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Abstract

This dissertation is concerned with detecting failures in Risk Models and in detecting

structural breaks in linear regression models. By applying Theorem 2.1 of Szyszkowicz on U -

statistic type process, a number of weak convergence results regarding three weighted partial

sum processes are established. It is shown that these partial sum processes share certain

invariance properties; estimation risk does not affect their weak convergence results and they

are also robust to asymmetries in the error process in linear regression models. There is also

an application of the methods developed here to a four factor Capital Asset Pricing model

where it is shown via the methods developed in Chapter 3 that manager stock selection

abilities vary over time.
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Chapter 1

Introduction

This dissertation looks at statistical methods for detecting failure of financial risk models

to report accurately the risks in financial positions that financial companies routinely take

in the day-to-day operations of their businesses and in detecting structural breaks in linear

regression models. The approach taken in this thesis is to apply change-point detection

techniques, an unexplored alternative, to detect failure of risk models rather than the simple

non-parametric tests presently used. A second application of these change-point detection

techniques is to detecting structural breaks in linear regression models.

The literature on change-point techniques has grown rapidly since a number of papers

were published in the late 80’s and early 90’s. These papers provided mathematical con-

tent to some of the observations pointed out in simulation studies of the CUSUM tests of

Brown, Durbin and Evans (1975). Later work by Hansen (1992) introduced new methods

of detecting structural breaks in linear models; contributions by Andrews (1993) introduced

much improved tests based on traditional Wald, LM and Maximum Likelihood tests statis-

tics, however, no optimality conditions were be established. Asymptotically optimal tests

were later established by Andrews and Ploberger (1993). Even though these results have

addressed some of the apparent deficiencies of older methods, many gaps in the literature

on structural breaks in linear regression models remain. Current tests are unable to detect

changes in parameters when they occur early/later on in the sample, avoid the common prac-

1
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tice of trimming the sample, a practice that many tests routinely do, and allow for estimation

of the timing of the structural break.

1.0.1 Aims, Objectives and Contribution of the Thesis

The financial crisis of 2007 revealed weaknesses in current backtesting methods to validate

risk models implemented by internationally active financial companies. Indeed, backtesting

methods that relied on counting the number of exceedances of actual trading results to

reported results were unable to detect failures of risk models when they happened or when

failure of these models was detected it was well after substantial financial losses were incurred

by institutions. Given the apparent failure of traditional statistical methods, it has become

imperative then to develop statistical methods that are more sensitive to failures in risk

models and that also allow for detection of this failure as early as possible in out-of-sample

evaluation of risk models. As an additional feature of the methods developed in this thesis

is their insensitivity to estimation risk.

These considerations regarding risk models led to further investigations into the possibility

of applying similar statistical methods to detecting structural breaks in linear regression

models. These statistical methods were adapted so they could successfully address some of

the deficiencies in traditional econometric methods commonly used in testing for structural

breaks. The econometric methods used to detect structural breaks in regression models

usually require trimming the sample; trimming essentially ignores some of the data which

usually impairs statistical tests. Another notable limitation of current econometric methods

is that they are often unable to detect structural breaks in the intercept of linear regression

models; one aim of this thesis is to develop statistical tests that can separate a change in

intercept parameter from a change in slope parameter.

Traditional backtesting methods have not exploited some of the advances in change-point

detection methods to detecting failure of risk models. One of the objectives of this thesis
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is to use some of the statistical methods and corresponding limit theorems developed in the

large literature on change-point methods to offer more powerful, in the statistical sense, tests

for detecting failure of risk models. The tests so developed will allow for detecting failure

of risk models early on in the out-of-sample evaluation period and as an byproduct of these

methods allow for estimation of the timing of this failure. This is an important addition to

the backtesting toolkit as risk managers are now able to locate the time of failure of their

risk model. With this knowledge they can investigate factors which may have contributed to

its failure. It will be shown in the following chapters the advantages to viewing failure of risk

models as a change-point and the substantial improvement that can be obtained.

The framework developed in detecting failure of risk models is then applied to detecting

structural breaks in parameters of linear regression models. The statistical methods are

adapted to the linear model context and as such allow for disentangling breaks in the intercept

from breaks in the slope parameters. Two stochastic process are developed; one process

can be used to fashion a test that is capable of detecting a change in intercept and the

other process can be used to fashion a test that is capable of detecting a change in slope

parameters. The test statistics fashioned from these process are shown to be more powerful,

in the statistical sense, then the asymptotically optimal tests via a Monte-Carlo experiment.

The tests statistics are shown to asymptotically independent which allows for control of

global error rates; exploit higher moments of the distribution; and can detect changes in the

parameters when they occur early/late in the sample.

1.0.2 Structure of Thesis

Chapter 2 details the contribution made by this dissertation to the literature on backtest-

ing risk models by applying change-point detection techniques to monitor risk models. In

particular, Chapter 2 proposes a richer set of alternatives to standard backtesting methods

that are based on U -statistic type processes. These processes allow for detecting failure in
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risk models and offer the additional benefit that they permit estimation of the timing of

this failure. The test statistics constructed here are indexed by certain weight functions

that improve the power of the statistics constructed here when compared to more traditional

change-point detection methods. A second consideration in developing new methods is that

they be easy for practitioners to implement and not over complicated, rely on complex dis-

tributions and re-sampling methods to approximate. The tests statistics developed in this

chapter are weighted functions of Brownian bridges which are readily simulated and many of

the limiting distributions are contained in Section 2.7 to this chapter.

The third chapter, Chapter 3, a second contribution is made to detecting structural breaks

in linear regression models that is similar to Hansen’s (1992) contribution. Hansen (1992) is

interested in detecting a one-time change in each parameter of linear regression models. As

in Hansen, the two test-statistics developed here are devised to separate a change in intercept

from a change in slope parameters; and can be combined to form one test statistic that detects

simultaneously for a change in intercept or slope in linear regression models.

1.0.3 Relevant Background Literature

Test statistics developed in both chapters exploit weight functions to improve their asymptotic

power. In fact, Chapter 3, shows that the test-statistics constructed there have nontrivial

power for detecting a one-time change in these parameters. As an additional attraction the

test statistics are shown to be robust to estimation risk.

To establish weak convergence of the processes constructed in Chapters 2 and 3, we make

use of Theorem 2.1 of Szyszkowicz (1991) which details optimal results for the asymptotic

weighted sup-norm behaviour of a certain partial sum process. Theorem 2.1 provides an

asymptotic approximation to the following process

Zk =

k∑

i=1

T∑

j=k+1

h(Xi, Xj), 1 ≤ k < T, (1.1)
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where h(x, y) is an anti-symmetric function (h(x, y) = −h(x, y)). Under the assumption that

{X1, . . . , XT} is a random sample along with the additional restriction

Eh2(X1, X2) < ∞

and 0 < σ2 = Eh̃2(X1), Theorem 2.1 can be stated as

Theorem 2.1 (Szyszkowicz) Let {Xt}T
t=1 be a random sample; Let h(x, y) be anti-symmetric

and let q(t) be continuous and satisfy infδ<t<1−δ q(τ) > 0 and δ ∈ (0, 1/2). Then a sequence
of Brownian bridges {BT (τ) : 0 ≤ τ ≤ 1} can be defined such that

a) sup
0<τ<1

|
Z[Tτ]

σT3/2
−BT (τ )|

q(τ ) = op(1)

if and only if
∫ 1
0 (τ(1 − τ))−1 exp(−c(τ(1− τ))−1)q(τ)dτ < ∞ for all c > 0.

b) sup0<τ<1
|Z[Tτ]|
σT 3/2

D−→ sup0<τ<1 |B(τ)|

if and only if
∫ 1
0 (τ(1 − τ))−1 exp(−c(τ(1 − τ))−1)q(τ)dτ < ∞ for some c > 0. B(τ) is a

Brownian bridge.

Theorem 2.1 of Szyszkowicz (1991) exploits the integral
∫ 1

0
(τ(1− τ))−1 exp(−c(τ(1− τ))−1)q(τ)dτ < ∞

to establish weak convergence of the process Z[T τ ]. If the integral is finite for all c > 0

weak convergence follows. If the integral is finite for only some c > 0, only convergence

in distribution of the supremum functional of Z[T τ ], suitably normalised, to the supremum

functional of a Brownian bridge can be established. Integral conditions of this nature have

been studied by many individuals in statistics and probability. First Chibisov (1964) and

later O’Rielly (1974) introduced and studied the integral

∫ 1

0
τ−1 exp(−cτ−1q2(τ))dτ < ∞. (1.2)

As long as this integral is finite for all c > 0, both show that the sequence of probability

measures generated by the Empirical process converges to the probability measure generated

by a Brownian bridge.

Throughout Chapters 2 and 3, the partial sum process constructed therein are described
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as U -statistic type processes. The partial sum process Z[T τ ] is not a U -statistic but, as shown

by Csörgő and Horváth (1988), can be expressed as a linear combination of U -statistics.

How does this relate to the process considered in Chapters 2 and 3? If, in the process (1.1),

the kernel h(x, y) = x − y, then we arrive at the partial sum process

Zh,[T τ ] =

[T τ ]∑

i=1

Xi − τ

T∑

i=1

Xi, (1.3)

that figures so prominently in what is to come in Chapters 2 and 3.

The field of econometrics/statistics that deals with detecting structural breaks in linear

regression models has a long history in statistics and economics. One of the first contributions

made to this literature was by Page (1994, 1955) who studied changes in location of indepen-

dent and identically distributed random variables. Let {X1, . . . , Xk−1, Xk, Xk+1, . . . , XT} be

independent random variables, where Xt for i = 1, . . . , k have cumulative distribution func-

tion (CDF) F (x), and Xt for t = k + 1, . . . , T has CDF F (x − ∆), −∞ < ∆ < ∞. ∆ is

referred to as a location or shift parameter. As specified, this is considered to be a two sam-

ple problem with unknown location parameter ∆. However, when the integer k is unknown,

this is no longer a standard two sample problem but becomes what is now referred to as a

change-point problem. In particular, he considered testing

H
(1)
O : ∆ = 0

versus

H
(1)
A : ∆ 6= < > 0,

Page introduced S∗
k =

∑k
t=1 Vt, where S∗

0 = 0,

Vj =

{
a if Xt > θo

−b if Xt ≤ θo,

and a > 0 and b > 0 are constants chosen so that IIE(Vj) = 0 and IIE[X1] = θ0. For example,

his decision rule rejects H
(1)
O in favour of the alternative of one change and ∆ > 0 if

T ∗
n = max

0≤k≤T

{
S∗

k − min
0≤j≤k

S∗
j

}

is too large.
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Further along these lines, let k = [Tτ ] 0 ≤ τ ≤ 1 and set S[T τ ] :=
∑[T τ ]

t=1 Xt. Then if θo

is known, H
(1)
O could be rejected in favour of H

(1)
A with ∆ 6= 0 if

MT = sup
0≤τ≤1

∣∣S[T τ ] − [Tτ ]θ0

∣∣

is too large. We note that, under H
(1)
O

MT

T 1/2σ

D−→ sup
0<t<1

|W (t)|,

as T → ∞, where W (t) is a standard Wiener process and σ2 := IIE(X1 − θ0)
2. This result

follows from Donsker’s theorem restated on D[0, 1].

If, as is more frequently the case, θ0 is unknown, then set X̄T =
PT

i=1 Xt

T , which results in

the following statistic

M̂T = sup
0≤τ≤1

∣∣S[T τ ] − [Tτ ]X̄T

∣∣ ,

whose large values would reject H
(1)
O : ∆ = 0 in favour of H

(1)
A with ∆ 6= 0 at some unknown

time t?. We note that under H
(1)
A

M̂T

T 1/2σ

D−→ sup
0≤τ≤1

|B(τ)|, (1.4)

as n → ∞, where B(t) is a Brownian bridge. Again, this follows from Donsker’s theorem on

D[0, 1], and the same is true with σ replaced by any sequence of consistent estimators {σ̂T}.

Most of the results in the statistical literature concern models that as Andrews (1993)

points out are too simple1 for economic applications. Most, but not all, deal with the frame-

work introduced by Page which are location models with independent and identically dis-

tributed random variables. Andrews2 notes that ’few econometric models are covered by

such results’ and hence there is need for broader class of tests that can accommodate the

settings routinely found in the economics.

Chow (1960) made the first successful attempt to addresses this gap in the statistical

literature by developing a test for structural breaks in linear regression models. His test is

1Andrews 1993, page 822.
2Ibid. page 822
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based on a split-sample test for breaks in the following model:

Y1 = X1γ1 + W1δ1 + ε1

Y2 = X2γ2 + W2δ2 + ε2 (1.5)

Let γ1 and γ2 be column vectors of q elements each; and δ1 and δ2 be column vectors

of p − q elements each X1 and X2 are row vectors containing p elements each, while W1

and W2 are row vectors containing p − q elements each. The null hypothesis Chow (1960)

considers is H
(2)
O : γ1 = γ2 = γ versus H

(2)
A : γ1 6= γ2. Using this framework, he also shows

that the prediction based testing method for structural breaks is equivalent to the analysis

of covariance approach that he develops.

A problem arises with Chow’s test due to the need to select the timing of the structural

break that occurs under H
(2)
A but not the H

(2)
O . This problem is that the time of change

in γ is not defined under H
(2)
O and standard testing theory does not apply. Chow resolves

this problem by selecting the timing of this structural break by appealing to events known

a priori. If this method is used to select the break date, it is important that the researcher

argue that the events are selected exogenously of the data generating process.

Recognizing the need for a test that reveals model instability of a more general form,

Brown, Durban and Evans (1975) proposed the CUSUM tests which was become widely

implemented in econometric programs. The CUSUM tests are based on partial sums of

recursive residuals formed from the estimated regression (1.5) when γ1 = γ2 and δ1 = δ2.

Theoretical investigations have revealed that the CUSUM tests can be considered as tests

for detecting a change in the intercept alone - in the case of the CUSUM test based on the

recursive residual - or for a test for detecting instability in variance of the regression error -

in the case of the CUSUM test based on the squared recursive residuals - in linear regression

models. These results regarding the CUSUM tests, as well as other results, are detailed by

Kramer, Ploberger and Alt (1988).
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Andrews and Ploberger (1994) also consider the nonstandard problem of testing whether a

sub-vector of the parameters (γ1, γ2) ∈ Γ ⊂ Rp are equal (γ1 = γ2) when the likelihood func-

tion depends on an additional parameter π ∈ Π under the alternative hypothesis H
(2)
A . This

general framework includes test statistic for one-time structural change in linear regression

as well as many other econometric models. Their contribution is to derive asymptotically

optimal test for this and other settings because the classical asymptotic optimum proper-

ties of Lagrange Multiplier (LM), Wald and Likelihood ratio (LR) test do not hold in these

non-standard problems.

Using a weighted average power criterion function, these tests are an average exponential

form and are based on the statistic

Exp− LMT = (1 + c)−p/2

∫ 1

0
exp

(
1

2

c

1 + c
LMT (π)

)
dJ(π), (1.6)

p is the dimension of (γ, δ), J(·) is a weight function over values of π ∈ [πo, 1 − π] for

1 > π0 > 0. The constant c is a scalar constant that depends on the chosen weight functions

over (γ, δ). They also define exponential Wald and LR tests analogously to Exp−LMT with

the standard Wald WT (π) and LRT (π) test statistic replacing LMT (π) in integral (1.6).

1.0.4 Conclusion

The family of partial sum processes developed in this thesis have many attractive features;

just how attractive, will become apparent as the chapters of this thesis unfold. A convincing

case will be made for their benefits as well as some of their properties relative to existing

statistical methods. An important consideration in developing these methods is to advertise

the ease of their implementation. It is hoped this thesis will provide a means to speak of

their benefits.



Chapter 2

Early Detection Techniques for
Market Risk Failure

In the aftermath of a series of bank failures that occurred during the seventies a group of

ten countries (G-10) decided to create a committee to set up a regulatory framework to be

observed by internationally active banks operating in these member countries. This com-

mittee coined as Basel Committee on Banking Supervision (BCBS) was intended to prevent

financial institutions, in particular banks, from operating without effective supervision. The

subsequent documents derived from this commitment focused on the imposition of capital

requirements for internationally active banks which would serve as provisions for losses from

adverse market fluctuations, concentration of risks or simply bad management of institutions.

The risk measure agreed upon was the Value-at-Risk (VaR). In financial terms, this is the

maximum loss on a trading portfolio for a period of time given a confidence level, and in

practice, determines restrictions on the minimum amount of capital held as reserves by fi-

nancial institutions. In statistical terms, VaR is a (conditional) quantile of the conditional

distribution of returns on the portfolio given agent’s information set.

The computation of these VaR measures has become of paramount importance in risk

management since financial institutions are monitored to ensure the accuracy of the quantile

measures reported. This implies that banks with sufficiently highly developed risk manage-

ment systems can decide on their own internal risk models as long as these satisfy require-

ments set by the Basel Accord (1996) for computing capital reserves. The main toolkit for

10
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measuring and testing the performance of different VaR methodologies proposed in the Basel

Accord was a statistical device denoted backtesting that consisted of out-of-sample compar-

isons between the actual trading results with internally model-generated risk measures. The

magnitude and sign of the difference between the model-generated measure and trading re-

sults indicate whether the VaR model reported by an institution is correct for forecasting

the underlying market risk and if this is not so, whether the departures are due to over- or

under-risk exposure of the institution. The implications of over- or under- risk exposure be-

ing diametrically different: either extra penalties on the level of capital requirements or bad

management of the outstanding equity by the institution. These backtesting techniques are

usually interpreted as statistical non-parametric tests for the coverage probability α defining

the conditional quantile VaR measure. The seminal papers in this area of research are due to

Kupiec (1995) and Christoffersen (1998) who proposed asymptotic standard Gaussian tests

and likelihood ratio tests, respectively. Escanciano and Olmo (201a, 2010b) show that these

backtesting methods can be unreliable when the parameters of the risk model are estimated

and under the presence of model misspecification. Another deficiency of these tests to mon-

itor risk is that they do not provide any information about the timing of the rejection of

VaR.

A rather unexplored alternative to monitor VaR performance is to use change-point detec-

tion techniques. This topic has been long studied in statistics and econometrics. Chow (1960)

was the first to develop a test for detecting a one-time change in regression parameters at a

known time. Work by Brown, Durbin and Evans (1975) and Dufour (1988) extended Chow’s

test to accommodate multiple changes in regression parameters that may occur at unknown

times. Other statistical methods for detecting structural change are within the framework

developed by Andrews (1993) and Andrews and Ploberger (1994). In particular, Andrews

(1993) considers Wald, Lagrange multiplier and likelihood-ratio tests for parameter stability

in nonlinear parametric models that are optimal in certain compact set within the (0,1) in-
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terval. Outside this interval, however, the optimality properties or even the validity of the

methods is not clear. Further, the parametric nature of the tests implies that these methods

are very sensitive to the adequacy of the distribution function assumed for the data. Other

tests, called fluctuation tests, such as that of Ploberger, Kramer and Kontrus (1989) have also

been developed for linear regression models. In a financial econometrics context Kuan and

Hornik (1995) and Leisch, Hornik and Kuan (2000) propose fluctuation tests for change-point

detection. In a related paper Andreou and Ghysels (2006) review this and other monitoring

techniques for the volatility process when this is estimated using high-frequency data. These

authors explore in detail this alternative and discuss the relative power of CUSUM-type tests

when computed at different frequencies.

This article takes a non-parametric approach on the detection of change-points in the

conditional VaR process. We propose test statistics constructed as the supremum of weighted

U -statistic type processes, similar in spirit to the CUSUM test. These methods are based on

the pioneering works of Page (1954, 1955), Gombay, Horváth and Hušková (1996, hereafter

GHH) or Csörgő and Horváth (1988a, 1988b). One of the appealing properties of our test

statistics is that they are constructed as a combination of Kupiec test evaluated at different

times of the evaluation period, and as such, computation is straightforward. Unlike for the

standard backtesting methods our U -statistic type tests do not exhibit estimation risk and can

accommodate weight functions to enhance their ability to reject the null hypothesis for specific

regions of the evaluation period. In this risk monitoring context this is particularly relevant

for early detection. For this purpose, we construct a U -statistic weighted by a function that

is optimal within the family introduced by GHH for detecting change-points early and late

on in the evaluation period. This new function is an extension of that proposed by Orasch

and Pouliot (2004, hereafter OP) for detecting structural breaks in the mean parameter. To

show the power of this and other weighted U -statistics to detect structural breaks in the risk

process, we also compare this method against likelihood ratio (LR) tests for change point
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detection. Our results suggest the outperformance of U -statistic type tests over LR tests,

particularly for early detection. These simulations complement the findings in Worsley (1983)

on relative optimality between CUSUM and LR tests for change point detection for binomial

random variables.

Finally, an application to equity and commodity data shows the advantages of this risk

monitoring technique. Our results reveal the breakdown of the GARCH(1,1) risk model

around important announcements and occurrence of bad news worldwide. The risk model

is out of control for equity more times than for commodities. The choice of the coverage

probability to compute VaR and the rolling scheme to develop the re-estimation procedure

are important factors for risk monitoring.

The rest of the paper is structured as follows. Section 2.1 introduces the standard back-

testing monitoring techniques used to assess the validity of conditional VaR models. The sec-

tion also discusses change-point tests and shows that standard CUSUM tests can complement

the standard backtesting techniques by providing information about the timing of rejection

of the VaR model. We exploit this result in Section 2.1.2 and introduce a U -statistic type

process indexed by a family of weight functions devised to outperform in terms of statistical

power standard methods for detecting structural breaks, in particular for early change-point

detection. These results are illustrated in Section 2.2 that derives the asymptotic power of

the different tests and introduces a new family of weight functions more sensitive to early

detection. Section 2.3 complements this analysis by studying in a Monte-Carlo simulation

exercise the finite-sample performance of the new family of weighted U -statistic type tests

stressing the early detection property exhibited by our test statistic with respect to other

CUSUM-type competitors. An application of these methods to detecting structural breaks

in the dynamics of risk in commodity and equity markets is studied in Section 2.4. Section

2.5 concludes; and proofs are gathered in the Mathematical Appendix 2.6. The last Section

?? following the Mathematical Appendix 2.6 contains the Tabulated cumulative distribution
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functions (cdf) of the weighted statistics considered here.

2.1 Risk Monitoring: Backtesting techniques

We will start this section by formally defining the Value-at-Risk at an α coverage probability.

Denote the real-valued time series of portfolio returns by Yt, and assume that at time t − 1

the agent’s information set is given by =t−1, which may contain past values of Yt and other

relevant explanatory variables. Also, by assuming that the conditional distribution of Yt

given =t−1 is continuous, we can define the α-th conditional VaR of Yt given =t−1 as the

Ft−1-measurable function qα(=t−1) satisfying the equation

IIP(Yt ≤ qα(=t−1) | =t−1) = α, almost surely (a.s.), α ∈ (0, 1), ∀t ∈ Z, (2.1)

with Ft−1 the sigma-algebra generated by the set of information available at t − 1.

In parametric VaR inference one assumes the existence of a parametric family of functions

M = {mα(θ; ·) : θ ∈ Θ ⊂ Rp} and proceeds to make VaR out-of-sample forecasts using

model M. In these parametric VaR models the nuisance parameter θ belongs to a compact

set Θ embedded in a finite-dimensional Euclidean space Rp, and can be estimated by a
√

R-

consistent estimator, with R denoting the (in-)sample size in the backtesting exercise. The

most popular parametric VaR models are those derived from traditional location-scale models

such as ARMA-GARCH models, but other models include quantile regression models such

as those of Koenker and Xiao (2006), autoregressive quantile regression models of Engle and

Manganelli (2004) and models that specify the dynamics of higher moments of the conditional

distribution of Yt. Under the null hypothesis of correct specification of the conditional VaR

by a parametric model mα(θ; ·), expression (2.1) reads as

IIE[It,α(θ) | =t−1] = α a.s. for some θ ∈ Θ, (2.2)

with It,α(θ) := 1(Yt ≤ mα(θ;=t−1)), and 1(·) an indicator function that takes the value one

if Yt ≤ mα(θ;=t−1) and zero otherwise. It is well known in the backtesting literature that

this null hypothesis implies the hypothesis of serial independence of the indicator variables.
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In our framework this result will be fundamental to developing the asymptotic theory for our

test statistics. For sake of completeness we state this result as a corollary.

