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Abstract: The problem of pole assignment, by static output feedback controllers has been
tackled as far as solvability conditions and the computation of solutions when they exist by a
powerful method referred to as global linearisation. This is based on asymptotic linearisation
(around a degenerate point) of the pole placement map. The essence of the present approach
is to reduce the multilinear nature of the problem to the solution of a linear set of equations.
The solution is given in closed form in terms of a one-parameter family of static feedback
compensators, for which the closed-loop poles approach the required ones as ε→ 0. The use of
degenerate compensators makes the method numerically sensitive. This paper develops further
the global linearisation framework by developing numerical techniques which make the method
less sensitive to the use of degenerate solutions as the basis of the methodology. The proposed
new computational framework for finding output feedback controllers improves considerably
the sensitivity properties by using a predictor-corrector numerical method based on homotopy
continuation. The modified method guarantees the maximum distance from the degenerate
point. The current numerical method developed for the constant output feedback extends also
to the case of dynamic output feedback.

Keywords: Linear systems; algebraic systems theory; degenerate compensators; global
linearisation.

1. INTRODUCTION

The Determinantal Assignment Problem (DAP) belongs
to the family of algebraic synthesis methods and has arisen
as the abstract problem formulation of pole, zero assign-
ment of linear systems (Karcanias and Giannakopoulos,
1984; Leventides and Karcanias, 1995) and thus unifies
the study of the corresponding frequency assignment prob-
lems of multivariable systems, which have a determinantal
character, under constant, dynamic centralised, or de-
centralised control structure. The DAP demonstrates the
significance of exterior algebra and classical algebraic ge-
ometry for control problems. The importance of tools and
techniques of algebraic geometry for control theory prob-
lems has been demonstrated by the work in (Brockett and
Byrnes, 1981) etc. The construction of constant output
feedback compensators that place the poles of a p−input,
m−output, n−state MIMO system, to arbitrary chosen
locations was always a challenging problem in Control
theory. It is a highly nonlinear problem and multi-linear in
the gain parameters and can be formulated as a problem of
solving the algebraic equations p(s) = det{D(s) + KN(s)}
(see Section 2 for the detailed problem formulation), which
is of the general DAP type (Karcanias and Giannakopou-
los, 1984). This equation has to be solved with respect to

K ∈ Rp×m, and contrary to the state feedback case, it
is not always solvable. In fact, a necessary condition for
its solvability has been given in (Wang, 1992) and states
that mp > n, where the triple m, p, n denotes the number
of outputs, inputs and states of the system respectively.
Although mp > n was proved to be a sufficient condition
(Wang, 1992) for the generic solvability of the problem,
the known constructive methods, such as dyadic or full
rank output feedback, work only in the restricted case, i.e.
when m + p − 1 ≥ n (Davison and Wang, 1975; Kimura,
1975). In (Leventides, 1993) a new constructive method
was developed that treats the general case mp > n. This
method is based on the asymptotic linearisation of the pole
placement map (Leventides and Karcanias, 1995, 1998) by
considering special sequences of feedback compensators,
which in the limit, converge to a so-called degenerate
compensator.
The advantage of this approach is that it asymptotically
reduces the overall pole placement map to a linear one
and thus reduces the overall solvability of the problem
to a linear set of equations. When the differential of the
related Pole Placement Map has full rank at the degenerate
compensator, then the problem can be solved. It has been
proved (Leventides, 2007) that this condition is satisfied
generically when the number of controller parameters ex-



ceeds the number of independent equations and can lead
to a numerical procedure for the construction of solutions.
The solutions worked out within the given framework are
given in a closed form and they are of the type of a
one parameter family of multivariable compensators. It
should be stressed that the approach is sufficient, but quite
general, given that the condition mp > n guarantees the
success of the method for a generic system. On the other
hand, a serious disadvantage of the method is that it is
based on approaching a degenerate point, which is a point
that the closed-loop system is not well defined; this has
the effect that although the poles of the closed loop system
are very close to the desired set, the sensitivity increases
considerably (in fact tends to infinity as ε→ 0).
The purpose of this paper is to improve the above lin-
earisation method around a degenerate point, so that the
desired set of poles can be approached whereas the feed-
back controller is far from the degenerate point and hence
achieving pole placement which is less sensitive. An equiv-
alent sufficient condition for arbitrary pole assignment is
that the linearisation matrix (referred also as “Blow-up”
matrix) should have full rank.
The paper is organized in the following way: Section 2
summarizes the theoretical background and results for the
Global Linearisation method established in (Leventides
and Karcanias, 1995) and formulates the constant DAP
problem as Static Output Feedback (SOF) pole placement
problem. In Section 3 the computational framework is
introduced and a proposed numerical algorithm based on
a Predictor-Corrector iterative method is presented which
guarantees the maximum distance from the degenerate
compensator. Finally, Section 4 contains the numerical
example and the discussion of results.

