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I. Introduction

Asymmetric dynamic responses are common in the time series empirical literature. For

instance, Beaudry and Koop (1993) show that positive shocks to the U.S. GDP are more

persistent than negative shocks. Poterba (1991) and Capozza et al. (2002) among others,

present evidence on the asymmetric responses of house prices to income shocks. The occur-

rence of these asymmetries call into question the usefulness of models with time invariant

structures as means of modeling such series. Quantile regression (QR) is a statistical method

for estimating models of conditional quantile functions, which offers a systematic strategy for

examining how covariates influence the location, scale, and shape of the entire response dis-

tribution, therefore exposing a variety of heterogeneity in response dynamics. Koenker and

Xiao (2006) introduced quantile autoregression (QAR) models in which the autoregressive

coefficients can be expressed as monotone functions of a single, scalar random variable. QAR

models are becoming increasingly popular, and there is a growing literature about estimation

of QR models for time series. Engle and Manganelli (2004) propose a quantile autoregres-

sive framework to model value-at-risk where the quantiles follow an autoregressive process.

Gourieroux and Jasiak (2008) study dynamic additive quantile model. Xiao (2009) proposes

QR with cointegrated time series. Recently, Xiao and Koenker (2009) studied conditional

quantiles for GARCH models using QR.1

The purpose of this paper is to generalize the Koenker and Xiao (2006) QAR framework

introducing exogenous stationary covariates and to provide an application to illustrate the

usefulness of the new model to study asymmetric behavior in time series. We develop a

quantile autoregressive distributed lag (QADL) model. The QADL model can deliver im-

portant insights about asymmetric dynamics, such as heterogeneous adjustments in time

1Koenker and Xiao (2004) study statistical inference in QAR models when the largest autoregressive
coefficient may be unity. Galvao (2009) develops tests for unit roots allowing for stationary covariates and
a linear time trend into the quantile autoregression model.
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series models where controlling for lagged regressors and exogenous covariates is important.

The approach proposed in this paper is different from that of Engle and Manganelli (2004)

because we use QR in the standard linear time series context, modeling the conditional

quantile function as linear and depending on past values of the dependent variable, instead

of modeling the quantile functions themselves as an autoregressive process. This reduces the

computational burden substantially. Moreover, the QADL model allows for some forms of

explosive behavior in some quantiles while maintaining stationarity of the process, as long

as certain stationarity conditions are satisfied on the whole distribution, while Engle and

Manganelli (2004) exclude this case.2

Note that QAR and QADL in time series have a different interpretation than that of

QR in cross-sectional data. In general, QR shows how a given quantile of the conditional

distribution of y depends on the covariates x. In the cross-sectional case, this can be in-

terpreted as the different effects that covariates exert on a given outcome for individuals on

that corresponding quantile of the conditional distribution. In a time series context, how-

ever, we estimate the conditional quantile function of a particular variable along time, for

instance aggregated variables such as GDP and consumption, index numbers, or as in the

illustration presented in the paper house price returns. Then, we interpret the conditional

quantiles function at a given time as different phases of the business cycle, where low and

high quantiles of the conditional distribution of price returns corresponds to periods of de-

clining and increasing prices respectively. This interpretation might also be used for output

gap, consumption growth or value-at-risk applications.

We illustrate the QADL model with an application to quarterly house price returns data

in the United Kingdom (UK). House prices volatility has claimed unprecedented importance

and there is a growing literature on this topic (for instance Muellbauer and Murphy, 1997;

2We do not consider the Xiao (2009) case where the variables are cointegrated, but rather we consider an
exogenous set of stationary covariates.
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Ortalo-Magné and Rady, 1999, 2006; Rosenthal, 2006). We argue that QR can be used to de-

scribe the asymmetric responses of house prices returns to income and interest rates shocks.

