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Optimal joint survival reinsurance: an efficient 
frontier approach 

Abstract
The  problem  of  optimal  excess  of  loss  reinsurance  with  a  limiting  and  a  retention  level  is
considered.  It  is  demonstrated  that  this  problem  can  be  solved,  combining  specific  risk  and
performance  measures,  under  some  relatively  general  assumptions  for  the  risk  model,  under
which  the  premium  income  is  modelled  by  any  non-negative,  non-decreasing  function,  claim
arrivals  follow  a  Poisson  process  and  claim  amounts  are  modelled  by  any  continuous  joint
distribution.  As  a  performance  measure,  we  define  the  expected  profits  at  time  x  of  the  direct
insurer  and  the  reinsurer,  given  their  joint  survival  up  to  x,  and  derive  explicit  expressions  for
their  numerical  evaluation.  The  probability  of  joint  survival  of  the  direct  insurer  and  the
reinsurer up to the finite time horizon x is employed as a risk measure. An efficient frontier type
approach  to  setting  the  limiting  and  the  retention  levels,  based  on  the  probability  of  joint
survival considered as a risk measure and on the expected profit given joint survival, considered
as  a  performance  measure  is  introduced.  Several  optimality  problems  are  defined  and  their
solutions  are  illustrated  numerically  on  several  examples  of  appropriate  claim  amount
distributions, both for the case of dependent and independent claim severities.

Keywords:  optimal  excess  of  loss  reinsurance,  probability  of  ruin,  Appell  polynomials,  joint
survival of cedent and reinsurer, expected profit, efficient frontier, copula functions
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1. Introduction

An upward trend in insurance and reinsurance  claims frequency and severity  has recently  been

observed, mostly due to catastrophic events,  such as hurricane Katrina in the USA in 2005 and

the  winterstorm Kirill  over  northern  Europe  in  2007,  causing  enormous  damage  to  households

and  infrastructure,  measured  in  billions  of  dollars.  As  a  result  of  this,  both  the  insurance  and

reinsurance  industry  suffered severe  losses,  (see  e.g.  Zanetti,  Schwarz and Lindemuth 2007 for

an up-to-date  account  on world largest  losses),  and some companies became even insolvent.  In

order  to  cope  with  increasing  future  catastrophic  risk,  the  industry  faces  the  necessity of

improving their internal risk models and especially, their implementation and use in the context

of  reinsurance.  In  particular,  it  becomes  more  clear  that  such  models  have  to  incorporate  the

interests  of  both  insurance  and  reinsurance  companies  in  order  for  them  to  maximize  their

chances of (joint) survival. 

Coherent with these developments are the recent attempts in the actuarial literature to introduce

joint  risk  and  performance  measures  which  can  be  used  in  determining  the  parameters  of  a

reinsurance contract. Such reinsurance optimality criteria were first considered by Ignatov et al.

(2004)  and  Kaishev  and  Dimitrova  (2006).  Along  with  these  studies,  extensive  research  on

optimal reinsurance solely from the point of view of the direct insurer is carried on. More recent

examples in  this  direction  are  the  papers  by Kaluszka (2004) and Verlaak and Beirlant  (2003),

who  study  mean-variance  optimality  criteria,  Gajek  and  Zagrodny  (2004a),  Cao  and  Zhang

(2007)  and  Balbás  et  al.  (2009)  who  look  at  general  risk  measures,  and  Guerra  and  Centeno

(2008), Liang and Guo (2007), Gajek and Zagrodny (2004b), and Schmidli (2004) where the risk

is measured by the probability of ruin. A summary on the variety of research techniques used in

setting optimal reinsurance arrangements and further references can be found in Centeno (2004),

Aase (2002), Ignatov et al. (2004) and Balbás et al. (2009).

Recently,  Ignatov  et  al.  (2004)  and  Kaishev  and  Dimitrova  (2006)  considered  a  reinsurance

optimality  model,  which  combines  the  (contradicting)  interests  of  both  the  cedent  and  the
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reinsurer  under  an  excess  of  loss  contract.  Under  this  model,  claims  generated  by  a  volume of

risks arrive according to a Poisson process and the two parties share each individual  claim and

the  total  premium  income  in  such  a  proportion  that  a  certain  joint  optimality  criterion  is

maximized (minimized). In their paper, Ignatov et al. (2004), assumed that claim severities have

any discrete joint distribution and considered a simple excess of loss without a policy limit. As a

joint  risk  measure  they  proposed  to  use  the  probability  of  joint  survival  of  the  cedent  and  the

reinsurer  up  to  a  finite  time horizon  and  derived  explicit  expressions  for  this  probability.  As a

joint  performance  measure,  the  expected  profit  of  each  of  the  parties  at  a  finite-time  horizon,

given their joint survival up to this instant has also been considered. 

The  model  has  been  extended  further  in  the  paper  by  Kaishev  and  Dimitrova  (2006),  where  it

was  assumed  that  claim  amounts  have  any  continuous  (dependent)  joint  distribution  and  the

excess  of  loss  has  a  retention  and  a  policy  limit.  Under  these  assumptions,  closed  form

expressions for the probability of joint survival have been derived. Based on these expressions, it

was  demonstrated  that  retention  and  limiting  levels  could  be  optimally  set  by  maximizing  the

probability  of  joint  survival,  given  the  premium income is  split  in  a  preassigned  proportion  or

alternatively,  an  optimal  split  of  the  premium  income  between  the  two  parties  could  be

determined, given fixed retention and limiting levels.

In  the  present  paper,  we  consider  the  model  of  Kaishev  and  Dimitrova  (2006)  and   propose  a

Markowitz  type efficient  frontier  solution to the  problem of optimally setting  the retention  and

limiting levels M  and L, so that for a given level of the probability of joint survival the expected

profits  of  the  two parties  are  maximized.  As  an  alternative,  it  is  proposed  to  use  an  optimality

criterion  which  provides  for  'fair'  distribution  of  the  expected  profits  based  on  the  agreed

allocation  of  the  premium  income.  In  order  to  implement  these  ideas,  we  derive  explicit

expressions  for  the  expected  profit  of  the  cedent  and  the  reinsurer  at  some  future  moment  in

time, given their joint survival up to this instant.

