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Calabi-Yau Three-folds: Poincaré Polynomials and Fractals

Anthony Ashmore

Rudolf Peierls Centre for Theoretical Physics,

1 Keble Road, University of Oxford OX13NP, UK;

Jadwin Hall, Princeton University, NJ 08544 USA.

Yang-Hui He

Department of Mathematics, City University, London,

Northampton Square, London EC1V 0HB, UK;

School of Physics, NanKai University, Tianjin, 300071, P.R. China;

Merton College, University of Oxford, OX14JD, UK

We study the Poincaré polynomials of all known Calabi-Yau three-folds
as constrained polynomials of Littlewood type, thus generalising the well-
known investigation into the distribution of the Euler characteristic and
Hodge numbers. We find interesting fractal behaviour in the roots of
these polynomials in relation to the existence of isometries, distribution
versus typicality, and mirror symmetry.

1. Introduction and Prospects

The study of Calabi-Yau three-folds has become a vast and important sub-

ject. After almost two decades of explicit construction since that of the

quintic hypersurface in complex projective space of dimension four, it still

remains an open problem to classify such spaces. This contrasts drastically

with Calabi-Yau manifolds in complex dimensions one and two, of which

there are only the two-torus, four-torus and the K3 surface.

Nevertheless, extraordinary progress has been made in cataloguing three

and four-folds, giving rise to many new insights. Of particular note is

the work of Kreuzer and Skarke1 which produced Calabi-Yau manifolds

as hypersurfaces in toric varieties; for three-folds, this amounted to an

impressive 473,800,776 explicit examples. Various other constructions, such
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as complete intersection three-folds in products of projective spaces and

algebraic quotients, have also been fruitful. Recently, potential interest in

particle and string phenomenology has led to the study of three-folds with

relatively small Hodge numbers.3–7

From this vast database, important structures can be observed. For

example, a striking image is found by plotting twice the difference versus

the sum of the relevant Hodge numbers h1,1 and h2,1 of the manifolds, first

performed by Candelas et al.8 The resulting symmetry about the verti-

cal axis gives an excellent visualization of mirror symmetry. The paucity of

manifolds at the tip of the plot suggests a certain special corner in this land-

scape.3 It is therefore natural to beg for more “experimental” quantities

indicative of perhaps unseen mathematics and physics.

An attempt9 was initiated to study a generalisation of the Euler char-

acteristic, the Poincaré polynomial. The complex roots of the Poincaré

polynomials of known Calabi-Yau spaces were investigated (Newton poly-

nomials of the affine Toric spaces were also studied, though we shall not

delve into this in the present work). The perspective was inspired by recent

work on roots of so-called “constrained” polynomials – those with integer

coefficients of specific properties.

Historically, constrained polynomials have provided many questions.

Littlewood studied such polynomials with coefficients of ±1, now known

as Littlewood polynomials.10 Odlyzko and Poonen11 studied the zeros of

similar random polynomials with coefficients of 0 and 1. They found bounds

on the zeros and fractal-like structures in the distribution of roots. Patterns

found by Borwein and Jörgenson12 within plots of zeros of constrained, ran-

dom polynomials showed yet more fractal behaviour near the boundaries of

these objects. A program of intense computational investigation by Chris-

tensen,13 Jörgenson14 and Derbyshire15 has led to high resolution plots of

the zeros of Littlewood polynomials.

To give the reader of a flavour of these intricacies, in Figure 1 we plot

the complex zeros for an order 24 Littlewood polynomial with random ±1

coefficients. Self-similar patterns are visible on the boundaries; with this

in mind, we may calculate the Minkowski-Bouligand fractal dimension of

the roots using a box counting method afforded by the Matlab R© package

boxcount.16 A fractal dimension of 1.90± 0.08 was calculated, suggesting a

high degree of statistical self-similarity (the reader is also referred to chaotic

behaviour in duality cascades17). The emergence of such delicate features

from seemingly simple, mono-variate polynomials is of great interest; Baez18

has recently posed many questions regarding the nature of the holes and
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outcrops, visible in such plots.

Fig. 1. Plot of complex roots for an order 24 Littlewood polynomial with ±1 coefficients.
Areas which show self-similarity have been enlarged.

