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(MPHSDb) 39µm). (d) Corresponding simulated series-average mean topography 

(MPHSDb 38µm). (e) Log of PHSDb maps of real mean topography series - darker 

areas represent areas of higher variability. (f) Log of PHSDb maps of corresponding 

simulated mean topography series. Maximal normalised cross correlation of these 

two maps (e) and (f) is 0.51. 
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Figure 5.9 Qualitative display of between examination, local variability for real and 

simulated pairs. (a) Real series-average mean reflectance image. (b) Corresponding 

simulated series-average mean reflectance image. (c) Real series-average mean 

topography (mean of between examination pixel height standard deviation 

(MPHSDb) 9µm). (d) Corresponding simulated series-average mean topography 

(MPHSDb 9µm). (e) Log of PHSDb maps of real mean topography series - darker 

areas represent areas of higher variability. (f) Log of PHSDb maps of corresponding 

simulated mean topography series. Maximal normalised cross correlation of these 

two maps (e) and (f) is 0.73. 
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Abstract 

Glaucoma is a leading cause of visual disability across the world and when 
diagnosed the glaucoma patient will spend the rest of their life receiving treatment 
in managed clinical care. In the glaucoma clinic, retinal and optic nerve head (ONH) 
imaging can be used to help the clinician to manage patient treatment 
appropriately. By providing high resolution images of the optic nerve head 
structures and identifying changes therein related to disease onset and progression, 
an objective measure can be obtained as to how well or badly treatment is 
preventing further disease damage. This thesis contributes to the field of glaucoma 
progression detection by the analysis of clinical imaging data using confocal 
scanning laser tomography (CSLT). Primarily it is an investigation of how best to 
appraise and optimise current algorithms which aim to detect these glaucomatous 
structural changes in the optic nerve head. This is done by addressing how the 
performance of these methods can be best assessed in the absence of a gold 
standard for glaucomatous structural progression.  

Glaucoma expert assessment of photographs of the optic disc is the current clinical 
standard of assessing glaucomatous damage evident in the ONH. This is used in 
this thesis to act as a reference standard by which these algorithms can be 
compared. In addition, the statistical principles underpinning trend detection 
techniques are also investigated along with the performance of these techniques to 
detect trends in CSLT data in the presence of different types of measurement noise 
and image quality. A new computer model is developed and validated to simulate 
stable series of CSLT images, with realistic variability, which can be used to 
benchmark the false-positive rates of current and future progression algorithms. In 
conclusion, the main results reported in this thesis show that uncertainties involved 
in expert assessment of change in ONH photographs limits this as a reference 
standard for structural change in glaucoma. In addition, since stability in clinical 
datasets is uncertain, simulation using modelled series is shown to provide a new 
benchmark for comparing methods of progression detection.  
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1. Background and Aims 

This chapter gives an introduction to glaucoma, a brief description of its nature, 

prevalence and its risk factors. The clinical means to detect and monitor this disease 

are discussed. Confocal scanning laser tomography, the focus of this thesis, is 

introduced as a technology which can contribute to clinical decision making by 

assisting in glaucoma detecting and monitoring. 

1.1 Glaucoma 

The glaucomas are a group of optic neuropathies, collectively referred to as 

glaucoma, that have in common a progressive degeneration of retinal ganglion cells 

(RGC) and their axons. They result in distinct damage to the optic nerve head 

(ONH) and peripheral vision loss. The mechanism of this RGC degeneration is 

intrinsically linked with intraocular pressure (IOP) and often associated with 

increased IOP. Glaucoma leads to distinctive changes in the shape or morphology of 

the ONH (Figure 1.1) called ‘cupping’. This damage to the ONH causes losses to the 

visual field, which is “that portion of space in which objects are simultaneously 

visible in the steadily fixating eye” (Spector, 1990). The resulting damage to the 

visual field is irreversible; though loss can be transitory in the early stages of 

glaucoma. If untreated, the damage to the affected visual field will most likely 

intensify and spread until eventually complete loss of vision can occur. It has been 

estimated that in the year 2000 that at least 67 million people suffered from 

glaucoma with an a resulting estimated 7 million suffering blindness in both eyes 

(Quigley, 1996), making it the second leading cause of world blindness (Resnikoff et 

al., 2004). Given its higher prevalence with increased age and the increasing 
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longevity of the population, an increased figure of 80 million has been predicted for 

2020 with 11 million cases of blindness from glaucoma (Quigley and Broman, 2006). 

Furthermore, as the World Health Organisation’s definition of blindness is based on 

central vision loss only, the disabling effects of peripheral vision loss are often 

under-estimated until later stages of the disease have been reached (Quigley, 1996). 

There is no cure for glaucoma but once detected, appropriate clinical intervention 

and treatment can help to slow further progression of vision loss – sight cannot be 

restored but may be maintained making earlier detection all the more important. 

Our understanding of the causes, mechanisms and manifestations of glaucomatous 

damage has been shaped by what is measured and how these measurements are 

made. Currently three measured features are considered crucial to the recognition of 

glaucoma, the ONH, the visual field and IOP. Previously it was believed that 

glaucoma was caused solely by elevated IOP and definitions for glaucoma 

historically relied on this belief. ‘Normal’ IOP was defined as that which was within 

2 standard deviations of the mean IOP found in the general population of 15.5 

mmHg (Colton and Ederer, 1980). Ocular hypertension (OHT) is a condition in 

which IOP is above this upper limit (greater than 21 mmHg) and historically it 

became mistakenly synonymous with pre-glaucoma or glaucoma without damage 

(Phelps, 1977). The association between OHT and glaucoma is now known to be 

multi-factorial and complex. The prevalence of OHT patients with glaucomatous 

visual field damage has been reported as approximately 10% (Sommer et al., 1991), 

though an increased prevalence of glaucoma was shown with increased IOP. In 

addition, an estimated 10% of untreated OHT patients developed glaucomatous 

optic nerve or visual field damage within an average follow-up period of 5 years 

(Kass et al., 2002). It is now understood that glaucoma can occur in eyes with 

‘normal’ IOP (<21 mmHg). Thus it is best to understand that IOP as a risk factor for 
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glaucomatous damage and that some eyes are more susceptible to the effects of IOP 

and sustain damage at a lower level. Still, as IOP is the only treatable risk factor for 

glaucoma, the reduction of IOP remains central to glaucoma treatment. 

 

Figure 1.1 Schematic anatomy of the eye. Numbers indicate main or notable 

features. Important ocular features and those most relevant to glaucoma and ocular 

imaging include, 2: posterior chamber, 3: iris, 4: pupil, 5: cornea, 6: anterior chamber 

(aqueous humour), 9: lens, 10: vitreal chamber (vitreous humour), 11: fovea, 12: 

central retinal blood vessels, 13: optic nerve, 14: optic nerve head or optic disc, 16: 

sclera, 18: retina. (Public domain image from http://commons.wikimedia.org [User: 

Rhcastillhos]) 

To understand IOP and its importance in glaucoma, it is crucial to consider the 

dynamics of the aqueous humour, the clear watery fluid secreted into the posterior 

chamber that circulates through the anterior chamber (Figure 1.1). This fluid is 

unrelated to tears, or to the denser gel-like substance, the vitreous humour, that is 
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contained in the rear chamber. The function of aqueous humour is to supply 

nutrients to the lens and cornea, dispose of the eye's metabolic waste and help 

maintain eye shape by regulating IOP. To maintain an IOP the inflow of newly 

produced aqueous humour is balanced by an outflow by drainage between the iris 

and cornea (Figure 1.1), primarily (80-90%) through a sponge like substance known 

as the trabecular meshwork, the remaining fluid outflow occurs independently 

through uveoscleral drainage. 

Glaucoma is also better understood once the basic principles have been established 

of how the eye receives and converts light information into neuronal signals to send 

to the brain. As light enters the eye, it is transmitted and refracted to the retina 

where it stimulates two different types of photoreceptor cells, called cones and rods, 

which produce electrical signals when activated. Rods become active at low levels of 

illuminance while cones are active at high levels and so enable human vision to 

operate over a wide range of stimulus intensities. The RGCs process the signals 

from these photoreceptors before refining and relaying them to the brain through 

their axons which exit the eye via the ONH. In humans there are over a million 

RGCs. The centre of the retina (macula) has a higher concentration of RGCs and 

cones, where vision resolution is best (Rabbetts, 1998, Purves, 2004). These axons 

comprise the innermost layer of the retinal nerve fibre layer (RNFL).  In mammals 

the axons of RGCs are guided to the ONH during embryonic development in a 

process called pathfinding (Oster et al., 2004). These axons converge on the ONH 

and exit the eye to the brain, passing through the lamina cribrosa - a mesh-like 

structure of collagen fibres (Figure 1.2). This convergence and exit forms the 

papillary structure of the ONH consisting of a rim of neural tissue and a central 

depression, known as the cup (Figure 1.3) (Weinreb and Khaw, 2004). 
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Figure 1.2 Retinal nerve fibre schematics showing (a) exit configurations of retinal 

nerve fibres leaving the optic nerve head related to the eccentricity of their starting 

point and (b) the arcuate-path configuration of retinal nerve fibres across the retina. 

(Images from(Khurana, 2007) 

 

Figure 1.3 Schematic of the ONH and optic disc and relationship to the RNFL. 

Glaucoma can be divided into various sub-categories depending on its aetiology 

and the mechanism of damage (Allingham and Shields, 2005). Glaucoma is defined 

as secondary or primary depending on whether the glaucoma is associated with 

some other ocular or systemic disorder or not. Primary or secondary glaucoma can 
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be broadly categorised further into open-angle glaucoma, closed-angle glaucoma or 

congenital. Primary open angle glaucoma (POAG) and primary closed angle 

glaucoma (CAG) are the most prevalent of the glaucomas and their descriptions will 

follow. Normal tension glaucoma (NTG) is a subdivision of POAG and is 

characterised by an IOP equal to or below 21 mmHg and thus POAG and NTG 

appear to represent a continuum of glaucomas with considerable overlap of 

causative factors. Outside Japan, more than 30% of newly diagnosed cases are NTG 

(Sommer et al., 1991, Dielemans et al., 1994, Mitchell et al., 1996). The condition may 

be under-diagnosed in Western countries because of the nature of case-finding for 

glaucoma. In Japan NTG is the most prevalent form of Glaucoma (Shiose et al., 

1991). In CAG the iris is pushed against the trabecular meshwork, sometimes 

sticking to it and closing off the drainage angle. This angle closure can be an acute 

condition - occurring abruptly and resulting in a large and sudden rise in IOP. CAG 

may account for up to 50% of glaucoma worldwide as it has a higher prevalence 

amongst Asians. Congenital glaucoma is a rare glaucoma typically characterised by 

the improper development and consequent dysfunction of the eye's aqueous 

drainage channels. 

This thesis focuses on POAG; The 2010 American Academy of Ophthalmology 

Preferred Practice Pattern (American Academy of Ophthalmology Glaucoma Panel, 

2010) defines POAG as “a  chronic ocular disease process that is progressive, 

generally bilateral, but often asymmetric.” According to their guidelines, it is 

associated with the following characteristics:  

1) Evidence of optic nerve damage from either, or both, of the following:  

a) ONH or RNFL structural abnormalities  
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b) Reliable and reproducible visual field abnormalities considered a valid 

representation of the subject's functional status 

2) Adult onset 

3) Open anterior chamber angles 

4) Absence of other known explanations (i.e., secondary glaucoma) for progressive 

glaucomatous optic nerve change 

POAG is the most common form of glaucoma in European, African and North 

American populations and the second most common form in Asia. To summarise 

recent studies the prevalence was reported at 1.5-2.4% in Caucasians, 6-8% in Afro-

Caribbean’s and 1.7-2.0% in Chinese populations (Tielsch et al., 1991, Klein et al., 

1992, Coffey et al., 1993, Dielemans et al., 1994, Leske et al., 1994, Mitchell et al., 

1996, Wolfs et al., 2000, Foster et al., 2000, Friedman et al., 2004b, Wang et al., 2010). 

Whereas CAG is often an acute disease, POAG is normally a chronic disease, 

resulting in slow progressive damage to the ONH and deterioration of the visual 

field. 

The debilitating effects of glaucoma in everyday visual function are worth 

considering in light of its prevalence. Though central vision is preserved until the 

latter stages glaucoma, there is emerging evidence that glaucomatous patients, even 

with relatively modest visual field defects, may be at increased risk of falls and 

accidents (Turano et al., 1999, Szlyk et al., 2005, Haymes et al., 2007, Ramulu, 2009). 

It has also been reported that glaucomatous field defects impact self-assessed 

disability (Nelson et al., 2003, Noe et al., 2003) and, more recently, objective 

measures of performance in laboratory-based studies have shown the difficulty 

patients have with some everyday tasks (Altangerel et al., 2006, Kotecha et al., 2009). 
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Glaucoma will affect an individual’s quality of life when visual field loss makes an 

individual unable to drive safely, and several studies of varying experimental 

design have shown that certain glaucomatous visual field defects are not compatible 

with safe driving (Johnson and Keltner, 1983, McGwin et al., 2004, Haymes et al., 

2007, Haymes et al., 2008). These considerations make understanding glaucoma 

with a view to detecting and treating glaucoma earlier even more compelling. 

Glaucomatous neuropathy preferentially damages RGC axons at the vertical poles 

of the ONH and is influenced to a variable extent by the level of IOP. Though RGC 

death occurs by apoptosis, the pathogenesis of this is not wholly understood. 

Underlying theories for axonal loss can be can be grouped by mechanisms of direct 

mechanical effects or those which are vascular related - through ischemia. These 

mechanisms are believed to act in combination rather than one acting at the 

exclusion of the other. The mechanical theory suggests that IOP acts directly on the 

lamina cribrosa and, as axons leave the eye through its complex connective tissue, a 

resulting shearing force is applied. This force causes either direct damage to the 

axons or disruption to the transportation of neurotrophic factors (Quigley and 

Addicks, 1980) necessary for survival, can lead to morphological changes in the 

RGC such as shrinking (Morgan, 2002) and eventually to the death of the cell 

(Crawford et al., 2000). The lamina cribrosa is less well supported at its inferior and 

superior margins, offering an explanation for the characteristic damage seen in 

glaucoma in these locations (Quigley and Addicks, 1981). Furthermore, animal 

models of short-term IOP increase show corresponding increased pressure 

gradients across the lamina cribrosa. Histology has shown the laminar structure is 

not restored to its original state when the IOP is reduced (plastic deformation) and 

that this structure becomes more easily deformed at the re-application of increased 

IOP (Bellezza et al., 2003). In the vascular mechanism theory, systemic factors which 
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can affect blood flow in the ONH may also be a factor in glaucomatous damage. 

Changes within the microcirculation of the ONH capillaries are responsible for 

axonal loss. Glaucomatous damage can be greater in eyes when the difference 

between systemic blood pressure and IOP (perfusion pressure) is low (Sommer, 1996). 

Perfusion pressure is an important determinant of ocular blood flow (Hayreh, 2001) 

and it has been reported to be lower in POAG patients than in OHT patients when 

other factors were controlled (Kerr et al., 1998). In glaucoma, RGC apoptosis and 

loss of axons, along with the deformation of the lamina cribrosa leads to 

characteristic morphological changes of the ONH. Neuroretinal rim decreases in 

size (narrowing its surface area) with parallel enlargement of the cup (widening its 

surface area) and thus these morphological changes are of particular interest for 

evaluating disease state.  

The term optic disc is often used interchangeably with ONH but in this thesis, to help 

with clarity, it is used to refer to the anterior surface and anterior features of the 

ONH or that portion of the ONH which is clinically visible by ophthalmoscopy 

(Jonas et al., 1999). Understanding the features of the optic disc (Figure 1.3) is 

important for glaucoma assessment. Optic disc area and relative rim area have large 

between-individual variation. This physiological variability makes glaucoma 

identification from these features alone difficult. A healthy neuroretinal rim is 

typically widest in the inferior optic disc region, and then in the superior, nasal and 

finally temporal regions, termed the ‘ISNT’ rule (Jonas and Garway-Heath, 2000). 

As outlined, glaucomatous damage to the rim is more or less likely in different 

regions and this depends on the stage of the disease. Most frequently, the disease 

starts with loss in the inferotemporal and superotemporal regions, followed by the 

temporal region and lastly in the nasal region (Hitchings and Spaeth, 1977, 

Airaksinen and Drance, 1985, Jonas et al., 1999). Optic disc haemorrhages are also 
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associated with the disease (Drance, 1989) and occur in about 4-7% of glaucomatous 

eyes. This occurrence is not useful for identifying glaucoma alone due to their 

occurrence in other optic nerve diseases such as drusen (Hitchings et al., 1976). 

Diffuse or localised loss of RNFL occurring in glaucoma can also be evident as 

visible defects in the RNFL which are not present in healthy eyes (Quigley et al., 

1992, Jonas and Schiro, 1994). Other features such as vascular changes, peripapillary 

atrophy and optic disc pallor are also associated with glaucoma. Therefore, 

examination of the optic disc and surrounding regions is of importance in both 

diagnosis and detection of progressive damage as will be discussed further. 

Risk factors are factors which predispose an individual to disease and are clinically 

useful to assess the risk of POAG based on the unique characteristics of the patient. 

POAG risk factors can be separated along demographic and clinical lines though it 

is likely that a combination of factors increase an individual’s risk. It is worth noting 

that the appearance of the optic disc is not considered a risk factor because its 

characteristics are part of the definition of glaucoma. Many risk factors have been 

identified but only a smaller number have strong evidential support (Friedman et 

al., 2004a). One of the strongest risk factors is elevated IOP, and several studies have 

demonstrated that the prevalence of POAG increases progressively with higher 

levels of IOP (Pohjanpelto and Plava, 1974, Sommer et al., 1991). It has been 

suggested that the overall risk of developing POAG is five times higher with IOP>21 

mmHg (Leske, 1983). More recently, a large population study of OHT patients 

showed higher baseline IOP to remain a leading risk factor for development of 

POAG (Gordon et al., 2002). Population-based studies of prevalence and incidence 

of POAG have shown consistently that age is one of the most important risk factors 

(Tielsch et al., 1991, Klein et al., 1992, Coffey et al., 1993, Dielemans et al., 1994, 

Leske et al., 1994, Mitchell et al., 1996, Friedman et al., 2004a). As a rule of thumb 
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these studies reported prevalence rates roughly doubling for each decade after 40. 

Studies into racial risk factors show that being of African, African-American or 

Afro-Caribbean origin puts one at a four-fold increased risk of developing POAG 

over white patients when averaged across age groups (Tielsch et al., 1991, Leske et 

al., 2004, Girkin, 2004a). Less data are available regarding POAG in other racial 

groups though results suggest that those from the Indian sub-continent have higher 

prevalence rates (Ramakrishnan et al., 2003), while those of Hispanic origin likely 

have intermediate prevalence of POAG between those of African descent and 

whites (Quigley et al., 2001).  

A positive family history of the disease also gives an individual a higher risk of 

developing POAG, though the disease does not usually exhibit Mendelian 

inheritance. Studies in families with and without cases of glaucoma led to the 

conclusion that IOP and the aqueous outflow facility are multi-factorial in 

determination and that POAG is probably multi-factorial also (Armaly, 1968). 

Evidence of a genetic background comes from studies indicating that the prevalence 

of POAG in first-degree relatives of POAG patients is 7-10 times higher than in the 

general population (Becker et al., 1960, Perkins, 1974). There is also a high 

concordance rate for POAG between monozygotic twins (Goldschmidt, 1973). More 

recent advances in genetics have led to the mapping of glaucoma genes, however, 

these genes only account for a small portion of diagnosed glaucoma: a mutation in 

one of these genes, labelled MYOC, is found in 3-5% of late-onset POAG (Stone et 

al., 1997). Ethnic risk factors are also significant as has been discussed.  

Further risk factors for POAG include myopia and diabetes (Leske, 1983, Wilson et 

al., 1987), while another study reports a relationship between elevated blood 

pressure and elevated IOP (Tielsch et al., 1995). A thorough review of risk factors in 
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glaucoma can be found in (Allingham and Shields, 2005). As IOP is the only 

treatable risk factor with strong evidence, most treatments of glaucoma focus on 

reducing IOP and its fluctuation. As glaucomatous neuropathy cannot be reversed, 

and due to the chronic nature of POAG, treatments can often be considered within 

the overall context of disease management. Treatments can be broken down into 

medication, laser surgery and incisional surgery. 

The management of POAG usually involves some form of topical and occasionally 

orally administered treatments that enhance aqueous outflow or reduce aqueous 

production or both. Prostaglandin analogues are the most commonly prescribed 

medication for glaucoma and work by increasing uveoscleral outflow (Allingham 

and Shields, 2005), beta-blockers inhibit aqueous secretion and were commonly 

used in initial medical management but their use in has declined recently in favour 

of prostaglandin analogues. Other treatments such as cholinergic agents cause 

ciliary muscle contraction which stretches the trabecular meshwork (Krieglstein, 

2000), carbonic anhydrase inhibitors inhibit aqueous production, adrenergic 

agonists also inhibit aqueous production and increase trabecular outflow 

(Allingham and Shields, 2005). As the actions of the various groups of drugs are 

different, combinations of these agents can be applied to achieve a target IOP. 

Topical medicines containing combinations of treatments are often prescribed to 

patients who require more than one type of drug for control of their glaucoma. This 

can help to reduce the burden of self-administered treatment on the patient. These 

treatments, in isolation or combined with others, have side effects (local to the eye 

and systemic) of varying severity (Detry-Morel, 2006). The overriding goal of 

medical treatment is to use the least number of medications necessary to achieve a 

target IOP with the minimum ocular and systemic side effects.  



 

34 

 

Laser surgery targeting the trabecular meshwork is known as trabeculoplasty. The 

two most common methods, Argon laser trabeculoplasty and the newer procedure 

selective laser trabeculoplasty both reduce IOP by improving aqueous humour 

outflow and differ in the type of laser used. Both treatments apply laser energy, 

usually to one half of the angle of the trabecular meshwork at a time. Selective laser 

trabeculoplasty is a potentially repeatable procedure because of the lack of 

coagulation damage to the trabecular meshwork, as shown in one study (Kramer 

and Noecker, 2001). Both treatments are simple, cost-effective and, once performed, 

do not depend on the compliance of the patient to self-administer medication. Laser 

trabeculoplasty has been shown to be at least as effective as medical treatment (The 

Glaucoma Laser Trial Research Group, 1990). Other studies have shown that the 

effects of laser trabeculoplasty are not always long-lasting however; IOP tends to 

rise over time in many patients (Schwartz et al., 1985). 

The most common incisional surgery performed in adults for glaucoma is 

trabeculectomy. This filtering procedure involves the removal of small part of the 

trabecular meshwork, specifically of a block of limbal tissue beneath the scleral flap. 

This creates a passageway for aqueous to escape from inside the anterior chamber of 

the eye to a pocket created between the conjunctiva and the sclera. Studies have 

shown trabeculectomy to be more effective than medical and laser treatments at 

lowering IOP and in preserving visual function in the long-term (Burr et al., 2005). 

Other surgical techniques, tube-shunt surgery or drainage implant surgery involve 

the placement of a tube or glaucoma valves to facilitate aqueous outflow from the 

anterior chamber. Laser and incisional surgeries carry with them low but significant 

rates of adverse risks such as infection, post-operative transient IOP increases, 

hypotony and development of cataract which are considered thoroughly elsewhere 



 

35 

 

(Allingham and Shields, 2005). In the last decade some clinical trials have reported 

on the effects of treatment over long term patient follow-up.  

The Early Manifest Glaucoma Trial (Heijl et al., 2002) compared the effects of 

lowering IOP using trabeculoplasty combined with medical treatment against no 

treatment or later treatment. The study showed treatment significantly delays 

further visual field deterioration with rates of detected further visual field 

deterioration of 41% in the treated group and 51% in the other group in a median 

follow-up period of 5 years. The Advanced Glaucoma Intervention Study (AGIS) 

(Advanced Glaucoma Intervention Study Investigators, 2000) examined the 

association of visual field deterioration and control of IOP by surgical intervention 

by both argon laser trabeculoplasty and trabeculectomy. After 5 years of follow-up, 

the study found a significant relationship between IOP reduction and a lower 

estimate of visual field loss. The Collaborative Initial Glaucoma Treatment Study 

has shown that patients randomised to either medical treatment or trabeculectomy 

at the start of clinical management had similar rates of further visual field damage 

(Musch et al., 2009). The Ocular Hypertension Treatment Study has demonstrated 

that, over a follow-up time of 5 years, the rate of conversion to POAG in OHT 

patients receiving topical glaucoma medication was roughly half of that in those 

receiving no treatment (Kass et al., 2002). It is worth noting that definitions of ‘visual 

field deterioration’ in these studies differed, making comparison between their 

outcomes difficult. Weinreb and Khaw (Weinreb and Khaw, 2004) provide further 

consideration of these and other clinical trials. These studies support the view that 

lowering IOP reduces the rates of further damage in visual fields and damage to the 

ONH but this view should be tempered by the potential risks and side-effects of 

treatment. The success of any treatment will be limited by how reliably and early a 

diagnosis can be established.  
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1.1 Diagnostic Technology in Glaucoma 

Preservation of visual function in glaucomatous patients relies on early detection 

and appropriate treatment. Detection depends on recognising the early clinically 

measurable manifestations of glaucoma. A diagnosis of glaucoma no longer relies 

on the presence of elevated IOP alone and the additional assessment of the visual 

field and the ONH are now integral to giving a reliable diagnosis. Though these 

assessments are complementary and a diagnosis is formed in consideration of all 

factors, these are subsequently discussed individually to give an insight on their 

operating principles and performance. 

Elevated IOP, along with subject age, remain the most important single risk factors. 

In addition, the periodic fluctuation of IOP or diurnal variation throughout the day is 

another feature which may present a more complex aspect to the risk of 

glaucomatous damage from IOP (Newell and Krill, 1964). In normal individuals, 

diurnal variation of IOP typically ranges from 3-6 mmHg with diurnal variations 

greater than 10 mmHg suggestive of glaucoma - even diurnal IOP fluctuations of 

greater than 30 mmHg have been reported for some glaucomatous eyes (Newell and 

Krill, 1964, Sultan et al., 2009). In clinical assessment, tonometry is used to measure 

IOP. This technology measures how much force is required to deform and flatten 

(applanate) an area of the cornea and can be categorised into those methods which 

are contact or non-contact. Contact tonometers have been shown to have better 

between-observer agreement (Tonnu et al., 2005b) and of these, the Goldmann 

applanation tonometer is considered the gold standard for measuring IOP (Sultan et 

al., 2009). Non-contact tonometers, using an ‘air-puff’ to deform the cornea, are 

more portable than contact tonometers and do not require local anaesthesia of the 

cornea. Corneal thickness is a significant source of error in tonometry resulting in 
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systematic underestimation or overestimation (Tonnu et al., 2005a, Kotecha et al., 

2005). Thick corneas require more applanation force and give artefactually high 

measured IOP and conversely patients with thin corneas may also have higher IOP 

than that measured by tonometry (Yagci et al., 2005). This discrepancy can be as 

much as 10 mmHg between eyes with the same true IOP which are at upper and 

lower extremes of the distribution of central corneal thickness measurements 

(Kohlhaas et al., 2006). 

Assessing visual function in glaucoma has become central to the management of 

glaucoma. Loss of sensitivity in the visual field is a correlate with the loss of or 

damage to signal carrying RGC axons and dendrites and ultimately determines how 

much effective functional loss a patient has suffered and what the patient can see 

(Heijl, 2000). Perimetry is the technique used to measure the sensitivity (or extent) of 

the visual field. The technique can therefore help address the real impact of 

glaucomatous damage on the patient, e.g. changes in the quality-of-life and fitness-

to-drive. Automated perimetry, typified by the commercially available Humphrey 

Field Analyzer (Carl Zeiss Meditec, Dublin, CA), normally measures the central 25-

30º of the visual field and this has become a clinical standard. This is performed by 

presenting light stimuli of varying differential intensity at various retinal locations 

while the patient fixates on a central target. The location and intensity of stimuli 

observed by the patient are recorded based on responses from the patient (Heijl and 

Patella, 2002). Various strategies are used to present stimuli and their intensities 

depending on the level of accuracy and speed of testing required in clinical 

assessment. A full threshold algorithm, steps stimulus intensity in fixed increments 

until a final sensitivity value is recorded for each test location. Alternatively another 

testing strategy, known as The Swedish Interactive Thresholding Algorithm, has 

been designed to provide results as reliable as full threshold testing but in a reduced 
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examination time (Bengtsson et al., 1997, Heijl and Patella, 2002). Perimetry 

technology can detect large fixation errors, and can estimate false positive and false 

negative events based on the timing of responses with respect to stimulus 

presentation. These can be used to give a measure of the reliability of the test. The 

output from the machine includes a map of the visual field and summary values of 

the whole field indicating if the field has localised or overall low sensitivity and if 

this deviates from a set of age matched healthy visual fields - this is especially useful 

because the variability between visual fields of healthy subjects is less than that of 

their ONH morphologies. Variability can be caused by the following factors: 

changes in pupil size, refractive error, ocular media opacities, eyelid artefacts, 

subject learning, fatigue and fixation errors (Henson, 2000). 

