

equation because more than one rule will match the next state (s’) and maximum action (a’).

The original RVRL algorithm (as presented in [16]) takes the average of the values attached

to the P-SPOs that are used to generate the following states.

The rule learning function replaces V(s’,a’) with an average value for all matching rules

which have precedence (and would therefore be used in generation of the successor state).

The rules with precedence are used because they give the most accurate representation of the

dynamics of the environment for that state and action.

The RVRL update function is given below. All rules matching the current state and action are

updated with the new estimate of the following state.

a a
pp' pp'

p' P'

for all (r matchingRules(PSPOs,p,a))

RV(r) = RV(r)+

P � [R � max avgRV(winningMatching(PSPOs, p',a ')) - RV(r)]
a'Î

Î

+�

RVRLUpdate(PSPOs, p, a)

Algorithm 9-1: RVRLUpdate(PSPOs, p, a). p = percept, a = action.

matchingRules(PSPOs, p, a) returns the rules with conditions matching the current state and

action. avgRV(winningMatching(PSPOs, p’, a’)) returns the average value of the winning

matching rules.

The two coin flipping example can be used to demonstrate this technique. The conditions

captured in the rule-set for calculation of next state reflect structural characteristics of the

environment for calculation of a value-map. The rule values are updated using Bellman

updates using the rules matching the successor states. The RV(r) approximations are

Rule Value Reinforcement Learning (RVRL)

178

initialised to a greedy estimate of 1.0 (the maximum achievable utility in an episodic

environment with maximum reward of 1.0). The initial P-SPO set is therefore initially:

{ }
{ }

0.5 : (,)
() :{} (1.0)

0.5 : (,)

:{} {} (1.0)

: (,) 1.0 : (,) (1.0)

: (,) 1.0 : (,) (1.0)

showing X heads
flip X U

showing X tails

doNothing U

environment showing X heads showing X heads U

environment showing X tails showing X tails U

� �
® � �

� �
®

®

®

A single update takes a random initial state and a random action, uses the model to calculate

the successor states and probabilities, and then updates the immediate rewards and the rule

value estimates using the rules matching the successor states.

Taking an initial state of {showing(penny, tails), showing(pound, tails)} and an action

flip(penny), the possible successor states (evaluated using the P-SPOs as a model) are:

{showing(penny, tails), showing(pound, tails)} Pr(0.5)

{showing(penny, heads), showing(pound, tails)} Pr(0.5)

RVRL takes the value of the successor state to be the average of the rules that would be used

if the maximum valued action was taken in that state (equivalent to dynamic programming).

For the first state above, the optimal action is to flip either coin, which has the sum,

equivalent to the update in (9.4), of:

() ()({ , , , , ()})

0.5 [0.0]

() :1.0
0.5 [0 0.9

: (,) :1.0

V showing penny tails showing pound tails flip penny

Sum flip penny
Avg

environment showing pound tails

´�
�= ��

´ + ´ ��
��

The optimal action is again taken in the non-terminating successor state, giving an updated

value estimate = 0.5×0+0.5×0.9×1.0=0.45.

If an updated rate, � , of 1.0 is used, then all rules matching the conditions (shown in bold) are

updated with the new value estimate giving:

{ }
{ }

doNothing : {} {} U(1.0)

environment : showing(X,heads) 1.0 : showing(X,heads) U(1.0)

� �
® � �

� �
®

®

®

0.5 : showing(X,heads)
flip(X) : {} U(0.45)

0.5 : showing(X,tails)

environment : showing(X,tails) 1.0 : showing(X,tails) U(0.45)

Continual updates of this form will improve the estimates, but will not settle on a value for

each rule, in the way that dynamic programming would for state-action values, because each

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

179

rule is an aggregation of multiple states. These are, in effect, estimates of the state, so an

update rule (similar to Q-learning updates) can be used to continuously improve the estimates.

The coin-flipping environment provides a simple example of the RVRL update function, but

does not contain enough P-SPOs to demonstrate the issues involved in RVRL from a state-

aggregation standpoint.