We interpret the conditional quantile functions as different phases of the market. High quan-

tiles correspond to a phase of unusually high conditional returns; while low quantiles to low

conditional returns. The results show that house price returns have an asymmetric autore-

gressive behavior, and that real GDP growth and interest rates have an asymmetric impact on

house prices returns along the quantiles. In addition, the results suggest high autoregressive

persistence in the extreme high quantiles. However, unit root tests reject the null hypothesis

of unit root on house price returns. Thus, the model seems to show global stationarity with

some persistence in unusually high returns. The inclusion of stationary covariates reduces

the asymmetric autoregressive responses but maintains the persistence in the high quantiles.

The interest rates have a negative impact on house prices returns, mostly significant for low

quantiles. This can be interpreted as the fact that the interest rates have an effect on stimu-

lating the demand in the real estate market when returns are low, but it does not deter house

prices booms. In addition, there is evidence that the impact of GDP on house prices presents

an asymmetric impact and it is stronger for low and high quantiles. For low quantiles, this is

interpreted as the fact that GDP growth reactivates the real estate market when returns are

low, while it might be contributing to house prices’ busts (as that in the early 1990’s where a

recession was accompanied by a significant decline in house prices). Moreover, it contributes

to sustaining house prices booms. In other words, periods of unusually high (conditional)

returns are very responsive to GDP growth. In this case, the conditional mean may be a

misleading estimator in periods of low and high conditional returns, which are those when

policymakers are more keen to intervene or to predict future behavior.

The rest of the paper is organized as follows. Section 2 presents the model, describes

the estimator and its asymptotic properties. Section 3 presents some Monte Carlo evidence.
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In Section 4 we illustrate the new approach by applying it to a house price returns dataset.

Finally, Section 5 concludes the paper.

II. QADL: model, estimation and inference

The autoregressive-distributed lag model is described by the following equation

yt = µ+

p∑
j=1

αjyt−j +

q∑
l=0

x′t−lθl + εt; t = 1, ..., n (1)

where yt is the response variable, yt−j is the lag of the response variable, xt is a dim(x)-

dimensional vector of covariates and εt is the innovation.3 The main aim of this type of model

is to emphasize alternative short-run dynamic structures. In addition, this class of models

also provides important long-run results that are of particular interest for inference about

the validity of a proposed economic theory. Nevertheless, the least squares models might be

insufficient to describe heterogeneity in the impact of the shocks in a given time series.

As in Koenker and Xiao (2006), let {Ut} be a sequence of independent and identi-

cally distributed (i.i.d.) standard uniform random variables, and consider the following

autoregressive-distributed lag process

yt = µ (Ut) +

p∑
j=1

αj (Ut) yt−j +

q∑
l=0

x′t−lθl (Ut) (2)

where α and θ are unknown functions [0,1]→ R that we want to estimate. Given that the

right hand side of (2) is monotone increasing on Ut, it follows that the τ -th conditional

quantile function of yt can be written as

Qyt (τ |=t) = µ (τ) +

p∑
j=1

αj (τ) yt−j +

q∑
l=0

x′t−qθl (τ) (3)

3We assume, for convenience, that each variable in xt have the same lag truncation, q. The case of
different lag truncation for each variable is immediate.
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where =t is the σ-field generated by {ys, xs, s ≤ t}.4 We refer to model (3) as the quantile

autoregressive distributed-lag of orders p and q (QADL(p, q)). Implicitly in the formulation

of model (3) is the requirement that Qyt(τ |=t) is monotone increasing in τ for all =t. A more

compact notation to describe model (3) is

Qyt (τ |=t) = z′tβ(τ) (4)

where zt = (1, yt−1, ..., yt−p, xt, ..., xt−q)
′ and β(τ) = (µ (τ) , α1 (τ) , ..., αp (τ) , θ′0 (τ) , ..., θ′q (τ))′.