Notation: Throughout the paper the following notation
is adopted: If F is a field, or ring then Fm×n denotes
the set of m × n matrices over F . If V is a vector space
and {vi1 , . . . , vik} are vectors of V then vi1 ∧ . . . ∧ vik =
vω ∧, ω = (i1, . . . , ik) denotes their exterior product and
∧r V the r−th exterior power of V. If H ∈ Fm×n and
r ≤ min(m,n), then Cr(H) is the r−th compound matrix
of H.

2. GLOBAL LINEARISATION OF THE FREQUENCY
ASSIGNMENT MAP

The method of Global Asymptotic Linearisation was first
introduced in (Leventides (1993)) and further developed in
(Leventides and Karcanias, 1995, 1998). The methodology
was based on the remarkable property of the degenerate
gains of a feedback configuration to “blow up” sequences
of gains converging to them.

Problem Formulation: We consider linear systems de-
scribed by the m × p transfer function matrix G(s) with
McMillan degree n and represented by the right coprime
Matrix Fraction Description (MFD) G(s) = N(s)D(s)−1.

For the Pole Assignment (PA) problem by Static Output
Feedback (SOF) in the typical output feedback configura-
tion the closed-loop TF matrix is given by

Gcl(s,K) = [Im +G(s)K]−1
G(s)

and the closed-loop characteristic polynomial is obtained
by:
p(s,K) = fn(k11, ..., kmp)sn + fn−1(k11, ..., kmp)sn−1+

· · ·+ f0(k11, ..., kmp)
= det{D(s) + KN(s)}

(1)
where k11, ..., kmp indicate the entries of the output feed-
back matrix K ∈ Rp×m. Hence, the SOF-PA problem
involves the solution of (1) with respect to K ∈ Rp×m,
for an arbitrary given p(s) ∈ R[s], the so-called prime or
target polynomial.

�

The Frequency Assignment Map associated with the prob-
lem is the map assigning K to the coefficient vector p of
p(s), i.e.

F : Rp×m → Rn+1 : F(K) = p

For a system to have the arbitrary assignment property
the map F has to be onto. A more relaxed condition
for arbitrary pole assignment is that F is a dominant
morphism. It has been shown (Leventides and Karcanias,
1995) that it is sufficient to find a degenerate compensator
K0 such that the the differential of F evaluated at K0,
DFK0 , has full rank. Also, for a generic proper system with
p−inputs, m−outputs, n−states, represented by a transfer
function G(s) = N(s)D(s)−1 such that the condition
mp > n is satisfied, the map F is onto.

Degenerate gains were first introduced in (Brockett and
Byrnes, 1981) in their generalized form as follows:
Definition 1. A generalized gain rowspan[A,K] is degen-
erate if and only if it satisfies equation:

det{[A,K]M(s)} = 0, ∀s ∈ C (2)

�

Despite the fact the equation (2) is multilinear with
respect to [A,K], degenerate gains can be constructed
easily from the null-spaces of certain matrices (Leventides
and Karcanias, 1995). In the following, we denote by
M = colspR[s]{M(s)} the R[s]−module generated by the
columns of M(s).
Theorem 2. For the system represented by M(s) ∈
R[s](m+p)×p, a p−dimensional space D = rowspan[A,K]
corresponds to a degenerate gain, if and only if either of
the following equivalent conditions holds true:

(i) There exists a ((p+m)× 1) polynomial vector m(s) ∈
M such that [A,K]m(s) = 0,∀s ∈ C.