9.3 Rule Value Iteration

Chapter 5 described the process of building successor states using stochastic planning

operators as a model. If this process is combined with the RVRLUpdate function, taking the

current estimate of best action for each successor percept (section 9.4), it is possible to

continuously generate next states from an initial state, and update the P-SPO values for

operators matching those states until satisfactory values for the rules have been generated (or

a fixed number of updates, n, have been performed). This process is described by the

following algorithm:

};1 1 1 n n n

initialise RV(r) = 0 for all r PSPOs;

repeat for n steps {

 {p' ,r ,pr ,...,p' ,r ,pr } distributionModel(p,a)

 totalValue = 0; totalReward = 0;

 for (i from 1 to n) {

Î

¬

ruleValueIteration(PSPOs,p,a)

i

i i

i

i

 totalReward += r pr ;

 a' = bestAction(PSPOs,p');

 maxActionValue = avgRV(winningMatchi ng(PSPOs,p' ,a'));

 totalValue += maxActionValue pr';

 }

 for each (r matchingRules(p,a))

´

´

Î

{ }
(

1 n

RV(r)=RV(r)+ � totalReward totalValue - RV(r));

 p = pick a random percept from p' ,...,p' ;

 a = random action;

}

g´ +

Algorithm 9-2: ruleValueIteration. PSPOs=the planning operator set, p=initial percept,

a=initial action. The algorithm takes a set of P-SPOs and iteratively improves the utility

estimate associated with each operator for n-steps.

The sampling (temporal difference) equivalent of this method would take a sample next

percept, p’, rather than calculating the probability of each successor percept. The process is

otherwise the same.

Rule Value Reinforcement Learning (RVRL)

180

A high value should be used for a initially, in order to remove initialisation bias from the rule

value estimates. As the updates progress, a smaller a value will allow the rules to settle on

the most accurate value for their state-aggregation. This can be achieved using the McLain

formula for a (discussed in section 3.2.4). For the purposes of McLain updates, each P-SPO

stores a count, n, of the number of times it has been updated. This ensures that rarely matched

P-SPOs (those with specific conditions) are updated fairly in comparison to those with fewer

conditions.

9.4 Best Action

The bestAction function tests the available actions for the given percept and returns the action

with the highest average operator value. The operator values can be used as a policy by

selecting the maximum valued action given an input percept.

 maxActionValue = - ;

 maxAction = null;

 For (each a actions) {

 actionValue = avgRV(winningMatchin g(PSPOs, p,a));

 if (actionValue > maxActionValue)

 {

¥

Î

bestAction(PSPOs,p)

maxActionValue = actionValue;

 maxAction = a;

 }

return maxAction;

Algorithm 9-3: bestAction. PSPOs=the planning operator set, p=initial percept. The

algorithm returns the best action for the given percept.

If the environment is fully observable, then the percept, p, above can be substituted for a state,

s.

9.5 Variance-Based Rule Value Evaluation Function

The use of an average across the winning matching P-SPOs to determine the approximate

state-action values can be an effective method for environments in which each operator can be

seen to have an equal contribution to the final state (as demonstrated in [16]). There are a

range of situations, however, in which the aggregation given by the algorithm is not an

effective estimate of the state-value or state-action value.

The main issues with using an average over P-SPO values are:

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

181

· Accuracy-based weighting: state-action utility estimates are not weighted towards the

P-SPO which gives the most accurate prediction of expected future reward.

· Bias: P-SPOs utility estimate bias is not included in the weighting, with the result that

operators with poor initial utility estimates have equal influence on the utility

averaged across operators.

Both of these issues can be resolved by using a weighted average, favouring operators with

the least variance in their estimates.

A further point is that the samples used to generate operator values need to be unbiased for

the update rule to function correctly. Unbiased samples can be achieved by randomly

selecting the state-action combination to be updated from the available state action space.

Aggregation based approximate dynamic programming methods store a set of value estimates

that cover multiple states, or state-action pairs rather than a full look up table storing a value

for each state-action combination. A key feature is that the state transition model can use the

full set of features while the value function can be based on the aggregated state-action space.

The model, in this research, is provided by the P-SPOs, which give a compact representation

of the state-transition function. An aggregation function can, in the general case, be any sub-

set of the features of state-action space. If the chosen sub-sets overlap this is referred to as a

soft aggregation [73]. The conditions and actions in the P-SPOs are overlapping sub-sets of

the features of the state-action space and we can therefore treat them as feature set selections

for soft aggregation.

Equation (9.7) represents the equal weighting (average) estimate of value. The bar above the

“v” in the equation is used to denote an estimate. The value is calculated as the mean of the

utilities contained in all parallel stochastic planning operators used to generate the next state.