It is important to emphasize that monotonicity of the conditional quantile functions

imposes some discipline on the forms taken by the coefficients. It requires that the function

Qyt(τ |=t) is monotone in τ in a relevant region of the =t-space. In some circumstances,

this necessitates restricting the domain of the dependent variables; in others, when the

coordinates of the dependent variables are themselves functionally dependent, monotonicity

may hold globally. The estimated conditional quantile function Q̂yt (τ |=t) = z′tβ̂(τ) is ensured

to be monotone in τ at zt = z̄, as noted in Koenker and Xiao (2006). However, this does

not guarantee that it will be monotone in τ for other values of z. Furthermore, because

we are using a linear model, there must be crossing sufficiently far away from z̄. It may be

that such crossing occurs outside the convex hull of the z observations, in which case the

estimated model may be viewed as an adequate approximation within this region. But it

is not unusual to find that the crossing has occurred in this region as well.5 As discussed

in Koenker and Xiao (2006), one can find a linear reparametrization of the model that does

exhibit co-monotonicity over some relevant region of covariate space. Recently, Gourieroux

4The transition from (2) to (3) is an immediate consequence of the fact that for any monotone increasing
function g and standard uniform random variable, U , we have Qg(U)(τ) = g(QU (τ)) = g(τ), where QU (τ) = τ
is the quantile function of U .

5It is easy to check whether Q̂yt
(τ |=t) is monotone at particular z points. To verify monotonicity for

a given z, one may compute this for several quantiles, and plot it against the sequence of τ . If there is a
significant number of observed points at which this condition is violated, then this can be taken as evidence of
model misspecification. Failure of the monotonicity condition might also imply that the conditional quantile
functions are not linear. In this paper, we assume that monotonicity of Qyt(τ |=t) in τ , for some relevant
region of =t-space, holds. We refer the reader to Gourieroux and Jasiak (2008), Neocleous and Portnoy
(2008), Koenker and Xiao (2006), and Koenker (2005) for more details about monotonicity in QR.
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and Jasiak (2008) propose a dynamic additive quantile model that ensures the monotonicity

of conditional quantile estimates.

The estimation procedure is based on standard linear quantile regression. Thus, estima-

tion of the QADL model (3) involves solving the following problem

min
β∈<1+p+(1+q)×dim(x)

n∑
t=1

ρτ (yt − z′tβ) (5)

where ρτ (u) = u(τ − I(u < 0)), as in Koenker and Bassett (1978). The details of the

proofs for consistency and asymptotic normality of the estimator, β̂(τ), are provided in

Galvao et al. (2009). Define the following elements: Ω0 = E(ztz
′
t) = limn−1

∑n
t=1 ztz

′
t, and

Ω1(τ) = limn−1
∑n

t=1 ft−1[F
−1
t−1(τ)]ztz

′
t, and let Σ(τ) = Ω1(τ)−1Ω0Ω1(τ)−1. The limiting

distribution of the QADL estimator for a fixed quantile τ is

√
n
(
β̂(τ)− β(τ)

)
d→ N(0, τ(1− τ)Σ(τ)).

In order to make appropriate inference it is necessary to estimate Σ(τ) consistently. Since

Ω0 involves no nuisance parameter it can easily be estimated as Ω̂0(τ) = 1
n

∑n
t=1 ztz

′
t. Let

ût(τ) = yt − z′tβ̂(τ), in order to estimate the matrix Ω1(τ), we follow Powell (1986)

Ω̂1(τ) =
1

2nhn

n∑
t=1

I(|ût(τ)| ≤ hn)ztz
′
t,

where hn is an appropriately chosen bandwidth, with hn → 0 and nh2
n →∞.6

In model (3) the choice of p and q is important. In order to select appropriate models

we suggest the use of BIC criteria, adapted to QADL along the lines suggested by Machado

(1993), which is based on the Asymmetric Laplace Distribution. At the median it uses the

criterion

BIC = n log σ̂ +
1 + p+ (1 + q)× dim(x)

2
log n

6In the simulations and application, we consider the default bandwidth suggested by Bofinger (1975),
hn = [Φ−1(τ + cn) − Φ−1(τ − cn)] min(σ̂1, σ̂2), where the bandwidth cn = O(n1/3), σ̂1 =

√
V ar(û), and

σ̂2 = (Q̂(û, .75)− Q̂(û, .25))/1.34.
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where σ̂ = n−1
∑
|yt − z′tβ̂(1/2)|. For other quantiles, the obvious asymmetric modification

of this expression can be used. In the example given in this paper we select the number

of lags based only on the median criterion, in order to have a comparable regression model

across quantiles. But, it is possible that there are applications in which this is not desirable.