The  paper  is  organized  as  follows.  In  section  2,  we  briefly  introduce  the  model  and  recall  the

formulae  for  the  probability  of  joint  survival  of  Kaishev  and  Dimitrova  (2006).  In  section  3,
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explicit  expressions  for  the  expected  profits  of  the  direct  insurer  and the  reinsurer  are  derived.

The  optimality  problems,  which  incorporate  these  joint  risk  and  performance  measures,  are

formulated in section 4 and their  efficient frontier  solutions are illustrated.  Section 5 concludes

the paper with some comments on the results and possibilities of future research.

2. The excess of loss (XL) risk model of joint survival

2.1 The model

We  consider  an  insurance  portfolio,  generating  claims  at  some  random  moments  of  time.  The

claims inter-arrival times t1, t2, .... are assumed identically, exponentially distributed r.v.s with

parameter l.  Denote by T1 = t1,  T2 = t1 + t2,  ...  the sequence of random variables  representing

the  consecutive  moments  of  occurrence  of  the  claims.  Let  Nt = # 8i : Ti § t<,  where  #  is  the

number of elements of the set 8.<. The claim severities are modeled by the continuous r.v.s. W1,

W2, ..., Wk, ... with joint density function yHw1, ..., wkL. For convenience, we will introduce also

the  random  variables  Y1 = W1,  Y2 = W1 + W2,  ...  representing  the  partial  sums  of  consecutive

claim amounts.

It is assumed that the r.v.s W1, W2, ... are independent of Nt. Then, the risk (surplus) process Rt ,

at time t,  is given by Rt = hHtL - YNt ,  where hHtL  is a nonnegative, non-decreasing,  real function,

defined on +,  representing the aggregate premium income up to time t.  The function hHtL may

be continuous or not. If hHtL  is discontinuous, we define h-1HyL = inf  8z : hHzL ¥ y<.  Note that the

classical  case  hHtL = u + c t,  with  initial  reserve u  and premium rate  c,  is  included in this  rather

general class of functions hHtL.

In this paper, we will be concerned with the case when the insurance company wants to reinsure

its  portfolio  of  risks  by concluding an XL contract  with a  retention  level  M ¥ 0 and a  limiting

level L ¥ M .  In other words, the cedent wants to reinsure the part of each claim which hits the

layer   m = L - M ,  i.e.  each  individual  claim  Wi  is  shared  between  the  two  parties  so  that
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Wi = Wi
c + Wi

r,  i = 1, 2, ...,  where  Wi
c  and  Wi

r  denote  the  parts  covered  respectively  by  the

cedent and the reinsurer. Clearly, we can write 

Wi
c = minHWi, M L + maxH0, Wi - LL

and 

Wi
r = minHL - M , maxH0, Wi - M LL. 

Denote by Y1
c = W1

c, Y2
c = W1

c + W2
c, ... and by Y1

r = W1
r, Y2

r = W1
r + W2

r, ... the consecutive partial

sums of claims to the cedent and to the reinsurer, respectively. Under our XL reinsurance model,

the total premium income hHtL is also divided between the two parties so that hHtL = hcHtL + hrHtL,
where  hcHtL,  hrHtL  are  the  premium incomes  of  the  cedent  and  the  reinsurer,  assumed also  non-

negative, non-decreasing functions on +. As a result, the risk process, Rt, can be represented as

a superposition of two risk processes, that of the cedent

(1)Rt
c = hcHtL - YNt

c

and of the reinsurer

(2)Rt
r = hrHtL - YNt

r

i.e., Rt = Rt
c + Rt

r. Note that the two risk processes Rt
c  and Rt

r  are dependent through the common

claim arrivals and the claim severities Wi, i = 1, 2, ..., as seen from (1) and (2).

Under this model, explicit formulae for the probability of joint survival, PHTc > x, Tr > xL, of the

cedent and the reinsurer within a finite time interval @0, xD, x > 0, were derived by Kaishev and

Dimitrova  (2006).  The  moments,  Tc  and  Tr,  of  ruin  of  correspondingly  the  cedent  and  the

reinsurer are defined as 

Tc := inf  8t : t > 0, Rt
c < 0<,

Tr := inf  8t : t > 0, Rt
r < 0<.
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Clearly,  the  two  events  HTc > xL  and  HTr > xL,  of  survival  of  the  cedent  and  the  reinsurer  are

dependent  and  hence,  PHTc > x, Tr > xL,  is  a  meaningful  measure  of  the  risk  the  two  parties

share and jointly carry.

In section 2.3, we will define the expected profit for each of the two parties, given joint survival

up to time x, and show how this performance measure can be used in combination with the risk

measure PHTc > x, Tr > xL  in finding the optimal set of parameters related to an XL reinsurance

contract.

2.2 The probability of joint survival

There are two alternative optimization problems which have been stated in connection with the

XL contract, considered here. The first is, given M  and m are fixed, divide the premium income

hHtL  between  the  two  parties,  so  as  to  maximize  the  probability  of  joint  survival,

PHTc > x, Tr > xL.  And  alternatively,  if  the  total  premium income,  hHtL,  is  divided  in  an  agreed

way  between  the  cedent  and  the  reinsurer,  i.e.  hcHtL  and  hrHtL = hHtL - hcHtL  are  fixed,  set  the

parameters  M  and  L  of  the  XL contract  so  as  to  maximize  PHTc > x, Tr > xL.  Obviously,  both

optimization problems are  based solely  on the  joint  risk measure PHTc > x, Tr > xL.  To address

these problems, Kaishev and Dimitrova (2006) derived explicit expressions for PHTc > x, Tr > xL
given by the following theorems.

Theorem 1. The probability of joint survival of the cedent and the reinsurer up to a finite time x

under an XL contract with a retention level M  and a limiting level L is

(3)

PHTc > x, Tr > xL =

‰-l x 1 + ‚
k=1

¶

lk ‡
0

hHxL
‡

0

hHxL-w1

∫ ‡
0

hHxL-w1-...-wk-1

AkHx ; nè1, ..., nèkL yHw1, ..., wkL „ wk ...