The RV(r) function gives the utility estimate associated with the P-SPO, while

winningMatching(PSPOs, s, a) returns the set of P-SPOs matching the state and action (after

variables are resolved and conflicts removed).

 (,)
(, ,)

()
(, ,)s a

r winningMatching PSPOs s a

RV r
winningMatching PSPOs s a

n
Î

= � (9.7)

This was represented in the RVRL equation as:

 ()()(,) , ', 's a avgRV winningMatching PSPOs s an = (9.8)

A possible weighting is to provide a weight based on the number of times the aggregation has

been visited. This method can be used to overcome bias caused by states chosen initially for

Rule Value Reinforcement Learning (RVRL)

182

update, but the aggregate measure becomes dependent on the distribution of states visited.

Ideally, the weighting should reflect the accuracy of the operator in predicting the true value

of the state-action pair, but, as this value is unknown, the accuracy compared to the current

estimate is used. This can be achieved by finding the (estimated) variance of the error

measure [73].

In general, a weighting of operators should sum to 1 and can be given as:

 (,)
(, ,)

()s a r
r WinningMatching PSPOs s a

w RV rn
Î

= � (9.9)

The equation tells us that there is an individual weighting, wr, for each operator. The

weighting can be dependent on some property of the operator. Equation (9.9) is equivalent to

(9.7) if wr is equal to 1/ (, ,)winningMatching PSPOs s a.

The effectiveness of variance as a measure of accuracy can be demonstrated by considering

an operator with no conditions and no action (e.g. a pure environment operator representing a

random variable):

.4 : ()

{}:{} .3: ()

.3: ()

weather sunny

weather cloudy

weather raining

� �
� �

® � �
� �
� �

This can be thought of as a maximum aggregation, because every state-action pair in the

environment is contained within its aggregation set. When updating the utility estimate of this

operator, we will, in some instances, gain exemplars of high valued state action pairs and at

others low valued state-action pairs. The variance of the operator’s estimate of the value, with

respect to the observed values, will, therefore, be high. If, on the other hand, we have an

operator which contains every state variable required to define the true value of an action, the

estimated value will exactly match the observed values (if we have an accurate model and are

using full, rather than sample, backups). The variance between the observed value and

estimate will be zero.

In practice, we do not know in advance which of our aggregations reflect the true value, and

the value estimates we are trying to improve are, themselves, based on aggregates of

estimates. If the operators contain the required information for an effective aggregation,

however, the variance will settle over time, with specific operators gaining weight (and

influence) over general ones.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

183

The weight aggregations contained in the P-SPOs matching the state and action, are each

providing different estimates of the same quantity, n (s,a). As stated by Powell in [73],

statistics theory tells us that the weights that minimize the variance of n (s,a) in equation (9.9)

are proportional to the variance of the estimate, given by:

 ()() 1()2 n

r rw s
-

µ (9.10)

The weights need to sum to 1.0. We can therefore find a set of proportional weights for a set

of operators by using:

()

()

1

()2
(, ,)

()2

1
n

r winningMatching PSPOs s a r

r n

r

w
s

s

-

Î

 �
�
�
� �=

�
 (9.11)

The bracketed n above indicates that this is the weight for the n’th iteration of the update,

rather than indicating an exponential.

An alternative weighting can be achieved by adjusting to remove the bias caused by the initial

operator values. We can do this by using the total variation (the variance plus the square of

the bias), giving the weights:

() ()

() ()

1

() 22 ()
(, ,)

() 22 ()

1
n n

r winningMatching PSPOs s a r r

r n n
r r

w
s b

s b

-

Î

 �
�
� +� �=

+

�
 (9.12)

Equation (9.11) is the weighting used in varianceRV, the form used for the “variance update”

tests in the results section, and (9.12) is varianceBiasRV, the form used in the “variance and

bias update” tests in the results section (chapter 10). The use of bias relies on a more accurate

aggregation being available as a reference. The soft aggregations in this research are not

guaranteed to be more accurate and it is therefore interesting to evaluate which of these gives

a more accurate value estimate. The initial tests indicate that there is no advantage in using

the “variance and bias update” form of the equation, but further research is required in this

area.

Both equations can result in zero values for variance initially and, therefore, division by zero

errors. The equation used was amended slightly to give a minimum variance of 0.001 (a

variance of less than 0.001 was substituted for 0.001 if it occurred in the evaluation).