General hypotheses tests on the vector β(τ) can be accommodated by Wald-type tests

(see Galvao et al., 2009). The Wald process and associated limiting theory provide a

natural foundation for the hypothesis Rβ(τ) = r, when r is known. Here R is a k ×

(1 + p+ (1 + q)dim(x)) matrix with rank k and r is a k-dimensional vector. This formu-

lation also accommodates a wide variety of testing situations, from a simple test on single

QR coefficients to joint tests involving several parameters and distinct quantiles. Thus, for

instance, we might test for the equality of several slope coefficients across several quantiles.

Another important class of tests in the QR literature involves the Kolmogorov-Smirnov (KS)

type tests, where the interest is to examine the property of the estimator over a range of

quantiles τ ∈ T , instead of focusing only on selected quantiles. Thus, for testing Rβ(τ) = r

over τ ∈ T , one may consider the KS type sup-Wald test.

III. Monte Carlo

In this section, we briefly present simulation experiments to assess the finite sample perfor-

mance of the QADL estimator. Two simple versions of the basic model (3) are considered

in the experiments. In the first version, reported in Table 1, the scalar covariate, xt, exerts

a pure location-shift effect, and the response yt is generated by the model

yt = αyt−1 + β1xt + β2xt−1 + ut. (6)

In the second, reported in Table 2, xt exerts both location and scale effects as

yt = αyt−1 + β1xt + β2xt−1 + (γxt)ut. (7)
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TABLE 1
Location-Shift Model: Bias and RMSE of Estimators

QAR QADL OLS ADL
τ 0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9 − −

N α 0.094 0.093 0.095 0.095 0.099 -0.006 -0.007 -0.008 -0.005 -0.006 0.095 -0.007
(0.136) (0.126) (0.130) (0.128) (0.138) (0.087) (0.076) (0.077) (0.076) (0.086) (0.111) (0.050)

β1 0.000 -0.001 0.000 0.007 0.000 0.001
(0.122) (0.109) (0.111) (0.108) (0.123) (0.072)

β2 0.006 0.006 0.006 0.000 0.010 0.005
(0.131) (0.115) (0.117) (0.114) (0.129) (0.076)

t3 α 0.110 0.086 0.090 0.082 0.105 -0.007 -0.006 -0.005 -0.006 -0.009 0.098 -0.007
(0.150) (0.113) (0.109) (0.111) (0.145) (0.087) (0.046) (0.045) (0.049) (0.086) (0.113) (0.050)

β1 0.000 0.001 0.001 0.001 -0.002 0.001
(0.131) (0.078) (0.071) (0.080) (0.131) (0.118)

β2 0.008 0.003 0.002 0.002 0.003 0.002
(0.136) (0.078) (0.075) (0.078) (0.141) (0.128)

Notes: RMSE in parenthesis. Sample size of n = 200. The number of replications is 5,000.

We employ two different distributions to generate the disturbances ut: N(0, 1) and t-

distribution with 3 degrees of freedom (t3). In all cases we set y0 = 0 and generate yt for

t = 1, ..., n according to equations (6) and (7), and in generating yt we discarded the first

100 observations, using the remaining observations for estimation. This ensures that the

results are not unduly influenced by the initial values of the y0 process. In the location case,

we generate the exogenous covariates, xt, using the same distribution as the innovations

ut. In the location-scale version, to avoid crossing, we generate covariates xt as χ2
3. In the

simulations, we use a sample size of n = 200, set the number of replications to 5000, and

consider the following values for the remaining parameters: (α, β1, β2) = (0.5, 0.5, 0.5) and

γ = 0.2. We compare the estimators’ coefficients in terms of bias and root mean squared

error (RMSE).7 We study four different estimators in the Monte Carlo experiments, the

QAR proposed by Koenker and Xiao (2006), the QADL proposed in this paper, the least

squares estimator (OLS), and finally, the least square distributed lag model (ADL). Finally,

we consider τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}.

