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On Systematic Design of Protectors for Employing OTS Items

Abstract

Off-the-shelf (OTS) components are increasingly
used in application areas with stringent
dependability requirements. Component wrapping
is a well known structuring technique used in many
areas. We propose a general approach to
developing protective wrappers that assist in
integrating OTS items with a focus on the overall
system dependability. The wrappers are viewed as
redundant software employed to detect errors or
suspicious activity and to execute appropriate
recovery when possible; wrapper development is
considered as a part of system integration.
Wrappers are to be rigorously specified and
executed at run time as a means of protecting OTS
items against faults in the rest of the system, and the
system against the OTS item’s faults. Possible
symptoms of erroneous behaviour to be detected by
a protective wrapper are classified and a list of
possible actions to be undertaken is discussed. The
information required for the wrapper development
is provided by traceability analysis. Possible
approaches to implementing “protectors” in the
standard component technologies are briefly
outlined.

1 Introduction

In this paper our focus is on developing new
techniques for improving the dependability of a
system built out of pre-existing items and for
assessing the improvements achieved. Use of off-
the-shelf (OTS) software promises reduced
development cost but raises some difficult
problems. There is a tendency to use OTS
components in an increasing number of application
areas, many of which have stringent dependability
requirements. The main problems in employing
OTS items in such areas are that they are not
reliable enough (or, there is not enough evidence to
support any reasonable claims on their reliability),
they do not have complete or correct specification,
and very often they are not used in exactly the
context they are intended for. New techniques
should be developed that allow designers to
systematically integrate OTS items into systems
without damaging their dependability or, if
possible, improving it.

Wrapping of OTS items is a promising approach to
dealing with many problems in employing OTS
software. We propose to introduce wrappers as a

means for improving the overall system
dependability by protecting system components
against each other’s faults. We use the word
“protectors” to designate this category of wrappers.
A number of general techniques have been
developed to achieve high dependability by
employing redundant software: N-version
programming, recovery blocks, self-checking pair,
etc. [LA90]. We view wrappers as redundant
bespoke software to be developed during system
integration. Within this approach the pair consisting
of an OTS item and its wrapper (protector) is
treated as a special fault tolerant architecture
bearing similarities with several of the general
architectures. We believe that protective wrapper
development is a complex engineering process that
needs general solutions.

Assessing the suitability of OTS items against high
dependability requirements raises concerns about
the availability and suitability of evidence.
Techniques for structuring and analysing safety-
related arguments have been developed [PRS98]
which employ information models and arguments
of traceability to deal with the evidence required
and generated during a project’s life. These
techniques have also been extended to address the
issue of “safe use” of OTS items [DR00]. Within
our approach traceability is employed to assist in
developing protective wrappers.

2 The Basic Architecture

Component wrapping is a well known structuring
technique that has been used in several areas. A
wrapper is a specialised component inserted
between the component and its environment to deal
with the flows of control and data going to and/or
from the component. The need for wrapping arises
from the fact that it is impossible or expensive to
change the components, or it is easier to add new
features by incorporating them into wrappers.
Wrapping is a structured and a cost-effective
solution to many problems in component-based
system development. Wrappers are usually
employed for improving non-functional properties
of the components such as adding cacheing and
buffering, dealing with mismatches or simplifying
the component interface. With respect to
dependability wrappers are used for ensuring
security, transparent component replication, etc.

Our focus is on developing protective wrappers that
can improve the overall system dependability by
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protecting both the system from the erroneous
behaviour of an OTS item and the item from the
erroneous requests from the system [V98]. Our
analysis shows that this development can be
complex process that requires rigour and discipline
and should be integrated into the process of the
development of the whole system.