Rule Value Reinforcement Learning (RVRL)

184

9.6 Bias and Variance

A complete value map for a state-action space stores a current estimate for every state-action

pair in the environment. The update equation gives a method for improving this estimate

based on samples (evidence). The improved estimates will tend to increase in value each time

if the value map has low (pessimistic) initial vale estimates, or tend to decrease in value if the

initial estimates are high (optimistic). The positive or negative difference between the

estimate and the real value is known as the bias. The variance is the mean squared error

between the estimated and actual values.

The actual value for each state-action pair is not known, but the estimates of the value will

improve over time. We can therefore estimate bias or variance by using an update function

(9.13) on a current estimate of the bias or variance based on the new evidence. The

aggregation estimates of utility contained in the rules also use an update function (iterations

provide improving utility estimates).

Using a notation based on that used in [73], with a bar over a variable meaning it is estimated

from sample observations, and a hat meaning a single observation, in general, an update

function for an estimate, q , of a value q has the form:

 ()() (1) (1) (1) ()ˆ1n n n n nq a q a q- - -= - + (9.13)

Where ()ˆ nq is an unbiased observation of q and is assumed to be independent of the previous

estimate, (1)nq - . The learning ratea has the superscript (n-1) to allow for variable step-sizes

(e.g. using McLain’s updates). Both the variance and bias can be defined in terms of the error,

e , between the observation and actual value of q .

 () () ()ˆ n n nq q e= + (9.14)

If this error is treated as an exogenous measurement error between the actual value ofq and

the observed value, the variance of ()nq can be computed using equation (9.15).

() () 2

2 () []

n n

n

Var

where Var

q l s

s e

� � =� �

=
 (9.15)

()nl is a function of the step size (learning rate) in the update rule and can be computed using

the recursion:

()
() ()

2

(1)()

2 2(1)
(1) (1)

, 1,

1 , 1.

nn

n
n n

n

n

a
l

a l a

-

-
- -

� =�
= �

� - + >�

 (9.16)

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

185

The value of the variance of the error, 2s , is unknown, but it can be estimated from the data

with each iteration of the update rule. The first step is to obtain an estimate of the bias, which

can be found by using equation (9.17). This is, again, an update rule, giving an estimate of the

(positive or negative) average difference between the estimate and actual value of � . The

update rate has been given as a for consistency of notation between update rules, but it must

be noted that this is a separate step size and the subscript v is used to indicate that this value of

a is shared between the bias and variance. The step size can be variable, but to simplify

calculations, a fixed step size of 0.1 has been used.

 () (1) (1) ()ˆ(1) ()n n n n
v vb a b a q q- -= - + - (9.17)

To estimate the variance, we can use a similar update rule. The first step is to compute the

total variance (including the bias), which can be estimated using a further update rule:

 () (1) (1) () 2ˆ(1) ()n n n n
v vv va a q q- -= - + - (9.18)

The variance of ()ne , 2s , can now be calculated using the estimate of the total variance, by

removing the influence of the bias:

 () ()2() ()
2()

(1)1

n n
n

n

n b
s

l -

-
=

+
 (9.19)

The estimate of the variance of nq can now be found by using ()2ns in equation (9.15):

()2() ()

() ()
(1)1

n n

n n
nVar

n b
q l

l -

 �-
� � � =� � � +
� �

 (9.20)

9.7 Variance Rule Value Iteration

Variance, or variance and bias, based updates can be incorporated into rule value iteration by

associating extra values with each P-SPO (recording the current estimate of bias and/or

variance), which are updated with each iteration. The two values can also be assigned

associated learning rates and update counts for use with McLain’s formula.

The variance rule value iteration function is given below. This is almost identical to the

previous ruleValueIteration function, but:

(i) Replaces the avgRV function with varianceRV to find the state-action value estimate

from the winning matching P-SPOs (using equation (9.11)).

(ii) Adds an update for the variance estimates, using the difference between the current

rule value estimate and the observed (estimated) value (using equation (9.18)):

Rule Value Reinforcement Learning (RVRL)

186

(n) (n-1) 2
v vv(r) =(1- �)v(r) + � (RV(r) totalReward totalVa lue) g- +

The equivalent update function for variance and bias replaces equation (9.11) in (i) with

(9.12), and replaces equation (9.18) in (ii) with equation (9.20).