Table 1 shows bias and RMSE results of the estimators for the location-shift model. For

QAR and OLS models we do not include the terms xt and xt−1 in the estimating equation.

7We refer the reader to Galvao et al. (2009) for a more detailed set of results on estimation, and small
sample properties (size and power) of the Wald and Kolmogorov-Smirnov tests.

8



TABLE 2
Scale-Location-Shift Model: Bias and RMSE of Estimators

QAR QADL OLS ADL
τ 0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9 − −

N α 0.090 0.113 0.143 0.173 0.190 -0.005 -0.005 -0.003 -0.005 -0.008 0.144 -0.005
(0.118) (0.136) (0.165) (0.192) (0.222) (0.066) (0.059) (0.060) (0.059) (0.067) (0.154) (0.042)

β1 0.009 0.004 0.002 -0.002 -0.012 0.002
(0.112) (0.094) (0.093) (0.094) (0.111) (0.049)

β2 0.005 0.002 0.002 0.003 0.000 0.002
(0.085) (0.075) (0.077) (0.075) (0.085) (0.053)

t3 α 0.066 0.075 0.084 0.100 0.105 -0.008 -0.006 -0.004 -0.005 -0.006 0.092 -0.008
(0.102) (0.096) (0.110) (0.125) (0.153) (0.070) (0.050) (0.047) (0.045) (0.079) (0.105) (0.062)

β1 0.011 0.003 0.003 -0.005 -0.004 -0.002
(0.185) (0.115) (0.106) (0.114) (0.187) (0.085)

β2 -0.005 0.001 0.001 0.005 0.012 0.006
(0.137) (0.088) (0.086) (0.088) (0.136) (0.089)

Notes: RMSE in parenthesis. Sample size of n = 200. The number of replications is 5,000.

The results show that, as expected, omitting the variables in QAR and OLS cases cause bias

in estimation. However, the QADL and ADL are approximately unbiased, with the QADL

unbiased along the quantiles. The results show that for the quantile regression models the

RMSE is larger for extreme quantiles in both distributional cases. This finding shows ev-

idence that, in general, it is more difficult to estimate the variance at the extreme of the

distribution. We compare RMSE of the least squares estimators with the median quantile

regression. In the Gaussian condition, the OLS based estimators outperform the quantile

regression estimators, that is, ADL has smaller RMSEs when compared with QADL, and

OLS has smaller RMSE when compared with QAR. Finally, for the non-Gaussian case, t3,

in terms of RMSE, the median quantile regression estimators outperform their least squares

analogues. Table 2 shows bias and RMSE results of the estimates of α and β for location-

scale-shift model. In all cases the QAR and OLS are biased and the QADL and ADL are

approximately unbiased. In this case, the results regarding RMSE are qualitatively similar

to the previous case.
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IV. Application: House Price Returns

There is an extensive literature on cross-sectional and time-series variation in house prices,

but this literature is marked by poor predictability. Mankiew and Weil (1989) find that the

Baby Boom had a large impact on the US housing market. By 1989 they predicted a future

slow down in the house market, which was not observed.8 In fact, house prices have shown

unprecedented values over the past 10 years. Increasing house prices had also importance

in the UK. The issue of affordable housing had claimed an increasing importance in the

public debate and the uncertainty about future prices is a concern of both policy makers

and researchers.9 Moreover, the fact that housing is a major component of wealth (Banks

and Tanner, 2002, show that real state accounted for 35% of aggregate household wealth in

the UK in the 1990s) and risky assets determines that house price changes have significant

effects on aggregate consumption (see for instance Campbell and Cocco, 2007).

