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Abstract 

The mammalian visual range is approximately 400-700nm, although recent evidence 

suggests varying ultraviolet (UV) extensions in diverse terrestrial species.  UV sensitivity may 

have advantages in the dim, blue light shifted environment experienced by submerged 

marine mammals.  It may also be advantageous when seals are hauled out as UV is reflected 

by snow and ice but absorbed by fur, enhancing visual contrast. Here we show that the 

pelagic hooded seal (Cystophora cristata) has a highly UV permissive cornea and lens. Seals 

like other carnivores have a tapetum lucidum (TL) reflecting light back through the retina 

increasing sensitivity. The TL in this seal is unusual being white and covering almost the 

entire retina unlike that in other carnivores. Spectral reflectance from its surface selectively 

increases the relative UV/blue components >10 times than other wavelengths. Retinal 

architecture is consistent with a high degree of convergence. Enhanced UV from a large TL 

surface with a high degree of retinal convergence will increase sensitivity at a cost to acuity. 

UV electrophysiological retina responses were only obtained to dim, rod mediated stimuli, 

with no evidence of cone input. As physiological measurements of threshold sensitivity are 

log units higher than those for psychophysical detection, these seals are likely to be more 

UV sensitive than our results imply.  Hence, UV reflections from the TL will afford increased 

sensitivity in dim oceanic environments.    
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INTRODUCTION 

Hooded seals (Cystophora cristata) spend approximately 90% of their time submerged in 

oceanic waters, with the capacity to dive to >800m and to remain submerged for almost 1h 

(Folkaw and Blix, 1995). Hence, their visual environment is restricted as at progressive 

oceanic depths light becomes dimmer and spectrally shifted towards shorter wavelengths. 

However, significant amounts of UV penetrate several hundred meters and some deep-sea 

crustaceans on which these animals feed have visual pigments maximally sensitive to UV 

(Losey et al., 1999; Johnsen, 2004; Vantrepotte and Melin, 2006; Cronin and Frank, 1996).  

 

The mammalian visual range potentially extends from the UV to approximately 700nm, 

although the degree of UV sensitivity is variable (Review Bowmaker, 2008; Douglas and 

Jeffery, 2014). Many mammals have a single rod with maximum sensitivity around 500nm 

and two cone types, maximally sensitive at 415-460nm and 500-570nm. However, all marine 

mammals studied, except manatees, have lost their short wavelength cones leaving a single 

longer wavelength sensitive cone subtype present at very low density (Review Bowmaker, 

2008; Review Jacobs 1993; Crognale et al., 1998; Peichl et al., 2001). The reason for this may 

be that their migration from land to water was in muddy estuaries that absorbed shorter 

wavelengths. Hence, loss of short wavelength cones would not be disadvantageous (Peichl 

et al., 2001). This loss may also relate to the high scattering coefficients of short 

wavelengths in water that may confer disadvantage (Levenson and Dizon, 2003). 

 

Diving mammals may have specific mechanisms to enhance shorter wavelength sensitivity 

to take advantage of oceanic UV availability in an otherwise dim visual environment.  One 

such might involve the tapetum lucidum (TL), a reflective layer behind the central retina. 
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The TL normally has chromatic properties and usually occupies 20-30% of the central retinal 

area over which the retinal pigmented epithelium (RPE) lacks melanin allowing light to pass. 

In terrestrial carnivores it is commonly golden in reflection (Johnson, 1901; Walls, 1942).    

 

Here we ask if a deep diving seal has the ability to detect UV components present in oceans 

by measuring the spectral transmission of their optical media and their retinal sensitivity to 

UV. We aim to demonstrate that the chromatic properties of the TL, that have been largely 

ignored, may be key in tuning an animal’s visual system to a specific light environment.  