(ii) There exists a ((p+m)×1) polynomial vector m(s) ∈
M with coefficient matrix P such that the rank{P} 6
m.

�

Note that in the characterization of degenerate gains we
consider all possible gains (bounded and unbounded) and
we may classify them as:

(i) a finite degenerate gain if D = rowspan[A,K] such
that det(A) 6= 0;

(ii) an infinite degenerate gain if D = rowspan[A,K] such
that det(A) = 0;



Theorem (2) clearly, suggests that the parametrisation
of the family of degenerate solutions, i.e. all degenerate
gains, finite and infinite, is related to the properties of
the module M (Karcanias et al., 2013) and in particular
to the properties of minimal bases of M as these are
defined by the corresponding minimal indices and the
associated real invariant spaces (Karcanias, 1994, 1996).
The results produced in (Karcanias et al., 2013) for the
parametrisation of degenerate solutions will allow the
selection of appropriate degenerate solutions shaping the
properties of the Pole Assignment Map; how to choose the
optimal degenerate point with the desired properties as
far as spectrum assignment is currently being examined.
For the generic properties of the pole assignment map and
its relationship to system invariants see (Karcanias and
Giannakopoulos, 1984; Leventides and Karcanias, 1993;
Willems and Hesselink, 1978).
The importance of degenerate compensators is due to the
following:
Lemma 3. If there exists a degenerate matrix K ≡ K0 ∈
Rp×m such that the differential of the Frequency Assign-
ment Map is onto, then any polynomial of degree δ can be
assigned via some static compensator.

�

Having constructed a degenerate gain is the starting point
for our method and in order to achieve global linearisation,
it is essential to consider sequences of generalized gains:

S(ε) = [A,K] + ε[A1,K1]
that converge to the degenerate gain [A,K] as ε→ 0. For
the standard feedback configuration and using the gain
matrix

(A+ εA1)−1(K + εK1)
the closed loop polynomial has the same roots as:

pε(s) = det
{
S(ε)

[
D(s)
N(s)

]}
= det {S(ε)M(s)} (3)

where pε(s) tends to the prime polynomial p(s) as ε→ 0.

Remark 4. When rowspan[A,K] is a degenerate gain, the
prime polynomial p(s) is not unique and depends on the
direction [A1,K1] and as the following theorems state
(Leventides and Karcanias, 1995) the relation between
them is linear.

Theorem 5. Let rowspan[A,K] be a degenerate gain and
S(ε) a sequence of gains converging to it. Then the cor-
responding sequence of closed-loop polynomial coefficient
vectors

〈
p
ε

〉
converges as ε → 0 to a vector

〈
p
〉
∈ P (R)n

which depends on [A1,K1]; furthermore the function τ
which maps the direction [A1,K1] to

〈
p
〉

is linear.

�

The matrix representation of the linear map τ can be de-
duced from the next theorem (Leventides and Karcanias,
1995):
Theorem 6. Let D = rowspan[A,K] be a degenerate point
of a system defined by the composite coprime MFD rep-
resentation M(s); then the prime polynomial of the given
system with respect to D and the direction [A1,K1] = [bij ]
can be written as:

p(s) =
∑

(bij × pij(s)) (4)

where i = 1, 2, . . . , p, j = 1, 2, . . . , p + m and pij(s) is the
determinant of the p× p polynomial matrix Dij(s) having
the same rows as the matrix [AD(s) +KN(s)] apart from
the i−th, which is replaced by the j−th row of M(s).

�

The prime polynomial, in terms of its coefficient vector p
can be written in a linear matrix form as:

p = Lk (5)

where k is the vector formed by all the columns of the
direction [A1,K1] and L denotes the linearisation ma-
trix, i.e. the matrix representation of the linear map,
that is the coefficient matrix of the polynomial vector[
p11(s), p12(s), . . . , pp(p+m)(s)

]
as described in Theorem 6.

The theoretical background for the Global Linearisation
method has been established in (Leventides and Karca-
nias, 1995) for the constant output feedback problem,
where a theoretical procedure for the construction of (ap-
proximate) solutions is given; whereas in (Leventides and
Karcanias, 1998) the method is extended to cover the
dynamic output feedback problem as well.