The evolution of house prices was extensively studied in the UK by Muellbauer and

Murphy (1997), Ortalo-Magné and Rady (1999, 2006) and Rosenthal (2006) among others.

Those authors rigorously studied the booms and busts in the UK housing market until 2000.

In the past 50 years, there have been three major booms in the UK’s owner-occupied housing

market: in the early 1970s, in the late 1980s and the current housing boom. There were also

smaller booms in the 1960s and, more briefly, in the late 1970s, while the early 1990s saw a

bust on an unprecedented scale. Many factors conspired to produce the house price boom

of the late 1980s. Initial debt levels were low as were real house prices, giving scope for rises

in both. Income growth after the early 1980s recession was strong, as were income growth

expectations and these became more important as a result of financial liberalization, though

8“Our estimates suggest that real housing prices will fall substantially - indeed, real housing prices may
well reach levels lower than those experienced at any time in the past forty years.” (p.236)

9‘Our forecasts have not been for dramatic falls in house prices, but who knows?... anyone who thinks
that they can forecast asset prices is kidding themselves’. Rachel Lomax, Governor of Bank of England, The
Guardian, London, November 23, 2003, cited in Rosenthal (2006, p. 289).
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partly offset by bigger real interest rate effects. Wealth to income ratios grew and illiquid

assets increased enhanced by financial liberalization. Financial liberalization also permitted

higher gearing levels. Demographic trends were favorable with stronger population growth in

the key house buying age group. The supply of houses grew more slowly, with construction

of social housing falling to a small fraction of its level in the 1970s. Finally, in 1987-8 interest

rates fell and the proposed abolition of property taxes in favor of the Poll Tax gave a further

impetus to valuations.

The bust in the early 1990s was the result of the reversal of most of these factors. Interest

rates rose from 1988-90. The bust coincided with a general recession. Demographic trends

reversed. The revolt against the Poll Tax resulted in a new property tax, the Council Tax,

being reintroduced. Debt levels and real house prices had reached very high levels, while

wealth to income ratios then fell and recently experienced rates of return became negative

and made households more cautious. Mortgage lenders tightened up their lending criteria,

in a partial reversal of financial liberalization. Under these conditions, not even the major

falls in nominal interest rates that took place in the early 1990s, while real interest rates

remained high, were sufficient to revive UK house prices. However, the late 1990’s and the

new millennium showed an unprecedented increase in house prices, mostly concentrated in

the Southeast (i.e. London).

The conditional quantiles provide a complete picture of the distribution of house returns

conditional on past values. High quantiles correspond to unusually high conditional returns;

low quantiles correspond to busts in the conditional returns. We propose the application of

QADL to model house price returns in order to study the asymmetric behavior of this time

series. We are particularly interested in the autoregressive behavior of this series at different

quantiles, as well as the response to income shocks and the interest rate.

House price series are obtained from Nationwide mortgage data. Nationwide Building
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Society has a long history of recording and analyzing house price data and has published

average house price information since 1952 while the quarterly data used here started in

1973. It is the 4th largest mortgage lender in the UK by stock. The series used in this

application is the average price of a representative house, UK Quarterly Index. This series

is constructed by Nationwide using mortgages that are at the approvals stage and after the

corresponding building survey has been completed. Approvals data is used as opposed to

mortgage completions since it should give an earlier indication of current trends in prices in

the residential housing market. In addition, properties that are not typical and may distort

the series are also removed from the data set. The index controls for: location in the UK, type

of neighborhood, floor size, property design (detached house, semi-detached house, terraced

house, bungalow, flat, etc.), tenure (freehold/leasehold/feudal, except for flats, which are

nearly all leasehold), number of bathrooms (1 or more than 1), type of central heating (full,

part or none), type of garage (single garage, double garage or none), number of bedrooms

(1,2,3,4 or more than 4), and whether property is new or not.