It is the intention of the present note to extend the preceding experi-

ments9 while focusing on the case of compact, smooth, Calabi-Yau three-

folds – we provide analytic insights where possible and delve into the fractal

structures where one can. The organisation and brief summary of the work

are as follows. We introduce the Poincaré polynomial for Calabi-Yau man-

ifolds and establish the link with constrained polynomials. Using analytic

methods, we present results for self-mirror manifolds and a general solution

for all roots of these polynomials, including formulae for the roots using a

method which extends to ninth-order palindromic polynomials.

We then adopt the philosophy of “experimental” mathematics and ap-

proach the problem from a numerical perspective. The distribution of

Hodge numbers for known Calabi-Yaus and their associated roots are plot-

ted. Delicate structures, such as the concentration of roots on the unit cir-

cle, are seen, some of which are amenable to analytic explanation. Though

a comparison with a “background” of randomly generated roots shows the

distribution does not significantly deviate from the latter, the richness of the

structure, both analytic and empirical, suggest that further study should

be fruitful. We have mapped mirror symmetry to a coloured density plot;

can certain conformal transformations elucidate these new regions? What
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statistics can differentiate the true Calabi-Yau nature of a three-fold? In-

deed, could the roots hint at “special” Calabi-Yau manifolds conducive to

a vacuum selection? These and many more questions await further inves-

tigation.

2. Calabi-Yau three-folds, Hodge numbers and Poincaré

polynomials

We begin by gathering some preliminaries in order to set the nomenclature.

The Poincaré polynomial, PM (t), of a compact, smooth manifold M of real

dimension n is the generating function for the Betti numbers of M:

PM (t) =

n
∑

i=0

bit
i . (1)

Due to the Poincaré duality of the Betti numbers, the polynomial will be

palindromic: i.e., the coefficients of ti and tn−i will be equal. Throughout

the following discussion, we label the roots of the equation PM (t) = 0 as

t = αi.

We note, PM (−1) = χ, the Euler characteristic forM; it is in this sense

that we can think of the polynomial as a generalisation of the important

topological quantity χ. The Poincaré-Hopf theorem states that a manifold

admits a vector field without zeros if and only if χ = 0, thus the Euler

characteristic gives a link to the rank, or the number of isometries on a

manifold. In fact, recalling that the rank of M is the maximal number of

everywhere independent, mutually commuting, vector fields thereon, it is

an interesting fact that this rank exceeds 1 if and only if −1 is a multiple

root of PM(t).

For compact, smooth, Calabi-Yau three-folds, (1) simplifies due to the

Hodge diamond structure:

1 b0 = 1
0 0 b1 = 0

0 h1,1 0 b2 = h1,1

1 h2,1 h2,1 1 ⇒ b3 = 2 + 2h2,1

0 h1,1 0 b4 = h1,1

0 0 b5 = 0
1 b6 = 1 ,

(2)

giving us the bi-parametric form of the Poincaré polynomial as

PM (t) = 1 + h1,1t2 +
(

2 + 2h2,1
)

t3 + h1,1t4 + t6 . (3)



5

The strategy is clear: we shall study the space of roots to (3) conglom-

erated over all known Calabi-Yau three-folds and see what patterns emerge.

Indeed, as mentioned before, the plot of 1

2
(PM(1)− 4) = h1,1 + h2,1 drawn

vertically against PM(−1) = χ = 2(h1,1 − h2,1) drawn horizontally has

become an iconic image in modern mathematical physics.

Fig. 2. A plot of the Hodge numbers for known Calabi-Yau three-folds coloured according
to the list they are drawn from. The horizontal axis is 2(h1,1

− h2,1) = χ, the Euler
characteristic; the vertical axis is 1

2
(PM(1)−4) = h1,1+h2,1. Calabi-Yau three-folds which

lie on the vertical line through the origin have χ = 0.

For reference, we reproduce this plot of the Hodge numbers for known

Calabi-Yau three-folds in Figure 2. There is an obvious symmetry about

the vertical axis at 2
(

h1,1 − h2,1
)

= χ = 0, this is the best experimen-

tal evidence for mirror symmetry. We note the manifolds with unpaired

mirrors towards the bottom of the plot. These are from complete inter-

section manifolds in products of projective spaces, ironically the earliest of

the databases of Calabi-Yau three-folds constructed.2 The mirrors for these

spaces are yet to be discovered due to the lack of a systematic construction;

explicit construction requires possibly complicated quotienting.