Recent research in the area has addressed some
important issues but in our opinion there is a need
for systematic general solutions. Paper [VP98]
shows how to build wrappers using results of the
testing of the OTS item and of fault injection (at its
interface). This allows the wrapper to intercept
certain inputs and outputs and make their intended
recipients ignore them. Paper [O99] discusses how
OTS items can be used in safety critical systems
and proposes to completely isolate them from the
rest of the system using encapsulation mechanisms
(this approach cannot be applied when relying on
OTS items in delivering all types of services). A
very interesting approach to developing protective
wrappers for an OTS microkernel is discussed in
[SR99]. The idea is to specify the correct behaviour
of a microkernel and to make the protective
wrapper check all functional calls (note, that
approach cannot be applied for OTS items that do
not have the complete correct specification). In
addition, the results of fault injection are used to
catch calls that cause errors of the particular
microkernel. A similar approach is suggested
[KD99] for using the Ballista project’s results from
fault injection on different vendors’ POSIX
implementations. We do agree that known bug
reports should be used in developing wrappers
because it is often difficult to expect that the
vendors of the OTS item will correct it on request.
But it is well known that such approaches cannot
solve all problems in developing complex
dependable systems. Moreover, the proposed
solutions do not take into account many important
considerations. A typical assumption is that
wrappers themselves are “simple” (at least in
relation to the wrapped components) and that their
development is a trivial task. This is not always the
case: indeed, a wrapper is a piece of software like
any other and just as prone to defects as any other
software engineering artefact of comparable
complexity. Very often wrappers are complex
artefacts so that requiring them to perform
protection functions may make them more complex
or may be costly. Moreover, common failures of
protectors and the protected item should be taken
into account when developing the wrapper and
assessing the overall system dependability. We
believe that protective wrappers should be used as a
general error detection feature and as a systematic
means for attempting to deal with errors as early as
possible. This is why wrapper development needs a
systematic, disciplined approach.

The simplest system model of OTS use consists of
the OTS item to be integrated, the system in which
it is to be incorporated (we call it the Rest Of the
System - ROS, so that the system will consist of the
OTS item and the ROS), and the environment
controlled by the system. We assume that the OTS
item can be accessed via its declared interface only,
and the system designers may have no information
at all about the internal structure or behaviour of
such items (in practice, there is a continuum of
cases from "pure black box" situations to "clear
box" ones, like open source OTS items. Even the
latter pose some of the problems we have to deal
with while dealing with black boxes.)

3 Design of Protector

3.1 Acceptable Behaviour Constraints

There are many reasons why improved protection
(i.e. error detection and recovery) is important for
system integration [V98, VP98, W00]: the OTS
item’s specification can be incomplete; components
might not work as promised by their providers or
might have bugs; unspecified (non-standard)
features of the component might be used by the
ROS (this can, for example, affect compatibility e.g.
with future versions of the OTS item); the
environment (controlled system) may suffer
failuresthat cause non-obvious requests on the OTS
item; the ROS might misuse the component or the
component can output incorrect commands to the
controlled environment. In addition, depending on
the application context system developers might
decide not to use some part of the component
service or they might know specific restrictions on
input/output parameters. In these cases it may be
important to check these restrictions.

To design wrappers/protectors, system developers
(i.e. integrators) should "develop" their view on
what the OTS component and the ROS do and do
not do with respect to each other. We call this the
Acceptable Behaviour Constraints (ABCs) from the
viewpoint of the system developers. In particular,
the ABCs may specify the boundaries of situations
that can cause violations of the environment’s
safety and situations that are “suspicious” – those
for which the system designer has insufficient
evidence for believing that the system is behaving
correctly and is in a state in which it is likely to
continue behaving correctly. The ABCs should be
developed formally and systematically and,
afterwards, implemented in the protector.
Development of these constraints is an important
part of the methodology which should be used for
integrating OTS items: it may be supported by
assembling requirements from several viewpoints
(from the perspective of the ROS and that of the
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OTS item) and using traceability arguments to
assess the consistency of these viewpoints: Section
4 provides an overview of this assessment.

Having declared the ABCs, the designer takes usual
actions to tolerate detected errors (including the
“suspicious” situations – which might develop into
errors) or at least to mitigate their effects. The
conventional mechanisms for error detection,
containment and recovery and/or failure
compensation [LA90] are employed.

Our approach relies on existing research on
executable assertions [R92] and on design by
contract [M92]. There are some important issues to
be taken into account because these ideas cannot be
directly applied to developing protectors: mainly
because OTS items are black boxes and integrators
do not have their complete, correct specification.
Only some types of assertions [R92] are applicable
in our context: “consistency between arguments”,
“dependency of return value on arguments”, “frame
specifications”. But in our opinion these are based
on information of a very low level and more
complex, application-specific assertions should be
included in the ABCs of a component. Design by
contracts has a different purpose: in our context the
system designer develops a protector using his/her
view on the correct contract between the ROS and
the OTS item, rather than a contract accepted by the
OTS item’s designer, and on their correct behaviour
with respect to each other.