Corollary 2.1.1. Let Yt be a stationary time series describing the dynamics of portfolio

returns, and let {mα(θ;=t−1)}P
t=1 be the associated parametric conditional quantile process

satisfying (2.2). Then, the sequence {It,α(θ)}P
t=1 of indicator functions are IID.

It is worth noting that Corollary 2.1.1 is not an if and only if condition, that is, {It,α(θ)}P
t=1

can be IID without the underlying risk process satisfying condition (2.2). This result is

referred to as model risk in the literature, see Engle and Manganelli (2004), Kuester, Mittnik

and Paolella (2006) or Escanciano and Olmo (2010b), among others for a discussion on this. A

proper test for condition (2.2) is Christoffersen, Hahn and Inoue (2001). Nevertheless, given

that the interest of regulators is in testing whether {It,α(θ)}P
t=1 is a Bernoulli IID random

sequence we concentrate on testing departures of this assumption. The pioneering backtesting

tests are due to Kupiec (1995) and Christoffersen (1998). These authors developed different,

although asymptotically equivalent, tests for the unconditional coverage of the VaR model.

In particular, Kupiec’s test statistic takes this form;

KP ≡ K(P, R) :=
1√
P

R+P∑

t=R+1

(It,α(θ) − α), (2.3)

where R is the in-sample period used to estimate the model parameters, and P is the out-of-

sample evaluation period. Escanciano and Olmo (2010a) show, however, that a correction in

the asymptotic distribution is needed in the case the risk model’s parameters are estimated.

These tests are designed to evaluate the specification of the conditional VaR measure after

P out-of-sample periods. Neither method, however, is devised to exhibit power against the

timing of the rejection of the null hypothesis. A potential solution to this is the use of

CUSUM-type tests.
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2.1.1 Change-point detection techniques

In this section we study more refined and powerful versions of the backtesting tests introduced

above for the correct specification of the VaR model. We start with the standard CUSUM

test as benchmark and show that this test can be built as a simple combination of the Kupiec

test for two different sample periods. Now we are not only interested in detecting failure of

the risk model but also in the timing of the failure. In order to do this we will use different

change-point detection techniques. For sake of exposition we will assume in this and next

subsection that the vector of parameters θ is known, and therefore there is no need to use an

in-sample period, hence R = 0.

Let us consider the following process:

Xt =

{
1(Yt ≤ mα(θ;=t−1)), 1 ≤ t ≤ k?,
1(Yt ≤ m?

α(θ?;=t−1)), k? < t ≤ P,
(2.4)

with m?
α(θ?;=t−1) 6= mα(θ;=t−1), with θ? the parameter set corresponding to the alternative

risk model. The process m?
α(θ?;=t−1) describes the actual conditional V aR process with α

coverage probability after the structural break. Thus, IIE[Xt | =t−1] = α for all t. In contrast

to standard backtesting tests the interest of this exercise is in detecting k∗, if k∗ < P . The

relevant hypothesis test is

HO : k? ≥ P

versus the alternative of wrong specification of the risk model given by

HA : 1 ≤ k? < P.

The CUSUM test for detecting a structural break in the sequence {Xt}P
t=1 is based on

deviations of the partial sum XP (τ) = 1√
P

(
dτPe∑
t=1

Xt − dτPeα
)

from the total sum XP (1) =

1√
P

(
∑P

t=1 Xt − Pα). The CUSUM process takes this form;

M
(CS)
P (τ) := XP (τ) − τXP (1). (2.5)
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For Xt = It,α(θ), the total sum XP (1) is Kupiec’s test. Moreover, we can construct a

process K̃P indexed by a parameter τ , with 0 ≤ τ ≤ 1, as follows:

K̃P (τ) =
1√
P




dτPe∑

t=1

It,α(θ) − dτPeα


 , (2.6)

with d·e denoting the integer part of τP . Under HO, Donsker’s (1951) theorem restated on

D[0, 1] now applies and implies the following weak convergence result:

K̃P (·) ⇒
√

α(1− α)W (·), 0 ≤ τ ≤ 1, (2.7)

with {W (τ); 0 ≤ τ ≤ 1} a standard Wiener process and ⇒ refers to weak convergence.

We now consider the class of CUSUM change-point tests characterized by the process

K̃P (τ);

M
(CS,O)
P (τ) := K̃P (τ) − τK̃P (1), (2.8)

with K̃P (1) ≡ KP . This is a piece-wise continuous partial sum process with jump points at

τ = k
P , that satisfies under HO, as P → ∞,

sup
0≤τ≤1

M
(CS,O)
P (τ)

D−→
√

α(1 − α) sup
0≤τ≤1

(W (τ) − τW (1)) ≡
√

α(1 − α) sup
0≤τ≤1

B(τ), (2.9)

where B(τ) denotes a Brownian bridge, and
D−→ denotes convergence in distribution. Under

proper standardization the critical values of the distribution of the asymptotic process are

parameter-free and can be tabulated.

2.1.2 An Alternative Change-Point Detection Test for Deviations in the
Tails

Section 2.1.1 introduced the CUSUM test and then showed how the Kupiec test could be

considered as a special case of this test. As the CUSUM figures prominently in this research,

it is interesting to make a few observations regarding the CUSUM test; one regarding the

similarity of this test with that of the Kolmogorov-Smirnov (K-S) statistic; and the other

regarding the consistency of the power function of the K-S statistic to deviations from the

hypothesized distribution that may occur in the tails.

When the summand in (2.5) is set to the indicator of some random event, i.e. Xt =
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I(Yt < y), where Yt, t = 1, . . . , P are IID, this results in the empirical distribution function.

This function is an important ingredient from which the K-S statistic is fashioned. Indeed,

the K-S statistic calculates, uniformly, the distance between the empirical distribution func-

tion and the distribution function specified under the null hypothesis, and rejects said null

hypothesis when this distance is too great. Mason and Schuenemeyer (1983, hereafter M-

S) have shown that, both in finite and large sample theory, the K-S statistic exhibits poor

sensitivity to deviations that may occur in the tails: M-S establish that the K-S statistic is

inconsistent against such deviations. A similar fate holds true here for our above mentioned

CUSUM test: the CUSUM test is also insensitive to deviations of this nature. In an attempt

to rectify this apparent insensitivity of the K-S test to deviations from the hypothesized dis-

tribution that may occur in the tails, M-S apply weights to their statistics and find that these

weighted statistics perform much better than the K-S statistic - they are consistent against

such deviations. Moreover, they state that, while they are unable to find uniformly good

weight functions, there do exist weight functions, dependent upon P , that make weighted

versions of the K-S statistic consistent with respect to deviations that may occur in the tails.

Hence, just as in the K-S setting where it was shown to be useful to employ weights, it is

also desirable in our setting to introduce weights that may remedy this situation somewhat

on the tails, i.e., in particular for early detection of deviations of VaR models.

More interestingly, OP study the empirical power of statistics constructed from the

CUSUM, as well as the CUSUM statistic itself, that test for a change in the location pa-

rameter that occurs early on in the sample. They find that the CUSUM test is completely

insensitive to such deviations. More specifically, the family of partial sum processes defined

in (2.5) is more powerful for detecting changes in the distribution that occur near P/2 than

noticing changes near the endpoints, 1 and P of the sample. These observations would indi-

cate the value of constructing test statistics that are more sensitive to tail alternatives or, in

the case of this research, early detection, yet remain sensitive to departures that may occur
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later on as well.

There remains, however, the heretofore unanswered question of what form the selected

weights should take and how to weight the partial sum processes detailed in (2.5) and (2.8).

More information on the conditions that these weight functions must satisfy will be provided

in this section and some examples will follow in Section 2.2. The choice of weight functions

remains an active area of research, work by Csörgő and Horváth (1988a, 1988b, 1997) provide

a detailed account of the use of weight functions and site some of the many interesting

properties of weighted statistics. For our purposes, however, we focus on Theorem 2.1. in

Szyszkowicz (1991), which is referred to here as Theorem S. Before this we need to define

some basic properties of these functions, and further notation.

Definition 1.

1. ) Let Q be the class of positive functions on (0, 1) which are non-decreasing in a neigh-

borhood of zero and non-increasing in a neighborhood of one, where a function q(·)

defined on (0,1) is called positive if

inf
δ≤τ≤1−δ

q(τ) > 0 for all δ ∈ (0, 1/2). (2.10)

2. ) Let c > 0 be a constant value. Then for q ε Q,

Ψ(q, c) :=

∫ 1

0

1

τ(1 − τ)
exp

(
− c

τ(1 − τ)q2(τ)

)
dτ. (2.11)

Let X1 and X2 be independent random variables, and h(x, y) be a kernel that satisfies

the following property: h(x, y) = −h(y, x), i.e., the kernel is antisymmetric. We have under

HO that IIEh(X1, X2) = 0. Let h̃(t) = IIEh(X1, t), assume that

IIEh2(X1, X2) < ∞ (2.12)

0 < σ2 := IIEh̃2(X2), (2.13)

and set
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Zk :=

k∑

i=1

P∑

j=k+1

h(Xi, Xj), 1 ≤ k < P. (2.14)

Theorem S. Assume that Xj for j = 1, . . . , P are IID random variables, h(x, y) =

−h(y, x), (2.12) and (2.13) are satisfied. Then a sequence of Brownian bridges {BP (τ), 0 ≤

τ ≤ 1} can be defined such that, as P → ∞,

(i) sup
0<τ<1

˛̨
˛̨ P−3/2

σ
ZdτPe−BP (τ )

˛̨
˛̨

q(τ ) =

{
oP (1), if and only if Ψ(q, c) < ∞ for all c > 0
OP (1), if and only if Ψ(q, c) < ∞ for some c > 0.

(ii) Let {B(τ); 0 ≤ τ ≤ 1} be a Brownian bridge. Then

sup
0<τ<1

P−3/2

σ

|ZdτPe|
q(τ)

D−→ sup
0<τ<1

|B(τ)|
q(τ)

if and only if Ψ(q, c) < ∞ for some c > 0.

To connect (2.14) to our family of partial sum processes M
(CS,O)
P (·) we will assume τ = k

P ,

set h(x, y) = x − y and note that this kernel is antisymmetric. Replace h(x, y) in (2.14)

with x − y which, after some algebra, reduces to the following;

Zk = P

k∑

i=1

Xi − k

P∑

j=1

Xj. (2.15)

Set Xi = Ii,α(θ) in (2.15) and normalize by P 3/2; after which we arrive at the following

representation:

Zk

P 3/2
=

k∑
i=1

Ii,α(θ) − k
P

P∑
j=1

Ij,α(θ)

P 1/2
(2.16)

which corresponds to M
(CS,O)
P (τ), with τ = k

P and appropriate subscript t, as detailed in

(2.8). Using Theorem S, we are now able to make the following statements regarding weighted

versions of M
(CS,O)
P (τ), the nature of which are detailed in Proposition 2.1.1.
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Proposition 2.1.1. Let HO hold and q ∈ Q. Then we can define a sequence of Brownian

bridges {BP (τ); 0 ≤ τ ≤ 1} such that, as P → ∞, the following hold:

i) sup
0<τ<1

˛̨
˛̨ 1

(α(1−α))1/2
M

(CS,O)
P (τ )−BP (τ )

˛̨
˛̨

q(τ ) =





oP (1), if and only if Ψ(q, c) < ∞ for all c > 0

OP (1), if and only if Ψ(q, c) < ∞ for some c > 0,

and

ii)

sup
0<τ<1

∣∣∣ 1
(α(1−α))1/2M

(CS,O)
P (τ)

∣∣∣
q(τ)

D−→ sup
0<τ<1

∣∣∣B(τ)
∣∣∣

q(τ)

if only if Ψ(q, c) < ∞ for some c.

Remark 2.1.1. Let
{
BP (τ) := W (Pτ )−τW (P )√

P
; 0 ≤ τ ≤ 1

}
be a version of a Brownian Bridge.

Then, for P = 1, 2, . . ., we have

{BP (τ); 0 ≤ τ ≤ 1} D
= {B(τ); 0 ≤ τ ≤ 1} .

2.1.3 Population Parameter Unknown

The weighted partial sum process developed in (2.8) depends on an unknown vector of pop-

ulation parameters θ that in practice is usually unknown. A natural solution is to replace

θ by any consistent estimator. As we are interested in functionals of CUSUM test statis-

tics, it would be of interest to know if such substitutions affect their limiting distribution.

Such substitutions, as can be the case, increase the randomness of such functionals of these

processes, and then cause the thus altered process to have a limiting distribution different

from that of the functional of the original partial sum process. In what follows, however, we

show the convergence of the estimated CUSUM process to the same limiting distribution as

the original CUSUM statistic, and with it the absence of the so-called estimation risk. For
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simplicity, we focus on the estimated version of the test statistic M
(CS,O)
P (τ) computed over

the out-of-sample period P and given by

M̂
(CS,O)
P (τ) :=

dτPe∑
t=1

It,α(θ̂t,R) − τ
P∑

t=1
It,α(θ̂t,R)

P 1/2
, 0 ≤ τ ≤ 1, (2.17)

with {θ̂t,R}P
t=1 any sequence of consistent estimators of the vector of parameters θ encom-

passing the three different schemes used in the backtesting literature, namely, the recursive,

fixed and rolling forecasting schemes. They differ in how the parameter θ is estimated. In

the recursive scheme the sequence {θ̂t,R}P
t=1, R = 1, 2, . . . is computed with all the sample

available up to R+ t−1 for t = 1, . . . , P , and R denoting the in-sample size. For the fixed

forecasting scheme, on the other hand, the estimator is not updated when new observations

become available, and therefore leaves {θ̂t,R}P
t=1 = θ̂R. Finally, for the rolling estimator the

subscript R denotes the number of observations used in the estimation process, in this case

the sequence of estimators {θ̂t,R}P
t=1 is constructed from the sample t, . . . , t+ R− 1, for each

t = 1, . . . , P .

Proposition 2.1.2. Let M̂
(CS,O)
P (·) be the estimated version of the process M

(CS,O)
P (·). Let

q ∈ Q satisfy the integral condition Ψ(q, c) < ∞ for some c > 0, and let {θ̂t,R}P
t=1 be the

sequence of recursive, fixed or rolling estimators of the parameter vector θ. Under HO, as

R, P → ∞, with 0 < lim
R,P→∞

P
R < ∞,

sup
0<τ<1

∣∣∣M̂ (CS,O)
P (τ) − M

(CS,O)
P (τ)

∣∣∣
q(τ)

= oP (1).

Using Proposition 2.1.2, we are able to make the following statements concerning (2.17).

The nature of these statements include one concerning approximation in probability and one

regarding the asymptotic distribution of the supremum over τ of these processes. These are

all detailed in Proposition 2.1.3, and are similar in nature to those statements made regarding

the partial sum process (2.8) and detailed in Proposition 2.1.1.
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Proposition 2.1.3. Let HO hold and q ∈ Q. Then, we can define a sequence of Brownian

Bridges {BP (τ); 0 ≤ τ ≤ 1} such that, as R, P → ∞, the following hold:

i) sup
0<τ<1

˛̨
˛̨ 1

(α(1−α))1/2
cM (CS,O)

P (τ )−BP (τ )

˛̨
˛̨

q(τ )
=





oP (1), if and only if Ψ(q, c) < ∞ for all c > 0

OP (1), if and only if Ψ(q, c) < ∞ for some c > 0,

and

ii)

sup
0<τ<1

∣∣∣ 1
(α(1−α))1/2M̂

(CS,O)
P (τ)

∣∣∣
q(τ)

D−→ sup
0<τ<1

∣∣∣B(τ)
∣∣∣

q(τ)

only if Ψ(q, c) < ∞ for some c.

Under the alternative, HA, there remains one additional parameter to estimate, k?. A

number of estimators of this parameter have been proposed in the literature but we provide

only one, as it is intuitive and some of its large sample properties have been detailed in the

literature.

k̂? := min

{
k :

|M (CS,O)
P ( k

P )|
q( k

P )
= max

1≤i<P

|M (CS,O)
P ( i

P )|
q( i

P )

}
. (2.18)

This estimator of k? is based on the fact that the statistic should be largest at the time of

failure of the risk model; hence an estimator of the time of change should be value of k for

which the statistic is largest. As the k where the statistic is largest may not be unique, we

take the minimum of all such k to arrive at the unique estimator, k̂?.

The asymptotic properties of this estimator have been studied by Antoch, Hušková and

Veraverbeke (1995). They also show that the bootstrap approximation to this distribution

is asymptotically valid. For more on this, we refer those interested to their paper. This

estimator of location of change in the VaR model should greatly assist risk managers in

understanding the reasons for changes in their VaR model and to propose alternative models

after the break point to assess properly market risk.
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2.2 Power of U-statistic type tests for detecting market risk
failure

To obtain the asymptotic results detailed in Sections 2.1.2 and 2.1.3, q(·) was required to

satisfy the integral equation (2.11) but there has been neither discussion on the form these

weight functions may take nor from among those weight functions that satisfy Ψ(q, c) < ∞ in

(2.11) - for some or all c - which ones are optimal. This section explores this by comparing

the asymptotic statistical power of the standard CUSUM test, see (2.8), against different

versions of the weighted U -statistic type tests introduced in this paper, see Proposition 2.1.1.

The section studies, in particular, a novel class of weight functions that encompasses the

family of weight functions in GHH and OP devised to be sensitive to deviations of the risk

model in the tails. The aim of our new family of functions is to gain statistical power against

rejections of HO early on in the out-of-sample backtesting period. This is detailed as follows.

Remember that

Xt =

{
1(Yt ≤ mα(θ;=t−1)), 1 ≤ t ≤ k?,

1(Yt ≤ m?
α(θ?;=t−1)), k? < t ≤ P,

with m?
α(θ?;=t−1) 6= mα(θ;=t−1), and both belonging to M and CUSUM process defined by

M
(CS)
P (τ) := XP (τ) − τXP (1).

Under HA, the process M
(CS)
P (·) is related to M

(CS,O)
P (·) by the following expression;

M
(CS,O)
P (τ) = M

(CS)
P (τ) + τ(1 − dτ?Pe

P
)(α − α̃)

√
P − τ√

P

P∑

t=dτ?Pe+1

(It,α(θ) − α̃)

+
τ√
P

P∑

t=dτ?Pe+1

(I?
t,α(θ) − α) +

1√
P

dτPe∑

t=dτ?Pe+1

(
It,α(θ) − I?

t,α(θ)
)
,(2.19)

with I?
t,α(θ?) = 1(Yt ≤ m?

α(θ?;=t−1)).

To obtain equation (2.19) we have assumed without loss of generality that τ ≥ k?

P . In

what follows we use the above relationship between processes to derive the power of the

CUSUM test in (2.8) and of the weighted U -statistic type tests in Proposition 2.1.1. We
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need first to make two additional assumptions:

δ(P ) → 0 as P → ∞, (2.20)

δ(P )P → 0 as P → ∞. (2.21)

Using (2.19), we have the following result for the weighted version of the statistics;

sup
k?
P

−δ(P)≤τ≤ k?
P

+δ(P)

|M(CS,O)
P (τ)|

q(τ)
= sup

k?
P

−δ(P )≤τ≤ k?
P

+δ(P )

˛̨
˛̨
˛̨
M

(CS)
P (τ)

q(τ)
+

τ(1 − dτ?Pe
P )(α − eα)

q(τ)

√
P

−
τ

√
P

PP
t=dτ?Pe+1(It,α(θ) − eα)

q(τ)
+

τ
√

P

PP
t=dτ?Pe+1(I?

t,α(θ?) − α)

q(τ)

+
1

√
P

PdτPe

t=dτ?Pe+1

“
It,α(θ) − I?

t,α(θ?)
”

q(τ)

˛̨
˛̨
˛̨
˛
, (2.22)

which leads to the following simplification of (2.22);

sup
k?
P

−δ(P )≤τ≤ k?
P

+δ(P )

|M(CS,O)
P (τ)|

q(τ)
=

˛̨
˛̨
˛̨
M

(CS)
P ( k?

P )

q( k?

P
)

+
k?

P

(1 − dτ?Pe
P )(α − eα)

q( k?

P
)

√
P

−
k?

P√
P

PP
t=dτ?Pe+1(It,α(θ) − eα)

q( k?

P
)

+
k?

P√
P

PP
t=dτ?Pe+1(I?

t,α(θ?) − α)

q( k?

P
)

+
1

√
P

Pk?

t=k?+1

“
It,α(θ) − I?

t,α(θ?)
”

q( k?

P
)

˛̨
˛̨
˛̨ . (2.23)

The last term in (2.23) is zero which leaves only the first four terms, i.e.,

sup
k?
P

−δ(P )≤τ≤ k?
P

+δ(P)

|M(CS,O)
P

(τ)|
q(τ)

=

˛̨
˛̨
˛̨
M

(CS)
P ( k?

P
)

q( k?

P )
+

k?

P

(1 − dτ?Pe
P

)(α − eα)

q( k?

P )

√
P

−
k?

P√
P

PP
t=dτ?Pe+1

(It,α(θ) − eα)

q( k?

P
)

+
k?

P√
P

PP
t=dτ?Pe+1

(I?
t,α(θ?) − α)

q( k?

P
)

˛̨
˛̨
˛̨ .

(2.24)

We can remove the absolute value sign in (2.24) by noting that if the sum is negative, then

multiply by -1. Thus, expression (2.24) provides the rate at which the mean of
|M (CS,O)

P ( k?

P
)|

q( k?

P
)

is

increasing; it is precisely k?

P

(1− dτ?Pe
P

)|α−eα|
q( k?

P
)

√
P . Note that after demeaning the test statistic the

different terms on the right of the previous expression converge by the central limit theorem

to univariate normal distributions. More specifically,

Proposition 2.2.1. Under HA, (2.4), (2.20), (2.21) and (2.24), and as P → ∞,
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1√
P

∑k?

t=1(It,α(θ) − α)

1√
P

∑k?

t=1(It,α(θ) − α) + 1√
P

∑P
t=k?+1(I

?
t,α(θ?) − α)

1√
P

∑P
t=k?+1(It,α(θ) − α̃)

1√
P

∑P
t=k?+1(I

?
t,α(θ?) − α)




D−→ N(0, Σ), (2.25)

where

Σ =

2
6666664

τ?α(1 − α) τ?α(1 − α) 0 0

α(1 − α) (1 − τ?)COV (Ik?+1,α(θ), I?
k?+1,α(θ?)) (1 − τ?)α(1 − α)

(1 − τ?)eα(1 − eα) (1 − τ?)COV (Ik?+1,α(θ), I?
k?+1,α(θ?))

(1 − τ?)α(1 − α)

3
7777775

. (2.26)

The matrix Σ depends on α α̃, τ? and COV (Ik?+1,α(θ), I?
k?+1,α(θ?)). Note that

IIE
[
Ik?+1,α(θ)I?

k?+1,α(θ?)
]

= IIP {Yk?+1 ≤ min{mα(θ;=k?), m?
α(θ?;=k?)} | =k?} , (2.27)

and hence

COV (Ik?+1,α(θ), I?
k?+1,α(θ?)) =

{
α(1− α̃), if mα(θ;=k?) > m?

α(θ?;=k?),
α̃(1 − α), otherwise.

(2.28)

Now, using Proposition 2.2.1 and the Cramer-Wold device the following statement can be

made regarding the statistic detailed in (2.8). Define h
′

= [1,−τ?,−τ?, τ?].

