

City, University of London Institutional Repository

Citation: Pino, Luca (2015). Security Aware Service Composition. (Unpublished Doctoral

thesis, City University London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/13170/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Security Aware Service
Composition

Luca Pino, Department of Computer Science

School of Mathematics, Computer Science and Engineering

City University London

Supervisor: Professor George Spanoudakis

Thesis for the degree of Doctor of Philosophy,

May 2015

Security Aware Service Composition

2 / 253

Security Aware Service Composition

3 / 253

Table of Contents

Acknowledgements .. 16	

Declaration .. 17	

Abstract ... 18	

1. Introduction .. 19	

1.1	 Research Area and Questions .. 19	

1.2	 Research Objectives .. 24	

1.3	 Research Assumptions .. 25	

1.4	 Contributions .. 27	

1.5	 Publications .. 29	

1.6	 Outline .. 31	

2. Literature Review ... 33	

2.1	 Overview .. 33	

2.2	 Service Discovery ... 33	

2.2.1	 Text matching service discovery .. 35	

2.2.2	 Semantic service discovery .. 35	

2.2.3	 Graph matching techniques .. 36	

2.2.4	 Context awareness ... 37	

2.2.5	 Summary ... 37	

2.3	 Service Composition ... 40	

2.3.1	 Definition of Service Workflows 40	

2.3.2	 Instantiation of Service Workflows 44	

Security Aware Service Composition

4 / 253

2.3.3	 Summary .. 48	

2.4	 Security in Service Oriented Computing 49	

2.4.1	 Security Languages and Standards 49	

2.4.2	 Security Design and Implementation 52	

2.4.3	 Security aware Service Discovery 54	

2.4.4	 Security aware Service Composition 56	

2.4.5	 Security aware Design of SBS ... 59	

3. Conceptual Foundations ... 63	

3.1	 Overview ... 63	

3.2	 Software Service ... 63	

3.2.1	 Web Service ... 65	

3.3	 Service Discovery ... 66	

3.4	 Service Composition ... 67	

3.4.1	 Business Process Management ... 68	

3.5	 Cloud Computing .. 69	

4. Enabling Languages, Techniques and Tools 71	

4.1	 Overview ... 71	

4.2	 Web Services Languages ... 71	

4.2.1	 WSDL .. 71	

4.2.2	 BPEL ... 74	

4.3	 Drools ... 74	

4.4	 Runtime Service Discovery Tool ... 77	

4.4.1	 Architecture ... 77	

4.4.2	 Discovery process .. 78	

4.4.3	 Query Language ... 79	

Security Aware Service Composition

5 / 253

4.5	 Eclipse BPEL Designer ... 82	

5. Secure Composition Patterns ... 85	

5.1	 Overview .. 85	

5.2	 Orchestration Patterns ... 86	

5.3	 Secure Composition Patterns .. 91	

5.3.1	 Representation of a Secure Composition Pattern 92	

5.3.2	 Integrity ... 94	

5.3.3	 Confidentiality ... 99	

5.3.4	 Availability .. 106	

5.4	 Security Inference Rules ... 110	

5.4.1	 Methodology to Encode the Rules 110	

5.4.2	 Integrity ... 118	

5.4.3	 Confidentiality ... 120	

5.4.4	 Availability .. 123	

5.5	 Summary .. 128	

6. Security Aware Service Composition Process 130	

6.1	 Overview .. 130	

6.2	 Scenario .. 130	

6.2.1	 Stock Broker SBS .. 131	

6.2.2	 Security Threats ... 133	

6.3	 Workflows .. 136	

6.4	 Algorithms .. 141	

6.4.1	 Inference of Security Requirements 141	

6.4.2	 Verification of Security Requirements 146	

6.4.3	 Validation of Workflows ... 148	

6.4.4	 Discovery of Secure Workflows 151	

Security Aware Service Composition

6 / 253

6.4.5	 Workflow Instantiation .. 155	

6.5	 Summary ... 158	

7. Implementation ... 159	

7.1	 Overview ... 159	

7.2	 Security Aware Runtime Discovery Tool 160	

7.2.1	 Query language .. 160	

7.2.2	 Architecture ... 162	

7.2.3	 Detailed Design of the Composition Manager 163	

7.2.4	 Example ... 170	

7.3	 Security Aware BPEL Design Tool ... 181	

7.3.1	 Architecture ... 182	

7.3.2	 Detailed Design of the Security Extension 184	

7.3.3	 Example ... 191	

7.4	 Summary ... 196	

8. Evaluation ... 198	

8.1	 Overview ... 198	

8.2	 Evaluation Setup ... 198	

8.2.1	 Scenario ... 198	

8.2.2	 Configuration ... 201	

8.2.3	 Threats to validity .. 203	

8.3	 Evaluation Results ... 204	

8.4	 Summary ... 212	

9. Conclusions .. 214	

9.1	 Overview ... 214	

9.2	 Contributions .. 214	

9.3	 Approach Implications .. 218	

Security Aware Service Composition

7 / 253

9.4	 Future Work .. 219	

Bibliography .. 221	

Appendix A: Performance Test Results .. 241	

Security Aware Service Composition

8 / 253

List of Figures
Figure 4.1: Discovery Framework structure .. 77	

Figure 4.2: Overview of the schema of SerDiQueL 79	

Figure 4.3: Screenshot of the BPEL Designer 83	

Figure 5.1: Example of workflow pattern recursion 88	

Figure 5.2: Example of a sequential orchestration pattern 89	

Figure 5.3: The Cascade orchestration pattern 90	

Figure 5.4: Example of a parallel orchestration pattern 91	

Figure 5.5: Example of a secure composition pattern 93	

Figure 5.6: Precede Integrity on Cascade Pattern 96	

Figure 5.7: PSP on Cascade Pattern .. 102	

Figure 5.8: PSP on Product Pattern ... 104	

Figure 5.9: Maximum Execution Time on Generic Sequential Pattern 108	

Figure 5.10: Maximum Execution Time on Generic Choice Pattern ... 109	

Figure 5.11: Class diagram of the activity and pattern classes available

for the security production rules ... 113	

Security Aware Service Composition

9 / 253

Figure 5.12: Class diagram of the requirement and security property

classes available for the security production rules 115	

Figure 6.1: The Stock Broker SBS workflow 132	

Figure 6.2: The Workflow element of the abstract workflow schema . 138	

Figure 6.3: The OrchestrationType type of the abstract workflow schema

 ... 139	

Figure 6.4: The PlaceholderType type of the abstract workflow schema

 ... 140	

Figure 6.5: The ProcessOrder workflow ... 144	

Figure 6.6: The Orchestration Patterns of the ProcessOrder workflow 145	

Figure 6.7: Services used by the ProcessOrder SBS 150	

Figure 6.8: The GetStockDetails service (a) and the workflow that can

replace the GetStockDetail service (b) .. 153	

Figure 7.1: Architecture of the Security Aware Runtime Discovery Tool

 ... 162	

Figure 7.2: Class Diagram of the package compositionmanager 164	

Figure 7.3: Class Diagram of the package compositionmanager.secrule

 ... 165	

Figure 7.4: Class Diagram of the package compositionmanager

.workflow ... 167	

Figure 7.5: Class Diagram of the package compositionmanager.bpel . 169	

Security Aware Service Composition

10 / 253

Figure 7.6: Representation of the abstract workflow extracted from the

tests execution ... 174	

Figure 7.7: Representation of the abstract workflow after the first

instantiation .. 179	

Figure 7.8: Representation of the abstract workflow after the second

instantiation .. 180	

Figure 7.9: Representation of the final workflow 180	

Figure 7.10: Execution result of the composition example 181	

Figure 7.11: Architecture of the Security Aware BPEL Design Tool .. 183	

Figure 7.12: Class Diagram of the package securityextension 184	

Figure 7.13: Class Diagram of the package securityextension

.securitymodel ... 186	

Figure 7.14: Class Diagram of the package securityextension.gui 188	

Figure 7.15: Class Diagram of other packages part of the extension ... 190	

Figure 7.16: Security Specification for the GetCurrentStockDetails

activity .. 192	

Figure 7.17: The activity contextual menu showing the “Verify Security

Property” option .. 193	

Figure 7.18: The Validation and Adaptation view 194	

Figure 7.19: BPEL process after the adaptation of a service composition

in place of the GetCurrentStockDetails activity 195	

Security Aware Service Composition

11 / 253

Figure 8.1: Comparison of the single service discovery, inference rules,

and abstract WF matching execution times over the different queries

 ... 206	

Figure 8.2: Proportion of the execution time spent for each composition

operation over the different queries .. 206	

Figure 8.3: Correlation between the number of generated sub-queries

and the composition time over the different queries 207	

Figure 8.4: Comparison of the single service and service composition

discovery times over the different sizes of the registry 209	

Figure 8.5: Comparison of the abstract WF matching and the inference

rule times over the different sizes of the registry 210	

Figure 8.6: Correlation between the composition algorithm time and the

number of generated workflows and sub-queries over the registry

sizes .. 210	

Security Aware Service Composition

12 / 253

List of Tables
Table 2.1: Summary of the single service discovery approaches. 39	

Table 2.2: Summary of approaches supporting automated construction of

service compositions. .. 44	

Table 2.3: Summary of the automated service discovery in service

composition approaches. ... 48	

Table 4.1: Example of a WSDL .. 73	

Table 4.2: Drools rule structure .. 75	

Table 4.3: Example of Drools conditions .. 76	

Table 4.4: Example of a Drools rule ... 76	

Table 4.5: Example of behavioural conditions of a SerDiQueL query .. 80	

Table 4.6: Example of constraint conditions of a SerDiQueL query 82	

Table 5.1: Snippet encoding an orchestration pattern into a Drools rule

 .. 114	

Table 5.2: Snippet encoding a security requirement into a Drools rule

 .. 116	

Table 5.3: Snippet encoding the creation of the inferred security

requirements in a Drools rule .. 117	

Security Aware Service Composition

13 / 253

Table 5.4: Inference rule for Precede Integrity on Cascade Pattern 119	

Table 5.5: Inference rule for PSP on Cascade Pattern 121	

Table 5.6: Inference rule for PSP on Product Pattern 122	

Table 5.7: Inference rule for Availability ... 124	

Table 5.8: Verification rule for the Maximum Execution Time on

Partner Link Activity .. 125	

Table 5.9: Verification rule for the Maximum Execution Time on

Generic Sequential Pattern ... 126	

Table 5.10: Verification rule for the Maximum Execution Time on the

Choice Pattern .. 128	

Table 6.1: Example of a workflow ... 137	

Table 6.2: Example of an abstract workflow 140	

Table 6.3: Algorithm for the inference of Security Requirements 143	

Table 6.4: Algorithm for the verification of Security Requirements ... 147	

Table 6.5: Algorithm for the validation of workflows 149	

Table 6.6: Algorithm for the discovery of secure workflows 152	

Table 6.7: Example of query making explicit references to certificate

parts through XPath .. 154	

Table 6.8: Workflow Instantiation Algorithm 156	

Table 7.1: Example of a security requirement expressed in A-

SerDiQueL ... 161	

Security Aware Service Composition

14 / 253

Table 7.2: Description of the classes in the package compositionmanager

 .. 164	

Table 7.3: Description of the classes in the package compositionmanager

.secrule .. 166	

Table 7.4: Description of the classes in the package compositionmanager

.workflow .. 168	

Table 7.5: Description of the classes in the package

compositionmanager.bpel ... 170	

Table 7.6: Stock Service replacement query 173	

Table 7.7: Get ISIN discovery query .. 178	

Table 7.8: Description of the classes in the package securityextension

 .. 185	

Table 7.9: Description of the classes in the package securityextension

.securitymodel ... 187	

Table 7.10: Description of the classes in the package securityextension

.gui .. 189	

Table 7.11: Description of the classes in the other packages part of the

extension ... 191	

Table 8.1: Execution times by operations, with 1200 services in the

registry .. 204	

Table 8.2: Summary of the results for each registry size, in milliseconds

 .. 208	

Security Aware Service Composition

15 / 253

Security Aware Service Composition

16 / 253

Acknowledgements

I would like to thank all the people that have supported and assisted me

during these years. My appreciation goes to my supervisor Professor George

Spanoudakis for providing me the opportunity to work on stimulating

project, and for his useful comments, remarks and engagement throughout

my experience.

I would like to express my gratitude to all the members of the

Department of Computer Science, including the administrative and

technical staff that contributed through my journey at City University. In

particular amongst all I would like to thank Mark Firman and the Technical

Support Team (TST) for their continuous support. Many thanks go also to

all the ASSERT4SOA project partners for the great support and

collaboration.

I would like to extend my appreciation to the friends that I made during

this journey, for their encouragements and for the great time spent together,

so thanks Dr. Daniel Wolff, Reinier de Valk, Srikanth Cherla, Muhammad

Asad, Maria Krotsiani, Spyros Katopodis, Icamaan da Silva, Dr. Ricardo

Contreras, Dr. Evangelia Kalyvianaki and Dr. Christos Kloukinas.

My deepest gratitude goes to my closest friends, now spread all around

the world, for their support, advice and patience. So long and thanks for all

the fish, Dr. Mayla Brusò, Benedetta Basile, Giulia Borghini and Veronica

Varanini.

Last but not least, I am very grateful to my parents and to my

girlfriend, Stefania, for their constant love, help and assistance in every day

of my life.

Security Aware Service Composition

17 / 253

Declaration

The author grants powers of discretion to the University Librarian to

allow this thesis to be copied in whole or in part without further reference to

him. This permission covers only single copies make for study purposes,

subject to normal conditions of acknowledgement.

Security Aware Service Composition

18 / 253

Abstract

Security assurance of Service-Based Systems (SBS) is a necessity and a

key challenge in Service Oriented Computing. Several approaches have

been introduced in order to take care of the security aspect of SBSs, from

the design to the implementation stages. Such solutions, however, require

expertise with regards to security languages and technologies or modelling

formalisms. Furthermore, existing approaches allow only limited

verification of security properties over a service composition, as they focus

just on specific properties and require expressing compositions and

properties in a model based formalism.

In this thesis we present a unified security aware service composition

approach capable of validation of arbitrary security properties. This

approach allows SBS designers to build secure applications without the

need to learn formal models thanks to security descriptors for services,

being they self-appointed or certified by an external third-party.

More specifically, the framework presented in this thesis allows

expressing and propagating security requirements expressed for a security

composition to requirements for the single activities of the composition, and

checking security requirements over security service descriptors. The

approach relies on the new core concept of secure composition patterns,

modelling proven implications of security requirements within an

orchestration pattern. The framework has been implemented and tested

extensively in both a SBS design-time and runtime scenario, based

respectively on Eclipse BPEL Designer and the Runtime Service Discovery

Tool.

Security Aware Service Composition

19 / 253

Chapter 1

Introduction

1.1 Research Area and Questions

The service-oriented computing (SOC) paradigm is aimed at addressing

the need for constructing adaptable interoperable applications involving

heterogeneous components over networks, known as software services, and

offering access to utilities from a broad range of different devices. SOC

focuses on interoperability and reuse by promoting the development of

applications through composition of software services that might be

deployed and running on different computational infrastructures.

Technically a software service is a piece of autonomous and self-contained

software accessible over a network through a collection of operations that

are listed in the service interface.

SOC has been wildly embraced by the software industry

[10][12][41][42][93], thanks also to the ability to simplify the

communication and integration with business partners and with legacy

systems [55][78]. Its adoption as business solution, however, has also raised

a number of collateral concerns faced by the engineering, the operations and

the business sectors. More specifically, some of the major concerns in the

engineering and the operations fields are about studying the quality of

Security Aware Service Composition

20 / 253

services that are used in service based systems (SBS) and the existence of

agreements between service providers and service consumers to regulate

them, the ability to discover and compose services and the ability to adapt a

SBS dynamically [55].

Service composition, in particular, follows the SOC concept of building

software out of existing or new reusable services, in order to provide a new

functionality or to automate a task. The new functionality can be made

available as a new service that solves more complex problems. The SBS

lifecycle benefits from the service composition concept, as service

compositions can be used to help both the SBS design phase -allowing the

interoperation with more than one service per task- and whilst a SBS is in

operation at runtime -allowing discovery and adaptation (i.e., replacement)

of service compositions when single services providing a functionality are

no longer available.

From the business perspective, however, an additional and very critical

concern is about the security of services and the SBSs that use them [55].

Some of the characteristics that make SOC a successful paradigm, in fact,

are also the ones that facilitate security attacks: e.g. the network access to

services introduce all the security threats of classical distributed systems

[102], whilst service interfaces and interoperability features preclude to

adopt the concept of security-by-obscurity [17][24][78].

To address security there has been significant research which

established (a) new additional stages to the development process in order to

take into consideration the security requirements during the design and

implementation of a service [29][38][66], (b) special security services that

provide the mechanisms to protect other services (security-as-a-service)

[16][38][39][76], and (c) extensions to support security for available

languages and protocols [72][73][74][75][76][77][109]. Several security

Security Aware Service Composition

21 / 253

extensions to languages and protocols have been through a process of

standardization, following the concept of interoperability of SOC. These

extensions introduce solutions to: ensure integrity and confidentiality in the

messages exchanged (i.e., WS-Security [77], WS-SecureConversation [74]),

provide mechanisms to construct trust relationships between organizations,

or “security domains”, through the usage of a special security service

providing security tokens (i.e., WS-Trust [76]), and provide authentication

and authorization of identities between organizations, or “security

domains”, thanks to federation agreements (i.e., WS-Federation [73],

SAML [72]).

An open problem in this field is about security of service compositions.

To assess the security of a service composition, in fact, the security of the

individual services part of the composition must be taken into account, but

it is not enough. In order to evaluate the security of the service composition,

the order of execution of the composing services and the communications

between them must be examined. In this scenario two key questions arise:

(1) which security properties can be deducted from the security of the

services within a service composition, and (2) how is it possible to require a

service composition to preserve a security property?

This work is about assessing and constructing secure compositions of

services allowing the support of security at both design and runtime. A

possible use of secure service composition is to help the design and

development of a SBS that calls different services. In this case a SBS design

tool can also offer some security validation mechanisms that automatically

generates and checks the security properties required by the single services

part of the composition executed by the SBS, in order for the SBS to

guarantee some more general security requirements on the whole SBS.

Support of security at runtime allows automatic adaptation (i.e.,

Security Aware Service Composition

22 / 253

replacement) of services that are no longer available with services or service

compositions that guarantee the same level of security requested from the

initial service. In this case, it is very important to support the discovery and

construction of service compositions that preserve the requested security

properties.

Another issue in the security field is how to obtain assurance that a

service complies with a given security property (e.g., confidentiality,

integrity, availability, authenticity). WS-Policy [109] and WS-

SecurityPolicy [75] allow the specification, by the service provider, of

which security mechanisms are in place. These policy languages support the

development and negotiation of the security aspects of the communication,

however they do not provide a general and objective assurance (i.e., based

on third-party evaluation) of the security property guaranteed by the service.

A proposed solution for this problem is the introduction of security

certificates providing assurance that a service complies with a given

security property [80].

The service certification approach is based on the traditional concept of

software certification that has been used for non-service based software

systems and software components. In this paradigm certificates are provided

(and signed off) by some certification authority after assessing the

compliance of the software with the required security property. For this

approach to be effective, the certification authority must be trusted by

service consumers and providers. This idea is aimed at providing assurance

to all the possible users of the security properties granted by the software. In

particular Common Criteria [18] is the international standard for traditional

software certification (ISO/IEC 15408:2009 [45]), developed by the

governments of Canada, US, UK, France, Germany and Netherlands in

order to ensure security of the software used by the government and critical

Security Aware Service Composition

23 / 253

infrastructures. Since these certificates are produced in order to be checked

by IT or government personnel, they are human-readable system-wide

documents that can easily exceed the hundreds of pages (e.g. by putting

together the Certification Report, Security Target and Protection Profile of a

CC certificate: see [19] for some examples).

The service-oriented paradigm, instead, introduces automatic software

provisioning with concepts like runtime service discovery, service

adaptation and service composition, thanks to a set of machine-readable

interfaces. In order to ensure also the security of a SBS, then, certificates

should also have a machine-readable equivalent for software services

available at runtime and digitally signed as advocated, for example, by the

ASSERT4SOA project [5][80].

With such certification scheme in place it is possible to envision a

security aware service discovery mechanism that would allow also the

specification of security requirements in a query to find and sort the

services relevant for a task. In particular a security aware service discovery

process can find sets of relevant services during the design and the

development of a SBS, but it can be also quite useful in the context of run-

time replacement. In this case the service discovery system should maintain

an updated buffer of relevant services for a query so that the SBS can

receive updates and substitute an unavailable or underperforming service

with another one at run-time, while maintaining the same security features

required to the original service.

Using this certification scheme allows also increasing the level of trust

in solutions founded on automatic assessment of the security of service

compositions.

Security Aware Service Composition

24 / 253

1.2 Research Objectives

The overall aim of this thesis is to investigate the problem of assessing

the security of service compositions and develop a solution that would

enable the generation of secure service compositions out of software

services with known (certified) security properties. To address this overall

aim, our goal was to construct a framework that automatically infers the

security requirements for the services part of a service composition, in order

to guarantee general security requirements on the whole composition. This

framework is aimed at SBS designers and developers engaged in building

applications that require some security constraints.

The research objectives planned to achieve this can be listed as follows:

I. Literature review.

To provide an analysis of the related works regarding security aware

service composition that defines the subject area, its terminology, the

existent models and case studies. This analysis should describe the

different frameworks and highlight the strengths and weaknesses of

each approach, in order to identify the gap that this research intends

to fill.

II. Model of secure composition framework.

To design a framework that allows automated reasoning on the

security requirements of a service composition, to be able to

generate security requirements for the services part of that

composition that would guarantee the general requirements on the

composition to hold. The framework shall envision some security

patterns depicting abstract inferences that are proved to hold and

Security Aware Service Composition

25 / 253

computed offline, in order to use those at run-time to ease the

reasoning process and make the framework more responsive.

III. Prototype of a discovery tool performing security aware service

composition.

To design and develop a plugin for a service discovery tool that

takes into account security requirements and that is able to

automatically build service compositions that would answer a given

discovery query. The focus should be on the inference of security

requirements from the composition level to the services in the

composition, by means of the framework designed as objective II.

IV. Prototype of a design tool for security aware service compositions.

To design and develop a plugin for a SBS design tool that uses the

framework results to propagate general security requirements to the

single activities in a composition, to be able to automatically query

for the services that will be used by the designed system and

guarantee the required security at the same time.

V. Evaluation of the discovery tool.

The aim of the evaluation is to assess that the prototype resulting

from the above objective behave as it would be expected and in a

reasonable amount of time. This translates in some assessments of

relevance from end-user developers to be able to evaluate the recall

and precision of the system, and performance tests.

1.3 Research Assumptions

To shape the research, some assumptions were made giving some

starting points and directions to the work:

Security Aware Service Composition

26 / 253

• The availability of machine-readable descriptors of service security.

• The service compositions supported by our research are

orchestrations, i.e., processes which coordinate individual software

services and in which there is a single central coordinator that

determines the order of the interaction and acts as an intermediary of

all the communications (e.g., it receives results from a service and

passes them, or some of them, to other services).

• The prototype of the discovery tool described as objective III makes

usage of a service discovery approach supporting the proactive

discovery of services at runtime. Such approach has been researched

and implemented in a tool, called RSDT [115], by the Software

Engineering Group of City University (a more detailed description is

in Section 4.3).

• The discovery approach allows service discovery at development

time, when there is already an estimated structure of the needed

service. This means that the tool won’t allow a simple browse of the

registry, based only on service names or similar.

• The service discovery is envisioned as an incremental process of

refinement of the query based on the discovery results.

• The focus of the research is on the inference of security in service

compositions, so the functional composition part of the process

might use existing state of the art ideas.

• Finally, the registries and all the parties involved in the discovery
process are assumed to be trusted parties. This means that they
should comply with a set of security dispositions to assure the
security of the process.

Security Aware Service Composition

27 / 253

1.4 Contributions

This research is aimed to provide a framework for service discovery

and composition supporting inference and validation of security

requirements. The framework allows constructing dynamically a service

composition that respects given security requirements by means of a set of

production rules and service discovery. Contributions of this research work

include:

• Design of a service composition mechanism to infer and validate

security requirements

To handle the question, we introduce the concept of secure

composition patterns, i.e., models describing abstract dependencies

between the service composition security requirements and the

component service security requirements. The dependencies are

formally proven in order to ensure the same level of security of the

original requirements.

The patterns can be applied in different steps of a composition

lifetime, to discover services guaranteeing the security or to validate

the security of an existing composition.

• Initial set of secure composition patterns and production rules

An initial set of secure composition patterns, comprising patterns for

integrity, confidentiality and availability, is given to prove and

exemplify the approach. The secure composition patterns are

encoded into security production rules that can be deployed to a rule-

based system.

• Secure composition inference algorithm

Security Aware Service Composition

28 / 253

The process of security requirements inference from the service

composition layer to the single composing services is achieved

through a recursive algorithm that makes use of the secure

composition patterns. This information can be used to assess the

security of existing compositions (e.g. during the SBS design time)

or to construct secure service compositions (e.g. to replace a service

with a composition with the same level of security at either design or

runtime).

• Prototype of a discovery and composition tool supporting security

This prototype allows the creation of service compositions during the

discovery of a service, and guarantees that the service compositions

have the requested level of security. The tool allows adaptation of

SBS at both design and runtime. The latter is achieved by taking

advantage of the proactive capabilities of the discovery tool.

• Prototype of a design tool supporting validation and adaptation

based on the security of service compositions

This prototype allows the validation of the security requirements

during an SBS design. The tool shows alternative services or service

compositions that comply with the functionality and the security

requested. The alternative services or service composition can be

used to request automatic adaptation of the designed SBS.

• Integration with the ASSERT4SOA toolkit

The approach and the prototypes have been integrated with the

certification framework proposed by the ASSERT4SOA project. The

certification framework provides further assurance with respect to

Security Aware Service Composition

29 / 253

the security of the services, increasing the level of trust in the

solutions provided by the presented approach.

• Evaluation of the approach

To prove the feasibility and scalability of the approach, the service

discovery and composition performances have been tested.

1.5 Publications

The contributions in this thesis have been submitted to conferences and

workshops in order to collect feedback and disseminate the ideas presented

to fellow researchers and organizations that work in the field.

In the following you can find a list of the published papers:

• Pino, L., and Spanoudakis, G. (2012, May). Finding secure

compositions of software services: Towards a pattern based

approach. In 5th IFIP International Conference on New

Technologies, Mobility and Security, 2012 (NTMS'12), pp. 1-5.

IEEE. DOI: 10.1109/NTMS.2012.6208741. [82]

This paper describes an early version of the framework and

introduces the concept of secure composition patterns. In this work

the security production rules were encoded in Situation Calculus [62]

and it was necessary to retain some information about the services

internals (i.e., the “Security related actions on data”).

• Pino, L., and Spanoudakis, G. (2012, June). Constructing secure

service compositions with patterns. In IEEE Eighth World Congress

on Services, 2012 (SERVICES'12), pp. 184-191. IEEE. DOI:

10.1109/SERVICES.2012.61. [81]

Security Aware Service Composition

30 / 253

This paper presents an updated version of the framework and

introduces an early version of the secure composition algorithm. In

this version of the algorithm we were using patterns to address the

construction of security composition respecting the required

functionality (through the usage of ontologies and OWL-S [61]

based patterns), and the security production rules were used to infer

the security requirements of the composition.

• Pino, L., Spanoudakis, G., Fuchs, A., and Gürgens, S. (2014, April).

Discovering Secure Service Compositions. In 4th International

Conference on Cloud Computing and Services Sciences

(CLOSER'14). DOI: 10.5220/0004855702420253. [84]

This paper presents an example of a formal proof underlying a secure

composition pattern on integrity, allowing trusting the solutions

based on such pattern. Furthermore, the paper presents the encoding

of the secure composition pattern into security production rules as

Drools production rules, which represents our final choice for the

encoding of the rules (as Drools is a fast, reliable and widely support

rule-based decision system [47]). Finally the paper describes an

updated version of the algorithm and presents the service discovery

and composition prototype, with some initial evaluation figures.

• Pino, L., Spanoudakis, G., Fuchs, A., and Gürgens, S. (to appear).

Generating Secure Service Compositions. In Cloud Computing and

Services Science: Fourth International Conference, CLOSER 2014,

Barcelona, Spain, April 3-4, 2014, Revised Selected Papers.

Springer. [85]

Security Aware Service Composition

31 / 253

This work is an extension of the previous paper that elaborates some

further the formalisms used for the proof, based on Security

Modelling Framework (SeMF) [37].

• Pino, L., Mahbub, K., and Spanoudakis, G. (2014, November).

Designing Secure Service Workflows in BPEL. In Proceedings of

the international conference on Service-Oriented Computing

(ICSOC’14), pp. 551-559. Springer Berlin Heidelberg. DOI:

10.1007/978-3-662-45391-9_48. [83]

This paper is focused on the SBS design tool that supports validation

and adaptation based on the security of compositions. This work

presents the latest version of the security requirement inference

algorithm and how this is applied in order to validate the security of

portions of BPEL workflows and to adapt secure service

compositions in a BPEL workflow.

1.6 Outline

The thesis is organised in 9 chapters as follows.

Chapter 2 presents an analysis of the existing approaches dealing with

service discovery, service composition. We focus in particular on the

security support in these fields and the existing standards and languages that

address the security issue.

In Chapter 3 we summarise the concepts and definitions that are used in

this thesis, from the Service Oriented Computing field.

Chapter 4 describes the languages and tools used in the context of this

research. More specifically this chapter focuses on the WSDL and BPEL

languages, used as the most common service description and service

Security Aware Service Composition

32 / 253

composition languages, and on Drools, RSDT and Eclipse BPEL Designer,

respectively the rule-based system, the runtime discovery platform and the

SBS design tool used for the implementation of the prototypes.

Chapter 5 presents the secure composition pattern approach. We

introduce some examples of secure composition patterns with the respective

proofs. Furthermore, this chapter contains a methodology to encode the

patterns into security production rules and the rules corresponding to the

patterns presented earlier.

Chapter 6 describes the service composition process based on the

secure composition patterns. This process makes usage of the security

production rules introduced in Chapter 5. The algorithms underlying the

service composition process are presented and discussed through the usage

of examples.

Chapter 7 contains the implementation details of the two prototypes

that use the secure service composition process in order to offer validation

and adaptation of secure service compositions. In particular, it describes

how the discovery platform and the SBS design tool presented in Chapter 4

have been extended in order to support security and service compositions.

Chapter 8 presents the setup and the results of the performance

evaluation of the discovery and the composition process. The chapter

contains the description of the configuration and the scenario, and the

explanation of the numerical results obtained from the tests.

Finally, in Chapter 9 we present the conclusions. In this chapter we

highlight the contributions of the approach, the implications that this

approach has on the field and some topics for future works.

Security Aware Service Composition

33 / 253

Chapter 2

Literature Review

2.1 Overview

This chapter presents an analysis of the existing works in the fields of

service discovery and service composition, focusing in particular on the

supported security features. This is followed by an analysis of the standard

and languages that support security in the SOC field. Furthermore, all the

approaches are summarized and put into relation with the contents of this

thesis.

2.2 Service Discovery

In this section we provide an overview of single service discovery

techniques, i.e., techniques that support the discovery of a service for a SBS

without attempting to formulate complete or partial service compositions.

They merely attempt to identify a single service that can fit within a system

based on given criteria that this service needs to satisfy. In many cases,

these criteria may express conditions that are necessary for the new service

to fit within an existing service composition. Also, the discovered service

may be a composite service itself. None of these cases, however, is treated

as discovery of service compositions in the context of this work as the

Security Aware Service Composition

34 / 253

discovery process does not attempt to create a new composition. Techniques

supporting the discovery of service compositions are overviewed in Section

2.3 below.

The techniques that we overview are classified into groups depending

on the main characteristics of the algorithmic approach deployed for service

discovery. According to this criterion, techniques are grouped into:

• Text matching service discovery – These are techniques that make

use of information retrieval techniques. In this group, discovery

criteria are expressed as keywords which are subsequently matched

with textual or structural descriptions of services. Typically, such

techniques are deployed for early and design time service discovery.

• Semantic service discovery – These are techniques that assume

descriptions of services that have been expressed in an ontology or

annotated with links to ontological descriptions. Such techniques

make use of the ontological descriptions during the matching process

in order to improve the precision and completeness of the discovery

process.

• Graph matching techniques – These are techniques that make use of

different types of graph matching techniques (e.g. weighted bipartite

graph matching, graph transformations, etc.) without relying on any

form of ontology or formal reasoning of semantic service

descriptions.

A summary of representative techniques in each of the above categories

is provided below.

Security Aware Service Composition

35 / 253

2.2.1 Text matching service discovery

Keyword-based retrieval underpins some service registries available on

the Internet (e.g. Xignite [112] and WebserviceX [111]) and some basic

built-in clients for development platforms (e.g. jUDDI GUI [103], Eclipse

Web Services Explorer [26]). These approaches may also offer discovery

through service categories and the use of tagged service descriptions. Text

based service discovery is easy to use, due to the simplicity in the

expression of the discovery queries. It is also useful in static service

discovery, where the developers of SBS are usually concerned with finding

a service that fits their requirements or the requirements of an application

being designed. However, it cannot offer the matching precision that is

required in dynamic service discovery that is executed to support automatic

service replacement in applications at runtime. This is because in the

analysis and design stages of SBSs, it is often useful to identify even

services that do not match perfectly with what is required as a means of

exploring alternative solutions and considering alterative designs and

implementation paths for the application. At runtime, however, when the

design of the overall application and its coordination logic have been fixed,

the imprecision that typically characterizes keyword-based techniques is not

acceptable, as decisions about replacing the partner services of a system

with alternatives identified during the discovery process, in many cases,

need to be taken in an automated manner.

2.2.2 Semantic service discovery

Semantic service discovery techniques constitute a significant approach

to service discovery that is based on explicit representations of the

semantics of services and logic reasoning techniques that analyse these

representations. There has been a vast number of techniques that realise the

semantic service discovery approach, including [50][56].

Security Aware Service Composition

36 / 253

A system realising the semantic approach is OWLS-MX [50]. OWLS-

MX uses logic based approximate matching and information retrieval

techniques.

A semantic approach has also been advocated in [56], where a service

discovery prototype that uses a Description Logic reasoner to match service

discovery requests with ontology based service descriptions expressed in

DAML-S.

Despite some experimental evidence showing acceptable precision and

recall over competitors, however, the semantic approaches do not appear to

be adequate for dynamic service discovery. This is because the ontological

matches do not necessarily coincide with behavioural and interface

matching at the level required for dynamic service discovery.

2.2.3 Graph matching techniques

Other approaches for service discovery consider graph transformation

rules [49], or behavioural matching [32][67][92]. The work in [49] is

limited since it cannot account for changes in the order or names of the

parameters. In [92], the authors use service behaviour signatures to improve

service discovery. In AOWS [33][96] the functional and quality

characteristics of components and services are described as aspects and

discovery is based on a formal analysis and validation of these descriptions.