Examination of the ONH is a crucial adjunct to visual field assessment. 

Ophthalmoscopy is an integral clinical tool for optic disc examination but, apart 

from summary subjective findings, provides no permanent record of the appearance 

of the optic disc. Optic disc photography provides a high-resolution permanent 

record of optic disc appearance. Monoscopic and stereoscopic photographs can be 

taken with the latter having the added advantage of providing an appreciation of 

the depth of the optic disc morphology to the clinician. Assessment by trained 

observers of optic disc photographs alone has been shown to have moderate 

diagnostic accuracy in differentiating healthy and glaucomatous eyes (Wollstein et 

al., 2000, Greaney et al., 2002) - of note is the large disagreement between observers 

(Abrams et al., 1994, Reus et al., 2010, Denniss et al., 2011). The ability to detect 

changes in the optic disc morphology in follow-up assessments depends on the 

reproducibility of the method employed; if the method is highly reproducible then 

small changes in the disc can be detected. However, patients are not always 

followed by a single clinician and so this large variation between observers can be 
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problematic (Garway-Heath, 2000). Flicker-chronoscopy and stereo-chronoscopy  

(Goldmann and Lotmar, 1977, Barry et al., 1998) improve the identification of small 

changes between two photographs, but a false-impression of change can be 

generated by magnification error and parallax (Garway-Heath, 2000). Assessment of 

simultaneous and sequential stereoscopic optic disc photographs has been 

demonstrated to be capable of detecting progressive glaucomatous changes 

(Sommer et al., 1979, Pederson and Anderson, 1980, Odberg and Riise, 1985) but 

again this determination is often subject to large variation depending on the 

observer (The European Glaucoma Prevention Study Group, 2003, Jampel et al., 

2009). Planimetry is the term given to measurements made from photographic 

images. Some camera and software systems enable viewing of digitised optic disc 

photographs (Yogesan et al., 1999, Shuttleworth et al., 2000). This facilitates 

quantitative planimetric assessment of the optic disc but is limited by subjective 

interpretations of the boundaries of the optic disc and neuroretinal rim (Garway-

Heath et al., 1999).  

Scanning laser polarimetry (SLP), optical coherence tomography (OCT) and 

confocal scanning laser tomography (CSLT) form a triad of established semi-

automated imaging technologies capable of measuring the posterior segment of the 

eye and providing quantitative measures of the morphology of structures therein. 

Unlike optic disc photographs, which require expert training to obtain and examine, 

these imaging modalities have the advantage of offering relatively easy image 

acquisition and automated quantification of posterior features, which can help in 

identifying obvious or suspicious glaucomatous features. Imaging of the RNFL 

provides surrogate measures by which we can measure the true anatomical changes 

which accompany the deterioration of the visual field. Both SLP and OCT imaging 

techniques provide quantitative and objective measures of RNFL thickness.  
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SLP as typified by the commercially available GDx (Carl Zeiss Meditec, Dublin, CA) 

is based on the principle of measuring a retardation of backscattered light passing 

through the presumed form birefringent RNFL (Dreher and Reiter, 1992, Zhou and 

Knighton, 1997). This retardance is measured around the ONH and can then be 

translated to the thickness of the scanned RNFL at these locations using a linear 

conversion factor derived from a histological animal model (Weinreb et al., 1990). 

The GDx has evolved since its first clinical introduction, and fundamental to each 

principal stage has been how the scanning system has compensated for the 

birefringent properties of the cornea which would otherwise distort the retardance 

readings from the RNFL (Greenfield et al., 2000). The more recent of these 

approaches, variable corneal compensation and later enhanced corneal 

compensation rely on estimating the individual’s corneal birefringence and 

compensating for this. Variable corneal compensation uses a variable retarder 

aligned with the fast axis of corneal polarisation to do this (Zhou and Weinreb, 

2002). This technology shows promise in separating normal and glaucomatous eyes 

(Reus and Lemij, 2004, Tannenbaum et al., 2004). Enhanced corneal compensation  

adds retardance bias along the slow axis of corneal polarisation, measures the 

combination of the RNFL and the bias retarder, and extracts from this the RNFL 

retardance (Zhou, 2006). Theoretically, as the corneal retardance can be better 

estimated and thus removed, the enhanced corneal compensation mode can 

improve the signal to noise ratio of the RNFL retardance and thus lead to more 

accurate and less variable RNFL thickness measurements. Cross sectional studies 

have shown the diagnostic accuracy of the enhanced corneal compensation mode to 

be higher (Mai et al., 2007a), produce less frequent atypical retardation patterns 

(Morishita et al., 2008) and to have a closer relationship to visual field measures 
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(Morishita et al., 2008, Mai et al., 2007b) when compared to the variable corneal 

compensation mode.  

OCT captures high-resolution, three-dimensional images from within optical 

scattering media. It uses interferometry to measure the reflectance of light at 

different depths in the retina and ONH (Hee et al., 1995). RNFL thickness values can 

be derived by identifying and measuring the depth of the reflectance signal of the 

anterior and posterior boundaries of the RNFL. Time-domain OCT provides 

reproducible RNFL thickness measurements at various locations around the ONH 

(Budenz et al., 2005, Hsu et al., 2006). More recently developed spectral-domain 

OCT systems with higher resolution and faster image acquisition times provide 

RNFL thickness measurements with higher reproducibility (Kim et al., 2009). Both 

have shown reasonable diagnostic performance in differentiating eyes with and 

without glaucomatous damage (Schuman, 2008, Chang et al., 2009, Rao et al., 2010). 

CSLT obtains three-dimensional images of the ONH and other posterior segments 

of the eye and calculates their topographical surfaces and this technology is the 

focus of this thesis. The operating principles and features of CSLT are considered in 

Section 1.2. 

1.2 Confocal Scanning Laser Tomography 

The scanning laser ophthalmoscope (SLO) (Webb and Hughes, 1981) and later the 

confocal scanning laser ophthalmoscope (CSLO) (Webb et al., 1987) were developed 

in the 1980’s. The concept of imaging using a scanning laser system originated from 

the field microscopy in the previous decades (Cremer and Cremer, 1978). SLO and 

CSLO were designed to image ocular features such as the retina, macula and ONH 
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and offer advantages over conventional imaging such as direct and indirect 

ophthalmoscopy and digital fundus photography. Hosts of new applications have 

followed the advent of SLO and CSLO, such as eye-tracking, SLP, scanning laser 

Doppler flowmetry, scanning laser fluorescein angiography, scanning laser corneal 

microscopy and CSLT. A review of these technologies and their clinical applications 

can be found elsewhere (Sharp and Manivannan, 1997, Ciulla et al., 2003). CSLT, 

typified by the commercially available Heidelberg Retina Tomograph (HRT, 

Heidelberg Engineering GmbH, Heidelberg, Germany) is the subject of this thesis. 

The HRT exists in two versions, the HRT Classic and the more recent HRT II, which 

differ primarily in their scanning protocols and operating software. What follows is 

a description of how the HRT acquires images and reviews how the technology is 

typically used for diagnosis of glaucoma and for detecting progression. 

CSLT technology uses CSLO imaging combined with the concept of tomography to 

give three-dimensional images of the optic disc and peripapillary retina. Scanning 

laser imaging differs from conventional ophthalmoscopy and digital fundus 

photography in the method of illuminating the retina to form an image. CSLO does 

this point-by-point rather than capturing the image as a whole. A low-energy laser 

is focused on a point on the retina which reflects light back to a detector. A deflector 

mirror then moves the laser beam horizontally so an adjacent point can be imaged. 

When one line has been acquired a second deflector mirror moves the beam 

vertically before acquiring another horizontal line. A two-dimensional image is built 

up in this raster-like fashion in approximately 32 ms for the HRT Classic and 24 ms 

for the HRT II. For each image, the HRT Classic acquires the reflected intensity from 

a total of 256 × 256 equally-spaced points (pixels) in a 10° x 10° scanning angle, and 

the HRT II acquires a total of 384 × 384 pixels in a 15° x 15° scanning angle.  
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Another crucial feature of CSLO imaging, and what distinguishes it from non-

confocal SLO imaging, is the presence of an aperture after the laser source and 

another before the detector, both in focal planes conjugate to that of the object being 

imaged. This is the basis of the confocal optical setup which ensures that only light 

from the imaged focal plane reaches the image sensor as reflected light from in front 

of, or behind, the focal plane is rejected at the aperture. Figure 1.4 illustrates a 

confocal imaging system. The improvement in axial and transverse resolution with 

CSLO scanning over a non-confocal SLO system is clear in Figure 1.5. 

 

Figure 1.4 Principles of confocal scanning showing the placement of 

apertures/pinholes in front of the light source/laser and the detector. With an 

infinitesimally small aperture any light returning from planes posterior or anterior 

to the focal plane is rejected. 
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Figure 1.5 Examples of ONH scans of the same eye with a scanning laser 

ophthalmoscope system in (a) non-confocal and (b) confocal modes. (Images from 

(Plesch et al., 1990) 

Tomography implies imaging by sections or slices and involves incrementally 

changing the plane of focus. This means that CSLT involves incrementally moving 

the focal plane from anterior to posterior along the optical axis after each two-

dimensional CSLO image or optical section has been acquired to form a set or 

confocal stack of optical sections. An example sequence of this is illustrated in 

Figure 1.6 (a). The descriptive coordinate system for this three-dimensional space 

fixes measurements along the optical axis (axial) to the z-axis and measurements 

conjugate to the optical axis (transverse) to the x-y plane. In HRT Classic imaging 

this confocal stack consists of 32 optical sections spread at equal axial intervals over 

a scanning depth of 1.5 to 4.0 mm. In HRT II imaging the number of optical sections 

acquired is automated and depends on the optimum scanning depth for the 

particular ONH, varying from 16 to 64 with each optical section separated an equal 

distance of 62.5 µm apart. Each CSLO optical section is successively registered with 

the previous one to compensate for potential eye movements during scanning. From 

these aligned, three-dimensional confocal stacks (sizes: HRT Classic 32 x 256 x 256; 

HRT II [16, 64] x 384 x 384), a two-dimensional topographic height image or 
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topography is derived. This is done by calculating the approximate axial position of 

maximum reflectivity signal intensity at each transverse coordinate, along what is 

referred to as a z-profile (Figure 1.6 (b)). The topography then represents the surface 

height of the ONH and surrounding papillary retina (Figure 1.6 (c)-(e)) usually but 

not always at the approximate position of the internal limiting membrane; the 

intensity at each pixel within the image giving a height in microns. A reflectance 

image is also formed from the maximal reflectance values at each transverse 

coordinate’s z-profile (Figure1.7 (c) & (d)).  
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Figure 1.6 Principles of CSLT imaging. (a) “Stack” of confocal scanning laser 

ophthalmoscope images at incremental focal depths (false colour representation of 

reflectance intensity). Measurements in the z-axis are referred to as axial and those 

in the x and y axes are referred to as transverse. (b) The set of axial reflectance 

values at a given transverse coordinate �𝑥𝑖 ,  𝑦𝑗� is known as a z-profile. (c) The axial 

location of each z-profile maximal reflectance at coordinate �𝑥𝑖 ,  𝑦𝑗� is calculated 

and denoted 𝑧𝑖𝑗. (d) Axial locations are mapped to a topographic height image. (e) 

CSLT three-dimensional representation of (d). 
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Figure 1.7 Comparison of 10° x 10° HRT Classic topography (a) and reflectance 

images (c) and 15° x 15° HRT II mean topography (b) and mean reflectance images 

(d). Images have transverse spatial sampling of 256 x 256 (HRT Classic) and 384 x 

384 (HRT II) ensuring that transverse spatial sampling intervals are consistent. 

(Images from Moorfields Eye Hospital clinic database) 

Typically, three single topography images are acquired for each examination (this is 

automated with the HRT II) and averaged to calculate a mean topography. This 

became the convention after a recommendation from an early study on changes of 

variability within a mean topography with a varying number of single topographies 

(Weinreb et al., 1993). Figure 1.7 illustrates the mean topography images and mean 

reflectance images from a HRT Classic and HRT II examination of the same eye. 

Image registration algorithms within the HRT software align the single topography 

images for the within examination and between examination differences in scan 

positions. The most recent of these uses a technique of matching land-marks 

common to two images derived from a general methodology developed by Capel 
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(Capel, 2004). Further details of CSLT are provided elsewhere (Zinser et al., 1989). 

Though the technology has been shown to be accurate (Dreher and Weinreb, 1991) 

and to obtain reproducible topography images of the ONH (Chauhan et al., 1994, 

Rohrschneider et al., 1994), images can be prone to artefacts and noise from a 

number of sources. These include eye movements, temporary deformations of the 

ONH, cataract and pupil size. Noise sources and their effects are explored further in 

Chapters 4 and 5. The repeatability of topography images can be quantified with the 

mean pixel height standard deviation (MPHSD). This metric is a gauge of the 

variability of each pixel height measurement across the three topographies used to 

make up the mean topography (Dreher et al., 1991). Chapter 4 discusses this metric 

further.  

 

Figure 1.8 HRT II topography and reflectance images of glaucomatous eye (a) & (c) 

and normal eye (b) & (d). (Images from Moorfields Eye Hospital clinic database) 
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In Figure 1.8, topography and reflectance images are shown for the right eye of a 

glaucoma patient and for the right eye of a normal subject. In this example the 

differences in size and shape of the morphology of the ONH are clear. The HRT 

software quantifies morphological features of the ONH in glaucoma by calculating a 

number of three-dimensional stereometric parameters. A contour line is first 

delineated (Figure 1.9 (a)). This is a closed elliptical shape drawn manually using a 

subjective assessment of the location of the boundary of the optic disc which 

generally follows the inner margin of the sclera ring. Note that although this input is 

subjective, its position has been shown to have good between-operator agreement 

and is better than that of optic disc boundary delineations in other imaging 

modalities such as planimetry (Garway-Heath et al., 1999). 

 

Figure 1.9 (a) HRT topography with manually delineated optic disc boundary 

(contour line) and (b) illustration of the derivation of topography optic disc, neuro-

retinal rim and cup areas from the reference ring and contour line. 
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The mean peripapillary retinal surface height is found from the topographic height 

values within a peripheral reference ring as shown in Figure 1.9 (a). This reference 

ring is defined as an annulus, located at the topography image centre, with inner 

and outer diameters which are 91% and 94% respectively of the topography image 

width. The topographic image is set to zero at the mean topographic height of the 

reference ring and adjusted for peripapillary retinal tilt by subtracting a plane fitted 

to the topographic height values within the reference ring. Once offset and tilt 

adjustments are made, and after the contour line is drawn, a “reference plane” (see 

Figure 1.9 (b)) is calculated. This is a plane set parallel to and below the 

peripapillary retinal surface and it is used to divide the optic disc into neuro-retinal 

rim and cup (Burk et al., 2000). In Figure 1.10 (a) and (b) neuro-retinal rim area (RA) 

is simply the sum of the green and blue areas and cup area is measured as the red 

area. Other stereometric parameters can then be calculated. Rim volume (RV) and 

cup volume are likewise measures of the total volume between the reference plane 

and the topographic surfaces within the contour line which are above and below the 

reference plane respectively. Cup shape measure (CSM) is a measure of the three-

dimensional shape of the optic disc cup, also called the third moment, representing 

the skewness of the distribution of topographic height values within the optic disc 

cup (Burk et al., 1990). Height variation contour is the retinal surface height 

variation around the optic disc margin (Hatch et al., 1997). RNFL thickness, as 

calculated on the HRT, is the mean distance between the reference plane and the 

topographic height values around the optic disc margin (Iester and Mermoud, 

2005). In addition to the output of stereometric parameters for the whole 

topography image/optic disc (referred to as a global measure), when applicable, the 

HRT provides values in six predefined angular segments: temporal, temporal 

superior, temporal inferior, nasal, nasal superior and nasal inferior. 
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Figure 1.10 HRT II topography images for eyes in Figure 1.8 with overlay of 

manually delineated optic disc area and colours indicating neuroretinal rim (green 

and blue) and cup (red). (Images from Moorfields Eye Hospital clinic database) 

Stereometric parameters outputted by the HRT are clinically meaningful and are 

reproducible in varying degrees (Sihota et al., 2002). Because measured cup area and 

RA are simply the complement of the set of each other and the optic disc area, it is 

sensible to just consider one of these. RA measurements from stereophotographs 

have been shown to correlate with visual function (Balazsi et al., 1984). In Figure 

1.10 there is a clear difference in RA between the glaucomatous (a) and healthy (b) 

eye. RA gives a numerical value to a clinically recognisable and meaningful feature; 

the loss of RA provides a surrogate measure of the loss of retinal ganglion cell axons 

typical of glaucomatous damage (Yucel et al., 1998). It is the least variable of the 

stereometric HRT parameters and has been well characterised (Owen et al., 2006, 

Tan et al., 2003). RA is often examined as a proportion of overall optic disc area to 

provide a means of adjusting for differences in optic disc size. CSM may help to 

indicate differences between deeply cupped discs which have many outliers and flat 

cups which will have fewer outliers; it has been shown to correlate with indices of 

visual field damage (Brigatti and Caprioli, 1995).  
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These stereometric parameters and combinations thereof have thus been used with 

some success to discriminate between normal optic discs and those with glaucoma. 

However the observed large between-subject variability of optic disc morphology 

resulting in large variations of optic disc area, rim area and depth of cupping makes 

this task non-trivial. A variety of statistical and quantitative techniques applied to 

the stereometric parameters have been used for this task. Wollstein and colleagues 

(Wollstein et al., 1998) examined the best parameters that separated patients with 

early glaucoma from normal subjects. They reported the highest separation between 

these groups using the 99% prediction interval from linear regression between optic 

disc area and the logarithm of RA of the normal subjects. This approach has been 

included into the HRT software and is known as the Moorfields regression analysis 

(MRA). The MRA suffers from poor performance when optic disc areas are large 

and the variability of normal and disease free rim areas are most variable and 

difficult to separate. An ethnicity-specific database has been included in the more 

recent HRT software versions. This aims to improve the estimation of predictive 

normative limits by addressing the differences in disc size across ethnicities and has 

been shown to reduce the specificity but increase sensitivity for blacks while 

maintaining the similar sensitivity-specificity rates for whites as compared to the 

non-ethnicity specific database (Zelefsky et al., 2006). More recently when the 

specificity has been fixed at 90% there was no evident gain in sensitivity from this 

approach (Roberts et al., 2010). To account for different normative limits of RA at 

different disc sizes other approaches have used piece-wise linear regression of the 

logarithm of RA against disc area across four disc area intervals (Hawker et al., 

2007) or gone further by deriving the 99% prediction intervals from quantile 

regression (Artes and Crabb, 2010). The latter of these approaches was successful at 

reducing the dependence of diagnostic performance on disc area.  
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In addition an approach derives a probability of an ONH being abnormally-shaped 

due to glaucomatous damage called the glaucoma probability score (GPS) by 

automatically approximating  the topography with a simple geometrical curved 

surface and analysing the shape parameters of this surface using a machine learning 

technique (Swindale et al., 2000). By circumventing the need to draw a contour line 

this method has the advantage of removing operator variability inherent in the 

stereometric parameters. However the diagnostic performance of the GPS has been 

reported to be only similar to that of the MRA and still suffers from more false-

positive diagnoses for larger disc areas (Coops et al., 2006). In addition, for 

approximately 5% of topographies, the analysis algorithm fails to fit an 

approximating surface. Uchida and colleagues (Uchida et al., 1996) applied neural 

networks to CSM. Linear discriminant analysis uses combinations of stereometric 

parameters in optimum proportions to achieve best separation (Mikelberg et al., 

1995, Uchida et al., 1996, Bathija et al., 1998, Ferreras et al., 2008). Another method 

divides RA into thirty-six 10° angular sectors and ranks these to produce a curve 

which can be used to identify glaucomatous optic discs (Asawaphureekorn et al., 

1996, Gundersen and Asman, 2000). 

There are further studies which have demonstrated that the HRT discriminates 

between normal optic discs and those with glaucoma reasonably well (Burgansky-

Eliash et al., 2007, Ferreras et al., 2008). However, its diagnostic precision has been 

constrained by the wide and overlapping ranges of the size and shape of healthy 

and glaucomatous optic discs. The real promise of HRT technology is in detection of 

change in ONH structure over time, offering the clinician another tool for glaucoma 

management given that HRT measurements have been shown to be repeatable. 

Furthermore, the operational software of the HRT has undergone continuous 

development and refinement since its introduction in order to specifically improve 



 

54 

 

its ability to track changes occurring in the ONH (Strouthidis and Garway-Heath, 

2008). The main focus of this thesis is on the detection of progressive glaucomatous 

damage in the ONH in patients by analysis of data from repeated scanning over 

years of follow-up. Statistical techniques used for this purpose are investigated 

along with how these can be best compared and optimised. Both HRT Classic and 

HRT II measurements of the ONH were used for analysis.  

1.3 Glaucoma Progression 

In the management of glaucoma, preservation of vision is the principal objective. 

Glaucoma progression - the onset of initial damage in a glaucoma suspect or the 

occurrence of further damage in an established glaucomatous eye - represents a 

phase in the disease from which the loss of visual function cannot be restored. 

Monitoring patients with tonometry, perimetry and ONH inspection is essential to 

identify this progressive glaucomatous damage. However it is not enough to merely 

perform these measurements. For example, it has been shown that subjective 

assessment of follow-up series of visual fields by experts has poor agreement in 

detecting progressive visual field loss (Werner et al., 1988, Viswanathan et al., 2003). 

Similar findings have been demonstrated for stereoscopic optic disc photograph 

assessment (Jampel et al., 2009) and the subjective assessment of graphical outputs 

from the HRT software (Vizzeri et al., 2009). Furthermore measurement variability 

is an unavoidable feature of both perimetry and ONH imaging. Statistical 

techniques have been developed in perimetry to address these issues such as 

PROGRESSOR (Fitzke et al., 1996, Viswanathan et al., 1997) and Statpac 2 (Heijl et 

al., 1991). This thesis examines analogous statistical techniques applied to HRT 

acquired ONH images which involve large amounts of output data. 
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Estimates of how much damage has occurred to the ONH in a follow-up period and 

predictions of how much damage will occur are hugely helpful for the clinician 

when determining whether a surgical intervention or a change in medication is 

called for.  As outlined previously, the HRT can acquire scans of the ONH over time 

and process the data to provide a series of well aligned topographic images or 

topographies of the ONH. In order to detect glaucomatous structural change across 

these topographies with a high diagnostic precision it is necessary to firstly identify 

statistically significant change i.e. change that can be inferred as unlikely to be caused 

by the inherent measurement noise. Secondly, it is necessary to identify clinically 

significant change, i.e. change that is meaningfully associated with visual field 

damage and beyond that measured in normal age-related change. This is also true 

not just for measuring changes in more summary measures such as for the regional 

and global stereometric parameters provided but in the individual pixels of the 

topographic images. The clinician may seek to corroborate their subjective 

assessments of change with statistical inferences as to whether the change estimated 

from a sequence of observed measurements has a low probability of being caused 

by measurement noise.  

Currently, there is no accepted mathematical model or universally recognised 

quantitative technique for following the complexity of how a glaucomatous ONH 

changes over time. Because of ethical considerations, very little data are available on 

how glaucomatous eyes would change if left untreated and are restricted to visual 

field measures (Heijl et al., 2009). In the absence of an established model, change is 

often examined as a series of change events. In this framework, when a follow-up 

measurement exhibits a deviation from baseline measurement beyond some limit 

and which is confirmed upon repeat testing or scanning, a significant change event 

is said to have occurred. An alternative approach uses a linear model of change to 
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derive trends providing an easy to interpret average loss (some surrogate for axonal 

loss such as topographic height or a stereometric parameter) per year. Age-related 

changes of the optic disc have been quantified both longitudinally and cross-

sectionally. Any trend-based model of ONH glaucomatous change should 

incorporate considerations of these age-related changes, on top of statistical 

considerations to establish how reliable a measured trend might be. What follows in 

this section is a review of some of the methodologies for detecting progressive 

glaucomatous damage to the ONH using the HRT. 

1.3.1 Heidelberg Retina Tomograph Progression Detection Algorithms 

Methods for detecting change in the HRT can be broadly categorised by whether 

they analyse summary data of the optic disc morphology (stereometric parameters) 

or analyse local changes within the image space (pixel or super-pixel methods).  

Statistical methods to detect progressive ONH damage have been applied to HRT 

stereometric parameters. Previous studies (Strouthidis et al., 2005b, Jampel et al., 

2006) have shown RA to be the most repeatable parameter, both with between-visit 

and between-operator variability and it has been demonstrated to have good 

longitudinal reproducibility (Leung et al., 2008). This suggests it is the best 

candidate of the stereometric parameters to identify and track glaucomatous 

changes of the ONH. Studies have quantified the test-retest variability of the HRT 

stereometric parameters including RA (Mikelberg et al., 1993, Rohrschneider et al., 

1994, Miglior et al., 2002, Tan et al., 2003, Strouthidis et al., 2005b, Jampel et al., 

2006). These limits have been used to derive limits beyond which change cannot be 

accounted for by measurement variability and thus considered to represent true 

morphological change (Kamal et al., 1999a, Kamal et al., 2000). Fayers and 

colleagues (Fayers et al., 2007) developed a RA event analysis of change based on 
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this approach but refined the variability limits according to image quality. Tan and 

Hitchings (Tan and Hitchings, 2003, Tan and Hitchings, 2004) developed a 

technique using 30° angular sectors of RA and an experimental reference plane. 

Strouthidis and colleagues performed a simple linear regression of sectoral RA over 

time in OHT where progression was defined by an average trend > 1%/year of 

baseline RA and a statistical significance level tailored according to series variability 

(Strouthidis et al., 2006). In addition age-related change of RA has been well 

characterised (Tsai et al., 1992, Garway-Heath et al., 1997, See et al., 2009) as have 

the trends in RA changes observed in OHT patients  (Strouthidis et al., 2009a) and 

these estimates may help to differentiate ageing effects from true disease 

progression.  

By design, stereometric parameters are summary measures i.e. they are quantified 

by summing or averaging data over parts of the topography image for easy clinical 

interpretation. This process is highly data reductive and can consequently reduce 

the sensitivity of any statistical technique in detecting localised change. However, 

when using statistical techniques involving summary measures it is not necessary to 

account for any spatial correlation and multiple comparison problems which arise 

when assessing change at a pixel-wise level.  

The first statistical technique which looked for change on a local scale in series of 

HRT images was the topographic change analysis (TCA) (Chauhan et al., 2000). This 

analysis is included in the HRT software, and begins by dividing the topographic 

image into a 64 × 64 (HRT Classic) or 96 × 96 (HRT II) super-pixel array (each super-

pixel consists of 4×4, or 16 pixels). The topographic height variability in these super-

pixels is compared within a baseline examination to the height change between 

baseline and follow-up examinations (Chauhan et al., 2000, Chauhan et al., 2001). 



 

58 

 

This is done by performing an analysis of variance to measure the statistical 

significance of the average shift in the topographic height across all 16 pixels within 

each super-pixel from one set of images (3 replicates in the baseline examination) to 

another (3 replicates in the follow-up examination). For the analysis of variance an 

F-distribution is used to establish the significance, where the degrees of freedom are 

adjusted via a correction to account for spatial correlation within each super-pixel. It 

is worth highlighting that although this correction is used within a super-pixel, it 

does not correct for the spatial correlation between neighbouring super-pixels across 

the whole image. A change map of p-values, indicating the probability of change at 

each super-pixel, is created. Furthermore contiguous super-pixels showing 

significant (p<0.05) decreases in retinal height can be clustered together and 

identified as regions of interest. This allows the generation of various TCA change 

summary parameters describing the area, volume and location of regions of change. 