„ w2 „ w1
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where

nè j = minHzè j, xL,  zè j = maxIhc
-1Iy j

cM, hr
-1Iy j

rMM, y j
c = ⁄i=1

j wi
c, y j

r = ⁄i=1
j wi

r, j = 1, ..., k,

wi
c = minHwi, M L + maxH0, wi - LL, wi

r = minHL - M , maxH0, wi - M LL, and

AkHx ; nè1, ..., nèkL , k = 1, 2, ... are the classical Appell polynomials AkHxL of degree k, defined by

A0HxL = 1, Ak
' HxL = Ak-1HxL, AkHnèkL = 0.

For further properties of Appell polynomials we refer to Kaz'min (2002). An alternative formula

for PHTc > x, Tr > xL is provided by the following

Theorem 2. The probability of joint survival of the cedent and the reinsurer up to a finite time x

under an XL contract with a retention level M  and a limiting level L is

(4)

PHTc > x, Tr > xL =

‰-l x ‚
k=1

¶

‡
0

hHxL
‡

0

hHxL-w1

... ‡
0

hHxL-w1-...-wk-2

‡
hHxL-w1-...-wk-1

¶

BlHzè1, ..., zèl-1, xL

yHw1, ..., wkL „ wk  „ wk-1 ... „ w2 „ w1

where

BlHzè1, ..., zèl-1, xL = ⁄j=0
l-1 H-lL j b jHzè1, ..., zè jL I⁄m=0

l- j-1 Hx lLm

m! M,  with  B0H ÿ L ª 0,  B1H ÿ L = 1,    l  is  such

that zè1 § ... § zèl-1 § x < zèl,

b jHzè1, ..., zè jL = ⁄i=1
j H-1L j+i zè j

j-i+1

H j-i+1L!  bi-1Hzè1, ..., zèi-1L , with b0 ª 1,

 zè j are defined as in Theorem 1. 

As  noted  in  Kaishev  and  Dimitrova  (2006),  the  above  two  expressions  can  be  used

interchangeably  and  depending  on  the  specified  parameters  and  the  software  used  for
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implementation either (3) or (4) can be faster and less computationally involved.

In  the  next  section,  we  will  supplement  the  risk  measure  PHTc > x, Tr > xL  by  a  performance

measure  and  in  section  3  we  will  demonstrate  how  the  two  measures  can  be  combined  into  a

single  optimization  problem,  which  incorporates  the  contradictory  goals  of  maximizing  the

profit and minimizing the risk of the cedent and the reinsurer.

3. The expected profit given joint survival

Under the general model of an XL contract with a retention level M  and a limiting level L, and

assuming  claims  have  any  continuous  joint  distribution,  we  will  be  concerned  here  with  the

profit  at  time  x,  each  of  the  parties  are  expected  to  make,  given  they  both  survive  up  to  x.

Considering  a  joint  optimality  criterion,  based  on  expected  profit  given  joint  survival,  is

reasonable since with the eventual ruin of either of the parties the XL reinsurance contract will

cease and this will affect the risk and profitability of the surviving party. So, obviously the two

parties  have  mutually  dependent  performance  with  respect  not  only  to  the  risk  they  carry  but

also  with  respect  to  their  expected  profits.  Expected  profit  assuming  joint  survival  was  first

considered by Ignatov et al. (2004) in the case of a simple XL contract with one retention level

and discrete integer-valued claims.

In  what  follows,  we  will  present  some  explicit  expressions  for  these  quantities  and  a  result

establishing the existence of values of M  and L such that the expected profits of the two parties

are  in  the  same  proportion  as  their  premium  incomes.  First,  we  will  introduce  some  useful

definitions and notation. Following Ignatov et al. (2004), we will define the profits at time x of

the  cedent  and  the  reinsurer,  correspondingly  as  the  values,  Rx
c  and  Rx

r ,  of  their  risk  processes,

given by (1) and (2), at time x. Denote by IA and IB the indicator random variables of the events

A = 8Tc > x<  and B = 8Tr > x<.  There exists  a  suitable  function fHu, vL  such that  the conditional

expectation  EHRx
c » IA, IBL =

a.s.
fHIA, IBL.  When  IA ª 1  and  IB ª 1,  we  obtain

fH1, 1L = E@Rx
c » HTc > x, Tr > xLD  which we will  call  the expected profit  of the cedent  at  time x,

8



given the two parties'  joint  survival up to time x.  Similarly,  E@Rx
r » HTc > x, Tr > xLD  denotes the

reinsurer's expected profit at time x, given its and the insurer's joint survival up to time x.

The  following  two  theorems  give  explicit  expressions  for  E@Rx
c » HTc > x, Tr > xLD  and

E@Rx
r » HTc > x, Tr > xLD correspondingly.

Theorem 3.  The expected profit  of the cedent at time x, under an XL contract  with a retention

level M  and a limiting level L, given the joint survival of the cedent and the reinsurer up to time

x, is

(5)

E@Rx
c » HTc > x, Tr > xLD =

hcHxL - :‚
k=1

¶

lk ‡
0

hHxL
‡

0

hHxL-w1

∫ ‡
0

hHxL-w1-...-wk-1

yk
c  AkHx ; nè1, ..., nèkL yHw1, ..., wkL „ wk ...

„ w2 „ w1>ì

:1 + ‚
k=1

¶

lk ‡
0

hHxL
‡

0

hHxL-w1

∫ ‡
0

hHxL-w1-...-wk-1

AkHx ; nè1, ..., nèkL yHw1, ..., wkL „ wk ...

„ w2 „ w1>

where yk
c, nè j, j = 1, ..., k and AkHx ; nè1, ..., nèkL  are defined as in Theorem 1.