The work in [67] advocates the use of behavioural specifications

represented as BPEL for service discovery for resolving ambiguities

between requests and services and uses a tree-alignment algorithm to

identify matches between request and services.

Graph matching underpins also the Runtime Service Discovery Tool

(RSDT) [115][116] developed within City University of London. This

system uses graph morphism detection algorithms to match service

Security Aware Service Composition

37 / 253

interfaces and graph search algorithms to identify the compatibility of

behavioural discovery criteria with behavioural service description models

expressed in BPEL. Furthermore, this tool offers the capability to subscribe

queries in order to have them executed and maintained proactively, in order

to offer timely runtime service discovery to SBSs.

2.2.4 Context awareness

Several approaches have also been proposed to support context

awareness in service discovery [11][20][79][113]. In [20], context

information is represented by key-value pairs attached to the edges of a

graph representing service classifications. This approach does not integrate

context information with behavioural and quality matching. Furthermore,

the context information is stored explicitly in a service repository that must

be updated following context changes. In [9] queries, services and context

information are expressed in ontologies. The approach in [11] focuses on

user context information (e.g. location and time) and uses it to discover the

most appropriate network operator before making phone calls. The work in

[113] locates components based on context-aware browsing. The above

context-aware approaches support simple conditions regarding context

information in service discovery, do not fully integrate context with

behavioural criteria in service discovery, and have limited applicability

since they depend on the use of specific ontologies for the expression of

context conditions.

2.2.5 Summary

In summary, most of the proposed approaches support service

discovery based on limited sets of service criteria and using a reactive

approach for query execution. Unlike them, RSDT supports dynamic service

discovery based on a comprehensive set of service and application criteria

Security Aware Service Composition

38 / 253

including but not limited to structural, functional, quality, and contextual

characteristics. This tool supports both reactive and proactive service

discovery, resulting in more efficient service replacement during the

execution of a SBS.

Due to these reasons, RSDT was selected as a reasonable choice to be

the basis for developing support for handling security related criteria and

handling compositions as part of service discovery. In particular the

extensible support for query criteria to any XML service description allows

matching any form of security property specification, whilst the proactive

service discovery support allows obtaining timely results even when the

computation may require some time, as while performing service

composition.

Security Aware Service Composition

39 / 253

Approach Algorithm Service descr.
language

QoS
support

Xignite [112] Keyword-based WSDL No

WebserviceX [111] Keyword-based WSDL No

OWLS-MX [50] Semantic
(logic-based and IR)

OWL-S No

Li, L. et al. [56] Semantic
 (logic-based)

DAML-S No

Mikhaiel, R. et al. [67] Graph-based
(tree alignment)

BPEL No

Shen, Z. et al. [92] Graph-based
(RE-tree [15])

Behaviour
signatures
(new language)

No

AWOS [33][96] Graph-based AOWSDL [95]
(new language)

Yes

RSDT [115][116] Graph-based
(morphism detection)

WSDL, BPEL
and XMLs

Yes

Cuddy, S. et al. [20] Context graph-based Not explained No

Beeri, C. et al. [9] Context graph-based BPEL No

Bormann, F. et al. [11] Context n/a – not on WS No

Ye, Y. et al. [113] Context n/a – not on WS No

Table 2.1: Summary of the single service discovery approaches.

Security Aware Service Composition

40 / 253

2.3 Service Composition

If the basic single service discovery fails to find the requested

functionality, there is another way a discovery platform can try to fulfil the

request: to compose an ad-hoc service on the fly by discovering and

combining some services that provide the different parts of the

functionality.

This additional step in the discovery process can be realized with the

aid of different approaches arising from several areas of research (formal

methods, automated reasoning, semantic computing, distributed systems,

etc.) [8]. This wide range of possibilities offers a lot of solutions that can

satisfy different types of discovery (static or dynamic, with human

intervention or not), based mostly on which parts of the composition

process can be automated. In particular we categorize the works in this area

within two main groups:

• Approaches which automate the translation of the service query into

workflows containing activity placeholders that need to be bounded

to concrete services;

• Approaches that focus on automating the service discovery,

adaptation and binding, when the workflow is already available.

2.3.1 Definition of Service Workflows

The approach of automating the phase of finding or building a new

service composition is a step in the direction of dynamicity and it also

answers to problems of complexity, response-time and scalability of a

manual approach. The problem is typically to find or construct a workflow

(or plan) that can satisfy the requirements. This step is usually followed by

Security Aware Service Composition

41 / 253

the discovery and adaptation of services in order to instantiate the service

composition, as explained in Section 2.3.2.

A solution to this problem is using reference process models, in

domains in which such models exist, in order to generate a set of standard

workflows that offer specific business functionalities. Some examples of

such standard process models are the Health Level 7 (HL7) in the health

domain [40], SWIFT used by financial institutions [98], and Electronic Data

Interchange (EDI) [70], RosettaNet [34], IBM BPM Industry Packs [43] that

specify models for a variety of fields (e.g., manufacturing,

telecommunications, …).

Whenever a process model does not yet exist, however, the need to

construct a workflow ad-hoc arises. An early work on this is SAHARA

[60][87], a framework to compose services in a Wide-Area network, where

the approach is not specific on services, rather it composes more generic

data operators. The “composition path” (i.e., the workflow) is built by

running the shortest path algorithm on the graph of the operator space. They

propose to build domain-specific graphs and to cache popular results to

limit the size of the graphs, but the solution isn’t scalable in a more general

context without the notion of local and wide-area paths. Furthermore the

data operator point of view is a little restricting, not allowing for example a

service to just retrieve information or to compose data from/to different

services.

Another work from the same period is SWORD [86], a toolkit for

efficient service composition. In this work a service is represented as a rule

expressing that given certain inputs, the service will provide a certain

output. These rules are expressed using Entity-Relationship assertions and

are elaborated through a rule-based Expert System to generate plans, given

the pre-conditions and post-conditions of the requirement. They allow only

Security Aware Service Composition

42 / 253

simple queries, by not allowing arbitrary joins (like “find all pairs of movies

with the same director”) and not providing arithmetic/function symbols, to

maintain an efficient and simple model.

Most recent works, however, prefer to use standard languages to

describe services (and composition requests), in particular OWL-S (and

DAML-S). The reasons are mostly business-related and include: (a) in this

way developers don’t need to learn further languages, (b) it simplifies the

process of integrating an existent service discovery platform and (c) to

avoid the error-prone (manual) process of converting the service

descriptions in another language.

A framework for the automated service composition is described in

[58] and it uses the services’ DAML-S description (DAML-S is a

predecessor of OWL-S). In particular, the approach of this work is to try to

find a single service corresponding to the high-level goal requested by the

user, in case this step fails then a repository of abstract workflows is

interrogated. Only if also this other step fails the framework tries to build a

new composition, by chaining services through their input-output and

precondition-effect descriptions. The matching of IOPEs (i.e., Input,

Output, Precondition and Effect) is provided by a specific component that

admits the composition of the I/O data from different services, allowing the

creation of complex compositions.

In [88][89] the DAML-S Service Profile of each service is converted in

extralogical axioms of propositional Linear Logic. The service composition

request is then specified as a Linear Logic sequent and the system uses a

theorem prover to check if the request can be satisfied by a composition of

services. If a composition is possible, then a process calculus representation

of it is generated from the proof and it is possible to request a workflow

model (DAML-S Service Profile or BPEL4WS). Non-functional properties,

Security Aware Service Composition

43 / 253

like security and QoS ones, are taken in consideration as well as the

functional ones, thanks to inference rules.

CoSMoS [30][31] is a semantic-based model for services and

compositions that is slightly different from OWL-S since it allows also

semantic annotation of operation “concepts” (in addition of I/O) that cannot

be defined as data types. In this context they introduce SeGSeC: a service

composition mechanism that supports CoSMoS (i.e., semantic annotations).

In this work the services must be described in CoSMoS/WSDL and the

service request can be written in natural language: the tool then translates it

into a CoSMoS semantic graph representation. The composition starts with

the discovery of the service for the initial concept in the request (the one

that provides the goal output) and then goes on by finding the services that

provide the inputs for the initial service, using also the semantic

information. At the end of the composition process the workflow is checked

to guarantee that it satisfies the semantic request; otherwise the tool tries to

find other compositions.

One of the most recent works in the field is DynamiCoS [53][94], a

framework for dynamic service composition that supports requests in

natural language (but also in a formal language based on OWL) and

functional and non-functional properties. The first step of the composition

in this framework is the service discovery, based on semantic concepts. The

semantic connections between the I/O of the discovered services are stored

in a Casual Link Matrix (CLM); so then the composition is built starting

from the requested output searching backwards for compatible services

through the CLM.

The framework itself does not include the service discovery component

and the necessary interpreters to convert the service descriptions in the

internal formalism (it is claimed that the approach can be applied with

Security Aware Service Composition

44 / 253

OWL-S Service Profile, WSMO Capability Model or SA-WSDL

specification).

Approach Algorithm Service
description
language

Allowed
WF

patterns

Security
support

SAHARA
[60][87]

Graph-based n/a - not only on
WS

Choice No

SWORD
[86]

Logic-based
(rule-based
system)

Based on ER-
model
(new language)

Parallel No

Majithia, S.
et al. [58]

Backward
chain of I/O

DAML-S - No

Rao, J.
[88][89]

Logic-based
(theorem
proving)

DAML-S Choice
and
parallel

As service
goals and
constraints

CoSMoS /
SeGSeC
[30][31]

Semantic
graph-based

CoSMoS/WSDL
(new language)

Choice No

DynamiCoS
[53][94]

Semantic
graph-based

Internal, needs
interpreters
(new language)

- Yes / not
explained

Table 2.2: Summary of approaches supporting automated construction of

service compositions.

2.3.2 Instantiation of Service Workflows

This research area focuses on finding, given a workflow, the most

suitable services for the activities in the workflow or, in case no perfect

Security Aware Service Composition

45 / 253

matches are available, to adapt the workflow to consider the services that

behave in a very similar way to the activities involved. The “most suitable”

unit of measure is in the majority of the works based on the semantic

correlation. Some other works focus on reaching the best QoS, after a first

selection of services.

The earliest work on this subject is eFlow [14]: a platform for

composition of services. This platform offers means of describing the

workflow of the services through the GUI (by defining flow graphs) or

through a simple composition language (an XML language called CSDL:

Composite Service Definition Language) that allows dynamic discovery of

services or dynamic selection and instantiation (with possibilities of

multiple instantiations) of services from a list. The discovery is obtained by

executing generic XQL queries on the repository of the service descriptions

as the platform allows any XML format for the service descriptions. The

obtained dynamic composition, however, isn’t guaranteed to be working

correctly: the framework is built just to compose but it doesn’t perform any

verification after the composition.

An example of work that extensively uses semantic computing is [64],

an ontology-based framework for automatic service composition. The

desired workflow, with semantic annotations, is described through a

language called CSSL (Composite Service Specification Language).

Syntactic, semantic and qualitative composability rules are used to select

the services for the composition. In particular the service WSDLs must be

augmented with semantic properties from the DAML+OIL ontology

presented in the paper. An interesting feature from this work is the

introduction of three measures for the selection between the different

resulting compositions, called ranking, relevance and completeness (in

Security Aware Service Composition

46 / 253

particular the first two measures are calculated on the basis of stored

templates).

Another work on automatic composition based on ontologies is [51]. In

this work the service request is defined with TWFO (Transactional

WorkFlow Ontology), an ontology used to describe workflows with

transaction support. The main difference with other works is that the service

registry must also contain the workflow of the services used in the

discovery process (expressed in TWFO as well). Then, after the candidate

services are found through the DAML-S registry, the system tries to

compose the workflow of each service in the requested workflow (called

Master Workflow). The work does not go too much into details on the

discovery process.

Regarding the automatic service composition based on QoS criteria, it

should be noted that this kind of approach needs, in addition to the

workflow of the composite service, the list of the compatible services for

each activity as input. So, since a list of services has been already

discovered, the matter to solve is reduced to just aggregate the different

QoS data to find the best composition. A work in this area is [46], that uses

some of the workflow patterns from [107] to define aggregation functions

for QoS criteria. The patterns are used to do a stepwise graph reduction, and

for every step the aggregated value of the QoS criteria is calculated.

Another work on QoS composition, even though quite domain specific,

is SpiderNet [35][36], a framework for QoS assurance and load balancing of

multimedia service compositions. The input of their tool is the composition

of functionalities (a function graph) and a QoS requirement vector. Then the

service composition is achieved through the bounded composition probing

protocol: at each step a probe is sent from the actual service node to the

most promising of its neighbours, to look for the next functions. Each node

Security Aware Service Composition

47 / 253

provides as a result the list of the service components that implement the

desired functions and the statistical QoS (the assumption is that the nodes

are cooperative and trustworthy). The drawbacks of this work are that the

composition process is slow and that the algorithm is based on probing the

network, so it can be used only on bounded networks.

A more complete approach is given in METEOR-S [1][97], where the

semantic and the QoS approaches are combined in a single automatic

service composition framework. METEOR-S is more broadly a framework

for the complete lifecycle of semantic web services; the particular

component that deals with service composition is called MWSCF

(METEOR-S Web Service Composition Framework).

The definition of the desired workflow is made through a specific GUI

tool, where the user (service designer) should also associate each activity to

a discovery URL. Then the framework ranks the services on two

dimensions: the semantic matching and the QoS criteria matching. The

service designer can specify the weights of each criterion to have control on

the service selection process. The framework is not able to automatically

generate an executable but it needs some user intervention for the data

binding.

Security Aware Service Composition

48 / 253

Approach Matching
approach

Input format
(workflow)

Service
description

Security
support

eFlow [14] n/a CSDL and XQL XML No

Medjahed,
B. et al. [64]

Syntactic
and
semantic
logic-based

CSSL WSDL with
semantic in
DAML+OIL

Privacy
and
encryption

Korhonen, J.
et al. [51]

Ontology-
based
reasoning

TWFO DAML-S and
TWFO

No

Jaeger, M.C.
et al. [46]

QoS
aggregation
(minimize
function)

Workflow
(+candidate
services)

n/a Encryption

SpiderNet
[35][36]

Network
probing

Function graph
and QoS req.
vector

Function
names

No

METEOR-S
[1][97]

Semantic
and QoS
ranking

BPEL-like,
generated
through a GUI

WSDL
(+semantics),
WSEL (QoS)

No

Table 2.3: Summary of the automated service discovery in service

composition approaches.

2.3.3 Summary

The works on Service Composition comprise results from a wide area

of fields. A variety of languages have been used to encode service

descriptions and workflows, with no standard being embraced by the

Security Aware Service Composition

49 / 253

community. The recent trend, however, has been to adopt semantic-aware

specifications and solutions.

In more detail, we have presented the works in this field by

categorizing them in the ones that discover or build a composition plan that

can provide a given functionality, and the ones that instantiate workflow

plans with services that will collaborate to implement the given

functionality. In the context of this thesis we do not wish to address directly

the former, as our assumption is that any approach in the literature may be

used, but we enhance the solutions for the latter with extended security

support. The described works that handle the instantiation of service

workflows, in fact, present a very limited support for security, as described

in more detail in Section 2.4.4.

2.4 Security in Service Oriented Computing

In this section we provide an overview of how the security problem has

been addressed in the service-oriented computing (SOC) field. In particular,

we are going to describe first the security standards and solutions that have

been introduced in the SOC field and then how security has been handled in

the context of Service Discovery, Service Composition and SBS Design.

2.4.1 Security Languages and Standards

In order to deal with security issues that used to hold back a wider

usage of services, the SOC community has actively worked on

standardizing a set of languages and protocols that would help the

development of secure services and SBS.

WS-Security [77] is an OASIS standard that extends SOAP in order to

allow enforcing confidentiality, integrity and non-repudiation on XML

messages, thanks to encryption, signature and identifying security token

Security Aware Service Composition

50 / 253

capabilities. This standard does not provide a complete solution for security,

however is used as a building block for further protocols. WS-

SecureConversation [74] extends the use cases of WS-Security providing a

way to establish security contexts for multiple message exchanges, reducing

the overhead introduced by key negotiation.

WS-Trust [76] is another OASIS standard that introduces the

mechanisms to manage security tokens in order to build trust relationships

between organizations, or “security domains”. WS-Trust defines the process

of issuing, renewing and validating of security tokens by the Security Token

Service, the key exchange process and the format of the message used for

each one of these operations.

SAML [72] and WS-Federation [73] are two OASIS standards for

identity federation specifications that provide the means for shared

authentication and authorization of identities between organizations, or

“security domains”, thanks to federation agreements (e.g., single sign-on

mechanisms).

WS-Policy [109] is a W3C recommendation that allows the

specification, by the service provider, of which QoS or security policies are

in place. WS-SecurityPolicy [75] is an OASIS standard used to specify and

negotiate security policies, based on WS-Policy, that can defined on a wide

range of technologies, from transport layer security to the usage of

protocols specified by WS-Security, WS-Trust and so on.

Common Criteria (CC) [18] is the international standard for traditional

software certification (ISO/IEC 15408:2009 [45]), developed by the

governments of Canada, US, UK, France, Germany and Netherlands in

order to ensure security of the software used by the government and critical

infrastructures. In CC vendors ask testing laboratories to evaluate their

Security Aware Service Composition

51 / 253

software in order to check if it meets the security functional and assurance

requirements (SFRs and SARs) they claim. After testing, CC certificates

can be released produced by certification bodies in order to be checked by

the users; for this reason the certificates are human-readable system-wide

documents that can easily exceed the hundreds of pages (e.g. by putting

together the Certification Report, Security Target and Protection Profile of a

CC certificate: see [19] for some examples).

The ASSERT4SOA project [5][80] aimed to solve the shortcomings of

traditional software certification in the SOC field. In particular, the

proposed approach advocates the usage of machine-readable security

certificates available at runtime and digitally signed by trusted third-parties

(Certification Authorities, or CA). Each security certificate describes a

security property that has been verified to hold for a given service. The

certificates can be seen as additional service descriptions placed in service

registries and available to clients and to service discovery processes.

2.4.1.1 Summary

The standards introduced in the SOC field encompass a number of

mechanisms to support a wide range of security requirements, offering

solutions to service developers for their implementations.

As the approach presented in this thesis is meant to assess security of

service compositions, it does not need to go in the level of detail of the

security implementation for a service. In fact, from the point of view of a

SBS designer or a service user, all the concepts introduced by the WS-*

standards are very fine grained, as they are used at a technical level to solve

a problem, but they might be far too complicated for potential clients. In

this sense, service users might want to know which security properties hold

for a service without the need of the information about how the property is

Security Aware Service Composition

52 / 253

achieved, e.g. knowing that a piece of data is treated with confidentiality, or

that the service is available at the 99.99% of the time.

Furthermore, users cannot always know, and therefore trust, the Service

Provider that offers a service and the level of security he/she declares.

Security certificates offer third-party security guarantee for service users,

without the need to investigate the exact mechanism that assure the

requested security property.

For these reasons the implementation of our work uses security

certificates, since our approach is mainly directed to SBS designers;

however our solution can support any kind of security descriptor.

2.4.2 Security Design and Implementation

For the design and implementation of secure services, the research has

been focused on: (a) additional stages to the development process in order

to take into consideration the security requirements during the design and

implementation of a service [29][38][66], and (b) special security services

that provide the mechanisms to protect other services (security-as-a-service)

[16][38][39][76].

[29] introduces the usage of a formal framework called SI*/Secure

Tropos during the Early Requirements Engineering phase in order to model

and analyse security requirements. The requirements are then used to

produce a Secure BPEL workflow that goes through an iterative process of

refinement. [66] proposes to use SecureUML in order to encode security

requirements at design time. Then, before implementing the solution, an

additional step is introduces in order to investigate the SOA Security Meta-

model. At this stage a set of Security Pattern is used to convert the security

requirements into security constraints that describe how to achieve the

security requirement. PWSSec [38] describes a set of complementary stages

Security Aware Service Composition

53 / 253

to be added to service development phases in order to support security. In

particular WSSecReq is a first design phase aimed to specify the security

requirements, WSSecArch is a phase where the requirements are used in

conjunction with security architectural patterns in order to define the

security architecture, and WSSecTech is the final design phase where a set

of WS security standards (see the previous section) are identified starting

from the security architecture designed in the previous stage. In particular

during the WSSecArch stage, security services are added to the architecture

in order to support a required security mechanism.

AO4BPEL [16] allows the integration of security specifications in a

BPEL process. These specifications are then used to indicate security

functionalities that are offered by a special Security Service, and integrate

them in the AO4BPEL process. Sectet [39] is a framework for the

implementation of security patterns from design to the implementation of an

orchestration. Sectet enables the design of orchestrations as UML message

flow diagrams, which are converted into workflows and used to generate

stubs for actual orchestrations. In orchestrations, services are wrapped by

Policy Enforcement Points, whose purpose is to provide the required

security properties.

2.4.2.1 Summary

In order to ease the application of security measures to new services,

the described approaches introduce new design phases and new security

services. These approaches, however, differ from the work presented in this

thesis as they aim to support security for a service, not a service

composition. Furthermore, the processes described in the literature often

require human intervention or additional security services, whilst our

approach does not introduce such requirements.

Security Aware Service Composition

54 / 253

2.4.3 Security aware Service Discovery

In this section we provide an overview of single service discovery

techniques supporting security constraints, i.e., techniques that perform the

discovery of a service without attempting to perform service composition

(even though a discovered service may be a composite service itself).

Frameworks supporting the discovery of service compositions are

overviewed in Section 2.4.4 below.

In [105] the authors describe an approach to Web Service discovery

based on privacy preferences. The preferences are specified as part of

privacy policies (architecturally placed with service descriptions in a central

service repository). The privacy descriptions consist of a vocabulary for

properties including terms for disclosure, openness and anonymity. The

process of applying the privacy-aware policy for the web services is

accomplished in several stages. First, a client sends their preferences to a

discovery agent. Then, a correspondence will be established between the

user’s interests and the web service privacy policies. Finally, the degree of

user confidence to the privacy-aware policies on services is evaluated and a

selection is made based upon the confidence levels obtained.

Similarly, the work presented in [48] uses policies described in

extended service descriptions for authorization and privacy for semantic

web services. The descriptions are proposed ontologies to annotate OWL-S

input and output parameters with respect to their security characteristics,

including encryption and digital signatures. Several extensions to OWL-S

are proposed in the form of objects. First an information object which itself

is extended to support either encrypted information or signed information.

The approach also adds a series of policy types to OWL-S including a

PrivacyPolicy, ConfidentialityPolicy and AuthorizationPolicy. The authors

describe a design-time “best service selection” process. They also discuss

Security Aware Service Composition

55 / 253

how this may be used for run-time compliance checking, but allude to the

difficulties of trusting what providers offer as descriptions and what the

services they provide actually undertake in execution.

[106] introduces a context-aware service discovery approach that

makes usage of security policies. A threat analysis is given for the service

discovery process, which led to the specification of security policies. The

service client or the service provider can enforce security policies in order

to restrict the access to their respective profiles during service discovery.

FSSD [69] is a decentralized peer-to-peer service discovery protocol

that allows users to adjust their degrees of collaboration, security and

privacy. In particular this work investigates the trade-off between these

three characteristics and introduces a common secure trust overlay that may

work in multiple administrative domains and that is independent of network

and security infrastructures.

2.4.3.1 Summary

Existing research has focused largely on two sub-areas: the first being

service discovery driven by some specific security or privacy constraint and

second, the security of the service discovery mechanisms.

In our work we are interested in the former, which is yet to see a

comprehensive solution in the literature, as typically only subsets of

security properties are supported. In our approach, instead, we extend an

existing service discovery tool with capabilities to match any security

property with a service security description, in order to support security

aware discovery to be used when instantiating a service composition.

Security Aware Service Composition

56 / 253

2.4.4 Security aware Service Composition

The efforts to provide security in service compositions can be

summarized in two categories, the ones that merely verify that an existing

service composition guarantee a given security property, and the ones that

take security properties into account during the construction of a service

composition.

2.4.4.1 Verification of Service Compositions security
properties

Among the works focusing on security in service composition

particular relevance has been given to verification, through model checking,

of already existent compositions’ security. The service composition can be

checked for flaws at design time or in a later stage of development, usually

after concrete services are associated with each task. To perform the check

the composition is modelled with formal languages and the requirements are

expressed as properties on the model.

The design time verification is applied on a specification of the system.

To encourage the use of this kind of verification, the language of the

required specification is conventionally a common language of the Software

Engineering area, usually UML.

Works meant for design time verification of security properties, like

[22] and [23], usually support the system definition in UML (or similar

tools), since it is a common language used in the Software Engineering area,

encouraging in this way the use of this kind of approach. In particular [23]

has an unusual approach with respect to the normal verification since they

add the concept of patterns. Basically, the first step in their approach is to

express security design patterns (i.e., design patterns of best practices to

achieve some security goal) in UML sequence diagram. These patterns are

Security Aware Service Composition

57 / 253

then converted into the formal language CCS [68] through some rules. The

model checking of the security properties can be done, in the end, on

compositions of these security patterns, to verify if the security properties

are preserved.

A more general work in the verification of security properties in service

composition is in [6][7]. They introduce a calculus (a typed extension of λ-

calculus) to describe and compose services. In particular their language can

be used to describe a model and check the security-related activities (access

events, e.g. writing a file, opening a socket connection) of a service

composition. The main remark on this work is that there’s no description of

the modelling phase, leaving to the reader the burden of planning how to

convert the services into their language.

Another work in the verification of service composition area is Aniketos

[4]. This work introduces a set of security patterns that are defined as design

patterns that guarantee some security goal. These patterns are used to secure

software during the design phase, which is human based, and to monitor

changes related to the requested security policy at runtime.

2.4.4.2 Security aware Definition and Instantiation of
Service Workflows

Another point of view regarding security in service composition is to

obtain the guarantee that a composition respects some security policies

directly from the discovery process, when an automatic composition of

services approach is used.

A work that falls into this category is [54], where planning techniques

are used to compose workflows compliant with some lattice-based access

control models (e.g. multi-level secure systems). The focus is on how to

Security Aware Service Composition

58 / 253

find efficient algorithms for workflow planning, even though in the limited

case of sequences of operators.

In [13] the authors describe an approach to security conscious web

service composition through the declaration of security constraints required

on service provision and of the constraints declared by service providers.

Security constraints are declared in SAML assertions [72]. Examples are

provided for both authentication and authorisation assertions although a

common security ontology is not provided. The architecture of using the

constraints specified is based upon a Web Service brokering model. A

Secure WS-Broker (SWS-Broker) is used to manage service requests and

sets of security constraints, identifies a well-known business process (i.e.,

the workflow) compatible with the request from a library and tries to

instantiate such workflow with appropriate services that respect also the

security constraints. The approach also provides an implementation of the

broker consisting of a workflow modeller, service locator, security

matchmaker and WS-BPEL generator. The security matchmaker builds a

tree structure of the path of security considerations (from the constraints

applied to the workflow) and analyses the possible composition paths and

security constraints from discovered services. WS-Agreement nodes are

also generated as part of service message structures to express the

constraints applied.

2.4.4.3 Summary

Approaches allowing verification of service composition security

require modelling the service composition, its services and the security

property to check them through formal languages, in order to be able to say

if the security property is satisfied.

Security Aware Service Composition

59 / 253

The works that handle security during the definition and the

instantiation of service workflows, instead, add a security aware discovery

dimension during the composition of the services. Furthermore, as

summarized in Table 2.2 and Table 2.3, some of the works in Section 2.3

allow the expression of few security properties in the request as well as non-

functional properties.

Our approach does not require the knowledge of any formal language

or knowledge about the internals of the services, as services are software

components that may be available from an external provider unwilling to

share information about the service internals. Furthermore model based

approaches are usually specialised to verify a specific security property,

whilst our approach allows the inference and validation of any security

property, given that a formal proof of composition results exists.

Finally, in almost all the approaches taken into consideration, security

properties are specified and checked only against single services in the

composition, not giving information on the overall security of the

composition. In our approach, instead, it is possible to require a security

property over an entire service composition in order to be used to infer

which security properties are required by the services part of the

composition. This allows treating a service composition as a single service,

permitting in this way the substitution of a single service that has a set of

security requirements with a service composition that is generated online

and that respects the same security requirements of the original service.

2.4.5 Security aware Design of SBS

The definition and verification of security requirements is an aspect

that is not only important during the design and development of services,

Security Aware Service Composition

60 / 253

but also fundamental when designing SBS. The following approaches define

some initial steps in the direction of security aware design of SBS.

One direction of research [27][29] is to define new languages for the

specification of security requirements over a BPEL. These approaches can

be seen as a first step to support the design of secure SBSs, but lack of

appropriate editors to aid the use of the new language at design time.

The work in [29] introduces a language to specify high-level security

requirements in a business process description. This specification language

is a BPEL dialect that abstracts low level details about the security

implementation, allowing devising secure workflows at design time. The

approach presented in [27] focuses on the definition of a language for

specifying security policies in order to simplify the verification when a

BPEL business process is used in different enterprises. The policies apply

on single services part of a business process, so no security requirement can

be formulated for the composition as a whole.

The Sec-MoSC (Security for Model-oriented Service Composition) tool

[100] is an extension of the Eclipse BPMN Modeller that allows to design

BPMN business processes and to add security requirements to them. In this

approach, security requirements are expressed by (i) the security property

category (e.g., Confidentiality, Integrity, …), called NF-Attribute, (ii) the

level of the property (i.e., High, Medium, Low), called NF-Statement and

(iii) the security mechanism that implements the property (e.g.,

Confidentiality can be implemented by UseCryptography, that has

properties about Encryption Type, Algorithm, Encrypted Message Parts and

Key Length), called NF-Action. After selecting the NF-Attribute and NF-

Statement for a BPMN element, a default set of NF-Actions that implements

the requested property are automatically added in the security requirement.

Security Aware Service Composition

61 / 253

The tool needs human intervention to associate services to the BPMN

activities, but it filters the service repository based on the NF-Attributes and

NF-Statements in the security requirements to ease this task. The user needs

also to add manually the data mappings and the predicates for the control

flow (e.g., loops and conditions for decision commands) to enable the

encoding of the BPMN process, which does not contain this kind of

information, into an executable BPEL process. An interesting feature of this

approach is the usage of an auxiliary security engine during the execution of

the BPEL process that performs the NF-Actions that were required to the

BPMN process itself.

Another similar approach, on QoS requirements instead of security

ones, can be found in the METEOR-S project (see Section 2.3.2). The

project made available several tools to manage annotations in WSDLs and

UDDI registries, as all the declarations in the WSDLs must be linked to

ontological concepts. These tools can be used to semantically annotate an

abstract BPEL process, allowing also the specification of QoS requirements.

The annotations are then used to discover appropriate services for the BPEL

process, using an enhanced UDDI registry. The demo of this approach [57]

shows, however, that the generation of the abstract BPEL process is

external to their toolset (they use a BPEL design tool from IBM called

BPWS4J Editor) and that the BPEL must be imported into the METEOR-S

tool for the annotation to take place. Furthermore, this approach requires

extensive semantic annotation of all the services in the registry, their

behaviour and inputs/output.

2.4.5.1 Summary

In order to allow the specification of security requirements during the

design of a SBS, some works in the literature define new languages for the

specification of security requirements over a BPEL. These approaches are

Security Aware Service Composition

62 / 253

an interesting first step to taking care of security at design time, however

further efforts might be required in order for SBS designer to use them, e.g.,

provide some user friendly editors. Furthermore such approaches might

benefit by allowing the specification, inference or the validation of security

requirements over pieces of the composition, instead of allowing only the

specification over single activities.

Other works in the area provide editors to guide the SBS designer to

specify security requirements for single activities in a workflow and bound

appropriate services that respect the requirements. The approach presented

in this thesis is meant to extend this, allowing the SBS designer to use a

single tool in order to (a) design the (executable) BPEL process for an SBS,

(b) specify security requirements for single activities or workflow

fragments, (c) automatically infer the security requirements over the single

activities part of a workflow from the security requirements on the entire

workflow, (c) validate the security requirements by checking services

security descriptors, (d) discover alternative services or build service

composition that satisfy the requirements, and (e) automatically replace a

service with an alternative service or service composition.

Security Aware Service Composition

63 / 253

Chapter 3

Conceptual Foundations

3.1 Overview

In this chapter we cover the conceptual foundations that underpin the

research outcomes of this thesis by giving definitions and explaining the

relations between concepts used in our approach. The focus of this chapter

will be on software services and service related topics, e.g. service

discovery, service composition and cloud computing.

In the context of this work we are going to use the terms Software

Service and service interchangeably.

3.2 Software Service

Software Services are the basic components of the Service-Oriented

Architecture (SOA) paradigm, i.e., an emerging paradigm that employs

services to support rapid and simple development, usage and composition of

distributed applications:

“A service in SOA is an exposed piece of functionality with three

essential properties. A SOA-based service is a self-contained (i.e., the

service maintains its own state) and platform-independent (i.e., the interface

Security Aware Service Composition

64 / 253

contract to the service is platform independent) service that can be

dynamically located and invoked. The primary value of SOA is that it

enables the reuse of existing services, either as standalone or as part of

composite applications that perform more complex functions by

orchestrating numerous services and pieces of information. A simple service

is reused in different ways and combined with other services to perform a

specific business function.” [78]

In other words a Software Service is a self-contained piece of

interoperable software exposed over a network that might be accessed

programmatically by other software applications through the discovery and

invocation of a specific public interface. By using or combining different

software services a software application can provide larger and more

complex functionalities; we call such applications Service Based Systems

(SBS).

 “The service interface part defines service functionality visible to the

external world and provides the means to access this functionality. The

service describes its own interface characteristics, i.e., the operations

available, the parameters, data typing, and the access protocols, in such a

way that other software modules can determine what it does, how to invoke

its functionality, and what result to expect in return.” [78]

Software services are developed and offered to users (i.e., Service

Clients) by entities called Service Providers. When a Service Provider

makes available a service, it publishes also a service interface description in

order to define how potential clients can access the service. Service

Registries are collections of service interfaces (from one or more service

providers) that allow clients to look up for the service they need. The

decoupling of these concepts allows a service to be used by other entities

than the Service Provider, i.e., the Service Clients, to build their own SBS.

Security Aware Service Composition

65 / 253

Furthermore, it allows using a service for applications that may have been

unforeseen by the Service Provider.

3.2.1 Web Service

One of the most common implementations of the Software Service

concept is called Web Service. The definition of Web Service, as given by

the leading standard organization for the Web, the World Wide Web

Consortium (W3C), is the following:

“A Web service is a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface

described in a machine-processable format (specifically WSDL). Other

systems interact with the Web service in a manner prescribed by its

description using SOAP-messages, typically conveyed using HTTP with an

XML serialization in conjunction with other Web-related standards.” [110]

While being a little outdated (as SOAP is no longer the only protocol

used to exchange messages by Web Services), this definition provides a

good introduction to the spectrum of technologies that characterize Web

Services. In essence Web Services are Software Services that can be

described, used and coordinated through XML artefacts and that are

conveyed through web-related standards as HTTP. In particular XML

encodings promote interoperability, as their text-based representation is

platform-independent.