The various possible ingredients listed in ABCs are
alternative, partial descriptions of overlapping
views, not subsets in a universe that can be
described in one consistent language. General
sources of information that can be used are:

•  behaviour specification of OTS items as
specified by their designers;

•  behaviour specification of an OTS item as
specified by system designers (these two
descriptions must satisfy certain mutual
constraints for the system design to be correct,
but they will not be identical. E.g. the system
designer's description requires the OTS item to
be able to react to a set of stimuli that is a
subset of the set specified by the component
designer);

•   behaviour that the system designer expects
from an OTS item (not necessarily approving
it): i.e., he/she may know that that it often fails
in response to certain legal stimuli;

•  component (OTS or part of ROS) behaviour
that system designers considers especially
unacceptable, without knowing whether it is
likely or not ;

•  behaviour specifications of the ROS.

The specification of the protector should be
captured in an analysable (traceable) way, in the
same way as it is with the OTS item to be protected.
This makes it possible to reuse the protector with a
new version of the OTS item (or improve the
protector when the integrator's understanding of the
system improves) and check that assumptions made
are still valid.

The functionalities of protectors that ABCs have to
inform are summarised in the table of cues (Table
1) that a protector can be designed to use to
determine that some action is in order. The four
categories are not meant to be mutually exclusive,
nor exhaustive. These cues are usefully listed
separately as a checklist for system designers and as
they differ in the complexity of detecting them, how
strong an indication they are of something being
wrong, etc.
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Table 1

Category of cue of what possible unpleasant events

error
of
ROS

error
of
OTS
item

threat
for
ROS

threat
for
OTS
item

detection can
be
programmed
using
knowledge
about

input to OTS item:

the message is outside the domain (within the OTS item input
space, seen as space of possible histories of inputs) with which
system designers intended the OTS item to deal (may indicate
error by the ROS, or simply a behaviour foreseen by system
designers but intended to be considered as an exception)

Y Y system
design

the message is outside the domain for which the OTS item has
been judged "good enough to be trusted"

Y Y Y OTS item

the message is within a domain with which the OTS item is
known to have trouble coping

Y Y Y OTS item

the message is an illegal 'input' for the OTS item (incompatible
with the item specs as understood by system designer, irrespective
of previous history of interactions)

Y Y Y OTS item

the message is erroneous (incompatible - in view of the previous
history of interactions - with ROS specs as understood by system
designer) for the ROS to issue

Y Y Y ROS/system

the message is an illegal output for the ROS Y Y ROS

output from OTS item:

illegal output for the OTS item Y Y OTS item

erroneous output for the OTS item Y Y OTS item

risky for the ROS in view of the ROS known 'safety' envelope Y Y ROS

indicative of the OTS item having used functions/parts (of the
item itself) that we do not trust (either we lack positive evidence
of their being good enough, or we have positive evidence that they
are not)

Y Y OTS item

risky for system internally Y Y Y part of
system that
is threatened

In addition, designers have to specify what recovery
actions the protector should perform if the
component violates its ABCs. They can be directed
in either or both directions: to OTS item and/or to
ROS. Possible reactions are (the list is not
exhaustive, nor are these reactions mutually
exclusive:

•  report exception/error code, send a message to
the operator;

•  substitute the message with a "safe" one;

•  redirect the message to alternative destination
(e.g. a “trusted”, though less sophisticated fall-

back implementation of the OTS item’s
functions);

•  perform a simpler version of the OTS item’s
function (as above), provided by the protector
itself;

•  let the message through, but schedule extra
checks for the subsequent behaviour of the
recipient;

•  re-try of previous interactions that led to the
current message;
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•  undo (compensation) but only using the
standard OTS item interface;

•  perform damage assessment (using the standard
interfaces only);

•  put OTS item and/or ROS into a consistent
known state (experience shows that OTS items
are very often left in unknown inconsistent
states when they signal errors [KD99, SR99])

•  switch OTS item off end repair it off-line

•  replace failed OTS item with a new one.

Note that with any of the above, the designer may
want to:

•  initiate state restoration activity for the
suspected erroneous party, e.g. prepare to
reset/restart party, or run an audit program, on
internal state

•  log the event in a log which is used in
interpreting severity of future cues (essentially,
reconfiguring the cue detecting functions).