Theorem 2.2.1. Assume HA, (2.20), (2.21) hold, then as P → ∞,

q(τ?)√
h

′
Σh

[
sup

0<τ<1

|M (CS,O)
P (τ)|
q(τ)

−
dτ?Pe

P (1− dτ?Pe
P )|α − α̃|

q(τ?)

√
P

]
D−→ N (0, 1), (2.29)

with h
′
Σh = τ?(1− τ?) {α(1 − α) + τ? [α̃(1 − α̃) − α(1− α)]}.

The next result follows as a consequence of the above theorem.

Corollary 2.2.1. Theorem 2.2.1 establishes that

sup
0<τ<1

|M (CS,O)(τ)|
P 1/2q(τ)

P−→ τ?(1− τ?)|α− α̃|
q(τ?)

,



27

as P → ∞ and, as a result, the consistency of each weighted U -statistic type test.

With these results in place we can study the power function of the different change-point

detection tests discussed before. In order to do this we need first to obtain the critical value at

a β significance level corresponding to each test. From Propositions 2.1.1 and 2.1.3 the critical

value is obtained via simulation of the distribution of the asymptotic process sup
0<τ<1

|B(τ )|
q(τ ) , and

is therefore idiosyncratic to the weight function q(·) chosen. More specifically, the critical

value Cq
1−β is defined as

lim
P→∞

PHO





1√
α(1− α)

sup
0<τ<1

∣∣∣M (CS,O)
P (τ)

∣∣

q(τ)
> Cq

1−β



 = β, (2.30)

where lim
P→∞

PH0 is the distribution of the supremum of the weighted Brownian bridge.

Theorem 2.2.2. Assume a set of local alternative hypotheses defined by a VaR model with

a coverage probability α̃ starting from τ?, and that satisfies α − α̃ = a
Pγ , with a 6= 0, and

γ ≥ 1/2 constant values. Then, the power function (pf) at a β significance level is defined by

lim
P→∞

pfβ = 1 − Φ

(√
α(1 − α)

h
′
Σh

q(τ?)Cq
1−β − |a|τ

?(1 − τ?)√
h

′
Σh

)
, (2.31)

for γ = 1/2, with Φ(·) the cdf of a standard normal distribution, and

lim
P→∞

pfβ = 1 − Φ

(√
α(1 − α)

h
′
Σh

q(τ?)C
q
1−β

)
, (2.32)

for γ > 1/2.

The power of the change point test statistic

∣∣M (CS,O)
P (τ?)

∣∣
q(τ?)

for detecting a break in the risk

model at τ? is a function of the coverage probability α of interest, the distance between this

coverage probability and that reported by the wrong model mα(θ;=t−1) after the break, the

timing of the break τ? and also the weight function q(·).
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2.2.1 A Comparative Power Analysis of Weighted U-Statistics

The statistical power of the different change-point tests to reject the correct specification of

the VaR model and detect the timing of the failure is an important issue when choosing an

appropriate method to monitor risk. Theorem 2.2.2 derives the power of the CUSUM test

and weighted versions, and allows us to compare the different weighted U -statistic type tests

in terms of the statistical power to local alternatives.

Definition 2. A uniformly optimal weighted U -statistic type process defined by a weight

function q?(τ) within the class in Definition 1, satisfies

q?(τ) < q(τ)
Cq

1−β

Cq?

1−β

, (2.33)

for all τ, β ∈ (0, 1).

The dependence of the critical values on the form of the weight function and the non-

monotonic nature of the latter implies that it is very difficult to find a function that satisfies

the above optimality condition globally. Instead, one can devise weight functions suited to

be optimal for certain regions within (0, 1). In order to enhance the power against deviations

in the tails, we introduce the following family of weight functions.

Definition 3. Let qstep
ν (τ) be defined as

qstep
ν (τ) :=

{
(τ(1 − τ))ν if τ ε (a, b)(
τ(1− τ) log log 1

τ (1−τ )

)ν
if τ ε [0, a] ∪ [b, 1),

(2.34)

where a = 0.071033 and b = 0.92896, is a step function satisfying Ψ(qstep
ν , c) < ∞ for some

c > 0.

For hypothesis tests for at most one change in the mean, OP proposed the case ν = 1/2

to improve the power of CUSUM type tests with respect to the family introduced in qstep
ν ()̇.
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One might expect ν = 1/2 to be a reasonable candidate for the weight functions introduced

by GHH;

qν(τ) = {(τ(1− τ))ν; 0 ≤ ν ≤ 1/2}. (2.35)

These families of weight functions are in the class of functions in Definition 1. The only

exception is ν = 1/2 for the GHH function. The asymptotic distribution of the supremum

of the weighted U -statistics is tabulated. Thus, the critical values for the U -statistic qstep
ν

for ν = 0 and 1/2 are found in OP, and for ν = 1/16, 3/16, 5/16 and 7/16 in Section 2.7.

This section also contains the tables for the distribution corresponding to qν , for ν = 1/16,

3/16, 5/16 and 7/16. For ν = 1/2 the relevant critical values can be easily calculated as the

limiting distribution is a Double Exponential. These are [2.943, 3.660, 5.293] corresponding

to 10%, 5% and 1% significance level. For the standard CUSUM test (ν = 0) these are [1.232,

1.366, 1.640].

Figure 1 plots q?(τ)−q(τ)
Cq

1−β

Cq?

1−β

corresponding to condition (2.33). The upper panels show

evidence of a better performance of the weighted U -statistics with respect to the CUSUM test

for ν = 7/6 and ν = 1/2, respectively. The lower panels plot the difference corresponding to

q? = qstep
ν and q = qν for ν = 7/6 and ν = 1/2. For values below ν = 7/6 the global optimality

of qstep
ν over qν no longer holds, and there is little reason to consider weight functions with

ν < 7/16 unless the interest is gaining more power in specific regions.

2.2.2 A Likelihood Ratio Test for Change Point Detection in VaR models

The optimality of change-point tests is widely studied in statistics and econometrics. The

non-parametric approach has been discussed in previous sections. In a parametric regression

framework this problem is studied by Andrews (1993) and Andrews and Ploberger (1994).

These authors use results from Davies (1977) to show that likelihood ratio tests, Lagrange

Multipliers and Wald tests possess certain asymptotic optimality properties against local
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Figure 2.1: Power of Weighted Statistics
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alternatives for large sample size and small significance level. These methods, though, depend

on the correct specification of the parametric model and are not well suited to detecting breaks

near the end points of [π0, 1− π0].

In this section we introduce a LR test for detecting the timing of the failure of VaR

models. The Lagrange Multiplier and Wald test are asymptotically equivalent so it is enough

to restrict to the first type of test. The testing regression equation is

It,α(θ) = αI(t ≤ t0) + α̃I(t > t0) + εt, for t = 1, . . . , P, (2.36)

with εt a zero-mean random error, t0 ∈ Ω ⊂ R, with Ω a compact set, and α 6= α̃ the coverage

probabilities under the null and alternative hypotheses. If the model is correctly specified we

have E[It,α(θ)|=t−1] = α for t = 1, . . . , P and the null hypothesis reads HO : α̃ = α.

The estimation of this regression equation can be done by standard OLS methods. Under

HO the parameter t0 is not identified implying that the asymptotic distribution of these tests

is no longer a χ2, but needs to be approximated by simulation or bootstrap techniques. In

our context the LR test takes this form:

sup
t0∈Ω

F (t0). (2.37)

The F-test is now a process indexed by t0 and defined as F (t0) = (P − 3)
bσ2
0−bσ2(t0)

bσ2(t0)
, with

σ̂2(t0) the residual variance estimated from the regression equation determined by t0 and σ̂2
0

the residual variance from the model under H0. The finite-sample distribution of this test

can be approximated by simulation or bootstrap methods. For the Monte-Carlo section we

choose the bootstrap method very well described in Hansen (1997).

The following section compares this parametric method against CUSUM and weighted U -

statistic type tests in terms of power. Similar studies are carried out by Worsley (1983) for IID

binomial random variables and McCabe (1988) for elliptical distributions. The first author

finds a statistical power tradeoff between CUSUM type tests and LR tests that depends on

the location of the break in the evaluation period, that is, the CUSUM test outperforms LR

tests in the middle of the sample but is beat for breaks early and late in the evaluation period.
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2.3 Monte-Carlo Experiments

The aim of this section is to see the significance of our theoretical findings in finite samples.

In order to do this we carry out a study of the finite-sample size and power of the different

CUSUM tests developed in the previous section. We will concentrate on three features of

these change-point tests: first, we will see that the three tests are consistent under the null

hypothesis. The second aim will be the study of potential finite-sample distorting effects

on the empirical size of the test derived from estimating the relevant parameters of the VaR

model. Finally, we will gauge the power of the different versions of our tests against departures

from the null hypothesis given by α− α̃ = a√
P

with a 6= 0, and stress the out performance of

weighted versions of the U -statistic type processes introduced here when compared against

standard CUSUM tests. In this power study we will also investigate the performance of

the LR test (2.37) for change point detection and Christoffersen’s (1998) unconditional LR

test for hypothesis (2.2). This is an important exercise; for if the method developed here

cannot out perform Christoffersen’s non-parametric test then there would little need for it.

For completeness, we also introduce this test:

LR = 2log
L(α̂; {It,bα(θ0)}P

t=1)

L(α; {It,α(θ0)}P
t=1)

with

L(α̂; {It,bα(θ0)}P
t=1) = (1− α̂)P0 α̂P1 ,

and α̂ = P1
P , where P1 is the number of violations of VaR at α coverage probability and

P0 = P − P1. The asymptotic distribution of this test is χ2
1.

The null hypothesis assumes no structural break in a conditional VaR modeled by a

location-scale process. In particular the process considered here is a pure GARCH(1,1) data

generating process with Gaussian innovations;

Yt = µ(γ0;=t−1) + ut, (2.38)
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where µ(γ0;=t−1) = 0 and ut = σ(γ0;=t−1)εt, with

σ(γ0;=t−1) =
√

0.05 + 0.10u2
t−1 + 0.85σ2(γ0;=t−2),

and εt are the standardized innovations which are usually assumed to be IID, and independent

of =t−1. Note that under such assumptions the α-th conditional VaR is given by

mα(θ;=t−1) = σ(γ0;=t−1)Φ
−1
ε (α), (2.39)

where Φε(·) denotes the cumulative normal distribution function and Φ−1
ε (α) the correspond-

ing α−quantile function of εt. The parameter vector is

θ = (γ0, Φ
−1
ε (α)) =

(
(0.05, 0.10, 0.85),Φ−1

ε (α)
)
.

Table 2.1 reports the empirical size for the standard CUSUM, (M
(CS,O)
P ), for the GHH family

of tests (M
(CS,O)
P,GHHν

) and for the new alternative U -statistic family of tests (M
(CS,O)

P,q
step
ν

), the last

two tests computed for ν = 7/16. The choice of this parameter is for comparison purposes

across weighted functions. As discussed before, the GHH family of functions indexed at ν =

1/2 does not satisfy the integral condition and one needs to use an alternative standardization

to obtain the asymptotic critical values. The GHH weight functions corresponding to ν < 1/2

do satisfy the integrability of (2.11) for all c > 0; see Proposition 1 of GHH. Further, even

though Figure 1 suggests that ν = 1/2 provides the largest power when compared to the

CUSUM test and GHH’s choice of weight function, non-reported results on the size of the

asymptotic test for this case indicate the presence of large inflation of the nominal significance

level. This reason, and the one aforementioned, led us to the selection of ν = 7/16. The

simulations revealed that this choice does not sacrifice much power but achieves however

significant reduction in the inflation of nominal coverage probabilities. Further additional

simulations not reported here indicate that ν < 7/18 reduce empirical power when compared

to the case ν = 7/16, hence the reason for not exploring lower levels of ν.
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Table 2.1: Empirical Power (EP)

θ Assumed to be Known

M
(CS,O)
P M

(CS,O)
P,GHH7/16

M
(CS,O)

P,qstep
7/16

α = 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

P=100 0.049 0.035 0.018 0.076 0.059 0.040 0.089 0.081 0.056
P=300 0.040 0.019 0.006 0.084 0.060 0.034 0.095 0.077 0.052

P=500 0.035 0.027 0.007 0.085 0.057 0.036 0.088 0.070 0.041

α = 0.05 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

P=100 0.046 0.027 0.004 0.094 0.076 0.007 0.106 0.096 0.024

P=300 0.038 0.016 0.006 0.077 0.068 0.008 0.087 0.074 0.019
P=500 0.042 0.019 0.001 0.082 0.067 0.010 0.090 0.065 0.017

θ Estimated

α = 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

P=100 0.057 0.037 0.018 0.087 0.072 0.048 0.112 0.094 0.063
P=300 0.072 0.048 0.029 0.127 0.095 0.060 0.140 0.113 0.078

P=500 0.072 0.043 0.017 0.109 0.087 0.049 0.131 0.099 0.070

α = 0.05 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

P=100 0.047 0.023 0.007 0.071 0.063 0.009 0.081 0.074 0.030

P=300 0.067 0.039 0.010 0.109 0.089 0.018 0.121 0.098 0.031
P=500 0.061 0.029 0.013 0.109 0.089 0.018 0.121 0.098 0.031

Table 2.1. Empirical size of different change-point detection tests for (2.39). θ parameters

are assumed to be known and then estimated under HO.

The hypothesis test is computed for VaR measures computed at α = 0.01 and α = 0.05

coverage probabilities, and derived from model (2.39). Whereas the weighted CUSUM tests

approximate rather well the different nominal sizes for both α = 0.01, 0.05 the standard

CUSUM test exhibits poor results. For these sample sizes the empirical size underestimates

considerably the nominal size in the tails. The lower half of Table 2.1 studies the impact of

estimation effects on the size of the test. For this we compute empirical sizes of the relevant

out-of-sample tests using P observations, and assume a previous in-sample period of R = 500

observations to estimate, by quasi-maximum likelihood, the parameters of the GARCH(1,1)

model (fixed forecasting scheme). In contrast to standard backtesting tests, see Escanciano

and Olmo (2010a), the results of this table lend support to the hypothesis of no estimation



35

risk for CUSUM-type tests. Similar analysis have been carried out for null hypotheses given

by heavy-tailed error distributions. The results are available from the authors upon request.

Tables 2.2 - 2.5 illustrate the power of the different tests at a β = 0.05 significance level

against departures from the null hypothesis. Tables 2.2 and 2.3 consider the non-parametric

case and Tables 2.4 and 2.5 the comparison of the LR tests against our U -statistic candidate

introduced in Definition 3.

Under the alternative hypothesis, we assume after k?, with 1 < k? < P , an alternative

data generating process

Yt =
a∗√
P

σ(γ0;=t−1) + ut, (2.40)

with a? a constant. After k?, this process yields a true VaR process defined by

m?
α(θ?;=t−1) =

a?

√
P

σ(γ0;=t−1) + σ(γ0;=t−1)Φ
−1
ε (α), (2.41)

with θ? = θ in this case. This change implies that the process mα(θ;=t−1) is misspecified

after k? since

E [I(Yt ≤ mα(θ;=t−1)) | =t−1] = Φε

(
Φ−1

ε (α) − a?

√
P

)
:= α̃ for t > k?. (2.42)

Using a first-order Taylor expansion we know that

Φε

(
Φ−1

ε (α) − a?

√
P

)
= α − a?φ

(
Φ−1

ε (α)
)

√
P

+ O

(
1√
P

)
, (2.43)

with φ(·) the density function of a normal distribution.

In our simulation study we analyze single structural breaks occurring at four fractions of

the out-of-sample period: τ? = 0.05, 0.10, 0.30 and 0.50, for P = 100, 300 and 500. The

coverage probabilities are α = 0.01, 0.05 and |a?| = 1, 5. Finally, to avoid in-sample distorting
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Table 2.2: Empirical Power (EP)

α = 0.01 M
(CS,O)
P M

(CS,O)
P,GHH7/16

M
(CS,O)

P,qstep
7/16

τ? 0.05 0.10 0.30 0.50 0.05 0.10 0.30 0.50 0.05 0.10 0.30 0.50

a? = 1,P=100, EP 0.051 0.05 0.05 0.065 0.12 0.131 0.121 0.127 0.146 0.168 0.15 0.158

τ̂? 0.402 0.418 0.397 0.379 0.443 0.457 0.431 0.333 0.409 0.442 0.428 0.348

se(τ̂?) (0.223) (0.231) (0.235) (0.202) (0.223) (0.231) (0.235) (0.202) (0.399) (0.409) (0.406) (0.385)

P=300 0.044 0.039 0.056 0.038 0.129 0.122 0.145 0.137 0.15 0.142 0.167 0.155

τ̂? 0.427 0.425 0.4 0.374 0.431 0.376 0.448 0.41 0.441 0.379 0.429 0.414

se(τ̂?) (0.2) (0.222) (0.222) (0.21) (0.200) (0.222) (0.222) (0.21) (0.441) (0.421) (0.429) (0.435)

P=500 0.036 0.037 0.047 0.046 0.142 0.139 0.139 0.141 0.152 0.155 0.156 0.164

τ̂? 0.463 0.472 0.403 0.373 0.407 0.44 0.458 0.394 0.401 0.441 0.43 0.406

se(τ̂?) (0.195) (0.232) (0.212) (0.154) (0.195) (0.232) (0.212) (0.154) (0.441) (0.443) (0.439) (0.438)

a? = 5, P=100, EP 0.008 0.012 0.033 0.047 0.064 0.095 0.094 0.104 0.076 0.118 0.11 0.129

τ̂? 0.378 0.235 0.245 0.271 0.209 0.297 0.241 0.188 0.196 0.265 0.237 0.197

se(τ̂?) (0.273) (0.181) (0.143) (0.135) (0.273) (0.181) (0.143) (0.135) (0.326) (0.369) (0.341) (0.296)

P=300 0.01 0.019 0.037 0.041 0.096 0.103 0.119 0.109 0.102 0.109 0.136 0.127

τ̂? 0.343 0.292 0.264 0.328 0.295 0.215 0.296 0.258 0.304 0.224 0.292 0.268

se(τ̂?) (0.228) (0.208) (0.162) (0.183) (0.228) (0.208) (0.162) (0.183) (0.426) (0.373) (0.399) (0.381)

P=500 0.013 0.01 0.031 0.043 0.119 0.103 0.118 0.121 0.124 0.112 0.138 0.138

τ̂? 0.424 0.354 0.279 0.36 0.323 0.26 0.344 0.28 0.322 0.286 0.34 0.279

se(τ̂?) (0.198) (0.247) (0.137) (0.142) (0.198) (0.247) (0.137) (0.142) (0.435) (0.423) (0.424) (0.395)

a? = −1, P=100, EP 0.12 0.119 0.102 0.102 0.178 0.188 0.16 0.164 0.222 0.234 0.203 0.196

τ̂? 0.426 0.437 0.47 0.472 0.521 0.546 0.541 0.453 0.492 0.529 0.523 0.437

se(τ̂?) (0.220) (0.211) (0.204) (0.218) (0.220) (0.211) (0.204) (0.218) (0.381) (0.383) (0.384) (0.387)

P=300 0.086 0.066 0.084 0.061 0.162 0.153 0.181 0.161 0.191 0.182 0.209 0.187

τ̂? 0.455 0.454 0.461 0.47 0.509 0.485 0.535 0.507 0.495 0.476 0.504 0.49

se(τ̂?) (0.204) (0.211) (0.21) (0.223) (0.204) (0.211) (0.21) (0.223) (0.424) (0.419) (0.415) (0.431)

P=500 0.065 0.068 0.064 0.069 0.153 0.162 0.154 0.175 0.191 0.184 0.173 0.198

τ̂? 0.472 0.477 0.429 0.463 0.472 0.506 0.506 0.496 0.454 0.486 0.493 0.494

se(τ̂?) (0.178) (0.200) (0.183) (0.198) (0.178) (0.200) (0.183) (0.198) (0.427) (0.426) (0.438) (0.436)

a? = −5, P=100, EP 0.459 0.417 0.375 0.335 0.406 0.39 0.348 0.328 0.497 0.476 0.427 0.418

τ̂? 0.397 0.405 0.432 0.487 0.481 0.53 0.549 0.556 0.424 0.483 0.499 0.507

se(τ̂?) (0.194) (0.185) (0.17) (0.179) (0.194) (0.185) (0.17) (0.179) (0.298) -0.313 -0.295 (0.308)

P=300 0.256 0.219 0.227 0.218 0.268 0.244 0.267 0.277 0.357 0.317 0.335 0.338

τ̂? 0.444 0.462 0.441 0.498 0.552 0.58 0.592 0.615 0.501 0.529 0.545 0.572

se(τ̂?) (0.19) (0.177) (0.167) (0.161) (0.19) (0.177) (0.167) (0.161) (0.35) (0.356) (0.354) (0.347)

P=500 0.185 0.193 0.164 0.2 0.229 0.225 0.219 0.256 0.293 0.29 0.274 0.306
ˆ̂τ? 0.448 0.421 0.46 0.493 0.557 0.571 0.603 0.594 0.499 0.513 0.565 0.564

se(τ̂?) (0.156) (0.157) (0.152) -0.165 (0.156) (0.157) (0.152) (0.165) (0.379) (0.372) (0.382) (0.365)
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Table 2.3: Empirical Power (EP)

α = 0.05 M
(CS,O)
P M

(CS,O)
P,GHH7/16

M
(CS,O)

P,qstep
7/16

τ? 0.05 0.10 0.30 0.50 0.05 0.10 0.30 0.50 0.05 0.10 0.30 0.50

a? = 1, P=100, EP 0.024 0.032 0.029 0.035 0.111 0.120 0.114 0.116 0.135 0.140 0.140 0.138

τ̂? 0.493 0.411 0.354 0.369 0.405 0.530 0.427 0.450 0.404 0.507 0.417 0.424

se(τ̂?) (0.224) (0.145) (0.189) (0.136) (0.224) (0.145) (0.189) (0.136) (0.435) (0.446) (0.439) (0.443)

P=300 0.033 0.019 0.042 0.032 0.128 0.118 0.117 0.104 0.144 0.143 0.145 0.124

τ̂? 0.435 0.408 0.436 0.388 0.472 0.419 0.421 0.462 0.464 0.421 0.409 0.420

se(τ̂?) (0.168) (0.191) (0.175) (0.182) (0.168) (0.191) (0.175) (0.182) (0.463) (0.463) (0.440) (0.453)

P=500 0.034 0.027 0.04 0.036 0.141 0.141 0.114 0.116 0.152 0.161 0.136 0.136

τ̂? 0.445 0.448 0.415 0.439 0.505 0.387 0.485 0.455 0.497 0.383 0.450 0.440

se(τ̂?) (0.171) (0.200) (0.179) (0.143) (0.171) (0.200) (0.179) (0.143) (0.469) (0.449) (0.453) (0.462)

a? = 5, P=100, EP 0.002 0.006 0.030 0.046 0.078 0.084 0.091 0.086 0.082 0.100 0.127 0.108

τ̂? 0.275 0.175 0.257 0.339 0.192 0.337 0.238 0.233 0.195 0.304 0.218 0.219

se(τ̂?) (0.078) (0.023) (0.105) (0.124) (0.078) (0.023) (0.105) (0.124) (0.371) (0.425) (0.348) (0.351)

P=300 0.007 0.007 0.047 0.071 0.101 0.098 0.105 0.096 0.111 0.114 0.135 0.124

τ̂? 0.305 0.279 0.311 0.383 0.311 0.243 0.294 0.314 0.309 0.247 0.265 0.287

se(τ̂?) (0.195) (0.218) (0.126) (0.131) (0.195) (0.218) (0.126) (0.131) (0.444) (0.409) (0.384) (0.386)

P=500 0.014 0.01 0.058 0.087 0.113 0.125 0.103 0.110 0.119 0.132 0.141 0.147

τ̂? 0.447 0.355 0.289 0.393 0.358 0.25 0.326 0.361 0.367 0.222 0.257 0.335

se(τ̂?) (0.182) (0.181) (0.112) (0.109) (0.182) (0.181) (0.112) (0.109) (0.466) (0.393) (0.359) (0.404)

a? = −1, P=100, EP 0.059 0.076 0.057 0.068 0.140 0.152 0.146 0.156 0.180 0.184 0.183 0.193