In more detail, Web Services have their service interface described in

WSDL, an XML-based language that allows definition of types, operations

and bindings, and they can expose bindings to a variety of architectures,

most notably based on SOAP or REST. SOAP is a protocol that uses XML-

based messages to exchange data, whilst REST is an architectural style that

allows for stateless and cacheable services (called RESTful services) and

Security Aware Service Composition

66 / 253

that uses a more compact representation, thanks to the usage of the HTTP

methods (i.e., GET, PUT, POST, DELETE).

3.3 Service Discovery

The process of finding a service suitable for the client’s needs is called

Service Discovery. More formally, Service Discovery can be defined as the

act of locating software services that meet a set of discovery criteria, by

matching the criteria against the service interfaces that are published in

service registries.

The requirements of the service client are called discovery criteria and

they are used to guide the Service Discovery process. In particular the

logical combination of criteria sent to a service discovery platform in order

to obtain a list of compatible services is called Service Query.

Different types of Service Discovery can be distinguished at different

phases of a SBS lifecycle. The Static Service Discovery is used at design or

development time in order to bound software services during the

implementation of a SBS. The human designer of the SBS surveys the

results of the static service discovery, and potentially requests new

discovery processes iteratively, until the designer finds the best suitable

service for the application. The Dynamic Service Discovery, instead, can be

requested at runtime by a SBS in order to bind to the most appropriate

service during execution. This can happen either because the SBS has been

left purposely unbound at design time or because one or more services

bound to it failed to satisfy the requirements, so they should be substituted.

In the dynamic service discovery scenario, the SBS designer has to specify

the Service Query that must be used by the SBS to request the discovery of

services, in this way some application can even avoid requesting for human

intervention during the replacement process.

Security Aware Service Composition

67 / 253

3.4 Service Composition

As mentioned above, a set of services might be combined to achieve a

more complex functionality; the product of such process is called a Service

Composition:

“Composite services (and processes) integrate multiple services – and

put together new business functions – by combining new and existing

application assets in a logical flow. Service composition combines services

following a certain composition pattern to achieve a business goal, solve a

problem, or provide new service functions. The definition of composite

services requires coordinating the flow of control and information between

the component services.” [78]

There are two techniques that allow the definition of a Service

Composition; these are called Service Orchestration and Service

Choreography.

“Orchestration describes how Web services can interact with each

other at the message level, including the business logic and execution order

of the interactions from the perspective and under control of a single

endpoint. […] With orchestration, the business process interactions are

always controlled from the (private) perspective of one of the business

parties involved in the process.” [78]

In other words, a Service Orchestration is a Service Composition

controlled by a single entity, called coordinator, which executes a process

that uses software services in order to accomplish a business objective.

Service Choreography is defined instead as:

Security Aware Service Composition

68 / 253

“Choreography is typically associated with the public (globally visible)

message exchanges, rules of interaction, and agreements that occur between

multiple business process endpoints, rather than a specific business process

that is executed by a single party. Choreography tracks the sequence of

messages that may involve multiple parties and multiple sources, including

customers, suppliers, and partners, where each party involved in the process

describes the part it plays in the interaction and no party “owns” the

conversation.” [78]

This is very similar to the Service Orchestration, but instead of

describing the instructions for a single party perspective, the Service

Choreography requires a description of all the interactions between all the

parties involved in the composition in order to accomplish the goal. In this

sense, Service Choreography can be seen also as the collection of all the

Service Orchestrations of each involved party.

The approach presented in this work focuses on Service Orchestration,

so when referring to Service Composition we hint at compositions obtained

through Service Orchestration, if not stated otherwise.

3.4.1 Business Process Management

Many concepts used in the Service Orchestration field are taken from

the Business Process Management area. Business Process Management

focuses on modelling workflows and processes within an organization.

In this context, a Business Process is defined as the collection of

structurally linked activities that realise a business goal. A Workflow is a

model of the procedural steps through which documents, products or tasks

have to pass to carry out the Business Process, where the procedural steps

may be in some occasions automatable. In particular when the steps are

Security Aware Service Composition

69 / 253

limited to requests to Software Services, a Workflow corresponds to a

Service Orchestration.

A concept from the Business Process Management field that is used in

this work is the one proposed by van Der Aalst, W.M. et al., called

Workflow Patterns [107]. The Workflow Patterns are a collection of design

patterns describing the control flow dependencies between activities in a

Workflow.

3.5 Cloud Computing

Cloud Computing is a recent paradigm to share resources in order to

provide scalable services:

“Cloud computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that

can be rapidly provisioned and released with minimal management effort or

service provider interaction.” [65]

In particular, based on the offered resources, the provision can be

distinguished in three models:

i. Infrastructure as a Service (IaaS). The cloud provider offers

computing resources, including but not limited to physical and

virtual machines, storage, firewalls and load balancers. Some

examples include Amazon EC2, Rackspace Cloud, Google Compute

Engine.

ii. Platform as a Service (PaaS). The cloud provider offers a software

platform in order to allow deployment of services without the need

to manage the underlying infrastructure and its scalability. The

Security Aware Service Composition

70 / 253

platform usually includes operating system, databases, servers and

execution environments. Some examples include Google App

Engine, Microsoft Windows Azure, Salesforce Force.com.

iii. Software as a Service (SaaS). The cloud provider offers applications

or (web) services on demand, running on the platform. Examples

include Google Apps, Microsoft Office 365, Salesforce

AppExchange, Xignite Market Data Cloud.

Furthermore clouds can be classified in Private, Public or Hybrid

Clouds if the infrastructure is, respectively, for the exclusive usage of a

single organization, provisioned to the general public, or a composition of

distinct cloud infrastructures.

Security Aware Service Composition

71 / 253

Chapter 4

Enabling Languages, Techniques
and Tools

4.1 Overview

In this chapter we present the languages, techniques and tools that are

used to implement this research. In particular WSDL and BPEL are

languages commonly used in the Web Services area to define respectively

service interfaces and business processes (i.e., orchestrations). Drools is a

rule-based system we use to encode the patterns that underpin this thesis.

RSDT and BPEL Designer are respectively a (proactive) service discovery

tool and a service orchestration designer tool that we augmented with the

security capabilities offered by our approach.

4.2 Web Services Languages

4.2.1 WSDL

The Web Services Description Language (WSDL) is the service

interface description language, based on XML, which allows the definition

of the operations and messages that can be sent to and received from a

service, and the protocols and the addresses to contact the service.

Security Aware Service Composition

72 / 253

The current version of the specification, 2.0, is a W3C recommendation

[108]. As most of the tools and languages, however, currently support only

WSDL version 1.1, we are going to describe this version instead of the

latest one.

As shown in Table 4.1, a WSDL document is composed of five

elements: types, message, portType, binding and service. The

types element allows listing the data type definitions used by the service.

The message element allows defining the data communicated by the

service, using the types previously declared. The portType element lists

the operations supported by the service. The binding element allows the

specification of the protocol and data format specification for the abstract

service operations described in the port type part. Finally the service

element specifies the address to contact the service, called service endpoint.

Security Aware Service Composition

73 / 253

1 	
2 	 	
3 	 	
4 	 	
5 	 	
6 	 	
7 	 	
8 	 	
9 	 	
10 	 	
11 	 	
12 	 	
13 	 	
14 	 	
15 	 	
16 	 	
17 	 	
18 	 	
19 	 	
20 	 	
21 	 	
22 	 	
23 	 	
24 	 	
25 	 	
26 	 	
27 	 	
28 	 	
29 	 	
30 	 	
31 	 	
32 	 	
33 	 	
34 	 	
35 	 	
36 	 	
37 	 	

<definitions	 xmlns=...	 name="HelloWorld">	
	
	 	 <types>	
	 	 	 	 <xsd:schema	 ...>	
	 	 	 	 	 	 <xsd:element	 name="RequestType">	
	 	 	 	 	 	 	 	 <xsd:complexType><xsd:sequence>	
	 	 	 	 	 	 	 	 	 	 	 	 <xsd:element	 name="in"	 type="xsd:string"/>	
	 	 	 	 	 	 	 	 </xsd:sequence></xsd:complexType>	
	 	 	 	 	 	 </xsd:element>	
	 	 	 	 	 	 <xsd:element	 name="ResponseType">	
	 	 	 	 	 	 	 	 <xsd:complexType><xsd:sequence>	
	 	 	 	 	 	 	 	 	 	 	 	 <xsd:element	 name="out"	 type="xsd:string"/>	
	 	 	 	 	 	 	 	 </xsd:sequence></xsd:complexType>	
	 	 	 	 	 	 </xsd:element>	
	 	 	 	 </xsd:schema>	
	 	 </types>	
	
	 	 <message	 name="OperationRequest">	
	 	 	 	 <part	 element="RequestType"	 name="parameters"/>	
	 	 </message>	
	 	 <message	 name="OperationResponse">	
	 	 	 	 <part	 element="ResponseType"	 name="parameters"/>	
	 	 </message>	
	
	 	 <portType	 name="HelloWorld">	
	 	 	 	 <operation	 name="Operation">	
	 	 	 	 	 	 <input	 message="OperationRequest"/>	
	 	 	 	 	 	 <output	 message="OperationResponse"/>	
	 	 	 	 </operation>	
	 	 </portType>	
	
	 	 <binding	 name="HelloWorldSOAP"	 type="HelloWorld">	
	 	 	 	 <soap:binding	 style="document"	 	

transport="http://schemas.xmlsoap.org/soap/http"/>	
	 	 	 	 <operation	 name="Operation">	
	 	 	 	 	 	 <soap:operation	 	

soapAction="http://www.example.org/Operation"/>	
	 	 	 	 	 	 <input><soap:body	 use="literal"/></input>	
	 	 	 	 	 	 <output><soap:body	 use="literal"/></output>	
	 	 	 	 </operation>	
	 	 </binding>	
	
	 	 <service	 name="HelloWorld">	
	 	 	 	 <port	 binding="HelloWorldSOAP"	 name="HelloWorldSOAP">	
	 	 	 	 	 	 <soap:address	 location="http://www.example.org/"/>	
	 	 	 	 </port>	
	 	 </service>	

</definitions>	

Table 4.1: Example of a WSDL

Security Aware Service Composition

74 / 253

4.2.2 BPEL

BPEL (short for WS-BPEL, Web Services Business Process Execution

Language) is an XML based orchestration language that allows defining

business processes that interact with external services. The interaction with

external services is described through partner links, i.e., connectors between

the service ports, as specified in the WSDL, and the business process.

The current version of BPEL, 2.0, is an OASIS standard and allows the

specification of both abstract and executable business processes.

BPEL activities can be discriminated in three categories:

I. Activities that control the process flow. These include sequence,

if-‐else, while, repeatUntil, forEach, flow, pick, wait and

exit.

II. Activities that perform the actions of the process, i.e., web service

invocation (invoke), assigning values to variables (assign) and

receive and reply messages (receive and reply).

III. Management activities, such as fault generation (throw) and

handling (faultHandlers).

4.3 Drools

Drools is a production rule system that allows rule reasoning for object-

oriented languages. As in most rule engines, the production rules in Drools

are used to derive information from data facts, usually stored in a

Knowledge Base (KB). This reasoning process is based on the Rete

algorithm [28], i.e., a pattern-matching algorithm for that is able to scale

well for large numbers of data facts and rules.

Security Aware Service Composition

75 / 253

A production rule in Drools has two parts. The first part is a set of

conditions and the second part is a list of actions. When a rule is applied,

the Drools rule engine checks, through pattern-matching, whether the

conditions of the rule match on the facts in the KB and, if they do, the list of

the actions of the rule are executed as a consequence. Table 4.2 presents the

overall structure of Drools rules.

The conditions of a rule are expressed as patterns on the objects that

encode the facts in the Drools KB. The patterns can be connected through a

set of logical operators (e.g., and, or, not, exists, forall) and when no

operator is explicitly declared, the engine assumes and uses the “and”

operation as a default. The syntax is pretty flexible (especially w.r.t. the

common programming languages), as most of the punctuation, double

quotes and newlines are optional.

rule	 "name"	
	 	 	 	 when	
	 	 	 	 	 	 	 	 conditions	
	 	 	 	 then	
	 	 	 	 	 	 	 	 actions	
end

Table 4.2: Drools rule structure

A pattern defines an object type and a set of constraints on the data of

the objects that can match it. When an object that matches the object type in

a pattern and the related set of constraints is found, the pattern is evaluated

as true. In addition, it is possible to declare a variable (usually prefixed

with a dollar sign to make it more easily identifiable) that can be

subsequently used to refer to the matched object (or object field in the

conditions). This is done by prefixing the variable name (followed by a

colon) to the pattern.

Security Aware Service Composition

76 / 253

$redApple	 :	 Apple(color	 ==	 "Red")	
(Bowl(contents	 contains	 $redApple)	
or	 Fridge(contents	 contains	 $redApple))	

Table 4.3: Example of Drools conditions

The conditions in Table 4.3, for example, activate the rule for each red

apple found in the Knowledge Base that is contained in a bowl or in a

fridge. The example includes also the “contains” operator used in a

constraint: this operator checks if the specified value is contained in an

array, list or set.

The actions in the consequence part are usually meant to modify the

Knowledge Base by inserting, retracting or updating the objects in it. This is

encoded through the keywords “insert”, “update” or “retract” followed with

the object to modify in parenthesis.

rule	 "Thrash	 expired	 bananas"	
	 	 	 	 when	
	 	 	 	 	 	 	 	 $expiredBanana	 :	 Banana(color	 ==	 "Black")	
	 	 	 	 	 	 	 	 $fridge	 :	 Fridge(contents	 contains	 $expiredBanana))	
	 	 	 	 then	
	 	 	 	 	 	 	 	 $fridge.getContents().remove($expiredBanana);	
	 	 	 	 	 	 	 	 update($fridge);	
	 	 	 	 	 	 	 	 insert(new	 Bin($expiredBanana));	
end

Table 4.4: Example of a Drools rule

The rule in Table 4.4 gives an example of a complete rule. This rule is

activated (“fired”) against all the black bananas contained in a fridge. Each

black banana is then removed from the fridge and put into a new bin. The

updated fridge and the new bin are reported to the KB because these new

facts could lead to the activation of another rule.

Security Aware Service Composition

77 / 253

4.4 Runtime Service Discovery Tool

The Runtime Service Discovery Tool (RSDT) is a discovery framework

that has been developed at City University to support the discovery of

services at runtime [115].

The framework supports the discovery of single services based on

criteria regarding the interface, behaviour and quality of services, in a

reactive or a proactive mode, i.e., when a need for finding a service at arises

(reactive mode) or continually in order to maintain up-to-date sets of

candidate services that could be used to replace the constituent services of

an SBS when any of these services fails (proactive mode).

4.4.1 Architecture

The approach to service discovery is shown in Figure 4.1. The

framework accepts service discovery queries from SBSs, and finds services

in external service registries that satisfy the conditions of the queries.

Queries can be submitted for execution in reactive (PULL) or proactive

(PUSH) mode.

Figure 4.1: Discovery Framework structure

Query

Service endpoints

Service Based

System (SBS)

Discovery Framework

Discovery

Engine

Registry

Watchers

External

Service

Registry
External
Service
Registry

Security Aware Service Composition

78 / 253

The framework includes a Discovery Engine that is responsible for the

retrieving individual service descriptions from external service registries

and matching them with the queries. It also includes Registry Watchers

which poll external registries periodically to check if there are new services

or amended service descriptions that would alter the candidate sets of

services that are maintained for queries executed in proactive mode.

4.4.2 Discovery process

The discovery process starts when the Discovery Engine receives a

query that should be used for discovering replacement services for one of

the partner services of an SBS. Queries are expressed in an XML based

language, called SerDiQueL. The discovery engine executes the received

query at least once (in proactive mode multiple executions may be triggered

by changes in the services) and returns any services that match the

discovery criteria of the query. Any services and that match with the

discovery criteria of the query at this stage are used to update a Candidate

Service Set. This set is used as a cache of replacement services for the

partner service that was associated with the query in the first place and any

subsequent service replacement request will retrieve the first service from

this set.

It should also be noted that the initial formation of the Candidate

Service Set is followed by ordering the elements of this set in descending

order of the degree of match that they have with these criteria.

Certain parts of the overall discovery process can be also triggered by

events other than a request for the execution of a query. These events are:

• service replacement requests resulting in removal of the first service

in the Candidate Service Set in order to use it in the SBS;

Security Aware Service Composition

79 / 253

• publications of new security descriptions for one of the services in

the candidate service set that should trigger the re-evaluation of the

security related criteria for a candidate set that has been built for a

query executed in proactive mode and possibly a re-ordering of this

set; and

• changes in the descriptions of services in the service registries or the

publication of new services in them that can lead to the execution of

queries executed in the proactive mode.

4.4.3 Query Language

The queries of the discovery framework are expressed in SerDiQueL

[101], an XML-based language that allows the specification of interface,

behavioural, and QoS conditions about the services to be discovered.

Figure 4.2: Overview of the schema of SerDiQueL

The top-level schema of SerDiQueL is shown in Figure 4.2. Each query

has a name, a query ID, a set of parameters and a set of conditions. In

Security Aware Service Composition

80 / 253

particular the parameter mode allow to specify if the query has to be

executed in the reactive (PULL) or in the proactive (PUSH) mode.

The StructuralQuery part of the query contains the structural

description of the service being discovered, i.e., the WSDL specification.

<BehaviourQuery>	
	 	 <Requires>	
	 	 	 	 <MemberDescription	 ID="login"	 synchronous="true"	 	

opName="BankTransferService.login"	 />	
	 	 	 	 <MemberDescription	 ID="credit"	 synchronous="true"	 	

opName="BankTransferService.credit"	 />	
	 	 	 	 <MemberDescription	 ID="transferAmount"	 synchronous="true"	 	

opName="BankTransferService.transferAmount"	 />	
	 	 	 	 <MemberDescription	 ID="debit"	 synchronous="true"	 	

opName="BankTransferService.debit"	 />	
	 	 	 	 <MemberDescription	 ID="balance"	 synchronous="true"	 	

opName="BankTransferService.getBalance"	 />	
	 	 	 	 <MemberDescription	 ID="logout"	 synchronous="true"	 	

opName="BankTransferService.logout"	 />	
	 	 </Requires>	
	 	 <Expression>	
	 	 	 	 <Condition>	
	 	 	 	 	 	 <GuaranteedMember	 IDREF="login"	 />	
	 	 	 	 </Condition>	
	 	 </Expression>	
	 	 <LogicalOperator	 operator="AND"	 />	
	 	 <Expression>	
	 	 	 	 <Condition>	
	 	 	 	 	 	 <Sequence	 ID="pay">	
	 	 	 	 	 	 	 	 <Member	 IDREF="credit"	 />	
	 	 	 	 	 	 	 	 <Member	 IDREF="transferAmount"	 />	
	 	 	 	 	 	 	 	 <Member	 IDREF="debit"	 />	
	 	 	 	 	 	 	 	 <Member	 IDREF="balance"	 />	
	 	 	 	 	 	 </Sequence>	
	 	 	 	 </Condition>	
	 	 	 	 <Condition>	
	 	 	 	 	 	 <OccursBefore	 immediate="false"	 guaranteed="false">	
	 	 	 	 	 	 	 	 <Member1	 IDREF="login"	 />	
	 	 	 	 	 	 	 	 <Member2	 IDREF="pay"	 />	
	 	 	 	 	 	 </OccursBefore>	
	 	 	 	 </Condition>	
	 	 </Expression>	
</BehaviourQuery>	

Table 4.5: Example of behavioural conditions of a SerDiQueL query

Security Aware Service Composition

81 / 253

The BehaviourQuery part, instead, contains the behaviour of the

client, in terms of operation calls and their ordering, as expected by the

service. An example of a BehaviourQuery is shown in Table 4.5. The

query in the example requires the existence of a set of operations (i.e.,

login, credit, transferAmount, debit, getBalance, logout).

Furthermore every trace of interaction with this service must include a

login (the GuaranteedMember condition). The last condition in the

example specifies that a payment, composed as a sequence of credit,

transferAmount, debit and balance, must be always preceded by a

login.

The ConstraintQuery part allows to specify a set of constraint on

any kind of service description (or facet). Table 4.6 shows an example of

ConstraintQuery on a quality of service facet (QoS). The first constraint

is required to match (HARD constraint) and checks if the organisation name

is CITY. The second constraint, instead, doesn’t have necessarily to match,

as it is used for ordering the resulting set of services (SOFT constraint).

This constraint is composed by two conditions joined by the AND operator,

checking that the service is available from 00:00 till 24:00.

Security Aware Service Composition

82 / 253

<ConstraintQuery	 name="C1"	 type="HARD">	
	 	 <LogicalExpression><Condition	 relation="EQUAL-‐TO">	
	 	 	 	 	 	 <Operand1>	
	 	 	 	 	 	 	 	 <NonContextOperand	 facetName="QoS"	 facetType="QoS">	
	 	 	 	 	 	 	 	 	 	 //QoSCharacteristic[Name="Organisation"]/Constant	
	 	 	 	 	 	 	 	 </NonContextOperand>	
	 	 	 	 	 	 </Operand1>	
	 	 	 	 	 	 <Operand2><Constant	 type="STRING">CITY</Constant></Operand2>	
	 	 </Condition></LogicalExpression>	
</ConstraintQuery>	
	
<ConstraintQuery	 name="C2"	 type="SOFT">	
	 	 <LogicalExpression>	
	 	 	 	 <Condition	 relation="EQUAL-‐TO">	
	 	 	 	 	 	 <Operand1>	
	 	 	 	 	 	 	 	 <NonContextOperand	 facetName="QoS"	 facetType="QoS">	
	 	 	 	 	 	 	 	 	 	 //QoSCharacteristic[Name="Availability"]/Metrics	

/Metric[Name="OpenTime"][Unit="Hours"]/MinValue	
	 	 	 	 	 	 	 	 </NonContextOperand>	
	 	 	 	 	 	 </Operand1>	
	 	 	 	 	 	 <Operand2><Constant	 type="STRING">00:00</Constant></Operand2>	
	 	 	 	 </Condition>	
	
	 	 	 	 <LogicalOperator>AND</LogicalOperator>	
	
	 	 	 	 <LogicalExpression>	
	 	 	 	 	 	 <Condition	 relation="EQUAL-‐TO">	
	 	 	 	 	 	 	 	 <Operand1>	
	 	 	 	 	 	 	 	 	 	 <NonContextOperand	 facetName="QoS"	 facetType="QoS">	
	 	 	 	 	 	 	 	 	 	 	 	 //QoSCharacteristic[Name="Availability"]/Metrics	

/Metric[Name="OpenTime"][Unit="Hours"]/MaxValue	
	 	 	 	 	 	 	 	 </NonContextOperand>	
	 	 	 	 	 	 	 	 </Operand1>	
	 	 	 	 	 	 	 	 <Operand2><Constant	 type="STRING">24:00</Constant></Operand2>	
	 	 	 	 	 	 </Condition>	
	 	 	 	 </LogicalExpression>	
	 	 </LogicalExpression>	
</ConstraintQuery>	

Table 4.6: Example of constraint conditions of a SerDiQueL query

4.5 Eclipse BPEL Designer

BPEL Designer is a plugin for the Eclipse IDE that offers a visual

representation for reading and editing WS-BPEL 2.0 processes, allowing the

specification of SBS based on BPEL. The editor provides graphical

Security Aware Service Composition

83 / 253

representation of BPEL constructs and processes using shapes, icons, forms

and wizards to guide the user.

Figure 4.3: Screenshot of the BPEL Designer

Figure 4.3 shows a screenshot of the user interface of BPEL Designer.

As shown in the figure, the user interface is divided in several parts, called

Views. Starting from the top right we have the Project Explorer View, the

Editor View (that contains two subparts, the Palette and the Tray) and the

Properties View.

The Project Explorer lists the file resources part of a project, allowing

opening, renaming, moving or deleting any resource.

Properties View

Editor View Palette Tray Project Explorer

Security Aware Service Composition

84 / 253

Once a BPEL file is opened, the Editor View presents in the main part

the graphical workflow representation of the BPEL process, allowing

editing it. A Source tab on the bottom left of the view allows checking and

editing the process code directly. The Palette contains the building blocks,

i.e., BPEL activities that can be dragged and dropped in the main editing

area in order to be added to the process. The Tray summarizes the BPEL

process, listing all the elements part of the process, including the ones that

do not have a graphical representation, allowing managing the entire

process.

The Properties View provides detailed information of the selected

element of the BPEL process, allowing editing them. For example, the

Properties View of an invoke activity allows to select the partner link, port

type, operation and variables of the operation of a partner service that

should be invoked.

The BPEL Designer has been also integrated with Apache ODE in

order to allow seamless deployment and execution of the produced BPEL

processes in a BPEL execution engine.

Security Aware Service Composition

85 / 253

Chapter 5

Secure Composition Patterns

5.1 Overview

The secure composition patterns are the part of the framework that is

able to infer the needed security requirements. These are inferred for the

parts of a composition and partner services involved in them. Inferences are

driven by the security requirements on the whole composition. In other

words, the inference process attempts to identify security requirements for

the individual partner services which would be sufficient to guarantee the

security requirements for the entire composition.

The secure composition patterns summarize some general security

inferences on activity placeholders. Activity placeholders are instantiated by

either other patterns or operations of individual partner services (when a

pattern is instantiated to generate a executable service workflow).

More specifically a secure composition pattern contains three parts: (i)

the orchestration pattern between activity placeholders representing the

workflow on which the inferences apply (WF in the following), (ii) the

security requirement requested for the composition (RSP) and (iii) the

security requirements needed from the activity placeholders of the

orchestration pattern to guarantee the security requirements for the whole

Security Aware Service Composition

86 / 253

composition (ASP). Patterns may have a fourth optional part that expresses

additional (boolean) conditions that need to hold in order for RSP to hold

(Conditions), as in the case of the availabilty patterns in Section 5.3.4.

In order to avoid confusion between the orchestration pattern and the

secure composition pattern concepts, in the context of this work we use the

term pattern to indicate a secure composition pattern, and the term

orchestration to indicate an orchestration pattern.

5.2 Orchestration Patterns

An orchestration pattern is a template specifying a service

orchestration workflow with activity placeholders that can be bound to

concrete service operations or to other orchestration patterns. These

templates are based on the basic workflow patterns introduced by van Der

Aalst, W.M. et al. [107] representing the control flow of orchestrations. The

orchestration patterns augment the workflow patterns of [107] with a

description of the data flow connecting the activities.

The same authors, in [90], have also defined the workflow data

patterns, however these other patterns are not directly related with the

control flow ones and are used to recognise the different mechanisms

implemented by different workflows vendor to treat variables. In our

approach we are only interested in which activities receive or send which

data. The additional level of detail offered by the workflow data patterns

(e.g., if the variables are sent/received in a pull or a push mode, if shared

memory is used, …) was not required by the scope of the approach we are

presenting, but it may be an interesting direction for future works as it may

be helpful in order to explore and represent further security properties w.r.t.

the ones in this thesis.

Security Aware Service Composition

87 / 253

Our work focuses on a minimal set of workflow patterns that can be

used to recursively build elaborate workflows. The concepts introduced by

our approach, however, could be used on arbitrary workflow patterns (e.g.

loops, handlers). Our initial set of workflow patterns include:

• the sequential pattern, which represents the execution of one activity

after another one is completed. This can represent a set of BPEL

invoke activities or further workflow patterns (i.e., BPEL non-

atomic activities) connected by a BPEL sequence activity;

• the choice pattern, which represents the execution of one activity

from a set of alternative activities based on some input value. This

can represent a set of BPEL invoke activities or further workflow

patterns (i.e., BPEL non-atomic activities) connected by a BPEL

pick or if-‐then-‐else activity;

• the parallel pattern (or split-join), which represents the simultaneous

execution of two or more activities. This can represent a set of BPEL

invoke activities or further workflow patterns (i.e., BPEL non-

atomic activities) connected by a BPEL flow activity.

The remaining BPEL atomic activities (i.e., assign,	 receive	 and	

reply activities) are used in our approach to encode the data flow.

As stated above, this set of workflow patterns can be used to

recursively build elaborate workflows.

Security Aware Service Composition

88 / 253

Figure 5.1: Example of workflow pattern recursion

An example of the recursion of workflow patterns is shown in Figure

5.1. Each workflow pattern contains a set of activity placeholders that can

be either another pattern or an atomic activity. In the workflow shown in

Figure 5.1(a), the sequential workflow pattern between C and D is

highlighted. This pattern can be seen as a single activity instantiating the

placeholder A in the parallel pattern between B and A shown in Figure

5.1(b). Likewise, the parallel pattern can be seen as a single activity

instantiating the only activity in the workflow in Figure 5.1(c). This

decomposition allows the secure composition patterns, which are based on

the workflow patterns, to be used on arbitrary workflows.

The orchestration patterns used in this thesis are enriched versions of

the basic workflow patterns described above. The orchestration patterns are

enriched as they also describe the data flows between the activity

placeholders that appear in a workflow pattern (this corresponds to the

result of BPEL assign,	 receive	 and	 reply activities).

<S>$<A>$$

+"

+"

<C>$

$

+"

+"

<D>$

(a) (b) (c)

Security Aware Service Composition

89 / 253

Figure 5.2: Example of a sequential orchestration pattern

An example of an orchestration pattern is provided in Figure 5.2, based

on the sequential workflow pattern. The orchestration pattern shown in the

figure represents an elementary control flow between two activity

placeholders, i.e., A and B, that must be executed one after the other in the

specific order shown in the figure (the order of execution of A and B is

represented as a solid arrow in the figure). The data flow in this

orchestration pattern is:

• An input message INA is passed to A that is part of the input

message passed to the workflow IN. In particular the two parts in

INA, inA
1 and inA

2, are taken from the first two parts of IN, in1 and

in2.

• An input message INB is passed to B. INB comes partly from the

input of the workflow IN and partly from the output of the first

activity OUTA. In particular the first part of INB, inB
1, is taken from

the second part of OUTA, outA
2, and the second part of INB, inB

2, is

taken from the third part of IN, in3.

• The final output OUT is taken directly from the output of B, OUTB.

<A> INA = <inA

1, inA
2>

OUTA = <outA1, outA
2>

IN = <in1, in2, in3>

inA
1 := in1

inA
2 := in2

inB
2 := in3

inB
1 := outA

2
 INB = <inB

1, inB
2>

OUTB = <outB>

OUT = <out>

out := outB

Security Aware Service Composition

90 / 253

Note that the data flow in the picture is just one of the possible data

flows for this workflow; other ones can be obtained by changing the

assignments. To represent an alternative data flow, a variant of the

sequential orchestration pattern with the same control flow but different

data flow is required, as shown in Figure 5.3.

Figure 5.3: The Cascade orchestration pattern

More specifically Figure 5.3 shows a variant of the sequential

orchestration pattern called Cascade. The Cascade orchestration pattern

requires for all the inputs to the workflow (IN) to be consumed by the first

activity (INA), for all the outputs of the first activity (OUTA) to be

consumed by the second activity (INB), and finally for all the outputs of the

second activity (OUTB), to be returned as output of the workflow (OUT).

The example in Figure 5.4, instead, is based on the parallel workflow

pattern. This orchestration pattern specifies the simultaneous execution of

just two activities, A and B, and where the data flow is set. In more detail,

the data flow in the figure orchestration pattern states that:

• An input message INA is passed to A that is part of the input

message passed to the workflow IN. In particular inA is taken from

the first part of IN, in1.

 <A> "INA = IN"

OUTA"

IN"

"INB = OUTA"

OUTB"

OUT = OUTB"

Security Aware Service Composition

91 / 253

• An input message INB is passed to B that is part of the input

message passed to the workflow IN. In particular the two parts in

INB, inB
1 and inB

2, are taken from the second and third parts of IN,

in2 and in3.

• The final output OUT comes partly from the output message of A,

OUTA, and partly from the output message of B, OUTB. In

particular the first part of OUT, out1, is taken from the second part

of OUTA, outA
2, and the second part of OUT, out2, is taken from the

only part of OUT, outB.

Figure 5.4: Example of a parallel orchestration pattern

5.3 Secure Composition Patterns

The orchestration patterns are used to describe cases on which exists

some inference between security requirements at the composition and the

security requirements for the individual activity of the orchestration. These

inferences should be proved or verified through formal methods, to be able

to respect the security requirement definition.

As an example, take a composition where a payment is handled by two

different services based on if the payment card is a debit or a credit card. A

<A> INA = <inA> OUTA = <outA1, outA2>

IN = <in1, in2, in3>

inB
1 := in2

inB
2 := in3

inA := in1

 +

out1 := outA
2

OUT = <out1, out2>
 +

out2 := outB

INB = <inB
1, inB

2> OUTB = <outB>

Security Aware Service Composition

92 / 253

security requirement for such composition is to treat the information about

the payment card (i.e., card number, expire date) with confidentiality. As

this information is used by both branches of the choice orchestration

between the two services, then two security requirements are generated, one

for each service, asking to treat the data that they receive with

confidentiality. Bear in mind that if a service in the workflow would not use

such data (as for example a third branch to pay with PayPal), it should not

be asked to respect security requirements w.r.t. data it does not use.

5.3.1 Representation of a Secure Composition
Pattern

As mentioned in the overview, each secure composition pattern

contains three parts: (i) the orchestration pattern representing the workflow

on which the inferences apply, called WF, (ii) the security requirement

requested for the composition, called RSP, and (iii) the security

requirements needed from the activity placeholders of the orchestration

pattern to guarantee RSP, called ASP. Patterns may have a fourth optional

part that expresses additional (boolean) conditions that need to hold in order

for RSP to hold (Conditions) and that can be verified only after a workflow

has been fully instantiated with services.

Figure 5.5 shows an example of the graphical notation we use to

describe a secure composition pattern. In the WF part of the table, the

orchestration pattern P is shown, describing both the control and the data

flow of the pattern between activity placeholders. ASP contains the security

requirements that need to hold on each placeholder (SecReqX) in order for

the security requirement on P, described in the RSP part of the table, to

hold.

Security Aware Service Composition

93 / 253

WF <P>

ASP

SecReqA = ρ(A, inA)

SecReqB = σ(B, inB
1)

RSP

SecReqP = ρ(P, inP
1)

Figure 5.5: Example of a secure composition pattern

The example in Figure 5.5 shows a secure composition pattern where ρ

and σ are security properties that hold on their first parameter. This pattern

is about preserving property ρ in one of the variants of the sequential

orchestration, as stated in the security requirement SecReqP. In more detail,

when property ρ is required on an input of the pattern inP
1, and this input is

used only as input of the first activity placeholder of the orchestration (inA),

the security requirements needed to guarantee SecReqP are ρ on inA for A

(SecReqA) and σ on inB
1 for B (SecReqB). This second requirement could be

necessary, for example, because information about inA (and so about inP
1) is

part of A’s output (i.e., outA
1=inB

1).