Proof. In view of the definitions (1) and (2) of the risk processes Rt
c  and Rt

r, and expression (3)

for the probability of joint  survival,  we can express the unconditional expectation EHRx
c ÿ IA ÿ IBL

as

(6)

EHRx
c ÿ IA ÿ IBL =

e-x l :hcHxL + ‚
k=1

¶

lk ‡
0

hHxL
‡

0

hHxL-w1

∫ ‡
0

hHxL-w1-...-wk-1

hcHxL - ‚
i=1

k

wi
c  AkHx ; nè1, ..., nèkL

yHw1, ..., wkL „ wk ... „ w2 „ w1>
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Note that in equality (6), if k  claims have occurred up to time x, where k = 1, 2, ..., the profit of

the cedent at the end of the time horizon @0, xD is equal to hcHxL - ⁄i=1
k wi

c, and if no claims have

occurred,  i.e.  k = 0,  the  profit  is  equal  to  the  premium  income  at  time  x,  i.e.  hcHxL,  which  is

accounted  for  by  the  first  term  of  the  sum  in  (6).  The  unconditional  expectation  (6)  can  be

rewritten as

(7)

EHRx
c ÿ IA ÿ IBL = e-x l hcHxL 

:1 + ‚
k=1

¶

lk ‡
0

hHxL
‡

0

hHxL-w1

∫ ‡
0

hHxL-w1-...-wk-1

AkHx ; nè1, ..., nèkL yHw1, ..., wkL „ wk ...

„ w2 „ w1> -

e-x l :‚
k=1

¶

lk ‡
0

hHxL
‡

0

hHxL-w1

∫ ‡
0

hHxL-w1-...-wk-1

‚
i=1

k

wi
c AkHx ; nè1, ..., nèkL

yHw1, ..., wkL „ wk ... „ w2 „ w1>

For the conditional expectation E@Rx
c » HTc > x, Tr > xLD we have

(8)E@Rx
c » HTc > x, Tr > xLD =

E HRx
c ÿ IA ÿ IBL

PHT c > x, T r > xL

Substituting  (7)  and  (3)  in  (8),  and  after  cancelling  appropriate  terms,  recalling  the  notation

⁄i=1
k wi

c = yk
c, we obtain the assertion of the theorem.Ñ

Similarly, for the expected profit of the reinsurer we have
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Theorem 4. The expected profit of the reinsurer at time x, under an XL contract with a retention

level M  and a limiting level L, given the joint survival of the cedent and the reinsurer up to time

x, is

(9)

E@Rx
r » HTc > x, Tr > xLD =

hrHxL - :‚
k=1

¶

lk ‡
0

hHxL
‡

0

hHxL-w1

∫ ‡
0

hHxL-w1-...-wk-1

yk
r  AkHx ; nè1, ..., nèkL yHw1, ..., wkL „ wk ...

„ w2 „ w1>ì

:1 + ‚
k=1

¶

lk ‡
0

hHxL
‡

0

hHxL-w1

∫ ‡
0

hHxL-w1-...-wk-1

AkHx ; nè1, ..., nèkL yHw1, ..., wkL „ wk ...

„ w2 „ w1>

where wi
r, nè j, j = 1, ..., k and AkHx ; nè1, ..., nèkL  are defined as in Theorem 1.

Proof.  The proof  follows the  same lines  of  reasoning  as  in  Theorem 3,  replacing  the  premium

income and the claims to the cedent with the ones to the reinsurer.Ñ

Alternative  formulae  for  E@Rx
c » HTc > x, Tr > xLD  and  E@Rx

r » HTc > x, Tr > xLD  can  be  derived

using  expression  (4)  for  PHTc > x, Tr > xL  and  its  derivation.  They  are  given  in  the  next  two

theorems.

Theorem 5.  The expected profit  of the cedent at time x, under an XL contract  with a retention

level M  and a limiting level L, given the joint survival of the cedent and the reinsurer up to time

x, is
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(10)

E@Rx
c » HTc > x, Tr > xLD =

hcHxL - :‚
k=1

¶

‡
0

hHxL
‡

0

hHxL-w1

... ‡
0

hHxL-w1-...-wk-2

‡
hHxL-w1-...-wk-1

¶

yk
c BlHzè1, ..., zèl-1, xL

yHw1, ..., wkL „ wk  „ wk-1 ... „ w2 „ w1>ì

:‚
k=1

¶

‡
0

hHxL
‡

0

hHxL-w1

... ‡
0

hHxL-w1-...-wk-2

‡
hHxL-w1-...-wk-1

¶

BlHzè1, ..., zèl-1, xL

yHw1, ..., wkL „ wk  „ wk-1 ... „ w2 „ w1>

where zè j and BlHzè1, ..., zèl-1, xL are defined as in Theorem 2.

Theorem 6. The expected profit of the reinsurer at time x, under an XL contract with a retention

level M  and a limiting level L, given the joint survival of the cedent and the reinsurer up to time

x, is

(11)

E@Rx
r » HTc > x, Tr > xLD =

hrHxL - :‚
k=1

¶

‡
0

hHxL
‡

0

hHxL-w1

... ‡
0

hHxL-w1-...-wk-2

‡
hHxL-w1-...-wk-1

¶

yk
r BlHzè1, ..., zèl-1, xL

yHw1, ..., wkL „ wk  „ wk-1 ... „ w2 „ w1>ì

:‚
k=1

¶

‡
0

hHxL
‡

0

hHxL-w1

... ‡
0

hHxL-w1-...-wk-2

‡
hHxL-w1-...-wk-1

¶

BlHzè1, ..., zèl-1, xL

yHw1, ..., wkL „ wk  „ wk-1 ... „ w2 „ w1>

where zè j and BlHzè1, ..., zèl-1, xL are defined as in Theorem 2.

As  with  (3)  and  (4)  for  PHTc > x, Tr > xL,  the  expressions  (5),  (9)  and  (10),  (11)  can  be  used

interchangeably  and  depending  on  the  specified  parameters  and  the  software  used  for

12



implementation either of them can converge faster and be less computationally involved.

4. Combining the risk and performance measures in setting an optimal XL
contract

In  this  section,  we  will  illustrate  how  the  probability  of  joint  survival  up  to  time  x  and  the

expected  profits  at  time  x,  given  joint  survival  of  the  cedent  and  the  reinsurer  up  to  x,  can  be

used  in  combination,  correspondingly  as  risk  and  performance  measures,  in  order  to  set

(optimally)  the  parameters  of  an  XL  reinsurance  contract.  Our  approach  is  motivated  by  the

mean-variance, portfolio optimization model of Markowitz (1952), in which an efficient frontier

is found where the expected return from an investment portfolio over the investment horizon x is

maximized for a given level of risk, measured by the variance of the portfolio return. 