τ̂? 0.444 0.461 0.49 0.479 0.501 0.597 0.556 0.569 0.498 0.564 0.533 0.558

se(τ̂?) (0.203) (0.188) (0.178) (0.169) (0.203) (0.188) (0.178) (0.169) (0.427) (0.417) (0.426) (0.422)

P=300 0.07 0.05 0.058 0.05 0.143 0.137 0.134 0.124 0.170 0.162 0.161 0.142

τ? 0.458 0.467 0.441 0.496 0.513 0.482 0.484 0.541 0.508 0.497 0.480 0.520

se(τ̂?) (0.168) (0.162) (0.153) (0.200) (0.168) (0.162) (0.153) (0.200) (0.443) (0.448) (0.432) (0.446)

P=500 0.052 0.052 0.054 0.06 0.159 0.164 0.126 0.143 0.173 0.171 0.154 0.165

τ̂? 0.421 0.456 0.45 0.477 0.574 0.459 0.557 0.539 0.529 0.446 0.503 0.525

se(τ̂?) (0.165) (0.170) (0.161) (0.144) (0.165) (0.170) (0.161) (0.144) (0.455) (0.440) (0.435) (0.438)

a? = −5, P=100, EP 0.292 0.305 0.388 0.392 0.315 0.307 0.346 0.370 0.383 0.401 0.440 0.468

τ̂? 0.419 0.416 0.384 0.442 0.600 0.643 0.562 0.587 0.526 0.547 0.478 0.536

se(τ̂?) (0.182) (0.174) (0.141) (0.132) (0.182) (0.174) (0.141) (0.132) (0.341) (0.340) (0.314) (0.308)

P=300 0.201 0.158 0.269 0.289 0.207 0.203 0.246 0.257 0.246 0.222 0.326 0.343

τ̂? 0.447 0.432 0.396 0.450 0.555 0.578 0.539 0.607 0.525 0.507 0.485 0.539

se(τ̂?) (0.181) (0.161) (0.162) (0.135) (0.181) (0.161) (0.162) (0.135) (0.344) (0.379) (0.338) (0.320)

P=500 0.123 0.138 0.235 0.269 0.200 0.226 0.211 0.237 0.168 0.197 0.247 0.289

τ̂? 0.433 0.463 0.385 0.433 0.614 0.565 0.548 0.560 0.535 0.540 0.469 0.554

se(τ̂?) (0.160) (0.174) (0.153) (0.125) (0.160) (0.174) (0.153) (0.125) (0.372) (0.374) (0.321) (0.305)
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Table 2.4: Empirical Power (EP)

α = 0.01 LR sup F (τ) M
(CS,O)

P,qstep
7/16

τ? 0.05 0.10 0.30 0.50 0.05 0.10 0.30 0.50 0.05 0.10 0.30 0.50

a? = 1,P=100, EP 0.086 0.140 0.101 0.094 0.000 0.050 0.100 0.100 0.146 0.168 0.151 0.158

τ̂? 0.191 0.218 0.198 0.205 0.409 0.442 0.428 0.348

se(τ̂?) (0.240) (0.260) (0.246) (0.255) (0.399) (0.409) (0.406) (0.385)

P=300 0.083 0.144 0.117 0.110 0.010 0.101 0.110 0.140 0.152 0.142 0.167 0.155

τ̂? 0.326 0.291 0.271 0.295 0.441 0.379 0.429 0.414

se(τ̂?) (0.230) (0.247) (0.248) (0.247) (0.441) (0.421) (0.429) (0.435)

P=500 0.07 0.121 0.095 0.096 0.020 0.064 0.070 0.078 0.152 0.155 0.156 0.164

τ̂? 0.361 0.347 0.334 0.295 0.401 0.441 0.43 0.406

se(τ̂?) (0.234) (0.233) (0.238) (0.228) (0.441) (0.443) (0.439) (0.438)

a? = 5, P=100, EP 0.087 0.604 0.496 0.403 0.020 0.083 0.089 0.124 0.076 0.118 0.11 0.129

τ̂? 0.054 0.059 0.086 0.093 0.196 0.265 0.237 0.197

se(τ̂?) (0.150) (0.162) (0.176) (0.161) (0.326) (0.369) (0.341) (0.296)

P=300 0.097 0.531 0.439 0.304 0.010 0.091 0.067 0.090 0.102 0.109 0.136 0.127

τ̂? 0.253 0.238 0.235 0.235 0.304 0.224 0.292 0.268

se(τ̂?) (0.239) (0.257) (0.250) (0.232) (0.426) (0.373) (0.399) (0.381)

P=500 0.055 0.483 0.345 0.242 0.010 0.086 0.075 0.092 0.124 0.112 0.138 0.138

τ̂? 0.307 0.315 0.271 0.236 0.322 0.286 0.34 0.279

se(τ̂?) (0.239) (0.256) (0.236) (0.197) (0.435) (0.423) (0.424) (0.395)

a? = −1, P=100, EP 0.07 0.042 0.04 0.051 0.000 0.048 0.037 0.110 0.222 0.234 0.203 0.196

τ̂? 0.426 0.448 0.501 0.402 0.492 0.529 0.523 0.437

se(τ̂?) (0.232) (0.190) (0.216) (0.203) (0.381) (0.383) (0.384) (0.387)

P=300 0.084 0.046 0.062 0.078 0.031 0.050 0.056 0.078 0.191 0.182 0.209 0.187

τ̂? 0.522 0.498 0.506 0.528 0.495 0.476 0.504 0.49

se(τ̂?) (0.214) (0.226) (0.210) (0.198) (0.424) (0.419) (0.415) (0.431)

P=500 0.069 0.052 0.062 0.047 0.030 0.113 0.090 0.120 0.191 0.184 0.173 0.198

τ̂? 0.472 0.506 0.506 0.496 0.454 0.486 0.493 0.494

se(τ̂?) (0.188) (0.180) (0.196) (0.201) (0.427) (0.426) (0.438) (0.436)

a? = −5, P=100, EP 0.083 0.002 0.014 0.018 0.057 0.107 0.155 0.172 0.497 0.476 0.427 0.418

τ̂? 0.325 0.371 0.387 0.424 0.424 0.483 0.499 0.507

se(τ̂?) (0.232) (0.224) (0.206) (0.227) (0.298) (-0.313) (-0.295) (0.308)

P=300 0.081 0.005 0.012 0.029 0.010 0.062 0.190 0.198 0.357 0.317 0.335 0.338

τ̂? 0.354 0.349 0.375 0.404 0.501 0.529 0.545 0.572

se(τ̂?) (0.211) (0.217) (0.211) (0.216) (0.35) (0.356) (0.354) (0.347)

P=500 0.068 0.056 0.043 0.04 0.000 0.047 0.159 0.162 0.293 0.290 0.274 0.306
ˆ̂τ? 0.367 0.348 0.395 0.374 0.499 0.513 0.565 0.564

se(τ̂?) (0.221) (0.225) (0.221) (0.223) (0.379) (0.372) (0.382) (0.365)
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Table 2.5: Empirical Power (EP)

α = 0.05 LR sup F (τ) M
(CS,O)

P,qstep
7/16

τ? 0.05 0.10 0.30 0.50 0.05 0.10 0.30 0.50 0.05 0.10 0.30 0.50

a? = 1, P=100, EP 0.068 0.142 0.129 0.116 0.020 0.051 0.049 0.036 0.135 0.140 0.140 0.138

τ̂? 0.325 0.325 0.324 0.326 0.404 0.507 0.417 0.424

se(τ̂?) (0.230) (0.227) (0.216) (0.227) (0.435) (0.446) (0.439) (0.443)

P=300 0.061 0.111 0.101 0.088 0.020 0.087 0.101 0.096 0.144 0.143 0.145 0.124

τ̂? 0.325 0.321 0.330 0.329 0.464 0.421 0.409 0.420

se(τ̂?) (0.240) (0.231) (0.262) (0.237) (0.463) (0.463) (0.440) (0.453)

P=500 0.049 0.088 0.065 0.055 0.020 0.076 0.065 0.068 0.152 0.161 0.136 0.136

τ̂? 0.342 0.322 0.356 0.353 0.497 0.383 0.450 0.440

se(τ̂?) (0.238) (0.238) (0.239) (0.220) (0.469) (0.449) (0.453) (0.462)

a? = 5, P=100, EP 0.064 0.842 0.708 0.524 0.040 0.112 0.123 0.109 0.082 0.100 0.127 0.108

τ̂? 0.272 0.257 0.221 0.262 0.195 0.304 0.218 0.219

se(τ̂?) (0.252) (0.269) (0.210) (0.198) (0.371) (0.425) (0.348) (0.351)

P=300 0.065 0.755 0.602 0.422 0.021 0.038 0.078 0.091 0.111 0.114 0.135 0.124

τ̂? 0.316 0.312 0.214 0.300 0.309 0.247 0.265 0.287

se(τ̂?) (0.240) (0.248) (0.217) (0.204) (0.444) (0.409) (0.384) (0.386)

P=500 0.045 0.657 0.508 0.303 0.010 0.031 0.099 0.120 0.119 0.132 0.141 0.147

τ̂? 0.343 0.327 0.268 0.318 0.367 0.222 0.257 0.335

se(τ̂?) (0.236) (0.245) (0.217) (0.200) (0.466) (0.393) (0.359) (0.404)

a? = −1, P=100, EP 0.049 0.03 0.035 0.048 0.023 0.067 0.120 0.132 0.180 0.184 0.183 0.193

τ̂? 0.380 0.349 0.374 0.364 0.498 0.564 0.533 0.558

se(τ̂?) (0.219) (0.234) (0.207) (0.232) (0.427) (0.417) (0.426) (0.422)

P=300 0.054 0.057 0.048 0.069 0.020 0.065 0.100 0.111 0.170 0.162 0.161 0.142

τ? 0.324 0.348 0.363 0.319 0.508 0.497 0.480 0.520

se(τ̂?) (0.247) (0.238) (0.244) (0.226) (0.443) (0.448) (0.432) (0.446)

P=500 0.056 0.061 0.050 0.058 0.010 0.060 0.072 0.081 0.173 0.171 0.154 0.165

τ̂? 0.332 0.340 0.366 0.383 0.529 0.446 0.503 0.525

se(τ̂?) (0.231) (0.227) (0.228) (0.228) (0.455) (0.440) (0.435) (0.438)

a? = −5, P=100, EP 0.059 0.137 0.064 0.044 0.055 0.150 0.124 0.156 0.383 0.401 0.440 0.468

τ̂? 0.348 0.374 0.329 0.445 0.526 0.547 0.478 0.536

se(τ̂?) (0.237) (0.236) (0.199) (0.186) (0.341) (0.340) (0.314) (0.308)

P=300 0.057 0.381 0.196 0.119 0.042 0.055 0.134 0.119 0.246 0.222 0.326 0.343

τ̂? 0.307 0.379 0.352 0.340 0.525 0.507 0.485 0.539

se(τ̂?) (0.224) (0.248) (0.228) (0.197) (0.344) (0.379) (0.338) (0.320)

P=500 0.041 0.408 0.274 0.151 0.045 0.052 0.138 0.122 0.159 0.197 0.247 0.289

τ̂? 0.368 0.330 0.286 0.391 0.535 0.540 0.469 0.554

se(τ̂?) (0.229) (0.222) (0.216) (0.199) (0.372) (0.374) (0.321) (0.305)
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effects for the Christoffersen test, we assume the parameter vector θ known and therefore no

in-sample period (R = 0). The results of this experiment are reported for the family of local

alternatives defined by a? = 1, 5 indicating over-exposure of the null VaR measure, and the

most interesting case defined by a? = −1,−5 indicating under-exposure of the VaR model.

M = 1000 Monte-Carlo replications were considered in this simulation.

Most of the discussions of the Monte-Carlo exercise will focus on Tables 2.2 and 2.4 as

the results there are best and most likely of interest to regulators as well as practitioners

due to the choice of α = 0.01, the coverage probability recommended for risk management

purposes by Basel Committee (1996) in banking supervision. The simulation focuses on

unusually small local departures from the null hypothesis coverage probability. In particular,

the empirical power for the CUSUM test statistics when a? = 1 and P = 100 details an

empirical power of 6%, whereas the test statistic of GHH is successful 13% of the time while

the statistic M
(CS,O)

P,qstep
7/16

has a success rate of 17%; these results hold uniformly on τ?. As the

out-of-sample size increases this pattern continues: M
(CS,O)

P,q
step
7/16

detects a change in the quantile

process 15% of the time, while the CUSUM’s is only able to detect this departure less than

5% of the time; the statistic of GHH is in between these two. The different versions of the LR

test, on the other hand, perform poorly. The LR Christoffersen test yields result comparable

to the CUSUM test, however, the change point test based on regression model (2.36) hardly

exhibits power against deviations from the null hypothesis. Table 2.6 will show that this

method improves considerably for larger departures from the null hypothesis. Nevertheless,

even for these alternatives the method is not able to capture failures of the risk model early

in the evaluation period.

In contrast to what intuition suggests, allowing for a larger positive departure from the

null process, i.e. a? = 5, entails falls in the empirical power for all test statistics entertained

(below 5% for the CUSUM and to around 12% for M
(CS,O)

P,qstep
7/16

) in this simulation. A possible

explanation for this reduction for alternatives determined by a positive a could be that in
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these cases mα(θ; ·) yields a very conservative VaR process implying no violations of the risk

model, and in turn, no meaningful observations for the test statistic. Asymptotically, however,

Theorem 2.2.2 shows that the different tests are consistent against this family of alternatives

as well. For studying the power of alternatives defined by negative values of a the conclusions

are rather opposed. The alternative VaR model in this case under-estimates risk exposure.

We observe in this case that even for small departures characterized by a? = −1, all test

statistics see an improved ability to detect the change in the risk model. The statistic that

performs best is M
(CS,O)

P,qstep
7/16

which exhibits a power of 20%. The remaining two statistics have

empirical power in the range of 15% and 8% for GHH’s statistic and the CUSUM respectively.

As intuition suggests, when a? = −5 the power of all statistics rises: the CUSUM detects this

departure 40% to 45% of the time, while M
(CS,O)

P,qstep
7/16

detects this departure 50%. The results

in Tables 2.3 and 2.5 for a coverage probability α = 0.05 are consistent with these findings.

Interestingly, the results in the tables are consistent with the formula for the asymptotic

power obtained in Theorem 2.2.2. Thus, we observe that as τ? approaches the middle of the

sample the power increases in all cases. More importantly for regulatory purposes, and as

stated in (2.31), the power of the test increases for α = 0.01 compared to α = 0.05. This

is an interesting result that provides further evidence about the importance of these change

points as opposed to standard Christoffersen and Kupiec type tests. Escanciano and Olmo

(2010a,b) show that the α = 0.01 case is rather problematic when approximating the correct

finite-sampling and asymptotic distributions of the LR test statistic.

For the analysis of the location of the break parameter it is fairly obvious that the results

obtained are very poor, this being confirmed by estimates close to 0.5 and large standard

errors. Our conjecture for such poor results is that the family of local alternatives studied

is very close to the null hypothesis. In order to see if the different tests in (2.18) are able

to capture the location of the break, we have simulated an alternative hypothesis defined by

a? = −30 for α = 0.01. Table 2.6 confirms this conjecture by showing that for P = 100 the
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estimates of the location, defined by k? = dτ?Pe, report accurately the theoretical location

of the break. More importantly, the estimates of τ? based on M
(CS,O)

P,qstep
7/16

are very close to the

actual location of the break when this occurs early on in the evaluation period. This is in

contrast to standard CUSUM and LR tests; Table 2.6 provides clear evidence of their failure

to detect these early departures from the null coverage probability.

2.4 Empirical Application

A very popular technique to monitor risk is the use of GARCH type models. These methods

are widely implemented in statistical software packages and are simple to estimate, produce

Value-at-Risk forecasts and to interpret. This section analyzes in particular the usefulness of

the GARCH(1,1) model to gauge risk in an out-of-sample exercise for equity and commodities

data, in particular, the Dow-Jones Industrial Average (DJIA) Index and the Commodity

Index Report from the Commodity Research Bureau Inc. (CRB), over the period August

2002 to May 2010. The choice of these markets and period is due to our interest in observing

whether the current financial crisis has had similar effects in both markets and whether risk

models valid before 2007 were still of use after it. We use a rolling scheme to analyze the data,

that is, data is divided into six different periods subsequently subdivided into an in-sample

period where model parameters are estimated and an out-of-sample period to evaluate the

model. The total number of observations is 2038 for DJIA and 2021 for CRB. Thus, the first

period considers the first 1000 observations to estimate by QML a GARCH(1,1) model with

Student-t innovations. The test statistics are computed using the following 500 observations.

The sample period under study is rolled over 100 observations and the experiment is run

again1. For the second window, the in-sample period considers observations between 100 and

1In the literature on backtesting, there is no definitive answer to the size of the rolling window to use
in practical applications. The size of the rolling window is sometime selected so not to require frequent
re-estimation of the VaR model. Using a smaller roll increases the number of model estimation which uses
computing resources and takes additional time. This, in part, contributed to selecting 100 as the roll.
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Table 2.6: Empirical Power (EP)

α = 0.01 sup F (τ) M
(CS,O)
P M

(CS,O)
P,GHH7/16

M
(CS,O)

P,q
step
7/16

τ? 0.05 0.10 0.50 0.05 0.10 0.50 0.05 0.10 0.50 0.05 0.10 0.50

a? = −30, P=100, EP 0.200 0.900 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
τ? 0.163 0.044 0.355 0.253 0.198 0.505 0.071 0.113 0.506 0.082 0.113 0.506

se(τ̂?) (0.209) (0.065) (0.013) (0.200) (0.122) (0.013) (0.200) (0.122) (0.013) (0.070) (0.033) (0.015)

P=300 0.000 0.150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
τ? 0.261 0.133 0.379 0.403 0.268 0.516 0.233 0.166 0.520 0.240 0.164 0.520

se(τ̂?) (0.255) (0.176) (0.050) (0.225) (0.170) (0.024) (0.225) (0.170) (0.024) (0.260) (0.128) (0.034)
P=500 0.000 0.050 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

τ? 0.313 0.134 0.378 0.412 0.283 0.518 0.292 0.193 0.523 0.280 0.186 0.523
se(τ̂?) (0.246) (0.193) (0.049) (0.230) (0.182) (0.028) (0.230) (0.182) (0.028) (0.290) (0.165) (0.042)
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1100 and for the out-of-sample the following 500 observations. The choice of this method

is to be consistent with common practice in the risk management industry. Practitioners

reevaluate periodically their risk management models to gain robustness against structural

breaks in the model parameters producing failures of the risk model. It is therefore very

important to have in place mechanisms that allow a risk manager to detect early the failure

of the risk model even after automatic periodic readjustment of the models.

Our aim in this section is to detect the timing of the breakdown of the GARCH(1,1) risk

model as soon as it occurs. In order to do this we implement the standard CUSUM test

based on M
(CS,O)
P , and two U -statistic type processes defined by the GHH weight function,

M
(CS,O)
P,GHH7/16

, and the refinement discussed in (2.34) and denoted M
(CS,O)

P,qstep
7/16

. Table 2.7 reports

the results. The main findings of this table are threefold. First, the location of breaks is more

concentrated for the commodities market than for the DJIA index. This implies that whereas

our method detects four clearly differentiated breaks for the equity index, it only detects one

or two at most for the commodities index. The transmission mechanism is not clear. Some

of these breaks affect first the equity index and are later transmitted to the commodities

market, but the reverse effect is also observed in the last period. The test statistic based

on M
(CS,O)

P,qstep
7/16

detects deviations very early in the evaluation period. The CUSUM test does

capture these breaks though. Finally, the failure of the risk models is different for α = 0.01

than for α = 0.05. This is more significant in magnitude for those periods in which both

processes fail.

Figures 2.2 and 2.3 also show the dynamics of the different U -statistic processes over

the evaluation period for three different sub-periods. For the equity market we report the

periods that show financial distress, that is, periods 1, 4 and 6. Since the breaks occur early

(within the first 100 observations in the out-of-sample period) the automatic readjustment

of the model obtained from rolling the window is sufficient to absorb the break and produce

a new risk model under control. Thus, after period 1 the next break is in period 4 and the
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Table 2.7: Estimation of model and location of break
DJIA Index Commodity Index

α = 0.01

β̂0 β̂1 β̂2 M
(CS,O)
P M

(CS,O)
P,GHH7/16

M
(CS,O)

P,qstep
7/16

β̂0 β1 β̂2 M
(CS,O)
P M

(CS,O)
P,GHH7/16

M
(CS,O)

P,qstep
7/16

1 0.006 0.053 0.937 0 1017 1017 0.002 0.034 0.953 0 1449 1437
2 0.008 0.048 0.937 0 0 0 0.002 0.031 0.955 1380 1428 1404

3 0.009 0.049 0.930 0 0 1217 0.023 0.052 0.818 1264 1253 1240
4 0.032 0.040 0.884 1720 1323 1319 0.044 0.035 0.724 1362 1354 1347

5 0.017 0.051 0.916 0 0 0 0.049 0.043 0.697 1447 1430 1425
6 0.010 0.052 0.931 1612 1620 1612 0.010 0.024 0.929 1592 1595 1592

α = 0.05

1 0.006 0.053 0.937 1180 1008 1008 0.002 0.034 0.953 0 0 0

2 0.008 0.048 0.937 1199 1237 1174 0.002 0.031 0.955 1210 1264 1205
3 0.008 0.049 0.930 0 0 0 0.023 0.052 0.818 1364 1383 1300
4 0.032 0.040 0.884 0 1301 1326 0.045 0.036 0.724 1394 1310 1310

5 0.016 0.051 0.916 1620 1717 1624 0.049 0.043 0.697 1615 1623 1441
6 0.010 0.052 0.931 1620 1624 1620 0.010 0.024 0.929 1605 1605 1604
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Figure 2.2: DJIA data for period April 2002-May 2010. Dynamics of weighted U -statistics
for periods 1, 4 and 6.
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last in period 6. On the other hand, the study of the commodity market reveals a different

picture. The distress periods in this case are 1,2 and 3. Figure 2.3 clearly shows how the qstep

U -statistic starts early picking up the break; as the break becomes more evident (further sub-

periods) the other methods reflect it as well. It is noteworthy observing that the re-estimation

of the GARCH process is not sufficient to absorb the break until the in-sample evaluation

period contains the breaking period. Thus, for the sub-periods 4, 5 and 6 the risk model is

again under control. These periods are not reported in the figure but the effect is reflected

in the location of breaks in Table 2.7 and significant changes in the parameter estimates of

the GARCH(1,1) model.
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Figure 2.3: Commodity index data for period April 2002-May 2010. Dynamics of weighted
U -statistics for periods 1, 2 and 3.
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2.5 Conclusion

Backtesting techniques are of paramount importance for risk managers and regulators con-

cerned with assessing the risk exposure of a financial institution to market risk. We have

shown in this paper that by combining the standard backtesting Kupiec test statistic com-

puted over different subsamples of the evaluation period one can develop alternative back-

testing procedures that not only allow detection of deviations of the risk model from the

actual risk exposure but also the calculation of the timing of these departures. Also, the

paper concludes that weighted versions of U -statistic type tests exhibit more power to detect

the presence of breaks in the conditional VaR model when these occur early on in the out-

of-sample evaluation period. In particular, the novel family of U -statistics developed in the

paper has proven to be the most powerful test statistic within an extensive group of weight

functions existing in the literature. Interestingly, this test is very powerful against deviations

for coverage probabilities of α = 0.01 and more importantly for regulatory purposes, for

detecting under-exposure of the risk model.
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The application shows the existence of different breaks in the risk model for the equity

market. A first break in August 2007, followed by two breaks in March and September 2008,

and a final break in October 2009. For the commodities index there are three breaks at most,

around March 2008, January 2009 and October 2009. These periods coincide with important

announcements and news in financial markets worldwide, as the turmoil of October 2008 and

2009. As the theory predicts, the weight function developed here is capable of detecting a

break in the underlying risk faced by both markets before the rest of CUSUM methods does.