Generally speaking, we want for RSP to hold if all the conditions in

ASP hold, meaning that we need a proof for the proposition:

ASP.SecReqA and ASP.SecReqB and … ⇒ RSP.SecReqP

<A> INA = <inA>

OUTA = <outA1, …>

INP = <inP
1, …>

inA := inP
1 … (¬inP

1)

inB
1 := outA

1
 INB = <inB

1, …>

OUTB = <outB, …>

OUTP = <outP>

outP := outB

Security Aware Service Composition

94 / 253

So, in the case of Figure 5.5, we would need a proof for:

ρ(A, inA) and σ(B, inB
1) ⇒ ρ(P, inP

1)

When a secure composition pattern is used to infer the security

requirements for the pattern’s placeholders, however, the logical implication

is used in the “opposite” direction, i.e, we identify the security requirements

for the individual pattern’s placeholders using the following rule:

RSP.SecReqP ⇒ ASP.SecReqA and ASP.SecReqB and …

The rational for reversed ordering of the logical implication expressed

in the formula above is that if ASP.SecReqA and ASP.SecReqB and … hold

then RSP.SecReqP will also hold, and therefore, the security aware service

composition process has to check the requirements ASP.SecReqA and

ASP.SecReqB and … are respected, as this would guarantee that their

composition would satisfy RSP.SecReqP. In other words, the security aware

service composition process is driven by the verification of the sufficient

conditions for a composition level security property to hold rather than the

necessary conditions.

5.3.2 Integrity

The secure composition pattern described in this section is about

preserving integrity on the Cascade orchestration pattern. In the scope of

this research, we adopt the following data integrity definition, taken from

RFC4949 [44]:

“The property that data has not been changed, destroyed, or lost in an

unauthorized or accidental manner.”

More specifically, the formal definition of integrity we used in the

context of this work takes advantage of the precede property:

Security Aware Service Composition

95 / 253

Definition 1: Given a set of traces of actions T, where each action can

appear only once in each trace, the precede property between action 𝑎 and

action 𝑏 (𝑝𝑟𝑒𝑐𝑒𝑑𝑒(𝑎, 𝑏)) holds if and only if ∀ traces 𝜔 ∈ T with 𝑏 ∈ 𝜔,

𝜔 = … ,𝑎,… , 𝑏,… holds.

The traces used in Definition 1 are, in our case, traces of a single

interaction between a client and a service, where each communication is

split in send and receive actions.

Definition 2: Given a service S, with input x and output y, the precede

integrity property Integritypr(S, x, y) holds if and only if ∀ trace of

communication between S and a client C, precede(send(C, S, x), receive(C,

S, y)) holds.

In other words, precede integrity holds if whenever a client receives y

(i.e., f(x)) from service S, then the client has previously sent x to S.

5.3.2.1 Precede Integrity on Cascade Pattern

As shown in Figure 5.6, when the security requirement over the process

portion encoded by the orchestration pattern P, called SecReqP, requests to

preserve the integrity of the orchestration’s input and output data (INP and

OUTP) through Precede Integrity, given that the orchestration pattern is the

Cascade orchestration, i.e.:

(i) the set of inputs of the first activity placeholder INA is equal to

the set of inputs of the pattern INP

(ii) the set of inputs of the second activity placeholder INB is equal

to the set of outputs of the first activity placeholder OUTA, and

(iii) the set of outputs of the pattern OUTP is equal to the set of

outputs of the second activity placeholder OUTB

Security Aware Service Composition

96 / 253

Then the security requirements needed to guarantee SecReqP are: (a)

Precede Integrity on A inputs and outputs (SecReqA) and (b) Precede

Integrity on B inputs and outputs (SecReqB).

WF <P>

ASP

SecReqA = Integritypr(A, INA, OUTA)

SecReqB = Integritypr(B, INB, OUTB)

RSP

SecReqP = Integritypr(P, INP, OUTP)

Figure 5.6: Precede Integrity on Cascade Pattern

5.3.2.2 Orchestrator Requirements

In order to maintain data integrity, it is necessary to ensure that all the

actors that handle the data do not tamper with the data.

The proof of the relation expressed by the pattern in this case (and in

fact in all other cases) requires the introduction of one more concept,

namely the concept of an orchestrator. An orchestrator in this context

expresses the actual environment (e.g., middleware) that will execute the

workflow expressed by a secure composition pattern, invoking individual

services, passing data across them (i.e., receiving the outputs of one service

S1 that are to be received as inputs by another service S2 and passing them

 <A> "INA = INP"

OUTA"

INP"

"INB = OUTA"

OUTB"

OUTP = OUTB"

Security Aware Service Composition

97 / 253

to S2), and handling interactions with the external actors interacting with the

workflow (i.e., receiving data from these actors and passing them to the

service they were intended for, and receiving data from workflow services

and passing them to the external actors they were intended for).

Given the presence of an orchestrator, the proof for the integrity pattern

makes it also necessary to make a key assumption about the new

component. This assumption is that the orchestrator itself is trustworthy,

i.e., it does not tamper with the data that go through it. An orchestrator O

will be defined to be trustworthy with respect to the Precede Integrity on

Cascade Pattern if the following properties hold:

i. O sends to service A exactly the same data that it has received from

a client for P,

ii. O sends to service B exactly the same data service A sent to it and

iii. O sends to the client exactly the same data it received from B for the

client.

5.3.2.3 Proof

The security requirements about activity placeholder A and activity

placeholder B (i.e., the hypothesis) can be translated into:

Integrity(A, INA, OUTA) = precede(send(CA, A, INA), receive(CA, A, OUTA))

Integrity(B, INB, OUTB) = precede(send(CB, B, INB), receive(CB, B, OUTB))

A and B, within the pattern, have as a client the orchestrator that

execute the workflow. This means that CA= Orch and CB= Orch, so we

have:

precede(send(Orch, A, INA), receive(Orch, A, OUTA)) (P1)

Security Aware Service Composition

98 / 253

precede(send(Orch, B, INB), receive(Orch, B, OUTB)) (P2)

In addition, as mentioned in the previous section, the orchestrator is

required to treat the data that it passes between endpoints with integrity, i.e.,

it must satisfy the following properties:

precede(send(C, Orch, Data), send(Orch, A, Data)) (P3)

precede(receive(Orch, A, Data), send(Orch, B, Data)) (P4)

precede(receive(Orch, B, Data), receive (C, Orch, Data)) (P5)

More specifically, (P3) corresponds to point i., (P4) to point ii. and (P5)

to point iii. of the previous section.

Following Definition 1, it is possible to prove that precede is a

transitive property, i.e.: 𝑝𝑟𝑒𝑐𝑒𝑑𝑒 𝑎, 𝑏 ∧ 𝑝𝑟𝑒𝑐𝑒𝑑𝑒 𝑏, 𝑐 ⟹ 𝑝𝑟𝑒𝑐𝑒𝑑𝑒 𝑎, 𝑐 . In

fact, from 𝑝𝑟𝑒𝑐𝑒𝑑𝑒 𝑏, 𝑐 we know that ∀𝜔 ∈ T with 𝑐 ∈ 𝜔, but also that

𝑏 ∈ 𝜔 as 𝜔 = … , 𝑏,… , 𝑐,… . Then, due to 𝑝𝑟𝑒𝑐𝑒𝑑𝑒 𝑎, 𝑏 we know that

𝜔 = … ,𝑎,… , 𝑏,… , so we can conclude that 𝜔 = … ,𝑎,… , 𝑏,… , 𝑐,… .

Thanks to the transitivity of precede, from (P3), (P1), (P4), (P2), (P5)

we know that the following property holds:

precede(send(C, Orch, INP), receive(C, Orch, OUTP))

Since the orchestrator is just the executor of the pattern, this property

corresponds to:

precede(send(CP, P, INP), receive(CP, P, OUTP)) = Integrity(P, INP, OUTP)

that is the security property required to hold for the orchestration pattern.

Security Aware Service Composition

99 / 253

5.3.3 Confidentiality

One of the main topics studied in the information flow field is

confidentiality as shown for example in the survey in [91].

In information flow, data activities are classified in low- and high-level.

A data activity is regarded as low-level if the information about it is public.

A data activity is regarded as a high-level if the information about it is

secret.

Similarly, users are classified in low-level security users and high-level

security users. Low-level security users are users who are able to access

only public information, whilst high-level security users are users who can

access both public and secret information. In information flow approaches

there are several property definitions whose intent is to express the concept

of confidentiality. The main difference between them is about what the low-

level users are forbidden to know or discover about the high-level data

activity (e.g. no information, just that an input activity happened or exactly

which inputs were passed). In the following, we provide some of these

definitions that we use in our secure information flow patterns.

Separability [63]: Separability is a form of confidentiality that requires

complete independence between the high- and low-level sequences of

activities. To achieve this it is necessary that all the high-level data activity

can be interleaved in any position of the trace of the low-level activities,

and that all values for the high-level data activity must be possible for any

low-level trace. This means that there is absolutely no interaction between

high-level and low-level data activities, i.e., the high-level and low-level

data activities should be processed by separate system processes during the

operation of a system without any communication whatsoever between

them.

Security Aware Service Composition

100 / 253

In most of the cases, separability is a too strong definition for

confidentiality, as it does not allow high-level data outputs to depend on any

low-level activity.

As an example, take a system where the low-level user activity (both

inputs and outputs) is logged and sent as high-level output to the

administrator (high-level user). This system is obviously secure, but do not

respect the separability property.

To address this, other forms of confidentiality have been defined in

literature.

Non-inference [71]: Non-inference (note that is different from non-

interference) is a property stating that removing all high-level data activity

from any trace results in another valid trace. This means that a low-level

user, who is able to see just low-level data activity, cannot deduce the

occurrence of any high-level data activity by just observing a trace.

This definition considers the previous example as secure, as traces with

or without administrator checking the logs are valid. Non-inference,

however, is too weak as argued in [63], as in this definition there is no

check that high-level data inputs to a process are not revealed through low-

level data outputs of it; in the absence of such checks there may be a leak of

high-level security data.

As an example, take into consideration a system that may receive a

confidential credit card number CH as input, and that whenever the low-

level user requests it, it receives from the system a string SL that is either

the credit card number CH or a random string. This system does respect non-

inference, as removing occurrences of CH from a trace leads to a behaviour

that is still possible, however the system cannot be said to be secure, as the

low-level user can infer when the high-level input have occurred.

Security Aware Service Composition

101 / 253

Perfect Security Property (PSP): According to [114], a system has

“perfect security” if for any low-level trace observed the following two

conditions hold: (i) all interleaving of high-level input in a trace are valid

traces and (ii) high-level outputs can be inserted anywhere in a trace (if

possible) and might depend on low-level activity, leading to valid traces.

PSP is a weaker version of separability as, due to condition (ii), it

allows the high-level outputs to depend on low-level events. It is, however,

stronger than non-inference as, due to condition (i), high-level inputs cannot

be used to compose low-level outputs (as all the high-level input

interleaving must be possible with the same low-level outputs).

From the above definitions, in fact, it is possible to prove the

following, as described in [59]:

Separability ⇒ PSP ⇒ Non-inference (R1)

Furthermore, PSP can be proven to be the weakest property where the

low-level user cannot determine anything about high-level activity. The

interested reader might refer to [59] for proofs and comparisons with other

properties.

In the following, we present secure composition pattern that can

guarantee PSP in a service workflow. The patterns cover sequential and

parallel orchestration.

5.3.3.1 Notation

In the following, let P be the composition of two activities, A and B;

INX and OUTX be the sets of inputs and outputs for an activity placeholder

X, with X ∈ { A, B, P }; EX = IX ∪ OX; and VX and CX be two subsets of EX

that partition it into its public/visible (i.e., low-level) VX and confidential

(i.e., high-level) CX parts.

Security Aware Service Composition

102 / 253

5.3.3.2 PSP on Cascade Pattern

As shown in Figure 5.7, when the security requirement SecReqP over

the process portion encoded by a Cascade orchestration P (see Section 5.2

and 5.3.2.1 for a description of the Cascade orchestration) requests PSP

confidentiality for a portion of input/output parameters CP, then the security

requirements SecReqX needed to guarantee SecReqP, for X ∈ { A, B }, are

that PSP holds with: (a) the public actions of X are part of the public actions

of P (i.e., VX ⊆ VP), and (b) the confidential actions of X do not include any

public action of P (i.e., CA ∩ VP = ∅). These conditions ensure that the low-

level user cannot see any difference between the public trace of P and the

public trace of the single service P is representing.

WF <P>

ASP

SecReqA = PSP(A, VA, CA) with

VA ⊆ VP and CA ∩ VP = ∅

SecReqB = PSP(B, VB, CB) with

VB ⊆ VP and CB ∩ VP = ∅

RSP

SecReqP = PSP(P, VP, CP)

Figure 5.7: PSP on Cascade Pattern

 <A> "INA = INP"

OUTA"

INP"

"INB = OUTA"

OUTB"

OUTP = OUTB"

Security Aware Service Composition

103 / 253

5.3.3.3 PSP on Product Pattern

Similarly, as shown in Figure 5.8, when the security requirement over

the process portion encoded by the orchestration pattern P, called SecReqP,

requests to preserve the confidentiality of a portion of the pattern’s input

and output data CP through PSP, given that the orchestration pattern is the

Product orchestration, i.e.:

(i) a parallel orchestration where the activity corresponding to

placeholder A and the one corresponding to placeholder B are

executed simultaneously,

(ii) the sets of inputs of the two activity placeholders, INA and INB,

are a partition of the set of inputs of the pattern IN (i.e., INA

⊆ INP, INB ⊆ INP, and INA ∩ INB = ∅), and

(iii) the sets of outputs of the two activity placeholders, OUTA and

OUTB, are a partition of the set of outputs of the pattern OUT

(i.e., OUTA ⊆ OUTP, OUTB ⊆ OUTP, and OUTA ∩ OUTB = ∅).

Then the security requirements SecReqX needed to guarantee SecReqP,

for X ∈ { A, B }, are that PSP holds with: (a) the public actions of X are

part of the public actions of P (i.e., VX ⊆ VP), and (b) the confidential

actions of X do not include any public action of P (i.e., CA ∩ VP = ∅).

These conditions ensure that the low-level user cannot see any difference

between the public trace of P and the public trace of the single service P is

representing.

Security Aware Service Composition

104 / 253

WF <P>

ASP

SecReqA = PSP(A, VA, CA) with

VA ⊆ VP and CA ∩ VP = ∅

SecReqB = PSP(B, VB, CB) with

VB ⊆ VP and CB ∩ VP = ∅

RSP

SecReqP = PSP(P, VP, CP)

Figure 5.8: PSP on Product Pattern

5.3.3.4 Orchestrator Requirements

As for the Integrity, the orchestrator must be trustworthy in order for

the security requirements to be preserved. In particular, for the given

patterns of PSP, an assumption made in proving the pattern is that the

orchestrator should not change the level of the data activities. This means

that it should only pass the data without any modification (e.g., encrypting

or decrypting the data), or passing the data to any entity other than the ones

present in the pattern.

<A>

INP

 +
INA

INB
INA ⊆ INP

INB ⊆ INP
INA ∩ INB = ∅

OUTP

 +

OUTA

OUTB OUTA ⊆ OUTP

OUTB ⊆ OUTP
OUTA ∩ OUTB = ∅

Security Aware Service Composition

105 / 253

5.3.3.5 Proofs

The proofs for the patterns for PSP are based on the composition results

in [59]. We report here the relevant conclusions (page 7, under First Class

of Compositionality Results):

“Three main approaches to satisfy the first condition of Lemma 1 […]

Following the second approach (security property ensures N1=∅=N2), we

obtain that noninference (…), separability (…), and the perfect security

property (…) are preserved under arbitrary compositions”

More specifically, the compositions took into consideration in the cited

work coincide with the Product Pattern and the Cascade Pattern.

Furthermore non-inference and separability support the same kind of result,

meaning that security composition patterns similar to the ones presented can

be created also for these properties.

In order for Lemma 1 to hold, however, there are a set of assumptions,

i.e., that (1) 𝑉! ∩ 𝐸! = 𝑉! and (2) 𝐶! ∩ 𝐸! ⊆ 𝐶!, with 𝑋 ∈ {𝐴,𝐵}.

In order for (1) to hold, we require the two conditions in SecReqX, that

are: (i) the public actions of X are part of the public actions of P (𝑉! ⊆ 𝑉!),

and (ii) the confidential actions of X do not include any public action of P

(𝐶! ∩ 𝑉! = ∅). In fact, (i) is true if and only if 𝑉! ∩ 𝑉! = 𝑉!. Then, by (ii)

we have 𝑉! ∩ 𝐶! ∪ 𝑉! ∩ 𝑉! = 𝑉!. By the distributive law 𝑉! ∩

𝐶! ∪ 𝑉! = 𝑉!. Since 𝐶! ∪ 𝑉! = 𝐸!, then we can conclude that (1)

𝑉! ∩ 𝐸! = 𝑉! holds.

Regarding (2) instead, only the condition (i) for SecReqX, 𝑉! ⊆ 𝑉!, is

required. In fact, from the fact that 𝑉! and 𝐶! partition 𝐸!, we know that

𝐶! ∩ 𝑉! = ∅. So by (i) we can say that 𝐶! ∩ 𝑉! = ∅. Furthermore, we

know that 𝐶! ∩ 𝐶! ⊆ 𝐶! holds, as it is a basic property of the subset

Security Aware Service Composition

106 / 253

definition. Obviously ∅ ∪ 𝐶! ∩ 𝐶! ⊆ 𝐶! still holds, so we can substitute

the empty set with the one we created earlier, obtaining 𝐶! ∩ 𝑉! ∪

 𝐶! ∩ 𝐶! ⊆ 𝐶!. By the distributive law we obtain 𝐶! ∩ 𝑉! ∪ 𝐶! ⊆

 𝐶! that, since 𝑉! ∪ 𝐶! = 𝐸!, then we can conclude that (2) 𝐶! ∩ 𝐸! ⊆

𝐶! holds.

So, if these conditions are met, then as proven in [59], separability, PSP

and non-inference are preserved under both parallel and sequential

composition of activities.

Note also that, as a consequence of the relation (R1), the secure

composition patterns for the PSP are valid also in cases where:

• SecReqP = Non-inference(P, VP, CP) as PSP ⇒ Non-inference

• For X = A or B, SecReqX = Separability(X, VX, CX) with VX ⊆

VP and CX ∩ VP = ∅, as Separability ⇒ PSP.

5.3.4 Availability

The next secure composition pattern is a pattern for availability. In the

scope of this research, we adopt the following availability definition, taken

from RFC4949 [44]:

“The property of a system or a system resource being accessible, or

usable or operational upon demand, by an authorized system entity,

according to performance specifications for the system; i.e., a system is

available if it provides services according to the system design whenever

users request them.”

Availability conveys into the security area several concepts about

quality of service (QoS), where the “performance specifications” are service

level agreements (SLAs) that have been certified by an external authority.

Security Aware Service Composition

107 / 253

Properties under the category of availability are different from the ones

presented so far, as they involve the computation of one or more measure

for the given service (e.g., execution time, throughput, uptime probability)

and a constraint (boundary) for the values of these measures.

In the following, we give a set of secure composition patterns for

availability using as a basis the measure of execution time. However,

patterns for other measures of availability could in principle be defined in a

similar way.

5.3.4.1 Maximum Execution Time on Generic Sequential
Pattern

Figure 5.9 shows the Maximum Execution Time on Sequential

Workflow Pattern, where the security requirement SecReqP over the

Generic Sequential orchestration P (i.e., an orchestration based on the

sequential workflow pattern, but where no data flow specification is given)

requests that the maximum execution time is less than a given number xP. In

this case the security requirements needed to guarantee SecReqP are that the

maximum execution times for the first activity placeholder A and the

second activity placeholder B are xA and xB, and that the sum of xA and xB is

equal or less than xP.

Security Aware Service Composition

108 / 253

WF <P>

ASP

SecReqA = Avail(A, maxTime = xA)

SecReqB = Avail(B, maxTime = xB)

RSP

SecReqP = Avail(P, maxTime = xP)

Condition

xP ≥ xA + xB

Figure 5.9: Maximum Execution Time on Generic Sequential Pattern

5.3.4.2 Maximum Execution Time on Generic Choice
Pattern

Figure 5.10 shows the Maximum Execution Time on Choice Workflow

Pattern, where the security requirement SecReqP over the Generic Choice

orchestration P (i.e., an orchestration based on the choice workflow pattern,

but where no data flow specification is given) requests that the maximum

execution time is less than a given number xP. In this case the security

requirements needed to guarantee SecReqP are that the maximum execution

times for activity placeholders A, B are xA, xB and that the maximum value

between xA, xB is equal or less than xP.

 <A> " "

Security Aware Service Composition

109 / 253

WF <P>

ASP

SecReqA = Avail(A, maxTime = xA)

SecReqB = Avail(B, maxTime = xB)

RSP

SecReqP = Avail(P, maxTime = xP)

Condition

xP ≥ max(xA , xB)

Figure 5.10: Maximum Execution Time on Generic Choice Pattern

5.3.4.3 Orchestrator Requirements

The orchestrator influences almost all the availability dimensions. In

this sense, the orchestrator impact may have to be part of the pattern. For

the maximum execution time, for example, the time that will take to execute

the composition code should be added to the computed time xP.

5.3.4.4 Proofs

The proofs of the patterns described for availability are trivial, as based

on the behaviour of the numerical dimension of QoS taken into

consideration and on the orchestration, a different aggregation formula can

<A>

Security Aware Service Composition

110 / 253

be defined. The interested reader may find a summary of aggregation

formulas for QoS properties utilising workflow patterns in [46].

5.4 Security Inference Rules

As explained in Section 5.3, the formally proven secure composition

patterns are encoded by production rules expressed in Drools (see Section

4.3). This makes it possible to apply the patterns in an automated manner in

the composition process and derive dependencies between security

requirements of services using rules, instead of trying to derive these

relations from first principles (i.e., by re-constructing the proofs

underpinning the patterns) at runtime. The latter would be a

computationally expensive process.

5.4.1 Methodology to Encode the Rules

In this section we present some guidelines about how to encode the

secure composition patterns into Drools production rules.

We distinguish between two kinds of rules: inference rules and

verification rules. The inference rules can be used to generate security

requirements for activity placeholders from a security requirement over a

pattern, by using the WF, ASP and RSP parts of a pattern. Inference rules

are used as part of the process of generating secure service compositions to

replace unavailable services in operating service workflows at runtime or to

generate possible secure service workflows during the design of service

oriented systems. Verification rules are used to verify the Conditions of the

patterns through the security properties that hold for the partner services

that participate in a service workflow.

Security Aware Service Composition

111 / 253

5.4.1.1 Inference Rules

The set of rules that generates security requirements for activity

placeholders of an orchestration pattern (ASP) in order to guarantee a

security requirement over the pattern (RSP) are called inference rules.

These rules can be used either when the workflow is not yet instantiated

with the partner services or when the workflow is instantiated, in order to

generate the security requirements to request during the instantiation phase

or to check if they are satisfied by the partner services.

The inference rules encode three parts of secure composition patterns:

(i) the orchestration pattern on which the inferences apply (WF), (ii) the

security requirement requested for the composition (RSP) and (iii) the

security requirements for the activity placeholders that guarantee the

requested requirement (ASP). The first two parts (WF and RSP) should be

encoded as conditions for the rule to be applied (the when part of the rule).

The ASP part of the pattern should be encoded as the consequence of the

rule (the then part of the rule), since it determines which requirements

should be added in order for the RSP requirement to hold. In fact, as a

consequence of pattern proofs asserting that:

ASP ⇒ RSP

production rules are expressed as:

If RSP is required of WF Then require ASP

as if ASP holds then RSP would also hold as a consequence of it.

In order to support the encoding of secure composition patterns, we

defined a set of classes that are used to represent orchestration patterns and

security requirements. These classes are shown in Figure 5.11 and Figure

Security Aware Service Composition

112 / 253

5.12 and classes represent the vocabulary used for the security production

rules.

The Placeholder is the basic building block of a pattern, representing

an activity placeholder that supports a set of input and output Parameters

listed in its parameters field.

The Placeholder can be differentiated in three subtypes:

1. UnassignedActivity – a service invocation placeholder. It contains

the structural description (i.e., the WSDL, in the wsdl field) that

needs to be matched to properly instantiate the required

functionality.

2. PartnerLinkActivity – a service invocation already bound to a partner

service. It contains information about the service bound to the

activity and an array listing the security properties certified for that

service (in the certifiedProperties field).

3. OrchestrationPattern – control flow constructs handling further

Placeholders. In the context of this work, three main orchestration

patterns have been defined (see also Section 5.2): the Sequential, the

Parallel and the Choice patterns.

Through the usage of the classes described above, it is possible to

encode the orchestration pattern part of a secure composition pattern.

Security Aware Service Composition

113 / 253

Figure 5.11: Class diagram of the activity and pattern classes available for

the security production rules

As an example, we are going to encode the pattern shown in Figure 5.5

into a security production rule.

The first task is to encode the orchestration pattern (WF) into the rule,

as shown in the snippet in Table 5.1. The snippet matches the sequential

orchestrations (lines 12-14) that have, as a first activity, a Placeholder that

takes as input an input of the orchestration (lines 5-6) and that has, as

second activity an Placeholder that takes as input one of the outputs of the

first activity, but not the input of the orchestration, and that outputs the

output of the orchestration (lines 8-10).

Security Aware Service Composition

114 / 253

1 	
2 	 	
3 	 	
4 	 	
5 	 	
6 	 	
7 	 	
8 	 	
9 	 	
10 	 	
11 	 	
12 	 	
13 	 	
14 	

$inP1	 :	 String()	
$outA1	 :	 String()	
$outP	 :	 String()	
	
$A	 :	 Placeholder(parameters.inputs	 contains	 $inP1,	 	

parameters.outputs	 contains	 $outA1)	
	
$B	 :	 Placeholder(parameters.inputs	 contains	 $outA1,	 	

parameters.inputs	 not	 contains	 $inP1,	
parameters.outputs	 contains	 $outP)	
	

$WF	 :	 Sequential(firstActivity	 ==	 $A,	 secondActivity	 ==	 $B,	
parameters.inputs	 contains	 $inP1,	
parameters.outputs	 contains	 $outP)	

Table 5.1: Snippet encoding an orchestration pattern into a Drools rule

The security requirements can be expressed, instead, through the

classes in Figure 5.12. A Requirement represents a security requirement of a

security property (secProperty field) for a certain Placeholder (subject

field). It can optionally contain a set of Parameters, indicating on which

inputs or outputs the security property should hold, and further requirements

(in the inferredReqs field) that have been generated in order for this one to

hold. The satisfied field keeps track if the security requirement has been

checked and it is guaranteed by a certified security property.

The SecProperty class represents a security property, containing the

security property name (propertyName field) and an optional set of

attribute-value fields allowing expressing extra conditions over the property

(attributesMap field).

The SecPlan class represents a set of security requirements that are

requested to hold at the same time (conjunction). Each SecPlan object can

hold a different set of inferred requirements for the same initial

requirements, allowing expressing different options to guarantee a set of

Security Aware Service Composition

115 / 253

requirements (disjunction); more details about how this is used can be found

in Section 6.4.1.

The SecPlan class includes also the method isAtomic() allowing

checking if the requirements contained have been successfully inferred to

the workflow’s leaves, i.e., the UnassignedActivities and

PartnerLinkActivities.

Figure 5.12: Class diagram of the requirement and security property classes

available for the security production rules

Following the example above, Table 5.2 shows the encoding of the

pattern security requirement (RSP) from Figure 5.5 into a security

production rule.

The snippet matches the Requirement (lines 1-4) of the security

property named “rho” for the input $inP1 of the pattern $WF described in

the previous snippet. As this is a rule to infer finer grained requirements

from a more generic one, the Requirement should not be already satisfied

and it must be part of a SecPlan (lines 6-7) that is not completely

propagated (i.e., not atomic).

Security Aware Service Composition

116 / 253

1 	
2 	 	
3 	 	
4 	 	
5 	 	
6 	 	
7 	 	

$RSP	 :	 Requirement(secProperty.propertyName	 ==	 "rho",	 	
subject	 ==	 $WF,	 	
parameters.inputs	 contains	 $inP1,	 	
satisfied	 ==	 false)	

	
$secPlan	 :	 SecPlan(requirements	 contains	 $RSP,	

atomic	 ==	 false)	

Table 5.2: Snippet encoding a security requirement into a Drools rule

The consequence part of the rule should encode the actions that

generate the requirements over the activity placeholders (ASP) that

guarantee that the requirement over the pattern holds.

Returning to our on-going example, Table 5.3 shows a snippet

encoding the consequences part of the rule. The code generates the two new

security requirements (lines 4-5 and 9-10), and inserts them into Drools

Knowledge Base (lines 7 and 12).

Furthermore, a new SecPlan is generated using the old one as a basis

(line 1), in order to be. The original requirement (RSP) is removed from the

set (line 2), substituted now with the two new requirements (ASP) that

guarantee it (line 6 and 11).

Security Aware Service Composition

117 / 253

1 	
2 	 	
3 	 	
4 	 	
5 	 	
6 	 	
7 	 	
8 	 	
9 	 	
10 	 	
11 	 	
12 	 	
13 	 	
14 	 	

SecPlan	 newSecPlan	 =	 new	 SecPlan($secPlan);	
newSecPlan.removeRequirement($origReq);	
	
Requirement	 ASP_A	 =	 new	 Requirement(

$RSP,	 "rho",	 $A,	 $inP1,	 null);	
newSecPlan.getRequirements().add(ASP_A);	
insert(ASP_A);	
	
Requirement	 ASP_B	 =	 new	 Requirement(

$RSP,	 "sigma",	 $B,	 $outA1,	 null);	
newSecPlan.getRequirements().add(ASP_B);	
insert(ASP_B);	
	
insert(newSecPlan);	

Table 5.3: Snippet encoding the creation of the inferred security

requirements in a Drools rule

5.4.1.2 Verification Rules

In some cases the inference rules alone cannot guarantee a security

requirement, as the secure composition pattern might need to check a

condition over the actual certified security properties for each activity. This

information is available only after the instantiation in the pattern of partner

services for each activity placeholder.

The verification rules are used after the instantiation of the

orchestration pattern (WF) in order to verify that the certified security

properties guarantee the pattern’s security requirement (RSP). These rules

are needed in particular for those cases where the pattern’s security

requirement can be guaranteed not just by checking that the security

requirements inferred by the inference rules are satisfied by the partner

services through their certificates, but also by verifying additional

conditions over the certified security properties of the partner services

(Condition). An example is the availability security property, which can be

Security Aware Service Composition

118 / 253

guaranteed by checking conditions over the numeric values in the certified

security properties (the rule need the numeric values in the certificates in

order to be computed).

The main difference between the inference and the verification rules is,

then, that while the computation for inference rules flows from the security

requirements of the pattern (RSP) to the ones for the single activity

placeholders (ASP), the computation for the verification rules flows in the

opposite direction.

More specifically, verification rules check if the certified security

properties guarantee the security requirements and the conditions over them,

as shown in the examples of Section 5.4.4. This process starts from the

single instantiated activities (partner services) and goes over patterns where

their activities are already checked and satisfy the conditions. Once an

activity or a pattern is successfully checked, the process updates the

satisfied field of the security requirements accordingly.

5.4.2 Integrity

The inference rule presented in Table 5.4 encodes the Precede Integrity

on Cascade Pattern shown in Figure 5.6.

The rule states that if we have some data $input and $output used in

an activity S0 as inputs and outputs, and that S0 guarantees Precede Integrity

on them, then when we substitute S0 with the sequence $WF = $A $B, a

requirement $RSP for the integrity of the data is formulated on $WF.

Security Aware Service Composition

119 / 253

1 	
2 	 	
3 	 	
4 	 	
5 	 	
6 	 	
7 	 	
8 	 	
9 	 	
10 	 	
11 	 	
12 	 	
13 	 	
14 	 	
15 	 	
16 	 	
17 	 	
18 	 	
19 	 	
20 	 	
21 	 	
22 	 	
23 	 	
24 	 	
25 	 	
26 	 	
27 	 	
28 	 	
29 	 	
30 	 	
31 	 	
32 	 	
33 	 	
34 	 	
35 	 	
36 	 	

rule	 "Precede Integrity	 on	 Cascade"	
	 	 when	
	 	 	 	 $A	 :	 Placeholder($input	 :	 parameters.inputs,	 	

$AtoBdata	 :	 parameters.outputs)	
	 	 	 	 $B	 :	 Placeholder(parameters.inputs	 ==	 $AtoBdata,	 	

$output	 :	 parameters.outputs)	
	 	 	 	 $WF	 :	 Sequential(parameters.inputs	 ==	 $inputs,	

parameters.outputs	 ==	 $outputs,	 	
firstActivity	 ==	 $A,	 	
secondActivity	 ==	 $B)	

	
	 	 	 	 $RSP	 :	 Requirement(

secProperty.propertyName	 ==	 "integrity_pr",	 	
subject	 ==	 $WF,	 	
parameters.inputs	 ==	 $input,	 	
parameters.outputs	 ==	 $output,	 	
satisfied	 ==	 false)	

	 	 	 	 $secPlan	 :	 SecPlan(requirements	 contains	 $RSP,	 	
atomic	 ==	 false)	

	
	 	 then	
	 	 	 	 SecPlan	 newSecPlan	 =	 new	 SecPlan($secPlan);	
	 	 	 	 newSecPlan.removeRequirement($RSP);	
	 	 	 	 	
	 	 	 	 Requirement	 ASP_A	 =	 new	 Requirement(

$RSP,	 "integrity_pr",	 $A,	 $input,	 $AtoBdata);	
	 	 	 	 newSecPlan.getRequirements().add(ASP_A);	
	 	 	 	 insert(ASP_A);	
	
	 	 	 	 Requirement	 ASP_B	 =	 new	 Requirement(

$RSP,	 "integrity_pr",	 $B,	 $AtoBdata,	 $output);	
	 	 	 	 newSecPlan.getRequirements().add(ASP_B);	
	 	 	 	 insert(ASP_B);	
	
	 	 	 	 insert(newSecPlan);	
end	

Table 5.4: Inference rule for Precede Integrity on Cascade Pattern

Security Aware Service Composition

120 / 253

In more detail, the rule requires the following data flow conditions to

encode the Cascade orchestration:

• $A input is the pattern input ($input),

• $A output, called $AtoBdata, is $B input, and

• $B output is the pattern output ($output).

If these conditions are met, then the two requirements ASP_A and

ASP_B, with ASP_A = Integritypr(A, $input, $AtoBdata) and ASP_B =

Integritypr(B, $AtoBdata, $output), guarantee the original requirement.

More specifically, lines 7-10 describe the control flow of the

orchestration pattern, and lines 3-8 describe its data flow. Lines 12-19

encode the original security requirement RSP. Lines 25-33 encode the

requirements that must hold on the single placeholders to guarantee the

original requirement (ASP).

5.4.3 Confidentiality

The rules presented in this section encode the patterns shown in Section

5.3.3.1 about the Perfect Security Property (PSP).

Table 5.5 and Table 5.6 show the inference rules for PSP on,

respectively, Cascade and Product orchestrations. These two rules are very

similar, as they differ only in the orchestration pattern.