 

 MATERIAL AND METHODS 

 Animals 

Twelve 2-3 year old hooded seals (Cystophora cristata) weighing 84-94 kg were used. These 

were caught as weaned pups in the Greenland Sea pack ice (permits from The Royal 

Norwegian Ministry of Fisheries and The Royal Danish Ministry of Foreign Affairs) and kept 

at The University of Tromsø in large indoor sea water pools under light/dark cycles 

mimicking natural light conditions. Experiments were undertaken under Norwegian Animal 

Research Authority permit (no 3523). Animals were primarily used for experiments other 

than those reported here and tissues were harvested from them at the termination of 

these.  A series of experiments were undertaken primarily focused on the potential UV 

abilities of this animals visual system. The spectral transmission of 8 corneas and lenses 

were examined from 5 adult animals of both sexes from the same stock. Six animals were 

used to examine the TL and retina histologically in section and in whole mount. These 

included optical experiments to examine the TL spectral reflection to wavelengths between 

   
   

   
   

  B
io

lo
gy

 O
pe

n 
 

A
cc

ep
te

d 
m

an
us

cr
ip

t



360-670nm. An additional 5 animals were used in electrophysiology experiments where the 

electroretinogram was recorded to UV light.  

 

Measurements of lens and corneal spectral transmission 

Eyes (~5cm diameter) were enucleated at death and immediately frozen. Subsequently they 

were thawed and the corneas and lenses removed and washed in PBS.  The lens equatorial 

diameter was approximately 20mm and the axial thickness about 17mm. Lenses and 

corneas were air mounted in holders constructed of aluminium and containing a hole 

snuggly fitting either the lens or cornea.  This was placed in a standard quartz glass cuvette 

so that the tissue was in the middle of the measuring beam and scanned in 1nm steps 

between 300-700nm with a Shimadzu UV-2101PC spectrophotometer fitted with an 

integrating sphere.  Control experiments with mammals and fish showed no effect of 

freezing on lens transmission (Douglas and Jeffery, 2014). Transmission at 700 nm was set at 

100%. 

  

Histology of the TL and retina. 

 Eyes were enucleated at death and fixed in 10% formalin. Subsequently, the anterior 

chamber and lens were removed and the retina, RPE and choroid dissected free from the 

sclera in 4 eyes. This resulted in a whole mount preparation approximately 6.5cm in 

diameter. From this whole mount 9 regions were removed from central, equatorial and 

peripheral retina that were approximately 0.5-0.7cm2. These were dehydrated through a 

graded series of alcohols between two microscope slides, embedded in resin (Technovit 

7100, TAAB, UK), sectioned at 5µm, mounted onto slides, stained with toluidine blue and 

cover slipped. Regions from identified locations were also examined in from the RPE sheet. 
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Here the tissue was examined at X400 while wet and the number of cells containing 

pigment in the RPE were counted for central and peripheral regions. A total of 800 cells 

were examined in 2 preparations from 2 different animals within regions measuring 

0.04cm2. 

 

Analysis of the spectral reflection of the TL.  

Eyes from 2 seals where enucleated and fixed in 10% formalin as above. The anterior 

chamber and lens were removed and the retina dissected free leaving the RPE surface 

exposed. The RPE and attached choroid were removed, washed in phosphate buffer and 

photographed in whole mount at low power providing images of patterns of pigmentation. 

These preparations were then flat mounted in a large petri dish and kept moist. To examine 

the TL reflection across the spectral range of interest (350-700nm), a light source was 

constructed using LED’s embedded into a table tennis ball whose interior was coated in 

spectrally neutral white paint. The energy to each LED was matched,  providing similar 

output power within an integrating sphere at the following nominal wavelengths; 360, 375, 

425, 475, 510, 590, 630 and 670nm. The mean half power band width of the LED’s used was 

typically 20nm. We adopted this method of wavelength stimulation to examine the TL 

reflectance because the animals oceanic light environment is unlikely to be represented by a 

normal white light source as it spends ~90% of its time under the water. The internal 

reflections within the integrating sphere from the LEDs were collected via a fibre optic that 

could transmit them to the surface of the TL with an illuminated area of approximately 

5mm2 at a distance from the tissue surface of approximately 1.5mm. The fibre optic cable 

had a coaxial outer sleeve that collected the reflected light from the TL and fed it into a 

Ocean Optics spectrometer (USB2000+UV-VIS-ES) with a sensitivity range from 200-850nm. 
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Hence, the reflected light from the TL surface could be analysed in terms of its spectral 

components and their magnitude in relation to the stimulating wavelengths of the LED’s. 