3. COMPUTATIONAL SCHEME: THE
PREDICTOR-CORRECTOR METHOD

The Global Linearisation method for the SOF pole as-
signment problem is based on the results of Theorem 5.
The linearisation method, as a constructive method can
provide solutions which allows considerably large number
of states in the open loop system compared with the
existing ones and with feedback compensators which in
general are of low order. The disadvantage is that it has
inherent certain limitations which stems from the fact
that the method is based on a point of singularity of the
feedback configuration, that is the degenerate compen-
sator. Solutions close to the degenerate point, have infinite
sensitivity and they result to an explosion of the norm of
the sensitivity function [I +K(ε)G(s)]−1 and hence small
perturbations in the parameters may result to very big per-
turbations in the set of closed-loop poles. Thus, such solu-
tions, have only a theoretical significance. Using, however,
this degenerate compensator (which can be found easily)
and assuming that the resulting linearisation matrix is of
full rank, the following proposed numerical scheme can
be used iteratively to provide solutions in closed form far
from the degenerate compensator and thus with improved
sensitivity.
In the following, let k ≡ [kij ] = [k11, k12, . . . , kmp, . . . , kσ]T

with σ =
(
m+ p
p

)
− 1 be all the elements kij of the aug-

mented output feedback matrix K̃ ∈ Rp(m+p), stacked in
one vector, whose elements are defined as inhomogeneous
coordinates of the Grassmann space, Grass(p,m+ p) and
are constrained in Quadratic Plucker Relations (QPRs);
let also p = [1, a1, a2, . . . , an]T ∈ Rn+1 be the vector
contains all the coefficients of the target polynomial p(s)
we want to assign, i.e.

p(s) = sn + a1s
n−1 + · · ·+ an.



Let also define the differential of the Pole Placement
Map F as the (n + 1) × p(m + p) matrix, symbolized as
DFk, which is the Jacobian ∂Fi/∂kj , evaluated at a given
solution k.

Based on the above setting, the problem under investiga-
tion can be formulated as the integration of a high-order
differential equation which is defined as

DFk · k̇ = p , k(0) = K0 : degenerate point (6)
and therefore we can use numerical integration methods,
or homotopy continuation methods, in order to provide ad-
equate linearised solutions in a closed form. The following
numerical scheme proposed here guarantees the maximum
distance from the degenerate point by maximizing the
angle between the degenerate compensator and the final
one.

3.1 Numerical Scheme

Solution of (6) can be achieved by using a Predictor-
Corrector iterative scheme. The numerical procedure re-
quires as input data: the given MIMO (p,m, n)-system de-
scribed by the composite MFD M(s) ∈ R(m+p)×p; the real
coefficient vector p ∈ Rn+1 of the closed loop polynomial
to be assigned and the degenerate compensator K0 which
fulfils the pole placement equations at limit and can be
constructed easily as described in Section 2. The maximum
number of iterations, the step size ∆t and the degrees of
proximity (or tolerances) has to be given initially as well.

Before we start applying the Predictor-Corrector iterative
scheme and proceed to the computation of solutions, a
degenerate point which satisfies the necessary conditions
for pole assignment must be computed. This is a point of
singularity with infinite sensitivity where the closed-loop
characteristic polynomial is not well defined, however, we
use it as a starting point to calculate a series of solutions
with lower sensitivity far from the degenerate point by
tracing a holomorphic curve in Grass(p,m+ p).

Secondly, the initial step-size ∆t must be chosen in a
systematic way in accordance with the desired predictor
tolerance (etol1 ). For the particular degenerate point
(which fulfils the necessary condition for PA) and the
target closed loop polynomial a parametric function is
computed as:

f(ε) = coef{(K0 + εB) ·M(s)}
where B is the direction via we approach the particular
degenerate point. Next, the graph of

g(ε) =
∥∥∥∥f(ε)− ε · p

−

∥∥∥∥
is produced, which is the one shows the distance from the
curve of the target polynomial p as ε varies.
For the desired predictor tolerance (etol1 ) we would like
to have we choose the corresponding ∆t from the graph
g(ε). The corrector tolerance (etol2 ) should be smaller
than (etol1 ) and in particular we fix it as etol2 = γ · etol1,
where γ ' 0.02− 0.07.