Security Aware Service Composition

121 / 253

1 	
2 	 	
3 	 	
4 	 	
5 	 	
6 	 	
7 	 	
8 	 	
9 	 	
10 	 	
11 	 	
12 	 	
13 	 	
14 	 	
15 	 	
16 	 	
17 	 	
18 	 	
19 	 	
20 	 	
21 	 	
22 	 	
23 	 	
24 	 	
25 	 	
26 	 	
27 	 	
28 	 	
29 	 	
30 	 	
31 	 	
32 	 	
33 	 	
34 	 	
35 	 	
36 	 	
37 	 	
38 	 	

rule	 "PSP	 on	 Cascade"	
	 	 when	
	 	 	 	 $A	 :	 Placeholder($input	 :	 parameters.inputs,	 	

$AtoBdata	 :	 parameters.outputs)	
	 	 	 	 $B	 :	 Placeholder(parameters.inputs	 ==	 $AtoBdata,	 	

$output	 :	 parameters.outputs)	
	 	 	 	 $WF	 :	 Sequential(parameters.inputs	 ==	 $inputs,	

parameters.outputs	 ==	 $outputs,	 	
firstActivity	 ==	 $A,	 secondActivity	 ==	 $B)	

	
	 	 	 	 $RSP	 :	 Requirement(secProperty.propertyName	 ==	 "PSP",	 	

subject	 ==	 $WF,	 satisfied	 ==	 false)	
	 	 	 	 $S	 :	 SecPlan(requirements	 contains	 $RSP,	 atomic	 ==	 false)	
	 	 then	
	 	 	 	 SecPlan	 newSecPlan	 =	 new	 SecPlan($S);	
	 	 	 	 newSecPlan.removeRequirement($RSP);	
	 	 	 	 Set	 V_P	 =	 $RSP.getSecProperty().getAttributesMap().get("V");	
	
	 	 	 	 Requirement	 ASP_A	 =	 new	 Requirement($RSP,	 "PSP",	 $A);	
	 	 	 	 ASP_A.getSecProperty().getAttributesMap()	

.put("V",	 new	 Operation("subset",	 V_P));	
	 	 	 	 ASP_A.getSecProperty().getAttributesMap()	

.put("C",	 new	 Operation("subset",	 	
new	 Operation("complement",	 V_P)));	

	 	 	 	 newSecPlan.getRequirements().add(ASP_A);	
	 	 	 	 insert(ASP_A);	
	
	 	 	 	 Requirement	 ASP_B	 =	 new	 Requirement($RSP,	 "PSP",	 $B);	
	 	 	 	 ASP_B.getSecProperty().getAttributesMap()	

.put("V",	 new	 Operation("subset",	 V_P));	
	 	 	 	 ASP_B.getSecProperty().getAttributesMap()	

.put("C",	 new	 Operation("subset",	 	
new	 Operation("complement",	 V_P)));	

	 	 	 	 newSecPlan.getRequirements().add(ASP_B);	
	 	 	 	 insert(ASP_B);	
	
	 	 	 	 insert(newSecPlan);	
end	

Table 5.5: Inference rule for PSP on Cascade Pattern

Security Aware Service Composition

122 / 253

1 	
2 	 	
3 	 	
4 	 	
5 	 	
6 	 	
7 	 	
8 	 	
9 	 	
10 	 	
11 	 	
12 	 	
13 	 	
14 	 	
15 	 	
16 	 	
17 	 	
18 	 	
19 	 	
20 	 	
21 	 	
22 	 	
23 	 	
24 	 	
25 	 	
26 	 	
27 	 	
28 	 	
29 	 	
30 	 	
31 	 	
32 	 	
33 	 	
34 	 	
35 	 	
36 	 	

rule	 "PSP	 on	 Product"	
	 	 when	
	 	 	 	 $paramsA	 :	 Parameters()	 	
	 	 	 	 $paramsB	 :	 Parameters(inputs	 disjoint	 $paramsA.inputs	 	

outputs	 disjoint	 $paramsA.outputs)	 	
	 	 	 	 $paramsWF	 :	 Parameters(inputs	 containsall	 $paramsA.inputs	 	

inputs	 containsall	 $paramsB.inputs	 	
outputs	 containsall	 $paramsA.outputs	 	
outputs	 containsall	 $paramsB.outputs)	 	

	
	 	 	 	 $A	 :	 Placeholder(parameters	 ==	 $paramsA)	
	 	 	 	 $B	 :	 Placeholder(parameters	 ==	 $paramsB)	
	 	 	 	 $WF	 :	 Parallel(parameters	 ==	 $paramsWF,	 $acts	 :	 activities)	 	
	
	 	 	 	 $RSP	 :	 Requirement(secProperty.propertyName	 ==	 "PSP",	 	

subject	 ==	 $WF,	 satisfied	 ==	 false)	
	 	 	 	 $S	 :	 SecPlan(requirements	 contains	 $RSP,	 atomic	 ==	 false)	
	 	 then	
	 	 	 	 SecPlan	 newSecPlan	 =	 new	 SecPlan($S);	
	 	 	 	 newSecPlan.removeRequirement($RSP);	
	 	 	 	 Set	 V_P	 =	 $RSP.getSecProperty().getAttributesMap().get("V");	
	
	 	 	 	 for(Placeholder	 currAct	 :	 $acts){	
	 	 	 	 	 	 	 	 Requirement	 currASP	 =	 new	 Requirement(

$RSP,	 "PSP",	 currAct);	
	 	 	 	 	 	 	 	 currASP.getSecProperty().getAttributesMap()	

.put("V",	 new	 Operation("subset",	 V_P));	
	 	 	 	 	 	 	 	 currASP.getSecProperty().getAttributesMap()	

.put("C",	 new	 Operation("subset",	 	
new	 Operation("complement",	 V_P)));	

	 	 	 	 	 	 	 	 newSecPlan.getRequirements().add(currASP);	
	 	 	 	 	 	 	 	 insert(currASP);	
	 	 	 	 }	
	
	 	 	 	 insert(newSecPlan);	
end	

Table 5.6: Inference rule for PSP on Product Pattern

Security Aware Service Composition

123 / 253

More specifically, after specifying on which orchestration the rule

applies, i.e., Cascade or the Product orchestration (lines 3-9 for the Cascade

rule, 3-13 for the Product rule), if PSP is requested over the orchestration

(lines 11-12 for the Cascade rule, lines 15-16 for the Product rule), then a

Requirement is generated for each activity placeholder in the

orchestration, asking for the PSP (lines 19-35 for the Cascade rule, 24-32

for the Product rule). In particular, as two additional conditions are needed

for the proof to hold, then these conditions are added to the security

property (lines 20-24 and 29-33 for the Cascade rule, 26-30 for the Product

rule).

In more detail, the two additional conditions make usage of the

Operation class offered in our implementation by the query language of

the discovery tool and that is used to encode set operations that will be

executed during the discovery process to find suitable matches. If no such a

discovery feature is available it is possible to encode the secure composition

pattern into a simpler inference rule with no such conditions, and encode the

conditions in the verification rules, where the actual security properties

offered by the services are available to be checked.

5.4.4 Availability

As mentioned earlier, availability is one case where the inference rules

are not enough. Availability, in fact, comprises a set of numerical metrics:

the composition of such metrics is supported by numerical functions that

can be computed and checked only after the instantiation of the activity

placeholders with partner link services. We introduce verification rules in

order to check those conditions that required the pattern to be already

instantiated.

Security Aware Service Composition

124 / 253

1 	
2 	 	
3 	 	
4 	 	
5 	 	
6 	 	
7 	 	
8 	 	
9 	 	
10 	 	
11 	 	
12 	 	
13 	 	
14 	 	
15 	 	
16 	 	
17 	 	
18 	 	
19 	 	
20 	 	

rule	 "Availability	 inference"	
	 	 when	
	 	 	 	 $WF	 :	 OrchestrationPattern($acts:	 childActivities)	
	
	 	 	 	 $RSP	 :	 Requirement(

secProperty.propertyName	 ==	 "availability",	
$secProp	 :	 secProperty,	 subject	 ==	 $WF)	

	 	 	 	 $S	 :	 SecPlan(requirements	 contains	 $RSP,	 atomic	 ==	 false)	
	 	 then	
	 	 	 	 SecPlan	 newSecPlan	 =	 new	 SecPlan($S);	
	 	 	 	 newSecPlan.removeRequirement($RSP);	
	 	 	 	 	
	 	 	 	 for(Placeholder	 currAct	 :	 $acts){	
	 	 	 	 	 	 	 	 Requirement	 currASP	 =	 new	 Requirement(

$RSP,	 new	 SecProperty($secProp),	 currAct);	
	 	 	 	 	 	 	 	 newSecPlan.getRequirements().add(currASP);	
	 	 	 	 	 	 	 	 insert(currASP);	
	 	 	 	 }	
	 	 	 	 insert(newSecPlan);	
end	

Table 5.7: Inference rule for Availability

Table 5.7 shows an inference rule for availability that simply replicates

the security requirement RSP over the activity placeholders, in order to

query partner services that are certified to take care of availability. This rule

is applied on any orchestration (line 3) that is requested to maintain

availability (lines 5-7) and generates availability requirements for all the

activity placeholders in the pattern (lines 14-17).

In the following we specify the verification rules that encode the

patterns about the Maximum Execution Time dimension of availability.

Furthermore, since the verification rules check that the certified

properties guarantee the security requirements, an additional rule must be

encoded for the base case, i.e., the activity bounded to a partner service

PartnerLinkActivity.

Security Aware Service Composition

125 / 253

The verification rule for the PartnerLinkActivity is shown in

Table 5.8. This rule compares the maximum execution time maxTime in the

certified security property (lines 3-5) of the PartnerLinkActivity (lines

7-8) with the one requested (lines 12-15). If the time in the Requirement is

greater or equal than the certified one, then the requirement is updated with

the certified time and is marked as satisfied.

1 	
2 	 	
3 	 	
4 	 	
5 	 	
6 	 	
7 	 	
8 	 	
9 	 	
10 	 	
11 	 	
12 	 	
13 	 	
14 	 	
15 	 	
16 	 	
17 	 	
18 	 	
19 	 	
20 	 	

rule	 "Verification	 of Max	 Execution	 Time	 on	 PartnerLinkActivity"	
	 	 when	
	 	 	 	 $certAttributes	 :	 Map(keySet	 contains	 "maxTime")	
	 	 	 	 $certProp	 :	 SecProperty(propertyName	 ==	 "availability",	

	 attributesMap	 ==	 $certAttributes)	
	
	 	 	 	 $activity	 :	 PartnerLinkActivity(

certifiedProperties	 contains	 $certProp)	
	
	 	 	 	 $attributes	 :	 Map(keySet	 contains	 "maxTime",	 	

this["maxTime"]	 >=	 $certAttributes["maxTime"])	
	 	 	 	 $RSP	 :	 Requirement(

secProperty.propertyName	 ==	 "availability",	
secProperty.attributesMap	 ==	 $attributes,	
subject	 ==	 $activity,	 satisfied	 ==	 false)	

	 	 then	
	 	 	 	 modify($attributes){	

put("maxTime",	 $certAttributes.get("maxTime"))};	
	 	 	 	 modify($RSP){setSatisfied(true)};	
end	

Table 5.8: Verification rule for the Maximum Execution Time on Partner

Link Activity

The verification rule for the Maximum Execution Time on Generic

Sequential Pattern is shown in Table 5.9. This rule might seem a little bit

complicated as it makes use of the forall condition and accumulate

functions, however the application of these functions is quite standard, so

new rules can be built by just following the following examples.

Security Aware Service Composition

126 / 253

1 	
2 	 	
3 	 	
4 	 	
5 	 	
6 	 	
7 	 	
8 	 	
9 	 	
10 	 	
11 	 	
12 	 	
13 	 	
14 	 	
15 	 	
16 	 	
17 	 	
18 	 	
19 	 	
20 	 	
21 	 	
22 	 	
23 	 	
24 	 	
25 	 	
26 	 	
27 	 	
28 	 	
29 	 	

rule	 "Verification	 for Max	 Execution	 Time	 on	 Generic	 Sequential"	
	 	 when	
	 	 	 	 $WF	 :	 Sequential($acts	 :	 childActivities)	
	
	 	 	 	 forall($currAct	 :	 Placeholder()	 from	 $acts	
	 	 	 	 	 	 	 	 	 $attributes	 :	 Map(keySet	 contains	 "maxTime")	
	 	 	 	 	 	 	 	 	 Requirement(secProperty.propertyName	 ==	 "availability",	 	

secProperty.attributesMap	 ==	 $attributes,	
subject	 ==	 $currAct,	 satisfied	 ==	 true))	

	
	 	 	 	 $totalTime	 :	 Number()	 from	 accumulate	 (
	 	 	 	 	 	 	 	 	 $attributes	 :	 Map(keySet	 contains	 "maxTime",	 	

$maxTime	 :	 this["maxTime"])	
	 	 	 	 	 	 	 	 	 and	
	 	 	 	 	 	 	 	 	 Requirement(secProperty.propertyName	 ==	 "availability",	

secProperty.attributesMap	 ==	 $attributes,	
$acts	 contains	 subject,	 satisfied	 ==	 true),	

	 	 	 	 	 	 	 	 	 sum($maxTime))	
	
	 	 	 	 $attributes	 :	 Map(keySet	 contains	 "maxTime",	 	

this["maxTime"]	 >=	 $totalTime)	
	 	 	 	 $RSP	 :	 Requirement(

secProperty.propertyName	 ==	 "availability",	 	
secProperty.attributesMap	 ==	 $attributes,	 	
subject	 ==	 $WF,	 satisfied	 ==	 false)	

	 	 then	
	 	 	 	 modify($attributes){put("maxTime",	 $totalTime)};	
	 	 	 	 modify($RSP){setSatisfied(true)};	
end	

Table 5.9: Verification rule for the Maximum Execution Time on Generic

Sequential Pattern

The rule is applied on sequential orchestrations with no data flow

specifications (line 3) and first checks that all the activities in pattern have a

Requirement for availability, in particular for the maximum execution

time dimension, and that all these Requirements are satisfied (the

forall part, lines 5-9).

Security Aware Service Composition

127 / 253

Then the maxTime of all the activities in the pattern are accumulated

through the sum function (the accumulate part, lines 11-18), as specified

by the Condition part of the secure composition pattern.

Finally the rule compares the accumulated maxTime with the one in the

pattern’s Requirement RSP. If the time in the Requirement is greater or

equal than the accumulated one, then the requirement is updated with the

computed time and is marked as satisfied, as specified by the Condition part

of the secure composition pattern.

The verification rule for the Maximum Execution Time on Generic

Choice Pattern, shown in Table 5.10, differs from the one on the Generic

Sequential orchestration only for the orchestration pattern (line 3) and the

accumulation function (line 18), i.e., the function returning the maximum

(max) instead of the sum function.

Security Aware Service Composition

128 / 253

1 	
2 	 	
3 	 	
4 	 	
5 	 	
6 	 	
7 	 	
8 	 	
9 	 	
10 	 	
11 	 	
12 	 	
13 	 	
14 	 	
15 	 	
16 	 	
17 	 	
18 	 	
19 	 	
20 	 	
21 	 	
22 	 	
23 	 	
24 	 	
25 	 	
26 	 	
27 	 	
28 	 	
29 	 	

rule	 "Verification	 for Max	 Execution	 Time	 on	 Generic	 Choice"	
	 	 when	
	 	 	 	 $WF	 :	 Choice($acts	 :	 childActivities)	
	
	 	 	 	 forall($currAct	 :	 Placeholder()	 from	 $acts	
	 	 	 	 	 	 	 	 	 $attributes	 :	 Map(keySet	 contains	 "maxTime")	
	 	 	 	 	 	 	 	 	 Requirement(secProperty.propertyName	 ==	 "availability",	 	

secProperty.attributesMap	 ==	 $attributes,	
subject	 ==	 $currAct,	 satisfied	 ==	 true))	

	
	 	 	 	 $totalTime	 :	 Number()	 from	 accumulate	 (
	 	 	 	 	 	 	 	 	 $attributes	 :	 Map(keySet	 contains	 "maxTime",	 	

$maxTime	 :	 this["maxTime"])	
	 	 	 	 	 	 	 	 	 and	
	 	 	 	 	 	 	 	 	 Requirement(secProperty.propertyName	 ==	 "availability",	

secProperty.attributesMap	 ==	 $attributes,	
$acts	 contains	 subject,	 satisfied	 ==	 true),	

	 	 	 	 	 	 	 	 	 max($maxTime))	
	
	 	 	 	 $attributes	 :	 Map(keySet	 contains	 "maxTime",	 	

this["maxTime"]	 >=	 $totalTime)	
	 	 	 	 $RSP	 :	 Requirement(

secProperty.propertyName	 ==	 "availability",	 	
secProperty.attributesMap	 ==	 $attributes,	 	
subject	 ==	 $WF,	 satisfied	 ==	 false)	

	 	 then	
	 	 	 	 modify($attributes){put("maxTime",	 $totalTime)};	
	 	 	 	 modify($RSP){setSatisfied(true)};	
end	

Table 5.10: Verification rule for the Maximum Execution Time on the

Choice Pattern

5.5 Summary

In this chapter we presented our approach to assess security over

service orchestrations that makes use of secure composition patterns.

Security Aware Service Composition

129 / 253

The secure composition patterns infer the security requirements needed

from partner services part of a composition in order to guarantee a given

security requirement on the entire composition.

The secure composition patterns summarize proven inferences between

security requirements guaranteed by activity placeholders. These inferences

are then encoded into business rules, called security production rules, in

order to allow automated reasoning about a composition security.

Security Aware Service Composition

130 / 253

Chapter 6

Security Aware Service
Composition Process

6.1 Overview

Secure composition patterns can be used in different phases of the

lifecycle of SBSs in order to guarantee the security of service compositions

within such systems. More specifically the patterns allow (a) the generation

of secure service compositions, and (b) the validation of the security of

existing service compositions.

The former, (a), can be used either at design time, for designing entire

or parts of workflows, and at runtime for substituting services that violate

security requirements with service compositions generated to replace them.

The latter, (b), is used at design time only, in order to ensure that a

workflow or parts of it satisfy indeed a given security requirement.

6.2 Scenario

In this section we present a use case scenario for the security aware

composition process that we are going to use to exemplify the approach

throughout the document. The user in this scenario is a Business Analyst of

Security Aware Service Composition

131 / 253

a Stock Broker organization, working on the design a SBS that automates

the buying of stocks for their clients based on market data and client

preferences. This SBS relies on a combination of internal and external

services (e.g., Xignite, Amazon AWS) deployed on different clouds, making

it an example of a hybrid cloud application.

The Business Analyst identifies a series of security threats (listed in

Section 6.2.2) and introduces to the design of the SBS a set of security

requirements to address these threats. During the design, the Business

Analyst makes usage of the validation capabilities of the approach described

in this work to assess if the security requirements are satisfied. If this is not

the case, the Business Analyst can use the static discovery of secure

services to substitute any service that has inadequate security. Finally,

during the SBS implementation a service adaptation mechanism is included

in order to support business continuity whenever one of the services used by

the SBS becomes unavailable or no longer supports the functional/security

requirements. The service adaptation mechanism uses the dynamic

discovery of secure services to locate alternative services that support the

requirements. In particular both the static and the dynamic discovery of

secure service make usage of the generation of secure service composition

described in this thesis when no atomic service can provide the requested

functionality and security.

6.2.1 Stock Broker SBS

A simple version of the SBS workflow designed by the Business

Analyst is presented in Figure 6.1. For the sake of presenting a reasonable

example without dwelling into complex technicalities, we omit details of

the process, like the ones about error handling and transactions support, as

we assume that the Business Analyst is going to take care of them in a

second design stage.

Security Aware Service Composition

132 / 253

Figure 6.1: The Stock Broker SBS workflow

Upon receiving a set of user preferences, the SBS retrieves the current

and the predicted stock values from a financial service (e.g., Xignite). Then

it internally analyses all the information collected (activity

AnalyzeStockInformation in the figure) in order to check if the user

requirements are met by the stock values. If this is the case, then the stocks

Security Aware Service Composition

133 / 253

are traded and the payment is processed by internal services that contact the

bank/financial supplier through the SWIFT protocol [98][99]. Finally a

report of the transaction is generated, stored in a storage service (e.g.,

Amazon S3), and finally sent back to the user.

6.2.2 Security Threats

This section presents a threat analysis of the given scenario following

the STRIDE Threat Model [52], by identifying the threat categories and the

resources at risk. STRIDE is the acronym of the following threat categories:

• Spoofing identity: when a malicious party successfully poses as

an authorized user.

• Tampering with data: when the content of data or messages is

altered without permission, either by a malicious party or by a

malfunction.

• Repudiation: when a party denies authoring or initiating an

action and no proof exists to contradict this.

• Information disclosure: when an unauthorized user accesses

supposedly secure information.

• Denial of service: when a valid user access to a system or

resource is limited or eliminated.

• Elevation of privilege: when a malicious user gains higher

privileges than the ones that should be granted to that user.

Based on this model, the threats in the Stock Broker scenario can be

identified as follows:

Security Aware Service Composition

134 / 253

A. Spoofing the communications between the investor and the Stock

Brokerage firm. A malicious user may pose as another investor and

maliciously manage their portfolio. Also, a malicious user may pose as

the Stock Brokerage SBS and obtain secret information from the

investors. As the investor - Stock Brokerage firm relationship is not

communicated to the underlying service providers, this threat does not

require additional controls for the services used by the SBS and it

should be taken care of with appropriate authentication at SBS level.

B. Spoofing the communications between the Stock Brokerage firm and the

bank/financial supplier. A malicious user may pose as one of these

parties and transfer funds, stocks or gaining secret information about

this. As the SBS uses services internal to the Stock Brokerage

organization to communicate with the bank/financial supplier, this threat

should be addressed with appropriate authorization mechanisms in the

implementation of such services.

C. Tampering of the investment plan, the trading account details or the

trading report. A malicious user or a malfunction may alter this data,

possibly changing the outcomes of a trading session. This threat requires

assurance about the integrity of these data against both the SBS and the

services used by it.

D. Repudiation of the investment plan from the user. A malicious user may

deny that he/she has sent an investment plan to the SBS, and try to claim

back the money for an unsuccessful investment. Again, as the investor -

Stock Brokerage firm relationship is not communicated to the underlying

service providers, this threat does not require additional controls for the

services used by the SBS and it should be taken care of with appropriate

non-repudiation mechanisms at the SBS level.

Security Aware Service Composition

135 / 253

E. Repudiation of the successful trading from the bank/financial supplier.

A malicious supplier may deny the trading from having taken place.

This threat should be taken care of at a level of the internal services

contacting the bank/financial supplier. In particular if SWIFT is used,

non-repudiation is granted by the SWIFTNet protocol [99].

F. Repudiation of the successful trading from the SBS. In order to avoid

the Stock Broker firm to potentially deny the result of a trading session,

a report is sent to the user. This threat menaces the investor - Stock

Brokerage firm relationship, and it should be taken care of with

appropriate non-repudiation mechanisms at the SBS level (e.g., by

signing the report).

G. Disclosure of the investment plan, the trading account details or the

trading report. A malicious user may use secret information about

investment strategies of competing investors as additional information

for their investments, or use the obtained trading account details to

maliciously manage the account of someone else. This threat requires

assurance about the confidentiality of this data from both the SBS and

from the services used by it.

H. Denial of service of the SBS. A malicious user or a malfunction may

limit the access to the SBS or any of the services used by it, impeding or

delaying a trading session. This threat requires assurance about the

availability of both the SBS and of the services used by it.

The approach presented in this thesis addresses the threats introduced

by the services used by the SBS. This is achieved by defining appropriate

security requirements that reduce or mitigate fully the security threats and

by checking that the security requirements are actually provided by the

services involved in a composition. In particular, from the above list of

Security Aware Service Composition

136 / 253

threats, the security requirements that should be introduced for the services

part of this scenario are about integrity and confidentiality of the data

exchanged (against threats C and G) and availability of the services (against

threat H). The other security threats, directed to the SBS or the internal

services implementation, can be addressed instead with alternative

approaches present in literature, as the ones described in Section 2.4.

This analysis intentionally does not go into the details of identifying

the actual sources for each threat, like vulnerabilities and attacks (e.g., SQL,

OS, DNS or LDAP injection, cross-site scripting, SSL Heartbeat

vulnerability), as this level of detail often depends on the implementation of

the service and this implementation is usually unknown to the SBS

designer. The vulnerabilities and attacks, however, have to be identified and

addressed in order to release a security descriptor for each of the services

used in a SBS, describing the security properties that the service guarantees.

The security descriptors are used then to satisfy a security requirement

introduced to minimize the security threats presented in this section. The

interested reader may find a survey of service and cloud computing security

issues in [104].

6.3 Workflows

In the following algorithms we assume that service composition

workflows are represented as a composition of the orchestration patterns

described above, as they represent abstract orchestrations that are not

necessarily bound to services.

A workflow is defined by the outermost orchestration pattern that

describes it and by the information about its functional applicability (in the

current implementation this is achieved through a WSDL of the resulting

composition). Each pattern contains a set of placeholders for activities. The

Security Aware Service Composition

137 / 253

placeholders can contain the description of a single operation (in the current

implementation this is also described through a WSDL) that should

instantiate the activity or another pattern.

Workflow[orchestration=	
	 	 Sequential(
	 	 	 	 PartnerLinkActivity(http://example.com/StockISIN.wsdl),	
	 	 	 	 Sequential(
	 	 	 	 	 	 	 	 UnassignedActivity(GetQuoteActivity),	
	 	 	 	 	 	 	 	 UnassignedActivity(GetConversion)))]	

Table 6.1: Example of a workflow

Each service placeholder in the workflow can be instantiated with a

partner link service, as shown in the example in Table 6.1 (the

PartnerLinkActivity). When all the service placeholders in a workflow

are not instantiated (i.e., bounded to a concrete service), we call the

workflow “abstract workflow”.

An abstract workflow represents an activity that can be replaced by a

set of other activities and contains: (a) information about the control flow

between these activities, and (b) the set of orchestration patterns used to

generate it.

Figure 6.2 shows the XML Schema used to represent an abstract

workflow. The root of the schema is the Workflow element, which is

required to have: (i) a name, (ii) a WSDL describing the abstract workflow

interface (located either remotely or locally), and (iii) the outermost

orchestration pattern of the workflow, described through the

OrchestrationType XML Schema type.

Security Aware Service Composition

138 / 253

Figure 6.2: The Workflow element of the abstract workflow schema

The OrchestrationType contents are shown in Figure 6.3. The main

element describing an orchestration pattern can be a Sequential, a

Choice, or a Parallel element. The Sequential element is required to

have two sub-elements describing the first and the second activity

placeholders in the orchestration through the usage of the

PlaceholderType type. The Choice element allows the specification of

the condition over which the control flow is decided, an activity placeholder

that is executed if the condition is true, and optionally an activity

placeholder that is executed if the condition is false. The Parallel

element contains one or more activity placeholders described through the

PlaceholderType XML Schema type.

Security Aware Service Composition

139 / 253

Figure 6.3: The OrchestrationType type of the abstract workflow schema

Figure 6.4 shows the PlaceholderType used to describe an activity

placeholder. In particular an activity placeholder can represent either an

orchestration pattern, or an atomic activity. The latter is encoded through

the Activity element and is described through a name and a WSDL

interface describing the functional requirements of the activity to perform.

The WSDL is used to find and bound a service for the activity during the

instantiation phase of the workflow.

Security Aware Service Composition

140 / 253

Figure 6.4: The PlaceholderType type of the abstract workflow schema

Table 6.2 shows an example of the XML encoding of an abstract

workflow, based on the workflow in Table 6.1.

<Workflow	 name="GetCurrentQuoteInUSD">	
	 	 	 	 <WSDL	 location="http://localhost:8080/wfs/GCQ_USD.wsdl"	 />	
	 	 	 	 <Pattern>	
	 	 	 	 	 	 	 	 <Sequential>	
	 	 	 	 	 	 	 	 	 	 	 	 <FirstActivity>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <Activity	 name="GetISIN">	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <WSDL	 filename="GetISIN.wsdl"	 />	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 </Activity>	
	 	 	 	 	 	 	 	 	 	 	 	 </FirstActivity>	
	 	 	 	 	 	 	 	 	 	 	 	 <SecondActivity>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <Pattern>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <Sequential>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <FirstActivity>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <Activity	 name="GetQuoteActivity">	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <WSDL	 filename="GetEURStock.wsdl"	 />	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 </Activity>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 </FirstActivity>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <SecondActivity>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <Activity	 name="GetConversion">	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <WSDL	 filename="Exchange.wsdl"	 />	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 </Activity>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 </SecondActivity>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 </Sequential>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 </Pattern>	
	 	 	 	 	 	 	 	 	 	 	 	 </SecondActivity>	
	 	 	 	 	 	 	 	 </Sequential>	
	 	 	 	 </Pattern>	
</Workflow>	

Table 6.2: Example of an abstract workflow

Security Aware Service Composition

141 / 253

6.4 Algorithms

In the following we present the algorithms that we have developed to

validate security requirements at design time and to build a secure service

workflow. The first algorithm is fundamental to both approaches, as it

describes how to use the secure composition patterns in order to infer

security requirements for activities within a composition. In the case of

validation, the inference of such requirements is used to check if the

workflow services indeed satisfy them, and therefore the workflow can be

confirmed to have the required overall security requirement. In the case of

generation of secure service composition, the inference of the security

requirements required of individual services is used in order to drive the

search process that discovers if there are such services that could instantiate

the placeholders of the workflows.

6.4.1 Inference of Security Requirements

The algorithm described in this section generates the security

requirements to be requested to the (potential) partner services of a

workflow. The algorithm is invoked having as an input the initial security

requirement and a workflow. Based on these two inputs, the algorithm

derives the security requirements that should be requested from the partner

services that are (or will be) bound to each activity in the workflow. This

may lead to find more than one combination of security requirements for the

different activities. Each of these combinations is called a Security Plan in

the context of this thesis.

The derivation of the security requirements is driven by the inference

rules that express the security requirements that need to be satisfied by the

individual partner services, which will instantiate the workflow for the latter

to satisfy other requested security requirement as a whole. As discussed in

Security Aware Service Composition

142 / 253

Chapter 5, the rules express dependencies between the security

requirements of the individual activities of the workflow and the security

requirements of the workflow as a whole. These dependencies have been

established by the proofs of different secure composition patterns; in fact

the security production rules can be considered encodings of the secure

composition patterns.

6.4.1.1 Algorithm

The algorithm for making inferences about the security requirements of

the placeholders of (and therefore the services that may be bound to) a

workflow is shown in Table 6.3.

As shown in the table, given an input service workflow WF and a

security requirement RSP, the algorithm tries to apply all the secure

composition patterns that would be able to guarantee RSP. A pattern is

applied if the workflow specification of the pattern (Pattern.WF) matches

with WF. If a pattern matches the workflow, then the security plans

computed up to that point are updated to replace the security requirement

RSP with the security requirements for the matched placeholders in WF

(these can be individual activities or sub-workflows) as determined by the

pattern. If a matched placeholder PH of WF is an atomic activity, the

process ends w.r.t it. If PH is a sub-workflow, the algorithm will continue

trying to apply further patterns for it recursively.

More specifically, as mentioned in Section 5.4.1, the process of

inferring security requirements can generate alternative plans. Each plan is

represented by a set of security requirements, meaning that the enclosed

requirements must hold at the same time. All the possible plans (i.e., the

sets of security requirements) are collected in the list that is the output of

the process.

Security Aware Service Composition

143 / 253

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Algorithm: INFERRECURSION(RSP, WF, InSecPlans)
Input: WF – workflow
 RSP[WF] – requested security requirement for WF
 InSecPlans – list of security plans used for recursion
Output: OutSecPlans – list of security plans of inferred requirements

For each pattern Patt such that Patt.CSP matches RSP do

If Patt.WF matches WF then
For each placeholder PH of WF do

SecReqs[PH] := security requirements identified by Patt.ASP
EndFor
For each security plan S in InSecPlans do

S’ := replace RSP by SecReqs in S
Add S’ to SecPlansPatt

EndFor
For each placeholder PH in WF that is a sub-workflow do

 SecPlansPatt:= INFERRECURSION
 (PH, SecReqs[PH], SecPlansPatt)

EndFor
Add all the plans SecPlansPatt to OutSecPlans

EndIf
EndFor
Return OutSecPlans

1

Algorithm: INFERREQUIREMENT(WF, RSP[WF])
Input: WF – workflow
 RSP[WF] – requested security requirement for WF
Output: SecPlans – list of plans of inferred security requirements

Return INFERRECURSION(WF, RSP[WF], {RSP[WF]})

Table 6.3: Algorithm for the inference of Security Requirements

Security Aware Service Composition

144 / 253

As discussed in Section 5.4, the security production rules are expressed

in Drools production rules. The algorithm for the inference of security

requirements has been implemented in Drools rule based reasoning.

6.4.1.2 Example

Consider the case of the ProcessOrder (PO) workflow shown in Figure

6.5, where a Stock is bought and paid for in parallel, and then a report of the

action is written. We can use the algorithm above in order to derive the

security requirements that should be required of the different activities in

the process in order to guarantee the confidentiality of the Stock Investor

current account. This security requirement can be expressed as PSP, with

EPO
H = {currentAccount} and EPO

L = {paymOrder, stocksOrder,

tradingAccount, report}.

Figure 6.5: The ProcessOrder workflow

ProcessOrder can be seen as a sequential workflow consisting of a sub-

workflow WF’ and the atomic activity WriteReport that follows it (see

Figure 6.6). WF’ itself is a parallel workflow involving two atomic

activities: ProcessPayment and TradeStocks.

Process
Payment

Trade
Stocks

currentAccount,
paymOrder

tradingAccount,
stocksOrder tradeResult

paymResult

Write
Report

report

Security Aware Service Composition

145 / 253

Figure 6.6: The Orchestration Patterns of the ProcessOrder workflow

Hence, when INFERREQUIREMENT is applied on to the workflow, in the

first iteration the inference rule for PSP on the sequential flow presented in

Section 5.4.3 can be applied on WF. This returns two security requirements:

(1) PSP confidentiality for the inputs currentAccount, paymResult and the

output tradeResult of WF’, and (2) PSP-confidentiality for the input

paymResult and output tradeResult of WriteReport.

The second iteration of the algorithm applies the inference rule for PSP

on the parallel flow to WF’. The algorithm then creates and adds two

security requirements to the final plan: one requiring PSP confidentiality for

Write
Report

currentAccount,
paymOrder,

tradingAccount,
stocksOrder

paymResult,
tradeResult report

WF

WF’

Process
Payment

Trade
Stocks

currentAccount,
paymOrder

tradingAccount,
stocksOrder tradeResult

paymResult

WF’

Security Aware Service Composition

146 / 253

currentAccount and paymResult of ProcessPayment, and another requiring

PSP confidentiality for tradeResult of TradeStocks.