The change map of the most recent follow-up examination is compared with 

previous examinations and change across time in a super-pixel is confirmed if a 

significant super-pixel is present in 2 of the last 2, 2 of the last 3 or 3 of the last 4 

examinations depending on how many examinations are available and the 

implementation. The TCA is integrated into the HRT software which produces 

graphical outputs of the TCA as seen in Figure 1.11 which can be compared to the 

optic disc display.  
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Figure 1.11 Sample HRT Classic topography images series for a sample eye over 

four visits. TCA outputs are displayed in the top row with statistically significant 

negative (red) and positive (green) change overlaid. For the same series, overlaid 

stereometric parameters, rim area and cup area, within the outlined optic disc are 

shown in the bottom row (colours as per Figure 1.10). A progressive inferior 

cupping of the optic disc is evident and corresponds with the inferior ‘cluster’ of red 

pixels in the TCA map. (Images from Moorfields Eye Hospital clinic database) 

Originally an empirical criterion for ‘significant’ TCA change was established as 20 

or more statistically significant, confirmed super-pixels within the optic disc border 

(Chauhan et al., 2001). This criterion for change was introduced to set the specificity 

at a particular level, the limits being derived from empirical data (longitudinal data 

from normal subjects). Subsequently, three criteria for change have been reported to 

demonstrate the variation in overlap of patients with visual field and ONH 

progression at different levels of criterion stringency: least conservative (depressed 

significant super-pixels within the optic disc >6% of the area of the optic disc), 

intermediate (>10%) and most conservative (>18%) (Artes and Chauhan, 2005). 

Further criteria for TCA were based on the population limits observed in normal 
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subjects (Bowd et al., 2009). In this study, the area (in mm2) of the largest connected 

cluster of red super-pixels within the optic disc margin was found to be the best 

measure to separate those progressing patients from non-progressing patients at 

90%, 95% and 99% specificities. These guidelines reflect that the TCA has no 

intrinsic mechanism to account for the multiple comparison problem. The results 

are also based only on the comparison of, at most, the four most recent follow-up 

images with the baseline image. Thus detecting change is highly dependent on the 

quality of the baseline image. In addition because POAG is a slow progressive 

disease, there are often many years of follow-up and the TCA essentially ignores 

many interim follow-up examinations. Brett and colleagues (Brett et al., 2003) 

provide a thorough review of the issues involved in applying statistical techniques 

to imaging data including  how to account for the multiple comparison problem and 

spatial correlation.  

Statistical image mapping (SIM) was adapted and applied to HRT imaging of the 

ONH by Patterson and colleagues (Patterson et al., 2005) to identify glaucomatous 

progression and to address some of the theoretical shortcomings of TCA. This 

technique has an established use in analysing 3D images of the brain acquired using 

positron emission tomography and magnetic resonance imaging (MRI). In 

functional MRI, these techniques are used to process and analyze images to 

determine which parts of the brain are activated by different types of physical 

sensation, such as sight, sound or movement. A ‘so-called’ statistic image shows a 

map of areas of the brain activated by the experiment which can be rendered in 

three-dimensions. In particular a non-parametric version of these techniques 

(Nichols and Holmes, 2002, Bullmore et al., 1999, Arndt et al., 1996, Holmes et al., 

1996) has been applied to the HRT.  
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In short, SIM proceeds by calculating the trend of topographic change over time, by 

performing linear regression on the topographic height for each pixel within the 

area of the optic disc; this yields a test statistic summarising the amount of change at 

each pixel.  The sequence of the images is then reordered (or ‘shuffled’) in time and 

the test statistic is recalculated at each pixel.  This step is performed a finite number 

of times, each time using a unique reordering.  At each pixel a distribution of test 

statistics is generated and the observed test statistic is then compared to this 

distribution, therefore highlighting whether the observed sequence is something 

that could have occurred beyond chance.  A pixel is flagged as significantly 

changing if it falls outside the 95th percentile (a probability value of <0.05).  The area 

of the largest cluster of contiguous significantly changing pixels in the observed 

image series is compared to the distribution of those for the permuted image series.  

A global probability value for the entire image series is thus derived from this 

distribution position. This value provides a measure of the spatial extent of the 

glaucomatous damage which has occurred in the image series and takes account of 

the similarity that will exist between topography values of neighbouring pixels.  The 

method is wholly based on the patient’s own data and the test-retest variability of 

the image series, while also correctly accounting for the multiple comparison 

problem which occurs when calculating a test statistic at each pixel across an image 

space.  

1.3.2 Assessing the Performance of Change Detection Algorithms 

Apart from theoretical considerations, there is little evidence to suggest that one 

method for detecting change is better than another and the clinician is left to 

wonder what method for detecting change is best to use.  



 

62 

 

Most research assessing how well these techniques can identify and track 

glaucomatous progression with the HRT has focused on examining agreement 

between structural and functional measures of progression. In practice, this involves 

assessing the diagnostic performance of HRT information in predicting visual field 

changes (Miglior et al., 2001, Artes and Chauhan, 2005, Philippin et al., 2006, Saarela 

et al., 2010). Studies using visual field changes as a reference standard in this way 

can be confounded by dissociating factors between structural and functional 

changes (Hudson et al., 2007). As a consequence, the relative proportions of 

associated and independent behaviour are not well known and the temporal 

sequence of structural and functional glaucomatous progression cannot be well-

defined.  

Exploring alternative, and potentially more useful, reference standards against 

which the performance of HRT imaging can be assessed may avoid these 

confounding factors. Further characterising HRT variability will also help to 

determine an optimum approach to detect ONH progression in HRT images. These 

investigations will form the main focus of this thesis.  

1.4 Objectives 

The objectives of this thesis are to assess progression detection algorithms in ONH 

data from the CLST. In particular, this thesis aims to: 

• Compare the performance of three established competing progression detection 

algorithms using the clinical standard for glaucomatous structural damage to 

the ONH – expert assessment of optic disc photographs – as the reference 

standard 
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• Examine the effects of measurement variability across a range of characteristics 

on the statistical performance of some basic univariate statistical techniques to 

detect underlying change 

• Investigate image quality metrics of HRT images and their relationships to 

measurement variability 

• Develop and validate a simulation which can reproduce the variability of HRT 

data and help to provide a test-bed to evaluate the specificity and sensitivity of 

HRT progression detection algorithms  
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2. Glaucomatous Progression in 

Series of Stereoscopic 

Photographs and Confocal 

Scanning Laser Tomograph 

Images  

Most research on assessing how well glaucomatous progression can be detected 

using the HRT has focused on agreement between structural and visual field 

measures of progression, or on predicting visual field changes based on HRT 

information (Chauhan et al., 2001, Kamal et al., 1999b, Artes and Chauhan, 2005, 

Strouthidis et al., 2006, Philippin et al., 2006, Hudson et al., 2007). The fewer 

investigations comparing longitudinal HRT and stereophotograph series in humans 

(Chauhan et al., 2001, Kourkoutas et al., 2007, Chauhan et al., 2009) have indicated 

that agreement between these two structural assessments is moderate with 

concordances of 65%, 81%, and 44% to 71% (depending on progression criteria and 

expert observers) respectively. Other research in primate experimental glaucoma 

showed good agreement between these two imaging methodologies (Ervin et al., 

2002).  

The aim of this chapter is to examine change in HRT image series identified by three 

automated statistical analytical methods: TCA, SIM, and ordinary least squares 
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(OLS) linear regression of rim area (RALR) against time of follow-up. These changes 

are compared to assessments by glaucoma specialists of change in optic disc 

stereophotographs from the same eyes in order to determine which method had the 

highest concordance with expert assessment of stereophotographs. To control the 

sample specificity and sensitivity of HRT change detection analyses, criteria for 

change are varied in stringency.  

The work in this chapter has formed a paper published in Archives of 

Ophthalmology (O'Leary et al., 2010b). It was also presented at the Image 

Morphometry and Glaucoma in Europe Meeting, Rotterdam, The Netherlands on 

March 12-14, 2008 and the Association for Research in Vision and Ophthalmology 

Meeting, Fort Lauderdale on April 27 - May 1, 2008. 
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2.2 Methods 

2.2.1 Patients  

Data from the Devers Eye Institute Perimetry and Psychophysics In Glaucoma 

study are analysed and details of the investigation have been previously published 

(Fortune et al., 2007). All of the patients provided voluntary written consent to 

participate and to allow their clinical measurements to be securely held for future 

data analysis. All of the procedures adhered to the tenets of the Declaration of 

Helsinki and were approved by local ethics committee. Participants were recruited 

prospectively from the Devers Eye Institute, or other ophthalmic practices in the 

Portland, Oregon, metropolitan area. At recruitment, all patients were considered to 

have either high-risk OHT or early POAG. All subjects had a history of untreated 

IOP of at least 22 mm Hg in both eyes and at least one additional risk factor: a 

vertical cup-to-disc ratio of at least 0.6 in at least one eye or an interocular cup-to-

disc ratio asymmetry of at least 0.2; a positive family history of glaucoma; a personal 

history of migraine, Raynaud’s syndrome, or vasospasm; African-American 

ancestry; or age older than 70 years. All patients met the following criteria for both 

eyes: best corrected visual acuity of 20/40 or better and spectacle refraction within 

±5.00 dioptre (D) sphere and ±2.00 D cylinder and reliable standard automated 

perimetry results with MD better than or equal to -6 dB. Patients were excluded if 

they had any other previous or current ocular or neurological disease, previous 

ocular surgery (except uncomplicated cataract surgery), or diabetes mellitus 

requiring medication. Subjects were treated throughout follow-up at the discretion 

of their managing eye care specialists who were sent a copy of study-related test 

results yearly. 
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Figure 2.1 Selection criteria applied to stereophotograph and HRT progression 

study and the resulting sample sizes. 
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2.2.2 Selection Criteria for Study 

Data from an initial dataset of both eyes of 168 patients (336 eyes) with follow-up of 

at least 4 years (median=6.1 years) were evaluated. Figure 2.1 illustrates the selection 

criteria from this initial dataset with the numbers of patients and eyes in the study 

as selection criteria are applied. 

2.2.3 Stereo Optic Disc Photography and Grading 

Photographs were obtained annually for all of the patients using a simultaneous 

stereoscopic camera (3-Dx; Nidek Co., Ltd., Gamagori, Japan) after maximum pupil 

dilation. For each eye, the photographs obtained at baseline and at the most recent 

follow-up visit were randomly assigned to be labelled as A or B, to mask the 

temporal order. All other information about the eye and the patient was masked 

from the graders, including the appearance of the fellow eye. Two fellowship-

trained glaucoma specialists independently viewed the baseline and final follow-up 

photographs sequentially using a Stereo Viewer II (Asahi-Pentax, Tokyo, Japan) and 

graded them as “changing” or “stable”, indicating which photograph showed worse 

damage (A or B). If there was change, the type of change was recorded, as one or 

more of the following: increased neuroretinal rim narrowing, increased excavation, 

new or increased retinal nerve fibre layer defect or new notching.  The location of 

change was recorded in 90 degree sectors (0 -̊90˚, 90˚-180˚, 180˚-270˚ and 270˚-360˚). 

Quality assessments of each image pair were recorded separately for clarity and for 

stereopsis as ‘excellent, ‘adequate’ or ‘unacceptable’.  

The reviewers mediated disagreements by re-examining the photographs together 

to reach consensus; any continuing disagreements between these two graders were 

adjudicated by a third masked expert. Change identified in the correct temporal 
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direction (i.e. the follow-up photograph graded as worse) was labelled ‘true’ 

(glaucomatous change). Change identified in the ‘wrong’ temporal direction (i.e. the 

baseline photograph graded as worse) was labelled as ‘false progression’.  

1) Sample specificity, 2) sample sensitivity, and 3) the reproducibility of the assessment 

method are estimated by presenting the graders with three additional sets of 

photographs: 

1) A second set of stereophotographs obtained on the same day of a subset of 10 

cases from the larger study cohort were presented again. These 10 cases were 

randomly assigned a unique identification number and were inserted into the 

study set.  Sample specificity (i.e. the rate of correctly identifying no change) is 

defined as the proportion of these 10 eyes that the graders determined to have 

remained stable.  

2) Two glaucoma experts selected 10 examples of ‘definite’ glaucomatous change 

from their private practices that are separate from the study cohort. Temporal 

order was masked using the same A and B labelling scheme, and the 

photographs were randomly inserted into the study set. Sample sensitivity (i.e. 

the detection rate of true glaucomatous change) is defined as the proportion of 

these cases that the graders identified as progressing in the correct temporal 

order.  

3) Reproducibility is determined by duplicating the photograph pair for 10 eyes 

and reassigning each pair with a second unique identification number. 

The graders were unaware that these 30 cases were not part of the study cohort.  
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2.2.4 Confocal Scanning Laser Tomography 

The CSLT images were obtained using the HRT Classic. Several single topographies 

per examination were acquired and the three best-quality images (by subjective 

assessment) were combined to create a mean topography for each eye. An 

experienced operator outlined the optic disc margin. Images were analysed using 

the latest available software (version 1.6.1.0) but are not imported to HRT III 

software. The manual land-marking facility was used to correct obvious failures of 

the automatic alignment algorithm to adequately register images across time.  

2.2.5 Statistic Image Mapping 

SIM (as discussed in Chapter 1) is applied to topographic image series in this study. 

Its full methodological details can be found elsewhere (Patterson et al., 2005). Unlike 

the TCA, SIM is not integrated into the HRT software as a tool for progression 

analysis. The SIM algorithm was reproduced entirely in MATLAB (R2009a, The 

MathWorks Inc, Natick, Massachusetts) utilising an image-wise linear regression for 

each re-ordered image series which was programmed to take advantage of the 

platform’s more efficient matrix operations. A map of significant change is 

produced at each final follow-up examination along with a significance value for the 

largest connected cluster of significantly negatively changing pixels. For an image 

series of length 10 examinations processing time is approximately 6 minutes on a 

2.66 GHz dual core processor comparable to the reported 3 minutes of the original 

algorithm coded in the C computing language (Patterson et al., 2005). 
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2.2.6 Topographic Change Analysis 

TCA was performed on the data as per the description in Chapter 1. This is 

implemented as follow: using the super-pixel change probability maps and mean 

difference from baseline maps, exported from the HRT software, a significant 

change map is constructed for each follow-up examination. This is done by 

identifying super-pixel locations with significant decrease in the retinal height from 

the baseline examination (i.e., the locations with negative height change in the mean 

difference image and change probability < 0.05). Change across time is confirmed by 

comparing the most recent follow-up examination findings with those of the 

previous 2 examinations producing a final TCA map. 

2.2.7 Linear Regression of Rim Area 

As detailed in Chapter 1 of this thesis RA has been shown to give information which 

is clinically meaningful and also more reproducible than the other stereometric 

parameters from the HRT. Consequently is likely to be a better candidate among 

these for detecting and tracking glaucomatous structural changes. RA analysis for 

this study is trend-based. Global RA and RA for the six pre-defined sectors are 

analysed across time using OLS linear regression and p-values obtained for the null-

hypothesis that the trend of the linear fit is <0mm2 per annum. The fixed 320µm 

reference plane is used for all RA calculations (Burk et al., 2000) because it has been 

shown to improve the repeatability of RA measurements (Strouthidis et al., 2005a, 

Breusegem et al.). 
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2.2.8 Analysis: Measures of Change and Sliding Scale 

For SIM, the measure of change is the probability value of the largest cluster of 

‘active’ (red) pixels. In the TCA, the measure of change is the area of largest cluster 

of red super-pixels as a percentage of disc area. In the case of RA, the measure of 

change is the lowest p-value (most significant) obtained by LR of the 7 (global and 6 

sector) RA linear trends. Using expert-assessed stereophotographs as the reference 

standard, the aim is to vary the criteria for change for each method of HRT change 

analysis and compare proportions identified as changing. Thus, receiver operating 

characteristic (ROC) curves are generated to measure the diagnostic precision of 

each HRT change-analysis method in predicting glaucomatous optic disc changes 

assessed on stereophotographs. ROC curves are discussed further in Chapter 3. 

Agreement between HRT methods and stereophotograph change, at equal rates of 

glaucomatous progression classification, is examined and illustrated using area 

proportional Venn diagrams. This entailed fixing discriminant criteria to classify the 

same number of eyes as changing in HRT analyses as in the stereophotograph 

assessment. Analysis was carried out in MATLAB (R2009a, The MathWorks Inc, 

Natick, Massachusetts) 
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2.4 Results 

Ninety-one eyes of 56 patients from the original 336 eyes of 168 patients met the 

chronological and quality criteria (Figure 2.1). The proportion of glaucomatous and 

OHT patients was 87.5% and 12.5% respectively. Measurements from 7 annual, 

mean HRT scans (composed of 3 single HRT scans) for each eye in this study are 

used for analysis. Mean patient age at baseline was 56 years (range 35-82 years) and 

the male-female ratio was 52:48. The racial mix was as follows: 54 (96%) white; 1 

Hispanic and 1 American Indian. 

In the patient dataset, 33 eyes (36%) were assessed as exhibiting glaucomatous 

change using the stereophotograph reference standard. In 47 out of 91 instances 

(52%) the assessment required adjudication by the third grader (Table 2.1). 

The mean interval between baseline stereophotograph and baseline HRT scan 

acquisition was 8 days and the mean interval between follow-up stereophotograph 

and final follow-up HRT scan acquisition was 11 days. 

Of the same-day stereophotograph set, 2 of 10 eyes were judged to be changing by 

graders, giving sample specificity of 80% (95% CI, 44%-98%). Of the definite 

glaucomatous change set, 8 of 10 eyes were judged to be changing. Of the repeated 

set, 2 of 10 stereophotograph pairs resulted in different assessments on repeated 

presentation. Thus sample sensitivity and reproducibility are both estimated to be 

80% (95% CI, 44-98%). 

Figure 2.2 shows the ROC curves for TCA, SIM and RALR. Areas under the ROC 

curves (95% CIs) are as follows: 0.61 (0.56 - 0.66) for TCA; 0.62 (0.57 – 0.67) for SIM; 

and 0.66 (0.61 – 0.71) for RALR. Using the method of Hanley and McNeil (Hanley 
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and McNeil, 1983b) to compare areas under two ROC curves resulted in p=0.79, 0.26 

and 0.24 for pair-wise comparisons of TCA/SIM, TCA/RALR and SIM/RALR 

respectively. At a fixed specificity of 90% for all three methods, sensitivities are 25% 

for TCA, 27% for SIM and 40% for RALR, respectively. 

Table 2.1: The summary of stereophotograph assessment of progression in the 

study with the proportion of assessments reached by consensus and the proportion 

requiring adjudication. 

 
 Progression  

  Yes No Total 

M
od

e 
of

 
D

ec
is

io
n Consensus 11 (12%) 33 (36%) 44 (48%) 

Adjudication 22 (24%) 25 (27%) 47 (52%) 

 
Total 33 (36%) 58 (64%) 91 (100%) 
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Figure 2.2 ROC curves for HRT progression algorithms using stereophotograph-

assessed glaucomatous change as the reference standard for TCA, SIM and RALR. 

Areas under the ROC curves are 0.62 for SIM, 0.61 for TCA and 0.66 for RALR. 

Figure 2.3 shows the agreement of TCA, SIM and RALR identified change with 

stereophotograph change, after rates of identified progression are matched to those 

of the stereophotograph assessment (36%). Concordances are 0.54 for TCA, 0.65 for 

SIM and 0.67 for RALR and associated Cohen’s 𝜅 values are 0.05, 0.23 and 0.30 

respectively. Figure 2.4 shows the agreement among the HRT change-detection 

methods at equal rates of identified change (36%). This reveals concordances among 

the HRT change-detection methods to be 60% and pair-wise concordances of 

between 71% - 76%.  
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Figure 2.3 Area proportional Venn diagrams representing the agreement of TCA, 

SIM and RALR with stereophotograph assessment. Equal rates of identified 

progression mean that the circles in each diagram are equal in area. 
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Figure 2.4 Area proportional Venn diagrams representing the agreement of TCA, 

SIM and ordinary RALR with each other in determining glaucomatous progression. 

Equal rates of identified progression mean that the circles are equal in area. 

Figures 2.5-2.8 show 4 cases to illustrate different levels of agreement between HRT 

analyses and stereophotograph assessment when criteria for progression are fixed 

for equal classification rates. The stereophotograph decisions were reached by 

consensus in case 1 and case 4 but required adjudication in cases 2 and 3. 
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Figure 2.5 Case 1. A Single baseline (April 1998) and D single final follow-up (April 

2005) photographs from stereophotograph pairs, with excavation and rim-

narrowing indicated supero-temporally and supero-nasally (arrows). B Baseline 

HRT mean image (April 1998). Final follow-up HRT mean image (April 2005) with 

C TCA (progression flagged) and E SIM (progression flagged) outputs (the dark red 

pixels represent the largest cluster of pixels within disc). F Output for RALR (red 

sectors represent significant p-values for negative trend of RA). 
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Figure 2.6 Case 2. A Single baseline (August 1998) and D single final follow-up 

(August 2005) photographs from stereophotograph pairs with excavation indicated 

infero-temporally (arrow). B Baseline HRT mean image (August 1998). Final follow-

up HRT mean image (August 2005) with TCA C (no progression flagged) and SIM E 

(no progression flagged) outputs (dark red pixels represent largest cluster of pixels 

within disc). F Output for RALR at (red sector and centre represent significant p-

value for negative trend of RA). 
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Figure 2.7 Case 3. A Single baseline (October 1998) and D single final follow-up 

(August 2005) photographs from stereophotograph pairs with excavation indicated 

infero-temporally (arrow). B Baseline HRT mean image (October 1998). Final follow-

up HRT mean image (August 2005) with TCA C (no progression flagged) and SIM E 

(no progression flagged) outputs (dark red pixels represent largest cluster of pixels 

within disc). F Output for RALR (green centre represents no significant p-values for 

negative trend of RA). 
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Figure 2.8 Case 4. A Single baseline (July 1998) and D single final follow-up (July 

2005) photographs from stereophotograph pairs with no observed change. B 

Baseline HRT mean image (July 1998). Final follow-up HRT mean image (July 2005) 

with TCA C (progression flagged) and SIM E (progression flagged) outputs (dark 

red pixels represent largest cluster of pixels within disc). F Output for RALR (red 

sector and centre represent significant p-value for negative trend of RA). 
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2.5 Discussion 

The CLST, as typified by the HRT, has been shown to give a repeatable measure of 

optic disc structure (Dreher et al., 1991, Cioffi et al., 1993, Chauhan et al., 1994). The 

HRT does reasonably well in distinguishing glaucomatous eyes from healthy eyes 

(Mikelberg et al., 1995, Asawaphureekorn et al., 1996, Bathija et al., 1998, Wollstein 

et al., 1998, Swindale et al., 2000, Zangwill et al., 2001, Coops et al., 2006). The real 

promise of the technology may be in offering a reliable method for tracking 

structural change, potentially providing useful clinical management information 

about disease stability. A method for quantifying change is required to realise this 

potential and there has been much research activity in developing an appropriate 

technique (Chauhan et al., 2001, Tan and Hitchings, 2003, Patterson et al., 2005, 

Strouthidis et al., 2006, Fayers et al., 2007) but there is little evidence to suggest that 

one method is better than another.  

Studies using functional progression (visual field deterioration) (Girkin, 2004b, 

Sample et al., 2002, Artes and Chauhan, 2005, Strouthidis et al., 2006) are 

confounded by aspects of the relationship between structural and functional 

changes. The relative proportions of associated and independent behaviour are not 

well-known and the temporal sequence of structural and functional glaucomatous 

change is not well-defined.  Because change identified by structure and function do 

not seem closely related, it may be more likely that progression identified by 

glaucoma experts from optic disc stereophotographs would provide a better 

reference standard against which to assess the performance of another structural 

measurement for progression (CSLT images).  
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This study is one of few examining agreement of HRT change analyses with expert 

assessed stereophotographs (Chauhan et al., 2001, Ervin et al., 2002, Chauhan et al., 

2009, Kourkoutas et al., 2007). A variety of statistical methods are considered for 

detecting change in HRT images and the stringency of the criteria for HRT change 

was varied to give a measure of sample sensitivity across the full range of sample 

specificity. This study took advantage of data from a carefully collected prospective 

longitudinal study across a relatively long period, and strict image quality criteria 

were applied. Previous research (Morgan et al., 2005) has shown better between-

grader agreement and better reproducibility from stereophotographs than from 

monoscopic photographs when discriminating between glaucomatous and healthy 

discs. The estimate of reproducibility for expert assessed progression in 

stereophotographs in this study, at 80%, is comparable with that of previous studies 

that have obtained 𝜅 values of 0.62-0.89 (Parrish et al., 2005) and 0.80-1.00 (The 

European Glaucoma Prevention Study Group, 2003) for within-observer 

reproducibility. 

The ROC analysis suggests that, when using stereophotograph assessment as the 

reference standard, automated HRT methods have only moderate precision to 

predict change. The ROC curves revealed poor sample sensitivities for clinically 

relevant regions of high sample specificity. At equal rates of classification, poor 

agreement is found between the expert-assessment of stereophotographs and the 

HRT analyses. Both stereophotographs and HRT images are assumed to give an 

accurate and repeatable measure of the structure of the optic disc but the false-

positive and false-negative rates of both the reference standard and the HRT 

methods may largely explain this poor agreement. This is illustrated in cases 1-4 

(Figures 2.5-2.8). The false positive rate of photograph grading from this study 

(estimated to be 20%) is a major factor. This rate falls within the range of previous 
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studies (Ervin et al., 2002, Chauhan et al., 2009) (ranges of 0% - 50% and 5% - 77% 

respectively depending on stringency of progression criteria and observers). 

Furthermore, grader agreement, even between ‘experts’, in other tasks, such as 

separating healthy and unhealthy optic discs, (Reus et al., 2007) or assessing 

progression events in series of optic disc stereophotographs (Jampel et al., 2009, 

Chauhan et al., 2009) and visual fields (Viswanathan et al., 2003) is not good.  

Owing to the nature of this dataset (generally early glaucoma) there is likely to be a 

wide range in the magnitude of changes and agreement may be much worse when 

changes are of small magnitude, partly evidenced by the 52% of stereophotograph 

assessments that required adjudication by a third expert.  

Further reasons for the difference may be that features sometimes implicitly 

attributed to glaucomatous change in stereophotographs (e.g. colour changes) may 

not be apparent in HRT images which are simply estimates of the topographic 

height of the optic disc surface and surrounding areas. Other contributing factors 

are that certain optic disc configurations (such as hypoplastic and tilted discs) may 

present greater difficulty for either HRT analysis (image registration, contour line 

fitting and RA calculation) or stereophotograph assessment. 

Concordance among all three statistical methods for detecting HRT change is 60% 

and pair-wise concordance are 71% to 76%. It is not surprising that agreement 

among HRT analyses is better than is agreement between stereophotograph 

assessment and HRT analyses. Differing statistical methods such as those used in 

this study will never have perfect concordance even on the same data. However the 

level of disagreement between HRT analysis methods is probably amplified by the 

low stringency of the change criteria (fixed to identify equivalent 36% - 

proportions), and the related (likely) high false-positive rate. These criteria are less 
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stringent than those used in previous studies (Chauhan et al., 2001, Patterson et al., 

2005). 

The results of this study expose the limitation of using grader-assessed 

stereophotographs alone as a reference standard for structural glaucomatous 

progression. Future studies to assess the effectiveness of HRT change analysis 

methods may require a more innovative approach to establishing a reference 

standard. Using an accumulation of information from a variety of measurements 

(visual field, IOP and optic disc) and presenting this as a continuous scale for 

evidence of change might be useful (Artes and Chauhan, 2005). Another approach 

might be to simulate series of images with known properties, using a virtual 

platform in which the CSLT image formation process is simulated computationally 

from a baseline scan. Automated analysis of the reconstructed optic disc from 

stereophotographs may also be useful (Xu et al., 2008). Imaging devices, such as 

spectral domain OCT, which may give surrogate measurements closer to what is 

really required to detect real glaucomatous change, may also help refine reference 

standards for progression. 