We  outline  and  discuss  several  alternative  approaches  of  solving  the  optimal  XL  reinsurance

problem.  The  solution  under  any of  them is  obtained  as  a  reasonable  compromise between the

contradictory  risk  and  performance  optimality  criteria.  On  one  hand,  it  is  in  the  interest  of  the

direct  insurance  company  to  possibly  maximize  the  risk  and  minimize  the  premium income  it

transfers  to  the  reinsurer.  On  the  other  hand,  the  reinsurance  company  aims  at  minimizing  the

risk  and  maximizing  the  portion  of  the  premium  it  charges.  In  this  way,  both  companies  are

aiming  at  optimizing  their  individual  risk  and  performance  measures.  At  the  same  time,  it  is

reasonable  to  assume  that  the  two  parties  are  rational  investors  and  hence,  are  interested  in

decreasing  their  joint  probability  of  ruin  and  increasing  their  expected  profits,  given  joint

survival. Here, we state three problems which illustrate different approaches for determining the

values  of  the  retention  and  the  limiting  levels,  M  and  L,  given  a  split  of  the  premium income

hHtL = hcHtL + hrHtL,  which  balances  the  conflicting  goals  of  the  cedent  and  the  reinsurer.  The

complexity of the expressions derived in Theorems 1 to 6 precludes the possibility of solving the

stated  problems  analytically  but  as  we  will  see,  finding  the  numerical  solutions  is

straightforward.  For  convenience,  throughout  this  section  we  will  use  the  notation  m = L - M

for the layer covered by the reinsurer.

13



In  order  to  exemplify  these  approaches,  formulae  (3),  (4),  (5),  (9),  (10)  and  (11),  given  by

Theorems 1 to 6, were implemented in Mathematica under two sets of model assumptions: one

with  independent  exponentially  distributed  claim  amounts  and  one  with  dependent  claim

severities,  modelled  by  a  Rotated  Clayton  Copula,  CRClHFHw1L, ..., FHwkL; qL,  with

F ª WeibullHa, bL marginals and dependence parameter q. In this way, we are able to study also

the  effect  of  dependence  on  the  choice  of  the  parameters  of  an XL contract.  In  both cases,  we

have assumed linear  premium income function hHtL = u + c t,  where u  is  the total  initial  reserve

and c is the total premium rate per unit of time. 

A  random sample  of  500  simulated  data  points  from a  bivariate  Rotated  Clayton  copula,  with

dependence parameter q = 1 and WeibullH2.12, 1.14L marginals is presented in Fig.1. One of the

properties of this particular type of copula is that it has an upper tail dependence and therefore,

in our context it models positive dependence between large claim amounts. We refer the reader

to Kaishev and Dimitrova (2006), where the expressions for a multidimensional Rotated Clayton

copula and its density, together with some further applications in modelling dependence among

claims severities, can be found.

0 0.2 0.4 0.6 0.8 1
u1

0

0.2

0.4

0.6

0.8

1

u 2

CRClHu1,u2;q L

0 1 2 3 4
W1

0

1

2

3

4

W
2

CRClHFHW1L,FHW2L;q L

Fig.  1.  A  random  sample  of  500  simulations  from  a  bivariate  Rotated  Clayton  copula,  with
dependence parameter q = 1, marginals F ª WeibullH2.12, 1.14L.

Being  able  to  calculate  PHTc > x, Tr > xL,  E@Rx
c » HTc > x, Tr > xLD  and  E@Rx

r » HTc > x, Tr > xLD,

the 'individual' approach of the cedent and the reinsurer for finding optimal values of M  and m,

given hHtL = hcHtL + hrHtL, can be formulated as follows.
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Problem 1. For fixed hHtL, hcHtL, hrHtL such that hHtL = hcHtL + hrHtL, find

(12)
max
M , m

E@. » HTc > x, Tr > xLD

subject to PHTc > x, Tr > xL = p .

The expectation E@. » HTc > x, Tr > xLD in (12) is taken with respect to either Rx
c or Rx

r .
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Fig.  2.  E@Rx
c » HTc > x, Tr > xLD  and  E@Rx

r » HTc > x, Tr > xLD  respectively  plotted  against
1 - PHTc > x, Tr > xL  in  the  case  of:  (a)  and  (b)  -  independent  claim  severities,  ExpH1L
distributed,  m = 0.0, 0.1, 0.2, ..., 1.0,  with  l = 1,  x = 2,  hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t,
cr = 0.5;  (c)  and  (d)  -  dependent  claim  severities,  CRClHFHw1L, ..., FHwkL; qL  distributed  with
F ª WeibullH2.12, 1.14L  marginals  and  q = 1,   m = 0.0, 0.05, 0.1, ..., 0.8,  with  l = 1,  x = 1,
hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t, cr = 0.775.

Solving Problem 1 simply means that the cedent and the reinsurer would choose points HM c, mcL
and HM r, mrL  respectively  from their  'individual'  efficient  frontiers.  The efficient  frontier  in  our

context is the set of dominant pairs of retention and limiting levels, HM , LL, in the sense that the
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latter  provide  the  highest  return,  measured by E@. » HTc > x, Tr > xLD,  for  a  chosen level  of  risk,

measured by 1 - PHTc > x, Tr > xL. 

The solution of Problem 1 is illustrated in Fig. 2, where it is assumed that the risk for each of the

two parties of the XL reinsurance contract is measured by the complement of the probability of

their joint survival up to time x. The probability of joint survival up to x in (12) should be fixed

by  the  cedent  and  the  reinsurer  to  an  acceptable  value  p  according  to  their  'joint'  level  of  risk

aversion.  It  is  obvious  that,  given  hHtL = hcHtL + hrHtL  and  fixed  level  p,  such  an  'individual'

approach  may not  lead  to  one  and the  same optimal  solution  HM , mL,  since  the  interests  of  the

two  parties  are  contradictory.  As  can  be  seen  from  Fig.  2, if

p = p* = max M , m PHTc > x, Tr > xL = minM , m H1 - PHTc > x, Tr > xLL  the  solution  to  Problem  1

will be one and the same for the two parties and will coincide with the solution of Problem 1 of

Kaishev  and  Dimitrova  (2006).  However,  as  seen  from Fig.  2  (a)  and  (b),  in  the  case  of  i.i.d.