The output of the spectrometer was fed into a PC that displayed the wavelength along the X 

axis and the magnitude of the reflected light along the Y axis and hence a relative spectral 

reflection of the TL.  Measurements of these reflections were made in strips running out 

from the centre of the retina with an X-Y micromanipulator in steps. These have been 

presented as an average as there was little variation irrespective of retinal location. 

However, it was not possible to take an average across retinae because while the profiles 

from different eyes were the same, their overall magnitude differed markedly. Hence, it 

would not have been possible to pool the data retaining a common Y axis. Approximately 10 

strips were analysed in two preparations from 2 different eyes from separate animals.  

These ran from central to peripheral retina using the optic nerve head as a landmark. 

 

An additional method was used to examine potential UV components of the TL reflection by 

imaging the total TL surface in situ in one cup under UV illumination. The eye cup with the 

cornea, lens and retina removed was washed in phosphate buffer and exposed to UV light in 

a dark room from a source containing UV LEDs at 360, 375 and 380nm. The total irradiating 

energy was 0.0005w/cm2 at a distance of about 20cm. This was imaged with a UV sensitive 

monochrome camera (Watec WAT-902h Ultimate) with an uncoated 25mm f1.9 Cosmicar 

lens. A Hoya U340 UV filter was placed over the camera lens blocking light above 380nm. 

The camera had been pre-calibrated against the UV LEDs prior to imaging the eye cup. The 

camera was sensitive down to approximately 350nm but attenuated UV by approximately 

50%. Hence, imaging in the UV provided conservative estimates of the UV reflectance. This 
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camera and filter arrangement had been used previously for UV imaging in the field (Tyler et 

al., 2014).    

 

Electrophysiology  

Seals were sedated with an intramuscular injection of Zoletil (1.2 mg/kg Forte Vet 

zolazepam/tiletamine, 100 mg/ml, Virbac, Carros Cedex, France) and a central venous 

catheter inserted into the extradural intravertebral vein, allowing supplementary sedation 

(0.2-0.3 mg/kg). This was also used to inject Propofol (0.5-1.0 mg/kg Propofol-Lipuro, 

10mg/ml, Braun Melsungen AG, Melsungen, Germany) to achieve anaesthesia allowing 

tracheal intubation and manual ventilation with isofluran (Forene, Abbott Scandinavia AB, 

Solna, Sweden) in air (0.75 -1.5 %) to maintain anaesthesia. Rectal temperature, heart rate 

and arterial oxygen saturation were monitored. Seals were warmed with a water-circulated 

heating table (40oC). After ERG testing, seals quickly recovered (within 10-15 min) and were 

observed for 2h before return to water.  

 

Methods for ERG recordings were similar to Hogg et al (2011) in reindeer where UV 

responses were explored in another large mammal lacking a UV opsin. The characteristics of 

the ERG examined are similar across most mammals that have been studied and these have 

also been undertaken previously in seals (Crognale et al., 1998).  Anaesthetised animals 

were dark-adapted for >30min. The left eye was dilated (tropicamide 1%, phenylephrine 

2.5%) and stabilized with scleral sutures and a gold foil corneal ERG electrode placed under 

the lid. LEDs (LUX EON. Phillips UK), were placed over the eye that were built into a tube 

with an internal reflective surface. ERGs were recorded to white light (420-620nm) to 

establish baseline responses confirming the presence of the main waves and their relative 
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timing. UV (372nm, 350nm, 330nm) stimuli were then delivered from a diode array at the 

rear of a 50mm diameter tube internally coated with a diffuse reflector. UV responses were 

recorded over energies from 1X10-6 µW to 46 µW cm2. Recordings were made sub 

threshold, and at increasing intensities to establish threshold responses. Amplitudes and 

peak times of a-wave and b-waves were measured. The a-wave is generated by 

photoreceptors and the b-wave by post-receptoral cells. To determine if UV responses were 

rod or cone driven their temporal characteristics were investigated using stimuli presented 

at progressive frequencies (Hogg et al 2011) at a stimulus intensity of 1.2 µW cm2, within 

the range of overlapping rod and cone function. Rods are unable to following flickering 

stimuli above approximately 15-18Hz, while cones are able to follow flicker at higher levels. 