Though this is outside the scope of this study, it is worth remembering that 

progression detection is not necessarily a binary classification between changing 

and not changing. There are a small proportion of patients who are likely to suffer 

large glaucomatous damage in a short space of time while the typical patient 

experiences slow changes over a long period of time with a continuum in between. 

This continuum has been observed in visual field data of untreated patients (Heijl et 

al., 2009). So it is important to distinguish this complementary approach and 

address the issue of reporting the best estimates of optic disc changes along with the 

statistical confidence in these. 
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There are other limitations to this study. Varying criteria for progression in 

stereophotograph assessment would have been useful in determining various 

diagnostic strengths of the HRT analyses (Chauhan et al., 2009) but may also have 

led to even less agreement between graders. The setting of a cut-off criterion to 

determine progression is not trivial: because the true specificity of a criterion cannot 

be known, setting the cut-off value to result in equal rates of progression provides 

an opportunity to compare the agreement between the HRT change detection 

methods when the ‘hit-rate’ is the same. Times to progression were not examined, in 

part due to stereophotographs being assessed only at baseline and final follow-up. 

Therefore there are no estimates to report as to which HRT analyses detected change 

earliest, although one could question the value of such analyses when agreement 

between methods is poor. The number of eyes in the definite glaucomatous change 

stereophotograph set and the same-day (no glaucomatous change) set are low, 

resulting in large CIs for the estimates of sample specificity and sensitivity for the 

expert-assessed change. However, as already discussed, these estimates are similar 

to those of previous studies. Because only ‘depressed’ change is examined in HRT 

topographies, glaucomatous change resulting in elevation of the optic disc surface 

(if it occurs), would have been overlooked. However, given the nature of glaucoma, 

this approach seems reasonable given that an elevation may be more indicative of 

measurement noise or morphological change independent of glaucoma than a 

depression and may have resulted in a higher rate of falsely detected glaucomatous 

change. Moreover, the ability to accurately detect changes, or lack of changes, in 

HRT longitudinal image series will depend enormously on the ability of the 

software to register the images appropriately and thus these results are limited by 

the constraint of the HRT alignment algorithm. Only HRT Classic (10° x 10°) images 

were available in the study which although wide enough to contain the optic disc in 
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all cases, have less available features for registration than HRT II (15° x 15°) 

resulting in poorer alignment in the latest HRT software (Bergin et al., 2008). Also 

HRT Classic topography series unlike HRT II series, are not corrected for parabolic 

error between mean topographies caused by axial movement of the eye between 

exams (Balasubramanian et al., 2011), potentially leading to further topographic 

variability.  

A separate analysis of glaucomatous and OHT patients may have revealed 

differences in the rates of change in stereophotograph assessments and HRT 

algorithms but the number of OHT patients was so low as to limit the reliability and 

utility of any inferences from this comparison. Finally the resulting proportion eyes 

progressing by stereophotograph assessment should be used with caution when 

extrapolating to groups of non-white patients and groups with more established or 

later stage glaucoma.  

In conclusion, this study revealed poor agreement between progression detection 

using a variety of HRT statistical methods and expert-assessed stereophotographs of 

the optic disc. Using stereophotograph-assessed change as the reference standard 

does not help determine which HRT change algorithm best identifies glaucomatous 

change in this group of patients with high risk OHT and those with early glaucoma. 

This does not imply that stereophotographs are not integral to the assessment of 

glaucomatous change. Indeed they are a clinically well-accepted standard that have 

been used in major clinical trials. However, the diagnostic precision associated with 

observer stereophotograph-assessed change precludes it from being a stand-alone 

benchmark by which to evaluate alternative change detection tools. The practical 

benefits of being able to observe change using automated or semi-automated digital 

image analysis, and other recent evidence, (Chauhan et al., 2009) suggest that it is an 
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important tool for assessing disease progression, especially if a statistical method for 

best detecting the change can be established. The extent to which these algorithms 

measure real ONH changes across time in HRT image series and their related 

stereometric parameters will need to be established in other ways and this will be 

addressed in the following chapters.  
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3. Trend Detection in Series of 

Univariate Measurements 

It is well established that POAG is a slow progressive disease which requires 

continuous management by the clinician. This means that, once diagnosed, POAG 

patients will need clinical follow-up examinations for the rest of their lives. The 

advantage of an approach for measuring change as a trend will be that it can 

incorporate information from the often long series of follow-up measurements more 

readily than an event analysis and give a clinician a better insight on the success (or 

failure) of certain treatments with a particular patient. The estimation of trends in 

metrics such as global RA and mean RNFL thickness has an important role as a 

summary measure by which to quantify optic disc changes measured by imaging. 

RA and RNFL are surrogate measures of axonal health and trends in these are 

relevant in that a general decrease over time can serve as a measure of 

glaucomatous axonal loss. They also lend themselves readily to clinical 

interpretation: change in an area can be easier to appreciate visually and interpret 

than a change in a topographic height. When attempting to detect true 

glaucomatous structural change it is necessary to firstly identify statistically 

significant changes before determining if the change represents an amount of loss to 

warrant a change in treatment or further or more thorough examinations. A 

statistical model which describes just one variable is known as a univariate model and 

it is the purpose of this chapter to examine univariate models for detecting trends in 

an individual stereometric parameter (in this case RA) with equal application to 

detecting change in other stereometric parameters and much more localised 

measures such as in the individual pixels or super-pixels of topographic images. 
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Statistical models of univariate trends in glaucoma have mostly taken the simplest 

of forms. Linear models of change with simple (but strong) assumptions about the 

measurement noise are frequently used in modelling longitudinal series of both 

localised and global visual field (Hitchings et al., 1994, Fitzke et al., 1996, 

Viswanathan et al., 1997, Gardiner and Crabb, 2002a, Heijl et al., 2009) and 

structural measures (Strouthidis et al., 2006, See et al., 2009). The linear model 

requires fewer parameters than more complicated models and crucially provides an 

easy to understand average linear trend across time at any point in time which is 

equivalent to the average change per unit time over the whole follow-up. Because of 

the strong assumptions it makes, it is known as a parametric model. Another model 

of change, by ranking measurements, has been used before to establish the evidence 

of change in sectoral RA measurements (Artes and Chauhan, 2005). This type of 

easily understood model makes very few assumptions of the data – and is known as 

a non-parametric model. As a result, this type of method can be more appropriately 

applied to a wider range of data series where change may not follow a linear trend 

and it is potentially more robust to outliers. This rank-based approach does not 

however provide a measure of change but merely indicate if there is evidence for a 

trend occurring over time. Other approaches such as those assuming a linear model 

but drawing statistical inferences by non-parametric means can be classified as semi-

parametric methods such as that used in SIM pixel-wise analysis for detecting 

significantly changing topographic locations over time (Patterson et al., 2005). Along 

with the strength of the underlying trend, the measurement variability of any data, 

will govern how well this trend can be detected by any statistical technique. 

The variability of ONH imaging data is frequently reported but rarely characterised 

beyond the most summary of descriptors such as the standard deviation or 

coefficient of variation. These measures are used to helpfully distinguish if one area 
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of the ONH has greater measurement variability than another (Tan et al., 2003, 

Strouthidis et al., 2005b) or if one device has greater measurement variability than 

another (Kim et al., 2009). Though it is useful for these comparisons the standard 

deviation is sufficient only in characterising variability from a normal distribution. 

Other characteristics of measurement variability such as the skewedness (the 

tendency of a distribution to be smeared in one particular direction) or the kurtosis 

(the tendency of a distribution to have heavier tails) of the measurement variability, 

and ideally an empirical fitting of different distributions to measurement variability 

distributions are desirable. There is a notable exception to this in analysis of HRT 

RA data (Owen et al., 2006). This analysis by Owen and colleagues has 

demonstrated that both the test-retest and longitudinal measurement variability of 

RA are non-normally distributed. 

Furthermore, in many fields, the dependence of the variability of a measurement on 

the underlying value of the measurement is not always uniform. This phenomenon 

is termed heteroscedasticity and the case where variability remains uniform is called 

homoscedasticity. This is especially relevant for modelling change as by definition the 

measurement will change over time. It is well known that the variability of visual 

field sensitivity is associated with loss of sensitivity (Henson et al., 1999, Spry et al., 

2001). No theory that test-retest or longitudinal RA variability change with RA itself 

has been established. There is evidence both for (Tan et al., 2003, Leung et al., 2008, 

Lin et al., 2009) and against (Strouthidis et al., 2005b, Jampel et al., 2006) stage of 

disease being related to same-eye variability of HRT topographic and morphological 

measures though it is likely that these latter studies did not have a sufficient range 

of RA to show any relationship. For those studies reporting changes in RA 

variability with disease stage, an increase has been consistently shown for more 
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advanced disease stage. Thus it is worthwhile investigating the potential effects of 

changes in RA variability over time. 

Another potentially difficult factor for any statistical change detection technique to 

address is that measurements in a series (or the measurement errors) may have 

some relationship to each other. This relationship of serial measurements with each 

other is known as autocorrelation. This can be periodic as in the case of the circadian 

changes in IOP (Hughes et al., 2003) and is often seen on a longer timescale in the 

form of seasonal effects (Giuffre et al., 1995, Wu and Leske, 1997). No studies have 

systematically investigated any periodic changes in ONH data from the HRT (or 

any other devices) beyond the short time-scale of the cardiac cycle (Chauhan and 

McCormick, 1995). A single case study has shown an large variation in RA of a 

patient with a large circadian IOP amplitude (Lee et al., 1999) and another study has 

shown that induced acute IOP increases result in increased optic disc diameters 

(Poostchi et al., 2010) which may affect RA . 

One way to investigate the false positive detection rate from statistical methods is to 

use real data in which any detection of statistically significant changes or trends will 

be due to measurement noise alone. A ‘stable’ dataset in which it is highly unlikely 

for any measured change to be associated with glaucomatous pathology; in 

particular, a series of many repeated measurements acquired over a short period of 

time can be useful for this. This circumvents the need for an external gold standard 

of stability in serial ONH measurements. The use of a Monte Carlo simulation 

(Metropolis and Ulam, 1949) has, with the advent of increased computing power, 

offered applied statisticians an accurate tool to compare and contrast statistical 

methods where analytical solutions are not easily available. This approach is taken 

to assess the ability of statistical algorithms to detect underlying trends buried in 
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noisy data without confounding effects from an uncertain reference standard of 

change. In a simulation setting, measurement variability can be designed to be 

representative of that of real data with the further advantage that it is also possible 

to simulate series where an underlying trend is present and known in advance. 

Given that we know so little about the trends governing RA change over time and 

the measurement noise characteristics, it seems wise to experiment with a range of 

‘scenarios’ in which different combinations of measurement variability and trends 

are used to assess the performance of change detection techniques of interest. 

The aim of this chapter is to assess the performances of different parametric, semi-

parametric and non-parametric univariate statistical techniques for detecting trends 

using both short-term ‘stable’ series and simulated series. Simulation allowed the 

design of multiple ‘scenarios’ of series with different measurement variability and 

magnitudes of underlying change (known by design) which approximate to real 

data.   
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3.1 Trend Detection Techniques 

In assessing a series of univariate measures over time, the clinician, clinical scientist 

or computer algorithm is presented with a series of 𝑛 measurements (in the case of 

this analysis, RA measurements) 𝑦𝑖 = (𝑦1,𝑦2 … , 𝑦𝑛) at corresponding time 

points 𝑡𝑖 = (𝑡1, 𝑡2 … , 𝑡𝑛). To detect an underlying trend in this data involves 

devising a model of change over time, fitting this model to the data and testing that 

the fitted model has a significant trend with a hypothesis test. 

One of the simplest approaches to this might be to assume a linear trend model 

along with other assumptions (below) and to perform an OLS linear regression. In 

general terms, OLS regression is an approach to quantifying the relationship 

between a scalar variable 𝑦 to one or more predictor variables denoted 𝑋 by 

optimally fitting the observed variables to an assumed model giving “best-fit” 

parameters for this model. In OLS linear regression, a linear model and its estimated 

parameters are used to estimate this relationship. In the case of trend analysis the 

OLS linear regression approach would be to model time as a predictor variable and 

its linear relationship with whatever measurements are being observed over time. 

The principal assumptions of OLS are that there are no errors in the predictor 

variable (time) with the following additional assumptions (Salkind and Rasmussen, 

2007): 

1. Measurement errors about each point are sampled from a normal distribution 

with a mean of zero (normally distributed) 

2. Distributions from which measurement errors are sampled do not change across 

the predictor variable (identically distributed/homoscedastic) 
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3. Successive measurement errors are independently sampled (independent/non-

autocorrelated) 

These assumptions are strong and it is likely that scenarios exist in serial 

measurement of clinical data such as RA measurements where these are violated - 

these have been discussed in the introduction to this chapter. Under assumption of 

the normality of the error terms, the estimator of the slope coefficient will itself be 

normally distributed (Salkind and Rasmussen, 2007). As a result, the hypothesis-test 

regarding the significance of the trend measured by OLS linear regression (after an 

appropriate adjustment for the measurement noise) can be inferred from a 

theoretical student’s t-distribution. For this reason OLS linear regression trend 

detection is referred to as a parametric method. Other means of modelling trends 

(see (c) below) and other means of performing hypothesis tests in a non-parametric 

fashion are readily implemented and easily understood for trend detection and will 

be used in the analysis of this chapter along with OLS linear regression. 

A permutation test is a hypothesis test which infers the significance of a test-statistic 

from distribution of test-statistics under reordering of measurements. Evolving from 

the work of Pitman in the 1930s (Pitman, 1937), these tests have come to form a 

subset of non-parametric statistical methods best used when it is unknown how this 

a test-statistic is distributed (Good, 2005). For a trend analysis, it involves permuting 

or reordering the time labels in a series of observed measurements, calculating a 

test-statistic such as a linear regression slope or Spearman’s 𝜌 and replicating this to 

cover all possible unique reorderings. The null hypothesis is simple: “there is no 

underlying trend in the observed series” and if so then the trend test-statistic in the 

observed series will not be different to the permutation distribution. The position of 

the observed test-statistic in the permutation distribution will govern its inferred 

statistical significance. The exchangeability of a sequence ensures the correct 
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inferences are made from permutation testing (Good, 2005). The advantage of this 

approach is in removing the assumption about the underlying distribution of the 

test-statistic by replacing it with the permutation distribution thus making it more 

robust in datasets which do not adhere to parametric assumptions. For practical 

purposes, the number of reorderings is limited in this analysis of this chapter at a 

maximum of 1000.  

In this analysis the following particular three trend detection techniques are chosen 

and classified as (a) fully parametric, (b) semi-parametric and (c) non-parametric 

techniques: 

(a) OLS T-DIST: OLS regression with significance of slope inferred from the position 

of the parametric test statistic in the student’s t-distribution. Linear regression 

attempts to describe the association between two independent variables and can 

serve as a form of trend analysis when one of the variables is time. (This is the same 

technique used in Chapter 2 for RA analysis - labelled RALR.). 

 (b) OLS P-DIST: An OLS linear regression method (parametric) with the 

significance of the observed slope inferred non-parametrically from permutation 

distribution of slopes (OLS SL P-DIST). This method has been used before to detect 

the significance of observed change in series of images at a pixel level to identify 

glaucomatous progression (Patterson et al., 2005) and also applied to the area of 

functional neuro-imaging (Holmes et al., 1996). Appendix A provides a derivation 

for the monotonic relationship of the slope and the slope/standard error test-statistic 

distributions within a permutation test used by Patterson and colleagues. This 

simply means that the standard error of each permuted slope estimate need not be 

calculated: the slope alone can be permuted to obtain the same rank (position) in a 

permuted distribution as the slope-standard error ratio. By parametrically fitting the 
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underlying linear trend by OLS, and as it does not rely in a significance estimate 

from the Student’s t-distribution, this method can be termed semi-parametric. 

(c) RHO P-DIST: Spearman’s rank correlation coefficient 𝜌 is a non-parametric 

measure of the association between two variables – essentially quantifying how well 

the relationship between the two variables can be described by a monotonic 

function. This is performed by comparing the rankings of each variable in pairs. By 

letting one of these variables be time, this becomes a measure of trend of the other 

variable. Spearman’s 𝜌 is the test statistic for underlying trend. For a given sample 

of 𝑛 paired data (𝑡1,𝑦1),...., (𝑡𝑛,𝑦𝑛), let 𝑅𝑖  =  rank(𝑡𝑖) and 𝑆𝑖  =  rank(𝑦𝑖) this 

is defined  by: 

𝜌 =
∑ (𝑅𝑖 − 𝑅�)(𝑆𝑖 − 𝑆̅)𝑛
𝑖=1

�∑ (𝑅𝑖 − 𝑅�)∑ (𝑆𝑖 − 𝑆̅)𝑛
𝑖=1

𝑛
𝑖=1

 

where 𝑅� = 𝑆̅ = (𝑛+1)
2

 is the average rank. If some values of 𝑅 or 𝑆 are tied, these 

values are simply assigned the average of the ranks to which they would have been 

assigned. A permutation test is used to derive the significance of the test statistic 

from the observed series. Rank based methods such as this have been applied to 

detecting underlying trends in areas such as environmental and hydrological 

sciences and an review of these and other trend detection techniques can be found 

in Hipel and MacLeod (Hipel and McLeod, 1994). 

For all methods, hypothesis tests are one-sided i.e. testing if trends are significantly 

less than zero. As discussed in Chapter 2, given that an underlying negative trend of 

RA damage is expected to be indicative of an optic disc with progressive 

glaucomatous, the investigation of statistically significant positive trends in RA 

series seems unnecessary.  
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3.2 Data 

Both real and simulated datasets of ‘stable’ RA series are used to assess the 

performance of change detection techniques. Without knowledge of the underlying 

signal in many real datasets, simulation will serve to generate data with known 

trends of measured RA change over time. Underlying trends are simulated 

according to estimates in a previous study examining OHT patients developing 

significant glaucomatous damage (Owen et al., 2006). These trends are assumed to 

be characteristic of those found in progressing glaucoma patients though differences 

in the type and stage of glaucoma may well differ.  

3.2.1 Real Data 

Seventy-four eyes of 74 subjects recruited from the OHT clinic at Moorfields Eye 

Hospital were included in an HRT test-retest study detailed elsewhere (Strouthidis 

et al., 2005b). In short, 43 eyes with OHT and 31 with POAG were selected. The 

subjects had no previous history of intraocular surgery and had all experienced 

ONH imaging using the HRT. This study adhered to the tenets of the Declaration of 

Helsinki and had local ethics committee approval and the subjects’ informed 

consent. OHT is defined as IOP greater than 21 mmHg on two or more occasions 

and a baseline Humphrey 24–2 full threshold AGIS score of 0. POAG is defined as a 

consistent AGIS visual field score greater than 0, and a pre-treatment IOP greater 

than 21 mmHg on two or more occasions. Each eye was selected on the basis that it 

had a refractive error less than 12 dioptres of spherical power and no history of 

previous intraocular surgery. In subjects with lens opacity, the eye with the greater 

degree of opacity was preferentially selected although the presence of lens opacity 

itself was not a criterion for subject selection. HRT Classic images (10° scan width) 
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and HRT II images (15° scan width) were acquired across two visits within 6 weeks. 

A total of five HRT Classic mean topographies and five HRT II mean topographies 

were generated for each eye. Three HRT single topographies were used to generate 

a mean topography for both HRT Classic and HRT II data. After satisfying the 

device checks of minimal eye movement, acceptable focus and illumination during 

acquisition there were no criteria placed on image quality. Thus the ranges of media 

opacity and image quality are large. The mean age of patients at baseline was 68.2 

years (standard deviation 10.2 years) and the male:female ratio was 41:33. 

These data are separated into those with HRT Classic data only and those with HRT 

II data only. This minimises any potential artefact which may be induced by 

combining these two data types (Balasubramanian et al., 2011, Wang et al., 2011). A 

contour line was drawn onto each baseline mean topography and automatically 

exported to the follow-up mean topographies ensuring a constant disc area for all 

mean topographies in the same series. A manual alignment facility optimised 

contour line position on an image-by-image basis if automatic alignment was 

judged to have performed poorly. The contour line was placed at the inner margin 

of the highly reflective halo at the boundary of the disc in the reflectance image 

(Strouthidis et al., 2009b). RA measurements were derived using the Moorfields 

fixed, standard reference plane (Poli et al., 2008, Asaoka et al., 2009). 

For this analysis, patient data are treated as pseudo time-series data without any 

pathology related changes and age-related changes, serving to assess the false-

positive rate in change analyses due to measurement noise alone. If the interval is 

uniform between measurements in a series, the significance of the trend is 

unaffected by the interval itself given a fixed number of measurements. Thus an 
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arbitrary 6 month interval is imposed between successive mean topographies in a 

series - representative of common clinical follow-up.  

3.2.2 Simulated Data 

One of the most straightforward methods of simulating longitudinal glaucomatous 

changes in a series of 𝑛 univariate measurements 𝑦𝑖 = (𝑦1,𝑦2 … , 𝑦𝑛) at 

corresponding time points 𝑡𝑖 = (𝑡1, 𝑡2 … , 𝑡𝑛) involves assuming a linear change of 

visual field or structural measures over time. This is chosen because it is the most 

easily specified trend; a univariate model with an underlying linear trend can be 

described with the following equation 

𝑦 = 𝑎 + 𝑏𝑡 + 𝜀 . 

Simulation of longitudinal global RA series is implemented in practice by 

propagating underlying series of (changing or stable) RA ‘measurements’ through 

time, sampled at equal intervals, and adding noise to each of these measurements. 

As with the real data, an arbitrary 6 month interval is placed between each follow-

up measurement. For progressive RA change in glaucoma, a linear model is used as 

the simplest (having the least governing parameters). Thus a series of measurements 

over time can be described by the following equation: 

𝑥𝑖 = 𝑎 + 𝑏 𝑡𝑖 + 𝜀𝑖  , 

where 𝑥𝑖  is the measured RA value at the 𝑖𝑡ℎ time point, 𝑎 is the RA value at time 

𝑡=0 and 𝑏 is the trend of RA with time. The measurement errors are described by 

the term 𝜀𝑖~𝐷 sampled from a specified probability distribution. These error 

distributions and how they change with time are allowed to deviate from the 
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assumptions of OLS linear regression and are specified according to sections 3.2.2.2 

and 3.2.2.3. 

3.2.2.1 Linear Trend and Stable Data 

Underlying linear RA trends, derived by OLS, have been reported by Owen and 

colleagues (Owen et al., 2006) in a group of 44 OHT patients who developed 

confirmed visual field loss in a follow-up period of between 2 to 7 years. The 

median, lower and upper quartiles were reported for these patients to represent 

weak, moderate and strong trends. It is these reported trends which are used for our 

simulation model before the addition of measurement variability. Thus there were 

three categories for the underlying trends: 

(i) No change data: These stable series are series with no underlying change over 

time. They have been given a uniform global RA measurement in time given by an 

average RA of 1.6 mm2. They will be used to establish the numbers of false positives 

flagged by each statistical method. This is represented in the model by setting 𝑏 = 0. 

(ii) Moderate trend data: Underlying RA change was added to the stable series. The 

linear trend is taken to be -0.012 mm2/year. This is the median trend reported in 

OHT converters by Owen and colleagues (Owen et al., 2006). This is implemented in 

the model by setting 𝑏 = -0.012 mm2/year. 

(iii) Strong trend data: Underlying RA change is added to the stable series. The linear 

trend for these series is -0.021 mm2 /year: the upper quartile trend reported in OHT 

converters by Owen and colleagues (Owen et al., 2006). This is implemented in the 

model by setting 𝑏 = -0.021 mm2/year. 
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3.2.2.2 Measurement Noise Distribution 

Measurement noise is then added to stable and changing RA signals. In RA 

measurement, values can be highly reproducible but noise sometimes increases 

dramatically because of image acquisition artefacts or processing difficulties such as 

alignment failure between single topographies forming a mean topography. It has 

been shown that the hyperbolic distribution can better model the fatter tails 

observed in the distributions of RA measurement errors for test-retest and 

longitudinal data (Owen et al., 2006). It is hypothesised for this analysis that, in 

addition to the standard normal distribution, two other distributions: the Laplace 

and hyperbolic distributions could serve to model observations of HRT 

measurements. Measurement variability took the form of these three different 

distributions (representing three different scenarios) with controllable parameters 

which could be manipulated to give low, medium and high levels of variability to fit 

data according to the characteristics of a simulated RA scenario.  

(i) Normal distribution: In approximating medical data, the normal distribution is 

typically used because of its broad applicability and mathematical tractability. 

Observational error in an experiment is usually assumed to follow a normal 

distribution. It is a symmetrical distribution (also referred to as the Gaussian 

distribution) whose shape is determined by two parameters, location (mean) and 

spread - standard deviation.  

(ii) Laplacian Distribution: Like the normal distribution, the Laplacian distribution is 

symmetrical and can be characterised by a location parameter (mean) and a spread 

parameter. It can be thought of as two decaying exponential curves spliced together 

back-to-back with the spread parameter controlling the magnitude of decay of these 

curves. It is more “peaked” meaning more observations fall directly on the average 
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than are seen in a normal distribution and has a heavier tail than an equivalent 

normal distribution. The difference between two independent identically 

distributed exponential random variables is governed by a Laplace distribution 

(Dodge, 2008). 

(iii) Hyperbolic Distribution: This distribution belongs to the family of ‘stable’ 

distributions; stable refers to the property of distributions that retain shape when 

added together. These distributions are generalisations of the normal distribution; 

they can be manipulated to be more peaked and have heavier tails than the normal 

distribution. In contrast to the normal and Laplace distributions, hyperbolic 

distributions have four parameters each defining location, scale, peak, and 

symmetry. They are used widely in financial mathematics for modelling stable 

random variables with extreme values that occur more frequently than in the 

normal distribution (Eberlein and Keller, 1995). They were first used to describe the 

hyperbolic shapes of the log of empirical distributions of the size of wind-blown 

sand deposits (Barndorff-Nielsen, 1977, Tsoar, 1994).  

Figure 3.1 shows these three distributions in three settings of equal variance and 

mean but with different shapes. 
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Figure 3.1 (a) Low, (b) medium and (c) high levels of RA measurement noise 𝜀𝑖  with 

normal, Laplace and hyperbolic probability distributions. Within each level, these 

distributions have all been adjusted to have equal variances. Shape parameters of 

the hyperbolic distributions are consistent with those fitted to observed RA 

measurement error distributions from Owen et al. (Owen et al., 2006). 

3.2.2.3 Measurement Variability Levels 

The parameters controlling these three types of error distribution are chosen by 

fitting the three distributions to the data of longitudinal RA measurement error for 

topography series of different image quality obtained from Owen and colleagues 

(Owen et al., 2006). These quality measures were categorised as good, acceptable, 

and poor image quality with variability increasing with decreasing image quality. 

(Chapter 4 provides a further investigation into the relationship of image quality 

with RA variability.) Controlling parameters of these distributions are set to give the 

following noise levels: 

(i) Low level noise: The noise parameters derived from fitting each distribution to the 

noise of longitudinal series of good image quality - see Figure 3.1 (a). 
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(ii) Medium level noise: The noise parameters derived from fitting each distribution to 

the noise of longitudinal series of medium image quality - see Figure 3.1 (b). 

(iii) High level noise: The noise parameters derived from fitting each distribution to 

the noise of longitudinal series of poor image quality - see Figure 3.1 (c). 

3.2.2.4 Changes in Within-Series Variability 

As has been outlined, there is some evidence to suggest that RA variability may 

change with increasing ONH damage and the consequences should be investigated 

for a ‘pattern’ of noise over time. In consideration of this, distributions of 

measurement noise are modified to change over time (or remain uniform) in seven 

different sub-scenarios to achieve the following patterns of measurement variability 

(illustrated in Figure 3.2). 

(a) Low uniform noise: Measurement noise at each point is independent of time and 

has a magnitude at the low noise level (see Figure 3.2 (a)). 

(b) Medium uniform noise: Measurement noise at each point is independent of time 

and has a magnitude at the medium noise level (see Figure 3.2 (b)). 

 (c) High uniform noise: Measurement noise at each point is independent of time and 

has a magnitude at the high noise level (see Figure 3.2 (c)). 