Exp H1L  distributed  claim amounts for  instance,  if  p = 0.603 (the  vertical  blue line in Fig.  2  (a)

and  (b)),  the  reinsurer's  solution  is  any  pair  HM , 0L,  a  solution  which  is  unacceptable  for  the

direct  insurer  and  indeed,  leads  to  its  lowest  expected  profit  for  this  level  of  risk.  It  should  be

noted  that  in  the  ExpH1L  iid  case  for  example,  the  values  of  E@. » HTc > x, Tr > xLD  and

PHTc > x, Tr > xL  for the pairs HM , 1.0L,  HM , 1.1L,  HM , 1.2L,  … coincide, so the curves in Fig. 2

(a) and (b) are complete and do not extend further in any direction. 

Table  1.  Optimal  values  of  M  and  m,  maximizing  E@Rx
c » HTc > x, Tr > xLD  or

E@Rx
r » HTc > x, Tr > xLD  respectively  subject  to  PHTc > x, Tr > xL = 1 - p,  in  the  case of

independent  claim  severities,  ExpH1L  distributed,  with  l = 1,  x = 2,
hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t, cr = 0.5.

maxM ,m E@. » HTc > x, Tr > xLD p* = 0.551 p = 0.585 p = 0.603 p = 0.70
HM c, mcL H0.3, 0.3L H0.2, 0.4L H0.1, 0.4L H0.1, 1.5L
HM r, mrL H0.3, 0.3L H0.8, 0.2L HM , 0L H0.1, 1.5L

Tables 1 and 2 provide a list of solutions HM c, mcL  and HM r, mrL  of optimality problem (12) for

different levels p, in the cases of independent and dependent claims severities, illustrated in Fig.
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2  (a),  (b)  and  (c),  (d)  respectively.The  optimal  values  are  given  for  the  grid  considered.

However, they do not change significantly if the grid is refined, as our numerical tests confirm.

Table  2.  Optimal  values  of  M  and  m,  maximizing  E@Rx
c » HTc > x, Tr > xLD  or

E@Rx
r » HTc > x, Tr > xLD  respectively  subject  to  PHTc > x, Tr > xL = 1 - p,  in  the  case of

dependent  claim  severities,  CRClHFHw1L, ..., FHwkL; qL  distributed  with  F ª WeibullH2.12, 1.14L
marginals and q = 1, with l = 1, x = 1, hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t, cr = 0.775.

maxM ,m E@. » HTc > x, Tr > xLD p* = 0.509 p = 0.515 p = 0.54 p = 0.56
HM c, mcL H0.3, 0.5L H0.2, 0.4L H0.1, 0.6L H0.1, 0.8L
HM r, mrL H0.3, 0.5L H0.3, 0.4L H0.4, 0.3L H0.5, 0.2L
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Fig. 3. SRc and SRr  respectively plotted against 1 - PHTc > x, Tr > xL in the case of: (a) and (b) -
independent  claim  severities,  ExpH1L  distributed,  m = 0.0, 0.1, 0.2, ..., 1.0,  with  l = 1,  x = 2,
hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t,  cr = 0.5;  (c)  and  (d)  -  dependent  claim  severities,
CRClHFHw1L, ..., FHwkL; qL  distributed  with  F ª WeibullH2.12, 1.14L  marginals  and  q = 1,
m = 0.0, 0.05, 0.1, ..., 0.8, with l = 1, x = 1, hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t, cr = 0.775.
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It has to be noted that, instead of solving (12), an alternative 'individual' approach for each of the

two parties  could be to try and find their  set  of values HM ', m 'L  which gives the highest  'return

per  unit  of  risk  taken'.  The  latter  means  that  HM ', m 'L  would  provide  the  highest  Sharpe  ratio,

defined  as  SRc = E@Rx
c » HTc > x, Tr > xLD ê H1 - PHTc > x, Tr > xLL  and

SRr = E@Rx
r » HTc > x, Tr > xLD ê H1 - PHTc > x, Tr > xLL  respectively.  However,  this  would  again

lead to possibly two different optimal solutions, HM c ', mc 'L and HM r ', mr 'L,  for the direct insurer

and  the  reinsurer  respectively  and  therefore,  it  suffers  the  same  drawback  as  Problem  1.  For

instance, in Fig. 3 (c) and (d) we see that the combination H0.1, 0.5L gives the maximum value of

SRc, whereas max SRr is achieved for H0.3, 0.4L.

Another approach to the optimal reinsurance problem, which gives a common solution HM ', m 'L
for the two parties involved in an XL reinsurance arrangement, could be to use the total expected

profit of the cedent and the reinsurer as an optimization criterion for finding values of M  and m,

given hHtL = hcHtL + hrHtL. Namely, the optimality problem could be to find

(13)
max
M , m

 8E@Rx
c » HTc > x, Tr > xLD + E@Rx

r » HTc > x, Tr > xLD<

subject to PHTc > x, Tr > xL = p .
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Fig.  4.  E@Rx
c » HTc > x, Tr > xLD +E@Rx

r » HTc > x, Tr > xLD  plotted  against  1 - PHTc > x, Tr > xL  in
the case of: (a) - independent claim severities, ExpH1L distributed, m = 0.0, 0.1, 0.2, ..., 1.0, with
l = 1,  x = 2,  hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t,  cr = 0.5;  (b)  -  dependent  claim  severities,
CRClHFHw1L, ..., FHwkL; qL  distributed  with  F ª WeibullH2.12, 1.14L  marginals  and  q = 1,
m = 0.0, 0.05, 0.1, ..., 0.8, with l = 1, x = 1, hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t, cr = 0.775.