This finding has implications in the choice of the statistical method to detect the break and

in the design by risk managers of optimal rolling windows to monitor risk.

2.6 Mathematical Appendix to Chapter 2

Proof of Corollary 2.1.1. Under HO IIE[It,α(θ)] = α. This will be proved by induction.

Set N = 2 and consider I1,α(θ) and I2,α(θ).

IIP {I1,α(θ) ≤ a1, I2,α(θ) ≤ a2} = IIE{1(I1,α(θ) ≤ a1, I2,α(θ) ≤ a2)} (2.44)

= IIE{IIE{1(I1,α(θ) ≤ a1, I2,α(θ) ≤ a2)|=1}} (2.45)

= IIE{IIE{1(I1,α(θ) ≤ a1)1(I2,α(θ) ≤ a2)|=1}} (2.46)

= IIE{IIE{1(I2,α(θ) ≤ a2)|=1}1(I1,α(θ) ≤ a1)} (2.47)

= IIP{I2,α(θ) ≤ a2}IIE{1(I1,α(θ) ≤ a1)} (2.48)

= IIP{I2,α(θ) ≤ a2}IIP{I1,α(θ) ≤ a1}. (2.49)

Equation (2.44) is a basic result from probability theory, equation (2.45) follows form

the law of iterative expectations; equation (2.46) follows from the result that 1({A
⋂

B}) =

1({A})1({B}) - for a proof of this see Goldberg (1976), page 15. Equation (2.47) follows
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from Theorem 34.3 Billingsley (1995), page 447 and recognizing that I1,α(θ) is measurable

with respect to =j for j = 1, 2. Equation (2.48) follows since

IIP{I2,α(θ) ≤ a2|=1} =

{
1 − α, a2 < 1

1, a2 ≥ 1.
(2.50)

This result implies the following:

IIE{IIE{I2,α(θ) ≤ a2|=1}1(I1,α(θ) ≤ a1)} = IIP{I2,α(θ) ≤ a2|=1}IIP{I1,α(θ) ≤ a1}. (2.51)

But IIP{I2,α(θ) ≤ a2|=1} = IIP{I2,α(θ) ≤ a2} since IIP{I2,α(θ) ≤ a2|=1} depends upon α only.

Hence taking expectations of the latter term, i.e. IIE{IIP{I2,α(θ) ≤ a2|=1}} leads to;

IIP{I2,α(θ) ≤ a2} =

{
1 − α, a2 < 1

1, a2 ≥ 1.
(2.52)

A similar statement holds for IIE{1(I1,α(θ) ≤ a1)}, i.e.,

IIP{I1,α(θ) ≤ a1} = IIE{1(I1,α(θ) ≤ a1)} = IIE{IIE{1(I1,α(θ) ≤ a1)|=0}} =

{
1− α, a2 < 1

1, a2 ≥ 1.

(2.53)

This establishes equation (2.49) and the independence of I1,α and I2,α follows.

Assume that I1,α(θ), . . . , IN−1,α(θ) are independent, we show this holds for N = P.

IIP{I1,α(θ) ≤ a1, . . . , IP,α(θ) ≤ aP } = IIE{1(I1,α(θ) ≤ a1, . . . , IP,α(θ) ≤ aP )}

= IIE{1(I1,α(θ) ≤ a1, . . . , IP−1,α(θ) ≤ aP−1)1(IP,α(θ) ≤ aP )}

= IIE{1(I1,α(θ) ≤ a1, . . . , IP−1,α(θ) ≤ aP−1)}IIE{IP,α(θ) ≤ aP |=P−1}

= IIP{I1,α(θ) ≤ a1} · · · IIP{IP−1,α(θ) ≤ aP−1}IIP{IP,α(θ) ≤ aP }.

This establishes the independence of the sequence of indicator functions.
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Proof of Proposition 2.1.2. Under HO, by Corollary 1, the sequence It,α(θ) for t = 1, . . . , P

are IID random variables. In the case of the fixed, recursive and rolling forecasting schemes

both R and P need to go to infinity. The proof is as follows.

sup
0<τ<1

∣∣M̄n(t1, t2) − Mn(t1, t2)
∣∣

q(τ)
≤ sup

0<τ< 1
P+1

∣∣M̄n(t1, t2)− Mn(t1, t2)
∣∣

q(τ)

+ sup
1

P+1
<τ< P

P+1

∣∣M̄n(t1, t2) − Mn(t1, t2)
∣∣

q(τ)
+ sup

P
P+1

<τ<1

∣∣M̄n(t1, t2) − Mn(t1, t2)
∣∣

q(τ)

= J1(P, R) + J2(P, R) + J3(P, R) (2.54)

= oP (1), R, P → ∞. (2.55)

The result claimed in (2.55) can be established by verifying that each term in (2.54) is

oP (1), as R, P → ∞. Let {θ̂t,R}P
t=1 be a sequence of consistent estimators for θ. We note

that It,α(θ̂t,R) converges in probability to It,α(θ) as R → ∞, at all points of continuity.

We first consider J2(P, R) = oP (1), as R, P → ∞. For every ε > 0,

IIP

{
|M̂ (CS,O)

P (τ) − M
(CS,O)
P (τ)|

q(τ)
> ε

}
≤ IIP





P−1/2

|
dτPe∑
t=1

It,α(θ̂t,R) −
dτPe∑
t=1

It,α(θ)|

q(τ)
>

ε

2




(2.56)

+ IIP





P−1/2

τ |
P∑

t=1
It,α(θ̂t,R) −

P∑
t=1

It,α(θ)|

q(τ)
>

ε

2





≤ 8

ε
IIE

P∑

t=1

|It,α(θ̂t,R)− It,α(θ)| sup
1

P+1
<τ< P

P+1

τ1/2

q(τ)

(2.57)

The inequality (2.56) follows from basic results in probability theory, while (2.57) follows



51

from Markov’s inequality. (2.57) implies immediately the following inequality:

lim
P→∞

lim
R→∞

IIP

{
sup

1
P+1<τ< P

P+1

|M̂ (CS,O)
P (τ ) − M

(CS),O
P (τ )|

q(τ )
> ε

}
≤

8

ε
lim

P→∞
lim

R→∞

[
IIE

[
P∑

t=1

|It,α(θ̂t,R) − It,α(θ)|
]

sup
1

P+1<τ< P
P+1

τ1/2

q(τ )

]
=

8

ε
lim

P→∞
lim

R→∞

[
IIE

[
P∑

t=1

|It,α(θ̂t,R) − It,α(θ)|
]

sup
1

P+1<τ< P
P+1

τ1/2

q(τ )

]
=

8

ε
lim

P→∞
lim

R→∞

[
P∑

t=1

IIE|It,α(θ̂t,R) − It,α(θ)| lim
P→∞

sup
1

P+1<τ< P
P+1

τ1/2

q(τ )

]
= (2.58)

8

ε

[
lim

P→∞

[
P∑

t=1

lim
R→∞

IIE|It,α(θ̂t,R) − It,α(θ)|
]

sup
1

P+1<τ< P
P+1

τ1/2

q(τ )

]
= (2.59)

8

ε

[
lim

P→∞

[
P∑

t=1

lim
R→∞

IIE|It,α(θ̂t,R) − It,α(θ)|
]

lim
P→∞

sup
1

P+1<τ< P
P+1

τ1/2

q(τ )

]
≤

8

ε
lim

P→∞

P∑

t=1

ε2

8C · P lim
P→∞

sup
1

P+1<τ< P
P+1

τ1/2

q(τ )
=

8

ε
lim

P→∞
P

ε2

8C · P lim
P→∞

sup
1

P+1<τ< P
P+1

τ1/2

q(τ )
=

ε

C
lim

P→∞
sup

1
P+1<τ< P

P+1

τ1/2

q(τ )
= ε, (2.60)

for sufficiently large R and P . limR→∞ IIE|It,α(θ̂t,R)−It,α(θ)| = 0 which follows from the consistency

of the sequence of estimators {θ̂t,R}P
t=1 and from a proposition in Cohn [Proposition 3.1.5, page 89]. As

a result of these statements, it is possible to pick a sufficiently large R such that IIE|It,α(θ̂t,R)−It,α(θ)| ≤
ε2

8C·P , where C = sup0<τ<1
τ1/2

q(τ) . There remains to argue that the term limP→∞ sup 1
P+1<τ< P

P+1

τ
q(τ) =

C but this follows along the lines of the argument used in GHH (1996) [equation 3.4, page 155]. With

these arguments now provided, we conclude with the result stated in (2.60).

The remaining two terms in (2.54), J1(P, R) and J3(P, R), are also oP (1) a result which can be

established using the same argument applied to obtain J2(P, R) = oP (1). In these two additional cases,

however, one must now argue limP→∞ sup0<τ< 1
P+1

τ
P1/2q(τ)

= 0 and limP→∞ sup P
P+1 <τ<1

τ
P1/2q(τ)

= 0,

respectively, rather than limP→∞ sup 1
P+1 <τ< P

P+1

τ
P1/2q(τ)

= 0. We provide this argument here. By
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assumption Ψ(q, c) < ∞ from some c > 0 which implies limτ→0 q(τ )/τ1/2 = ∞ and limτ→1 q(τ )/(1 −

τ )1/2 = ∞; for a detailed proof and discussion of this result consult Csörgő and Horváth [1993, pp.

188-189]. As a result of this, we conclude (2.55).

Proof of Proposition 2.1.3: This follows from statement ii) of Theorem S and Proposition 2.1.2

(Proposition 2.1.2 requires the integral condition to hold only for some c > 0). This proposition in

conjunction with Theorem S, as R, P → ∞, provide the following result;

∣∣∣∣∣IIP
{

sup
0<τ<1

|M̂ (CS,O)
P (τ )|
q(τ )

≤ x

}
− IIP

{
sup

0<τ<1

|B(τ )|
q(τ )

≤ x

}∣∣∣∣∣ ≤ (2.61)

≤
∣∣∣∣∣IIP
{

sup
0<τ<1

|M̂ (CS,O)
P (τ )|
q(τ )

}
− IIP

{
sup

0<τ<1

|M (CS,O)
P (τ )|
q(τ )

≤ x

}∣∣∣∣∣+

+

∣∣∣∣∣IIP
{

sup
0<τ<1

|M (CS,O)
P (τ )|
q(τ )

≤ x

}
− IIP

{
sup

0<τ<1

|B(τ )|
q(τ )

≤ x

}∣∣∣∣∣ = 0,

for all x ∈ R. The last line establishes statement ii) of Proposition 2.1.3.

Proof of Proposition 2.2.1: This is a direct consequence of the multivariate version of the

Lindeberg-Lévy CLT.

Proof of Theorem 2.2.1: This follows as a result of Proposition 2.2.1, equation (2.24) and

the continuous mapping theorem.

Proof of Theorem 2.2.2: Assume a set of local alternative hypotheses defined by a VaR

model with coverage probability α̃ from τ?, that satisfies α−α̃ = a
Pγ , with a 6= 0, and γ ≥ 1/2
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constant values. The asymptotic power of the test is given by

P





1√
α(1 − α)

sup
0<τ<1

∣∣∣M (CS,O)
P (τ)

∣∣

q(τ)
> Cq

1−β



 .

After some algebra we obtain

P





q(τ?)√
h′Σh


 sup

0<τ<1

∣∣∣M (CS,O)
P (τ )

∣∣
q(τ ) − τ?(1−τ?)|α−eα|

q(τ?)

√
P


 >

q(τ?)√
h′Σh

[
Cq

1−β

√
α(1 − α) − τ?(1−τ?)|α−eα|

q(τ?)

√
P
]


 .

Now, using that α − α̃ = a
Pγ note that

h′Σh = τ?(1−τ?) {α(1− α) + τ? [α̃(1− α̃) − α(1 − α)]} = τ?(1−τ?)

{
α(1− α) + τ? |a|

P γ
(1 + α̃ + α)

}
.

Therefore, after further algebra, and by Theorem 2.2.1 we obtain

lim
P→∞

pfβ = 1 − Φ

(
q(τ?)√

τ?(1− τ?)
Cq

1−β − |a|
√

τ?(1 − τ?)

α(1 − α)

)
,

if γ = 1/2.

The proof for γ > 1/2 follows immediately from the preceding arguments.
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2.7 Tabulated CDFs for Weighted Statistics



55

G(x)
def
= IIP

(
sup

0<t<1

|W (t)−tW (1)|

(t(1−t))7/16
| ≤ x

)

x G(x) x G(x) x G(x)

1.146 0.01 1.734 0.34 2.112 0.67

1.206 0.02 1.744 0.35 2.123 0.68

1.251 0.03 1.754 0.36 2.136 0.69

1.284 0.04 1.764 0.37 2.149 0.70

1.315 0.05 1.776 0.38 2.164 0.71

1.345 0.06 1.787 0.39 2.180 0.72

1.370 0.07 1.797 0.40 2.194 0.73

1.390 0.08 1.809 0.41 2.209 0.74

1.408 0.09 1.822 0.42 2.227 0.75

1.426 0.10 1.833 0.43 2.244 0.76

1.443 0.11 1.844 0.44 2.261 0.77

1.458 0.12 1.855 0.45 2.278 0.78

1.473 0.13 1.865 0.46 2.297 0.79

1.489 0.14 1.876 0.47 2.315 0.80

1.504 0.15 1.887 0.48 2.333 0.81

1.517 0.16 1.897 0.49 2.353 0.82

1.531 0.17 1.909 0.50 2.375 0.83

1.545 0.18 1.921 0.51 2.397 0.84

1.558 0.19 1.931 0.52 2.421 0.85

1.572 0.20 1.941 0.53 2.446 0.86

1.586 0.21 1.953 0.54 2.472 0.87

1.599 0.22 1.964 0.55 2.502 0.88

1.611 0.23 1.976 0.56 2.532 0.89

1.623 0.24 1.988 0.57 2.563 0.90

1.633 0.25 2.001 0.58 2.595 0.91

1.644 0.26 2.014 0.59 2.631 0.92

1.655 0.27 2.026 0.60 2.675 0.93

1.666 0.28 2.037 0.61 2.727 0.94

1.676 0.29 2.048 0.62 2.784 0.95

1.688 0.30 2.060 0.63 2.856 0.96

1.700 0.31 2.073 0.64 2.931 0.97

1.711 0.32 2.086 0.65 3.080 0.98

1.722 0.33 2.101 0.66 3.282 0.99

G(x)
def
= IIP

(
sup

0<t<1

|W (t)−tW (1)|

(t(1−t))5/16
| ≤ x

)

x G(x) x G(x) x G(x)

0.818 0.01 1.27 0.34 1.593 0.67

0.857 0.02 1.28 0.35 1.604 0.68

0.887 0.03 1.29 0.36 1.616 0.69

0.913 0.04 1.30 0.37 1.629 0.70

0.936 0.05 1.31 0.38 1.642 0.71

0.957 0.06 1.32 0.39 1.655 0.72

0.975 0.07 1.33 0.40 1.669 0.73

0.993 0.08 1.34 0.41 1.684 0.74

1.008 0.09 1.34 0.42 1.697 0.75

1.022 0.10 1.35 0.43 1.711 0.76

1.039 0.11 1.36 0.44 1.726 0.77

1.051 0.12 1.37 0.45 1.743 0.78

1.062 0.13 1.38 0.46 1.758 0.79

1.074 0.14 1.39 0.47 1.772 0.80

1.086 0.15 1.40 0.48 1.787 0.81

1.097 0.16 1.41 0.49 1.803 0.82

1.109 0.17 1.42 0.50 1.819 0.83

1.121 0.18 1.43 0.51 1.840 0.84

1.131 0.19 1.44 0.52 1.862 0.85

1.142 0.20 1.45 0.53 1.886 0.86

1.152 0.21 1.46 0.54 1.908 0.87

1.162 0.22 1.47 0.55 1.932 0.88

1.171 0.23 1.48 0.56 1.959 0.89

1.180 0.24 1.49 0.57 1.987 0.90

1.189 0.25 1.50 0.58 2.021 0.91

1.197 0.26 1.51 0.59 2.065 0.92

1.206 0.27 1.52 0.60 2.109 0.93

1.215 0.28 1.53 0.61 2.148 0.94

1.225 0.29 1.54 0.62 2.201 0.95

1.234 0.30 1.55 0.63 2.268 0.96

1.244 0.31 1.56 0.64 2.345 0.97

1.253 0.32 1.57 0.65 2.449 0.98

1.262 0.33 1.58 0.66 2.624 0.99
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G(x)
def
= IIP

(
sup

0<t<1

|W (t)−tW (1)|

(t(1−t))3/16
≤ x

)

x G(x) x G(x) x G(x)

0.620 0.01 0.991 0.34 1.273 0.67

0.654 0.02 0.998 0.35 1.283 0.68

0.681 0.03 1.005 0.36 1.292 0.69

0.698 0.04 1.014 0.37 1.302 0.70

0.714 0.05 1.022 0.38 1.311 0.71

0.730 0.06 1.029 0.39 1.321 0.72

0.745 0.07 1.036 0.40 1.333 0.73

0.759 0.08 1.044 0.41 1.345 0.74

0.771 0.09 1.053 0.42 1.357 0.75

0.783 0.10 1.062 0.43 1.370 0.76

0.794 0.11 1.070 0.44 1.384 0.77

0.806 0.12 1.078 0.45 1.397 0.78

0.816 0.13 1.086 0.46 1.411 0.79

0.826 0.14 1.095 0.47 1.424 0.80

0.836 0.15 1.103 0.48 1.438 0.81

0.845 0.16 1.111 0.49 1.454 0.82

0.855 0.17 1.120 0.50 1.469 0.83

0.864 0.18 1.130 0.51 1.484 0.84

0.873 0.19 1.140 0.52 1.500 0.85

0.881 0.20 1.148 0.53 1.519 0.86

0.889 0.21 1.155 0.54 1.540 0.87

0.897 0.22 1.163 0.55 1.563 0.88

0.906 0.23 1.172 0.56 1.589 0.89

0.915 0.24 1.180 0.57 1.621 0.90

0.924 0.25 1.188 0.58 1.649 0.91

0.932 0.26 1.197 0.59 1.679 0.92

0.941 0.27 1.207 0.60 1.713 0.93

0.949 0.28 1.217 0.61 1.755 0.94

0.957 0.29 1.226 0.62 1.798 0.95

0.964 0.30 1.236 0.63 1.852 0.96

0.971 0.31 1.245 0.64 1.920 0.97

0.978 0.32 1.253 0.65 2.005 0.98

0.985 0.33 1.263 0.66 2.166 0.99

G(x)
def
= IIP

(
sup

0<t<1

|W (t)−tW (1)|

(t(1−t))1/16
≤ x

)

x G(x) x G(x) x G(x)

0.482 0.01 0.795 0.34 1.032 0.67

0.514 0.02 0.802 0.35 1.040 0.68

0.534 0.03 0.808 0.36 1.049 0.69

0.551 0.04 0.814 0.37 1.058 0.70

0.566 0.05 0.820 0.38 1.067 0.71

0.578 0.06 0.826 0.39 1.076 0.72

0.589 0.07 0.833 0.40 1.086 0.73

0.600 0.08 0.839 0.41 1.095 0.74

0.610 0.09 0.845 0.42 1.105 0.75

0.619 0.10 0.852 0.43 1.116 0.76

0.629 0.11 0.858 0.44 1.128 0.77

0.638 0.12 0.865 0.45 1.140 0.78

0.646 0.13 0.873 0.46 1.152 0.79

0.655 0.14 0.880 0.47 1.165 0.80

0.663 0.15 0.887 0.48 1.177 0.81

0.671 0.16 0.893 0.49 1.190 0.82

0.678 0.17 0.900 0.50 1.203 0.83

0.686 0.18 0.908 0.51 1.218 0.84

0.693 0.19 0.916 0.52 1.232 0.85

0.700 0.20 0.924 0.53 1.248 0.86

0.707 0.21 0.932 0.54 1.265 0.87

0.714 0.22 0.940 0.55 1.284 0.88

0.722 0.23 0.948 0.56 1.306 0.89

0.729 0.24 0.955 0.57 1.330 0.90

0.735 0.25 0.962 0.58 1.355 0.91

0.742 0.26 0.969 0.59 1.381 0.92

0.749 0.27 0.977 0.60 1.410 0.93

0.756 0.28 0.984 0.61 1.443 0.94

0.763 0.29 0.992 0.62 1.483 0.95

0.769 0.30 0.999 0.63 1.531 0.96

0.775 0.31 1.008 0.64 1.591 0.97

0.781 0.32 1.016 0.65 1.653 0.98

0.788 0.33 1.024 0.66 1.795 0.99
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G(x)
def
= IIP

8
<
: sup

0<t<1

|W (t)−tW (1)|

q
step
7/16

(t)
≤ x

9
=
;

x G(x) x G(x) x G(x)

1.118 0.01 1.682 0.34 2.080 0.67

1.189 0.02 1.693 0.35 2.092 0.68

1.225 0.03 1.704 0.36 2.107 0.69

1.255 0.04 1.716 0.37 2.125 0.70

1.281 0.05 1.727 0.38 2.139 0.71

1.304 0.06 1.738 0.39 2.155 0.72

1.325 0.07 1.748 0.40 2.169 0.73

1.348 0.08 1.758 0.41 2.182 0.74

1.367 0.09 1.769 0.42 2.198 0.75

1.383 0.10 1.781 0.43 2.217 0.76

1.400 0.11 1.793 0.44 2.236 0.77

1.417 0.12 1.805 0.45 2.256 0.78

1.431 0.13 1.817 0.46 2.273 0.79

1.445 0.14 1.831 0.47 2.292 0.80

1.459 0.15 1.844 0.48 2.314 0.81

1.471 0.16 1.856 0.49 2.335 0.82

1.484 0.17 1.868 0.50 2.355 0.83

1.498 0.18 1.880 0.51 2.374 0.84

1.512 0.19 1.892 0.52 2.398 0.85

1.524 0.20 1.904 0.53 2.426 0.86

1.535 0.21 1.917 0.54 2.457 0.87

1.547 0.22 1.927 0.55 2.484 0.88

1.560 0.23 1.937 0.56 2.512 0.89

1.575 0.24 1.947 0.57 2.546 0.90

1.588 0.25 1.958 0.58 2.575 0.91

1.600 0.26 1.971 0.59 2.614 0.92

1.610 0.27 1.985 0.60 2.662 0.93

1.620 0.28 1.997 0.61 2.705 0.94

1.630 0.29 2.009 0.62 2.757 0.95

1.639 0.30 2.022 0.63 2.824 0.96

1.648 0.31 2.036 0.64 2.933 0.97

1.658 0.32 2.050 0.65 3.032 0.98

1.670 0.33 2.064 0.66 3.264 0.99

G(x)
def
= IIP

8
<
: sup

0<t<1

|W (t)−tW (1)|

q
step
5/16

(t)
≤ x

9
=
;

x G(x) x G(x) x G(x)