The series in levels are shown in figure 1. Nominal prices provide a quick overview of the

magnitude of the increase in house prices. With an average value of £25,000 in 1975, the

latest estimate is close to £200,000. Even when adjusting by inflation, the recent increments

are significant. The current boom in house prices can be seen by the continuous growth in

the past 12 years. Overall, all series show a similar performance in terms of business cycle

patterns. The series show three different cycles over the past 35 years with spikes in 1980,

1990 and possibly in 2007. Interest rates are currently at a record low. Real house price

returns and real GDP growth series are shown in figure 2.

In the long run, we expect that house price variations depend on its past values and some

key economic variables. Based on Muellbauer and Murphy (1997) we propose an autoregres-

sive specification of quarterly house price returns in UK using the quantile autoregressive
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Figure 1: Time Series

Figure 2: Time Series
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distributed lag model. As additional covariates we use the Bank of England interest rates,

real GDP growth and dummy variables for quarter effects. The proposed model is given by

Qrt (τ |=t) = µ (τ) +

p∑
j=1

αj (τ) rt−j +

q1∑
k=0

γk (τ) gt−k +

q2∑
l=1

θl (τ) it−l

+ β1(τ)D1,t + β2(τ)D2,t + β3(τ)D3,t,

where rt is the real quarterly price return in period t, obtained as the difference in the natural

logarithm of house prices (deflated by the consumer price index), gt is the growth rate of

real GDP, it is the interest rates, and D represent dummy variables for quarter effects. Note

that when we exclude the covariates and the quarter dummy variables, we have back the

QAR model. Augmented Dickey-Fuller (ADF) tests are applied to these variables to check

for unit roots. The rt series has an ADF value of -3.91 with a corresponding p-value for the

null hypothesis of unit root of 0.012. it has an ADF value of -3.70 with a p-value of 0.026. gt

has an ADF value of -3.89 with a p-value of 0.017. Therefore, for all the variables we reject

the unit root null hypothesis.

We first estimate the QAR model using Koenker and Xiao (2006) methodology. We use

the BIC criteria as developed in Machado (1993) for τ = 0.5 to determine the number of lags

to be considered, and this suggests using a QAR model with p = 1. This is in line with Rosen-

thal (2006) findings that suggest that 2 to 3-month lags are enough to model monthly house

prices. Although not reported, we also apply the BIC criteria for a range of τ ∈ [0.05, 0.95],

and in general, the model with one lag is selected, which determines that the selection for the

median may be appropriate for the whole distribution. Next, we perform the QAR estima-

tion for several quantiles and the results appear in figure 3 (QAR(1) alpha), that plots the

coefficient estimates with 95% confidence interval. The results show a strong asymmetry in

the lag response. Unit-root like behavior is observed for high quantiles. However, when we

perform Koenker and Xiao (2004) QR unit-root tests for all τ ∈ [0.05, 0.95] we always reject
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Figure 3: Coefficient estimates

the null hypothesis of unit-roots. Then, overall, the QAR(1) process is globally stationary.

Next, we consider our suggested QADL model. Applying a similar BIC criteria we select

p = 1, q1 = 0 for GDP, i.e. the contemporaneous effect of GDP, and q2 = 0 for the interest

rate (although we exclude the contemporaneous effect, that is, we consider the interest rate

lagged one quarter only). The estimates shown in figure 3 (QADL(1,0) alpha) suggests that

the model still shows unit-root-like behavior only in the high extreme quantiles. However,

when we perform Galvao (2009) QR unit-root tests for all τ ∈ [0.05, 0.95] we always reject

the null hypothesis of unit-roots. That is, the model seems to show global stationarity with

higher persistence in unusually high shocks. Note that the inclusion of the covariates deter-

mines a more homogeneous increasing behavior of the α-coefficients along different quantiles

than that observed in the QAR model.