18



However, such a criterion seems not to be 'fair' with respect to both the cedent and the reinsurer,

since  as  can  be  seen  form  Fig.  4,  depending  on  the  level  p,  (13)  could  be  maximized  due  to

maximizing the  expected  profit  of  only  one  of  the  two parties  at  the  expense  of  the  other.  For

example,  when  p = 0.603  (the  vertical  blue  line  in  Fig.  4  (a))  a  solution  of  (13)  is  any  point

HM , 0L,  which  is  not  adequate  for  the  cedent,  as  has  been  already  mentioned  with  respect  to

Problem 1,  since it  pays a  non-zero reinsurance premium against  zero reinsurance coverage.  In

Fig.  4  (a)  and  (b),  the  contradictory  goals  of  maximizing  PHTc > x, Tr > xL  and  maximizing

E@Rx
c » HTc > x, Tr > xLD + E@Rx

r » HTc > x, Tr > xLD, as functions of M  and m, are also illustrated. 

In fact, optimality problem (13) does not explicitly take into account the information of how the

premium income hHtL is split between the two parties. The conditional on joint survival up to x,

expected  profits  of  the  cedent,  E@Rx
c » HTc > x, Tr > xLD,  and  of  the  reinsurer,

E@Rx
r » HTc > x, Tr > xLD, can be used in defining the following criterion for optimally setting the

XL levels M  and L, which takes into account the way in which hHtL is split and transfers it into

the ratio of the expected profits at time x.

Problem  2.  For  fixed  hHtL,  hcHtL,  hrHtL  such  that  hHtL = hcHtL + hrHtL  with  hcHtL = a hHtL,
hrHtL = H1 - aL hHtL,  0 § a § 1,  i.e.  given  that  at  any t ¥ 0 the  cedent  retains  100 a %  of  hHtL  and

the rest 100 H1 - aL % is taken by the reinsurer,  find values of M  and m such that

(14)
E@Rx

c » HT c > x, T r > xLD
E@Rx

r » HT c > x, T r > xLD = q

where

(15)q =
hcHtL
hrHtL

=
a hHtL

H1 - aL hHtL =
a

1 - a
.

In order to be able to address this optimality problem, we will use the explicit  formulae for the

corresponding  expected  profits  given  in  Theorems  3  to  6.  First,  we  will  prove  the  following

theorem, which states the existence of a solution to Problem 3.
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Theorem 7.  If  the  total  premium income,  hHtL = hcHtL + hrHtL,  is  shared  between the  cedent and

the  reinsurer  in  such  a  way  that  hcHtL êhrHtL = q,  for  any  t ¥ 0,  where  q ¥ 0,  then  there  always

exist M ¥ 0 and L ¥ M , such that

(16)E@Rx
c » HTc > x, Tr > xLD ê E@Rx

r » HTc > x, Tr > xLD = q.

Proof.  Varying  0 § a § 1  in  (15)  one  can  see  that  0 § q § ¶.  Applying  equations  (5)  and  (9),

established by Theorems 3 and 4 respectively, to express the numerator and the denominator of

the ratio in (16), it is easy to verify that, given hcHtL êhrHtL = q for any t ¥ 0, the expected profits

of the two parties will be in the same proportion, q,  if and only if

(17)

‚
k=1

¶

lk ‡
0

hHxL
‡

0

hHxL-w1

∫ ‡
0

hHxL-w1-...-wk-1

yk
c  AkHx ; nè1, ..., nèkL yHw1, ..., wkL „ wk ...

„ w2 „ w1 ì

‚
k=1

¶

lk ‡
0

hHxL
‡

0

hHxL-w1

∫ ‡
0

hHxL-w1-...-wk-1

yk
r  AkHx ; nè1, ..., nèkL yHw1, ..., wkL „ wk ...

„ w2 „ w1 = q

Note  that  the  numerator  and  the  denominator  in  (17)  depend  on  M  and  L  through  yk
c,  yk

r  and

AkHx ; nè1, ..., nèkL.  From  their  definitions,  given  in  Theorem  1,  it  can  be  seen  that  yk
c,  yk

r  and

AkHx ; nè1, ..., nèkL  are  continuous  functions  of  M  and  L,  and  hence  both  the  numerator  and  the

denominator in (17) are also continuous functions of M  and L. 

Varying M ¥ 0 and L ¥ M , the left-hand side of (17) takes the whole range of values from 0 to

¶, e.g. when M = 0, L = ¶ we have yk
c = 0, 0 < yk

r < ¶ for every k = 1, 2, ... and hence the left-

hand  side  of  (17)  is  zero.  On  the  other  extreme  when  M = L,  we  have  yk
r = 0,  0 < yk

c < ¶  for
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every k = 1, 2, ... and hence the left-hand side of (17) is infinity. Therefore, there should exist a

pair  M  and  L,  for  which  the  left-hand  side  of  (17)  will  be  equal  to  q  and  so,  the  ratio  of  the

cedent's  and the reinsurer's  expected profits  will  be equal  to q.  This completes the proof of the

theorem.Ñ

In  summary,  Theorem  7  states  that  there  always  exists  a  solution  to  Problem  2,  however  the

following remarks should be made.

Remark  1.  The  solution  to  Problem  2  may  not  be  unique.  There  may  exist  a  whole  curve of

combinations  of  M  and  m,  for  which  the  ratio  of  the  expected  profits  of  the  cedent  and  the

reinsurer  is  equal  to  q.  We  will  refer  to  it  as  the  'fair'  curve.  For  an  illustration  of  this

phenomenon  see  the  right  panels  in  Fig.  5,  6  and  7,  where  the  'fair'  curve  is  the  intersection

between  the  plane  q = hcHtL êhrHtL = const  and  the  surface

E@Rx
c » HTc > x, Tr > xLD ê E@Rx

r » HTc > x, Tr > xLD as a function of M  and m.

Remark  2.  The  numerator  and  the  denominator  in  (17)  coincide  with  the  unconditional

expectations  EAYNx
c ÿ IA ÿ IBE  and  EAYNx

r ÿ IA ÿ IBE  which  in  fact  are  the  unconditional  expected

aggregate  claim amounts  at  time x  of  the  cedent  and  the  reinsurer  respectively,  assuming they

both  survive  up  to  x.  So,  as  is  natural  to  expect,  in  order  for  the  expected  profits  to  be  in

proportion  q,  it  is  necessary  for  the  expected  aggregate  claim  amounts  to  be  in  proportion  q,

since the premium income, hHtL, has been shared in the same proportion.