Some of these actions imply additional design
precautions; e.g., several require precautions to
preserve consistency between the computation
histories seen by the OTS item and the ROS; retry
of an action may mean re-sending to the originator

of the suspect message the last message that caused
it to send the suspect message. Some of these
reactions may require complex implementations and
designers may decide to exclude them a priori to
avoid the risk of getting them wrong.

3.2  Example

To demonstrate our approach let us consider a
simple example. The application considered is
illustrated in Fig. 1. The controlled “environment”
is a boiler, controlled via sensors (pressure (P), and
temperature (T)) and actuators (controlling a
heating burner which can be ON/OFF, and
inlet/outlet valves) for controlling it. Smart sensors
and actuators are used which use the IEEE 488
interface. The OTS item (“OTS” for brevity) is a
PID controller, that is a card which also implements
IEEE 488 interface. The wrapper is placed between
the smart sensors/actuators and the PID controller.
The wrapper implementation can be either partially
in hardware (something that breaks the physical
connections and therefore can insert altered
messages) or purely in software (if this allowed by
either ROS or OTS item). The protocols required by
the sensors/actuators are completely known (e.g.,
the precision used to encode the input/output signal,
message formats, etc.) to the system integrator, and
so is the environment.

Fig. 1. An example of integrating an OTS item into a system

  Wrapper
ROSBoiler system

Temperature (T)

Pressure (P)

sensors

actuators

OTS item (a PID
controller)
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 Table 2

Types of cues Examples

Output from ROS is illegal per the system
designer’s specification of system operation

P and T are outside the envelope of values anticipated by system designer

Input to OTS for which OTS is not fully trusted Measured derivative of T or P is beyond a certain value which is the
maximum value for which the OTS has been tested

Input to OTS for which OTS is known to be
untrustworthy

T (or) P (or their derivatives) close to boundaries specified for the PID
controller, but for which system designer knows from user groups that
PID has trouble in some cases.

Illegal output from ROS (according to ROS’s
own specification)

Syntax error in messages exchanged over the 488 bus

Detectably erroneous output from OTS ‘OFF to the burner when the T is low and falling’

Output from ROS is detectably erroneous ROS sampling rate suddenly increases past specified rate

Output from OTS that is likely to violate
implementation constraints in ROS

The PID controller changes its pace of processing and sends more
frequent messages to ROS

In every case shown in Table 2 below the wrapper
can take some combination of these actions:

•  shut down the boiler to a safe state by sending
appropriate commands to the actuators;

•  reset the ROS, OTS or both to clear a supposed
transient problem;

•  take note of a problem but not take any action
unless the problem appears to persist.

We can then identify many possible types of cues
that would require an action. In Table 2 we give a
list of general types of such cues, with specific
examples.

4 Traceability for Protectors

Since we regard the OTS item as a black box any
information about its properties must be deduced
from its interface specification or from associated
sources where available. To develop a protector, we
need to look at the available information about this
interface from different viewpoints, each of which
can be expressed in terms of relations RF (requires
from) and PT (provides to) [DR00]:

1. What does the ROS require from the OTS item
– RF(r,c) ?

2. What does the OTS item require from the ROS
– RF(c,r)?

3. What does the ROS provide to the OTS item –
PT(r,c)?

4. What does the OTS item provide to the ROS –
PT(c,r)?

In each case “What does” refers both to functional
properties and non-functional properties such as
timeliness and accuracy. The latter are particularly
important for OTS items [B00] as it is typically the
non-functional requirements that differ between
(apparently) functionally equivalent OTS items:
they can thus be used both to discriminate between
OTS candidates and as a cue for developing a
protector. Looking at the interactions between these
relations we can identify three possibilities:

•  RF(r,c) = PT(c,r) and RF(c,r) = PT(r,c). This
the ideal case where the OTS item is a “perfect
fit” for the ROS. This case is unlikely, indeed it
is likely that availability of information will
limit our knowledge of how close we are to this
ideal case.

•  RF(r,c) ⊂  PT(c,r). This characterises the
situation where there are some properties
required by r  which c  does not provide
(similarly with RF(c,r) ⊂  PT(r,c)): in this case
the OTS item is simply not suitable to be
integrated with the ROS.