0.821 0.01 1.277 0.34 1.599 0.67

0.874 0.02 1.285 0.35 1.611 0.68

0.906 0.03 1.294 0.36 1.623 0.69

0.930 0.04 1.302 0.37 1.638 0.7

0.948 0.05 1.314 0.38 1.65 0.71

0.966 0.06 1.323 0.39 1.661 0.72

0.983 0.07 1.331 0.40 1.674 0.73

0.999 0.08 1.338 0.41 1.687 0.74

1.014 0.09 1.347 0.42 1.701 0.75

1.027 0.10 1.357 0.43 1.716 0.76

1.040 0.11 1.366 0.44 1.732 0.77

1.054 0.12 1.375 0.45 1.747 0.78

1.068 0.13 1.384 0.46 1.762 0.79

1.081 0.14 1.394 0.47 1.777 0.80

1.092 0.15 1.403 0.48 1.797 0.81

1.102 0.16 1.413 0.49 1.815 0.82

1.113 0.17 1.423 0.50 1.836 0.83

1.123 0.18 1.433 0.51 1.859 0.84

1.133 0.19 1.442 0.52 1.880 0.85

1.144 0.20 1.451 0.53 1.904 0.86

1.155 0.21 1.461 0.54 1.928 0.87

1.165 0.22 1.472 0.55 1.957 0.88

1.176 0.23 1.483 0.56 1.984 0.89

1.185 0.24 1.493 0.57 2.014 0.90

1.194 0.25 1.503 0.58 2.041 0.91

1.203 0.26 1.515 0.59 2.070 0.92

1.212 0.27 1.525 0.60 2.108 0.93

1.221 0.28 1.535 0.61 2.149 0.94

1.229 0.29 1.544 0.62 2.194 0.95

1.238 0.30 1.553 0.63 2.259 0.96

1.247 0.31 1.563 0.64 2.329 0.97

1.257 0.32 1.574 0.65 2.454 0.98

1.267 0.33 1.586 0.66 2.67 0.99
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G(x)
def
= IIP

8
<
: sup

0<t<1

|W (t)−tW (1)|

q
step
3/16

(t)
≤ x

9
=
;

x G(x) x G(x) x G(x)

0.629 0.01 1.007 0.34 1.277 0.67

0.666 0.02 1.013 0.35 1.289 0.68

0.690 0.03 1.020 0.36 1.302 0.69

0.712 0.04 1.027 0.37 1.313 0.70

0.732 0.05 1.034 0.38 1.324 0.71

0.751 0.06 1.042 0.39 1.338 0.72

0.767 0.07 1.050 0.40 1.349 0.73

0.782 0.08 1.058 0.41 1.360 0.74

0.793 0.09 1.065 0.42 1.372 0.75

0.803 0.10 1.072 0.43 1.386 0.76

0.813 0.11 1.079 0.44 1.402 0.77

0.823 0.12 1.086 0.45 1.415 0.78

0.832 0.13 1.092 0.46 1.429 0.79

0.842 0.14 1.099 0.47 1.443 0.80

0.852 0.15 1.107 0.48 1.455 0.81

0.862 0.16 1.116 0.49 1.470 0.82

0.872 0.17 1.124 0.50 1.486 0.83

0.881 0.18 1.131 0.51 1.503 0.84

0.890 0.19 1.138 0.52 1.520 0.85

0.898 0.20 1.147 0.53 1.540 0.86

0.907 0.21 1.156 0.54 1.558 0.87

0.916 0.22 1.165 0.55 1.580 0.88

0.924 0.23 1.174 0.56 1.599 0.89

0.933 0.24 1.183 0.57 1.621 0.90

0.941 0.25 1.192 0.58 1.648 0.91

0.949 0.26 1.201 0.59 1.682 0.92

0.957 0.27 1.209 0.60 1.717 0.93

0.964 0.28 1.217 0.61 1.752 0.94

0.971 0.29 1.226 0.62 1.796 0.95

0.977 0.30 1.235 0.63 1.851 0.96

0.984 0.31 1.245 0.64 1.907 0.97

0.992 0.32 1.256 0.65 1.978 0.98

1.000 0.33 1.266 0.66 2.145 0.99

G(x)
def
= IIP

8
<
:sup

|(t)−tW (1)|

q
step
1/16

(t)
≤ x

9
=
;

x G(x) x G(x) x G(x)

0.497 0.01 0.806 0.34 1.049 0.67

0.525 0.02 0.813 0.35 1.058 0.68

0.548 0.03 0.820 0.36 1.066 0.69

0.565 0.04 0.826 0.37 1.075 0.70

0.580 0.05 0.833 0.38 1.083 0.71

0.591 0.06 0.840 0.39 1.093 0.72

0.601 0.07 0.847 0.40 1.103 0.73

0.613 0.08 0.854 0.41 1.113 0.74

0.625 0.09 0.861 0.42 1.124 0.75

0.636 0.10 0.868 0.43 1.135 0.76

0.645 0.11 0.875 0.44 1.147 0.77

0.653 0.12 0.882 0.45 1.159 0.78

0.662 0.13 0.889 0.46 1.171 0.79

0.671 0.14 0.897 0.47 1.184 0.80

0.681 0.15 0.903 0.48 1.198 0.81

0.689 0.16 0.910 0.49 1.213 0.82

0.696 0.17 0.916 0.50 1.228 0.83

0.704 0.18 0.923 0.51 1.243 0.84

0.711 0.19 0.930 0.52 1.260 0.85

0.718 0.20 0.937 0.53 1.275 0.86

0.724 0.21 0.944 0.54 1.290 0.87

0.730 0.22 0.951 0.55 1.307 0.88

0.736 0.23 0.958 0.56 1.324 0.89

0.743 0.24 0.966 0.57 1.347 0.90

0.749 0.25 0.973 0.58 1.371 0.91

0.756 0.26 0.981 0.59 1.399 0.92

0.762 0.27 0.989 0.60 1.424 0.93

0.768 0.28 0.998 0.61 1.455 0.94

0.774 0.29 1.006 0.62 1.494 0.95

0.780 0.30 1.015 0.63 1.534 0.96

0.786 0.31 1.023 0.64 1.591 0.97

0.793 0.32 1.031 0.65 1.682 0.98

0.799 0.33 1.039 0.66 0.990 0.99



Chapter 3

A U-statistic Type Test to

Disentangle Breaks in Intercept

from Slope in Linear Regression

Models

3.1 Introduction

Economics and finance frequently consider linear regression models (hereafter LRMs) with

coefficients that are assumed to be constant for all time periods. It is well-known that these

parameters can, and do, change over time due, for example, to abrupt policy changes, wars,

oil price or technology shocks. This has led to considerable econometric research into methods

that can detect if such exogenous events have caused parameters of linear regression models to

change. One of the first papers published on this matter was by Chow (1960). He constructed

two test statistics; one based on prediction errors and the other on the difference between the

restricted and unrestricted sum of squared residuals, that are capable of detecting a one-time
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change in regression parameters at a known time. Work by Brown, Durbin and Evans (1975,

hereafter BDE) and Dufour (1988) extended Chow’s test to accommodate multiple changes

in regression parameters that may occur at unknown times.

Other tests, called fluctuation tests, such as that of Ploberger, Kramer and Kontrus (1989)

(hereafter PKK) have also been developed. An interesting contribution to this literature is

that of Altissimo and Corradi (2003) who developed a sequentially consistent test statistic

which is capable of testing for any number of break-points in LRMs. A different econometric

approach for detecting structural breaks in LRMs has been developed by Andrews (1993),

Andrews and Ploberger (1994, hereafter AP) and Andrews (2003). In particular, Andrews

(1993) considers Wald (WT ), Lagrange multiplier (LM) and likelihood-ratio (LR)-like tests

for parameter stability in nonlinear parametric models. These tests have power against local

alternatives of the form βt = β0 + η(t/T )/
√

T , with η(·) a bounded function on [0, 1], as

long as η(·) is not almost surely constant. It is important to note that these tests are not

optimal for the class of alternatives he considers: the tests have only nontrivial power. Local

optimality of these tests was established by AP, and depends on correct specification of the

likelihood function. An interesting additional feature of the tests developed by AP is their

use of weight functions. Optimality of their tests when considering the entire interval (0, 1),

or a broad class of weight functions or even more general alternatives no longer holds.

Hansen (1991 and 1996) makes two interesting contributions to the literature on testing

for structural breaks in linear regression models. His first contribution (1991) develops test

statistics which detect change/changes in individual parameters of linear regression models.

The individual test statistics are then combined to form one test statistic which is capable

of testing for a structural break in any of the regression parameters. There is, however,

one flaw with his method, it cannot be used to estimate the timing of the break (see page

520). It would seem that this is an important oversight in his method for detecting structural

breaks. Hansen (1996) also considers the nonstandard problem of testing whether a sub-
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vector of θ ∈ Θ ⊂ Rs equals zero when the likelihood function depends on an additional

parameter π ∈ Π, Π a compact subset of the interval (0, 1), that is not identified under the

null hypothesis. The significant contribution here is his method of simulating the asymptotic

limiting distribution of many of the test statistics considered in this larger literature such as

those developed by AP. His method for simulating the asymptotic distribution is employed

in the simulation undertaken in Section 3.4 of this paper.

The CUSUM and fluctuation tests, when applied to regression models, are not devised to

distinguish between changes in intercept or slope and, in turn, although informative about the

number of break points are not very informative about the nature of the rejection. The latter

tests, based on regression analysis, have statistical power against changes in the intercept but

are, however, inconsistent against changes close to the boundary of the (0,1) interval. These

gaps of the structural break tests literature are not without importance. The knowledge of the

break can be of fundamental importance in different areas of interest in finance and economics.

The application of this paper, for example, illustrates this in empirical asset pricing setting.

In particular, this method provides a method that can measure manager’s performance in

the mutual fund industry by disentangling changes in the α parameter, often referred to as

Jensen’s alpha - see Jensen (1968) - from changes in the risk factor parameter given by the

betas, the slope parameters. Changes to Jensen’s alpha reflect the changes in managerial

stock selecting abilities which can be useful for compensation or investing purposes.

A second application where detecting changes only in the intercept can be useful is in

detecting insider trading. Research by Olmo, Pilbeam and Pouliot (2009, hereafter OPP)

apply some of the techniques developed here to detecting insider trading on a dataset studied

in two Occasion Papers Series produced by the Financial Services Authority. OPP show that

abrupt changes in the intercept parameter of an extended capital asset pricing model before

unscheduled corporate announcements can be an indication of insider-trading. Regulatory

bodies who are mandated to maintain integrity of financial markets can use the methods
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discussed therein to study price moments for insider trading should movements look unusual.

The contribution of this paper is to fill in these gaps. In order to do so, we introduce

a composite test that can disentangle breaks in the intercept from breaks in the slope of

linear regression models. The test statistic is constructed from a bivariate U -statistic type

process that can accommodate the presence of weight functions that improve the power

of structural break tests against changes that occur early and later on in the evaluation

period. As a byproduct, our test also exhibits power against changes in the skewness of

the error distribution. The asymptotic theory is based on functionals of a Brownian bridge

and therefore critical values used in our tests of change in intercept or slope can be easily

tabulated.

The paper is structured as follows; Section 3.2 designs simultaneous and joint tests for

detecting a change in intercept/slope in LRMs under the assumption that the parameters

of the LRMs are known and Section 3.2.2 when the parameters of LRMs are replaced by

estimates; Section 3.3 explores the power of the statistics; Section 3.4 subjects our test as

well as others to a detailed Monte Carlo experiment, studying nominal size and power of

the test against alternatives that include a one-time change in intercept and/or slope. The

application to investigate mutual funds manager’s performance is in Section 3.5. Section 3.6

concludes. Any tables referred to in this paper can be found in Section 3.7.

3.2 A New Test to Disentangle Breaks in Intercept from Slope

The purpose of this section is to design tests with statistical power to detect a change in

intercept and slope. A novel and interesting feature of these tests is their ability to distinguish

changes among the parameters: i.e. slope from intercept. The mutual independence between

the test for a change in intercept and that corresponding to a change in slope permit control

of global error rates. The flexibility of U -statistic type processes also permits improvement
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to the power of these tests against parameter changes that occur early and later on in the

evaluation period. In this regard our tests complement and improves the approaches of

Andrews (1993), AP and Hansen (1996). We divide our study into two cases; i) model

parameters are known and ii) model parameters are estimated.

The entertained piecewise linear regression model is

Yt =





β
(1)
0 + β

′(1)Xt + σεt, 1 ≤ t ≤ t∗,

β
(2)
0 + β

′(2)Xt + σεt, t∗ < t ≤ T,

(3.1)

where εt are independent and identically distributed (iid) random variables (rvs) with

IIEεt = 0, IIEε2
t = 1 and IIE|εt|4 < ∞, t = 1, . . . , T (3.2)

and ′ refers to the vector transpose. In addition, under the alternative hypothesis of a

break in either intercept or slope parameters, we assume that at least one of the following

holds: β
(1)
0 6= β

(2)
0 or β(1) 6= β(2) with β(1) and β(2) K × 1 parameter vectors, and

Xt the corresponding vector of explanatory variables. It is assumed that all components

of the vector of explanatory variables, Xt, and dependent variable Yt are stationary. This

assumption is required in order to establish weak convergence results regarding the processes

to be considered in the coming sections.

This model can be considered as a regime switching model with threshold variable given

by time (t). Hypothesis tests for detecting the nonlinearity of this model are introduced by

Andrews (1993), AP and Hansen (1996) among others. Under homoskedasticity in the data,

these tests are based on likelihood ratio tests, as Andrews (1993) and Hansen (1997), under

conditional heteroskedasticity Hansen (1996) develops Wald type and Lagrange multiplier

tests. In order to maximize the power of these tests AP propose an exponential average

test. The problem of all these tests is that they need to be considered over a compact
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set within (0, 1), in particular Andrews (1993) proposes [0.15, 0.85] and Hansen (1996) the

interval [0.20, 0.80].

Alternatively, the problem of detecting parameter instability in the linear regression

framework can also be represented with the following hypothesis;

HO : t? ≥ T

versus the alternative hypothesis of at-most-one change (AMOC) in intercept or slope;

HA : 1 ≤ t? < T.

3.2.1 Parameters Known

For illustration purposes we first construct a test based on U -statistics to determine if process

(3.1) is linear or piecewise linear. Unlike the F -test, M
(O)
T (τ) only compares the residual sum

of squares under the null hypothesis not under the alternative hypothesis as well. The process

defined on τ ∈ (0, 1) is given by

M
(O)
T (τ) := T−1/2





[(T+1)τ ]∑

t=1

(Yt − β
(1)
0 − β

′(1)Xt)
2 − τ

T∑

t=1

(Yt − β
(1)
0 − β

′(1)Xt)
2



 .(3.3)

Under the null hypothesis the kernel function of this U -statistic type process satisfies that

IIE(Y1 − β
(1)
0 − β

′(1)X1)
2 = σ2. Csörgő and Horváth (1987) and later Gombay, Horváth

and Hušková (1996, hereafter GHH) explore these processes to detect deviations in the

mean/variance parameter respectively.

This process remains a function of τ , and as such cannot be used in its present form to

test the null hypothesis of no change in intercept or slope: that is, it is not yet a statistic

because of its dependency on τ . Here, interest centers on how large this process can be for
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0 < τ < 1. A suitable test statistic that indirectly also yields an estimator of the break point

τ? is

sup
0<τ<1

|M (O)
T (τ)|. (3.4)

GHH show that this statistic converges to the supremum of a Brownian Bridge. This

statistic does not distinguish between rejections in the intercept or the slope and as such it

does not serve our purpose. Our interest is not in this statistic but in using the structure of

the statistic to construct tests that detect deviations in process (3.1) that are also able to

determine the type of rejection. In order to do this, two auxiliary U -statistic type processes

are required, each process depends on a function that is unbiased, under null and alternative

hypotheses, for intercept and slope parameters of the LRM. The first kernel function sets

(y1 − β
(1)
0 − β

′(1)x1)
2 and is used to detect structural breaks in the slope parameter because

IIE(Y1 − β
(1)
0 − β

′(1)X1)
2 = σ2. Although this function is unbiased for the variance, it is used

to detect deviations in the slope parameter for two reasons. One, it closely corresponds to

CUSUM of squares test of BDE and secondly, it can be shown that a change in slope translates

into a change in the variance of the residuals as long as a particular condition holds. Remark

3.3.1 details said condition. The second kernel function selected sets (y1 − β
′(1)x1) because

IIE(Y1 − β
′(1)X1) = β

(1)
0 .

The first function can be used to fashion a statistic that is sensitive to a one-time change

in the slope parameters and robust to changes in the intercept, while the second function can

be used to fashion a statistic sensitive to a one-time change in the intercept, and desirably,

also robust to a one-time change in slope when it occurs. With this in mind, the following
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processes are now defined;

M
(1)
T (τ) := T−1/2





[(T+1)τ ]∑

t=1

(Yt − β0 − β
′(1)Xt)

2 − τ

T∑

t=1

(Yt − β0 − β
′(1)Xt)

2



 (3.5)

M
(2)
T (τ) := T−1/2





[(T+1)τ ]∑

t=1

(Yt − β
′
Xt) − τ

T∑

t=1

(Yt − β
′
Xt)



 , (3.6)

where in M
(1)
T (τ) set

β0 =





β
(1)
0 , t ≤ t?

β
(2)
0 , t > t?

and; in M
(2)
T (τ) set

β =





β(1), t ≤ t?

β(2), t > t?.

This choice of parametrization makes M
(1)
T (τ) robust to a change in intercept and M

(2)
T (τ)

robust to a change in slope. In order to maximize the power of this test to detect a break we

construct the following test statistics:

sup
0<τ<1

|M (i)
T (τ)|
q(τ)

, (3.7)

for i = 1, 2, in which q(·) is a weight function devised to improve the power of the tests for

breaks that occur in specific subsamples of the evaluation period. In the same spirit, Andrews

(1993) and AP develop distribution functions defined on the real domain that are devised to

increase the sensitivity of the test to detect deviations in certain regions of interest. The use

of this function q(τ) is particularly important when compared to the framework studied by

these authors that propose optimal tests for structural breaks in a compact interval within



67

(0, 1). Our interest, therefore, will be to develop weight functions that can be used to improve

the power of the test over the whole (0, 1) range, in particular close to the points 0 and 1,

and therefore, that are sensitive to change points that occur early and late in the evaluation

period. In order to do this, these functions need to satisfy the following two assumptions:

A.1: The function q(·) defined on (0,1) is such that infδ≤τ≤1−δ q(τ) > 0 for all τ ∈ (0, 1) and

δ ∈ (0, 1/2).

A.2: I(q, c) =
∫ 1
0

1
τ (1−τ ) exp

− c
(τ(1−τ))q2(τ) dτ < ∞ for some constant c > 0.

Csörgő, Csörgő, Horváth and Mason (1988) show that I(q, c) < ∞ for all c > 0, if and

only if

lim
τ↓0

|W (τ)|
q(τ)

= lim
τ↑1

|W (τ)|
q(1− τ)

= 0,

almost surely, with W (τ) a standard Wiener process. One family of weight functions that

has received some attention is due to GHH. This family of functions depends on a tuning

parameter ν, and is given by

q(τ) = q(τ ; ν) := {(τ(1− τ))ν; 0 ≤ ν < 1/2}. (3.8)

This class of functions satisfies A.1 and A.2 for all c > 0, and has been shown to be sensitive

to a change that occurs both early and later on in the sample. We exploit this class of

functions to construct a statistic that is well defined for τ ∈ (0, 1) and that improves the

power near the boundary of (0, 1).

Proposition 3.2.1. Assume HO; let the process (3.1) satisfy conditions detailed in (3.2);

and let q(·) satisfy A.1 and A.2. Then, as T → ∞,

(i) sup
0<τ<1

˛̨
˛ 1

∆(i) M
(i)
T (τ )−BT (τ )

˛̨
˛

q(τ ) = OP (1).
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Further, if in A.2 the integral holds for all c > 0 rather than for some c > 0, then

sup
0<τ<1

˛̨
˛ 1

∆(i)
M

(i)
T (τ )−BT (τ )

˛̨
˛

q(τ ) = oP (1).

(ii) sup
0<τ<1

| 1

∆(i) M
(i)
T (τ )|

q(τ )

D−→ sup
0<τ<1

|B(τ )|
q(τ ) , with ∆(1) = σ2

√
V ar(ε2

1) and ∆(2) = σ.

Proof. Under the LRM model detailed in (3.1),
M

(1)
T (τ )

q(τ )
= T−1/2

(P[(T+1)τ] ε2t−τ
PT

t=1 ε2t
q(τ )

)

and
M

(2)
T (τ )

q(τ ) = T−1/2

(P[(T+1)τ] εt−τ
PT

t=1 εt

q(τ )

)
. Then statements (i) and (ii) follow as a direct

consequence of Theorem 2.1 of Szyszkowicz (1991).

Model (3.1) requires the errors of the regression equation εt to be identically distributed.

This is not really necessary to establish Proposition 3.2.1 if we appeal to Corollary 4.1 of

Csörgő and Horváth (1988) rather than to Theorem 2.1 of Szyszkowicz (1991). This, however,

would require the εis to have 4 + δ moments rather than only 4 moments. For a complete

justification of this, we refer those interested to Remark 2.2 statement (i) of Ferger (2001).

Hence our processes can easily accommodate conditional heteroskedasticity of the variance

of εt, they do not need to be identically distributed, and the same results established in

Proposition 3.2.1 remain unaltered.

As interest here is with a bivariate process formed out of the two processes given in (3.5)

and (3.6), we need to introduce an appropriate metric as well as some additional notation.

Define D[0, 1] to represent the space of functions x(·) on [0, 1] that are right-continuous and

have left-hand limits (cf. Billingsley (1968), p. 109); let D2[0, 1] = D[0, 1]× D[0, 1] and let

the metric associated with this space be given by

sup
0<τ<1

|x1(τ) − y1(τ)|+ sup
0<τ<1

|x2(τ) − y2(τ)|, (3.9)

where [x1(τ), x2(τ)]
′
and [y1(τ), y2(τ)]

′
are elements of D2[0, 1]. With the appropriate metric

defined, the behaviour of the bivariate process is detailed in Proposition 3.2.2.
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Proposition 3.2.2. Assume HO; let the process (3.1) satisfy conditions detailed in (3.2);

and let q(·) satisfy A.1. Then, as T → ∞,

MT :=




1

σ2
√

V ar(ε2
1)

M
(1)
T (·)
q(·)

1
σ

M
(2)
T (·)
q(·)


⇒




B(1)(·)
q(·)

ρB(1)(·) + (1−ρ2)1/2B(2)(·)
q(·)


 ,

only if I(q, c) < ∞ for all c > 0. B(1)(τ) and B(2)(τ) are independent Brownian bridges,

ρ =
IIE[ε3

1]√
V ar(ε2

1)
, and ⇒ refers to weak convergence.

By the continuous mapping theorem,




sup
0<τ<1

1

σ2
√

V ar(ε2
1)

|M (1)
T (τ )|
q(τ )

sup
0<τ<1

1
σ

M
(2)
T (τ )

q(τ )




D−→




sup
0<τ<1

|B(1)(τ )|
q(τ )

sup
0<τ<1

ρB(1)(τ ) + (1−ρ2)1/2B(2)(τ )
q(τ )


 , (3.10)

with
D−→ denoting convergence in distribution.

Proof. Let || · || be the metric on D2[0, 1] as defined in (3.9). Define two sequences of

Brownian bridges {B(i)
T (τ); 0 ≤ τ ≤ 1} for i = 1, 2. Then, via statement (i) of Proposition

3.2.1, ||MT −BT (τ)|| = oP (1), as T → ∞, where BT (τ) = [B
(1)
T (τ), B

(2)
T (τ)]

′
, is a sequence

of bivariate Brownian Bridges.

Proposition 3.2.2 characterizes the limiting behaviour of the processes (3.5) and (3.6)

in terms of a vector of Brownian bridges that depend on unknown parameters: variance,

skewness and kurtosis of the error term. Under symmetry of the distribution error, ρ = 0,

the vector MT converges to two identical and independent copies of a weighted Brownian

bridge. In this case our testing framework for parameter changes in intercept or slope boils

down to comparing the absolute value of the test statistics in (3.10) against the critical

value at an α significance level, bα, obtained from the corresponding tabulated asymptotic

distribution. For example, if
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1

σ2
√

V ar(ε2
1)

sup
0<τ<1

|M (1)
T (τ )|
q(τ ) > bα > sup

0<τ<1

1
σ
|M (2)

T (τ )|
q(τ ) ,

the test detects a break only in the slope parameter. If

1

σ2
√

V ar(ε2
1)

sup
0<τ<1

|M (1)
T (τ )|
q(τ ) > bα and 1

σ
|M (2)

T (τ )|
q(τ ) > bα

both intercept and slope parameters have changed. Finally, if the critical value is greater

than the two statistics the process is under the null hypothesis of no structural break.