Hence, this is a method of discriminating the photoreceptor origin of a response. 

 

RESULTS 

Ocular media let UV light enter the eye and reach the retina. The cornea and lens 

transmitted 55% and 46% of the UVA respectively at around 350nm (Fig. 1). Spectral dips, 

particularly at 410nm, are due to oxygenated blood that could not be removed from the 

tissue. This arose during enucleation and adhered while freezing and would not be present 

in vivo. 

 

The retina has a high pattern of convergence. Histological examination of the TL in section 

revealed that it was approximately 100µm wide and only changed marginally in thickness 

between the centre and the periphery. This is consistent with the TL providing a consistent 

reflection across a wide region of the retinal surface.  Generally the TL was around 30 

cuboid cells deep, but there was no indication of the reflective material within them that 
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forms the structural basis of the mirror (Walls 1942).  The thickness of the TL clearly 

provided a barrier to outer retinal perfusion. While the blood supply to the choroid was 

extensive, the supply to the outer retina only occurred in blood vessels that projected 

through the TL in an orthogonal pattern. These branched very tightly under the RPE (Fig.2).   

 

In the outer retina, the outer nuclear layer (ONL), which contains the photoreceptor nuclei, 

had a clear laminar structure and was around 100µm thick, contained approximately 11-13 

layers of individual cells.  This showed limited variation over the retinal surface, consistent 

with a lack of retinal specialisation. Outer segments were between 50-100µm in length.  

However, the inner nuclear layer (INL) was abnormal in comparison to the usual mammalian 

pattern.  There was no clear laminar structure so estimates of its thickness could not be 

provided. The innermost layer of the INL was the only layer that was relatively continuous, 

but only at the single cell level. In outer regions of the INL there were large gaps in the 

distribution of cells that contained no obvious structure or nuclei (Fig. 2). Similarly, ganglion 

cells were relatively rare. Those present had large amounts of Nissl substance indicative of 

high levels of protein synthesis (Fig. 3).  These architectural patterns are associated with a 

high degree of retinal convergence with a large photoreceptor population innervating 

relatively small bipolar and ganglion cell populations. These cellular patterns changed little 

between centre and periphery and were consistent across separate retinae examined.  High 

patterns of retinal convergence are likely to undermine acuity but will have advantage in a 

low luminance environment providing greater sensitivity.    

 

The tapetum lucidum. The whole-mounted low power tissue preparations of the RPE 

surface revealed unusual patterns of retinal pigmentation. In most mammals that have a TL, 
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retinal pigment is absent from the central retina, revealing the TL without interference from 

melanin.  This albino region is relatively small commonly account for around 25-35% of the 

retinal area (Walls, 1942; Johnson, 1902). In the seals examined here more that 90% of the 

retina was albino. Pigment was absent from the central retina apart from a few single cells 

that were in roughly circular patterns.  But melanin density in these RPE cells was very low. 

Similar patterns extended into the equatorial region (Fig. 3). In the periphery, pigmentation 

was more marked but still only a minority of cells contained melanin. Those cells that were 

pigmented appeared to have less melanin than commonly found in mammalian RPE but 

more than at central locations. This was reflected in their grey rather than black colour. RPE 

cells were large being approximately 30-40 µm in diameter.  Again, peripheral albino regions 

were often circular surrounded by a thin line of pigmented cells (Fig. 3). When the number 

of cells containing pigment were counted at central and peripheral locations in two eyes 

means of approximately 15 were found centrally, while means of approximately 145 were 

found in the periphery within a region of 0.04cm2, giving a ratio of approximately 1:10 

between the two retinal regions. It was not possible to estimate the percentage of 

pigmented cells at defined locations as it was not possible to identify the number of albino 

cells or their size.  