 (d) Medium increasing noise: Measurement noise increases monotonically with time 

and has a magnitude (when averaged over the whole series) equivalent to medium 

level noise (see Figure 3.2 (d)). 
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(e) Medium decreasing noise: Measurement noise decreases monotonically with time 

and has a magnitude (when averaged over the whole series) equivalent to medium 

level noise (see Figure 3.2 (e)). 

(f) Medium uniform noise with random outliers: This noise model consists of medium 

level uniform noise with an additional randomly chosen outlier measurement with 

high level measurement noise. The series averaged magnitude noise is then 

normalised to be equivalent to medium level noise (see Figure 3.2 (f)). 

 (g) Medium autocorrelated noise: Temporal autocorrelation is the correlation of a 

signal with itself as a function of time; measurements or indeed measurement noise 

closer together in time or periodically separated can be more likely to be similar 

depending on the autocorrelation. In regression analysis using time series data, 

autocorrelation of the residuals ("error terms”) is a problem. This violates the OLS 

assumption that the serial error terms are independent. While it does not bias the 

OLS coefficient estimates, the standard errors tend to be underestimated (and the t-

scores overestimated) especially when the autocorrelations between the errors 

separated by a low time-lag (separation in time between measurements) is positive 

(Salkind and Rasmussen, 2007). What time-scale this autocorrelation occurs in for 

these data however is unknown, as is its strength. For the purposes of examining the 

worst effects of autocorrelation on trend detection techniques, a large positive 

autocorrelation effect over a period of several visits has been chosen. Measurement 

error is set to a mean magnitude equivalent to the uniform medium uniform noise 

scenario but includes a lag filter function such that measurement noise closer in time 

is more likely to be similar. This is implemented by a backwards filter. This 

autocorrelation filter adds information to a given measurement error 𝜀𝑖  at time 𝑡𝑖  

based on previous 𝜀𝑗  such that: 
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𝜀𝑖 =
𝑑1𝜀𝑖−𝑘 + 𝑑2𝜀𝑖−𝑘+1 … + 𝑑𝑘−1𝜀𝑖−1 + 𝑑𝑘𝜀𝑖

∑ 𝑑𝑚𝑘
1

 

where the coefficients: 

𝑑𝑖−𝑘 =
1

2𝑘+1 

are fitted to achieve a small magnitude autocorrelation effect measureable across 

four visits (see Figure 3.2 (g)). 

 

Figure 3.2 Box-whisker plots showing the spread of normally distributed 

measurement variability at each follow-up examination for stable series. Each panel 

represents a scenario of measurement variability with the following average 

magnitudes and its change across the follow-up period: (a) uniform low noise, (b) 

uniform medium noise, (c) uniform high noise, (d) medium increasing noise, (e) 

medium decreasing noise, (f) medium noise with an outlier present, and (g) 

medium noise with autocorrelation. 
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In summary, scenarios involving Laplacian and hyperbolic noise involve data series 

which violate the OLS fitting procedure. In addition, scenarios were generated with 

noise structures (d), (e), (f) and (g) where violations of the assumptions of the OLS 

fitting procedure and the exchangeability assumption in permutation testing were 

permitted. 

A total of 315,000 time series are simulated: 5000 Monte Carlo simulations for each 

of the 63 ‘scenarios’ of every possible combination of trend (3 possible), 

measurement error distribution (3 possible) and time-wise error pattern (7 possible). 

These large sets of data enable statistically powerful inferences about and 

comparisons between the diagnostic performances of change detection techniques at 

given trends and number of measurements and for given levels and patterns of 

measurement noise. The summary performances of the different change detection 

analyses were compared using metrics averaged across all of these scenarios. 

Individual cases of interest were also examined to identify circumstances of noise 

distribution, noise pattern and signal when one of the change detection algorithms 

described in the following section may be preferable over others. 
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3.3 Performance Measures of Change Detection 

Techniques 

The low prevalence of a disease such as open-angle glaucoma requires that 

screening or case finding methods in an at risk population have high specificity 

(>95%) to avoid unacceptably high numbers of false positive test outcomes. A 

formulation for appropriate specificity limits is less clear for tests of glaucomatous 

progression; it depends primarily on the proportion of glaucoma suspects being 

monitored or glaucoma patients already in treatment who will experience the onset 

of new or further glaucomatous damage respectively during a given observation 

period. Nevertheless it is hypothesised that only a minority of glaucoma suspects or 

patients will have sufficient damage occurring in an average follow-up interval (e.g. 

6 months) to warrant a treatment intervention. As a result, emphasis on the 

diagnostic strength of change detection methods is placed on decision making with 

low false positives. 

In the real data, it is extremely unlikely for true glaucomatous damage to have 

occurred during the short follow-up period. Thus any changes detected by each 

method can be considered false positives – the proportion of series flagged as 

progressing by each method referred to as the false-positive rate. The relationship 

between the false positive rate and the p-value ‘cut-off’ which binarises series into 

negatively changing or not negatively changing is investigated at the final follow-up 

examination (5th time point in the series). P-value cut-offs were recorded at 10% and 

5% false positive rates. These values are also intended to be presented as cut-offs for 

future studies or meta-analyses which may use RA as a measure of progression and 

for which no reliable measurement of specificity can be readily ascertained. 
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In the simulated setting, the trend detection performances of methods were 

examined at only the 5th examination (≥ 2 pseudo-years follow-up) and afterwards.  

3.3.1 Statistical Power 

Because simulated series were set to be both stable and changing, the probability of 

detecting true positive changes, referred to as statistical power of each method, could 

be examined (Cohen, 1988). Again, emphasis is placed on those areas of low false 

positive detection, thus power is measured in each noise scenario set (of 5000 

simulated series) for each method at fixed 5% false positive detection levels in the 

corresponding stable scenario set (of 5000 simulated series). Power to detect change 

at this low level of false positives is examined at each follow-up visit when stable 

data and data with underlying trends (either medium or high magnitude) were 

matched according to noise scenarios.  

3.3.2 ROC and Partial ROC Analysis 

Many diagnostic tests give quantitative results - such as a p-value or a trend over 

time - rather than binary outcomes and so different thresholds of these results can 

be used to binarise a diagnosis into normal or abnormal. An ROC curve is simply 

the plotted values of a diagnostic test’s true positive rate against its false positive 

rate for a range of thresholds, continuous or discrete. Analysis using ROC curves 

was originally developed for evaluating radar signal detection and has been used in 

general signal detection theory since then (Egan, 1975). In medicine it has also been 

adopted in the evaluation of diagnostic tests (Altman and Bland, 1994, McNeil et al., 

1983). ROC curves are used accordingly in this analysis to assess the performance of 

trend detection methods across a range of false positive rates. The area under the 

ROC curve (AUC) is used to quantify the performance of the test. The maximum 
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possible value for the AUC is 1 with a practical minimum value of 0.5 

corresponding to the average value obtained by a guessing strategy. For this 

analysis, the area under the partial ROC curve (PAUC) metric is more important. 

The PAUC is calculated as the area under some restricted portion of the ROC curve 

corresponding to false positive values of clinical interest. It is particularly useful, as 

in the case of this analysis, when comparing the two ROC curves, with close 

attention given to minimising false positive decisions.  

 

Figure 3.3 Example of ROC curve and the dark grey PAUC within a region of the 

ROC curve with false positives ≤ 0.2. True positive rate is also known as statistical 

power. 

An example of an ROC curve with its corresponding PAUC for a false positive rate 

≤ 20% is shown in Figure 3.3. For this analysis, PAUC are examined for those partial 

ROC curves with a false positive rate ≤ 20%. PAUC can usefully be used as an 

accurate summary measure of these power estimates in a range of different false 

positive rates. PAUC values have been transformed, for interpretation purposes, 
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giving a minimum of 0.5 and maximum value of 1. Thus, the transformation lets one 

view the PAUC on the same scale as the AUC.  

The statistical significance of differences between AUCs of testing strategies at each 

visit, noise pattern and trend over time are established using the method of Hanley-

McNeil for paired data (Hanley and McNeil, 1983a). Similarly the method of 

McClish (McClish, 1989) is used to examine differences between PAUCs. The 

Bonferroni correction is used to compensate for the multiple comparisons involved 

in this testing. 

3.3.3 Imaging Follow-up Period 

The effect of the length of follow-up on the performance of each statistical trend 

detection technique in different noise and trend scenarios is assessed with PAUC 

values.  

3.3.4 Students t-Distribution for RA Series Test Statistic 

In a given series under OLS T-DIST analysis, the measured test-statistic is assumed 

to be sampled from the student’s t-distribution and its statistical significance is 

inferred from this distribution. In order to determine if this assumption is 

appropriate in series which do not adhere to the assumptions of OLS, the test-

statistic of OLS T-DIST is permuted. This shape of this permutation distribution is 

compared to the relevant student’s t-distribution for each scenario and follow-up 

examination.   
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3.4 Results 

The relationship between p-values and the number of false positives for RA values 

from mean topographies acquired with the HRT Classic and the HRT II are shown 

in Figure 3.4 (a) and (b) respectively. Table 3.1 displays the α-levels which resulted 

in ≲ 10% (7/74 patient series) and ≲ 5% (3/74 patient series) false positive 

progressions in HRT Classic and HRT II data.  

 

Figure 3.4 (a) HRT Classic data: Percentage of falsely flagged progressing series at 

fifth and final examination for the p-value cut-off of each change detection test (b) 

HRT II data: Percentage of falsely flagged progressing series at fifth and final 

examination for the p-value cut-off of each change detection test. 

The mean AUCs associated with statistical change detection techniques across all 

visits, signals, noise distributions and patterns were 0.825 for OLS T-DIST, 0.814 for 

OLS SL P-DIST and 0.815 for RHO P-DIST. The mean PAUCs associated with 

statistical change detection techniques across all visits, signals, noise distributions 

and patterns were 0.738 for OLS T-DIST, 0.744 for OLS SL P-DIST and 0.736 for 

RHO P-DIST.  
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Table 3.1 Real no-change RA data: the α-level (p-value cut-off) of the hypothesis test 

of negative change over time for each change detection test given a fixed/anchored 

percentage of falsely flagged progressing rim area series at fifth and final 

examination. 

  
Data 

(False Positive Rate) 

  
HRT Classic 

(≲10%) 
HRT Classic 

(≲5%) 
HRT II 
(≲10%) 

HRT II 
(≲5%) 

α-level  
of  

Method 

OLS  
T-DIST 

0.039 0.023 0.056 0.022 

OLS  
P-DIST 

0.034 0.017 0.034 0.017 

RHO  
P-DIST 0.034 0.026 0.034 0.026 

 

Statistical power estimates are shown in Tables 3.2 and 3.4 for a moderate trend of 

RA loss after 3 and 6 years of follow-up respectively. Statistical power estimates are 

also shown in Tables 3.3 and 3.5 for a high trend of RA decrease after 3 and 6 years 

of follow-up respectively. Colour-coded arrays indicate the overriding patterns. 

Comparing across rows, all techniques across all distribution types (normal, 

Laplace, hyperbolic) show consistently lowest power for high noise series followed 

by medium noise with autocorrelation. Comparing across columns enables 

comparison between trend detection techniques within each scenario. 
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Table 3.2 Power levels for three change detection methods of detecting change at 

medium trend of RA deterioration (-0.012mm2/year) at 7th visit after 3 years of 

follow-up in different noise scenarios. Total RA decrease during this follow-up 

period: 0.036mm2. Entries are colour coded: red corresponds to lower power values, 

yellow to moderate power values and green to higher power values. 

 

    Power: 1-β (at  α = 5%)   

 

    Noise Distribution   

 

  Normal Laplace Hyperbolic 

 

Change 
Detection 

OLS  
T-DIST 

OLS  
P-DIST 

RHO  
P-DIST 

OLS 
T-DIST 

OLS  
P-DIST 

RHO  
P-DIST 

OLS  
T-DIST 

OLS  
P-DIST 

RHO  
P-DIST 

N
oi

se
 P

at
te

rn
 

Low Uniform 0.24 0.23 0.22 0.29 0.29 0.27 0.28 0.28 0.28 

Medium 
Uniform 0.15 0.15 0.15 0.20 0.20 0.20 0.19 0.18 0.18 

High Uniform 0.10 0.10 0.10 0.11 0.11 0.10 0.10 0.10 0.09 

Medium 
Increasing 0.20 0.19 0.19 0.25 0.24 0.26 0.25 0.24 0.23 

Medium 
Decreasing 0.12 0.12 0.12 0.15 0.15 0.15 0.15 0.14 0.15 

Medium with 
Outlier 0.18 0.17 0.17 0.21 0.21 0.20 0.19 0.19 0.20 

Medium 
Autocorrelated 0.13 0.12 0.12 0.15 0.15 0.15 0.14 0.14 0.13 
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Table 3.3 Power levels for three change detection methods of detecting change at 

high trend of RA deterioration (-0.021mm2/year) at 7th visit after 3 years of follow-

up in different noise scenarios. Total RA decrease during this follow-up period: 

0.063mm2. Entries are colour coded: red corresponds to lower power values, yellow 

to moderate power values and green to higher power values. 

 

    Power: 1-β (at  α = 5%)   

 

    Noise Distribution   

 

  Normal Laplace Hyperbolic 

 

Change 
Detection 

OLS  
T-DIST 

OLS  
P-DIST 

RHO  
P-DIST 

OLS 
T-DIST 

OLS  
P-DIST 

RHO  
P-DIST 

OLS  
T-DIST 

OLS  
P-DIST 

RHO  
P-DIST 

N
oi

se
 P

at
te

rn
 

Low Uniform 0.49 0.48 0.45 0.56 0.56 0.52 0.55 0.54 0.52 

Medium 
Uniform 0.30 0.29 0.28 0.36 0.36 0.35 0.37 0.35 0.34 

High Uniform 0.15 0.15 0.14 0.17 0.17 0.17 0.13 0.13 0.12 

Medium 
Increasing 0.42 0.41 0.39 0.51 0.49 0.50 0.50 0.49 0.45 

Medium 
Decreasing 0.22 0.22 0.20 0.27 0.26 0.27 0.27 0.26 0.27 

Medium with 
Outlier 0.32 0.32 0.31 0.39 0.39 0.37 0.36 0.35 0.35 

Medium 
Autocorrelated 0.23 0.21 0.21 0.26 0.25 0.25 0.28 0.27 0.25 
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Table 3.4 Power levels for three change detection methods of detecting change at 

medium trend of RA deterioration (-0.012mm2/year) at 13th (and final) visit after 6 

years of follow-up in different noise scenarios. Total RA decrease during this follow-

up period: 0.072mm2. Entries are colour coded: red corresponds to lower power 

values, yellow to moderate power values and green to higher power values. 

 

    Power: 1-β (at  α = 5%)   

 

    Noise Distribution   

 

  Normal Laplace Hyperbolic 

 

Change 
Detection 

OLS  
T-DIST 

OLS  
P-DIST 

RHO  
P-DIST 

OLS 
T-DIST 

OLS  
P-DIST 

RHO  
P-DIST 

OLS 
T-DIST 

OLS  
P-DIST 

RHO  
P-DIST 

N
oi

se
 P

at
te

rn
 

Low Uniform 0.80 0.79 0.77 0.82 0.82 0.83 0.82 0.82 0.83 

Medium 
Uniform 0.57 0.56 0.53 0.59 0.60 0.63 0.58 0.57 0.59 

High Uniform 0.23 0.22 0.22 0.25 0.26 0.27 0.24 0.25 0.23 

Medium 
Increasing 0.49 0.48 0.46 0.57 0.55 0.59 0.57 0.56 0.60 

Medium 
Decreasing 0.52 0.52 0.50 0.57 0.56 0.60 0.57 0.57 0.61 

Medium with 
Outlier 0.56 0.55 0.55 0.59 0.58 0.63 0.60 0.60 0.63 

Medium 
Autocorrelated 0.37 0.37 0.35 0.40 0.39 0.38 0.39 0.38 0.39 
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Table 3.5 Power levels for three change detection methods of detecting change at 

high trend of RA deterioration (-0.021mm2/year) at 13th (and final) visit after 6 years 

of follow-up in different noise scenarios. Total RA decrease during this follow-up 

period: 0.126mm2. Entries are colour coded: red corresponds to lower power values, 

yellow to moderate power values and green to higher power values. 

 

    Power: 1-β (at  α = 5%)   

 

    Noise Distribution   

 

  Normal Laplace Hyperbolic 

 

Change 
Detection 

OLS 
T-DIST 

OLS  
P-DIST 

RHO  
P-DIST 

OLS  
T-DIST 

OLS  
P-DIST 

RHO  
P-DIST 

OLS 
T-DIST 

OLS  
P-DIST 

RHO  
P-DIST 

N
oi

se
 P

at
te

rn
 

Low Uniform 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

Medium 
Uniform 0.94 0.93 0.91 0.91 0.91 0.92 0.92 0.91 0.92 

High Uniform 0.47 0.46 0.46 0.51 0.51 0.54 0.47 0.47 0.45 

Medium 
Increasing 0.88 0.88 0.87 0.89 0.88 0.89 0.89 0.88 0.90 

Medium 
Decreasing 0.89 0.89 0.87 0.89 0.88 0.90 0.89 0.89 0.90 

Medium with 
Outlier 0.93 0.92 0.91 0.92 0.91 0.92 0.92 0.92 0.92 

Medium 
Autocorrelated 0.76 0.76 0.73 0.78 0.76 0.74 0.78 0.77 0.77 
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Differences were found for the between trend detection techniques within scenarios 

at each visit for AUCs, PAUCs, and power at 5% and 10% to be highly statistically 

significant (P<0.0001). Significant statistical differences were found between all 

PAUCs of testing strategies at each visit, change magnitude and noise (P<0.0001). 

The high sample sizes (N=5000) in each scenario render these statistical inferences 

trivial however as the obtained PAUCs are close to their true underlying 

(asymptotic) values. Rather in this case the pair-wise differences in between 

technique AUCs and PAUCs should be emphasised. The median differences 

between PAUC values between methods were as follows: PAUC(OLS T-DIST) – 

PAUC(OLS P-DIST) < 0.001; PAUC(OLS T-DIST) – PAUC(RHO P-DIST) = 0.002; 

PAUC(OLS P-DIST) – PAUC(RHO P-DIST) = 0.002 with respective interquartile 

ranges of 0.003, 0.010 and 0.011. In comparison, values of PAUC (across all 

scenarios, visits and techniques) decreased by a median of 10% when uniformly 

distributed measurement variability was increased from low to medium, and 

decreased by a median of 8% when increased from medium to high. Similarly 

PAUC values decreased by a median of 8% when autocorrelation was added to 

uniformly distributed measurement variability. 

The changes in PAUC values with increasing follow-up examinations in different 

scenarios with OLS T-DIST, OLS P-DIST and RHO P-DIST trend detection 

techniques are shown for moderate and high trends in Figure 3.5 and 3.6 

respectively. The median of the increase in power values at each 6 monthly-interval 

for each scenario and technique was approximately 4%.  
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Figure 3.5 Changes with follow-up period of PAUC values (false positive rate < 

20%) for the three change detection methods for the three indicated noise 

distributions in series of a medium trend of RA deterioration (-0.012mm2/year). The 

seven scenarios of noise pattern over time are (a) low uniform noise, (b) medium 

uniform noise, (c) high uniform noise, (d) medium increasing noise, (e) medium 

decreasing noise, (f) medium noise with an outlier measurement and (g) medium 

noise with autocorrelation. See Figure 3.2 for illustration of noise patterns. 
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Figure 3.6 Changes with follow-up period of PAUC values (false positive rate < 

20%) for the three change detection methods for the three indicated noise 

distributions in series of a high trend of RA deterioration (-0.021mm2/year). The 

seven scenarios of noise pattern over time are (a) low uniform noise, (b) medium 

uniform noise, (c) high uniform noise, (d) medium increasing noise, (e) medium 

decreasing noise, (f) medium noise with an outlier measurement and (g) medium 

noise with autocorrelation. See Figure 3.2 for illustration of noise patterns. 
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Figure 3.7 Two-hundred randomly sampled permutation distributions of OLS linear 

regression test-statistics with the parametric Student’s t-distribution (3 degrees of 

freedom) overlaid for 4 scenarios of noise pattern: (a) medium uniform noise, (b) 

medium increasing noise, (c) medium noise with an outlier and (d) medium noise 

with autocorrelation. These distributions are for stable simulated series Laplace 

measurement noise at 5th RA measurement (2 years). The average p-value for the 

two-sample Kolmogorov-Smirnov test is for (a) 0.78, (b) 0.81, (c) 0.81 and (d) 0.82. 

 

Figure 3.8 Two-hundred randomly sampled permutation distributions of OLS linear 

regression test-statistics with the parametric Student’s t-distribution (11 degrees of 

freedom) overlaid for 4 scenarios of noise pattern: (a) medium uniform noise, (b) 

medium increasing noise, (c) medium noise with an outlier and (d) medium noise 

with autocorrelation. These distributions are for stable simulated series hyperbolic 

measurement noise at 13th RA measurement (6 years). The average p-value for the 

two-sample Kolmogorov-Smirnov test is for (a) 0.52, (b) 0.50, (c) 0.53 and (d) 0.54. 
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3.5 Discussion 

In glaucomatous progression, the ability to detect and track trends in univariate 

measures such as RA, RNFL thickness, visual field MD and IOP is essential. It is also 

important to know how best to detect and measure trends in point-wise analysis 

both as pixels in imaging or as testing points in visual fields. Appropriate 

techniques should be able to optimally distinguish series of measurements which 

exhibit statistically significant trends over time (those series with more reliably 

measured deterioration respectively) from those which do not before the clinician 

can decide if change is clinically significant or not. The performance of these 

techniques will depend on factors such as the number of measurements, length of 

follow-up time, the magnitude and structure of measurement variability and the 

underlying change. To this end, simulated series were derived with a range of 

change and variability parameters in order to establish how well various trend 

detection techniques can measure the underlying trends or stability of the series. 

Short-term time series of HRT Classic and HRT II derived RA measurement data 

were also used as an approximation to stable data to measure the p-value thresholds 

of each methods hypothesis test which produce clinically relevant false-positive 

rates. 

In assessing the alpha-level of these change detection methods, OLS T-DIST yields a 

consistently higher 𝛼 at the ~5% and ~10% false positive levels compared to OLS P-

DIST. This means that a ‘less strict’ alpha level needs in OLS T-DIST to be set to 

achieve the same level of false positives in this sample of 74 and could infer that 

OLS P-DIST is less powerful. The results of the analysis comparing the AUCs and 

PAUCs of competing methods show statistically significant differences throughout 

between all methods in all noise and signal scenarios at each visit. This is almost 
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wholly due to the high number of virtual patients which reduces the standard error 

of the AUC and PAUC estimates.  These differences, though statistically significant, 

are relatively small for all scenarios. It is not surprising that average AUCs and 

PAUCs for all methods increase with an increasing number of measurements 

because the power of any test will increase as the magnitude of sampling increases.  

There is little literature on the precise nature of RA measurement noise and almost 

none on the precise change over time in series of RA. As a result this simulation 

model and its interpretation may well only capture some of this information. 

However the methodology here has examined a wide spectrum of noise and signal 

scenarios using empirical noise parameter estimates where available. Linear and 

rank based models of RA change only were examined in this analysis. It may be 

argued that a linear model is inadequate to describe the complex process of RA 

changes occurring in glaucomatous damage. However, without any evidence of a 

more suitable model, it is difficult to justify exploration of an unlimited range of 

alternate, more complex models. These models, by design, require more parameters 

to define the dependence of the output variable - in this case, RA - on the predictor 

variable(s) - in this case, time. This can result in poor statistical power at low sample 

sizes and will be particularly at risk of over-fitting models to the data. This is a 

modelling error where the model is freer to be closer to each observed point and 

ends up fitting the underlying signal in the series but also the measurement noise 

itself. In addition these extra parameters may not lend themselves to an instant and 

immediate interpretation in a clinic setting. 

Though this methodology is very transferrable to measurements derived from other 

imaging devices or visual fields, the exact results presented here are those relating 

directly to real and simulated longitudinal RA series and should only be interpreted 
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as such.  It may be useful in time to model RNFL thickness as derived from OCT or 

SLP rather than RA from HRT. The RNFL thickness may well have differing noise 

and signal characteristics over time and this should be the subject of further 

investigation. It is worth looking at these findings however in comparison to 

another example in visual field glaucoma progression research. Monte-Carlo 

simulation has been used previously to answer clinically relevant questions in 

glaucoma progression detection. Chauhan and colleagues (Chauhan et al., 2008) 

reported on the minimum number of equally-spaced visual field examinations 

required to detect (with a power of 0.80) a linear trend of -4 dB/year in visual field 

mean deviation (summary measure of sensitivity) using estimates of different 

degrees of visual field variability. This relied on assumptions that the measurement 

errors were identically and normally-distributed and independent. Although 

intended to examine RA changes, the analysis of this chapter shows that violations 

in these assumptions can considerably affect these reported measurements and that 

this is consistent across the change detection techniques investigated. In particular 

the effects of autocorrelation, with no-measurable increase in the degree of 

variability, on the power to detect an underlying trend are comparable to the effect 

of increasing the variability considerably and would change the estimates provided 

by Chauhan and colleagues in their report. 

The calculated relationship and its significance between the dependent variable and 

independent variable (in this case time) in an OLS linear regression (OLS T-DIST) 

are based on the assumptions of uniformly, normally distributed measurement 

errors and independence of serial measurements. This analysis has tested the 

performance of trend detection techniques under violations of these assumptions: 

changing magnitude of variability with time, correlations between the 

measurements over time and non-normal distributions of noise. The autocorrelation 
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of serial measurements as modelled in this analysis had a large effect on the 

performance of all methods. This is to be expected for the OLS T-DIST method as 

the standard error of the slope/trend will be systematically underestimated. This 

also occurs for the permutation framework for both linear and rank based methods. 

Previous research has shown that resampling methods which do not take into 

account the serial correlation of the dependent variable can underestimate the 

standard error of Spearman’s 𝜌 (Park and Lee, 2001) which would again decrease 

the performance.  

If the number of data points is small, it may be difficult to detect assumption 

violations. With small samples, violation assumptions such as non-normality or 

heteroscedasticity of variances are difficult to detect even when they are present. 

With a small number of data points linear regression offers less protection against 

violation of assumptions. With few data points, it may be hard to determine how 

well the fitted line matches the data, or whether a nonlinear function would be more 

appropriate. Since parameter estimation is based on the minimization of squared 

error, a few extreme observations can exert a disproportionate influence on 

parameter estimates. Calculation of confidence intervals and various significance 

tests for coefficients are all based on the assumptions of normally distributed errors. 

If the error distribution is significantly non-normal, confidence intervals may be too 

wide or too narrow.  

The results of this analysis suggest that for data which can be modelled as presented 

there is little difference in the three methods of analysis investigated. One crucial 

assumption, that progressive RA damage followed a linear trend, was not altered in 

this simulation and this may offer more promise for a rank-based method which 

shows relative efficiency almost equal to linear trend detection methods. In cases of 
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non-linear trends, a rank-based method is likely to prove more powerful in 

detecting this underlying trend. In consideration of these factors, a rank based 

approach may provide the best option of these three approaches. If these time series 

are representative of longitudinal RA measurements of a large set of virtual patients 

then these inferences can also be applied to real data scenarios. Further 

characterisation of RA and topographic variability are required as are predictors of 

these. 
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4. Assessment of Quality in 

HRT Images 

 

Image quality assessment gives important clinical information on the fidelity of 

rendered images. The quality of an image is important and sometimes crucial in 

clinical decision making as the example case of Figure 4.1 shows. From a neuro-

radiological study (Phal et al., 2008), this case involved a patient with a brain lesion 

symptomatic of epilepsy and normally indicated by a higher intensity (higher tissue 

density) scan value in MRI. This lesion was not identified in an initial lower quality 

scan but was evident in a secondary improved quality scanning modality. The first 

scan was acquired using an MRI scanner with a magnet of lower flux (units in Tesla 

or T) than the scanner used for the second scan. Image quality has been shown in 

other studies to vary considerably between MRI scanners with magnets of differing 

operating flux (Beyersdorff et al., 2005, Kataoka et al., 2007). 