The pair with the largest Hodge number is (491, 11); a Calabi-Yau three-

fold with h1,1 or h2,1 exceeding 491 is yet to be found. Yau conjectured that

there are a finite number of topologically distinct Calabi-Yau manifolds in

each dimension. This conjecture is still open, but is spurred on by the

apparent lack of geometries with larger Hodge numbers.
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(a) (b)

Fig. 3. (a) A plot of the density of Hodge numbers of all known Calabi-Yau three-folds. As
standard, 1

2
(PM(1)−4) = h1,1+h2,1 is the ordinate while PM(−1) = χ = 2(h1,1−h2,1) is

the abscissa, In colour rendering, red indicates low density while yellow is high density. (b) A
histogram plot of the self-mirror three-folds. There is a dramatic peak around (h1,1, h2,1) =
(27, 27) in both (a) and (b).

Let us refine the famous plot by giving it an extra dimension. Distinct

Calabi-Yau three-folds may have identical Hodge numbers – this can result

in enormous degeneracy for each (h1,1, h2,1) pair. The density of the Hodge

numbers is shown in Figure 3 (a) with yellow signifying greater degeneracy.

There is an approximate uniform density towards the centre of the plot,

with lower densities in the feathered regions for large h1,1 + h2,1. A high

concentration of geometries can be seen near the lower tip of the triangle.

There is a total of 15,067,026 self-mirror manifolds, lying on the line of

symmetry in the plot with h1,1 = h2,1, giving 149 distinct Hodge number

pairs. For reference, we plot the frequency distribution of such manifolds

in Figure 3 (b) and see the sharp peak at 27. In fact, (27, 27) dominates

the space of known Calabi-Yau three-folds with 910,113 such manifolds.

This is followed by 877,191 at (25,25) and 875,275 at (26,26). Thus, one

could consider these as typical Calabi-Yau three-folds in the landscape of

possibilities.

2.1. Calabi-Yau Roots: Analytic Results

Having presented the data of known three-folds, we now move on to address

the space of roots of the Poincaré polynomials. First, we will examine (3)

analytically to filter out “background” effects from generic sextic behaviour.

Next, we will turn to explicit data and see features specific to the Calabi-

Yau data.
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A general sextic polynomial is not solvable by algebraic methods. We

first examine Calabi-Yau three-folds with zero Euler characteristic, corre-

sponding to self-mirror manifolds. In these cases, the polynomial may be

reduced to a lower order and solved explicitly. The palindromic constraint is

shown to manifest itself as the appearance of roots in inverse pairs. Finally,

a complete solution for the general form of PM (t) is presented and shown

to be applicable up to ninth-order polynomials with similar constraints.

Our polynomial has only integer coefficients, implying that possible in-

teger roots lie in the set of exact divisors of the coefficient of t0, viz., b0.

However, for all our spaces, due to connectedness, b0 = 1. Hence, we know

that the only integer roots of this polynomial are ±1. Given that all the co-

efficients bi ≥ 0, we can eliminate 1 as a root, leaving −1 as the only integer

root of the Poincaré polynomial. Given that the coefficients are positive,

we expect only negative and complex roots. Finally, as all coefficients are

real, if αi is a complex root of the polynomial it follows that α∗
i is also a

root.

2.1.1. Zero Euler Characteristic

Let us first try a natural simplification. Evaluating the Poincaré polynomial

at t = −1 gives the Euler characteristic for the space; if −1 is actually a

root, we have a manifold with χ = 0. This occurs for self-mirror manifolds,

h1,1 = h2,1. For this special case, we may factor this root out in an effort

to reduce our sextic to a lower order polynomial:

(1 + t)2(1− 2t+ (3 + h1,1)t2 − 2t3 + t4) = 0 . (4)

We see that t = −1 is (at least) a double root. The resulting quartic
equation does have a general solution:

{ 1

2
+ 1

2

√

−3− 2i
√
h1,1 − h1,1 − i

√
h1,1

2
, 1

2
+ 1

2

√

−3 + 2i
√
h1,1 − h1,1 + i

√
h1,1

2
,

1

2
− 1

2

√

−3− 2i
√
h1,1 − h1,1 − i

√
h1,1

2
, 1

2
− 1

2

√

−3 + 2i
√
h1,1 − h1,1 + i

√
h1,1

2
} .