 

Tapetal reflections enhance UV. Reflectance measurements made using the integrating 

sphere containing a spectrum of LEDs (360nm-670nm) gave clear consistent patterns that 

varied little with eccentricity, consistent with the widespread albino pattern of retinal 

pigmentation. In each case there was a peak reflection recorded in association with a 

stimulating LEDs spectral output, but these relative reflections varied in their magnitude. 

Those above 510nm were of roughly similar magnitudes with the 475 and 670nm giving the 
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larger reflections compared to 510, 590, 630nm. But all of these were much smaller than 

the reflections to shorter wavelengths in association with stimulation at 360, 375 and 

425nm, where the relative increase of the reflectance was >10 times greater than at any of 

the longer wavelengths. Hence, the reflection from the TL differentially reflected the shorter 

wavelengths including the UV preferentially compared to the longer wavelengths (Fig. 4).  

 

In confirmation of the spectral measurements, UV photography in the absence of visible 

light showed clear UV reflections from the eye cup (Fig. 5). Here the eye cup was illuminated 

with 360and 380nm LEDs. As the camera attenuated 50% of the UV signal and had low 

resolution in the UV range, the image is a conservative representation of the degree of UV 

reflectance.   

 

The retina responds physiologically to UV. ERG UV responses were present and similar in all 

animals. At low luminance the first response detected was the prominent positive b-wave 

and with increasing UV stimulus intensity the b-wave amplitude increased, seen running top 

to bottom in Figure 6.  ERGs recorded to the three stimulus wavelengths show that less 

energy was required to elicit a response at 370nm compared the other UV wavelengths (Fig. 

6). All responses reported are within the rod mediated intensity range.  

 

At low luminance levels, only rods contribute to the ERG (Rushton and Powell, 1972; Nordby 

et al., 1984). With increasing stimulus intensity rod and cone responses interact, with 

increasing contributions from cones, although cone density in the seal is very low and 

confined only to L/M cones that are spectrally distance from the UV (Peichl et al. 2001).  

However, rods and cones have different temporal response characteristics, with rods not 
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responding above 15-18Hz (Hecht and Shlaer, 1936).  Hence, 370nm stimuli were used at 

increasing temporal frequencies to reveal if b-wave responses were rod or cone driven. 

Clear responses were obtained between 1Hz and 10Hz, but were not present at 15Hz (Fig. 6 

insert). Hence, there is no evidence that cones mediate the UV response.  Cone responses 

could, however, be recorded in response to white light at frequencies >15Hz used to 

established the ERG profile in each animal (not shown). 

 

 

DISCUSION 

This study reveals that UV passes through the hooded seal ocular media, and that there is a 

relative increase in the reflection of shorter wavelengths by the TL compared to those that 

are longer by more than a factor of 10.  Further, the seal retina responds to this light 

physiologically. UV light sensitivity was higher at longer UV wavelengths, where more UV 

enters the eye. Specific UV sensitive cone opsins have been documented in some small 

mammals (Review Bowmaker, 2008). UV sensitivity is likely to be a feature to a greater or 

less extent in a wide range of mammals that have ocular media permissive for it, but where 

there is no evidence of a UV specific opsin (Douglas and Jeffery. 2014). In such animals UV 

may drive both photoreceptor types (Hogg et al., 2011).  However, cones are very rare in 

seals and short wavelength cones are missing (Peichl et al., 2001). Hence, our UV responses 

in this animal were most likely rod mediated.  

 

The hooded seal lens is highly UV permissive.  Rodent lenses that are much smaller let 

through more UV. A mouse lens (diameter 3.85mm) transmits 81% of UVA (Douglas and 

Jeffery; 2014 and unpublished results). Such a lens scaled up to that of the seal would 
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transmit 46% of UVA, which equals the amount transmitted in the seal. Hence, per mm path 

length the seal lens is as transparent as that in mouse, which has a UV sensitive cone opsin. 

Interestingly, the reindeer, whose retina responds to UV (Hogg et al., 2011), has a lens that 

lets through less UVA (27%) than the seal lens, although it is significantly thinner (means 10 

mm vs 17mm). 