Following that, the Pole Assignment Map F and the
differential of F at the degenerate compensator, DFK0 ,
needs to be calculated. If DFK0 has full rank then we
may proceed to compute the series of solutions Ki+1 for

i = 0, 1, 2, ... using the recursive scheme as described
below.

The Predictor-Corrector method consists of repeatedly
performing predictor and corrector steps. In our imple-
mentation we utilize the well known Euler method as
Predictor, as shown below:

Ki+1 = Ki + ∆t ·
[
DFKi

]† · p (7)
whereas for Corrector steps we will make use of a Newton-
type iterative scheme such as:

Kj+1 = Kj − [DFK
j
]†(F (Kj)− t · p) (8)

The basic steps of the algorithm in pseudo-code are given
in Algorithm 1.

Algorithm 1 Predictor-Corrector Iterative Scheme
Input: M(s), p(s), K0, etol1, etol2, ∆t and maxiter
Output: The Output feedback matrix K ∈ Rp×m
1: Compute the PPM: F
2: Compute the differential of the PPM: D(F ) ≡ DF
3: Ki ← K0

4: t← 0
5: for i = 0 to maxiter do
6: Evaluate the differential of the PPM at Ki, denoted

as DFKi

7: repeat
8: Ki+1 = Ki + [DFKi ]

† ∗∆t ∗ p
9: F (Ki+1)

10: dist = |F (Ki+1)− t ∗ p|
11: ∆t = γ ∗∆t, where γ < 1 // Step-size adaptation
12: until dist ≤ etol1
13: t← t+ (1/γ)×∆t
14: Kcor ← Ki+1

15: while dist > etol2 do
16: Compute the DFKcor

17: Corrector steps:
Kcor = Kcor − [DFKcor ]† ∗ (F (Kcor)− t ∗ p)

18: F (Kcor) // Calculate the PPM at Kcor

19: dist = |F (Kcor)− t ∗ p|
20: end while
21: Ki+1 ← Kcor

22: end for

Using as initial point of the method the degenerate com-
pensator K = K0 and starting the iterations from ε = 0
and gradually increase it (ε1 > ε2 > ε3 > · · · ) by using
the predefined step size ∆t we construct a series of static
compensators K1,K2,K3, ... etc.
As we have seen before, the bigger the εi the further away
from the degenerate compensator the solution Ki is and
hence with a less sensitivity. Iterations will be continued
until the stopping criterion is satisfied, which may be
one of the following: (a) maximum iterations; (b) solution
reaches a specified degree of proximity.

Remark 7. Note that since the matrix [DFK ] is not a
square matrix, in order to compute the solutions of (6)-(8)
we need to find the generalized inverse (or pseudoinverse)
denoted here by [DFK ]†. For that we use the Moore-
Penrose pseudoinverse given by A† = AT (AAT )−1.

For measures of sensitivity we consider the following:



(a) The norm of the Differential (or Jacobian)
∥∥∥D(F )K(ε)

∥∥∥
of the Pole Placement Map F evaluated at the final
compensator we found.

(b) The angle θ◦ between the degenerate point K0 and
the final (solution) compensator K(ε) obtained by

cos θ =
tr{K0 ·K(ε)}
‖K0‖ · ‖K(ε)}‖

(9)

As a measure of accuracy, the norm
∥∥∥∆p

∥∥∥ of the difference
of the closed loop polynomial pε(s) and the desired prime
polynomial p(s) is used.
The following Example illustrates the improved method as
described above.

4. EXAMPLE

Consider the proper multivariable system with p = 3
inputs, m = 4 outputs and n = 11 states defined by the
composite MFD:

M(s) =



s4 0 0
1 s4 s− 3

s3 + 1 s− 1 s3 − s2 + 1
s2 + 3 s2 + 1 2s2 − 1

s2 + s+ 1 s+ 1 s+ 1
s3 − 2 s3 + 2s− 1 2s2 + 3s

1 −1 s2 + s+ 1


=
[
D(s)
N(s)

]

(10)
A degenerate point for this system is defined by D =
rowspan[A,K] and calculated as:

K0 =

[ 0 1 0 −4 −9 0 8
0 −1 0 −2 −5 2 0
1 0 0 0 0 0 0

]

Let for simplicity the desired closed-loop characteristic
polynomial be set by p(s) = (s+ 1)11 with a real coef-
ficient vector

pT = [1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1]

Having constructed the degenerate compensator (i.e. the
starting point) the initial step size ∆t has to be selected.
For etol1 = 0.5(predictor tolerance), by using the pro-
duced graph g(ε), the corresponding step size should be
∆t = 0.55 and etol2 = 0.01 (corrector tolerance).