2.1.2. Palindromic polynomials

Now let us comment on general solutions. Of course, polynomials of degree

five or greater evade general algebraic solutions, usually forcing one to resort

to numerical calculations. However, the generating polynomials arising

from our Calabi-Yau spaces are naturally palindromic, allowing us to make

some progress.
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A simple substitution shows that the polynomial is unchanged by t →
1/t (this is usually referred to as the polynomial being “self-reciprocal”; for

the appearance and relevance of palindromic polynomials in Hilbert series

analyses of Calabi-Yau geometries,19 the reader is referred to Section 2 of

cit. ibid.). Using this, we may write the polynomial in a more suggestive

form by factoring it in terms of its roots.

(
1

t
− α1)(

1

t
− α2)(

1

t
− α3)(

1

t
− α4)(

1

t
− α5)(

1

t
− α6) = 0

(t− α1)(t− α2)(t− α3)(t− α4)(t− α5)(t− α6) = 0 . (5)

For this to be true, it must hold that if αi is a root, 1/αi is also a root.

This sixth-order polynomial has only three independent roots. Without loss

of generality, we may identify α4 with 1

α1

etc. We conclude, therefore, that

the roots to our self-reciprocal polynomials appear in inverse pairs and that

such a sextic polynomial has only three independent roots. It is interesting

to ask if this allows an explicit algebraic solution; can the polynomial be

re-expressed as a solvable cubic? We define the variable ξ = t + 1

t
and

consider the following for even-ordera self-reciprocal polynomials:

PM (t) =

n
∑

i=0

ait
i where ai = an−i, QM (ξ) =

n

2
∑

j=0

bjξ
j . (6)

We now assert that, given the original polynomial, we can always find

bj such that

t
n

2 QM (ξ) = PM (t) . (7)

An explicit proof of this is given by Ahmadi and Vega.20 Briefly, the argu-

ment goes as follows. We have

PM (t) =

n
∑

i=0

ait
i = t

n

2







an

2
+

n

2
∑

j=1

an

2
−j

[

tj + t−j
]







.

Each term in the square brackets may be rewritten as a function in powers

of ξ = t+ 1

t
. For example, for j = 4,

t4 + t−4 =
(

t+ t−1
)4 − 4

(

t2 + t−2
)

− 6

while t2 + t−2 =
(

t+ t−1
)2 − 2

giving t4 + t−4 =
(

t+ t−1
)4 − 4

(

t+ t−1
)2

+ 2 .

aSubstitution of t = −1 into an odd self-reciprocal polynomial shows that this is always
a root. This may be factored out to give an even order polynomial.
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By induction, any expression of the form tj + t−j may be reduced to a

function of
(

t+ t−1
)

only. Hence, the terms inside the braces may recast

as a function of
(

t+ t−1
)

too, giving an n
2

th order function.

The polynomial QM (ξ) is of order n
2
, its roots may be solved for explic-

itly when n ≤ 8. Given that zero is not a root and that the roots appear

in reciprocal pairs, solutions to QM (ξ) = 0 will give the roots of PM (t).

We examine this in the context of the polynomials we have been con-

sidering by expanding QM (ξ) in t for n
2

= 3. Comparing this with the

general form for the Poincaré polynomial, we see this cubic equation may

be written as

ξ3 + (h1,1 − 3)ξ + (2 + 2h2,1) = 0 . (8)

We can solve this cubic explicitly, giving three values for ξ. The relation

between ξ and t may then be inverted to solve for t. In this way, it is

possible to explicitly solve for all roots of our palindromic polynomial. The

six explicit solutions are:

t =
1

2

(

ξ ±
√

ξ2 − 4
)

; with (9)

ξ =
(3− h1,1)ω + y2

ω2y
,
(1 + i

√
3)ω(h1,1 − 3) + i(i+

√
3)y2

2ω2 y
,

− (1 + i
√
3)y2 + (3− h1,1(1−

√
3i)

2ω2 y
, (10)

where ω = 3
√
3 is the primitive cubic root of 3 and y =

√

3h1,1((h1,1 − 9)h1,1 + 27) + 81h2,1(h2,1 + 2)− 9h2,1 − 9.

2.2. Calabi-Yau Roots: Numerics

We now consider actual data and approach the problem from a numerical

perspective. We plot the zeros of various random, constrained polynomials

with coefficients chosen to aid the analysis of roots from Calabi-Yau spaces.