Fig. 5. Solutions to the optimality Problem 2, in the case of independent claim severities, ExpH1L
distributed, with l = 1, x = 2, hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t, cr = 0.5, q = 2.1.
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Fig. 6. Solutions to the optimality Problem 2, in the case of independent claim severities, ExpH1L
distributed, with l = 1, x = 2, hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t, cr = 0.775, q = 1.

Fig.  7.  Solutions  to  the  optimality  Problem  2,  in  the  case  of  dependent  claim  severities,
CRClHFHw1L, ..., FHwkL; qL  distributed  with  F ª WeibullH2.12, 1.14L  marginals  and  q = 1,  with
l = 1, x = 1, hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t, cr = 0.775, q = 1.

As can be seen from the right panels of Fig. 6 and 7, given a fixed split of the premium income

q = hcHtL êhrHtL = 1  for  all  t ¥ 0,  the  value  of  m  which  lies  on  the  'fair'  curve  in  the  case of

dependence between the claim amounts (Fig. 7) may be either smaller or larger, compared to the

value  of  m  in  the  independent  case  (Fig.  6),  depending on the  retention  level  M .  For example,

for M = 0.2, in the case of i.i.d. claim severities m = 0.5, whereas in the case of dependent claim

sizes m = 0.4, which means that the size of the layer covered by the reinsurer is smaller for the

same fixed split of hHtL. Our experience shows that the effect of dependence modelled through a

copula function is complex and may be different for different choices of copulas, marginals and

values of the dependence parameter (for further comments see Kaishev and Dimitrova 2006).

Having a whole curve of solutions which provide for a 'fair' distribution of the expected profit at

x,  given  joint  survival  up to  x,  the  cedent  and the  reinsurer  face  the  necessity  of  choosing one

particular pair HM ', m 'L from the 'fair' line. In such a situation, the most natural choice would be
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the pair of values of the parameters HM , mL with the highest probability of joint survival, i.e. the

solution of the following problem.

Problem  3.  For  fixed  hHtL,  hcHtL,  hrHtL  such  that  hHtL = hcHtL + hrHtL  with  hcHtL = a hHtL,
hrHtL = H1 - aL hHtL, 0 § a § 1, so that hcHtL êhrHtL = q, find HM , mL for which 

(18)

min
M , m

@1 - PHTc > x, Tr > xLD

subject to
E@Rx

c » HT c > x, T r > xLD
E@Rx

r » HT c > x, T r > xLD = q .

It is clear that there always exists a unique solution to Problem 3. As illustrated in Fig. 8 (a) and

(b),  it  is  H0.2, 0.3L  in  the  case  of  i.i.d.  claim  sizes  and  q = hcHtL êhrHtL = 1.05 t ê0.5 t = 2.1,  and

H0.25, 0.5L in the dependent case with q = hcHtL êhrHtL = 0.775 t ê0.775 t = 1.
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Fig. 8. Solutions to the optimality Problem 3, in the case of: (a) - independent claim severities,
ExpH1L  distributed,  m = 0.0, 0.1, 0.2, ..., 1.0,  with  l = 1,  x = 2,
hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t,  cr = 0.5,  q = 2.1;  (b)  -  dependent  claim  severities,
CRClHFHw1L, ..., FHwkL; qL  distributed  with  F ª WeibullH2.12, 1.14L  marginals  and  q = 1,
m = 0.0, 0.05, 0.1, ..., 0.8,  with  l = 1,  x = 1,  hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t,  cr = 0.775,
q = 1.

Finally,  in  Fig  9,  we  give  a  plot  of  the   reinsurer's  versus  cedent's  expected  profits,  for  fixed

levels of the non-survival probability p = 1 - PHTc > x, Tr > xL, which provides a different point
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of view to the possible selection of values for HM , mL, such that the two profits are shared in an

appropriate proportion, different from the proportion, q, in which the premium income is shared. 
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Fig.  9.  Reinsurer's  versus  cedent's  expected  profits  for  different  levels  of  the  non-survival
probability  p = 1 - PHTc > x, Tr > xL,  in  the  case  of:  (a)  -  independent  claim severities,  ExpH1L
distributed,  with  l = 1,  x = 2,  hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t,  cr = 0.5;  (b)  -  dependent
claim  severities,  CRClHFHw1L, ..., FHwkL; qL  distributed  with  F ª WeibullH2.12, 1.14L  marginals
and q = 1, with l = 1, x = 1, hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t, cr = 0.775.

5. Comments and conclusions

In the present paper, we have shown how the problem of optimal XL reinsurance can be solved,

combining  specific  risk  and  performance  measures,  under  a  relatively  general  assumptions  for

the risk model. As a performance measure, we have defined the expected profits at time x of the

direct insurer and the reinsurer given their joint survival up to x, and derived explicit expressions

for their  numerical evaluation.  The results  of Kaishev and Dimitrova (2006) for the probability

of  joint  survival  of  the  direct  insurer  and  the  reinsurer  up  to  time  x  have  been  recalled  and

employed  as  a  risk  measure.  Three  optimality  problems  have  been  defined  and  their  solutions

have  been  numerically  illustrated  and  discussed  under  the  assumption  of  both  dependent  and

independent  claim  severities.  It  is  interesting  to  mention  that  the  effect  of  dependence  of  the

claim  severities  is  rather  complex  and  difficult  to  predict  based  on  purely  intuitive  reasoning.

Henceforth,  the  model  presented  here  provides  a  very  promising  framework  for  future

exploration  of  the effect  of  dependence on the  optimal choice  of the  parameters  of reinsurance
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contracts.  It  should also be noted that  inverse  optimality  problems in which the two parties  set

the retention and the limiting levels and seek for an optimal sharing of the total premium income

between  them  can  also  be  formulated  and  solved  using  the  techniques  and  the  formulae

described in sections 3 and 4.
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