In the context of examining retinal images with application in glaucoma detection 

and tracking over time image quality metrics can inform the clinician or automated 

algorithm how much or how little confidence to place in a measurement derived 

from a particular image. In assessing the overall quality of a medical image factors 

such as the optical resolution of the scanning or imaging system, the noise inherent 

in the measuring system, the contrast of the image and the presence of artefacts in 

the image must be accounted for. 
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Figure 4.1 MRI scans of patient with intractable nocturnal seizures.  (a) Coronal 

image using 1.5-T magnet MRI showing questionable curvilinear focus of high 

signal intensity (arrows). Abnormal signal intensity was missed at first review of 

images. (b) Coronal image using 3-T MRI showing curvilinear band of high signal 

intensity (arrows) white matter without apparent mass effect. (Reproduced from 

(Phal et al., 2008)) 

The image quality of a given HRT mean topography is measured with the MPHSD; 

a metric provided by the HRT software as an assessment of the within examination 

variability across three single topographies. The HRT software also gives other 

assessments of image quality at the time of acquisition. It provides a list of ‘pass’ or 

‘fail’ checks for appropriate accommodation and camera distance, for sufficient 

image brightness and image illumination and for levels of eye movement, blinks, 

fixation loss and eye drift below tolerable levels (Figure 4.2). Once a scan has passed 

these criteria, it is the MPHSD which dictates the post-acquisition assessment of 

image quality. The manufacture provided guidelines for interpreting the quality of a 

resultant MPHSD value of a mean topography are summarised in table 4.1. 
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Figure 4.2 Example output of image quality assessment by HRT software of the 

constituent images in a HRT mean topography. 

MPHSD as provided by the HRT software is actually the calculated geometric mean 

(not the arithmetic mean) of the sample standard deviation of each pixel in the mean 

topography image across the three constituent single topographies. As an 

illustration, if a sample contains 𝑛 measurements 𝑎𝑖 the more familiar arithmetic 

mean 𝜇𝑎 is calculated as follows:  

𝜇𝑎 = 𝑎1+𝑎2+𝑎3+⋯𝑎𝑛
𝑛

, 

and the geometric mean 𝜇𝑎 is calculated as follows: 

𝜇𝑔 = �𝑎1𝑎2𝑎3 …𝑎𝑛𝑛 . 

The geometric mean is less affected by long tails in negatively and positively 

skewed distributions (Altman, 1999). 
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Table 4.1 Instrument guidelines categorising MPHSD (courtesy of Heidelberg 

Engineering, Heidelberg, Germany) 

MPHSD (µm) Category Description 
< 20 1 Very good 

20 - 30 2 Good 

30 - 40 3 Acceptable 

40 - 50 4 Look for way to improve 

> 50 5 Low quality (do not use as baseline image) 

MPHSD has been shown to be affected by media opacities due in part to aging and 

cataracts (Zangwill et al., 1997, Strouthidis et al., 2005b). This has been quantified 

with significant correlations of the MPHSD to scores of the severity of opacities of 

various types and at various locations in the eye using the Lens Opacities 

Classification System III (Chylack et al., 1993). In the first of these studies (Zangwill 

et al., 1997), an observer panel assessed, on a ten point scale, the quality of the 3 x 32 

constituent CSLO optical sections composing a mean topography on 39 subjects. 

Here, significant correlation of the subjective image quality of the scanned pre-

processed CSLO images to the MPHSD was strong (𝑟2=0.76). This is because in 

cases with high noise (light scatter) during the acquisition of CSLO optical sections, 

there will be inherit difficulties in accurately determining the position of maximum 

reflectance, and hence calculating the topographic height. Another study has shown 

MPHSD to be strongly correlated to the camera sensitivity of the device and 

spherically corrected astigmatism but not with age however (Sihota et al., 2002) 

though subjects with media opacities were excluded from this study. 

Previous studies have used the MPHSD as a metric to evaluate the repeatability of 

the technology in normal subjects and glaucoma patients (Chauhan et al., 1994, 
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Rohrschneider et al., 1994). Most previous studies of detection of glaucoma in HRT 

images have used this metric as a criterion in selection of data for analysis. Below 

the 50µm threshold for acceptable images (table 4.1) evidence suggests that the 

diagnostic capability of the HRT is unrelated to MPHSD (Sung et al., 2009). Many 

studies have used 50µm as a cut-off for including or excluding images (Medeiros et 

al., 2006, Coops et al., 2006, Saito et al., 2009, Burgansky-Eliash et al., 2007) and 

others have used 40µm (Harizman et al., 2006, Zelefsky et al., 2006). The problems 

of screening a normal elderly population (aged 65 to 89 years) with HRT have been 

highlighted in a study containing 880 individuals which reported that 29% of 

images from subjects in a normal elderly population had MPHSD >50µm and were 

thus excluded from the study (Hawker et al., 2006). In this same study 53% of 95 

glaucoma patients were also excluded due to MPHSD values >50µm. 

Studies of glaucomatous progression detection in HRT images have employed 

MPHSD as an image quality selection filter (Kourkoutas et al., 2007, Bowd et al., 

2009) using 50µm as a cut-off for selection. Another study has used a MPHSD of 

<35µm and iterative change in MPHSD between visits of <10µm as selection criteria 

for analysis (Saarela and Airaksinen, 2008) accounting for an exclusion of 18% and 

16% respectively of eyes from the study. 

MPHSD has been shown to be a good predictor of variability in stereometric 

parameters (Sihota et al., 2002) and in particular of variability in longitudinal and 

test-retest RA measurements (Owen et al., 2006) and as a means of stratifying and 

optimising progression analyses of these parameters (Fayers et al., 2007). The 

interpretation of MPHSD as with any image quality metric should be clear and 

consistent. Achieving a better understanding of factors influencing it and its 
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implications for the reliability of mean topography derived data is worthwhile both 

in clinic and for research studies.  

The aim of this chapter is to investigate if the characteristics of topography and 

reflectance images before alignment and averaging affect the resulting variability of 

mean topography images. To do this an examination of simulated data in addition 

to an examination of real data is performed. Frequency domain (using Fourier 

analysis) and image gradient metrics are compared in both these simulated and real 

data to MPHSD values. Independent subjective grading of topography and 

reflectance image pairs by a group of experienced users of the HRT are also 

compared to MPHSD values. The agreement of the subjective assessments between 

graders was also quantified to measure the need for an objective quality metric of 

HRT images. 

The work in this chapter was presented at the Image Morphometry and Glaucoma 

in Europe Meeting, Mannheim, Germany on January 13-14, 2006 and the 

Association for Research in Vision and Ophthalmology Meeting, Fort Lauderdale on 

April 30 - May 4, 2006. 
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4.1 Measurements of Image Variability 

For this study, global variability is quantified using the MPHSD and local variability 

is quantified using PHSD maps and distributions. Real data acquired across a large 

range of imaging conditions are used for analysis. Simulated data are also used to 

test the specific hypothesis that the same misalignment noise applied to different 

images produces variability dependent upon characteristics of the initial image. This 

hypothesis has important clinical implications because two different eyes may have 

images that exhibit exactly the same amount of measurement noise but may yield 

very different MPHSD values because the features in the images are different. In 

HRT topography images these characteristics can be related to the underlying 

morphology of the ONH and the imaging quality of the optics of the eye. 

4.1.1 Real Data 

In examining quality of HRT image data, the topography and reflectance images of 

74 eyes of 74 subjects from the same study detailed in Chapter 3 are analysed. In 

particular HRT Classic, baseline mean and (three) single topography and reflectance 

images of each selected eye are examined. As discussed previously, this dataset of 

images was deliberately enriched with eyes having a range of media opacities and 

thus the image quality range would also be expected to be large. The MPHSD 

values of all 74 topographies are calculated and outputted using the HRT Classic 

software. The PHSD maps of all 74 topographies are also calculated from the raw 

single topographies. Inter-quartile ranges are calculated for all PHSD distributions 

to quantify the ‘spread’ of these distributions. Examples of PHSD maps are shown 

for given mean topographies in Figure 4.3 along with the distribution of PHSD 

values. 
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Figure 4.3 Sample mean topographies (a) and (d) with respective PHSD maps (b) 

and (e). PHSD distributions (c), (f) are also displayed. MPHSD values are 15µm and 

30µm for (a) and (b) respectively. 

MPHSD is also further examined as a predictor for two types of RA variability: 

overall series variability and the contribution of an individual topography’s RA 

deviation to the variability of RA measurements in a series. The relationship of 

MPHSD to overall series variability is assessed by simply comparing the standard 

deviation of the 5 RA measurements to the mean MPHSD in the 5 mean 

topographies for each patient. Secondly, the predictive value of MPHSD values in 

identifying outlier measurements in a given series is examined. Firstly, the mean of 

the 5 values of RA is calculated and used as a best available estimate of the true RA 

for each patient. This mean is subtracted from each of the 5 individual RA 

measurements to give 5 deviations from the mean for each patient. These deviations 

are then normalised (dividing by the standard deviation of the 5 RA measurements) 

as a way to quantify the proportion or contribution of each RA measurement to the 



 

136 

 

overall series RA variability. The five normalised deviations are then compared to 

the 5 matching MPHSD values normalised by the average MPHSD.  

4.1.2 Simulated Data  

The simulated images are derived in a similar fashion to a previously published 

approach (Patterson et al., 2005) Here, post-processed single topographies are used 

as seeds to propagate simulated single topographies and from these serial mean 

topographic images are derived. Noise, approximately mimicking the noise inherent 

in mean topography formation, is applied to the single seed topography producing 

simulated single topographies in a given series. The method for simulating images 

with known properties involved synthesising new single topographies from one 

‘seed’ single topography by applying various types of noise. Firstly, random, small 

transformations composed from translational, rotational, shear and scaling 

parameters are applied to a seed single topography. Some of these transformations 

are visualised in Figure 4.4.  

White noise (spatially independent pixel Gaussian noise) is added to each 

misaligned single topography with each pixel chosen from a zero-centred, normal 

distribution: 𝑁(0,𝜎). The small random transformations along with white noise 

can be used to approximately model the main noise (sources of variability) at the 

image. The spread of each distribution from which each randomly sampled 

transformation parameter is sampled is estimated by trial and error. This is because 

it is impossible to measure the residual movement error that remains after the HRT 

alignment algorithm has been applied to all single topographies when forming a 

mean topography. Further details of how each transformation is implemented and 
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the probability distributions for parameters involved in each transformation are 

given in Appendix B.  

 

Figure 4.4 Sample HRT Classic topography displayed in three dimensions with 

reflectance intensity colour mapping. Misalignments due to translations 

�𝑡𝑥, 𝑡𝑦 , 𝑡𝑧� along and rotations (∅,𝜌,𝜃) about the (𝑥,𝑦, 𝑧) axes are shown. 

Measurements and translations in the 𝑧-axis are referred to as axial and those in the 

𝑥𝑦 plane as transverse.  

This simulated noise is applied to 74 single topography images, each from the 

baseline scan of an eye included in the real dataset. A simulated set of 3 single 

topographies is generated for each ONH by the application of an identical set of 3 

noise components to each of the single topographies. It is from these 74 sets of 3 

single topographies that 74 mean topography images are generated. The associated 
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individual pixel height standard deviation (PHSD) values are calculated at each 

pixel in all mean topographies. From these, a MPHSD value is calculated for the 

corresponding mean topography. For the purposes of examining the effect of 

misalignment and white noise on mean topography formation, noise applied across 

all seed single topographies is, therefore, controlled to be the same for each 

generation of a simulated single topography. This is demonstrated in Figure 4.5 for 

two sample series/seed single topographies.  

The simulation was performed 50 times, creating 50 mean topographies for each 

eye. Thus, when averaged over many simulations, it becomes possible to examine 

the dependence of the MPHSD metric on the characteristics of the seed 

topographies alone. 

Two types of simulated noise will produce variability independent of the image 

itself. These are axial translations and white noise. In an attempt to identify a 

minimal level of noise which is independent of the optic disc morphology, different 

combinations of white noise and axial translational noise (by varying parameters 𝜎 

and 𝑡𝑧) are applied to ‘blank’ images (pixel values=0) the same size as HRT Classic 

single topographies (256 x 256) to produce MPHSD values. The assumption is made 

that the minimum MPHSD values observed in the real mean topography data will 

be mostly occurring in well-aligned, ‘low feature’ images. Under this assumption, 

values for 𝜎 and 𝑡𝑧 are selected to produce this minimum MPHSD. Different 

MPHSD values for varying parameters 𝜎 and 𝑡𝑧  are plotted in Figure 4.6. The 

minimum observed MPHSD value (see section 4.3 and Figure 4.10) observed in this 

study’s real mean topographies would thus be used to determine what values to 

choose for parameters 𝜎 and 𝑡𝑧 along with the results in Figure 4.6. 
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Figure 4.5 The simulation schematic with three different, random misalignment and 

noise sets applied to a seed single topography to produce three simulated single 

topographies for two sample eyes. In this example each set applied is identical for 

both eyes and this is the case across all seed topographies in the analysis. 

As previously stated, it would be impossible to measure any post-alignment 

remaining misalignment. The simplifying assumption is made that the simulated 

misalignments and noise are close to the residual misalignment after registration 

between real single topography and reflectance images. Thus these transformations 

are small enough to not require re-alignment as would be the case for real data. As 

single reflectance images are only used in the alignment stage (see Section 1.2) of 
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image formation of the mean topography and thus the MPHSD, they are not 

analysed for simulated data. 

 

Figure 4.6 The relationship of MPHSD of a 256 x 256 ‘flat’ image with different 

levels of morphologically independent noise added. Boundary points where 

MPHSD values are produced corresponding with the minimum MPHSD observed 

in real data (10µm) are indicated. 
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4.2 Measurements of Image Characteristics 

Three approaches are used in measuring the relationship of the MPHSD to image 

characteristics of the reflectance and topography images. These approaches use 

information about (i) the underlying spectrum in the images, (ii) the gradients in the 

images and (iii) the quality assessment of a panel of experienced HRT users. 

4.2.1 Image Frequency Analysis 

In image processing, Fourier analysis is a standard tool for examining, modifying 

and characterising images. Its theoretical basis is that any signal can be 

decomposed, using a Fourier transform, into a series of component sinusoidal signals 

of different frequencies and amplitudes and this can be represented in the frequency 

domain. In the frequency domain the amplitudes of the signal’s various component 

frequencies can be represented in a power spectrum and this allows an examination of 

the relative amounts of each frequency component in a signal. In a one-dimensional 

signal, such as a sound or an electrical signal, the power spectrum is one-

dimensional and the frequencies related to time (the signal changes with time). For a 

two-dimensional signal, as in the case of an image, the power spectrum is two-

dimensional with the direction of the frequency component indicated along with its 

amplitude (see Figure 4.7 and Figure 4.8 (a)-(d)). These frequencies are related to 

spatial units (the image changes with position). An illustrative simple case is shown 

in Figure 4.7 where (a), (b) and (c) are images of vertical bars, a face and a galaxy 

respectively. In (a), there are no features in the vertical axis so the power spectrum 

(d) contains frequency amplitudes on the horizontal axis only. It is often easier to 

objectively characterise the type and number of features and the noise present in 

images and to quantify underlying differences between images in the frequency 
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domain and this is illustrated in Figure 4.7. More technical details on Fourier 

analysis in image processing can be found in (Bovik, 2009) and (Smith, 2003).  

Fourier analysis is performed on each of the three constituent single topography 

images of a mean topography image for real data and on the seed single topography 

images for simulated data. As the reflectance image is used for alignment in the 

HRT software, Fourier analysis is also performed on the three constituent single 

reflectance images of a mean reflectance image for real data. It has been shown that 

different types of images can be categorised by their Fourier power spectra 

(Torralba and Oliva, 2003). In particular, images of natural scenes have been shown 

to have characteristic power spectra (Ruderman and Bialek, 1994). The summed 

spectral magnitude density of each image is calculated (average of the power 

spectrum across all pixels except the 0th frequency representative of the average 

intensity of the image). The radial-averaged spectrum density (RASD) of each 

appropriate image is calculated. This involves averaging all possible directional 

power spectra in discrete radial intervals and provides a convenient means to 

compare two dimensional spectra in one dimension. The RASD centroid is 

calculated to indicate the frequency at which 50% of the spectral energy is 

distributed on either side; it is analogous to a median of a distribution or the ‘centre 

of mass’ of the RASD and has previously been used for dimensional signals used as 

a means of characterisation in music perception  (Schubert et al., 2004), where it has 

been shown to correlate well with the perceived timbre in experiments using 

computer-generated multiple instrument sounds. It is also used, among other 

measures, as an indicator of the depth of anaesthesia when monitoring patient 

electroencephalogram (EEG) readings during surgery (Schwender et al., 1996, 

Nieuwenhuijs et al., 2002, Drummond et al., 1991); in this field it is referred to as the 

spectral edge frequency. Examples of topographic and reflectance images, their 
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respective power spectra and RASD along with the centre of mass analysis are given 

in Figure 4.8. 

 

Figure 4.7 Fourier analysis example of (a) an image with periodic vertical stripes, (b) 

photograph of Pádraig Mac Piarais in side profile, (c) telescope image of the M91 

galaxy, (d) power spectrum of (a), (e) power spectrum of (b), (f) power spectrum of 

(c).  The brighter the points in (d), (e) and (f) indicate the higher amplitude of a 

given frequency - lower frequencies are located towards the centre of these images 

and higher frequencies towards the edges. Note that log scales for the intensity are 

used for (d), (e) and (f) as the proportions of frequency components at the centre 

(representing the average of the signal) and at key characteristic frequencies are 

much higher than elsewhere. 
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Figure 4.8 Fourier analysis, example of (a) single topography image, (b) single 

reflectance image, (c) magnitude of frequency spectrum of single topography image, 

(d) magnitude of frequency spectrum of single reflectance image, (e) RASD (dashed 

lines) with solid vertical lines representing the centroid for the reflectance and 

topography images. The position of each RASD centroid is also marked on images 

(c) and (d). 
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4.2.2 Image Gradient Analysis 

Fourier analysis will provide an estimate of how global characteristics of the image 

influence MPHSD measures. The occurrence of higher or lower variability at certain 

spatial locations in a HRT image should also be described and accounted for. 

Previous studies have qualitatively noted the matching locations of anatomical 

features such as vessels and the ONH cup margin in HRT topographies with 

relatively higher locations of variability across single topographies composing a 

mean topography (Chauhan et al., 1994, Chauhan and McCormick, 1995).  

One study (Brigatti et al., 1995) calculated “steepness” maps measuring local spatial 

variability and variability across single topographies (in a 3 x 3 x 3 pixel 

neighbourhood) at each pixel. Some correlation between the matching pixel 

locations of the steepness maps and the PHSD maps was reported. The calculation 

of these steepness maps however was limited as it ignored the potential spatial 

nature of the variability in the pixel neighbourhood. In addition by including the 

variability across single topographies in the steepness calculation it did not make a 

valid calculation of the local spatial variability. 

A preferable approach would be to calculate the gradients along transverse 𝑥 and 𝑦 

axes at each pixel for each single topography and reflectance image. The combined 

square root of the mean squared sum of these two gradient components is 

calculated to provide a scalar value representing the local gradient magnitude (GM) 

about each pixel. The GM can be visualised as the maximum slope magnitude of a 

plane fitted to the 3 x 3 pixel neighbourhood about each pixel. 
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Figure 4.9 Gradient analysis, example of (a) mean real topography PHSD map, (b) 

mean simulated topography PHSD map, (c) average GM map of constituent real 

single topography images, (d) GM map of seed single topography image, (e) 

average GM map of constituent real single reflectance images. For real data, cross-

correlation coefficients are 0.41 between maps (a) and (c) and 0.25 between maps (a) 

and (e). For simulated data, cross-correlation coefficients are 0.64 between maps (b) 

and (d). Note: Grey-scale maps have equal ranges across rows of this Figure but not 

along columns. 
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For a given mean topography, the GM maps for all constituent single topographies 

and related single reflectance images are compared to the related PHSD map using 

image cross-correlation. The similarity of two images by cross-correlation is 

quantified by the maximal, normalised cross-correlation coefficient. For simulated 

data, as no reflectance images are involved in the generation of a simulated mean 

topography, only GM maps of the seed single topographies are compared to PHSD 

maps. An example of this analysis for real and simulated data is given in Figure 4.9. 

4.2.3 Subjective Assessment 

Six experienced users of the HRT, including glaucoma fellows and glaucoma 

specialists (referred to as graders) were presented with 28 PowerPoint slides, each 

containing a sample HRT reflectance and topography image displayed as a pair. 

These 28 image pairs were chosen on a semi-random basis - it was required that 

they be representative of the image quality distribution in the overall sample - and 

the MPHSD distribution in this sub-sample was compared to the MPHSD 

distribution in the overall sample. Graders were asked to classify the quality of each 

image pair on a discrete scale of 1 to 5. Score 1 is described as ‘Best’ quality and 

score 5 as ‘Worst’ quality. No other criteria were given for image quality 

assessment. The graders were asked to repeat this scoring with the same series in a 

randomised order and blind to their previous scores. A linearly weighted Cohen’s κ 

score is used to measure the pair-wise agreement between all observers and within 

observers.  

A panel score is also calculated for each image pair from the mean of each 

observer’s mean score. These panel scores are compared to MPHSD values to assess 

the correspondence between the clinician’s confidence in image quality and the 

objective measurement of MPHSD. Frequency and gradient metrics as described 
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previously are also calculated for these 28 mean reflectance and topography image 

pairs. These metrics are combined equally (normalised so that reflectance and 

topography images would have equal weighting when their respective metrics are 

averaged). These averaged metrics for each pair are compared to the panel 

subjective scores of quality. 

4.3 Results 

Figure 4.10 shows the distribution of MPHSD values for the HRT Classic real 

dataset. Values of MPHSD are observed over a large range 10 - 119µm. Also shown 

is the distribution of MPHSD values for the sub-sample of HRT Classic real data 

used for subjective observer analysis.  

 

Figure 4.10 (a) Distribution of the MPHSD values for all 74 HRT Classic baseline 

mean topographies. (b) Distribution of the MPHSD values for a subset of 28 

randomly selected topographies from all 74 HRT Classic mean topographies.  

All distributions of PHSD values for all mean topographies are bounded below by 

zero. As such, all distributions are found to be positively skewed. Mean 

topographies with MPHSD values in the upper ranges exhibited PHSD distributions 
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with a larger spread (as assessed by the IQR) than those of lower MPHSD values 

(Figure 4.11). 

 
Figure 4.11 MPHSD values compared to inter-quartile range (IQR) values for PHSD 

distributions. 

Figure 4.12 shows the effects of MPHSD on RA variability. For the series average 

setting (a), a strong linear relationship is observed between series RA standard 

deviation and the series averaged MPHSD: Pearson’s sample correlation coefficient, 

𝑟=0.59 (p<0.001). For the individual image setting (b), only a very weak linear 

relationship is observed between the individual image MPHSD as a fraction of the 

mean series and the image deviation from the RA best available estimate (series 

mean RA) as a fraction of series RA standard deviation (Pearson’s rank correlation 

coefficient, 𝑟= 0.15 p=0.003). 
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Figure 4.12 (a) Series RA standard deviation values plotted against series-averaged 

MPHSD values. (b) The magnitude of difference of individual RA measurements 

from the series RA best available estimator (BAE) - as calculated by the series 

average RA measurements – as a fraction of series RA standard deviation plotted 

against MPHSD values as a fraction of series-averaged MPHSD values. Areas of a 

higher density of points are represented by darker shading. 

For the simulation, the range of MPHSD values varied considerably (18 – 116µm) 

despite identical noise being applied to generate all mean topographies. The range 

of MPHSD values for simulated data is similar to that of real data but poor 

agreement is observed with increased real mean topography MPHSD values as seen 

in Figure 4.13. 
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Figure 4.13 MPHSD values for real and simulated mean topographies. The 

minimum observed MPHSD (10µm) in real mean topographies is plotted as a lower 

bound for simulated mean topography MPHSD. Pearson’s sample correlation 

coefficient 𝑟: 0.79 (p<0.001), MPHSD real – MPHSD simulated mean: 7.6 µm, 

standard deviation: 13.7 µm. 

Fourier analysis revealed a strong significantly positive dependence of the MPHSD 

value on the RASD centroid and the summed spectral magnitude density of “pre-

averaged” single topography for both real and simulated data. Simply put the 

MPHSD of mean topographies is affected by the characteristics of the component 

images. In addition, for real data, there is a strong significantly positive dependence 

of the MPHSD value on the RASD centroid and a negative dependence of the 

MPHSD on the summed spectral magnitude density of “pre-averaged” single 

topography for both real and simulated data. Figure 4.14 illustrates these 

relationships. 
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Figure 4.14 Fourier metrics of constituent single images compared to MPHSD 

values. Pearson’s 𝑟 correlation coefficients are for (a) 0.74, (b) 0.93, (c) 0.69, (d) -0.55, 

(e) 0.58 and (f) 0.58. 

 

Figure 4.15 Measure of the average GM of constituent single images compared to 

MPHSD values. Pearson’s 𝑟 correlation coefficients are for (a) 0.95, (b) -0.51 and (c) 

0.85. 
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Figure 4.16 Distributions of (a) averaged measure of the NCC of real mean 

topography PHSD maps and GM maps for each constituent single topography (b) 

averaged measure of the NCC of real mean topography PHSD maps and GM maps 

for each constituent single reflectance image and (c) averaged measure of the NCC 

of multiple simulated mean topography PHSD maps and GM maps for single seed 

topographies.  Means of distributions are 0.375, 0.25 and 0.56 for (a), (b) and (c) 

respectively. 

Both locally and globally, there is a measurable relationship of MPHSD to image 

gradient measures of “pre-averaged” single topographies. On a global scale, for 

simulated data and real data, there is a strong positive relationship between GM 

mean values averaged across single topographies and MPHSD values. For real data, 

there is also a negative relationship between the GM mean values averaged across 

single reflectance images and the MPHSD. Figure 4.15 displays these relationships. 

On a local scale means of NCC values in comparing maps of PHSD maps and GM 

maps of single topography and reflectance images are 0.37 and 0.25 respectively for 

real data. For simulated data, the mean of NCC values for comparisons of PHSD 

maps and GM maps of single topographies is 0.45. NCC distributions for all 74 

scans are presented in Figure 4.16. 
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Within and between-observer agreement among clinicians quantified by linearly 

weighted κ values are shown in table 4.2 including mean between observer 

agreement and mean within observer agreement (repeatability). 

Table 4.2 Agreement between the subjective assessments of the image quality of 

HRT mean topography and reflectance image pairs by 6 observers (A – F). Quality 

assessments were made over a subset of 28 image pairs. Agreement is quantified by 

use of linearly weighted κ values. Observers were asked to repeat their quality 

assessments on the same (but reordered) subset (1 – 2). Within observer agreements 

are in indicated by the italic font. The strength of agreement is indicated by colour - 

red represents the lowest agreement and green the highest. 

Observer 

A1 A2 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2 

A1 0.78 0.58 0.75 0.37 0.51 0.50 0.61 0.61 0.53 0.61 0.52 

 
A2 0.61 0.78 0.49 0.59 0.62 0.64 0.55 0.57 0.65 0.65 

  
B1 0.67 0.45 0.49 0.63 0.66 0.37 0.36 0.54 0.48 

   
B2 0.54 0.60 0.58 0.70 0.52 0.59 0.81 0.66 

    
C1 0.76 0.51 0.53 0.26 0.46 0.64 0.61 

     
C2 0.59 0.60 0.41 0.62 0.79 0.69 

      
D1 0.82 0.38 0.41 0.55 0.48 

 
Median Within Observer 

  
D2 0.48 0.51 0.66 0.50 

 
0.76 

   
E1 0.62 0.47 0.42 

 
Median Between Observer 

    
E2 0.64 0.58 

 
0.58 

     
F1 0.75 

           
F2 
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The relationship between observer image quality panel scores and MPHSD values is 

displayed in Figure 4.17 (a). Equally weighted combined Fourier metrics (RASD 

centroid) and gradient metrics (mean GM) for reflectance and topography image 

pairs are plotted in Figures 4.17 (b) and (c) respectively. Examples of four mean 

topography and reflectance image pairs are given in Figure 4.18. The associated 

panel scores, the standard deviation of observer scores (averaged over repeat 

assessments) and MPHSD values are also included. 