For sake of generality we study the asymmetric case for the distribution error as well. Here,

given the dependence between the two marginal asymptotic distributions, it is not clear how

to construct the relevant asymptotic critical values. The following corollary introduces an

alternative reformulation of the above proposition that solves this problem.

Corollary 3.2.1. Under the same assumptions of Proposition 3.2.2 the following holds, as

T → ∞,




1

σ2
√

V ar(ε2
1)

M
(1)
T (·)
q(·)

−ρ((1−ρ2)σ4V ar(ε2
1))

− 1
2 M

(1)
T (·) + ((1−ρ2)σ2)−

1
2 M

(2)
T (·)

q(·)


⇒




B(1)(·)
q(·)

B(2)(·)
q(·)


 . (3.11)

By the continuous mapping theorem,




sup
0<τ<1

1

σ2
√

V ar(ε2
1)

|M (1)
T (τ )|
q(τ )

sup
0<τ<1

|−ρ((1−ρ2)σ4V ar(ε2
1))

−1
2 M

(1)
T (τ ) + ((1−ρ2)σ2)−

1
2 M

(2)
T (τ )|

q(τ )




D−→




sup
0<τ<1

|B(1)(τ )|
q(τ )

sup
0<τ<1

|B(2)(τ )|
q(τ )


 , (3.12)

with
D−→ denoting convergence in distribution.

This bivariate process and the corresponding asymptotic theory enable us to introduce

two different test statistics for the null hypothesis of no change in the above linear regression

model (3.1). The first component remains unchanged; it is a robust test for the hypothesis
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of a change in the slope of LRM . The second test, however, is sensitive to changes in either

intercept or slope and is used to define a joint hypothesis

HOJ : β
(1)
0 = β

(2)
0 and β(1) = β(2). (3.13)

The alternative hypothesis in the joint test corresponds to a change in at least one parameter

of the model. A value of the test statistic greater than bα implies the rejection of HOJ .

Further, the two tests in (3.12) can be combined in order to determine whether slope or

intercept, if any, have changed. This new test, called simultaneous test, runs simultaneously

the test statistic in the upper row of (3.12) to test for H0,slope : β(1) = β(2) and the second

row test statistic for H0,J . This composite test has power to detect a break only in the

intercept if

sup
0<τ<1

| − ρ((1 − ρ2)σ4V ar(ε2
1))

− 1
2 M

(1)
T

(τ) + ((1 − ρ2)σ2)
− 1

2 M
(2)
T

(τ)|
q(τ)

> bα > sup
0<τ<1

1

σ2
q

V ar(ε2
1)

|M(1)
T

(τ)|
q(τ)

. (3.14)

Likewise, if both statistics are below bα the model is under the null simultaneous (also joint)

hypothesis of no change in either intercept or slope. Note that if both test statistics are

above bα there is a break in slope, but the test is inconclusive about whether there is a break

in the intercept or not. In this scenario we recommend the test based on
M

(2)
T (τ )

q(τ ) discussed

before, that is robust to possible changes in slope. Its asymptotic distribution is detailed

in Proposition 3.2.1 statement ii). If this test rejects the null hypothesis of no change in

intercept then one concludes there was a change in both slope and intercept; otherwise one

concludes only the slope has changed.

The simultaneous test has several interesting features. First, the standardization provided

in Corollary 3.2.1 guarantees that the marginal asymptotic Brownian bridges are independent

and identically distributed. This implies that the critical values at the same significance level
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for each test in (3.12) are identical. Furthermore, one can control the global error rate by

calculating the product of one minus the error rate idiosyncratic to each marginal test and

noting the global error rate is one minus this product; i.e, if the idiosyncratic error is 5% then

the global error rate is 1 − (1 − 0.05)2 = 0.0975. Unfortunately in the inconclusive case in

which we also have to run the marginal test for the intercept we lose independence between

the corresponding Brownian bridge and that corresponding to the joint test statistic. This

implies that in this case we lose control of the global error rate.

There remains the issue of more than one change in intercept/slope parameters and

whether the statistics proposed here can be applied in such situations. The statistics de-

fined by equations (3.5) and (3.6) can still be applied in this situation but only the parameter

with the largest change in will be detected. For example, if there are multiple changes in the

intercept but no more than one change in slope, then the process sup0<τ<1 |M
(2)(τ )
q(τ ) | will detect

only the change in intercept which is largest and will neglect the other smaller changes. A

similar statement can be made regarding changes to the slope parameter. If there are no more

than one change in intercept, but more than one change in slope parameters, then statistic

sup0<τ<1 |M
(2)(τ )
q(τ ) | will detect said change but only when the change in slope is largest. More-

over, Orasch (1998) has shown in the case of scale-location class of models that tests based

on U -statistic type processes such as the ones developed here remain consistent regardless of

the number of changes in location parameter. With some minor modifications, his theorem

applies here as well. If there should be a change in both slope and intercept each occurring

at different times Propositions 3.3.1 and 3.3.2 hold and each statistic has non-trivial power.

Moreover, an estimate the timing of each rejection can be obtained using the estimator of t̂?

recommended in 3.17 by replacing the appropriate process for M̂T ( k
T ).
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3.2.2 Parameters Unknown

The processes defined in (3.5) and (3.6) depend on unknown parameters. Ordinary Least

Squares (OLS) will produce consistent estimators of β
(i)
0 and β(i) for i = 1, 2 under HO

and HA; let these sequences of estimators be denoted {β̂(i)
T,0}∞T=1 and {β̂(i)

T }∞T=1 for i = 1, 2.

When these sample estimates are substituted for the population parameters, this produces

the following slightly altered sequence of partial sum processes;

M̂
(1)
T (τ) := T−1/2





[(T+1)τ ]∑

t=1

(Yt − β̂T,0 − β̂
′
T Xt)

2 − τ
T∑

t=1

(Yt − β̂T,0 − β̂
′
TXt)

2



 (3.15)

M̂
(2)
T (τ) := T−1/2





[(T+1)τ ]∑

t=1

(Yt − β̂
′
TXt) − τ

T∑

t=1

(Yt − β̂
′
TXt)



 . (3.16)

In M̂
(1)
T (τ) set

β̂T,0 =

{
β̂

(1)
T,0, t ≤ t̂?

β̂
(2)
T,0, t > t̂?,

and β̂T = β̂
(1)
T ; and in M̂

(2)
T (τ) set

β̂T =

{
β̂

(1)
T , t ≤ t̂?

β̂
(2)
T , t > t̂?,

where t̂? is some consistent estimator of t?. One consistent estimator of t? that has been

widely studied in the literature is defined as follows:

t̂? :=
1

T
min

{
k :

|M̂T ( k
T )|

q( k
T )

= max
1≤i<PT

|M̂T ( i
T )|

q( i
T )

}
(3.17)

M̂T (t) = T−1/2





[(T+1)τ ]∑

t=1

(Yt − β̂LS,0 − β̂
′
LSXt)

2 − τ

T∑

t=1

(Yt − β̂LS,0 − β̂
′
LSXt)

2



 ,
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where the subscript LS refers to the least squares estimator of β0 and β using all T observa-

tions.

The asymptotic properties of this estimator have been studied by Antoch, Hušková and

Veraverbeke (1995). They also show that the bootstrap approximation to this distribution is

asymptotically valid. For more on this, we refer those interested to their paper.

The following lemma shows the absence of estimation risk for the test statistics based on

M̂
(i)
T (τ), with i = 1, 2.

Lemma 3.2.1. Assume {β̂T,0}∞T=1 and {β̂T}∞T=1 are sequences of consistent estimators of

the parameters in (3.1). Then, under the same conditions of Proposition 3.2.1,

sup
0<τ<1

|M (i)
T (τ) − M̂

(i)
T (τ)|

q(τ)
= oP (1),

for i = 1, 2, as T → ∞.

Proof: We only show this result for (3.15), as a similar argument applies to process (3.16).

T 1/2M̂
(1)
T (τ) = T 1/2M

(1)
T (τ) + (β̂

′
T − β

′
)




[(T+1)τ ]∑

t=1

Xt − τ
T∑

t=1

Xt




|M̂ (1)
T (τ) − M

(1)
T (τ)|

q(τ)
≤

∣∣∣∣∣
(β̂T − β)

′
(
∑[(T+1)τ ]

t=1 Xt − τ
∑T

t=1 Xt)

q(τ)T 1/2

∣∣∣∣∣

≤ ||β̂′
T − β

′ ||E
∣∣∣∣∣

∣∣∣∣∣

∑[(T+1)τ ]
t=1 Xt − τ

∑T
t=1 Xt

T 1/2q(τ)

∣∣∣∣∣

∣∣∣∣∣

E

(3.18)

|M̂ (1)
T (τ) − M

(1)
T (τ)|

q(τ)
≤ ||β̂′

T − β
′ ||E

∣∣∣∣∣

∣∣∣∣∣ sup
0<τ<1

|∑[(T+1)τ ]
t=1 Xt − τ

∑T
t=1 Xt|

T 1/2q(τ)

∣∣∣∣∣

∣∣∣∣∣

E

sup
0<τ<1

|M̂ (1)
T (τ) − M

(1)
T (τ)|

q(τ)
≤ ||β̂′

T − β
′ ||E

∣∣∣∣∣

∣∣∣∣∣ sup
0<τ<1

|∑[(T+1)τ ]
t=1 Xt − τ

∑T
t=1 Xt|

T 1/2q(τ)

∣∣∣∣∣

∣∣∣∣∣

E

= oP (1)OP (1) = oP (1),

where || · ||E refers to the Euclidean norm on IRk. The Cauchy-Swarchz Inequality was used
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to obtian the result in line 3.18.

Lemma 3.2.1 shows that the results in Propositions 3.2.1 and 3.2.2 and Corollary 3.2.1

continue to hold when the parameters are replaced by the above estimators. This result

is obviously extended to the case given by the sample versions of the parameters ρ, σ and

V ar(ε2
1).

3.3 Asymptotics Under the Alternative Hypothesis

Here, the asymptotics of statistics defined as supremum of (3.5) and (3.6) are studied. The

first of two Propositions to follow describes the distribution of statistic (3.5) under local

alternatives of at-most-one change in the slope.

Proposition 3.3.1. Assume HA in equation (3.1), moment conditions (3.2), t? = [Tτ?], τ? ∈ (0, 1)

hold, set β(2) = β(1) + δ where δ = (δ1, . . . , δK). Then σ2? = IIE(Y1 − β
(1)
0 − β(1)′X1)

2 +

δ
′
IIE[X1X

′
1]δ, with δ = δ(T ) → 0 and Λ = Λ(T ) → 0 as T → ∞. Let q(·) satisfy A.1 and

A.2, then as T → ∞,

q(τ?)√
τ?(1 − τ?)

1

σ2
√

V ar(ε2
1)

{
sup

0<τ<1

|M (1)
T (τ)|
q(τ)

− T 1/2

(
δ

′
IIE[X1X

′
1]δ

′ t?

T

(
1 − t?

T

)

q( t?

T )

)}

D−→N (0, 1).

Proof. This follows from Theorem 1.4 of GHH.

Remark 3.3.1. Proposition 3.3.1 reveals that a one-time change in slope parameters will

cause a one-time change in variance only if the following condition holds:

δ
′
X1 6= 0.
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A direct result of Proposition 3.3.1 is the consistency of this test for a one-time change

in slope. This result is formally introduced in the next corollary.

Corollary 3.3.1. Under the conditions of Proposition 3.3.1, then, as T → ∞,

1

T 1/2(δ
′
IIE[X1X

′
1]δ)

sup
0<τ<1

|M (1)
T (τ)|
q(τ)

P−→ τ?(1− τ?)

q(τ?)
.

The next proposition details the asymptotic distribution of the AMOC in intercept statis-

tic (cf. (3.6)).

Proposition 3.3.2. Assume HA in equation (3.1), moment conditions (3.2), t? = [Tτ?], τ? ∈ (0, 1)

and β
(2)
0 = β

(1)
0 + Λ hold. Then for q(·) satisfying A.1 and A.2 and as T → ∞,

q(τ?)

σ
√

τ?(1 − τ?)

{
sup

0<τ<1

|M (2)
T (τ)|
q(τ)

− T 1/2Λ
t?

T

(
1 − t?

T

)

q( t?

T )

}
D−→ N (0, 1).

Proof. Without loss of generality, let t?

T > τ , t? = [(T + 1)τ?] and assume δ0(T ) → 0, as

T → 0 and δ0(T )T → 0, as T → ∞. Then
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sup
t?

T −δ0(T )<τ< t?

T +δo(T )

1

q(τ )

|M (2)
T (τ )|
q(τ )

= T−1/2 sup
t?

T −δ0(T )<τ< t?

T +δo(T )

∣∣∣∣∣∣

[(T+1)τ]∑

t=1

(Yt − β
′

Xt) − τ

t?∑

t=1

(Yt − β
′

Xt)

− τ
T∑

t=t?+1

(Yt − β
′

Xt)

∣∣∣∣∣

= T−1/2 sup
t?

T −δ0(T )<τ< t?

T +δ0(T )

1

q(τ )

∣∣∣∣∣∣

[(T+1)τ]∑

t=1

(Yt − β
′

Xt) − τ

t?∑

t=1

(Yt − β
′

Xt)

− τ

T∑

t=t?+1

(Yt − β
′

Xt)

∣∣∣∣∣

= T−1/2 sup
t?

T −δ0(T )<τ< t?

T +δ0(T )

1

q(τ )

∣∣∣∣∣∣

[(T+1)τ]∑

t=1

((Yt − β
′

Xt) − β
(1)
0 ) − τ

t?∑

t=1

((Yt − β
′

Xt) − β
(1)
0 )

− τ

T∑

t=t?+1

((Yt − β
′

Xt) − β
(2)
0 ) + ([(T + 1)τ ]− τt?)β

(1)
0 − τ (T − t?)β

(2)
0

∣∣∣∣∣

= T−1/2 sup
t?

T −δ0(T )<τ< t?

T +δ0(T )

∣∣∣∣∣∣
σ




[(T+1)τ]∑

t=1

εt − τ
T∑

t=1

εt



 − τ (T − t?)Λ

∣∣∣∣∣∣

=

∣∣∣∣∣
σ

T 1/2

(
t?∑

t=1

εt − τ

T∑

t=1

εi

)
− T 1/2 t?

T

(
1 − t?

T

)
Λ

∣∣∣∣∣ (3.19)

Lemma 3.3.1, found below, will be needed to establish the proposition. The absolute value

in equation (3.19) can be removed as it has no effect on the limiting distribution: that is,

when inside the absolute value is negative, simply multiply by -1 and remove the absolute

value. Hence, we have

σ

T 1/2

(
t?∑

t=1

εt − τ

T∑

t=1

εt

)
− T 1/2 t?

T

(
1 − t?

T

)
Λ. (3.20)

Now, Lemma 3.3.1 and (3.19) establish the above proposition.

Lemma 3.3.1. Under the same conditions as specified in Proposition 3.3.1, and as T → ∞,
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Pt?

t=1 εt

T 1/2

PT
t=1 εt

T 1/2


 D−→ N







0

0


 , Ψ


 ,

where

Ψ = σ2
1




τ?2 τ?

τ? 1


 .

Proof. This follows from the bivariate version of the Lindberg-Levy Central Limit Theorem.

A corollary similar to Corollary 3.3.1 holds here as well and is a direct consequence of

Proposition 3.3.2.

Corollary 3.3.2. Under the conditions of Proposition 3.3.2, and as T → ∞,

1

σ T 1/2
sup

0<τ<1

|M (2)
T (τ)|
q(τ)

P−→ τ?(1 − τ?)

q(τ?)
.

3.4 Monte Carlo Simulation

In this section the LRM (cf. (3.1)), with K = 1, is estimated and the statistic calculated

first under the assumption that t? ≥ T which provides an estimate of nominal coverage of

these tests and next considers two further simulations: one considering a one-time change in

the intercept β0 and the other considering a one time change in slope β. This will allow a

more realistic assessment of the ability of the newly fashioned statistics to detect a change in

intercept/slope and follows closely the criteria used by PKA which requires tests to obtain a

nominal coverage consistent with the corresponding significance level: 5% in the simulation

undertaken here. As the second criterion, the tests will be compared on their empirical
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power. Under the two scenarios just discussed, the simulation considered here first sets the

distribution of the error term in the LRM to a χ2
1 with one degree of freedom and then a

second simulation sets the distribution of the errors to a standard normal, i.e. N (0, 1) random

variable.

More specifically, for the purpose of this Monte Carlo study the entertained model is given

by

Yt =

{
β

(1)
0 + β(1)Xt + σεt, 1 ≤ t ≤ t?,

β
(2)
0 + β(2)Xt + σεt, t? < t ≤ T,

(3.21)

where the εt’s satisfy conditions detailed in (3.2), and the corresponding change point hy-

pothesis test is

HOJ : β
(1)
0 = β

(2)
0 and β(1) = β(2)

versus the one-time change alternative,

HAJ : β
(1)
0 6= β

(2)
0 or β(1) 6= β(2) for some t? satisfying 1 < t? < T.

For the first, of two simulation studies undertaken here, the slope parameter was fixed at

β(1) = 3 and the intercept parameter, β0, was allowed to change from β
(1)
0 = 1 under HO to

one of the three values of β
(2)
0 = 1.25, 1.5, 1.75, 2 under HA. The second simulation study

fixed β
(1)
0 = 1 and allowed only the slope parameter to change from β(1) = 3 under HO to

β(2) = 3.75, 4.5, 5.25, 6.

The results from the simulation are recorded in Section 3.7. Tables 3.3 and 3.4 tabulate

the empirical power under the null hypothesis HOJ of no change in either intercept and

slope. Table 3.3 records results for the case when εt ∼ χ2
1, for t = 1, . . . , T with one degree

of freedom; while Table 3.4 records results for the case when εt ∼ N (0, 1), for t = 1, . . . , T .
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Tables 3.3 and 3.4 indicate that the nominal coverage of all the test statistics under study,

except the fluctuation test of PKK which has a nominal coverage probability of around 20%,

have nominal coverage less than 8% - the significance level throughout these simulations was

chosen to be 5%. Both tables provide clear evidence that the two statistics fashioned from

the U -statistic type process and weighted by the function q(τ, ν = 15
128)1 perform very well

in terms of nominal coverage; the coverage is less than or equal 8%. A similar statement

can be made regarding the test statistics used by AP and Andrews (1993); the exponential

average Wald (EXPW) test reports a nominal coverage just below 5%, while the supremum

Wald (MAXW) test, reports a nominal coverage well below 5%. As the PKK fluctuation test

does not meet the first criteria of our adopted PKA criteria - nominal coverage consistent

with adopted significance level, the fluctuation test is not appropriate for the sample sizes

considered here.

Tables 3.5 and 3.6 detail the empirical power of the newly fashioned test statistics as well

as the competitors under the alternative hypothesis of a one-time change in intercept. The

lack of symmetry of the χ2
1 has a positive effect on the JOINT test (JOINT refers to the test

statistic in the second element of the vector detailed in 3.12 of Corollary 3.2.1 with sample

estimators replacing population parameters. For clarity of exposition, this test statistic is

provided below and will be referred to as MJOINT
T for the sake of this simulation;

MJOINT
T := sup

0<τ<1

| − ρ̂((1− ρ̂2)σ̂4 ̂V ar(ε2
1))

− 1
2
M̂

(1)
T (τ) + ((1 − ρ̂2)σ̂2)−

1
2 M̂

(2)
T (τ)|

q(τ)
.

The symmetry of the standard normal distribution decreases the empirical power of the

JOINT test but increases the empirical power of the CUSUM/EXPW/MAXW test which

is consistent with the optimal results of the exponential average test: the EXPW test of

1Similar results are obtained for alternative choices of ν. The value ν = 15
128

is observed to maximize the
power of the test for this data generating process.
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Andrews and Ploberger (1994) and Andrews, Lee and Ploberger (1996) is locally optimal

in large samples for all distributions of the errors and optimal in finite samples when the

errors are normally distributed. Notwithstanding the optimality of EXPW, the JOINT test

(MJOINT
T Table 3.6) displays much higher empirical power. In particular, for a change in the

middle of the sample, the power reaches a value of almost 1. All tests entertained here lack

power to detect a change in intercept when it occurs either late or early in the sample.

The last simulation undertaken was to determine the ability of the simultaneous test to

detect a one-time change in slope of the LRM detailed in (3.21). Tables 3.7 and 3.8 record

results from the simulation when the residuals were distributed as a χ2
1 with 1 degree of

freedom and when the errors were normally distributed (N(0,1)), respectively. Under this

alternative hypothesis, the JOINT test and sup
0<τ<1

|M (1)
T (τ )|

q(τ,ν= 15
128

)
continue to perform very well for

a one-time change in slope regardless of where the change occurs. The only departure now is

that both tests constructed here must be employed; the JOINT test performs well when the

change occurs in the middle of the sample, while sup
0<τ<1

|M (1)
T (τ )|

q(τ,ν= 15
128

)
performs well for changes

that occur early or later on in the sample.

3.5 Application to Manager’s Performance in Mutual Fund

Industry

The Capital Asset Pricing model (CAPM) and its many variants has been used by academics

for applied financial research and by practitioners. One notable use of the CAPM was by

some investment houses to evaluate managers’ performance; by subtracting predicted port-

folio returns from realized returns an estimate of a manager’s alpha could be obtained. If

this estimated alpha happened to be positive, the manager was said to have produced a

positive alpha and compensated accordingly. Such simple compensation schemes are seldom

used today but they do suggest the importance of this model and provide an interesting
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interpretation of alpha.

More recently, academic research conducted by Barras, Scaillet and Wermers (2010, here-

after BSW) has searched for outperforming mutual fund managers via extended versions of

the CAPM but in such a way that they control for ’false discoveries’: a false discovery occur

when the estimated alpha is statistically significant and less/greater than 0 when the true

alpha is zero. BSW is a significant and current paper that uses well-established financial

and econometrics methods and data sources. Because of their recent contribution and use

of well-established methods, it is natural then to adopt their econometric model and data

sources in order to provide a sound application of the methods developed in previous sections.

Our interest here, however, is not to evaluate or even suggest further refinements to their

methods but rather to apply the statistics developed and outlined in the previous sections

of this paper to see whether we can detect a change in the alpha; a change in alpha can be

suggestive of an improvement/impairment in a fund manager’s stock selection skills.

The method of estimating fund manager’s performance follows that of BSW ; they esti-

mate a four factor model proposed by Carhart (1997);

ri,t = αi + bi · rm,t + si · rsmb,t + hi · rhml,t + mi · rmom,t + εi,t. (3.22)

Here, ri,t is the monthly tth excess return of fund i over the risk free rate (proxied by the

monthly 30-day T-bill beginning-of-month yield); rm,t is the month t excess return on the

NASDAQ and rsmbt, rhml,t and rmom,t are the month t returns on zero-investment factor mim-

icking portfolios for size, book-to-market, and momentum obtained from Kenneth French’s

website. The mutual fund price data was obtained from yahoofinance.com and consisted of

20 funds listed in Table 3.10 which can be found in Section 3.7. In order to account for

distributions that mutual funds regularly pay and possible stock splits, the adjusted closed
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price2was used to calculate monthly return rather than the close price. In order to keep the

analysis current, the evaluation period ran form January 2001 to August 2010.