6.4.2 Verification of Security Requirements

The algorithm described in this section verifies the security

requirements requested to the partner services of a workflow. The algorithm

is invoked having as an input the fully instantiated workflow and the

security requirements that have to be guaranteed. Based on these two inputs,

the algorithm verifies that the security requirements are guaranteed by the

appropriate partner services through their (certified) security property. The

verification of these conditions is driven by the verification rules.

6.4.2.1 Algorithm

As shown in the table, given an input service workflow WF and a

security requirement RSP, the algorithm tries to apply all the secure

composition patterns that would be able to guarantee RSP. A pattern is

applied if the workflow specification of the pattern (Pattern.WF) matches

with WF. If a pattern matches the workflow, then the security plans

computed up to that point are updated to replace the security requirement

RSP with the security requirements for the matched placeholder in WF

(these can be individual activities or sub-workflows). If a matched

placeholder PH of WF is an atomic activity, the process ends w.r.t it. If PH

is a sub-workflow, the algorithm is applied recursively for it.

Security Aware Service Composition

147 / 253

1
2
3
4
5
6
7
8
9
10
11
12

Algorithm: VERIFYREQUIREMENT(WF, SP)
Input: WF – workflow
 SP – security requirements that need to hold
Output: true or false – status of the verification

For each activity Act in WF do

If Act.Service.Certificates contains SP[Act] then
HoldsSP[Act] := true

EndIf
For each sub-workflow SW such that
 for all the placeholders PH in SW HoldsSP[PH] do

Patt := pattern such that Patt.WF = SW and Patt.SP = SP[SW]
If EVALUATE(Patt.Condition, SW) then

 HoldsSP[SW] := true
Endif

EndFor
Return HoldsSP[WF]
Table 6.4: Algorithm for the verification of Security Requirements

As in the case of the inference algorithms, the algorithm in Table 6.4 is

realised through the application of Drools rules.

6.4.2.2 Example

Suppose we have a workflow that contains two partner services in a

Generic Sequential Pattern. A security requirement on this workflow

requires that the maximum execution time of the workflow is 500

milliseconds. The two partner services have a certificate each, stating that

the maximum execution time of each of them is 300 milliseconds. The

verification rules in Section 5.4.4 then cannot infer that the security

requirement is satisfied, so the verification for this workflow fails.

Security Aware Service Composition

148 / 253

6.4.3 Validation of Workflows

The algorithm described in this section is focused on checking if the

fully instantiated workflow taken into consideration respects the requested

security requirement. This algorithm is useful in order to check fully

instantiated SBS workflows against security requirements.

Furthermore the following algorithm allows validation of workflow

fragments, i.e., portions of a workflow delimited by a control flow activity

(or sub-workflows). In case of BPEL workflows, a fragment consists of a

scope or a control flow (i.e., sequence, flow, while, forEach, repeatUntil, if-

then-else or pick) activity that can contain multiple service invocations (in

the form of invoke activities) and further control flow activities.

6.4.3.1 Algorithm

Given a request to check whether a workflow (WF) satisfies a security

requirement RSP, the algorithm INFERREQUIREMENT is applied to identify

the list of alternative security plans (i.e., combinations of security

requirements of the individual services in the fragment) that would

guarantee RSP. As explained earlier INFERREQUIREMENT tries to apply

different secure composition patterns in order to identify these alternative

plans. If such plans exist, each of them is analysed further to check if the

security requirements in the plan are provided by the services in the

fragment.

Security Aware Service Composition

149 / 253

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Algorithm: VALIDATEWORKFLOW(WF, RSP)
Input: WF – workflow
 RSP– security requirement that needs to be validated
Output: validationStatus – true if WF satisfies the security requirement
 SecPlans – list of security plans for the activities in WF

SecPlans:= INFERREQUIREMENT(WF, RSP)
For each plan SP in SecPlans do

validPlan := true
For each service S invoked in the fragment WF do

R := SERVICEDISCOVERY(S, SP[S])
If service S is not contained in R then

 validPlan:= false
Endif

EndFor
If validPlan = true and VERIFYREQUIREMENTS(WF, SP) then

Return true, SecPlans
Endif

EndFor
Return false, SecPlans

Table 6.5: Algorithm for the validation of workflows

To validate whether an individual service satisfies the security

requirement by a security plan, we express the requirement as a service

discovery query and then use the discovery tool described in Section 4.4 to

match the specification of the individual service with the query and

establish if it satisfies the query or not (see SERVICEDISCOVERY(S, SP[S])

invocation in the algorithm). In applying the service discovery process, we

assume the existence of machine-readable security property descriptors for

a service (e.g. certificates) indicating the security properties that a service S

has. If the individual service validation succeeds for all the services of the

fragment by even one of the identified security plan, and the patterns that

Security Aware Service Composition

150 / 253

required it are verified, then the workflow is validated. Otherwise, if no

security plan can be found, or if none of the found security plan can be

satisfied by the services in the workflow, or if the satisfied security plans

are not verified by the verification rules, the fragment is reported as not

validated.

6.4.3.2 Example

Consider again the case of the ProcessOrder (PO) workflow previously

explained. The workflow has been implemented into a SBS, bounding the

activities to services as shown in Figure 6.7.

Figure 6.7: Services used by the ProcessOrder SBS

Assume that we have another rule to preserve the PSP can state that the

confidentiality can be achieved by means of Separability. In this case we

have 2 security plans, one requiring Separability for the three activities in

the workflow, and the other requiring PSP. The algorithm considers one

security plan at a time, so in a first instance it will check if the Separability

plan is valid.

A first service discovery is performed for ProcessPayment, looking for

services with the required interface and the Separability security property.

The service XYBankPayment that is currently bound to the ProcessPayment

activity can be found in the discovery results, so it appears to have the

Process
Payment

Trade
Stocks

Write
Report

XYBankPayment

WZTrading

123Reporting

Security Aware Service Composition

151 / 253

requested Separability property. A second service discovery is performed

for TradeStocks, however in this case the service WZTrading that is bound

to it cannot be found in the discovery results. This means that the current

security plan is not valid.

Going forward to the second security plan, the service discovery for all

the workflow activities successfully return the bounded services, meaning

that they all provide the security properties requested by the plan. Since

there is at least one valid security plan, the algorithm returns true.

6.4.4 Discovery of Secure Workflows

The algorithm described in this section attempts to find appropriate

workflows that can address the conditions expressed in a query (both the

structural and the security conditions), in order to generate compositions.

The algorithm assumes the existence of a repository of abstract

workflows that describe the control and data-flow of well-known

procedures, in order to focus in the algorithm on the security requirement

inference. The abstract workflows are assumed to be supplied by domain

experts or generative composition algorithms. The practice of requiring a

set of existent workflows is quite common, as described in Section 2.3.

Alternative approaches can combine the security requirement inference of

the given algorithm with a (existing) generative approach for the workflow,

an overview of which is also present in the same section.

6.4.4.1 Algorithm

When the standard discovery doesn’t find a single replacement service

for a given service, then the query associated with the service to be replaced

(Q) is sent to the algorithm that discovers secure workflows shown in Table

6.6.

Security Aware Service Composition

152 / 253

1
2
3
4
5
6
7
8
9
10
11
12

Algorithm: GETSECUREWORKFLOWS(Q)
Input: Q – query for required service
Output: WStack – stack of workflows to instantiate
 ReqMap – list of requirements for each workflow

For each abstract workflow AW in the repository do

If STRUCTURALMATCHING(Q, AW) == true then
RSP = GETSECURITYREQUIREMENTS(Q)
SecPlans = INFERREQUIREMENT(AW, RSP)
For each security plan S in SecPlans do

WF := Clone AW
Push WF in WStack
ReqMap[WF] := S

EndFor
EndIf

EndFor
Return WStack, ReqMap

Table 6.6: Algorithm for the discovery of secure workflows

Initially the algorithm identifies the abstract workflows that provide the

requested functionality by calling the structural matching algorithm on the

abstract workflow repository.

Then the algorithm described in Section 6.4.1 inferring the security

requirements is called on each matching workflow, generating in this way a

list of security requirements, representing different plans. For each plan,

i.e., each set of security requirements, a copy of the workflow with the

considered security requirement is created and to the outputs of the process.

6.4.4.2 Example

When a service providing Stock quotations for a given Symbol has to

be substituted, the algorithm receives a query to find alternatives. By

Security Aware Service Composition

153 / 253

matching the service structural description in the query, it finds in the

abstract workflow repository a workflow with two activities in a sequence.

The first activity converts a Symbol into an ISIN (different identifier format

for the same Stock), while the second one uses the ISIN to provide Stock

quotations.

Figure 6.8: The GetStockDetails service (a) and the workflow that can

replace the GetStockDetail service (b)

The query conditions about security require integrity on the data,

making explicit references to the appropriate parts of the security property

descriptor (e.g. certificate) and in a complex combination of expressions

and operators, as shown in Table 6.7.

GetStock
Details

symbol stockValues

GetISIN

symbol ISIN

GetValue
FromISIN

stockValues

(a)

(b)

Security Aware Service Composition

154 / 253

<AssertQuery	 name="A1"	 type="HARD"	 assertScope="SINGLE">	
	 	 <LogicalExpression><Condition	 relation="EQUAL-‐TO">	
	 	 	 	 <Operand1><AssertOperand	 facetType="Assert">	
	 	 	 	 	 	 	 	 //ASSERTCore/ToC/Assets/Asset[@Type='InputParameter']/Name	
	 	 	 	 </AssertOperand></Operand1>	
	 	 	 	 <Operand2><Function	 name="WSDLLookup"><Arguments>	
	 	 	 	 	 	 	 	 <Argument	 WSDLElementType="input-‐message"	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WSDLElementName="symbol"/>	
	 	 	 	 </Arguments></Function></Operand2>	
	 	 </Condition>	
	
	 	 <LogicalOperator>AND</LogicalOperator>	
	 	 <LogicalExpression><Condition	 relation="EQUAL-‐TO">	
	 	 	 	 <Operand1><AssertOperand	 facetType="Assert">	
	 	 	 	 	 	 	 	 //ASSERTCore/ToC/Assets/Asset[@Type='OutputParameter']/Name	
	 	 	 	 </AssertOperand></Operand1>	
	 	 	 	 <Operand2><Function	 name="WSDLLookup"><Arguments>	
	 	 	 	 	 	 	 	 <Argument	 WSDLElementType="output-‐message"	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WSDLElementName="stockValue"/>	
	 	 	 	 </Arguments></Function></Operand2>	
	 	 </Condition>	
	
	 	 <LogicalOperator>AND</LogicalOperator>	
	 	 <LogicalExpression><Condition	 relation="EQUAL-‐TO">	
	 	 	 	 <Operand1><AssertOperand	 facetType="Assert">	
	 	 	 	 	 	 	 	 //ASSERTCore/SecurityProperty/@PropertyAbstractCategory	
	 	 	 	 </AssertOperand></Operand1>	
	 	 	 	 <Operand2>	
	 	 	 	 	 	 <Constant	 type="STRING">Integrity</Constant>	
	 	 	 	 </Operand2>	
	 	 </Condition></LogicalExpression>	
	 	 </LogicalExpression>	
	 	 </LogicalExpression>	
</AssertQuery>	

Table 6.7: Example of query making explicit references to certificate parts

through XPath

Security Aware Service Composition

155 / 253

This complex expression is converted to a security requirement,

containing a reference to the workflow and the security property “integrity”

on the referenced parameters (symbol and stockValue).

The security requirements are derived through the inference algorithm

previously explained, returning 2 plans, one requesting integrity from both

activities and the other requesting authentication of the data. The process

then returns two instances of the same workflow having different security

requirements over the activities.

6.4.5 Workflow Instantiation

The algorithm described in this section instantiates the activities in the

given workflows with services, by constructing ad hoc queries containing

the structural conditions and the given security requirements. The

workflows and the corresponding security requirements in input can be

obtained through the algorithm described in the previous section.

6.4.5.1 Algorithm

The algorithm dealing with the instantiation of workflows is shown in

Table 6.8. This algorithm makes use of a service discovery framework,

supporting the discovery of security requirements.

Security Aware Service Composition

156 / 253

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Algorithm: WORKFLOWINSTANTIATION(WStack, ReqMap)
Input: WStack – stack of workflows to instantiate
 ReqMap – list of requirements for each workflow
Output: ResultSet – set of instantiated workflows

While there are more workflows in WStack do

Pop the first workflow W from the WStack
Get the first unassigned activity A from W
Services = SERVICEDISCOVERY(A, ReqMap[W])
For each service S in Services do

WS := substitute A with S in W
If there is another unassigned activity in WS then

Push WS in WStack
Else

If VERIFYREQUIREMENTS(WS, ReqMap[WS])
Add WS to ResultSet

EndIf
EndIf

EndFor
EndWhile
Return ResultSet	

Table 6.8: Workflow Instantiation Algorithm

The activities of the workflows are instantiated progressively, by

investigating each workflow W in a depth-first manner.

The algorithm takes the first unassigned activity A in W (in the control

flow order) and queries the service discovery based on the structural

requirements in the workflow information (e.g. the WSDL of A) and the

security requirements.

The list of candidate service resulting from the discovery process is

then used to instantiate A in W. In particular in the prototype we arbitrarily

Security Aware Service Composition

157 / 253

limited the instantiation by taking just the first N (with N=10) services

based on the structural distance, to avoid the generation of too many

workflows. Each service is used to instantiate a new workflow WS. This

also means that if no service can be found to instantiate A, no more

processing will happen on W (the workflow is discarded).

If WS is not fully instantiated, then it is added to the working stack;

otherwise the instantiation process for that workflow is ended, so if the

security requirements are verified the workflow can be added to the list

returned as result of the process.

6.4.5.2 Example

After the execution of the algorithm for discovery of secure workflows,

we obtained two workflows that can be used to replace GetStockDetails.

The requirements for the activities in the first workflow are integrity of the

data, and for the second workflow data authentication is required. The

instantiation algorithm takes into account a workflow at a time and tries to

fully instantiate it by using the structural and security requirements for each

activity.

Starting from the first workflow then, the algorithm tries to instantiate

the GetISIN activity. The service discovery is performed, asking for services

that respect GetISIN interface and that have the requested security

requirement, i.e., integrity of data. The service discovery finds two

compatible services, Symbol2ISIN and ConvertStockIDs. Two new

workflows are then inserted in the stack in order to be taken in

consideration, one instantiating GetISIN with Symbol2ISIN and the other

with ConvertStockIDs. At this point the workflow containing Symbol2ISIN

is taken into consideration, in order to get the second activity instantiated as

well. If no services are found, the workflow is discarded, otherwise if the

Security Aware Service Composition

158 / 253

workflow is fully instantiated is added to the list of results and other

workflows are taken into consideration.

6.5 Summary

In this chapter we described the algorithms, which -through the usage

od secure composition patterns- determine and assess the security

requirements requested of the services that form a composition, in order to

guarantee a security requirement across the entire composition.

The first two algorithms (INFERREQUIREMENT and

VERIFYREQUIREMENT) are more generic, allowing the inference and

verification of security requirements. The next algorithm

(VALIDATEWORKFLOW) supports the design time check of validity of

security of an SBS workflow that is being designed. The last two algorithms

(GETSECUREWORKFLOWS and WORKFLOWINSTANTIATION) encode a secure

service composition process, available both at design and runtime, that

consists of discover alternative workflows that can satisfy functional and

security requirements followed by instantiation of the workflows with

services that respect the inferred security requirements.

Security Aware Service Composition

159 / 253

Chapter 7

Implementation

7.1 Overview

Based on the approach described in the previous chapter, two tools

have been implemented to support security aware composition respectively

at runtime, during service discovery, and at design-time, while devising a

SBS. These tools are called Security Aware Runtime Discovery Tool and

Security aware BPEL Design Tool.

The discovery tool is based on an existing tool, RSDT (see Section

4.3); where most of the new features are performed by a new component

called Composition Manager. This component is responsible for the

creation of secure service compositions to meet queries in cases where the

latter do not match with any single service. Furthermore, the component

generates a virtual service pointer that can be used by SBSs to invoke the

composition through the tool.

The Security aware BPEL design tool, instead, is an extension of the

BPEL Designer plugin for Eclipse [25] that allows the security validation

and adaptation of partner services (or service compositions) for a SBS being

built as a service orchestration.

Security Aware Service Composition

160 / 253

7.2 Security Aware Runtime Discovery Tool

The prototype described in this section is based on RSDT, the

discovery tool described in Section 4.3, but extended to consider also

security conditions, certificates and service composition.

The Security Aware Runtime Discovery Tool allows runtime service

discovery based also on security requirements and security descriptors,

describing which security properties hold for a specific service. The current

implementation uses the concept of certificates as security descriptors,

however the approach is compatible with any security descriptor.

Furthermore the tool allows the generation of service compositions that may

be used as alternative services and that respect the functional and security

requirements that are requested. In particular service composition is

triggered only after an attempt to find a single service that satisfies a query

has failed. This failure may be because there is no service that satisfies the

interface, behavioural, quality or security conditions expressed by the query

and does not necessarily relate only to security or non-security conditions

about of the required service.

7.2.1 Query language

The queries for this discovery tool are expressed in A-SerDiQueL, an

extension of SerDiQueL (see Section 4.4.3) that we have developed to

support the specification of security conditions as part of service discovery

queries.

The specification of security conditions in A-SerDiQueL assumes that

the security properties of services are described in certificates, as advocated

by the ASSERT4SOA project [5][80]. In addition to specifying the relevant

security property, certificates may include descriptions of the evidence

justifying the certification of the property, the authority that has issued the

Security Aware Service Composition

161 / 253

certificate, the validity period of the certificate and any other information

related with the asserted property or the certification process.

Certificates are represented in XML according to a specific XML

schema, and are published in service registries as service descriptions

(facets). An example of an A-SerDiQueL condition regarding the integrity

of an input parameter named xyz is shown in Table 7.1.

<AssertQuery	 name="A1"	 type="HARD"	 assertScope="SINGLE">	
	 	 <LogicalExpression><Condition	 relation="EQUAL-‐TO">	
	 	 	 	 	 	 	 	 <Operand1>	
	 	 	 	 	 	 	 	 	 	 	 <AssertOperand	 facetType="Assert">	
	 	 	 	 	 	 	 	 	 //ASSERTCore/ToC/Assets/Asset[@Type='InputParameter']/Name	
	 	 	 	 	 	 	 	 	 	 	 </AssertOperand>	
	 	 	 	 	 	 	 	 </Operand1>	
	 	 	 	 	 	 	 	 <Operand2>	
	 	 	 	 	 	 	 	 	 	 	 <Function	 name="WSDLLookup"><Arguments>	
	 	 	 	 	 	 	 	 	 	 	 	 	 <Argument	 WSDLElementType="input-‐message"	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WSDLElementName="xyz"	 />	
	 	 	 	 	 	 	 	 	 	 	 </Arguments></Function>	
	 	 	 	 	 	 	 	 </Operand2>	
	 	 	 	 	 </Condition>	
	 	 	 	 	 <LogicalOperator>AND</LogicalOperator>	
	 	 	 	 	 <LogicalExpression><Condition	 relation="EQUAL-‐TO">	
	 	 	 	 	 	 	 	 	 	 <Operand1>	
	 	 	 	 	 	 	 	 	 	 	 	 <AssertOperand	 facetType="Assert">	
	 	 	 	 	 	 	 //ASSERTCore/SecurityProperty/@PropertyAbstractCategory	
	 	 	 	 	 	 	 	 	 	 	 	 </AssertOperand>	
	 	 	 	 	 	 	 	 	 	 </Operand1>	
	 	 	 	 	 	 	 	 	 	 <Operand2>	
	 	 	 	 	 	 	 	 	 	 	 	 <Constant	 type="STRING">Integrity	
	 	 	 	 	 	 	 	 	 	 	 	 </Constant>	
	 	 	 	 	 	 	 	 	 	 </Operand2>	
	 	 	 	 	 </Condition></LogicalExpression>	
	 	 </LogicalExpression>	
</AssertQuery>	

Table 7.1: Example of a security requirement expressed in A-SerDiQueL

Security Aware Service Composition

162 / 253

7.2.2 Architecture

As shown in Figure 7.1, the prototype can be called by sending a

discovery query to the Query Handler. This component parses the query and

sends the parsed objects to the Discovery Manager, to find services that

match the query. The Discovery Manager collects the list of candidate

services and sends it together with the query to the Matchmaking

Subsystem. This subsystem handles different slave matchmakers (MM) in

order to match the different parts of the query against the list of services. In

particular the structural interface of the service is matched by the Structural

MM, while security conditions are matched by Security matchmakers.

Figure 7.1: Architecture of the Security Aware Runtime Discovery Tool

Our tool supports the usage, through a plugin mechanism, of other

matchmakers developed by third-parties, as the Ontological and Certificate

Type Specific MMs developed in the context of the ASSERT4SOA project

[5][80]. The Ontological Security MM is able to do matching on certificate

attributes defined as concepts in an ontology, by comparing concepts,

Security Aware Runtime Discovery Tool

DM:
Discovery
Manager

S
ervice R

egistries
CM:

Composition
Manager

QH:
Query

Handler

MM:
Matchmaking
Subsystem

sendQuery

discover

compose

match

Security Aware Service Composition

163 / 253

instead of just comparing strings. The Certificate Type Specific MMs are

based on the certificate type, allowing matching and comparison on the

basis of characteristics of the type specific model used to certify the service

(e.g. matching of a model described in the query with the one described in

each security certificate).

If no services are found, the Discovery Manager calls the Composition

Manager to try building a service composition that matches the query. The

Composition Manager finds abstract workflows that match the searched

functionality and potentially can satisfy the security requirements

(following the GETSECUREWORKFLOWS algorithm in Section 6.4.4) and

instantiates them with services that respect the inferred security

requirements (using the WORKFLOWINSTANTIATION algorithm in Section

6.4.5). A BPEL process is then generated from each instantiated workflow,

in order to make possible to execute the composition as a single service.

Finally, the references to the discovered services are embedded in a

response and sent by the Query Handler to the client.

7.2.3 Detailed Design of the Composition Manager

The purpose of the Composition Manager is to generate service

compositions providing the queried functionality and security requirements

on the overall, by discovering single services through the Discovery

Manager.

7.2.3.1 Package compositionmanager

In this section we are going to describe the compositionmanager

package through the usage of a Class Diagram and a table summarizing the

purpose of each package and class.

Security Aware Service Composition

164 / 253

Figure 7.2: Class Diagram of the package compositionmanager

 Package/Class Description

composition

manager

Provides the main functionalities of the composition

manager

Composition

Manager

The entry point of the component. Produces a list of

service compositions from a discovery query, by

implementing WORKFLOWINSTANTIATION algorithm

in Section 6.4.5.

Workflow

Repository

Retrieves a stack of abstract workflows from the

repository, based on the structural and security part of

the query, following the GETSECUREWORKFLOWS

algorithm in Section 6.4.4.

QueryBuilder Generates the service discovery queries used to

instantiate the activities within a workflow.

Table 7.2: Description of the classes in the package compositionmanager

Security Aware Service Composition

165 / 253

7.2.3.2 Package compositionmanager.secrule

In this section we are going to describe the compositionmanager	

.secrule package through the usage of a Class Diagram and a table

summarizing the purpose of each package and class.

Figure 7.3: Class Diagram of the package compositionmanager.secrule

Security Aware Service Composition

166 / 253

Package/Class Description

composition

manager

.secrule

Provides the interconnection with the rule-based

system by converting the query and the requirements

and managing the Knowledge Base

RuleReasoner Manages the Knowledge Base: it inserts the facts,

fires the rules and retrieves the resulting facts.

Through the rules it implements the

INFERREQUIREMENT and VERIFYREQUIREMENT

algorithms described in Section 6.4.1 and 6.4.2

RequirementParser Converts the security conditions of the query into

Requirement and vice versa.

SecPlan Representation for the rule-based system of a

collection of Requirement that compose a security

plan.

Requirement Representation for the rule-based system of the

requirement of a security property upon an activity or

a pattern of the workflow.

SecProperty Security property description that allows a set of

attributes to describe the specific instance of a

property.

Table 7.3: Description of the classes in the package compositionmanager

.secrule

Security Aware Service Composition

167 / 253

7.2.3.3 Package compositionmanager.workflow

In this section we are going to describe the compositionmanager	

.workflow package through the usage of a Class Diagram and a table

summarizing the purpose of each package and class.

 Figure 7.4: Class Diagram of the package compositionmanager .workflow

Security Aware Service Composition

168 / 253

Package/Class Description

composition

manager

.workflow

Contains the data structures representing the workflows:

orchestration patterns and activities.

Workflow Represents a workflow and contains the WSDL

representation of the operation that it provides and a

pattern that is the root of the workflow.

Placeholder Represents a placeholder inside an orchestration pattern

that can be fit by a service activity or another pattern.

OrchestrationP. Represents a control flow pattern.

Sequential Control flow pattern representing the sequential

invocation of two placeholders.

Parallel Control flow pattern representing the parallel invocation

of two or more placeholders.

Choice Control flow pattern representing the choice of which path

of execution to take base on a condition (e.g. if-then-else).

Unassigned

Activity

Represents an unassigned activity. Contains a WSDL

representing the structure required from a service to

instantiate it.

PartnerLink

Activity

Represents an activity that has already been instantiated

with a partner service. Contains also a list of the security

properties guaranteed by the service through certificates.

Parameters Contains the information about input and output

parameters of the placeholder.

Table 7.4: Description of the classes in the package compositionmanager

.workflow

Security Aware Service Composition

169 / 253

7.2.3.4 Package compositionmanager.bpel

In this section we are going to describe the compositionmanager	

.bpel package through the usage of a Class Diagram and a table

summarizing the purpose of each package and class.

Figure 7.5: Class Diagram of the package compositionmanager.bpel

Security Aware Service Composition

170 / 253

Package/Class Description

composition

manager

.bpel

Provides the means to handle BPEL, WSDL and

deployment descriptors for the generated

compositions, in order to allow publishing the

compositions and execute them straight away.

BPELWriter Given an instantiated workflow (i.e., a composition),

it produces a BPEL referring to the correct partner

links.

WSDLWriter Produces the WSDL of the composition, importing

the WSDLs of the partner services.

Deploy Representation of the deployment descriptor file used

by Apache-ODE to run a BPEL file.

ServiceInstantiator Makes the correct edits to the BPEL and WSDL in

order to substitute the placeholder with the service

that instantiate the composition.

Table 7.5: Description of the classes in the package

compositionmanager.bpel

7.2.4 Example

The example used to demonstrate the approach is based on the Stock

Brokerage scenario described in Section 6.2 and focuses on a Stock Service

providing the current value of the given stock. In particular the Stock

Service provides an operation called Get Stock Value Details. This

operation takes as input the stock symbol of a given stock and returns the

current stock value in USD dollars.

The query that requires the composition expresses a security

requirement regarding integrity of data on the input and the output of the

Security Aware Service Composition

171 / 253

activity realised by the service in the scenario. The service discovery query

Q to replace the service providing the described operation, is shown in

Table 7.6.

<?xml	 version="1.0"	 encoding="utf-‐8"?>	
<tns:ServiceQuery	 xmlns:...	 name="QueryStockQuote"	
	 	 	 queryID="UUID:550e8400-‐e29b-‐41d4-‐a716-‐446655440060">	
	 	 <par:Parameters>	
	 	 	 	 <par:Mode	 value="PULL"	 />	
	 	 	 	 <par:Threshold	 value="0.1"	 />	
	 	 	 	 <par:Composition	 value="true"	 />	
	 	 </par:Parameters>	
	
	 	 <!-‐-‐	 Structural	 sub-‐query	 -‐-‐>	
	 	 <tns:StructuralQuery>	
	 	 	 	 <wsdl:definitions	 xmlns:...>	
	 	 	 	 	 	 	 <wsdl:types>	
	 	 	 	 	 	 	 	 	 <xsd:schema	 elementFormDefault="qualified"	
	 	 	 	 	 	 	 	 	 	 	 targetNamespace="http://www.webserviceX.NET/">	
	 	 	 	 	 	 	 	 	 	 	 <xsd:element	 name="Quote">	
	 	 	 	 	 	 	 	 	 	 	 	 	 <xsd:complexType><xsd:sequence>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <xsd:element	 minOccurs="0"	 maxOccurs="unbounded"	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 name="symbol"	 type="xsd:string"	 />	
	 	 	 	 	 	 	 	 	 	 	 	 	 </xsd:sequence></xsd:complexType>	
	 	 	 	 	 	 	 	 	 	 	 </xsd:element>	
	 	 	 	 	 	 	 	 	 	 	 <xsd:element	 name="QuoteResponse">	
	 	 	 	 	 	 	 	 	 	 	 	 	 <xsd:complexType><xsd:sequence>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <xsd:element	 minOccurs="0"	 maxOccurs="unbounded"	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 name="USDValue"	 type="xsd:string"	 />	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 </xsd:sequence></xsd:complexType>	
	 	 	 	 	 	 	 	 	 	 	 </xsd:element>	
	 	 	 	 	 	 	 	 	 </xsd:schema>	
	 	 	 	 	 	 	 </wsdl:types>	
	 	 	 	 	 	 	 <wsdl:message	 name="GetQuoteSoapIn">	
	 	 	 	 	 	 	 	 	 	 <wsdl:part	 name="parameters"	 element="tns:Quote"	 />	
	 	 	 	 	 	 	 </wsdl:message>	
	 	 	 	 	 	 	 <wsdl:message	 name="GetQuoteSoapOut">	
	 	 	 	 	 	 	 	 	 	 <wsdl:part	 name="parameters"	 element="tns:QuoteResponse"	 />	
	 	 	 	 	 	 	 </wsdl:message>	

Security Aware Service Composition

172 / 253

	 	 	 	 	 	 	 <wsdl:portType	 name="StockQuoteSoap">	
	 	 	 	 	 	 	 	 	 	 <wsdl:operation	 name="GetUSDStockQuote">	
	 	 	 	 	 	 	 	 	 	 	 	 	 <wsdl:input	 message="tns:GetQuoteSoapIn"	 />	
	 	 	 	 	 	 	 	 	 	 	 	 	 <wsdl:output	 message="tns:GetQuoteSoapOut"	 />	
	 	 	 	 	 	 	 	 	 	 </wsdl:operation>	
	 	 	 	 	 	 	 </wsdl:portType>	
	 	 	 	 </wsdl:definitions>	
	 	 </tns:StructuralQuery>	
	
	 	 <AssertQuery	 name="A1"	 type="HARD"	 assertScope="SINGLE">	
	 	 	 	 <LogicalExpression>	
	 	 	 	 	 	 	 <Condition	 relation="EQUAL-‐TO">	
	 	 	 	 	 	 	 	 	 	 <Operand1>	
	 	 	 	 	 	 	 	 	 	 	 	 	 <AssertOperand	 facetType="Assert">	
	 	 	 	 	 	 	 	 	 	 	 //ASSERTCore/ToC/Assets/Asset[@Type='InputParameter']/Name	
	 	 	 	 	 	 	 	 	 	 	 	 	 </AssertOperand>	
	 	 	 	 	 	 	 	 	 	 </Operand1>	
	 	 	 	 	 	 	 	 	 	 <Operand2>	
	 	 	 	 	 	 	 	 	 	 	 	 	 <Function	 name="WSDLLookup"><Arguments>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <Argument	 WSDLElementType="input-‐message"	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WSDLElementName="symbol"	 />	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 </Arguments></Function>	
	 	 	 	 	 	 	 	 	 	 </Operand2>	
	 	 	 	 	 	 	 </Condition>	
	 	 	 	 	 	 	 <LogicalOperator>AND</LogicalOperator>	
	 	 	 	 	 	 	 <LogicalExpression>	
	 	 	 	 	 	 	 	 	 <Condition	 relation="EQUAL-‐TO">	
	 	 	 	 	 	 	 	 	 	 	 <Operand1>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 <AssertOperand	 facetType="Assert">	
	 	 	 	 	 	 	 	 	 	 	 	 	 //ASSERTCore/SecurityProperty/@PropertyAbstractCategory	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 </AssertOperand>	
	 	 	 	 	 	 	 	 	 	 	 	 </Operand1>	
	 	 	 	 	 	 	 	 	 	 	 	 <Operand2>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 <Constant	 type="STRING">Integrity</Constant>	
	 	 	 	 	 	 	 	 	 	 	 	 </Operand2>	
	 	 	 	 	 	 	 	 	 	 </Condition>	
	 	 	 	 	 	 	 </LogicalExpression>	
	 	 	 	 </LogicalExpression>	
	 	 </AssertQuery>	
	

Security Aware Service Composition

173 / 253

	 	 <AssertQuery	 name="A2"	 type="HARD"	 assertScope="SINGLE">	
	 	 	 	 <LogicalExpression>	
	 	 	 	 	 	 	 <Condition	 relation="EQUALS-‐TO">	
	 	 	 	 	 	 	 	 	 	 <Operand1>	
	 	 	 	 	 	 	 	 	 	 	 	 	 <AssertOperand	 facetType="Assert">	
	 	 	 	 	 	 	 	 	 	 //ASSERTCore/ToC/Assets/Asset[@Type='OutputParameter']/Name	
	 	 	 	 	 	 	 	 	 	 	 	 	 </AssertOperand>	
	 	 	 	 	 	 	 	 	 	 </Operand1>	
	 	 	 	 	 	 	 	 	 	 <Operand2>	
	 	 	 	 	 	 	 	 	 	 	 	 	 <Function	 name="WSDLLookup"><Arguments>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <Argument	 WSDLElementType="input-‐message"	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WSDLElementName="USDValue"	 />	
	 	 	 	 	 	 	 	 	 	 	 	 	 </Arguments></Function>	
	 	 	 	 	 	 	 	 	 	 </Operand2>	
	 	 	 	 	 	 	 </Condition>	
	 	 	 	 	 	 	 <LogicalOperator>AND</LogicalOperator>	
	 	 	 	 	 	 	 <LogicalExpression>	
	 	 	 	 	 	 	 	 	 	 <Condition	 relation="EQUIVALENT-‐CLASS">	
	 	 	 	 	 	 	 	 	 	 	 	 <Operand1>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 <AssertOperand	 facetType="Assert">	
	 	 	 	 	 	 	 	 	 	 	 	 	 //ASSERTCore/SecurityProperty/@PropertyAbstractCategory	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 </AssertOperand>	
	 	 	 	 	 	 	 	 	 	 	 	 </Operand1>	
	 	 	 	 	 	 	 	 	 	 	 	 <Operand2>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 <Constant	 type="STRING">Integrity</Constant>	
	 	 	 	 	 	 	 	 	 	 	 	 </Operand2>	
	 	 	 	 	 	 	 	 	 	 </Condition>	
	 	 	 	 	 	 	 </LogicalExpression>	
	 	 	 	 </LogicalExpression>	
	 	 </AssertQuery>	
	
</tns:ServiceQuery>

Table 7.6: Stock Service replacement query

When Stock Service becomes unavailable, the discovery query Q is

executed. If the single service discovery doesn’t find any service, service

composition is performed.