•  PT(c,r) ⊆  RF(r,c) and PT(r,c) ⊆  RF(c,r). In this
case it is the differences between the relations
which should be investigated, to identify
possible sources of threat which the protector
should address.

While we may not be fortunate enough even to have
a specification of the ROS, we should be able to fill
in the information in viewpoints (1) and (3) above.
For (2) and (4) a vendor-supplied product-
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description will provide some information but this
may not be of a trusted quality. In this case the
information should be supplemented with external
sources such as bug reports, field reports and testing
by the ROS designer. In this context we can view a
“bug” as one kind of “unrequired functionality”, i.e.
a member of PT(c,r) – RF(r,c).

For each of the properties identified in the
viewpoints, a series of supplementary questions can
then be systematically asked in order to assess
where there would be a threat to either the ROS or
the OTS, in a manner similar to a HAZOP study.
Sample questions are:

•  What is the effect of this property not being
provided?

•  What evidence is there that this property can be
provided correctly?

•  Is this evidence reliable/relevant in this
situation?

•  For properties provided which are not required,
can we predict the effect to ROS or to OTS
item?

In each case where threats arise, it should be
recorded what protection is implemented (using
actions from Section 3), and a level of confidence
that the protection is adequate for the threats that
have been identified.

5 Implementation Issues

A popular way of developing, disseminating and
employing OTS items is to do this within existing
component technologies such as, CORBA, DCOM+
and Enterprise Java Beans (EJB) relying only on the
standard implementations (without resorting to non-
standard techniques). This general approach works
well for application-level items (it is worth
mentioning that it cannot be applied for employing
software at the levels below the application, e.g.
CORBA services, OS, communication protocols,
etc.). Such technologies offer standard ways of
intercepting component calls, and these can be used
for implementing protectors. These features are
called interceptors in CORBA and DCOM+, and
proxies in CORBA3 and EJB. The CORBA2
specification allows for interceptor services. These
are services that can be inserted into the normal
invocation path for CORBA objects. The
interceptor service is registered with the ORB
which then ensures that when a client sends a
request to an object the request is passed through
the interceptor service, and on return the result also

passes through the interceptor service. DCOM+
interceptors are generated automatically by
component containers and intercept cross process
calls. EJB and CORBA3 generate proxies that stand
in place of the target component and allow
interception of method invocations sent to the
component. The degree to which these interception
services and proxies are open varies. For example,
ORBIX has a feature called filtering that is in effect
a CORBA interception service.

Although some of these features are either not
completely open as they are used to support
particular services, or not flexible enough to allow
simple implementation (or adjustment, replacement)
of the application-specific protective functions, they
can serve as a sound basis for implementing
protectors. More experimental work will have to be
done in this area to develop better ways of wrapping
and to support them with a clear guide to typical
patterns for implementing protectors, with libraries
supporting efficient implementations of protectors
and their typical functionalities. This will assist in
systematic incorporation of protector development
into the whole system integration process. Our work
will focus on providing protector fault tolerance and
re-use, and on gaining experience in developing
protectors in different application areas.

6 Conclusions

In this paper we propose a systematic approach to
developing protective wrappers that work at the
application level to improve the dependability of
systems built by integrating OTS software. We treat
wrapper development as a special engineering
process incorporating several activities to be
undertaken during system integration. The wrapper
development starts with specifying the Acceptable
Behaviour Constraints (ABCs) that describe
possible violation of the acceptable behaviour of
both the OTS item and of the ROS. We discuss an
initial checklist of possible symptoms of undesired
events which the wrappers should try to detect, and
defensive actions to be taken. As the OTS items
may be completely ”black” boxes, in our approach
we have to assume that the information provided by
their suppliers is restricted and not reliable.
Traceability analysis is used to organisethe
information for developing and maintaining
protective wrappers. Our analysis shows that
existing component technologies provide sufficient
features for implementing the protective wrappers
without resorting to use of non-standard techniques.
Protective wrappers can serve as a solid defence
against new problems that can be introduced during
upgrading both the OTS items and the rest of the
system.
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Our future research will concentrate on:

•  probabilistic modelling (for assessing the
protector’s coverage, probability of producing
correct action by the wrapped item, and error
correlation between the OTS items and the
protectors);

•  employing diversity with OTS components:
investigating architectures with (for example)
several diverse items and adjudication of
results, and proposing means of pursuing
diversity between failure modes of
components, wrappers and adjudicators.
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