The 38, 059 Hodge number pairs are used as coefficients of the Poincaré

polynomial and the zeros are plotted. The density of zeros and the analytic

solutions from which they arise are also shown. Delicate structures are

seen, such as the concentration of roots on the unit circle. This Calabi-Yau

data is then compared with the background of randomly generated roots.
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(a) (b)

Fig. 4. (a) A plot of the roots for a sextic polynomial with vanishing linear and quintic
terms of the form P = 1 + at2 + (2 + 2b)t3 + ct4 + t6. a, b, c take random values from
[1, 491]. (b) A subset of part (a) but using only palindromic polynomials.

2.2.1. Random Constrained Polynomials

In the hope of finding an underlying pattern to our Calabi-Yau data, it

is prudent to first examine similar polynomials with randomly generated

coefficients. In part (a) of Figure 4, we plot the zeros of a sextic with

vanishing linear and quintic terms.b The coefficients of t0 and t6 are set to

unity. The remaining coefficients are chosen to give the same form as the

polynomials which arise from Calabi-Yau spaces without requiring a2 = a4,

i.e. we have not imposed palindromicity. The coefficients are randomly

chosen from the range [1, 491]; this allows a direct comparison with real

Hodge numbers which lie within the same range. The roots are localised

near the origin and in two lobes extending into the upper and lower half

planes.

We restrict further to palindromic sextics and plot the zeros in part (b)

of Figure 4. There is a concentration of zeros on the left half of the unit

circle. There is a more distinct boundary to the roots than the previous

case and a wedge, on the right half plane with opening angle 2π
3
, devoid of

bOnly the lower half plane is shown. By complex conjugation, there is a symmetry about
the real axis.



11

any zeros. Allowing the coefficients to take values greater than 491 extends

the lobes in the upper and lower planes while roots lying on the real axis

spread to larger negative values.

Fig. 5. A plot of the roots for known Calabi-Yau three-folds in the complex plane. Red
corresponds to large values of h1,1, blue to large h2,1 and green for h1,1 = h2,1. Areas of
interest are shown enlarged.

The list of known Calabi-Yau Hodge numbers was imported into Mat-

lab and used as the coefficients of Poincaré polynomials. The roots, αi, are

plotted on the complex plane in Figure 5. The points are coloured accord-

ing to the values of the Hodge numbers associated with them: bright red

indicates large values of h1,1, blue are large h2,1. Roots which correspond to

self-mirror manifolds with h1,1 = h2,1 are coloured green. Areas of interest

have been enlarged to display the intricate patterns present.



12 A. Ashmore & Y.-H. He

Roots on the unit circle and the negative real axis approach, but do not

reach, −1, unless they are self-mirror manifolds. There are also a pair of

outcrops from the origin which appear to be isolated from the other roots.

The integer nature of the coefficients leads to a feathering effect on the

boundaries, similar to that seen for Littlewood polynomials in Figure 1.

Let us now compare the Calabi-Yau data with the comparable random

background in Figure 4 (b). We notice no significant differences between

the two plots – this suggests that such roots cannot be used to classify

Calabi-Yau spaces. Mirror symmetry acts by interchanging red and blue

points. There is no obvious symmetry present in the roots which might

explain how mirror manifolds are related to each other. Various confor-

mal mappings have been tested with the hope of making mirror symmetry

manifest in the roots: no mapping was found which gave the desired effect.

The density of the roots are plotted in part (a) of Figure 6. There

is a clustering of points both on the left half of the unit circle and the

negative real axis; this behaviour stems from the palindromic nature of the

generating polynomial and is seen for the randomly generated sextics too.

Using the explicit formulae from (9), in part (b) of Figure 6 we plot the

roots on the complex plane for h1,1, h2,1 ∈ [1, 491]. Points are coloured ac-

cording to the solution used to calculate the root. It is hoped that this may

prove useful in future work when studying the effect of mirror symmetry

on the zeros of the Poincaré polynomials.
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Fig. 6. (a) A plot of the density of roots for Calabi-Yau three-folds in the complex plane.
Red indicates low density while yellow signifies high density. (b) A plot of the analytic
roots for a sextic palindromic polynomial with vanishing linear and quintic terms of the form
P = 1 + at2 + (2 + 2b)t3 + at4 + t6 where a, b take random values in the range [1,491].
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