Figure 4.17 Subjective observer assessed panel scores of image quality of mean 

topography and reflectance image pairs compared to (a) MPHSD, (b) 

reflectance/topography image combined RASD centroid measurement and (c) 

reflectance/topography image combined mean GM. Coloured points on figures 

correspond to those examples in Figure 4.18. Pearson’s 𝑟 correlation coefficients are 

for (a) 0.81 (b) 0.81 and (c) 0.28. 
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Reflectance-Topography Image Pair 
Mean Panel 

Score 
(Rounded) 

MPHSD 
(Category) 

Panel 
Score 
 SD 

Plot 
Symbol 

 

1.42 
 

(1) 

18µm 
 

(1) 
0.51  

4.83 
 

(5) 

38µm 
 

 (3) 
0.39  

4.92 
 

(5) 

121µm 
 

 (5) 
0.29  

3.92 
 

(4) 

51µm 
 

 (5) 
0.90  

Figure 4.18 Examples of reflectance-topography image pairs (a)-(b), (c)-(d), (e)-(f) 

and (g)-(h) presented to experienced Heidelberg Retina Tomograph operators with 

mean panel scores (rounded to nearest category) and standard deviation of scores 

across all observers. MPHSD values and manufacturer supplied categories for these 

values are displayed. Coloured symbols are used to represent these examples in 

Figure 4.15. (SD: standard deviation). 
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4.4 Discussion 

In case finding using medical images, a measurement of image quality is necessary 

to assess how adequate any evidence (or lack thereof) in the image is for diagnostic 

purposes. The effect of a degraded image quality on clinical decision making is 

illustrated in the opening example of Figure 4.1, a case no doubt where a metric 

showing poor image resolution would have perhaps led to an immediate second 

scan in the first review of the patient. In the assessment of glaucomatous 

progression, the confidence in any change detection algorithm will need to 

incorporate an objective, easily understandable measure of image quality which is 

robust and accurate on a local and global scale. 

Below the 50µm threshold for acceptable images evidence suggests that the 

diagnostic capability of the HRT is unrelated to MPHSD (Sung et al., 2009). Image 

quality assessments in glaucoma detection and monitoring of structural changes in 

the retina and ONH are not just relevant to HRT imaging. RNFL assessments using 

OCT have been shown to be significantly affected by image quality; measurements 

of RNFL thickness have been shown to be correlated to image quality metrics (Sung 

et al., 2009, Balasubramanian et al., 2009). 

The results of this and previous studies (Owen et al., 2006, Sihota et al., 2002) show 

that high average MPHSD values for a series of HRT derived RA measurements are 

predictive of higher RA variability. However this study also found that, in a series 

itself, a mean topography with a relatively higher MPHSD value than the other 

mean topographies had little relatively higher contribution to RA variability in that 

series. In the context of glaucoma progression studies, these findings mean that a 

series of RA measurements can be more helpfully assessed with the MPHSD as an 
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indicator of the overall series variability; this concept has been used in a previous 

study to optimise a HRT RA progression analysis (Fayers et al., 2007). Conflictingly, 

a MPHSD measurement of a mean topography may serve little use as an individual 

weighting parameter for its associated RA measurement in analyses of change such 

as a weighted least squares regression or a Chi-squared regression of RA over time 

or in the identification of outlier RA measurements in a series. 

The MPHSD values of mean topographies of different ONH and surrounding area 

morphologies in different scanning conditions (due to different media opacities and 

aberrations) fall within a large range. Significantly, a large component of this 

variability is due to the underlying characteristics of the pre-averaged single 

reflectance and topography image sets. In short, the MPHSD is affected by the 

features in the pre-averaged images and is therefore not a wholly independent 

measure of image quality. MPHSD values are higher for mean topographies whose 

constituent single topographies produce higher image metrics indicating the 

amount of signal ‘energy’ (spectral density magnitude sum), and the image-

averaged localised gradient about each pixel (mean GM). This has implications for 

the clinical use of this metric, especially when it is used, for example, in population 

based studies as a threshold upon which patients are included or excluded. 

A simulation was developed to illustrate that, when equal misalignment noise is 

used to generate new single topographies, a systematically large range of MPHSD 

values of the resulting simulated mean topographies values is demonstrated. This 

confirms that misalignment noise interacts with the single topography structure in 

producing MPHSD values: MPHSD is not a true measure of misalignment noise 

between single topographies. Quantitative evidence is also provided of the 

relationship of pixel neighbourhood gradient maps of single topographies and the 
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PHSD maps i.e. evidence of the correspondence between local areas with high 

gradients (or edges) and high PHSD areas. This leads to the somewhat obvious 

conclusion that ‘movement’   applied to less ‘flat’ images, with less homogeneity, 

will result in higher global variability due to increased local variability in the 

locations of higher gradients. 

Where the directionally-independent median frequency of the spectral density 

magnitude distribution (RASD centroid) is higher in single topography and 

reflectance images the MPHSD of mean topographies is also higher. From this one 

can infer that the higher the proportion of high frequencies in a single topography 

set, the higher the MPHSD for the resulting mean topography. These high 

frequencies can come from real structures such as the sharp edges of vessels and the 

cup/rim margin but also from image acquisition background noise from light scatter 

in eyes with high levels of media opacity. 

The HRT alignment software uses the features in single reflectance images to assess 

how best to align single topographies before averaging to form a mean topography. 

Some reflectance image metrics (spectral density magnitude sum and mean GM) are 

negatively correlated to MPHSD values. This suggests that, the higher the values of 

these metrics, the higher likelihood that features in reflectance images are correctly 

detected and single topographies are better aligned reducing the MPHSD.  

Observers, even those trained to use the HRT and interpret its output data, can have 

poor agreement with each other (weighted Cohen’s 𝜅 lower limit of 0.26 and 

median of 0.58) in assessing the quality of output HRT topography and reflectance 

image pairs. Moreover, the repeatability of image quality judgements by expert 

observers is only moderate (median 𝜅=0.76) as measured by agreement with a 
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second grading of the same set of image pairs by each observer. The between-

observer median 𝜅 value in this study is comparable to the between-observer 

median unweighted Cohen’s 𝜅 of 0.55 in a study of clinicians assessment of the 

quality of 100 fundus photographs (Bartling et al., 2009). Both between-observer and 

within-observer agreement measures for HRT image quality grading are no better 

than the decisions of clinicians when assessing monoscopic and stereoscopic 

photographs for the presence of glaucomatous damage in another study (Varma et 

al., 1992). Here, the median weighted 𝜅 for within-observer agreement was 0.79 for 

both monoscopic and stereoscopic conditions. For between-observer agreement, the 

median weighted 𝜅 values were 0.57 and 0.67 in monoscopic and stereoscopic 

conditions respectively. This reinforces the need for an objective and robust quality 

metric to help the HRT user. The panel-averaged scores had a good correlation with 

the MPHSD values and metrics of the spectral domain (𝑟2=0.66 for both) showing 

that these metrics can make similar assessments of image quality as the pooled 

expertise of observers. 

The simulation used in this analysis is developed using a heuristic approach aimed 

at generating mean topographies with MPHSD values consistent with those of the 

relevant real topographies when these real mean topographies had low MPHSD 

values. This is because parameters governing the misalignments between single and 

mean topographies are difficult to measure. Despite this approach, the simulation is 

unable to consistently simulate mean topography MPHSD values observed in real 

mean topographies across the full range of values. Specifically, variability tended to 

be less well reproduced within mean topographies with higher MPHSD. This serves 

as a motivation for the further development and testing of more sophisticated 
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means of simulating the image acquisition and computation processes involved in 

mean topography generation by the HRT device and software. 

MPHSD is a simple and easy to appreciate metric which gives a measure of the 

global difference between three single topographies composing a mean topography. 

However it is not an accurate estimate of misalignment between single topographies 

and is affected by the underlying anatomical features in the image. The provision of 

more specific metrics such as the level of ‘success’ of topography alignment and the 

optical quality of images in the CSLO stack, both independent of the underlying 

morphology, would improve the acquisition and post-hoc analysis of mean 

topography images. A robust segmentation to automatically identify the anatomical 

features and separate them from high frequency noise in the topography would 

help to establish the optical quality of the imaging system. These would provide 

information as to how close the variability of a mean topography is to its optimal 

lower limit given fixed scanning conditions i.e. with minimal eye movement, 

spherical and cylindrical correction and adequate illumination. For example, at 

acquisition, an identification of poor alignment could help with deciding to scan 

again attempting to minimise eye movement, whereas an identification of poor 

optical quality would help to conclude that inferences from imaging data may be 

limited from the outset. 

This analysis aims to provide a better understanding of the factors which influence 

MPHSD, the most widely used and the only software-supplied measure of within 

mean topography variability. It leads to the conclusion that additional metrics could 

give a clearer message to the clinician or scientist when deciding how to 

appropriately interpret and use data from HRT images. 
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5. Simulation of Series of Optic 

Nerve Head Images 

As seen in Chapter 2 and in previous literature, when stereoscopic disc photograph 

assessment or visual field progression are used as the reference standard for 

progression/stability, there is poor discrimination between stable and progressing 

eyes by HRT progression algorithms. This apparent poor discrimination may be due 

partly to poor performance of the algorithms and partly to inaccuracies in the 

reference standard itself. Furthermore, poor between-expert agreement in 

identifying progression based on stereoscopic photographs in previous studies 

(Coleman et al., 1996, Azuara-Blanco et al., 2003, Jampel et al., 2009) (and also 

exhibited by the frequency of eyes requiring adjudication in Chapter 2) illustrates 

the short-comings of stereophotography as a reference standard. For this reason, the 

concept of a simulation mimicking stable serial images is a hugely useful one. 

Progression algorithms can be applied to the simulated stable series and criteria 

selected to obtain low false positive rates and the false positive rates of different 

progression algorithms can be compared with each other, knowing that the image 

series are truly stable.  

Physical eye models have been created from synthetic materials to investigate the 

accuracy of the CSLT to image certain structures (Dreher and Weinreb, 1991) and in-

vitro fixed model eyes can helpfully examine the characteristics of reflected laser 

light from retinal tissue (Rakebrandt et al., 2003). Insights on potential artefacts in 

the topographic fitting procedure for CSLT have been provided in other 

applications of this model eye approach (Bartsch and Freeman, 1993). Realistic and 
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sophisticated computer simulation is common in other areas of medical imaging, in 

particular neuro-imaging (Collins et al., 1998, Kwan et al., 1999). In these fields it is 

widely considered the best way to validate automated post-processing algorithms, 

such as assessing the performance of the alignment of non-rigid images and 

volumes over time (Crum et al., 2004, Holden et al., 2002). However, with regard to 

the detection of glaucomatous progression, the practice of realistically simulating 

longitudinal image series has been neglected, with some exceptions in SLP (Vermeer 

et al., 2006) and elementary work in CSLT (Patterson et al., 2005) similar to the 

topography simulation in Chapter 4. The predominant focus in glaucoma has been 

on simulation of visual field series (Gardiner and Crabb, 2002b, Spry et al., 2000, 

Vesti et al., 2003, Gardiner and Crabb, 2002a, Jansonius, 2007). The key advantage of 

this approach in CSLT imaging is having exact knowledge that the morphology of 

the original structure is not changing, because all images are derived from the same 

baseline scan. This simulation can then provide a test-bed for comparing false 

positive rates of HRT change detection methods. 

In this chapter, a virtual platform is developed in which components of the optic 

disc topographic image formation process of the HRT are simulated 

computationally, taking into account features relevant to topographic variability 

such as eye movements and other sources of noise during and between HRT 

examinations. This aim is implemented by using empirical and theoretical 

parameters of these noise sources to propagate HRT series from real baseline scans. 

The resulting simulated HRT images will be analogous to the real HRT images 

obtained in clinics with variability similar to that inherent in real ‘stable’ series.  

The work in this chapter has formed a paper published in Investigative 

Ophthalmology and Visual Science (O'Leary et al., 2010a). Parts of this work were 
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also presented at the Image Morphometry and Glaucoma in Europe Meeting, 

Leuven, Belgium February 12-13, 2009 and Rome, Italy February 4-5, 2010 and also 

at the Association for Research in Vision and Ophthalmology Meeting, Fort 

Lauderdale on May 3-7 2009 and May 2-6, 2010. 
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5.1 Methods 

5.1.1 Data 

HRT II scans previously acquired for a study on test re-test measurement variability 

are used; the data are fully reported on elsewhere (Strouthidis et al., 2005b) and in 

Chapters 3 and 4. In summary, they consisted of the images of both eyes from 74 

patients (43 OHT, 31 POAG) having 5 HRT II examinations within 6 weeks. All HRT 

II data were processed in the latest HRT III software viewer version (ONH Viewer 

Module 3.1.2.15). From 148 eyes of 74 patients, 127 eyes of 66 patients were selected 

on the basis of available raw data (having 5 computable mean topographies and 

having a baseline scan with original confocal image stacks). 

5.1.2 Simulation Development 

The HRT II acquires a confocal image stack comprised of ‘optical sections’ taken 

through a sequence of focal planes 62.5µm apart in a horizontal scanning angle of 

17.5° and vertical scanning angle of 15° around the ONH surface. These are aligned 

to compensate for eye movements occurring during scan acquisition. Each optical 

section image is sampled as an array of 384 rastered horizontal line scans each 

sampling 448 pixels. The intensity of light reflected in each optical section for a 

location on the ONH/retinal surface is used to calculate the surface height at that 

location (approximately the depth position of the optical section with the highest 

reflectance intensity at that location). The matrix of surface height values of the 

central (384 x 384) sampled locations forms the topography image with the 

information from the 64 horizontally peripheral pixels used only prior to 

topography formation.  
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The simulation uses the unprocessed (unaligned) confocal image stack as the basis 

for simulation. For the purposes of simplicity and clarity, a scan triplet is used to 

refer to the three single image stacks (referred to as single scans) obtained during 

each acquisition or examination. The patient is repositioned at the HRT between 

image acquisitions. It is from this scan triplet that three single topographies are 

derived; these are aligned and averaged to form the mean topography. 

One baseline single scan for each eye is chosen as the ‘seed’ for the generation of the 

simulated series. Each optical section is aligned with the section above and below 

using a cross correlation algorithm, to reduce eye and head movements already 

potentially present in the seed data. Within each seed stack, various sources of 

noise, present during image acquisition, that potentially result in variability 

between the generated topography (single and mean) images is added in the 

following order: (1) within examination eye movement, (2) within examination head 

movement, (3) between examination head movement and (4) device noise consisting 

of quantum effect noise (shot/photon counting) and electronic noise (Johnson-

Nyquist/thermal). Simulated single topographies are formed from resultant image 

stacks using the HRT III software; the simulated mean topographies are calculated 

from the simulated single topographies. The input and sequence of the addition of 

these sources of noise are shown in Figure 5.1. 
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Figure 5.1 Schematic of simulation: HRT single and mean topography formation 

formed from a single scan volume of CSLO optical sections. Processes are 

represented by grey boxes with intermediate data states by white boxes and initial 

and final data states by rounded boxes.  
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5.1.2.1 Within Examination Eye Movements 

In HRT image acquisition, the patient is asked to fixate on a target before and 

during the acquisition. Thus the eye movement model consists of the three main 

components of normal fixational eye movements: ocular micro-tremor, ocular drift 

and microsaccades. Ocular micro-tremor is assumed to have an amplitude range of 

0-2 arcmin (median 17.5 arcsec) (Ratliff and Riggs, 1950) with a frequency power 

spectrum from 0 Hz to 150 Hz (Spauschus et al., 1999). Ocular drift is assumed to 

have linear speed an amplitude range of 3-12 arcsec with durations spanning the 

intervals between microsaccades (Riggs et al., 1954). Microsaccades are assumed to 

have mean amplitude of 30 arcmin and mean period of 30ms (Schulz, 1984). Mean 

speeds of microsaccades are calculated from the ‘main sequence’ relationship 

(Zuber and Stark, 1965) and are parametrically related to the amplitudes of 

microsaccades. Each microsaccade speed is non-linear and is approximated to that 

of a half-Gaussian function. The mean frequency of microsaccades is assumed to be 

1.5 per second (Engbert and Mergenthaler, 2006). 

Certain assumed rules are enforced in the eye movement model: drift and micro-

tremor take place simultaneously; neither drift nor micro-tremor can occur during 

microsaccades; no subsequent ocular drift can be in the same direction (±90o) as the 

previous microsaccade. This approximates the directional frequencies eye 

movements observed in previous studies (Schulz, 1984). No initial directional 

preference is chosen for eye movements though results have shown that horizontal 

and vertical eye movements do display different characteristics (Liang et al., 2005). 

From these parameters and rules, a retinal-trace (x, y, t) (the path of the retina in 

transverse axes over time) is derived for the position of the retina. The sampling 

period of each optical section is approximately 24ms (frequency 42 Hz) and within 
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each section the rastered horizontal line sampling period is approximately 62 µs 

(frequency 16 kHz). As the latter frequency is many orders of magnitude above 

maximum frequencies recorded for eye movements, the horizontal line scan time is 

considered a sufficient sampling frequency for the eye movement model (i.e. 

movement occurs between line scans and between optical sections). The transverse 

(x and y) spatial sampling for each HRT pixel is approximately 2 arcmin in an 

emmetropic eye. 

5.1.2.2 Within Examination Head Movements 

These are represented by scaling (‘magnification’) and the translational and 

rotational movements of the retina to correspond with movements of the head. 

There is little research on head movement parameters during positioning on chin 

and head rests but studies have shown that a mean of about 2.5% of head motion 

remains uncorrected by translational compensatory eye movements (Ferman et al., 

1987). As a consequence only translations along the ‘z’ axis (in depth) of scanning 

are included in the head movement model. This model is implemented by applying 

cumulative, random, axial translation (with appropriate scaling) and rotation to 

each sequentially scanned optical section throughout the scan triplet. 

5.1.2.3 Between Examination Movement 

 Global uniform transformation and change in overall reflectivity of the confocal 

stack mimics variability resulting from placement of the head anew on the head and 

chin rests. A standard deviation of 10 pixels is chosen (by assumption) for the 

normal distribution from which lateral translations of the follow-up stack relative to 

baseline can be chosen as an estimate for the operator uncertainty in centring the 

ONH upon scanning. Changes in the autofocus settings of the machine (correct axial 
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placement of central CSLO section) are modelled by random small scaling and 

depth translations. Differences in initial head angle placement in each examination 

are mimicked by rotations of the scan triplet about each axis with relation to the 

baseline. 

For all eye and head movements, implementation of deriving new intensity values 

at each new simulated pixel involves the defining of new coordinates for every pixel 

in the CLSO section stack under a given transformation. “Filling-in” of unknown 

data between known intensity values at fixed pixel coordinates requires 

interpolation. As a standard approach in many similar problems, bilinear or trilinear 

interpolation is chosen for this. It applies products of linear functions to the data of 

the neighbouring 4 or 8 pixels in two or three-dimensional space to obtain intensity 

values of new coordinates which do not coincide exactly with the coordinates of any 

pixel in the seed stack. If the transformation only involves transverse components, 

then bilinear interpolation is only performed using the values of the new 

coordinate’s transverse neighbours. If axial components are involved in the 

transformation, then trilinear interpolation is performed using the axial 

neighbouring pixel information in addition.  

In the rare cases where there is no valid measurement from the reflectance signal 

from the focussed spot, these areas remain ‘invalid’ under the new coordinate 

system. Bilinear/trilinear interpolation will render neighbouring values close 

enough also ‘invalid’ under the coordinate transform. The effect of movement 

which causes the re-sampled pixels to fall outside the boundaries of the original 

optical section, known as “windowing”, is an important technical point to consider. 

Null values are used and the topography formation and alignment algorithms will 

ignore information at these pixels. This effect occurs mostly to the edges of the 
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optical section images. As previously stated, there are 64 extra horizontally 

peripheral pixels available for use in each optical section before topography 

formation. The simulation uses the information of these extra pixels to remove the 

effects of windowing from horizontal axis movement.  

As the dwell time of the scanning beam at each sampled point is <0.5 x 10-6 s the 

effect of optical blur or ‘smearing’ of the optical point spread function (PSF) due to 

eye movements is considered negligible for this model. Even at the maximum 

simulated eye speed, the maximum displacement during this dwell time would be 

<2.5 x 10-4 of the transverse spatial sampling interval between pixels (one pixel 

width). One pixel width is approximately equal to a typical full width at half 

maximum of the PSF in the HRT scanning system as referred to in the imaging 

systems lateral resolution specification (Heidelberg Engineering, 2010). 

5.1.2.4 Device Noise 

The operating principles of the HRT are such that retinal reflected light is gathered 

point by point and focussed onto a detector. A single spot detector - an avalanche 

photodiode (APD) is used for sequentially measuring the incident reflectance 

intensity values. The principal sources of device noise in HRT image acquisition are 

assumed to be intrinsic noise (Pawley, 1994) in the form of quantum or photon-

counting (shot) noise (Goodman, 1985) along with electronic noise which is 

primarily thermal noise (Johnson/Nyquist) and APD noise (Vasilescu, 2005). Photon 

counting noise can be modelled as a Poisson process where the intensity measured 

at the detector (proportional to number of photons striking the detector) for a 

sampled point can be chosen from a Poisson distribution with a mean intensity of λ. 

In this simulation λ is given by the intensity of the pixel of the seed optical section 

after eye and head movements have been added. Thermal and APD noise which are 



 

172 

 

intrinsic noise from the properties of electronic circuitry in general and 

semiconductor diodes respectively can be combined and approximated to white 

noise with given amplitude. Each pixel in each optical section has added spatially 

independent noise sampled from a normal distribution with a mean of zero and 

with the amplitude of the noise determined by the standard deviation of the 

distribution. In this simulation, the standard deviation is estimated at 2% of the 

maximum 256 stored intensity grey-level values in an 8-bit analogue-to-digital 

converter. After noise is introduced, each pixel intensity value is rounded to the 

nearest 8-bit integer to represent the digitization of the signal in the HRT optical 

section. 

5.1.2.5 Noise Follow-up Time Dependence 

The difference between one scan triplet and another is simply modelled by the 

change in initial head and eye position corresponding to a repositioning of the head 

onto the head and chin rest and a resetting of the acquisition centration on the 

ONH. The within scan triplet noise parameters do not change with time nor do the 

differences between examinations. These assumptions are supported by the finding 

of no difference in variability between examinations with a range of intervals (1 

hour to 4 weeks) too short for age related changes to have occurred (Chauhan and 

MacDonald, 1995). 

5.1.2.6 Implementation 

This simulation model has been implemented in MATLAB® (2009a The MathWorks 

Inc. Natick, Massachusetts); it contains the full technical specifications and is freely 

available upon request from the authors. As indicated in Figure 5.1, all simulated 
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optical stack data are imported into the HRT III software for topography calculation 

and alignment. This processing is identical to that of real data. 

5.1.3 Simulation Testing 

The appropriateness of the simulated images is assessed quantitatively by 

comparing the following measures between the real and simulated topographies for 

each eye. 

5.1.3.1 Local within examination variability 

This is a map of within examination pixel height standard deviations (PHSDw). Each 

pixel of this map PHSDw(x, y) is the sample standard deviation at that pixel across 

the three aligned single topographies comprising a mean topography. 

5.1.3.2 Local between examination variability 

This is a map of between examination pixel height standard deviations (PHSDb). 

Each pixel of this map PHSDb(x, y) is the sample standard deviation at that pixel 

across all mean topographies in the series. 

5.1.3.3 Global within examination variability 

This is the mean within examination pixel height standard deviation (MPHSDw). 

MPHSDw is used as an overall measure of within examination quality and is 

provided in the HRT III software. It is the geometric mean of all pixels in the PHSDw 

map of a mean topography. 

5.1.2.4 Global between examination variability 

This is the mean of between examination pixel height standard deviation (MPHSDb). 

MPHSDb is used in this study as a global measure of the variability between mean 
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topographies in a series. It is the geometric mean of all pixels in the PHSDb map for 

each series. 

5.1.2.5 Clinical measure of variability: Neuroretinal rim area variability of mean 

topographies 

As with previous chapters, RA is considered to present the best option from all the 

HRT stereometric parameters for detecting and tracking glaucomatous changes in 

the ONH. In addition its variability has been well characterised (Owen et al., 2006, 

Tan et al., 2003). Thus reproducing longitudinal RA variability will present a major 

validation of any realistic simulation of longitudinal HRT series. In this study the 

Moorfields fixed, standard, reference plane is used to calculate RA (Poli et al., 2008). 

RA coefficient of variation (CV) is calculated as the ratio of the standard deviation to 

the mean of the RA across mean topographies in a series. The RA CV is compared 

between real and corresponding simulated mean topography series to examine the 

performance of the simulation in mimicking the variability of a clinically 

meaningful parameter. 

Single value metrics of variability (MPHSDw, MPHSDb, RA CV) are compared by 

plotting the paired values (or mean value where appropriate) of simulated and real 

series and examining the mean difference. Mean differences (bias) and the 95% 

limits of agreement between real and simulated series are calculated for these 

metrics. Analysis of proportional bias and agreement is also performed i.e. any 

change in the bias or agreement with the measurement value itself was investigated. 
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5.1.2.6 Correlation in the spatial distribution of topographic variability between 

real and simulated series 

The maximal value of the NCC, a standard image processing metric for similarity of 

two images, (Eskicioglu and Fisher, 1995) (as used in Chapter 4) is used to compare 

the local variability measures (PHSDw, PHSDb maps) of real and simulated 

topographies. The term maximal is used as PHSDw and PHSDb maps can be shifted 

along x and y coordinates (with an upper limit of 20 pixels) to find the maximal 

NCC. This is a logical approach as the real and simulated series will have different 

baselines and as such PHSD maps will need to be approximately aligned to each 

other. This metric captures the extent of mutual spatial information in the real and 

simulated variability maps and thus how well the location of topographic variability 

is reproduced by the simulation. NCC ranges from a minimum possible value of -1, 

representing perfectly anti-correlated image data, to a value of +1, representing 

perfectly correlated image data, where a value of 0 represents no correlation 

whatsoever. 

NCC values from comparing real and simulated mean topography PHSDw 

variability maps are benchmarked against NCC values from comparisons of the real 

mean topography PHSDw variability maps with each other. The NCC for a 

real/simulated series comparison is the mean of the 25 possible pairs of 

comparisons. The NCC for the real/real series comparison is the mean of 10 possible 

pairs of comparisons. 
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5.2 Results 

Of the selected 127 eyes from 66 patients 63 were left eyes and 64 were right eyes. 

The median patient age at baseline examination was 70 years (inter-quartile range: 

63– 75 years). 

Mean differences (bias) and 95% limits of agreement between real and simulated 

data for MPHSDw, MPHSDb, RA CV and the NCC values for PHSDw maps are 

displayed in table 5.1. Results of analysis of proportional effects on agreement 

between real and simulated series are also included in table 5.1 with statistical 

significance of linear relationships between biases and average measurements and 

statistical significance of linear relationships between 95% limits of agreement and 

average measurements. In addition, a log transformation is used on mean values 

and before differences are calculated between real and simulated measures, an 

approach designed to ensure robustness against the effect of the heteroscedasticity 

and potential outliers on any measured proportional effects,(Bland and Altman, 

1986) These characteristics are clear in the Bland-Altman plots of Figures 2 and 5. 

Accordingly log-transformed significance of proportionally dependent bias and 95% 

limits of agreement are included in table 5.1. 
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Table 5.1: Summary of differences (bias and 95% limits of agreement (LoA)) 

between the simulated and real image series for global, regional and local measures 

of variability: mean of within examination pixel height standard deviation 

(MPHSDw), mean of between examination pixel height standard deviation 

(MPHSDb), RA CV and NCC of PHSDw. maps. 

  Measures of Difference 

  
Uniform 

Significance of Proportional 
Dependence 

 Linear Log-transformed 

  Bias 
95% 
LoA Bias 

95% 
LoA Bias 

95% 
LoA 

M
ea

su
re

 o
f V

ar
ia

bi
lit

y 

MPHSDw 3.5µm 
-20.9µm 

to 
28.8µm 

p=0.10 p<0.01 p=0.61 p<0.01 

MPHSDb 2.0µm 
-5.4µm 

to 
9.3µm 

p<0.01 p<0.01 p=0.35 p=0.27 

RA CV -2.1% 
-17.6% 

to 
-13.4% 

p=0.09  p=0.08 p=0.40 p=0.07 

NCC 
PHSDw 

0.052 
0.039  

to  
0.065 

p<0.01  p=0.25 p<0.01 p=0.87 



 

178 

 

Bland-Altman plots in Figures 5.2 (a) and 5.2 (b) show the agreement between 

paired real and simulated eye series for MPHSDw and MPHSDb respectively. 