Table 3.9 provides results of the tests for intercept or slope when applied to the residuals

of Carhart’s four factor model. The results provide some interesting findings regarding how to

implement the tests developed here. For example, Fund 17 (UBS GLOBAL Equity) reports

a result from the JOINT test of 1.50 which is significant at a 10% significance level. The test

value for change in slope is 2.14 which is statistically significant at a 5% significance level.

Hence, there appears to be a change in slope for this mutual fund. To determine whether

there happens to be a change in intercept, M
(2)
T (τ) must be used. The test value is 1.8 which

is also statistically significant at 5%. Table 3.1 found below records the estimated parameters

for Carhart’s four factor model. We see that the alpha was negative before January of 2003,

then become statistically insignificant. The estimated parameter of excess return on the

NASDAQ changed the most - increased from 0.408 to 0.99.

Summing up then, for this mutual fund there appears to be an increase in alpha and

the beta corresponding to the NASDAQ3 of the betas, that occurred in January, 2003. This

structural break in both intercept and slope suggests that there are two types of changes;

one associated with a change in market risk described by the four factor model, and a second

effect due to idiosyncratic component of the fund. We attribute the increase in alpha to an

improvement in managerial ability.

A second interesting example is Fund 10 (Goldman Sachs Growth Opportunities), here

2The adjusted close price adjusts the closing price for the requested day, week, or month, adjusted for all
applicable splits and distributions/dividend payments. Data is adjusted using appropriate split and dividend
multipliers, adhering to Center for Research in Security Prices (CRSP) standards. Split multipliers are de-
termined by the split ratio. For instance, in a 2 for 1 split, the pre-split data is multiplied by 0.5. Dividend
multipliers are calculated based on dividend as a percentage of price, primarily to avoid negative historical
pricing. For example, when a $0.08 cash dividend is distributed on Feb 19 (ex-date), and the Feb 18 closing
price was $24.96, the pre-dividend data is multiplied by (1-0.08/24.96) = 0.9968.

3The size of sup0<τ<0

|M(2)
T (τ)|
q(τ)

is driven by the largest change in one of the slope parameters. In this case
the estimated change in the beta corresponding to the NASDAQ is 0.12, while the estimated change in the
beta of the book-to-market is only 0.0375 which is very small. This leads to the conclusion made here that
the beta of NASDAQ changed.
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Table 3.1: Estimated Version of Carhart’s Model
4 Factor Model Before Change - Fund 17

Coefficient Estimates Strd Error P-value

Intercept -0.016 0.0068 0.028

Size -0.0068 0.0038 0.0986
Book-to-Market 0.014 0.039 0.0026

Momentum 0.00144 0.100148 0.349
NASDAQ 0.41 0.13715 0.0100

4 Factor Model After Change

Coefficient Estimates Strd Error P-value

Intercept 0.00346 0.00244 0.1602

Size -0.09 0.0038 0.000
Book-to-Market 0.0089 0.00153 0.000

Momentum -0.00123 0.0004 0.009
NASDAQ 0.995 0.02 0.000

we note that the Simultaneous test reports a value of only 1.43 which is almost statistically

significant at the 10% level. Both marginal tests reject the null hypothesis at a 5% significance

level. The low value of the simultaneous test even when there appears to be a change in slope

and/or intercept was noted in the simulation section; we found the simultaneous test to be

somewhat weak at detecting a change in the slope when it occurred early in the evaluation

period or when the underlying distribution of the residuals was asymmetric. As a possible

remedy, we propose the use of large significance levels when employing the simultaneous test,

perhaps using a 15% to 20% significance level for this test, while maintaining a 5% significance

level when testing for change in slope or intercept. The regression results for Carhart’s four

factor model are provided in Table 3.2 located below. Again, we see an increase in alpha

which we attribute to improvement in managerial ability.

The results for the rest of the funds are mixed; we find funds with no change in either

alpha or beta parameters, funds with a change in betas only and funds with a change in both

slope and intercept. For those funds in which no change in any parameters was reported,

we conclude there was no change in market risk or idiosyncratic components of the fund.

For funds that our tests reported a change in betas only, we conclude there was a change

in market risk, and for those funds that reported a change in alpha and betas, a similar



85

Table 3.2: Estimated Version of Carhart’s Model
4 Factor Model Before Change - Fund 10

Coefficient Estimates Strd Error P-value

Intercept -0.039 0.012 0.079

Size -0.00532 0.0036 0.1680
Book-to-Market 0.003 0.0038 0.443

Momentum 0.00204 0.0031 0.522
NASDAQ 0.40 0.194 0.0684

4 Factor Model After Change

Coefficient Estimates Strd Error P-value

Intercept 0.00128 0.00221 0.5639

Size -0.017 0.00126 0.18
Book-to-Market 0.00169 0.00144 0.24

Momentum -0.0004 0.0004 0.3095
NASDAQ 0.99 0.02 0.000

conclusion to that made above can be made; there was a change in both market risk and in

manager’s stock selection abilities.

3.6 Conclusion

This paper has introduced a statistical methodology to disentangle between structural breaks

in the intercept and slope of linear regression models. The test statistic is constructed from

a bivariate U -statistic type process that can accommodate the presence of weight functions

that improve the power of structural break tests against changes that occur early and later

on in the evaluation period. We have shown that the test also exhibits power against changes

in the skewness of the error distribution.

The application to uncover time varying mutual fund manager’s performance has shown a

change in mutual fund performance starting in January 2001. This phenomenon is robust to

the possible changes in market risk. In fact, we also observe during the period under analysis

a change in market risk.
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3.7 Tables
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Table 3.3: Nominal Coverage
No Change in Parameters - Errors χ2

1 Distributed

T = 75 T = 100 T =125

sup
0<τ<1

|M (1)
T (τ )|

q(τ,ν= 15
128

)
0.02 0.02 0.02

CUSUM Test 0.044 0.026 0.044

EXPW 0.02 0.02 0.02

MAXW 0.01 0.01 0.01

FLUCT 0.192 0.18 0.152

MJOINT
T 0.08 0.08 0.07

Table 3.4: Nominal Coverage
No Change in Parameters - Errors N(0, 1) Distributed

T = 75 T = 100 T=125

sup
0<τ<1

|M(1)
T (τ)|

q(τ,ν= 15
128 )

0.030 0.028 0.026

CUSUM Test 0.050 0.056 0.040

EXPW 0.08 0.05 0.06
MAXW 0.03 0.02 0.02

FLUCT 0.224 0.224 0.208

MJOINT
T 0.052 0.046 0.048

G(x) = IIP

{
sup

0<τ<1

|B(τ)|
q(τ,ν= 15

128 )<x

}

x G(x) x G(x) x G(x) x G(x)
0.53 0.01 0.83 0.26 1.01 0.51 1.23 0.76

0.57 0.02 0.83 0.27 1.01 0.52 1.24 0.77
0.60 0.03 0.84 0.28 1.02 0.53 1.25 0.78

0.62 0.04 0.85 0.29 1.03 0.54 1.26 0.79
0.63 0.05 0.85 0.30 1.04 0.55 1.28 0.80

0.65 0.06 0.86 0.31 1.05 0.56 1.29 0.81
0.66 0.07 0.87 0.32 1.05 0.57 1.30 0.82

0.67 0.08 0.88 0.33 1.06 0.58 1.32 0.83
0.68 0.09 0.88 0.34 1.07 0.59 1.33 0.84

0.70 0.10 0.89 0.35 1.08 0.60 1.35 0.85
0.71 0.11 0.90 0.36 1.09 0.61 1.37 0.86

0.72 0.12 0.90 0.37 1.10 0.62 1.39 0.87
0.73 0.13 0.91 0.38 1.10 0.63 1.40 0.88
0.74 0.14 0.92 0.39 1.11 0.64 1.42 0.89

0.75 0.15 0.93 0.40 1.12 0.65 1.45 0.90
0.75 0.16 0.93 0.41 1.13 0.66 1.47 0.91

0.76 0.17 0.94 0.42 1.14 0.67 1.50 0.92
0.77 0.18 0.95 0.43 1.14 0.68 1.53 0.93

0.78 0.19 0.96 0.44 1.15 0.69 1.56 0.94
0.79 0.20 0.97 0.45 1.16 0.70 1.61 0.95

0.79 0.21 0.97 0.46 1.18 0.71 1.67 0.96
0.80 0.22 0.98 0.47 1.19 0.72 1.72 0.97

0.81 0.23 0.99 0.48 1.20 0.73 1.80 0.98
0.81 0.24 0.99 0.49 1.21 0.74 1.92 0.99

0.82 0.25 1.00 0.50 1.22 0.75 2.04 1.00
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Table 3.5: Empirical Power
Change in Intercept - β0

Errors χ2
1 Distributed

MIDDLE OF SAMPLE (τ? = 0.5)

β
(2)
0 = 1.25 β

(2)
0 = 1.5 β

(2)
0 = 1.75 β

(2)
0 = 2

Statistic T = 75 T = 100 T=125 T=75 T = 100 T=125 T=75 T = 100 T=125 T = 75 T = 100 T=125

sup
0<τ<1

|M (1)
T (τ )|

q(τ,ν= 15
218

)
0.024 0.027 0.021 0.027 0.02 0.023 0.037 0.025 0.032 0.033 0.039 0.04

CUSUM 0.057 0.06 0.057 0.104 0.128 0.161 0.218 0.273 0.336 0.379 0.479 0.578

EXPW 0.043 0.036 0.04 0.167 0.173 0.215 0.338 0.397 0.427 0.517 0.623 0.714

MAXW 0.017 0.007 0.015 0.093 0.089 0.11 0.234 0.269 0.287 0.41 0.512 0.596

FLUC 0.265 0.211 0.227 0.382 0.372 0.38 0.518 0.564 0.636 0.663 0.752 0.838

MJOINT
T 0.09 0.152 0.206 0.428 0.584 0.733 0.798 0.907 0.976 0.961 0.993 0.999

LATE DETECTION (τ? = 0.9)

T = 75 T = 100 T=125 T=75 T = 100 T=125 T=75 T = 100 T=125 T = 75 T = 100 T=125

sup
0<τ<1

|M (1)
T (τ )|

q(τ,ν= 15
218

)
0.021 0.031 0.021 0.025 0.024 0.033 0.028 0.017 0.023 0.028 0.035 0.048

CUSUM 0.044 0.044 0.036 0.035 0.052 0.051 0.198 0.034 0.054 0.035 0.045 0.047

EXPW 0.037 0.037 0.027 0.05 0.039 0.058 0.077 0.075 0.087 0.137 0.152 0.185

MAXW 0.015 0.015 0.012 0.035 0.021 0.03 0.051 0.045 0.051 0.094 0.097 0.114

FLUC 0.225 0.201 0.164 0.234 0.223 0.226 0.493 0.276 0.232 0.289 0.258 0.363

MJOINT
T 0.063 0.053 0.067 0.059 0.054 0.072 0.07 0.077 0.129 0.091 0.155 0.254

EARLY DETECTION (τ? = 0.1)

T = 75 T = 100 T=125 T=75 T = 100 T=125 T=75 T = 100 T=125 T = 75 T = 100 T=125

sup
0<τ<1

|M (1)
T (τ )|

q(τ,ν= 15
218

)
0.031 0.023 0.028 0.033 0.029 0.024 0.031 0.026 0.025 0.033 0.044 0.045

CUSUM 0.04 0.059 0.051 0.112 0.126 0.166 0.239 0.253 0.337 0.348 0.455 0.5

EXPW 0.024 0.023 0.016 0.03 0.035 0.035 0.053 0.069 0.06 0.104 0.157 0.18

MAXW 0.011 0.014 0.012 0.009 0.013 0.007 0.017 0.02 0.016 0.038 0.084 0.038

FLUC 0.241 0.199 0.171 0.238 0.197 0.185 0.257 0.197 0.186 0.262 0.259 0.219

MJOINT
T 0.082 0.064 0.044 0.066 0.072 0.104 0.089 0.171 0.269 0.19 0.411 0.523
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Table 3.6: Empirical Power
Change in Intercept - β0

Errors N (0, 1) Distributed

MIDDLE OF SAMPLE (τ? = 0.5)

β
(2)
0 = 1.25 β

(2)
0 = 1.5 β

(2)
0 = 1.75 β

(2)
0 = 2

Statistic T = 75 T = 100 T=125 T=75 T = 100 T=125 T=75 T = 100 T=125 T = 75 T = 100 T=125

sup
0<τ<1

|M (1)
T (τ )|

q(τ,ν= 15
218

)
0.04 0.029 0.037 0.042 0.026 0.027 0.017 0.021 0.024 0.022 0.015 0.022

CUSUM 0.072 0.075 0.096 0.144 0.185 0.243 0.345 0.439 0.596 0.57 0.746 0.848

EXPW 0.064 0.051 0.043 0.142 0.168 0.172 0.346 0.379 0.44 0.527 0.616 0.707

MAXW 0.028 0.018 0.012 0.072 0.043 0.08 0.227 0.245 0.289 0.404 0.487 0.591

FLUC 0.297 0.28 0.277 0.431 0.509 0.564 0.721 0.788 0.885 0.896 0.971 0.996

MJOINT
T 0.072 0.096 0.134 0.268 0.416 0.531 0.641 0.822 0.913 0.899 0.981 0.998

LATE DETECTION (τ? = 0.1)

T = 75 T = 100 T=125 T=75 T = 100 T=125 T=75 T = 100 T=125 T = 75 T = 100 T=125

sup
0<τ<1

|M (1)
T (τ )|

q(τ,ν= 15
218

)
0.037 0.027 0.038 0.044 0.037 0.038 0.027 0.041 0.053 0.053 0.076 0.108

CUSUM 0.042 0.045 0.055 0.054 0.034 0.041 0.0349 0.043 0.049 0.039 0.049 0.049

EXPW 0.081 0.081 0.066 0.103 0.135 0.142 0.166 0.256 0.256 0.341 0.418 0.511

MAXW 0.081 0.035 0.019 0.055 0.063 0.062 0.095 0.155 0.156 0.244 0.309 0.386

FLUC 0.261 0.21 0.181 0.26 0.249 0.214 0.704 0.331 0.276 0.302 0.302 0.452

MJOINT
T 0.035 0.034 0.04 0.036 0.047 0.064 0.075 0.085 0.134 0.091 0.174 0.255

EARLY DETECTION (τ? = 0.9)

T = 75 T = 100 T=125 T=75 T = 100 T=125 T=75 T = 100 T=125 T = 75 T = 100 T=125

sup
0<τ<1

|M (1)
T (τ )|

q(τ,ν= 15
218

)
0.036 0.038 0.033 0.045 0.043 0.054 0.074 0.069 0.068 0.116 0.16 0.143

CUSUM 0.09 0.085 0.085 0.14 0.178 0.243 0.288 0.377 0.447 0.483 0.631 0.723

EXPW 0.088 0.064 0.06 0.103 0.119 0.13 0.172 0.239 0.3 0.295 0.441 0.519

MAXW 0.044 0.064 0.017 0.045 0.048 0.06 0.172 0.138 0.185 0.205 0.319 0.405

FLUC 0.257 0.245 0.206 0.289 0.254 0.215 0.311 0.267 0.276 0.329 0.37 0.389

MJOINT
T 0.034 0.037 0.041 0.023 0.048 0.052 0.053 0.079 0.098 0.073 0.103 0.194
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Table 3.7: Empirical Power
Change in Slope - β

Errors χ2
1 Distributed

MIDDLE OF SAMPLE (τ? = 0.5)

β(2) = 3.75 β(2) = 4.5 β(2) = 5.25 β(2) = 6

Statistic T = 75 T = 100 T=125 T=75 T = 100 T=125 T=75 T = 100 T=125 T = 75 T = 100 T=125

sup
0<τ<1

|M (1)
T (τ )|

q(τ,ν= 15
128

)
0.03 0.02 0.022 0.033 0.027 0.024 0.042 0.027 0.042 0.032 0.023 0.025

CUSUM 0.182 0.235 0.306 0.616 0.713 0.818 0.822 0.929 0.973 0.919 0.979 0.992

EXPW 0.527 0.664 0.726 0.956 0.98 0.989 0.998 1 1 1 1 1

MAXW 0.399 0.548 0.612 0.945 0.973 0.988 0.998 1 1 1 1 1

FLUC 0.768 0.832 0.911 0.995 1 1 1 1 1 1 1 1

MJOINT
T 0.726 0.868 0.949 0.986 0.999 1 0.999 1 1 1 1 1

LATE DETECTION (τ? = 0.9)

T = 75 T = 100 T=125 T=75 T = 100 T=125 T=75 T = 100 T=125 T = 75 T = 100 T=125

sup
0<τ<1

|M (1)
T (τ )|

q(τ,ν= 15
128

)
0.038 0.036 0.043 0.113 0.137 0.164 0.335 0.419 0.483 0.58 0.694 0.788

CUSUM 0.031 0.03 0.037 0.029 0.042 0.044 0.04 0.052 0.074 0.04 0.075 0.099

EXPW 0.138 0.178 0.19 0.513 0.659 0.73 0.831 0.927 0.934 0.955 0.98 0.994

MAXW 0.1 0.108 0.124 0.471 0.613 0.674 0.802 0.92 0.94 0.938 0.978 0.991

FLUC 0.31 0.277 0.3 0.507 0.535 0.607 0.665 0.853 0.861 0.795 0.866 0.965

MJOINT
T 0.06 0.072 0.107 0.091 0.123 0.235 0.072 0.152 0.25 0.077 0.11 0.185

EARLY DETECTION (τ? = 0.1)

T = 75 T = 100 T=125 T=75 T = 100 T=125 T=75 T = 100 T=125 T = 75 T = 100 T=125

sup
0<τ<1

|M (1)
T (τ )|

q(τ,ν= 15
128

)
0.046 0.054 0.039 0.159 0.18 0.232 0.375 0.489 0.56 0.655 0.765 0.822

CUSUM 0.205 0.272 0.312 0.58 0.7 0.752 0.791 0.896 0.93 0.903 0.959 0.986

EXPW 0.098 0.166 0.18 0.478 0.624 0.706 0.761 0.887 0.916 0.92 0.963 0.98

MAXW 0.045 0.099 0.093 0.409 0.572 0.662 0.75 0.876 0.91 0.901 0.959 0.97

FLUC 0.298 0.305 0.296 0.589 0.76 0.783 0.849 0.955 0.979 0.977 0.999 0.999

MJOINT
T 0.129 0.24 0.316 0.397 0.701 0.811 0.504 0.762 0.877 0.383 0.624 0.785
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Table 3.8: Empirical Power
Change in Slope - β

Errors N (0, 1) Distributed

MIDDLE OF SAMPLE (τ? = 0.5)

β(2) = 3.75 β(2) = 4.5 β(2) = 5.25 β(2) = 6

Statistic T = 75 T = 100 T=125 T=75 T = 100 T=125 T=75 T = 100 T=125 T = 75 T = 100 T=125

sup
0<τ<1

|M (1)
T (τ )|

q(τ,ν= 15
128

)
0.007 0.016 0.02 0.016 0.012 0.011 0.013 0.009 0.022 0.016 0.027 0.019

CUSUM 0.28 0.374 0.512 0.794 0.905 0.962 0.94 0.995 1 0.985 0.997 1

EXPW 0.924 0.984 0.996 1 1 1 1 1 1 1 1 1

MAXW 0.86 0.954 0.984 1 1 1 1 1 1 1 1 1

FLUC 0.949 0.983 0.998 0.999 1 1 1 1 1 1 1 1

MJOINT
T 0.595 0.779 0.9 0.988 0.997 1 1 1 1 0.999 1 1

LATE DETECTION (τ? = 0.1)

T = 75 T = 100 T=125 T=75 T = 100 T=125 T=75 T = 100 T=125 T = 75 T = 100 T=125

sup
0<τ<1

|M (1)
T (τ )|

q(τ,ν= 15
128

)
0.065 0.087 0.105 0.437 0.579 0.799 0.821 0.927 0.987 0.909 0.983 0.998

CUSUM 0.035 0.048 0.05 0.038 0.052 0.06 0.05 0.063 0.108 0.047 0.087 0.176

EXPW 0.324 0.458 0.521 0.829 0.939 0.967 0.947 0.989 0.999 0.994 1 1

MAXW 0.22 0.341 0.38 0.806 0.916 0.959 0.946 0.987 0.999 0.991 1 1

FLUC 0.355 0.358 0.4 0.652 0.701 0.864 0.817 0.944 0.957 0.889 0.941 0.992

MJOINT
T 0.047 0.087 0.126 0.095 0.162 0.259 0.091 0.116 0.251 0.066 0.125 0.227

EARLY DETECTION (τ? = 0.9)

T = 75 T = 100 T=125 T=75 T = 100 T=125 T=75 T = 100 T=125 T = 75 T = 100 T=125

sup
0<τ<1

|M (1)
T (τ )|

q(τ,ν= 15
128

)
0.12 0.149 0.184 0.63 0.762 0.823 0.899 0.967 0.988 0.958 0.996 0.998

CUSUM 0.278 0.403 0.414 0.736 0.846 0.914 0.928 0.971 0.99 0.962 0.996 0.999

EXPW 0.289 0.406 0.487 0.79 0.941 0.962 0.961 0.993 0.997 0.989 1 1

MAXW 0.21 0.315 0.376 0.768 0.927 0.945 0.957 0.991 0.997 0.981 1 1

FLUC 0.387 0.428 0.44 0.826 0.949 0.978 0.99 1 1 0.998 1 1

MJOINT
T 0.037 0.072 0.115 0.068 0.11 0.201 0.054 0.116 0.175 0.041 0.093 0.15
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Table 3.9: U -statistic Type Test Statistics
Statistic Fund 1 Fund 2 Fund 3 Fund 4 Fund 5 Fund 6 Fund 7

Intercept Test 1.17 1.56 1.57 0.91 1.44 1.16 1.4
Slope Test 1.91 1.91 1.91 1.19 2.4 1.58 1.77

MJOINT
T Test 1.11 1.25 1.27 0.91 1.39 1.1 1.22

Change (Date) 04/2009 12/2002 12/2009 10/2002 09/2002 01/2009 01/2003

——– Fund 8 Fund 9 Fund 10 Fund 11 Fund 12 Fund 13 Fund 14
Intercept Test 1.41 1.6 1.69 1.03 1.4 1.52 1.13

Slope Test 1.78 1.81 2.54 2.54 2.2 1.92 2.22
MJOINT

T Test 1.1 1.15 1.43 1.42 1.38 1.22 1.09

Change (Date) 01/2003 12/2002 09/2002 03/2003 10/2002 07/2002 05/2002
——– Fund 15 Fund 16 Fund 17 Fund 18 Fund 19 Fund 20 ——–

Intercept Test 1.43 1.63 1.80 1.64 1.80 1.58 ——–

Slope Test 1.41 2.07 2.14 2.06 2.11 1.66 ——–
MJOINT

T Test 1.3 1.34 1.50 1.34 1.51 1.58 ——–

Change (Date) 11/2002 03/2003 01/2003 09/2003 03/2003 02/2002 ——–
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Table 3.10: Mutual Funds
Fund 1 Burnham Financial Industry C

Fund 2 Prudential Mid Cap Value M
Fund 3 Prudential Mid Cap Value X

Fund 4 Templeton Developing Market
Fund 5 Franklin Large Cap A

Fund 6 John Hancock Large Cap Equity A
Fund 7 John Hancock Large Cap Equity J

Fund 8 John Hancock Global Leader
Fund 9 Goldman Sachs Mid Cap Value Services

Fund 10 Goldman Sachs Growth Opportunities
Fund 11 Goldman Sachs Asia Equity B
Fund 12 Wells Fargo Omega Growth C

Fund 13 Wells Fargo Global Opportunities C
Fund 14 Wells Fargo Precious Metals A

Fund 15 UBS US Small Cap Growth A
Fund 16 UBS Global Equity C

Fund 17 UBS GLOBAL Equity (BPGEX)
Fund 18 UBS GLOBAL Equity (BNEBX)

Fund 19 UBS Global Equity (BNGEX)
Fund 20 Van Kampen Equity Growth B
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