Security Aware Service Composition

174 / 253

The first task is to discover workflows that can support the queried

security requirements; this is accomplished by the

GETSECUREWORKFLOWS(Q) algorithm. The algorithm discovers an abstract

workflow W matching the structural constraints, containing three activities

connected by two Cascade Patterns. The first activity of the outer sequence

is Get ISIN, which converts the symbol identifying the stock into the ISIN

(that is another identifier of the stock). The second activity is instantiated

with the other Cascade Pattern.

Workflow[orchestration=	
	 	 Sequential(
	 	 	 	 UnassignedActivity(GetISIN),	
	 	 	 	 Sequential(
	 	 	 	 	 	 	 	 UnassignedActivity(GetQuoteActivity),	
	 	 	 	 	 	 	 	 UnassignedActivity(GetConversion)))]	

Figure 7.6: Representation of the abstract workflow extracted from the tests

execution

The first activity of this inner sequence is Get Stock Quote, which

returns the current stock value in EUR given the stock ISIN. The second

activity is Get Currency Converter, which converts a given amount from

EUR to USD.

To infer the security requirements for each of the services that are

going to instantiate the activities, the INFERREQUIREMENT(RSP, W)

algorithm is called. In particular the requirement about the integrity is

propagated by the pattern described in Section 5.3.2.1, generating three new

requirements about integrity for the activity placeholders.

At first the rule representing said pattern is fired for the security

requirement on the external sequential orchestration. As a consequence of

this rule, the requirement of integrity on the inputs and outputs is inferred to

Security Aware Service Composition

175 / 253

both the activities in the pattern: Get ISIN and the other (internal) sequential

orchestration.

The new security requirement on the internal sequential orchestration

then fires again the rule above. This rule then splits the requirement into

two different integrity requirements: one for Get Stock Quote and one for

Currency Converter. Other abstract workflows with appropriate security

requirements are discovered in the same way and added to the stack in

output.

The workflows and their security requirements are then passed to the

WORKFLOWINSTANTIATION(WStack, ReqMap) algorithm in order to

discover appropriate partner services for the workflows. The first

unassigned activity of the first workflow in the stack has to be instantiated,

in this case Get ISIN of W. The query for Get ISIN is then built from the

structural specifications in the workflow and the security requirements

generated in the previous step, namely integrity for its inputs and outputs, as

shown in Table 7.7.

Security Aware Service Composition

176 / 253

1 	 	
2 	 	
3 	 	
4 	 	
5 	 	
6 	 	
7 	 	
8 	 	
9 	 	
10 	 	
11 	 	
12 	 	
13 	 	
14 	 	
15 	 	
16 	 	
17 	 	
18 	 	
19 	 	
20 	 	
21 	 	
22 	 	
23 	 	
24 	 	
25 	 	
26 	 	
27 	 	
28 	 	
29 	 	
30 	 	
31 	 	
32 	 	
33 	 	
34 	 	
35 	 	
36 	 	
37 	 	
38 	 	
39 	 	
40 	 	

<tns:ServiceQuery	 xmlns:...	 ...>	
	 	 <par:Parameters>	
	 	 	 	 <par:Mode	 value="PULL"	 />	
	 	 	 	 <par:Threshold	 value="0.1"	 />	
	 	 </par:Parameters>	
	
	 	 <tns:StructuralQuery>	
	 	 	 	 <wsdl:definitions	 xmlns:...>	
	 	 	 	 	 	 <wsdl:types>	
	 	 	 	 	 	 	 	 <xsd:schema	 elementFormDefault="qualified"	 ...>	
	 	 	 	 	 	 	 	 	 	 <xsd:element	 name="GetISINReq">	
	 	 	 	 	 	 	 	 	 	 	 	 <xsd:complexType><xsd:sequence>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <xsd:element	 minOccurs="0"	 maxOccurs="unbounded"	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 name="symbol"	 type="xsd:string"	 />	
	 	 	 	 	 	 	 	 	 	 	 	 </xsd:sequence></xsd:complexType>	
	 	 	 	 	 	 	 	 	 	 </xsd:element>	
	 	 	 	 	 	 	 	 	 	 <xsd:element	 name="GetISINRes">	
	 	 	 	 	 	 	 	 	 	 	 	 <xsd:complexType><xsd:sequence>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <xsd:element	 minOccurs="0"	 maxOccurs="unbounded"	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 name="ISIN"	 type="xsd:string"	 />	
	 	 	 	 	 	 	 	 	 	 	 	 </xsd:sequence></xsd:complexType>	
	 	 	 	 	 	 	 	 	 	 </xsd:element>	
	 	 	 	 	 	 	 	 </xsd:schema>	
	 	 	 	 	 	 </wsdl:types>	
	 	 	 	 	 	 <wsdl:message	 name="GetISINSoapIn">	
	 	 	 	 	 	 	 	 <wsdl:part	 name="parameters"	 element="tns:GetISINReq"	 />	
	 	 	 	 	 	 </wsdl:message>	
	 	 	 	 	 	 <wsdl:message	 name="GetISINSoapOut">	
	 	 	 	 	 	 	 	 <wsdl:part	 name="parameters"	 element="tns:GetISINRes"	 />	
	 	 	 	 	 	 </wsdl:message>	
	 	 	 	 	 	 <wsdl:portType	 name="StockISINSoap">	
	 	 	 	 	 	 	 	 <wsdl:operation	 name="GetISIN">	
	 	 	 	 	 	 	 	 	 	 <wsdl:input	 message="tns:GetISINSoapIn"	 />	
	 	 	 	 	 	 	 	 	 	 <wsdl:output	 message="tns:GetISINSoapOut"	 />	
	 	 	 	 	 	 	 	 </wsdl:operation>	
	 	 	 	 	 	 </wsdl:portType>	
	 	 	 	 </wsdl:definitions>	
	 	 </tns:StructuralQuery>	
	
	 	 <AssertQuery	 name="A1"	 type="HARD"	 assertScope="SINGLE">	

Security Aware Service Composition

177 / 253

41 	 	
42 	 	
43 	 	
44 	 	
45 	 	
46 	 	
47 	 	
48 	 	
49 	 	
50 	 	
51 	 	
52 	 	
53 	 	
54 	 	
55 	 	
56 	 	
57 	 	
58 	 	
59 	 	
60 	 	
61 	 	
62 	 	
63 	 	
64 	 	
65 	 	
66 	 	
67 	 	
68 	 	
69 	 	
70 	 	
71 	 	
72 	 	
73 	 	
74 	 	
75 	 	
76 	 	
77 	 	
78 	 	
79 	 	
80 	 	

	 	 	 	 <LogicalExpression>	
	 	 	 	 	 	 	 <Condition	 relation="EQUAL-‐TO">	
	 	 	 	 	 	 	 	 	 	 <Operand1>	
	 	 	 	 	 	 	 	 	 	 	 	 	 <AssertOperand	 facetType="Assert">	
	 	 	 	 	 	 //ASSERTCore/ToC/Assets/Asset[@Type='InputParameter']/Name	
	 	 	 	 	 	 	 	 	 	 	 	 	 </AssertOperand>	
	 	 	 	 	 	 	 	 	 	 </Operand1>	
	 	 	 	 	 	 	 	 	 	 <Operand2>	
	 	 	 	 	 	 	 	 	 	 	 	 	 <Function	 name="WSDLLookup"><Arguments>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <Argument	 WSDLElementType="input-‐message"	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WSDLElementName="symbol"	 />	
	 	 	 	 	 	 	 	 	 	 	 	 	 </Arguments></Function>	
	 	 	 	 	 	 	 	 	 	 </Operand2>	
	 	 	 	 	 	 	 </Condition>	
	 	 	 	 	 	 	 <LogicalOperator>AND</LogicalOperator>	
	 	 	 	 	 	 	 <LogicalExpression>	
	 	 	 	 	 	 	 	 	 	 <Condition	 relation="EQUAL-‐TO">	
	 	 	 	 	 	 	 	 	 	 	 	 <Operand1>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 <AssertOperand	 facetType="Assert">	
	 	 	 	 	 	 	 	 	 //ASSERTCore/SecurityProperty/@PropertyAbstractCategory	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 </AssertOperand>	
	 	 	 	 	 	 	 	 	 	 	 	 </Operand1>	
	 	 	 	 	 	 	 	 	 	 	 	 <Operand2>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 <Constant	 type="STRING">Integrity	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 </Constant>	
	 	 	 	 	 	 	 	 	 	 	 	 </Operand2>	
	 	 	 	 	 	 	 	 	 	 </Condition>	
	 	 	 	 	 	 	 </LogicalExpression>	
	 	 	 	 </LogicalExpression>	
	 	 </AssertQuery>	
	
	 	 <AssertQuery	 name="A2"	 type="HARD"	 assertScope="SINGLE">	
	 	 	 	 <LogicalExpression>	
	 	 	 	 	 	 	 <Condition	 relation="EQUALS-‐TO">	
	 	 	 	 	 	 	 	 	 	 <Operand1>	
	 	 	 	 	 	 	 	 	 	 	 	 	 <AssertOperand	 facetType="Assert">	
	 	 	 	 	 //ASSERTCore/ToC/Assets/Asset[@Type='OutputParameter']/Name	
	 	 	 	 	 	 	 	 	 	 	 	 	 </AssertOperand>	
	 	 	 	 	 	 	 	 	 	 </Operand1>	
	 	 	 	 	 	 	 	 	 	 <Operand2>	

Security Aware Service Composition

178 / 253

81 	 	
82 	 	
83 	 	
84 	 	
85 	 	
86 	 	
87 	 	
88 	 	
89 	 	
90 	 	
91 	 	
92 	 	
93 	 	
94 	 	
95 	 	
96 	 	
97 	 	
98 	 	
99 	 	
100 	 	
101 	 	
102 	 	
103 	 	
104 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 <Function	 name="WSDLLookup"><Arguments>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <Argument	 WSDLElementType="input-‐message"	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WSDLElementName="ISIN"	 />	
	 	 	 	 	 	 	 	 	 	 	 	 	 </Arguments></Function>	
	 	 	 	 	 	 	 	 	 	 </Operand2>	
	 	 	 	 	 	 	 </Condition>	
	 	 	 	 	 	 	 <LogicalOperator>AND</LogicalOperator>	
	 	 	 	 	 	 	 <LogicalExpression>	
	 	 	 	 	 	 	 	 	 	 <Condition	 relation="EQUIVALENT-‐CLASS">	
	 	 	 	 	 	 	 	 	 	 	 	 <Operand1>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 <AssertOperand	 facetType="Assert">	
	 	 	 	 	 	 	 	 	 //ASSERTCore/SecurityProperty/@PropertyAbstractCategory	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 </AssertOperand>	
	 	 	 	 	 	 	 	 	 	 	 	 </Operand1>	
	 	 	 	 	 	 	 	 	 	 	 	 <Operand2>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 <Constant	 type="STRING">Integrity	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 </Constant>	
	 	 	 	 	 	 	 	 	 	 	 	 </Operand2>	
	 	 	 	 	 	 	 	 	 	 </Condition>	
	 	 	 	 	 	 	 </LogicalExpression>	
	 	 	 	 </LogicalExpression>	
	 	 </AssertQuery>	
	
</tns:ServiceQuery>	

Table 7.7: Get ISIN discovery query

More specifically, lines 1 – 5 contain generic query parameters,

indicating the type of query execution (i.e., PULL), and the minimum

distance value for accepting results. Lines 7 – 38 show the structural

conditions defining the required interface of the service using a WSDL

specification.

Lines 40 – 70 contain a first set of security conditions (called A1) that

must be evaluated against a single certificate (as their scope is SINGLE) and

satisfied by all candidate services (as their type is HARD). The conditions

specify that the input Symbol must be in the list of assets on which the

Security Aware Service Composition

179 / 253

certification of the security property is applied (lines 41 – 54) and that

certified security property provided by the service is called Integrity (lines

56 – 68).

A second set of security conditions is shown in lines 72 – 102 and can

be evaluated against different certificates then the first one. In particular

even these conditions must be evaluated against a single certificate (as their

scope is SINGLE) and satisfied by all candidate services (as their type is

HARD). The conditions specify that the output ISIN must be in the list of

assets on which the certification of the security property is applied (lines 73

– 86) and that the certified security property provided by the service is

called Integrity (lines 88 – 100).

The service discovery executes the query to find in the registry a set of

services that match the structural and security conditions. Each service is

used to instantiate a new workflow copy of W.

Workflow[orchestration=	
	 	 Sequential(
	 	 	 	 PartnerLinkActivity(http://example.com/StockISIN.wsdl),	
	 	 	 	 Sequential(
	 	 	 	 	 	 	 	 UnassignedActivity(GetQuoteActivity),	
	 	 	 	 	 	 	 	 UnassignedActivity(GetConversion)))]	

Figure 7.7: Representation of the abstract workflow after the first

instantiation

The activity is now bounded to a partner service, represented by its

WSDL address in Figure 7.7, and it contains the security properties

extracted from the certificates associated to the service. All the instantiated

workflows are added to the stack, as they still need partner services for the

other activity placeholders.

Security Aware Service Composition

180 / 253

Similarly a query for the second activity is created and executed, and

the workflow gets instantiated again:

Workflow[orchestration=	
	 	 Sequential(
	 	 	 	 PartnerLinkActivity(http://example.com/StockISIN.wsdl),	
	 	 	 	 Sequential(
	 	 	 	 	 	 	 	 PartnerLinkActivity(http://example.com/QuoteFromISIN.wsdl),	
	 	 	 	 	 	 	 	 UnassignedActivity(GetConversion)))]	

Figure 7.8: Representation of the abstract workflow after the second

instantiation

And finally the third one, completing the workflow:

Workflow[orchestration=	
	 	 Sequential(
	 	 	 	 PartnerLinkActivity(http://example.com/StockISIN.wsdl),	
	 	 	 	 Sequential(
	 	 	 	 	 	 	 	 PartnerLinkActivity(http://example.com/QuoteFromISIN.wsdl),	
	 	 	 	 	 	 	 	 PartnerLinkActivity(http://example.com/CurrConvert.wsdl)))]	

Figure 7.9: Representation of the final workflow

Figure 7.10 shows the final results of the discovery from a GUI. On the

left side is possible to select a partner service to replace, after selecting one,

the discovery query for the service is shown on the bottom left part of the

window. After executing the query, is possible to see the results on the right

side. The top part shows all the alternatives that were found, whilst the

middle part shows the workflow of the selected composition.

Security Aware Service Composition

181 / 253

Figure 7.10: Execution result of the composition example

7.3 Security Aware BPEL Design Tool

The aim of the Security Aware BPEL Design Tool is to facilitate the

tasks of an SBS Designer by allowing the specification of security

requirements during the designing of a BPEL process. The information

about security requirements provide the means to timely validate or

substitute services, so that the services are appropriate for the application

being developed.

The specification of security requirements is not possible in the

common BPEL design tools, but it is rather important part of the model of a

process. The Security Aware BPEL Design Tool allows defining security

requirements to an invoke activity or to the control flow constructs that

contain other activities (e.g. scope, sequence, flow, pick, if-then-else, …).

After such definition, the SBS Designer can ask the system to validate the

security requirements, i.e., check that the service operations associated with

Security Aware Service Composition

182 / 253

the activities subject to a security requirement guarantee the requirements,

without having to investigate this with external tools. If a service doesn’t

guarantee the requirements, the SBS Designer can use the tool to explore

and select an alternative service that complies with the requirements or, if

no atomic service is found, an alternative workflow that can be substituted

with the activity to satisfy the requirements. After selection of an alternative

service or service composition, the BPEL process is automatically adapted

in order to use the new service or to incorporate the composition workflow.

This addition allows the SBS Designer to fix BPEL processes that do not

respect security requirements without having to (i) manually check the

satisfaction of the requirements, (ii) write a query to search for alternative

services that respect the security requirements, (iii) submit the query to the

discovery engine and (iv) change manually the BPEL process with a

suitable service suggested by the discovery engine.

7.3.1 Architecture

The overall architecture of the Security Aware BPEL Design Tool is

shown in Figure 7.11. As shown in the figure, the tool is based on the BPEL

Designer plugin of Eclipse and on the Security Aware Runtime Discovery

Tool that is used as plugin for the Eclipse IDE platform. The new

component we introduced is a Security Extension package for the BPEL

Designer, were all the new functionalities are deployed.

Security Aware Service Composition

183 / 253

Figure 7.11: Architecture of the Security Aware BPEL Design Tool

BPEL Designer is an Eclipse plugin that offers comprehensive support

for the definition, authoring, editing, deploying, testing and debugging of

WS-BPEL 2.0 processes through Eclipse IDE. In the development of the

Security Aware BPEL Design Tool, we have extended the plugin with the

Security Extension component that: (i) allows the specification of security

requirements for the invoke and control flow activities in a BPEL process,

(ii) introduces a new button to request the validation of the security

requirements, (iii) shows the results of the validation and eventual

alternative services or service compositions that satisfy the requirements,

and (iv) allows the adaptation of the BPEL process by replacing an existing

BPEL Designer

Security Aware Runtime Discovery Tool

DM:
Discovery
Manager

S
ervice R

egistries

CM:
Composition

Manager

QH:
Query

Handler

MM:
Matchmaking
Subsystem

sendQuery

discover

compose

match

Eclipse IDE

Security
Extension

checkRequirements

Eclipse Plugin API

Security Aware Service Composition

184 / 253

service linked with an invoke activity with an alternative service or

replacing the invoke activity altogether with a service composition. In doing

(iv), we also guarantee that under certain conditions the modified BPEL

process can be executed.

7.3.2 Detailed Design of the Security Extension

The purpose of the Security Extension is to introduce the definition,

validation and adaptation based on security requirements to the BPEL

Designer plugin of Eclipse. This component is also the intermediary to the

Security Aware Runtime Discovery Tool at design time.

7.3.2.1 Package securityextension

In this section we are going to describe the securityextension

package through the usage of a Class Diagram and a table summarizing the

purpose of each package and class.

Figure 7.12: Class Diagram of the package securityextension

Security Aware Service Composition

185 / 253

Package/Class Description

securityextension Provides the main functionalities of the security

extension of the BPEL Designer

ValidateActivity Checks the validity of the security requirements by

contacting the appropriate functions in the

Composition Manager and the Query Handler. It

implements the VALIDATEWORKFLOW algorithm

described in Section 6.4.3.

AdaptActivity Adapts the BPEL process by replacing a service with

another one in an invoke activity or by replacing the

invoke activity altogether with the workflow of a

service composition.

utils.XMLUtils Utility class to handle XML documents.

Table 7.8: Description of the classes in the package securityextension

Security Aware Service Composition

186 / 253

7.3.2.2 Package securityextension.securitymodel

In this section we are going to describe the securityextension	

.securitymodel package through the usage of a Class Diagram and a

table summarizing the purpose of each package and class.

Figure 7.13: Class Diagram of the package securityextension .securitymodel

Security Aware Service Composition

187 / 253

 Package/Class Description

securityextension

.securitymodel

Provides the representation and the utilities to handle

the Security Requirements linked with a BPEL

process.

SecRequirement Representation of a security requirement for an

activity of a BPEL process. It allows the specification

of an identifier, an activity that is subjected to the

requirement, a security property and other details

about the certificate and the assets for which the

security property should hold.

Assets Representation of the assets for which a property

should hold. Each asset has a type and a name.

SecRequirements

Handler

Provides the management facilities for the security

requirements of a BPEL process, allowing to load and

save them into files and to access to them.

SecRequirements

Reader

Parses the XML file representation of a security

requirement to the object representation for the

SecRequirementsHandler.

SecRequirements

Writer

Writes the XML file representation of a security

requirement from the object representation for the

SecRequirementsHandler.

Table 7.9: Description of the classes in the package securityextension

.securitymodel

Security Aware Service Composition

188 / 253

7.3.2.3 Package securityextension.gui

In this section we are going to describe the securityextension	

.gui package through the usage of a Class Diagram and a table

summarizing the purpose of each package and class.

Figure 7.14: Class Diagram of the package securityextension.gui

Security Aware Service Composition

189 / 253

Package/Class Description

securityextension

.gui

Provides the graphical user interface additions of the

Security Extension.

ValidationAnd

AdaptationView

Defines a new View for the Eclipse Workbench,

comprising a tab where the information for the

Validation and Adaptation are shown.

ValidationAnd

AdaptationPanel

Defines the interface of the Validation and Adaptation

panel. It shows the information about the queries

executed for the validation process, the result of the

validation and a list of alternative services or service

compositions that satisfy the requirements.

XmlTextPane Formats the XML of the queries in order to highlight

the different parts of the XML encoding.

Validation

ProgressBar

Progress bar that is shown during the validation

process.

Table 7.10: Description of the classes in the package securityextension .gui

7.3.2.4 Other Packages

The Security Extension introduces also several classes that

conceptually should be part of the existing packages of the BPEL Designer.

In particular all the classes should be part of the packages children of the

org.eclipse.bpel.ui package. In order to isolate our additions from

the original code of the BPEL Designer, these classes have been placed in

the securityextension package, but retaining the part of the package

name that should have been placed after org.eclipse.bpel.ui.

Security Aware Service Composition

190 / 253

Figure 7.15: Class Diagram of other packages part of the extension

Security Aware Service Composition

191 / 253

Class Description

actions.editpart.

Validate

SecRequirements

Defines a new button and the action to perform when

pressed. The button allows requesting the validation

of security requirements.

properties.

SecRequirements

Section

Defines a new property section for a given BPEL

activity where it is possible to specify the security

requirements for the activity.

details.providers.* Retrieve the information to populate the combo-boxes

in the SecRequirementsSection.

Table 7.11: Description of the classes in the other packages part of the

extension

7.3.3 Example

The specification of the security requirements for an activity of the

BPEL process is performed under the Properties view of the activity. To

open the Properties view, right click on the activity that you wish to check

and select “Show in Properties” option in the pop up menu. Then in the

Properties tab select “Security Specification” and use it to specify the

requirements.

As shown in Figure 7.16, in the security specification tab the designer

can select different parameters to define a security requirement. More

specifically, the designer needs to specify an ID for the security

requirement, and select the category of the security property. The selection

of the security property can be made from a list of possible categories.

Optionally, the designer may also select the certificate type and the asset

name and type that should guarantee the selected security property, where

the assets can be selected from the input or output parameters. After

Security Aware Service Composition

192 / 253

completion, pushing the “Add” button adds the security requirement to the

list; in this way it is possible to define multiple security requirements for the

same activity (to navigate through them, use the “Security Properties”

dropdown menu).

Figure 7.16: Security Specification for the GetCurrentStockDetails activity

In the figure a security requirement is specified for the activity

GetCurrentStockDetails of the Stock Brokerage scenario (described in

Section 6.2), requiring that the Integrity of the input symbol is preserved.

Once the security requirement is specified, the designer can select the

“Verify Security Properties” option from the activity’s contextual menu in

order to check that the services used as a partner links for the activity

Security Aware Service Composition

193 / 253

satisfy the security requirements. This is obtained by right clicking on the

activity to obtain the menu shown in Figure 7.17, and by clicking on the

appropriate option.

Figure 7.17: The activity contextual menu showing the “Verify Security

Property” option

After selecting “Verify Security Properties”, the tool opens the

validation and adaptation view and a progress bar notifies that the validation

process is ongoing. Once the validation is done, the results are displayed in

the new view, as shown in Figure 7.18.

In particular, the left side of the view shows the query that was used to

validate the security requirements. Sub tabs in this part allow the selection

of different parts of this query, namely the structural, behavioural, QoS and

security related query part. On the right the validation result is shown

(under Security Property Verification Status) and a list of other services or

service compositions that satisfy the same requirements, and could be used

as a replacement.

In our example the partner service used for the GetCurrentStockDetails

activity does not satisfy the requirements: this is shown by the display of

the status message “Service does not satisfy security requirements” in red.

Note that if the requirements were satisfied the status would be displayed by

a green message saying: “Service satisfies security requirements”.

Security Aware Service Composition

194 / 253

Furthermore, in this case, no single service satisfying the security

requirements is found. Hence, the tool identified a service composition that

could substitute the activity and guarantee the security requirements. By

selecting the composition it is possible to investigate the workflow of the

composition, as shown in the figure (see the panel Composition Details in

the bottom right part of the figure). The discovered composition has been

based on the sequential orchestration and is explained in the example

section of the Security Aware Runtime Discovery Tool.

Figure 7.18: The Validation and Adaptation view

If the security requirements are not satisfied by the service specified as

a partner link for an invoke activity, it is possible to select a replacement

service or service composition and click the “Replace By…” button. This

will cause the adaptation of the BPEL process with the selected service or

service composition.

Security Aware Service Composition

195 / 253

Figure 7.19: BPEL process after the adaptation of a service composition in

place of the GetCurrentStockDetails activity

Security Aware Service Composition

196 / 253

In this example, when the designer selects the alternative composition

and selects the “Replace By…” button, the GetCurrentStockDetails activity

is replaced with the activities of the composition, within a scope, as shown

in Figure 7.19 (the part highlighted in red is the composition that replaced

the GetCurrentStockDetails activity).

7.4 Summary

In this chapter we described two tools that have been implemented and

that make usage of the pattern-based Security Aware Service Composition

approach described in Chapters 5 and 6.

The first tool, Security Aware Runtime Discovery Tool, can be used to

find services based on discovery queries that can include security

requirements. The innovative feature of the tool is the support to generation

and discovery of service compositions that respect the security

requirements. The service compositions are automatically deployed in a

server, ready to be executed, allowing seamless runtime adaptation of a SBS

with service compositions.

The second tool is the Security Aware BPEL Design Tool. This tool is

an extension of the BPEL Designer plugin for Eclipse that allows the

introduction of security requirements and the security validation and

adaptation for a SBS being built as a service orchestration. The graphical

user interface offers seamless integration of the validation algorithm, the

discovery platform and the service adaptation. The latter is performed on

user request in order to replace a service that does not respect security

requirements with a service or a service composition that does so. In

particular the service orchestration is automatically updated in order to

include new activities that call the new partner services.

Security Aware Service Composition

197 / 253

The two tools described allow taking advantage of the Security Aware

Service Composition approach in the different stages of SBSs lifecycle.

Security Aware Service Composition

198 / 253

Chapter 8

Evaluation

8.1 Overview

This chapter describes the performance study performed on the

discovery tool. The approach adopted for the test session is described in

Section 8.2. Results are reported and analysed in Section 8.2.3. Finally,

Section 8.4 summarizes the results and considerations on the evaluation and

application of the framework.

8.2 Evaluation Setup

8.2.1 Scenario

The performance study has been based on services and security

requirements part of the Stock Brokerage scenario described in Section 6.2.

The scenario focuses on the discovery and integration of services in a SBS

that automates the stock purchase using some stock investor preferences.

The scenario devises a set of services and security requirements that are

needed by the SBS; we give here, as an example, a short description of the

service providing Get Current Stock Detail. Get Current Stock Details

provides information about the current value of specific stocks. It takes as

input the company code in string format (symbol) and returns the current

Security Aware Service Composition

199 / 253

dollar value of the stock in string format (USDvalue). The SBS introduces

the following security requirements for Get Current Stock Details:

• Confidentiality of Data

• Integrity of Data

• Availability

8.2.1.1 Service Registry

Several incarnations of all the services in the scenario have been added

to a registry. The registry has been augmented also with some additional

services not part of the scenario to simulate a real world scenario, where the

services that one might be interested in have to be discovered from a

broader set of services. The WSDLs of the additional services come from

the QWS Dataset [2][3], i.e., a collection of real web services available on

the public web that is offered as a basis for tests and researches.

The registry has also been populated with security certificates and each

service has been associated with a variable number of certificates. In

particular an initial set of security certificates have been composed

manually to fulfil the security requirements introduced above. Additional

security certificates have been randomly generated through the support of

an automated tool.

In more details, the registry contains 1200 service WSDLs, 44 of them

are part of the stock brokerage scenario, while the others come from the

QWS dataset. The registry has a very disparate composition, as in a real

world scenario, with services offering an average of five operations (with a

range from 1 to 264 operations per service) and transmitting input and

output messages with an average of five data types per interaction (with a

Security Aware Service Composition

200 / 253

range from 0 to 111 data types per operation). Such a disparate composition

is important for this kind of evaluation, as the performances of the structural

matching are strictly linked with the complexity of the operation and data

graphs of the WSDLs in the registry.

On the security side, the registry contains 3663 security certificates;

meaning that each service has as an average three security certificates. In

particular the registry contains services associated with a minimum of one

and a maximum of twelve security certificates.

A total of 91 security certificates have been manually generated to

cover other possible security requirements for the stock brokerage scenario.

The produced security certificates cover different security properties such as

Confidentiality, Authenticity, Integrity, Privacy, Availability and Non-

Repudiation, with each property being in at least four different security

certificates.

Finally, to properly support the composition scenario, the repository

containing abstract workflows (i.e., service coordination processes that

realize known business processes through the definition of fixed interfaces

for potential participating services, as described in Section 6.2) has been

populated with 20 business processes.

8.2.1.2 Service Discovery Queries

A-SerDiQueL queries are used, for the sake of this study, as an

instrument to investigate the behaviour of the discovery tool. A set of three

queries has been formulated to test the different rules in the system used by

the composition process.

The queries differ mainly for the security conditions that affect the

matching of services based on their security certificates. The structural

Security Aware Service Composition

201 / 253

conditions in the queries instead, i.e., the ones that affect matching based on

the service interface (WSDL), target all the same interface (i.e., one that

provides Get Current Stock Details), as structural matching is a basic aspect

of service discovery that was not part of the investigation (the interested

reader can find some performance considerations on the traditional service

discovery in [117]). The security conditions for the queries are:

Q1. Security Property: Integrity AND

Assets contains: symbol (input) AND

Assets contains: USDvalue (output)

Q2. Security Property: Perfect Security Property

Q3. Security Property: Availability AND

Maximum execution time ≤ 1000 millisec

Take for example query Q1. The query requires a specific Security

Property (i.e., Integrity). The other conditions that must hold to include a

service in the results is that the certificate matched by the previous

condition of this query has the symbol input element and the USDvalue

output element (as specified in the service WSDL) specified in the Target of

Certification’s Assets.

8.2.2 Configuration

8.2.2.1 Prototype

The main enhancement in the prototype used for the actual testing is

the introduction of a caching mechanism in the Discovery Manager. This

feature is very important for the performances of a service discovery

system.

Security Aware Service Composition

202 / 253

The caching mechanism is used to maintain in memory the set of

WSDL and certificate objects representing the services that are in the

registry. Parsing the XML artefacts to generate this kind of object is a very

time-consuming activity, so caching them through an offline initialisation

allows achieving better online performances. The caching mechanism relies

on the fact that whenever there is a change in the registry (e.g. a service is

no longer supported, a security certificate is revoked, and so on), either (i)

the registry sends notifications of the change in order to maintain the cache

up to date, or (ii) the cache is synchronized periodically with the contents of

the registries through a polling process. The prototype has been updated

also to annotate the execution time of each component and return all of

them to the client.

8.2.2.2 Test Execution

The performance for each query was evaluated incrementally for

registries containing 150, 300, 600 and 1200 services in order to analyse the

scalability of the solution. The execution time for each query using each

registry capacity was calculated as average across 30 executions, to avoid

distorted data.

A simple client has been written to execute sequentially all the queries

against the prototype and save the results in CSV files (i.e., comma-

separated values, a file format to represent tables with plain text files). The

prototype and the client have been executed four times to support all the

service registry sizes, by manually changing the service registry

configuration file.

The tests have been executed on a load-free iMac system with an Intel

Core i3 CPU (3.06 GHz) and 4 GB RAM (DDR3, 1333 MHz) running Mac

OS X 10.6.8.

Security Aware Service Composition

203 / 253

8.2.3 Threats to validity

Different factors may impact and bias the results of performance tests.

In our study we tried to minimize such threats, however some factors may

still have affected the results.

The QWS dataset has been chosen to populate the registry with WSDLs

from real web services available on the web, in order to allow

generalization of our results to the industry. This solution relies on the

range and quality of the dataset; please refer to [2][3] for a discussion on the

characteristics of the dataset.

The certificates in the registry have been produced ad-hoc for the

experiments, as such artefacts are a rather new concept and they are not

currently available in any repository. The distribution of security properties

and other parameters over the certificate population has been uniformly

randomized, however we expect that this will not be the case for real

services. In particular one can expect certain properties to be more

represented than others, based on industry interest and diffusion of

mechanisms to achieve the required security. The impact of this difference

in the distribution is only marginal, as the performances to match a

certificate do not change with the change of security property. The number

of services that provide a property, however, may change the number of

workflows that are generated during a composition, and by so, it may

influence the execution time.

In order to avoid the performance data to be biased by the effect of

concurrency, the tests have been performed on a load-free system.

Furthermore, in order to remove also the effects of background processes

and of the garbage collector that may be asynchronously executed, we

performed each test 30 different times.

Security Aware Service Composition

204 / 253

Finally, to avoid introducing human errors in the data collection phase,

all the test results have been collected and analysed automatically, through

the usage of CSV files and Excel formulas.

8.3 Evaluation Results

This section presents an analysis of the test results through a set of

tables summarising the results. A more complete set of results can be found

in Appendix A.

 Avail. Integr. PSP

Receive and parse

query

Mean 233.40 167.80 189.50

Single D
iscovery

SD 70.02 45.05 11.87

Retrieval of service

descr.

Mean 7.43 7.50 7.23

SD 1.02 0.92 0.80

Matching Mean 466.93 467.27 464.73

SD 28.26 34.16 9.25

Abstract WF

Matching

Mean 4.93 7.17 4.97

C
om

position

SD 0.73 10.18 0.71

Inference rules Mean 46.40 38.17 45.63

SD 5.79 8.29 5.27

Composition

Algorithm

Mean 1644.47 532.17 1159.97

SD 711.79 78.53 123.75

Sub-queries time Mean 21187.10 11439.73 19268.63

SD 195.03 256.74 159.70

BPEL Generation Mean 5353.33 2505.50 7007.43

SD 222.94 385.05 195.70

Generated Compositions 79 (120) 40 104

Generated Sub-queries 51 25 46

Table 8.1: Execution times by operations, with 1200 services in the registry

Security Aware Service Composition

205 / 253

Table 8.1 shows the execution times for each operation that is part of

the composition process when using the registry containing 1200 services,

with respect to the three queries. The top section shows the operations of

the single service discovery that are performed in the first instance when the

query is submitted, i.e., receive and parse query, retrieval of services from

the cache, structural and security matching. Since no single service can be

found to match the query, the Composition Manager is called, and performs

the operations in the middle of the table, i.e., abstract workflow (WF)

matching, inference rules, discover services for the WF activities (through

the generation of sub-queries), other operations of the composition

algorithm and, finally, generation of a BPEL for each composition.

In particular, the first two composition operations are part of the

GETSECUREWORKFLOWS algorithm described in Section 6.4.4, and the third

and fourth composition operations are part of the

WORKFLOWINSTANTIATION algorithm described in Section 6.4.5. The fifth

operation, i.e., the BPEL generation for each composition, is not part of the

algorithms described in previous sections, however it is needed in order to

be able to automatically use the produced composition.