 

The mammalian visual range was thought to be limited to approximately 400-700nm in 

most species and to only extend into shorter wavelengths in a few smaller mammals that 

had UV sensitive opsins with peak sensitivities around 370nm (Review Bowmaker, 2008). 

But recently it has been shown that the ocular media of many mammals is to a greater or 

lesser extent UV permissive (Douglass and Jeffery, 2014). However, although Douglas and 

Jeffery (2014) examined 38 mammalian species including carnivores, aquatic mammals were 

not included in the analysis of both the cornea and lens. Even mammals lacking a specific UV 

opsin will be UV sensitive if the ocular media allow it to pass, as all visual pigments absorb 

significant amounts of UV if the energy level is sufficient. Hence, extension of the visual 

range into the shorter range will increase sensitivity to available light. In the seal this may be 

particularly significant due to its reduced light environment.    

 

The tapetum and seal vision. Our data show that the seal TL is effective at magnifying the 

relative UV component of incoming light. Measurements of reflected light from whole 

mount preparations showed that UV reflection was >10 times greater than any other part of 

the spectrum apart from at 425nm. These data are supported by eye cup imaging with a UV 

stimulus and a UV sensitive camera.   
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The TL varies considerably between mammalian species, having different structural forms 

and reflective material, consistent with it being an example of convergent evolution (Walls, 

1942). In the seal the TL is cellulosum, which is formed of layers of cells containing refractive 

material. The refractive material varies between different mammals, but here is likely 

formed of zinc-cysteine crystals common to carnivores. (Duke-Elder, 1958; Pedler, 1963; 

Lesiuk and Braekevelt, 1983).  But in other respects the seal TL is markedly different from 

that in other carnivores, particularly in its large size and lack of any colouration. Most 

carnivores, have a golden TL located in a defined region in the dorsal/temporal retina 

corresponding to the area centralis (Johnson, 1902; Walls, 1942). The striking feature in the 

seal is the almost complete absence of retinal melanin in most RPE cells. It is only found to 

any significant degree in a limited population of cells in the periphery where melanin density 

remains very low. We estimate that about 90% of the seal retina is albino. To match this, the 

TL did not thin noticeably towards the periphery resulting in an almost continuous pan 

retinal white reflective surface.    

 

In only two other species do we find a similar pattern of tapetal pigmentation and both are 

deep diving marine mammals, implying that this unusual feature affords advantage in deep 

oceanic environments.  Johnson (1901) published a comprehensive study of the TL in a large 

range of mammals. He describes the fundus of the sperm whale as “mottled with patches of 

dark grey”. Unfortunately, no other details are provided. How Johnson was able to image 

the fundus of this whale is not explained as the animals optics would cloud soon after death 

and it is unlikely that he imaged the eye while it was alive. Had he done so, this must have 

been with an ophthalmoscope as with all the other animals he studied, and hence his 

description must only be for the central retina. In contrast, ours analysis is for the complete 
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retina.  A comment regarding the absence of pigment over a large retinal area was also 

made for another deep diving seal, the Antarctic Weddell seal (Welsch et al., 2001). But the 

TL was not the primary interest of this study and there is no more than a brief comment and 

a single image taken in transverse section at low power.   

 

The absence of pigment over such a large area is likely to increase sensitivity due to a larger 

mirror for a second light pass, but at the price of reduced acuity as this will be associated 

with increased light scatter, particularly for the shorter wavelengths. This play off is 

reflected in the organisation of the retina. The seal retina has a significant photoreceptor 

population, but an impoverished INL and ganglion cell layer, consistent with a high degree of 

retinal convergence. This also appears to be the case for two other deep divers, the grey 

whale (Mass and Supin, 2007) and the Weddell seal (Welsch et al., 2001) who appear to 

have a similar INL. However, our statement in this respect is based on images in these 

publications rather than analysis of such features by the authors. But it does imply that two 

separate groups of aquatic deep diving mammals, a cetacean and a carnivore, have both 

made significant changes to their retinae, specifically reducing their inter neuron 