Agreement between paired real and simulated topography series for RA CV values 

for global RA is shown in the Bland-Altman plot in Figure 5.3. Linear proportional 

biases and 95% limits of agreement found to have statistical significance in either 

linear or log-transformed domains (p<0.05) are displayed on all Bland-Altman plots. 

 

Figure 5.2 Bland-Altman plots showing series-wise, agreements between (a) average 

within examination MPHSD (MPHSDw) for real and simulated mean topography 

data and (b) agreement of between examination (MPHSDb) for real and simulated 

mean topography data. The mean difference (bias) of average MPHSDw is 3.5µm 

(95% limits of agreement: -20.9µm to 28.8µm). The mean difference of MPHSDb is 

2.0µm (95% limits of agreement (LoA): -5.4µm to 9.3µm). Uniform 95% LoA 

illustrate only approximate limits of agreement as heteroscedasticity of this data is 

apparent. Dashed lines indicate statistically significant linear proportional bias for 

MPHSDb and the significant linear proportional increase of the widths of the 95% 

LoA for MPHSDw and for MPHSDb. 
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Figure 5.3 Bland-Altman plots showing series-wise agreement between RA CV for 

real and simulated data (%). Mean difference between values for real and simulated 

data is -2.1% (95% limits of agreement (LoA): -17.6% to 13.4%). No proportional 

effects were found on the bias or LoA. 

Local variability correlation between real and simulated data is shown in Figure 5.4. 

The average, series-wise, maximal, NCC of PHSDw distribution between simulated 

and real data is shown in Figure 5.4(a) with a mean of 0.58 (standard deviation 0.12). 

The distribution of series-wise, maximal NCC of PHSDb maps between simulated 

and real data is shown in Figure 5.4(b) with a mean of 0.54 (standard deviation 0.10). 

The distribution of average, series-wise, maximal NCC between real PHSDw maps 

and other real PHSDw maps in the same series is shown in Figure 5.4(c) with a mean 

of 0.64 (standard deviation 0.14). 
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Figure 5.4 Distributions of maximal NCC of pixel standard deviation maps between 

real and simulated data (a) within examination (PHSDw) averaged over all pair-wise 

comparisons and (b) between examination (PHSDb). (c) The series average NCC 

values of all pair-wise pixel standard deviation maps between mean topographies in 

the same series. Value extremes are interpreted as follows: -1: perfectly negatively 

correlated, 0: uncorrelated, 1: perfectly positively correlated. 

Agreement of average NCC of real/real PHSDw maps against average NCC of 

real/simulated PHSDw maps is shown by the Bland-Altman plot in Figure 5.5. The 

mean difference is 0.052 and 95% limits of agreement are 0.039 and 0.065. 
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Figure 5.5 Benchmarking of PHSDw NCC values between real and simulated data: 

Bland-Altman plot showing agreement of average NCC for real/real PHSDw map 

comparisons and average NCC for real/simulated PHSDw map comparisons. Solid 

lines represent a uniform bias of 0.052 and 95% limits of agreement of 0.039 to 0.065. 

The dashed line represents the statistically significant linear proportional bias. 

Examples of mean reflectance images, mean topographies and corresponding 

PHSDw maps for real and simulated data are shown in Figures 5.6 and 5.7. 

Examples of series average mean reflectance images, series average mean 

topographies and corresponding PHSDb maps for real and simulated data are 

shown in Figures 5.8 and 5.9.  
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Figure 5.6 Qualitative display of within examination, local variability for real and 

simulated pairs. (a) Real mean reflectance image. (b) Corresponding simulated 

mean reflectance image. (c) Real mean topography (mean of within examination 

pixel height standard deviation (MPHSDw) 20µm). (d) Corresponding simulated 

mean topography (MPHSDw 22µm). (e) Log of pixel height standard deviation 

(PHSDw) maps of real mean topography – darker areas represent areas of higher 

variability. (f) Log of PHSDw maps of corresponding simulated mean topography. 

Maximal normalised cross correlation of these two maps (e) and (f) is 0.55. 
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Figure 5.7 Qualitative display of within examination, local variability for real and 

simulated pairs. (a) Real mean reflectance image. (b) Corresponding simulated 

mean reflectance image. (c) Real mean topography (mean of within examination 

pixel height standard deviation (MPHSDw) 17µm). (d) Corresponding simulated 

mean topography (MPHSDw 16µm). (e) Log of PHSDw maps of real mean 

topography - darker areas represent areas of higher variability. (f) Log of PHSDw 

maps of corresponding simulated mean topography. Maximal normalised cross 

correlation of these two maps (e) and (f) is 0.37. 
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Figure 5.8 Qualitative display of between examination, local variability for real and 

simulated pairs. (a) Real series-average mean reflectance image. (b) Corresponding 

simulated series-average mean reflectance image. (c) Real series-average mean 

topography (mean of between examination pixel height standard deviation 

(MPHSDb) 39µm). (d) Corresponding simulated series-average mean topography 

(MPHSDb 38µm). (e) Log of PHSDb maps of real mean topography series - darker 

areas represent areas of higher variability. (f) Log of PHSDb maps of corresponding 

simulated mean topography series. Maximal normalised cross correlation of these 

two maps (e) and (f) is 0.51. 
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Figure 5.9 Qualitative display of between examination, local variability for real and 

simulated pairs. (a) Real series-average mean reflectance image. (b) Corresponding 

simulated series-average mean reflectance image. (c) Real series-average mean 

topography (mean of between examination pixel height standard deviation 

(MPHSDb) 9µm). (d) Corresponding simulated series-average mean topography 

(MPHSDb 9µm). (e) Log of PHSDb maps of real mean topography series - darker 

areas represent areas of higher variability. (f) Log of PHSDb maps of corresponding 

simulated mean topography series. Maximal normalised cross correlation of these 

two maps (e) and (f) is 0.73. 
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5.3 Discussion 

There is no gold-standard method for detecting structural changes in the 

glaucomatous eye.  One solution might be afforded by simulating series of ONH 

measurements with well estimated measurement variability characteristics. This 

study proposes a blueprint for such an approach, using images from CSLO 

technology. This simulation is based on empirically derived parameters from 

previous studies and HRT specifications from published reports. The usefulness of a 

simulation is critically dependent on the degree to which it reproduces the 

characteristics of real data. The simulation presented in this study reproduces well 

both the spatial characteristics, and the magnitude, of variability in short-time series 

of HRT data both within examination acquisition and between examinations. Image 

correlation of real and simulated spatial variability maps tend to be slightly less 

than the correlation of real spatial variability maps with each other, but the 

quantitative and qualitative differences are very small. The simulation also 

generates realistic values for RA which is a clinically useful parameter for 

monitoring change. The contribution simulation can have, independent of, and 

before the collection of real data for scientific studies or clinical trials which aim to 

assess the validity of change detection measures, cannot be overstated. Given any 

number of baseline patient scans, it enables unlimited modification to the length of 

series, frequency of testing and variability over time of the data. It also may reduce 

potentially wasted cost and time involved in data collection given that study design 

may be optimised in advance by testing preliminary hypotheses on simulated test-

bed data. 

The simulations were bench-marked against real short-time series. Clinically 

significant change is highly unlikely to have taken place during the short study 
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period and age related effects will also be almost non-existent; the only changes in 

the series over time will be real fluctuations in the tissue morphology and variability 

in the measuring device and settings. This study has used parameters from previous 

studies on the movement of the eye (and, as a result, the movement of the ONH) 

during fixation from previous studies, along with the reasonable estimates of 

operator variability in initial ONH centration and the variability inherent in the 

device hardware in an attempt to make these assumptions as realistic as possible. 

Errors in estimating these parameters may result in inaccuracies in the simulation. 

Other potential sources of variability, such as the ocular pulse and IOP changes, 

have not been introduced as they have not been sufficiently well characterised. The 

ocular pulse has been shown to contribute to changes in vessel calibre (Chen et al., 

1994, Knudtson et al., 2004) and changes in the backward and forward movements 

of the retinal surface in vessel free areas (Chauhan and McCormick, 1995). Long-

term and short-term IOP changes can also cause changes in the vessel calibre (Shin 

et al., 1991) along with changes in optic disc cupping (Parrow et al., 1992) and size 

(Poostchi et al., 2010). The apparent random parabolic deformation of topographies 

over time due to random changes in the distance of the eye from the device between 

examinations (known as parabolic error) has been observed to be significant 

(Balasubramanian et al., 2011). The simulation does not account for these effects but 

it might be possible to do so using appropriate parameters. Despite these potential 

shortcomings, the simulations appear to realistically reproduce observed 

topographic variability. 

Previous attempts to simulate series of ONH or retinal images are few and far 

between. One approach involved simulating retardance image series obtained from 

SLP baseline images (Vermeer et al., 2006). SLP differs from CSLT in that it 

measures relevant anatomy in a different manner, and has different sources of 
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variability. Another simulation methodology, specific to HRT data, has used small 

misalignments of identical finalised or post-processed single topographies to 

generate longitudinal series (Patterson et al., 2005). This approach formed the basis 

of the simulation used in Chapter 4 to investigate MPHSD. Although it reproduces 

some of the global variability inherent in no-change patient HRT data, by design it 

cannot reproduces the spatial and feature dependent variability involved in 

topography fitting and topography alignment. It is also unsatisfactory from a 

theoretical point of view as it is difficult to estimate the relationship of acquisition 

noise factors and the variability of post-processed topographies. The methodology 

presented in this study contrasts by using all the three-dimensional information 

acquired in the HRT scan. Further, a key component of the simulation described in 

the current study is that the simulated scans are re-imported into the HRT III 

software. Thus any misalignments added both within examination and between 

examination will be subject to partial correction by the HRT III alignment 

algorithms. This is consistent with the procedure for real patient data. 

Although within examination single topographies are more closely related than 

between session topographies, because of the effects of between examination 

repositioning of the patient and re-alignment of the scanner to the eye/ONH, the 

simulation assumes no auto-correlation in time (knowing one value does not 

provide you with any information of another value) between examinations. Also, 

the within examination noise parameters do not change with time nor do the 

differences between examinations. These assumptions are justified on the basis of 

study results showing no difference in variability between scans with intervals 

varying from 1 hour to 4 weeks (Chauhan and MacDonald, 1995). 
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There are a few cases of variability being poorly reproduced in simulated series as 

can be seen in Figure 5.2(a). Here, the largest anomalies are above the line of 

agreement showing that, in these cases, the average, global within mean topography 

variability is higher in the simulation than in real series. This may indicate that the 

optical section stack used to seed the simulation has more motion noise or lower 

image quality than those in the rest of the real series. Although the simulation 

model presented here will allow some alignment before noise addition, it is never 

possible to attain a motion-free, noise-free image stack. Thus the simulation 

depends on the optical section stack selected to seed each simulated series. Apart 

from random differences in a small sample of 5 mean topographies, there may be 

other potential causes for discrepancies in reproducing the variability of real data, 

for example, some differences in RA variability may be due to small differences in 

contour line placement between the real and simulated baseline topographies.  

Windowing, as stated in the methodology may have small systematic effects on 

differences in the calculations of variability between real and simulated data due to 

the potential null values on optical section and topography image edges. However, 

windowing caused by axial shifts should not affect the topography formation 

process as any missing data will be in the low intensity “tails” of each axial intensity 

profile. Topographic height information is mostly derived from the central 

maximum of each axial intensity profile. Vertical axis shifts have the potential to 

most affect the topography formation. Despite this, between examination, vertical 

translations of scan triplets greater than 20 pixels between scans resulting in the loss 

of more than 20 pixels at the top or bottom of a mean topography will occur in 

approximately only 5% of simulated follow-up examinations and furthermore have 

only a small effect on the alignment algorithms of the HRT and the calculation of 

variability values. 
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The simulation makes the simplifying assumption that eye movement and 

measurement noise parameters are the same for all patients. This assumption 

seemed sufficient in reproducing many of the characteristics of real data. 

Furthermore, it is important to note that in real patient data, patients with varying 

degrees of lens opacity were scanned. This allowed the effects of a wide range of 

image quality to be modelled, with some eyes having high within and between 

examination variability. That this is also observed in the simulated data suggests 

that much of the observed range of image variability is a consequence of the range 

in the quality of ocular media and the structure of the ONHs themselves.  

Future work could usefully consider the formation process in the CSLO pixels 

(Gruppetta, 2009), allowing the modelling of other processes which occur before the 

summation of light at the detector for each pixel by modifying the PSF during and 

between acquisition sessions. These include changes in pupil diameter, media 

opacities and changes in uncorrected lower order aberrations (defocus and 

astigmatism). This simulation provides a model to test progression algorithm 

specificity appropriate to the baseline image quality, but cannot mimic 

systematically changing image quality over time. The long-term changes in the 

optical quality of the eye over time (increased scatter and absorption) resulting in a 

reduced and noisier light signal reflected to the device detector will need to be 

addressed in order to mimic this feature in some topographic series over time. 

The introduction in the simulations of topographic changes associated with focal 

and diffuse glaucomatous damage in the ONH need to be investigated. By adding 

change to a series of replicate HRT scans, and then overlaying measurement noise 

from this simulation, the sensitivity of change detection algorithms may be assessed 
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(as the underlying location, temporal sequence and magnitude of the superimposed 

change is known). 

A stable series of measurements can be generated by simply adding random noise.  

Such series may also be used to test specificity of statistical change detection 

algorithms developed for detecting progression. However, in reality, there are many 

other sources of variability in ONH scans such as eye movements, head movements 

and device noise, the effects of which may be falsely detected as true morphological 

change by these techniques. Such variability is manifestly more complex than 

simple, additive noise and therefore a more realistic stable series simulation is 

needed to more accurately test the specificity of these algorithms. Stability in any 

clinical series of data is uncertain, whereas in a modelled series it is certain.  

So, in conclusion, the methodology outlined in this work has definite use in 

producing benchmark data on which the false positive rates of statistical methods 

for detecting HRT progression can be examined. This could also improve the 

confidence of change detected by these techniques in clinical studies. Simulating 

series of progressive change in HRT series awaits further investigation. Still, the 

results of this study are presented as a proof of principle for a solution towards the 

seemingly intractable problem of developing reliable methods for detecting disease 

progression in glaucoma. 
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6. Conclusion and Further Work 

As continued research expands, modern knowledge of the various factors 

characterising glaucomatous ONH progression will undoubtedly change. The 

objectives of this thesis are to assess progression detection algorithms in ONH data 

from CLST technology, specifically the HRT. The key findings in the sections of this 

thesis are as follows. 

Chapter 2 compares optic disc changes using automated analyses of HRT images 

with assessments, by glaucoma specialists, of change in stereoscopic photographs. 

Different statistical methods for detecting structural changes in HRT images exhibit 

only moderate agreement with each other and have poor agreement with expert-

assessed change in optic disc stereophotographs. Because it is undermined by 

limitations in the specificity and between-observer agreement, the use of optic disc 

photograph assessment alone as a reference standard is not helpful in determining 

the optimal automated change detection algorithm in series of HRT images. 

Chapter 3 examines the effects of measurement variability across a range of 

characteristics on the performance of some basic univariate statistical techniques to 

detect underlying trends. This work demonstrates that serial autocorrelation of 

measurement error can have large detrimental effects on the statistical power to 

detect change in these methods even when the measurement noise is low. Of the 

methods investigated, similar powers are observed on average across a range of 

measurement noise characteristics – but non-parametric, rank-based methods offer 

the advantage of not depending on linear change over time and may be preferable 

for progression detection. 
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Chapter 4 finds quality metrics of HRT images to be highly predictive of within 

examination pixel-wise measurement variability – measured by the MPHSD. A 

simple simulation is used to demonstrate that uniform levels of misalignment noise 

applied to different ONH images before image averaging can produce a wide range 

of MPHSD values. This indicates the dependence of MPHSD on the ONH 

morphology itself. Subjective assessment of image quality of HRT data exhibits a 

low between-observer agreement but averaged panel scores have good agreement 

with MPHSD values. The average MPHSD across a series of HRT images variability 

is a strong predictor of series RA variability but for an individual examination 

MPHSD was not predictive of the reliability of the RA measurement. This indicates 

that MPHSD may not be a useful way to weight individual examination 

information. 

Chapter 5 describes how a novel simulation propagates HRT pseudo-longitudinal 

series from the three-dimensional data of a single baseline scan. The simulation is 

implemented using empirical and theoretical measurement noise parameters. This 

approach is validated by its ability to reproduce the variability of CLST data both on 

a local and global scale of the ONH. This means it can provide a test-bed to evaluate 

the specificity and sensitivity of CSLT progression detection algorithms. 

In summary, the new contributions to the field of imaging in glaucoma are: 

- establishing that methods such as using expert assessed ONH 

stereophotographs as reference standards for glaucomatous change do not 

provide useful insights on how well or badly HRT glaucoma progression 

algorithms perform 
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- demonstrating considerable disagreement between current HRT 

progression detection algorithms motivating a continued search for an 

optimum technique 

- characterising the strong relationships of image quality and morphological 

characteristics with HRT measurement variability 

- emphasising the detrimental effects of measurement autocorrelation on the 

ability to detect statistically significant trends in RA data 

- the development of a novel and empirically based simulation which can 

reproduce virtual HRT data with variability similar in magnitudes and 

spatial characteristics to real data and thus address these issues 

Following these findings, future work could usefully consider: 

-  discovering predictors of the noisy measurements in HRT imaging and in 

other imaging modalities 

- modelling change in the developed simulation of longitudinal HRT image 

series  

- application of the simulation methodology developed in this thesis to other 

imaging modalities 

- investigate the advantages of rank-based over parametric-based trend 

detection techniques for non-linear models of change 

- devising change detection algorithms for HRT and newer imaging 

modalities based on these conclusions and testing these on simulated and 

real data 
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APPENDIX A: Linear 

Regression Permuted Test 

Statistics 

The univariate OLS linear regression solution considers the problem of fitting 𝑛 

observed data points (𝑥𝑖 ,𝑦𝑖) for independent variable 𝑥 and dependent variable 𝑦 

to a straight-line model: 

𝒚(𝒙)  =  𝒚(𝒙;  𝛼,𝛽)  =  𝛼 +  𝛽𝒙+ 𝜺 

where 𝛼 is the predicted value of 𝑦 when 𝑥=0 and 𝛽 describes the estimated linear 

trend of 𝑦 with changing 𝑥. The measurement errors 𝜀𝑖  at each point are denoted 

by 𝜺. OLS linear regression derives a solution to this model by searching for the 

parameters 𝛼 and 𝛽 which minimise the measurement errors 𝜀𝑖. From this solution, 

a test statistic can be derived from which the statistical significance of the slope of 

fitted line 𝛽 can be inferred. The following analysis examines the effect of 

reordering while using a permutation test on this test statistic. The estimate 𝛽 and 

its standard error 𝑠𝛽  are defined by 

𝛽 = �
𝑛𝑆𝑥𝑦 − 𝑆𝑥𝑆𝑦
𝑛𝑆𝑥𝑥 − 𝑆𝑥2

�, 
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𝑠𝛽 = �
𝑛𝑠𝜀

𝑛𝑆𝑥𝑥 − 𝑆𝑥2
, 

where  

𝑠𝜀 = 𝑛𝑆𝑦𝑦 − 𝑆𝑦2 − 𝛽2�𝑛𝑆𝑥𝑥 − 𝑆𝑥2� 

and 𝑆𝑥 = ∑ 𝑥𝑖𝑛
𝑖=1 , 𝑆𝑦 = ∑ 𝑦𝑖𝑛

𝑖=1 , 𝑆𝑥𝑥 = ∑ 𝑥𝑖2𝑛
𝑖=1 , 𝑆𝑦𝑦 = ∑ 𝑦𝑖2𝑛

𝑖=1 , 𝑆𝑥𝑦 =

∑ 𝑥𝑖𝑦𝑖𝑛
𝑖=1  are the OLS linear regression coefficients. 

In the paradigm of a permutation test, 𝑥𝑖  are randomly re-ordered while fixing the 

order of 𝑦𝑖. Thus during a permutation test, 𝑛, 𝑆𝑥, 𝑆𝑦, 𝑆𝑥𝑥, 𝑆𝑦𝑦 are fixed. It is 

possible to compare the ranking effects from re-ordering on 𝛽 and 𝑠𝛽 by treating 

these as constants during permutation. The slope test statistic from OLS linear 

regression is then: 

𝛽
𝑆𝛽

=
𝛽

�
𝑛𝑠𝜀2

�𝑛𝑆𝑥𝑥 − 𝑆𝑥2�

=
𝛽

�𝑛 �
𝑛𝑆𝑦𝑦 − 𝑆𝑦2 − 𝛽�𝑛𝑆𝑥𝑥 − 𝑆𝑥2�

𝑛 − 2 �

�𝑛𝑆𝑥𝑥 − 𝑆𝑥2�

=
𝛽

�𝐶1 − 𝛽𝐶2

= 𝑓(𝛽) 

where: 
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𝐶1 =
�𝑛2𝑆𝑦𝑦 − 𝑛𝑆𝑦2�

(𝑛 − 2)�𝑛𝑆𝑥𝑥 − 𝑆𝑥2�
, 

𝐶2 =
�𝑛2𝑆𝑥𝑥 − 𝑛𝑆𝑥2�

(𝑛 − 2)�𝑛𝑆𝑥𝑥 − 𝑆𝑥2�
 

are invariant throughout permutation. For a real, meaningful (𝑛 > 2) solution of the 

test-statistic 
𝛽
𝑆𝛽

, the denominator must yield: 

𝐶1 − 𝛽𝐶2 > 0. 

Thus during a permutation test the test statistic 𝑓(𝛽) is a monotonic (order-

preserving) function of 𝛽. Stated formally, this requires for any 𝑗𝑡ℎ and 𝑘𝑡ℎ 

permutations given 

𝛽𝑘 > 𝛽𝑗 

that  

𝑓(𝛽𝑘) > 𝑓�𝛽𝑗�. 

This means that the order the resulting test-statistic from each permutation  
𝛽
𝑆𝛽

 will 

be unchanged relative to the respective 𝛽 for that permutation. 
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APPENDIX B – Image 

Transformation Details 

The affine transformation (a linear transformation with translation) of a set of 𝑖 

points in three-dimensional space with coordinates  (𝑥𝑖 ,𝑦𝑖 , 𝑧𝑖) to a point with new 

coordinates (𝑥𝑖′,𝑦𝑖′, 𝑧𝑖′) can be represented by matrix algebra. When considering 

only rotation, shear, scaling and translation or shift, each can be given by the 

following affine transformation matrices using homogeneous coordinates: 

Translation along 𝑥, 𝑦, 𝑧 axes by displacements 𝑡𝑥, 𝑡𝑦 and 𝑡𝑧: 

�

𝑥𝑖′
𝑦𝑖′
𝑧𝑖′
1

� = �

1 0 0 0
0 1 0 0
0 0 1 0
𝑡𝑥 𝑡𝑦 𝑡𝑧 1

� � � 

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

 � � , 𝒑′ = T𝒑 

Rotation about 𝑧 axis by angle 𝜃: 

�

𝑥𝑖′
𝑦𝑖′
𝑧𝑖′
1

� = �

cos𝜃 − sin𝜃 0 0
sin 𝜃 cos𝜃 0 0

0 0 1 0
0 0 0 1

� � � 

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

 � � , 𝒑′ = R𝑧𝒑 

Rotation about 𝑥 axis by angle ∅: 

�

𝑥𝑖′
𝑦𝑖′
𝑧𝑖′
1

� = �

1 0 0 0
0 cos∅ − sin∅ 0
0 sin∅ cos∅ 0
0 0 0 1

� � � 

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

 � � , 𝒑′ = R𝑥𝒑 
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Rotation about 𝑦 axis by angle 𝜔: 

�

𝑥𝑖′
𝑦𝑖′
𝑧𝑖′
1

� = �

cos𝜌 0 sin𝜌 0
0 1 0 0

− sin𝜌 0 cos𝜌 0
0 0 0 1

�  �� 

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

 � � , 𝒑′ = R𝑦𝒑 

Scaling in 𝑥,𝑦, 𝑧 axes by scale factors 𝑠𝑥, 𝑠𝑦 and 𝑠𝑧: 

�

𝑥𝑖′
𝑦𝑖′
𝑧𝑖′
1

� = �

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0
0 0 𝑠𝑧 0
0 0 0 1

� � � 

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

 � � , 𝒑′ = S𝒑 

Shearing in the 𝑥𝑦, 𝑥𝑧,𝑦𝑧 planes by factors 𝑒𝑥𝑦, 𝑒𝑦𝑥, 𝑒𝑥𝑧, 𝑒𝑧𝑥, 𝑒𝑦𝑧 and 𝑒𝑧𝑦: 

�

𝑥𝑖′
𝑦𝑖′
𝑧𝑖′
1

� = �

1 𝑒𝑥𝑦 0 0
0 1 0 0
0 0 1 0
0 0 0 1

� � � 

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

 � � , 𝒑′ = Exy𝒑 

�

𝑥𝑖′
𝑦𝑖′
𝑧𝑖′
1

� = �

1 0 0 0
0 1 𝑒𝑦𝑧 0
0 0 1 0
0 0 0 1

� � � 

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

 � � , 𝒑′ = Eyx𝒑 

�

𝑥𝑖′
𝑦𝑖′
𝑧𝑖′
1

� = �

1 0 𝑒𝑥𝑧 0
0 1 0 0
0 0 1 0
0 0 0 1

� � � 

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

 �� , 𝒑′ = Exz𝒑 
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�

𝑥𝑖′
𝑦𝑖′
𝑧𝑖′
1

� = �

1 0 0 0
0 1 0 0
𝑒𝑧𝑥 0 1 0
0 0 0 1

� � � 

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

 � � , 𝒑′ = Ezx𝒑 

�

𝑥𝑖′
𝑦𝑖′
𝑧𝑖′
1

� = �

1 0 0 0
0 1 𝑒𝑦𝑧 0
0 0 1 0
0 0 0 1

� � � 

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

 � � , 𝒑′ = Eyz𝒑 

�

𝑥𝑖′
𝑦𝑖′
𝑧𝑖′
1

� = �

1 0 0 0
0 1 0 0
0 𝑒𝑧𝑦 1 0
0 0 0 1

� � � 

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

 � � , 𝒑′ = Ezy𝒑 

Finally all transformations can be combined with the new coordinates 𝒑′ depending 

on the ordering of each transformation. An example below would represent image 

coordinates being transformed first, then rotated about the 𝑧, 𝑥,𝑦 axes then scaled 

and finally sheared: 

𝒑′ = ExyEyxExzEzxEyzEzy S R𝑦R𝑥R𝑧T𝒑 

In designing the simulation for HRT mean topography generation, the probability 

distributions for all the required parameters are chosen from the following random 

distributions: 

𝑡𝑥~𝑁 �0,
𝑊

256𝑝� , 𝑡𝑦~𝑁�0,
𝑊

256𝑝� , 𝑡𝑧~𝑁(0,10𝜇𝑚 ) 

𝜃~𝑁(0°, 0.25°), ∅~𝑁(0°, 0.1°), 𝜌~𝑁(0°, 0.1°) 

𝑠𝑥~𝑁�0,
𝑊
10� , 𝑠𝑦~𝑁�0,

𝑊
10� , 𝑠𝑧~𝑁�0 ,

𝑊
10� 



 

201 

 

𝑒𝑥𝑦~𝑁(0,10), 𝑒𝑥𝑦~𝑁(0,10) 

𝑒𝑥𝑦~𝑁(0,10), 𝑒𝑥𝑦~𝑁(0,10) 

𝑒𝑥𝑦~𝑁(0,10), 𝑒𝑥𝑦~𝑁(0,10) 

where 𝑊 is the width and height of the square image in pixels and 𝑝 is the unit of 

one pixel width. Where no units are indicated, parameters are dimensionless ratios. 

Transformations are applied at a sub-pixel level, using a bilinear interpolation 

algorithm. 
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