The interest rate has a negative impact on house price returns, although only statistically
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significant for low quantiles (see figure 3, QADL(1,0) theta). In other words, this variable

may have an effect to prevent busts, but it may not deter house price booms. Therefore, the

policy followed by the Bank of England of cutting the interest rate to prevent a house price

collapse may have the desired effect. A Kolmogorov-Smirnov test of the hypothesis that

supτ∈T θ1 (τ) = 0 gives a KS value of 12.8. Looking at Andrews (1993, p.840) the critical

values are 8.19, 9.84, 13.01 for 10%, 5% and 1% significance levels respectively. Therefore,

the interest rate has an effect different from zero at the 5% significance level.

Real GDP growth has a larger impact on low and high quantiles than for medium quan-

tiles (see figure 3, QADL(1,0) gamma). For low quantiles, this is interpreted as the fact

that GDP growth reactivates the housing market when returns are low, while it might be

contributing to house prices’ busts (as that in the early 1990’s). Moreover, it contributes

to sustaining house prices increments. In other words, periods of unusually conditional high

returns are very responsive to GDP growth. Note that the estimated coefficient for very

high quantiles is greater than 1, although not statistically different from this value except

for a few quantiles. Poterba (1991) and Capozza et al. (2002) among others, provide evi-

dence on the asymmetric responses of house prices to income shocks. The QADL estimates

present this feature of house prices to income shocks, but restricted to high quantiles. A

Kolmogorov-Smirnov test of the hypothesis that supτ∈T γ0 (τ) = 0 gives a KS value of 33.1,

which by the critical values discussed above show that the effect of GDP is not zero (as

expected from the figure). However, the hypothesis that supτ∈T γ0 (τ) = 1 gives KS=4.1.

Then, overall, the effect of GDP growth on house price returns is not different from 1.

In summary, the application illustrates the usefulness of the QADL process to model

asymmetric behavior in time series. Of particular importance are the asymmetries in the

slope of the lagged dependent variable and other covariates in both extreme low and high

quantiles. In this case, the conditional mean may be a misleading estimator in periods of
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extremely low and high conditional returns, which are those when policymakers are keener

to intervene or to predict future behavior.

V. Conclusion

We have developed a quantile autoregression distributed lag model (QADL). Quantile re-

gression methods provide a framework for robust estimation and inference and allow one to

explore a variety of forms of conditional heterogeneity under less compelling distributional

assumptions. The proposed model is able to accommodate exogenous covariates in the QAR

model. Monte Carlo simulations are conducted to evaluate the finite sample performance

of the QADL estimator. It is shown that the simple quantile autoregression estimator is

severely biased by omitting exogenous variables, while the QADL is generally unbiased. In

addition, the QADL approach outperforms the ordinary augmented distributed lag approach

in terms of root mean square error for non-Gaussian heavy tail distributions.

We illustrate the QADL model with an application to quarterly house price returns data

in the UK. The results show that house price returns have an asymmetric autoregressive

behavior, and that real GDP growth and interest rates have an asymmetric impact on house

prices variations along the quantiles. In addition, the results suggest that unit root behav-

ior is present only in the high extreme quantiles. Thus, the model seems to show global

stationarity with some persistence in unusually high returns. The inclusion of covariates

determines a more homogeneous increasing behavior of the autoregressive coefficients along

different quantiles than that observed in the QAR model, but maintains the persistence in

the high quantiles. The interest rate has a negative impact on house prices, mostly significant

for low quantiles. This can be interpreted as the fact that the interest rates have an effect on

stimulating the demand in the real estate market when returns are low, but it does not deter

house prices booms. In addition, there is evidence that the impact of GDP on house prices
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presents an asymmetric persistence and it is stronger for low and high quantiles. For low

quantiles, this is interpreted as the fact that GDP growth reactivates the real estate market

when returns are low, while it might be contributing to house prices’ busts. Moreover, it

contributes to sustaining house prices booms. In other words, periods of unusually high

returns are very responsive to GDP growth.
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