populations to increase convergence. Given that the TL covers such a large area and that it 

preferentially reflects shorter wavelengths that will have greater scattering coefficients, it is 

not surprising that the animal’s retina has evolved to maximise signal detection at the 

expense of acuity. Hence, the organisation of the TL and the architecture of the retina 

appear to have evolved to resolve a similar problem associated with limited light that is 

spectrally shifted.  
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While the seals eye appears to have undergone a specific evolutionary path, there is 

significant evidence that vision remains important to this animal while diving. Its eye is 

extremely well vasularised with counter-current vascular arrangements that are probably 

important in preventing excess heat loss while diving in cold waters (Folkow et al., 1988). 

Retinal perfusion in seals subjected to simulated diving in the laboratory declines only 

marginally compared with reductions of 80-90% for many other parts of the body (Zapol et 

al., 1979).  Blix et al., (1983) report that “the retina of the eye received the same perfusion 

after 10 mins submersion (120ml/min 100g) as before the dive”.  Further, while dark 

adaptation times in shallow diving seals are significantly better than in man being 

approximately 20 mins to reach maximum sensitivity, those of a deep diving elephant seal 

were only 6 mins (Levenson and Schusterman, 1999). This is approximately the time taken 

for this animal to dive 700m, which is a common foraging depth. This ability is likely due to 

the animal having a large highly contractile pupil. When fully dilated it will maximise 

sensitivity, but on the surface may contract to such an extent that rods may not fully bleach. 

(LeBouef and Laws, 1994). Hence, retinal function is likely to be of importance during diving.  

 

Retinal recordings. The data presented for the differential reflectance of the TL are 

consistent with that from our physiological recordings.  The only other large mammal in 

which UV responses have been recorded is the reindeer. Here both rods and cones respond 

to these short wavelengths (Hogg et al., 2011). Presumably at higher luminance this occurs 

via short wavelength cones, whose peak sensitivity is closest to UV at around 437nm. But 

such short wavelength cones are absent in seals, including the hooded seal studied here 

(Peichl et al., 2001). Visual pigments are described in habor seals (Phoca vitulina), where the 

single cone peak sensitivity is 510nm (Crognale et al., 1998). If hooded seals are similar, such 
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cones are unlikely to be UV responsive at the intensities used here as they are too long 

wavelength shifted, although we could stimulate them with white light (data not shown).  

Low cone density may also contribute to the reason why Levenson et al., (2006) failed to 

obtain cone responses in pinnipeds using ERG recordings. Consequently, hooded seals 

probably only respond to UV at low luminance where rods function. As they are at sea >90% 

of the time, and approximately 90% of this submerged (Folkow and Blix; 1995), these 

animals will be partially dark adapted most of the time and their small cone populations will 

be insensitive. This would be particularly true in winter.  

 

The oceanic light environment and seal vision. The optics of oceanic light are consistent 

with our ERG results.  Oceanic sunlight is attenuated with depth, although enough reaches 

about 1000m in clear water to allow vision in the most sensitive animals (Denton, 1990). 

The spectrum also becomes restricted towards the short wavelengths (Johnsen, 2004; 

Vantrepotte and Melin, 2006). Enough UV reaches depths of several hundred meters to 

allow its perception in some crustaceans with visual pigments maximally sensitive to it 

(Cronin and Frank, 1996). But at such depths light in oceanic environments has another 

source in the form of bioluminescence (Turner et al., 2009).  It is suggested that southern 

elephant seals (Mirounga leonina), uses this in prey localisation (Vacquie et al., 2012). 

However, UV is not produced by bioluminescence (Herring, 1983; Johnsen et al., 2012) and 

as such is unlikely to be relevant to our study. 

  

Enhanced UV sensitivity may also play a role above the surface. UV imaging has been used 

in seal aerial censuses (Lavigne and Oritsland, 1974) because UV is absorbed by their fur 

(Reynolds and Lavigne, 1981). Consequently, it enhances contrast against the UV reflecting 
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background of snow/ice, and for seals above the surface, this increases their ability to avoid 

polar bear (Ursus maritimus) predation as the bears white fur will absorb UV against a UV 

reflective background from snow and ice. For the same reason it will facilitate detection of 

conspecifics. This may be important when young are born in March when the sun remains 

low on the horizon, causing relatively high UV levels due to atmospheric Rayleigh scatter.  