Using the method as described in Algorithm 1 for a maxi-
mum number of 1000 iterations we calculate a set of 1000
different solutions (static output feedback compensators).
The results we get are summarized next.
By observing the plot of the distance ‖∆p‖ in Figure (1)

of the closed loop polynomial from the prime polynomial
to be assigned we are able to select solutions for various ε
where the distance ‖∆p‖ is minimum. For instance, when
ε = 1000 the distance ‖∆p‖ 6 1.093191× 10−12.

As a result we get the augmented output feedback matrix,
selected for ε = 1000, [Ip,Kf ], where the output feedback
compensator Kf which places the poles at the exact
desired locations is given by:

Fig. 1. Distance of closed loop polynomial and the prime
polynomial to be assigned

Kf =

[ −2.772 −4.169 −0.133 6.697
49.885 76.095 1.195 −117.031
−29.299 −44.938 −1.474 72.484

]
(11)

with the corresponding closed-loop characteristic polyno-
mial as:

p(s) = s11 + 11s10 + 55s9 + 165s8 + 330s7 + 462s6+
+462s5 + 330s4 + 165s3 + 55s2 + 11s+ 1 (12)

One may verifies if compute the det{D(s)+KfN(s)}. It is
worth noting that the norm of the differential at the final
compensator is calculated∥∥DFKf

∥∥ = 316.7

whereas the norm of the feedback compensator in (11) is
‖Kf‖ = 70.189

and the angle (in degrees) between the degenerate com-
pensator K0 and Kf as defined in (9) is

θ = 46.8768
and guarantees the maximum distance from the degen-
erate point and hence the lower sensitivity solution. The
variation of angle θ for all the iterations is indicated in
Figure (2).
The advantages of the Global Linearisation framework in

Fig. 2. Angle θ between degenerate and final compensators

contrast with the conventional methods (eg. state-space or
LMI methods) are:



a) Provides linearised solutions (in linear matrix form)
which gives rise to apply numerical computational pro-
cedures;

b) Provides the geometric insight by investigating the
Grassmann invariant condition as proposed by (Karca-
nias and Giannakopoulos, 1984)

c) May be applied to a wide coverage of MIMO systems
for pole assignment due to the condition mp > n
in contrast with the m + p > n + 1 in state-space
conventional methods.

More precisely in the improved method presented here
has been developed an effective size adaptation, in order
to be able to handle and approximate successfully special
points on the curve (such as singular or turning points).
Current work involves the study of the convergence prop-
erties of the numerical method and the implementation
of additional objectives in order to achieve optimization
goals while achieving pole placement. Possible optimiza-
tion goals might be:

(i) The feedback matrix should have the minimum norm;
(ii) Minimum sensitivity objective;
(iii) Maximizing the controllability measure of the result-

ing closed-loop system.

5. CONCLUSION

An improvement of the global linearisation framework has
been introduced that reduces the overall sensitivity of the
methodology and its inherent dependence on degenerate
compensators by using a Predictor-Corrector numerical
method based on Homotopy continuation. The modified
method guarantees the maximum distance from the degen-
erate point. The proposed new computational framework
for finding output feedback controllers exploits an effective
adaptive scheme of the step size ∆t, in order to be able
to trace successfully complicated manifolds (curves) and
improves considerably the sensitivity properties of the
scheme. The algorithm can be readily extended to cover
the dynamic output feedback pole assignment problem
as well. Alternative numerical techniques which make the
method less sensitive to the use of degenerate solutions are
currently under investigation. The convergence properties
of the predictor-corrector method, as presented here, needs
to be examined as well in the near future. Furthermore,
the selection of the degenerate point around which global
linearisation is achieved is a possible factor that affects the
overall performance and convergence properties. Hence,
the optimal selection of degenerate points is still an open
issue which need to be further investigated in a systematic
way.
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