};1 1 1 n n n

initialise RV(r) = 0 for all r PSPOs;

repeat for n steps {

 {p' ,r ,pr ,...,p' ,r ,pr } distributionModel(p,a)

 totalValue = 0; totalReward = 0;

 For (i from 1

Î

¬

varianceRuleValueIteration(PSPOs,p,a)

i

i i

i

i

to n) {

 totalReward += r pr ;

 a' = varianceBestAction(PSPOs,p');

 maxActionValue = varianceRV(winningM atching(PSPOs,p' ,a'));

 totalValue += maxActionValue pr';

 }

 for each (r mat

´

´

Î

{ }

() (

(n) (n-1) 2
v v

1 n

chingRules(p,a)) {

 v(r) =(1- �)v(r) + � (RV(r) totalReward totalValue);

 RV(r)=RV(r)+ � totalReward totalValue - RV(r));

 }

 p = pick a random percept from p' ,...,p' ;

 a = rando

r

g

g

- +

´ +

m action;

}

Algorithm 9-4: variance RuleValueIteration. PSPOs=the planning operator set, p=initial

percept, a=initial action. The algorithm takes a set of P-SPOs and iteratively improves the

utility estimate associated with each operator for n-steps.

 9.8 Optimistic Value Initialisation

Operators are initialised with optimistic value estimates to avoid local minima in the value

space. An optimistic initialisation is one where all values are given an initial value of RMAX/(1

� g), which is the maxim value any state (or state-action pair) can reach under any policy.

RMAX is the maximum reward available in the environment. The maximum value for a state is

equivalent to being in a state the gives the maximum reward, and continually taking an action

that remains in that state. Feeding this in to the Bellman update equation it can be seen that

the maximum value is dependent on the maximum immediate reward and the discount level

for future rewards.

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

187

9.9 Summary

This chapter defined Rule Value Reinforcement Learning, an algorithm for associating state-

action utility value estimates with P-SPOs. The basic form of the algorithm uses an average of

the values associated with all winning operators applicable to a given state and action

(winning operators are those that would be used to generate successor states). The variance

based forms use the observation that operators with low variance give a consistent estimate

and are, therefore, likely to be more accurate than those with a high variance. Weighting the

total operator value in inverse proportion to the variance allows the most consistent estimators

to have greater influence on the state-action value estimate. This observation is tempered by

the fact that we do not have a real value of state value to base the estimates on.

Once a value has been associated with each P-SPO, a policy is implicitly contained within the

estimates and can be extracted using the bestAction function, which iterates through all

available actions finding the highest valued action according to the estimate contained in the

winningMatching P-SPOs for the given percept.

Rule Value Reinforcement Learning (RVRL)

188

Approximate Dynamic Programming with Parallel Stochastic Planning Operators

189

10. Performance Results: Agent Framework with ASDD

and RVRL

This section compares the results of the each of the update functions for the Rule Value

Reinforcement Learning (RVRL) algorithm (defined in chapter 9). The updates are:

aggregations by average; aggregation weighted by total variance; and aggregation weighted

by variance (total variance with estimated bias removed).

Results are presented for the “slippery gripper” and “predator prey” environments. The P-

SPO sets for all comparisons were learned using the ASDD algorithm (with set-based

counting method). These operator sets were shown to produce accurate models and policy

performances in comparison to MSDD in chapter 8. New perceptual data item sets (PDIs)

were used to create the P-SPOs, and the performance of a tabular value map based policy for

the new data set using the operators is given as comparison.

10.1 Slippery Gripper Environment

The following sections give the reward gathered by each RVRL update function, goals

achieved vs. disaster states encountered, and examples of P-SPO sets with associated weights.

The results in this environment are discussed in relation to the performance of a tabular value

based policy.

10.1.1 Reward Gathered by a Policy Learned from the Data

Experimental conditions are unchanged from those used in section 8.2, with rewards set at +1

for a painted block delivered, and -10 for an unpainted block delivered. Policies were learned

using dynamic programming for the tabular ASDD methods, or RVRL for all other methods,

set to 10,000 iterations.

· Discount level, � , is set to 0.9.

· No learning rate is required for the tabular method (equivalent to learning rate 1.0)

because this is a model based technique with full backups.

· Learning rate for RVRL was set using McLain’s formula for all methods, with a

minimum value of 0.1: aggregations by average; aggregation weighted by total

variance; and aggregation weighted by variance (total variance with bias removed).

· The policy for RVRL methods was taken to be the action found using the bestAction

function (section 9.4).