 

We have shown that the anterior segment of hooded seal eyes are highly UV permissive and 

that their TL magnifies this spectral component, increasing sensitivity at the expense of 

acuity. The animals retina appears to have evolved along similar lines and these different 

factors contribute to retinal UV sensitivity.  However, we believe that seals may be much 

more UV sensitive than our data suggest as sensitivity thresholds measured with 

psychophysical methods are log units lower than those measured with physiological 

techniques similar to those employed here (Ruseckaite et al., 2011).  
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Figure 1.  Average spectral transmission profiles for 8 hooded seal corneas (red) and lenses 

(black) collected from 5 animals. Dotted line represents ± 1SD. Both corneas and lens 

transmitted UV down to approximately 300 nm.  The dip in corneal transmission at 

approximately 410nm was due to small amounts of blood on the cornea that could not be 

removed 
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Figure 2. Histological resin section of the seal retina and TL. The TL which is sandwiched 

between the retina and the outer choroid is composed of multiple horizontal layers. The 

outer nuclear layer (ONL) containing photoreceptor nuclei is regular and relatively normal in 

terms of the carnivore pattern. However, the inner nuclear layer is very unusual as it has no 

laminar structure and contains fewer cells than expected. Likewise there are few cells in the 

ganglion cell layer (GC) and those large enough to be neuronal contain large amounts of 

Nissl substance, consistent with elevated protein synthesis. The overall architectural pattern 

in this retina is one with a high degree of convergence. Abbreviations. BV, blood vessel. GL, 

ganglion cell layer. INL, inner nuclear layer. ONL, outer nuclear layer. OS, outer segments. 

TL, tapetum lucidum.  
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Figure 3 Low power hemi retinal image of the RPE surface showing the albino central and 

equatorial retina and pigment distribution in the periphery. The image corresponds to 

approximately half the retinal RPE area. The optic nerve head is to the top. Peripheral 

pigmentation is commonly circular around albino patches.  Some of the albino parches in 

the periphery have been marked with a star for identification. Similar faint pigment patterns 

can be seen more centrally. However, the majority of the retina is albino. Magnification X 

1.75. 
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Figure 4. The relative reflectance of the seal TL from 360nm-680nm.  The overall responses 

have been averaged to provide a smooth function. Relative reflections are much greater at 

the shorter wavelengths.  Hence the TL increases the relative reflection of short 

wavelengths. Data from 2 animals was very similar. In spite of the small amounts of pigment 

in the peripheral retina there was no obvious difference in the patterns of reflection from 

central and peripheral regions. The Y axis is a relative measure of the intensity of the 

reflection.  
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Figure 5. To confirm that there was a UV reflectance from the TL, an eye cup with the 

cornea, lens and retina removed was imaged in the dark with a UV sensitive camera with a 

filter over the lens blocking light above 380nm. This was illuminated with UV between 

360nm-380nm. A clear reflection can be seen from the inside of the eye cup. The brightest 

central spot is due to direction of reflection. The diameter of the eye cup opening is 

approximately 6cm.  Scale bar = 1cm. 
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Figure 6. ERGs recorded to UV stimuli at 330nm, 350nm and 370nm to increasing (top to 

bottom) stimulus intensity. ERGs at 330nm and 350nm are similar in amplitude. ERGs at 

370nm require less energy to elicit a response of similar amplitude. ERGs at 370nm are 

double the amplitude of ERGs at 330nm and 350nm. Data are representative for all animals. 

Insert: ERGs to UV stimuli (370nm) at increasing temporal frequencies (top to bottom).  

Responses are clear from 1 to 10 Hz but undetectable at 15 Hz. Similar data were obtained 

from 2 animals. Rod mediated responses do not extend beyond 15-18 Hz (Hecht and Shlaer 

1936: Kelly 1974). Hence, responses here were limited to rod function. 
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