 The bottom section of the table shows the number of generated activity

sub-queries and the number of the compositions returned by the algorithm.

The first element to note, as highlighted in Figure 8.1, is how the

different queries have very similar execution times not only for the single

service discovery part, but also for the abstract workflow matching and for

the inference rules. In particular the rules fired for each query are quite

different, but this doesn’t seem to be reflected in a difference of timings.

Security Aware Service Composition

206 / 253

Figure 8.1: Comparison of the single service discovery, inference rules, and

abstract WF matching execution times over the different queries

Figure 8.2: Proportion of the execution time spent for each composition

operation over the different queries

0"

100"

200"

300"

400"

500"

600"

700"

Availability" Integrity" PSP"

Ex
ec
u&

on
)T
im

e)
(m

ill
is
ec
on

ds
))

Query)Property)

Single"service" Inference"rules" Abstract"Workflow"Matching"

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

Availability# Integrity# PSP#

Ex
ec
u&

on
)&
m
e)
(p
er
ce
nt
ag
e)
of
)th

e)
ov
er
al
l)&

m
e)
)

Query)Property)

Single#service# Abstract#Workflow#Matching# Inference#rules#

ComposiJon#Algorithm# SubKqueries#Jme# BPEL#GeneraJon#

Security Aware Service Composition

207 / 253

The main differences that were observed were related to the execution

time of the composition algorithm, the execution of sub-queries and the

BPEL generation, that also constitute the most time expensive operations in

the composition times as shown by Figure 8.2. These differences depend on

the number of sub-queries generated by the process as shown in Figure 8.3.

Figure 8.3: Correlation between the number of generated sub-queries and

the composition time over the different queries

More specifically, the current prototype includes only a single rule for

integrity on the sequential orchestration; so abstract workflows including

other orchestrations are not taken into consideration when an integrity

requirement must be satisfied. This means that the abstract workflows that

can guarantee the security requirements are fewer for the query about

integrity than for the other two properties; this is reflected by the number of

generated sub-queries and so, as explained above, by the composition time,

as less composition are generated.

0"

5000"

10000"

15000"

20000"

25000"

0"

10"

20"

30"

40"

50"

Availability" Integrity" PSP"

Ex
ec
u&

on
)T
im

e)
(m

ill
is
ec
on

ds
))

#)
of
)g
en

er
at
ed

)o
bj
ec
ts
)

Query)Property)

#"of"Generated"Sub=queries" ComposiCon"Time"

Security Aware Service Composition

208 / 253

The availability rules, instead, make use of verification post-

instantiation (i.e., the verification rules described in Section 5.4.4). Table

8.1 reports both the number of verified generated workflows (79) and the

number of all the generated workflows in the parenthesis (120). The former

conditions only the time for the BPEL generation while the latter influences

the composition algorithm and the sub-queries times.

 150 300 600 1200

Receive and parse

query

Mean 131.43 138.10 150.40 196.90

Single D
iscovery

SD 68.14 28.25 29.41 55.70

Retrieval of

service descr.

Mean 1.28 2.32 4.38 7.39

SD 0.75 0.61 0.89 0.93

Matching Mean 63.34 144.78 239.33 466.31

SD 7.07 6.98 23.15 26.17

Abstract WF

Matching

Mean 4.98 4.98 4.70 5.69

C
om

position

SD 0.98 1.07 0.78 6.00

Inference rules Mean 44.40 45.40 44.01 43.40

SD 9.59 22.99 21.69 7.56

Composition

Algorithm

Mean 184.18 476.71 696.21 1112.20

SD 129.47 222.39 307.25 619.18

Sub-queries time Mean 815.14 3105.22 7114.00 17298.49

SD 256.30 1021.81 2037.06 4221.27

BPEL Generation Mean 700.08 2036.29 3024.07 4955.42

SD 295.04 865.28 1166.30 1880.38

Generated Compositions 10 32 55 88

Generated Sub-queries 10 19 30 40

Table 8.2: Summary of the results for each registry size, in milliseconds

Security Aware Service Composition

209 / 253

Table 8.2 shows the results for each registry size, regardless of the

query, to analyse the scalability of the approach. It is quite clear from the

table that the global composition time becomes more and more time

consuming with the increase of services in the registry.

Figure 8.4: Comparison of the single service and service composition

discovery times over the different sizes of the registry

Figure 8.4 shows a comparison between the single service discovery

and the composition discovery times: both the single service discovery and

the composition discovery time increases proportionally with the increase of

services in the registry. More specifically, the abstract WF matching and the

firing of the inference rules are very fast operations whose duration does not

increase depending on the number of services in the registry, as shown in

Figure 8.5. These operations, in fact, depend only on the size of the abstract

WF repository and the number of rules. Both these numbers, however, are

not expected to become much bigger than the ones used for tests.

0"

5000"

10000"

15000"

20000"

25000"

30000"

0"

200"

400"

600"

800"

1000"

1200"

1400"

0" 200" 400" 600" 800" 1000" 1200" 1400"

Ex
ec
u&

on
)T
im

e)
(m

ill
is
ec
on

ds
))

Si
ze
)o
f)t
he

)re
gi
st
ry
)(#

)o
f)s
er
vi
ce
s)
)

Size)of)the)registry)(#)of)services))

Size"of"the"registry" Single"service" Composi=on"Time" Composi=on"+"BPEL"Genera=on"

Security Aware Service Composition

210 / 253

Figure 8.5: Comparison of the abstract WF matching and the inference rule

times over the different sizes of the registry

Figure 8.6: Correlation between the composition algorithm time and the

number of generated workflows and sub-queries over the registry sizes

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

50"

150" 300" 600" 1200"

Ex
ec
u&

on
)T
im

e)
(m

ill
is
ec
on

ds
))

Size)of)the)registry)(#)of)services))

Abstract"Workflow"Matching" Inference"rules"

0"

200"

400"

600"

800"

1000"

1200"

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

0" 200" 400" 600" 800" 1000" 1200" 1400"

Ex
ec
u&

on
)T
im

e)
(m

ill
is
ec
on

ds
))

#)
of
)g
en

er
at
ed

)o
bj
ec
ts
)

Size)of)the)registry)(#)of)services))

#"of"Generated"Workflows" #"of"Generated"Sub>queries" ComposiDon"Algorithm"

Security Aware Service Composition

211 / 253

The discovery of services for the WF activities, instead, is the operation

that results in the biggest increase of the execution time, as previously

described for Figure 8.2. This can be explained by two factors, the first

being that service discovery naturally becomes more expensive the more

services are in the registry, the second being that for each service that

matches an activity in a WF, the algorithm generates a new WF with the

activity instantiated by the service. This means the more matching services;

the more WFs are generated and need to be completely instantiated. So an

increase in the number of matched services corresponds to an increase in the

number of sub-queries for the different WFs, and therefore to an increase of

the time required to execute the composition process. These observations

are also summarised in Figure 8.6, where the composition algorithm time is

plotted against with the number of generated sub-queries and compositions.

A possible optimisation that might produce drastic improvements on

the composition time is to avoid separated executions of similar sub-

queries, as these are the most computationally expensive operations. In

particular, the services that match the structural conditions of an activity in

a WF might be pre-computed, stored and maintained in a cache, so that part

of the discovery process might be skipped at runtime. Furthermore other

similarities might be found also in the dynamically generated security

conditions of sub-queries for the same activity but in different WFs: the

algorithm can then be changed to process the same sub-query just once per

process and keep a temporary buffer of the results.

The last operation computed by the Composition Manager is the

conversion of the generated compositions into BPEL files. This operation is

depends on the number of generated compositions. Furthermore, the actual

implementation uses the BPEL data model of Eclipse BPEL Designer [25]:

this simplifies the generation of BPEL files that are structurally correct, but

Security Aware Service Composition

212 / 253

introduces an overhead. An alternative to this is to treat the BPEL files as

strings and just edit the strings using some predefined placeholders.

Overall the composition process in the presented prototype is very time

consuming, as expected. However, it is not an impossible task, with times

that oscillate between 1 and 20 seconds. In particular, by using the proactive

facilities provided by the discovery engine, the composition discovery can

be obtained in a timely fashion for applications requiring it at runtime. As

explained for the single service discovery, by subscribing a proactive query,

the discovery engine maintains a buffer of discovered compositions in

background, to be able to offer immediate responses when the need for

replacements arises.

8.4 Summary

The approach has been evaluated through testing the performances of

the Security Aware Runtime Discovery Tool, and checking the overhead

introduced by the security aware service composition approach.

The performances of the single service discovery are generally in the

order of seconds, allowing timely responses to service discovery queries,

even at runtime.

Service composition increases the discovery time, based on the number

of services in the registry. This might be an issue for SBSs that require

timely responses; however the proactive approach offered by RSDT

addresses this exact problem. By subscribing a query to the discovery

engine, it is possible to maintain an up-to-date buffer of results in the

background and, when the need arises, the SBS can obtain an immediate

response.

Security Aware Service Composition

213 / 253

Even in this scenario, it is important to avoid the waste of resources. To

improve the Composition Manager performance the composition algorithm

might be changed to avoid the repetition of similar queries for the same

activity in similar workflows.

Security Aware Service Composition

214 / 253

Chapter 9

Conclusions

9.1 Overview

In this thesis we have described a framework that allows inferring

security requirements expressed for a security composition to requirements

for the single activities of the composition and checking security

requirements over security service descriptors. The framework introduces

the concept of secure composition patterns, modelling proven causal

relations of security requirements within an orchestration pattern.

Furthermore, prototypes using the composition process have been

implemented and tested extensively.

9.2 Contributions

The presented research provides the means to infer and validate

security requirements over service compositions. This approach allows to:

(i) generate secure service compositions at design and runtime, and (ii)

validate the security requirements over a service workflow. To support the

above we have developed:

• Definition of the concept and of an initial set of secure composition

patterns and production rules

Security Aware Service Composition

215 / 253

We introduced the concept of secure composition patterns, i.e.,

models describing abstract dependencies between the service

composition security requirements and the component service

security requirements. The dependencies must be formally proven in

order to ensure the same level of security of the original

requirements.

The patterns can be applied in different steps of a composition

lifetime, to discover services guaranteeing the security or to validate

the security of an existing composition.

The secure composition patterns are a new concept, different from

the Security Patterns present in literature (e.g., [4][23]) that usually

represent the best practices and the mechanisms that can be used in

order to comply to a security requirement.

We gave the definition and the rule-based encoding of an initial set

of secure composition patterns, comprising patterns for integrity,

confidentiality and availability. This set, whether not complete, gives

an idea of the different ways in which the approach can be used and

of how the production rules can be encoded.

• Development of security aware service composition algorithms

A set of algorithms is given that allows: (i) the inference of security

requirements from the service composition layer to the single

composing services, (ii) the verification of security requirements on

the service composition layer from the security descriptors at the

service layer, (iii) the validation of security requirements over

instantiated service orchestrations (i.e., workflows) and (iv) the

generation of service compositions that respect security

requirements. All these algorithms represent a novelty as they are

Security Aware Service Composition

216 / 253

based and make usage of the new concept of secure composition

patterns.

The existing works in literature, as examined in Section 2.4.4.1, are

limited to the verification of security properties (usually specified at

design time) through formal methods, requiring conversions of the

services, compositions and properties into models. Our approach

does not require any conversion and allows SBS designer to check

the security of a composition without the need to know formal

models or specialized languages. Furthermore, the works in the

literature quite often require knowing the service internals or the

exact mechanisms that are in place to guarantee a property. The

proposed approach is more general, offering a framework for any

security property that does not require to know the specific

implementation (or a model of it) of the services involved, but

requires information just about the workflow of a service

composition.

• Development of a Security Aware Runtime Discovery Tool

The discovery tool allows finding services that provide given

structural and security requirements. The tool allows the creation of

service compositions during the discovery of a service, and

guarantees that the service compositions have the requested level of

security, by using the algorithms listed in the previous point.

The works in the literature, as discussed in Sections 2.4.3 and 2.4.4,

are usually specialised to the discovery of specific security

properties and offer specification and matching of properties only

against single services, instead of entire service compositions. Our

approach is generic w.r.t. the security properties that can be used it

Security Aware Service Composition

217 / 253

with, and allows the expression and inference of security

requirements over entire service compositions, so our work is an

improvement in both these directions.

Furthermore our approach is based on a tool that allows service

discovery either at design or runtime, thanks to the proactive

capabilities of the discovery tool described in Section 4.4.

• Development of a Security Aware BPEL Design Tool

The BPEL Design tool allows the description and the validation of

security requirements during the design phase of a SBS. Service

adaptation is also offered in order to replace services with alternative

services or service compositions that comply with the functionality

and the security requested.

Existing approaches allow only the expression of security

requirements on single activities and to bound services that respect

the requirements, as we point out in Section 2.4.5. The tool presented

in this thesis, instead, allows also: (i) the expression of security

requirements over workflow fragments, (ii) the inference and

validation of security requirements over the activities part of the

workflow, and (iii) to discover and automatically adapt alternative

service or service compositions that satisfy the requirements.

• Evaluation of the approach

The feasibility and scalability of the approach have been tested,

giving results in the order of seconds. While such result is already

encouraging, the proactive approach offered by the discovery tool

offers an answer to the SBSs where the timely availability of

discovery results is critical. Furthermore, some improvement

directions were given.

Security Aware Service Composition

218 / 253

9.3 Approach Implications

The presented approach is compatible with technologies and languages

already available in the market, however it implies additional efforts on the

security aspects from Service Providers and SBS Designers.

Our approach requires some security descriptors of each service to be

available in service registries. While some languages are available to

describe security aspects (see Section 2.4.1), these are not used to describe

services in publicly available service registries, to the best of our

knowledge. While the exact mechanisms that implement a security property

might need to be confidential, the security properties provided by a service

can be a very important aspect for service selection (and so, for service

provisioning).

Our approach goes in this direction and requires a level of transparency

about the security of services, encouraging trust in service-based solutions.

It is important to notice that this assumption we made requires Service

Providers to handle additional tasks like creating the security descriptors

and submit them to (compatible) service registry, so not all Service

Providers might consider this in the immediate future. Some Service

Providers, however, may consider facing the additional costs to handle this

task, since security may be advertised by providers as an additional feature

that outclass competitors and since security has been one of the critical

concerns in the SOC field [55]; kick-starting the market in this direction.

A step that can improve the level of transparency and trust, and that can

be reflected also by our approach, can be offered by security certificates

signed by third parties. As explained in Section 2.4.1 certification processes

and Certification Authorities are already used by some software companies,

probably the most important and known being the Common Criteria

Security Aware Service Composition

219 / 253

certification, however these solutions are not taking advantage of the SOC

paradigm. A new certification approach for services, releasing digital

certificates that could be used as security descriptors by our approach,

would however require Certification Authorities and Laboratories to adopt

new standards and change their processes (for more details, please refer to

the ASSERT4SOA [5] and the CUMULUS [21] projects).

Finally our approach puts the service users and SBS designers in

control of the security level they can require, so a minimal training on

security may be needed in order to be able to use the features presented in

this work.

9.4 Future Work

This work presented a new approach that allows for Security Aware

Service Composition, however the ideas presented can be used as a basis for

different tracks for future works. In this section we describe some directions

for research that originate from this work:

• Development of additional secure composition patterns.

The set of secure composition pattern presented in this work shows

the feasibility of the idea in different cases, however it may lack of

completeness and generality. The topic of proving secure

composition patterns is a very big area for further research that can

address with different formalisms. Some fields already have works

researching in this direction, e.g. the proofs for composability

patterns in the Information Theory field [59][63], however further

research is needed to have a more complete set of patterns.

Security Aware Service Composition

220 / 253

• Semi-Automated Proofs for secure composition patterns.

One of the possible drawbacks for the presented approach is the fact

that the secure composition patterns need to be formally proven. The

definition of additional secure composition patterns, then, would

require quite some time and efforts before being proven, limiting the

results of our approach.

An interesting line of research is to make usage of existing theorem

proving or automated reasoning approaches (e.g., Coq, Isabelle) in

order to help obtaining proofs for the secure composition patterns.

• Variations of the composition algorithms.

The composition algorithms presented in Section 6.4 can be seen as

a basis for further works, some changes that we envision are: (i)

recursive instantiation of abstract workflows with other abstract

workflows, in order to enable a richer offer of workflows during

functional matching; (ii) usage of algorithms that define service

workflows for the functional part of the composition, instead of

relying on abstract workflows (as the ones described in Section

2.3.1); (iii) adding some optimizations to prune and cache the sub-

queries used during the composition process, as sub-queries are one

of the most time consuming aspects of the instantiation algorithm,

but also they are often quite similar to each other; and (iv) to allow

comparison and sorting of the generated service compositions, by

defining appropriate metrics.

Security Aware Service Composition

221 / 253

Bibliography

[1] Aggarwal, R., Verma, K., Miller, J., and Milnor, W. (2004,

September). Constraint driven web service composition in

METEOR-S. In IEEE International Conference on Services

Computing, 2004 (SCC 2004). Proceedings. pp. 23-30. IEEE. DOI:

10.1109/SCC.2004.1357986

[2] Al-Masri, E., and Mahmoud, Q. H. (2007, August). Qos-based

discovery and ranking of web services. In Proceedings of 16th

International Conference on Computer Communications and

Networks, 2007 (ICCCN'07), pp. 529-534. IEEE. DOI:

10.1109/ICCCN.2007.4317873

[3] Al-Masri, E., and Mahmoud, Q. H. (2007, May). Discovering the

best web service. In Proceedings of the 16th international

conference on World Wide Web (WWW'07), pp. 1257-1258. ACM.

DOI: 10.1145/1242572.1242795

[4] Aniketos Consortium (2012). Run-time Secure Composition and

Adaptation Realisation Techniques. Aniketos project Deliverable

3.3. Available at:

http://www.aniketos.eu/

[5] ASSERT4SOA Consortium. ASSERT4SOA project website.

Available at:

http://www.assert4soa.eu/

Security Aware Service Composition

222 / 253

[6] Bartoletti, M., Degano, P., and Ferrari, G. L. (2005, June).

Enforcing secure service composition. In 18th IEEE Computer

Security Foundations Workshop, 2005 (CSFW'05). pp. 211-223.

IEEE. DOI: 10.1109/CSFW.2005.17

[7] Bartoletti, M., Degano, P., and Ferrari, G. L. (2006, July). Types

and effects for secure service orchestration. In 19th IEEE Computer

Security Foundations Workshop, 2006 (CSFW'06). pp. 57-69.

IEEE. DOI: 10.1109/CSFW.2006.31

[8] Baryannis, G., and Plexousakis, D. (2010). Automated Web Service

Composition: State of the Art and Research Challenges. Technical

Report ICS-FORTH/TR-409. Foundation for Research and

Technology, Hellas. Available at:

https://www.ics.forth.gr/tech-

reports/2010/2010.TR409_Automated_Web_Service_Composition.

pdf

[9] Beeri, C., Eyal, A., Kamenkovich, S., and Milo, T. (2006,

September). Querying business processes. In Proceedings of the

32nd international conference on Very large data bases (VLDB'06),

pp. 343-354. VLDB Endowment. Available at:

http://www.vldb.org/conf/2006/p343-beeri.pdf

[10] Berry, M. (2008). IBM Survey: SOA a Top Business Priority in

2008. IBM Media Relations Websphere & SOA. Available at:

https://www-03.ibm.com/press/us/en/pressrelease/24436.wss

[11] Bormann, F., Flake, S., Tacken, J., and Zoth, C. (2005, June).

Towards context-aware service discovery: A case study for a new

Security Aware Service Composition

223 / 253

advice of charge service. In 14th IST Mobile and Wireless

Communications Summit. Available at:

http://www.eurasip.org/Proceedings/Ext/IST05/papers/502.pdf

[12] CA Wily (2008). CA Wily TechWeb Study Results. Available at:

http://www.ca.com/~/media/Files/SupportingPieces/cmp-global-

survey_196383.pdf

[13] Carminati, B., Ferrari, E., and Hung, P. C. (2006, September).

Security conscious web service composition. In IEEE International

Conference on Web Services, 2006 (ICWS'06). pp. 489-496. IEEE.

DOI: 10.1109/ICWS.2006.115

[14] Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., and Shan, M. C.

(2000). Adaptive and Dynamic Service Composition in eFlow.

In Advanced Information Systems Engineering: 12th International

Conference on Advanced Information Systems Engineering

(CAiSE'00), Stockholm, Sweden, June 5-9, 2000. Proceedings. Vol.

12, p. 13. Springer. DOI: 10.1007/3-540-45140-4_3

[15] Chan, C. Y., Garofalakis, M., and Rastogi, R. (2003). Re-tree: an

efficient index structure for regular expressions. The VLDB

Journal, 12(2), 102-119. DOI: 10.1007/s00778-003-0094-0

[16] Charfi, A., and Mezini, M. (2005, July). Using aspects for security

engineering of web service compositions. In IEEE International

Conference on Web Services, 2005 (ICWS'05). Proceedings. pp. 59-

66. IEEE. DOI: 10.1109/ICWS.2005.126

[17] Clark, C. (2008). Why traditional security doesn't work for SOA.

InfoWorld. Available at:

Security Aware Service Composition

224 / 253

http://www.infoworld.com/article/2653660/application-

security/why-traditional-security-doesn-t-work-for-soa.html

[18] Common Criteria Project Sponsoring Organisations (2012).

Common Criteria for Information Technology Security Evaluation.

Version 3.1, Revision 4. Available at:

 https://www.commoncriteriaportal.org/cc/

[19] Common Criteria Project Sponsoring Organizations. Certified

Products. Available at:

https://www.commoncriteriaportal.org/products/

[20] Cuddy, S., Katchabaw, M., and Lutfiyya, H. (2005, August).

Context-aware service selection based on dynamic and static

service attributes. In IEEE International Conference on Wireless

And Mobile Computing, Networking And Communications, 2005

(WiMob'05), Vol. 4, pp. 13-20. IEEE. DOI:

10.1109/WIMOB.2005.1512944

[21] CUMULUS Consortium. CUMULUS project website. Available at:

http://www.cumulus-project.eu/

[22] Deubler, M., Grünbauer, J., Jürjens, J., and Wimmel, G. (2004,

November). Sound development of secure service-based systems.

In Proceedings of the 2nd international conference on Service

oriented computing (ICSOC'04), pp. 115-124. ACM. DOI:

10.1145/1035167.1035185

[23] Dong, J., Peng, T., and Zhao, Y. (2010). Automated verification of

security pattern compositions. Information and Software

Technology, 52(3), 274-295. DOI: 10.1016/j.infsof.2009.10.001

Security Aware Service Composition

225 / 253

[24] Dornan, A. (2003). XML: The End of Security Through

Obscurity?. Network Magazine, 18(4), 36-41.

[25] Eclipse BPEL Project. Eclipse BPEL Designer. Available at:

http://www.eclipse.org/bpel/

[26] Eclipse Foundation. Discovering and importing a Web service. In

Eclipse Documentation. Available at:

http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.jst.ws.c

onsumption.ui.doc.user%2Ftasks%2Ftdiscov.html&cp=63_3_1_4

[27] Fischer, K. P., Bleimann, U., Fuhrmann, W., and Furnell, S. M.

(2007, April). Security policy enforcement in BPEL-defined

collaborative business processes. In IEEE 23rd International

Conference on Data Engineering Workshop, 2007 (ICDEW'07), pp.

685-694. IEEE. DOI: 10.1109/ICDEW.2007.4401056

[28] Forgy, C. L. (1982). Rete: A fast algorithm for the many pattern /

many object pattern match problem. Artificial intelligence, 19(1),

17-37. DOI: 10.1016/0004-3702(82)90020-0

[29] Frankova, G., Massacci, F., and Seguran, M. (2007, July). From

Early Requirements Analysis towards Secure Workflows. In Trust

Management: Proceedings of IFIP Joint ITrust and PST

Conferences on Privacy, Trust Management and Security

(IFIPTM'07), July 30-August 2, 2007, New Brunswick, Canada.

Vol. 238, p. 407. Springer. DOI: 10.1007/978-0-387-73655-6_28

[30] Fujii, K., and Suda, T. (2004, November). Dynamic service

composition using semantic information. In Proceedings of the 2nd

Security Aware Service Composition

226 / 253

international conference on Service oriented computing

(ICSOC'04), pp. 39-48. ACM. DOI: 10.1145/1035167.1035174

[31] Fujii, K., and Suda, T. (2006). Semantics-based dynamic web

service composition. International Journal of Cooperative

Information Systems, 15(03), 293-324. DOI:

10.1142/S0218843006001372

[32] Grigori, D., Corrales, J. C., and Bouzeghoub, M. (2006,

September). Behavioral matchmaking for service retrieval.

In Proceedings of the IEEE International Conference on Web

Services (ICWS'06), pp. 145-152. IEEE Computer Society. DOI:

10.1109/ICWS.2006.37

[33] Grundy, J., and Ding, G. (2002). Automatic validation of deployed

J2EE components using aspects. In 17th IEEE International

Conference on Automated Software Engineering, 2002 (ASE'02).

Proceedings. pp. 47-56. IEEE. DOI: 10.1109/ASE.2002.1114993

[34] GS1 US. RosettaNet website. Available at:

https://members.gs1us.org/RosettaNet

[35] Gu, X., and Nahrstedt, K. (2006). Distributed multimedia service

composition with statistical QoS assurances. IEEE Transactions on

Multimedia, 8(1), 141-151. DOI: 10.1109/TMM.2005.861284

[36] Gu, X., Nahrstedt, K., and Yu, B. (2004, June). SpiderNet: An

integrated peer-to-peer service composition framework. In 13th

IEEE International Symposium on High performance Distributed

Computing, 2004 (HPDC'04). Proceedings. pp. 110-119. IEEE.

DOI: 10.1109/HPDC.2004.1323507

Security Aware Service Composition

227 / 253

[37] Gürgens, S., Ochsenschläger, P., and Rudolph, C. (2005). On a

formal framework for security properties. Computer Standards &

Interfaces, 27(5), 457-466. DOI: 10.1016/j.csi.2005.01.004

[38] Gutiérrez, C., Fernández-Medina, E., and Piattini, M. (2006).

Towards a process for web services security. Journal of Research

and Practice in Information Technology, 38(1), 57-68. ISSN: 1443-

458X

[39] Hafner, M., Breu, R., Agreiter, B., and Nowak, A. (2006).

SECTET: an extensible framework for the realization of secure

inter-organizational workflows. Internet Research, 16(5), 491-506.

DOI: 10.1108/10662240610710978

[40] Health Level Seven International. HL7 website. Available at:

http://www.hl7.org/

[41] Heffner, R. (2010). Adoption of SOA: Still strong, even in hard

times. Forrester Research. Available at:

http://www.forrester.com/Adoption+Of+SOA+Still+Strong+Even+

In+Hard+Times/fulltext/-/E-RES56874

[42] Heffner, R., Leganza, G., and Ranade, K. (2008). Soa adoption:

Many firms got started in 2007. Forrester Research. Available at:

http://www.forrester.com/SOA+Adoption+Many+Firms+Got+Start

ed+In+2007/fulltext/-/E-RES43832

[43] IBM. IBM BPM Industry Packs. Available at:

http://www-03.ibm.com/software/products/en/business-process-

manager-industry-packs

Security Aware Service Composition

228 / 253

[44] IETF Network Working Group (2007). Internet Security Glossary,

Version 2. Request For Comments 4949 (RFC 4949,

Informational). Available at:

http://www.ietf.org/rfc/rfc4949.txt

[45] ISO/IEC - Information Technology - Security Techniques (2009).

Evaluation criteria for IT security. ISO/IEC International Standard

15408-1, 3rd Edition. Available at:

https://www.iso.org/obp/ui/#iso:std:iso-iec:15408:-1:en

[46] Jaeger, M. C., Rojec-Goldmann, G., and Muhl, G. (2004,

September). Qos aggregation for web service composition using

workflow patterns. In Eighth IEEE International Enterprise

distributed object computing conference, 2004 (EDOC'04).

Proceedings. pp. 149-159. IEEE. DOI:

10.1109/EDOC.2004.1342512

[47] JBoss Drools Team. Drools. Available at:

http://www.drools.org/

[48] Kagal, L., Finin, T., Paolucci, M., Srinivasan, N., Sycara, K., and

Denker, G. (2004). Authorization and privacy for semantic web

services. IEEE Intelligent Systems, 19(4), 50-56. DOI:

10.1109/MIS.2004.23

[49] Keller, U., Lara, R., Lausen, H., Polleres, A., and Fensel, D.

(2005). Automatic location of services. In The Semantic Web:

Research and Applications, pp. 1-16. Springer Berlin Heidelberg.

DOI: 10.1007/11431053_1

Security Aware Service Composition

229 / 253

[50] Klusch, M., Fries, B., and Sycara, K. (2006, May). Automated

semantic web service discovery with OWLS-MX. In Proceedings

of the fifth international joint conference on Autonomous agents

and multiagent systems (AAMAS'06), pp. 915-922. ACM. DOI:

10.1145/1160633.1160796

[51] Korhonen, J., Pajunen, L., and Puustjarvi, J. (2003, October).

Automatic composition of web service workflows using a semantic

agent. In IEEE/WIC International Conference on Web Intelligence,

2003 (WI'03). Proceedings. pp. 566-569. IEEE. DOI:

10.1109/WI.2003.1241269

[52] LeBlanc, D., and Howard, M. (2002). Writing secure code (2nd

Edition). Pearson Education. ISBN: 9780735617223

[53] Lécué, F., Silva, E., and Pires, L. F. (2008). A framework for

dynamic web services composition. In Emerging Web Services

Technology, Volume II (ECOWS'08 workshop), pp. 59-75.

Birkhäuser Basel. DOI: 10.1007/978-3-7643-8864-5_5

[54] Lelarge, M., Liu, Z., and Riabov, A. V. (2006, September).

Automatic composition of secure workflows. In Proceedings of the

3rd Int. conf. on Autonomic and Trusted Computing (ATC'06), pp.

322-331. Springer-Verlag. DOI: 10.1007/11839569_31

[55] Lewis, G. A., Smith, D. B., and Kontogiannis, K. (2010). A

research agenda for service-oriented architecture (SOA):

Maintenance and evolution of service-oriented systems. Technical

Report CMU/SEI-2010-TN-003. Carnegie Mellon University.

Available at:

http://www.sei.cmu.edu/reports/10tn003.pdf

Security Aware Service Composition

230 / 253

[56] Li, L., and Horrocks, I. (2004). A software framework for

matchmaking based on semantic web technology. International

Journal of Electronic Commerce, 8(4), 39-60. ISSN: 1086-4415

[57] LSDIS. METEOR-S v0.8 Demonstration. METEOR-S: Semantic

Web Services and Processes. Available at:

http://lsdis.cs.uga.edu/projects/meteor-s/index.php?page=3

[58] Majithia, S., Walker, D. W., and Gray, W. A. (2004, April). A

Framework for Automated Service Composition in Service-

Oriented Architectures. In The Semantic Web: Research and

Applications: First European Semantic Web Symposium, ESWS

2004, Heraklion, Crete, Greece, May 10-12, 2004, Proceedings,

Vol. 1, p. 269. Springer. DOI: 10.1007/978-3-540-25956-5_19

[59] Mantel, H. (2002). On the composition of secure systems. In IEEE

Symposium on Security and Privacy, 2002 (SP'02). Proceedings.

pp. 88-101. IEEE. DOI: 10.1109/SECPRI.2002.1004364

[60] Mao, Z. M., Katz, R. H., and Brewer, E. A. (2001). Fault-tolerant,

scalable, wide-area internet service composition. Technical Report

UCB/CSD-01-1129, University of California, Berkeley. Available

at:

http://www.eecs.berkeley.edu/Pubs/TechRpts/2001/CSD-01-

1129.pdf

[61] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D.,

McIlraith, S., et al. (2004). OWL-S: Semantic markup for web

services. W3C member submission. Available at:

http://www.ai.sri.com/daml/services/owl-s/1.2/overview/

Security Aware Service Composition

231 / 253

[62] Mccarthy, J., and Hayes, P. J. (1969). Some Philosophical

Problems from the Standpoint of the Artificial Intelligence.

Machine Intelligence, 4, 463-502. Available at:

http://www-formal.stanford.edu/jmc/mcchay69.pdf

[63] McLean, J. (1994, May). A general theory of composition for trace

sets closed under selective interleaving functions. In IEEE

Computer Society Symposium on Research in Security and Privacy,

1994. Proceedings. pp. 79-93. IEEE. DOI:

10.1109/RISP.1994.296590

[64] Medjahed, B., Bouguettaya, A., and Elmagarmid, A. K. (2003).

Composing web services on the semantic web. The VLDB

Journal, 12(4), 333-351. DOI: 10.1007/s00778-003-0101-5

[65] Mell, P., and Grance, T. (2011). The NIST Definition of Cloud

Computing. NIST Special Publication, 800-145. NIST. Available

at:

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[66] Menzel, M., Warschofsky, R., and Meinel, C. (2010, July). A

pattern-driven generation of security policies for service-oriented

architectures. In IEEE International Conference on Web Services,

2010 (ICWS'10). pp. 243-250. IEEE. DOI: 10.1109/ICWS.2010.25

[67] Mikhaiel, R., and Stroulia, E. (2006, December). Examining usage

protocols for service discovery. In Proceedings of the 4th

international conference on Service-Oriented Computing

(ICSOC'06), pp. 496-502. Springer-Verlag. DOI:

10.1007/11948148_46

Security Aware Service Composition

232 / 253

[68] Milner, R. (1989). Communication and concurrency. Prentice-Hall,

Inc. ISBN:0-13-115007-3

[69] Moschetta, E., Antunes, R. S., and Barcellos, M. P. (2010). Flexible

and secure service discovery in ubiquitous computing. Journal of

Network and Computer Applications, 33(2), 128-140. DOI:

10.1016/j.jnca.2009.11.001

[70] Mukhopadhyay, T., Kekre, S., and Kalathur, S. (1995). Business

value of information technology: a study of electronic data

interchange. MIS Quarterly, 19(2), 137-156. DOI: 10.2307/249685

[71] O’Halloran, C. (1990). A Calculus of Information Flow. In

European Symposium on Research in Computer Security

(ESORICS'90), pp. 147–159.

[72] OASIS Security Services Technical Committee. (2005). SAML

V2.0. OASIS Standard. Available at:

http://saml.xml.org/saml-specifications

[73] OASIS Web Services Federation Technical Committee (2009).

WS-Federation 1.2. OASIS Standard. Available at:

http://docs.oasis-open.org/wsfed/federation/v1.2/ws-federation.html

[74] OASIS Web Services Secure Exchange Technical Committee

(2007). WS-SecureConversation 1.3. OASIS Standard. Available at:

http://docs.oasis-open.org/ws-sx/ws-

secureconversation/200512/ws-secureconversation-1.3-os.html

[75] OASIS Web Services Secure Exchange Technical Committee

(2007). WS-SecurityPolicy 1.2. OASIS Standard. Available at:

Security Aware Service Composition

233 / 253

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-

securitypolicy-1.2-spec-os.html

[76] OASIS Web Services Secure Exchange Technical Committee

(2009). WS-Trust 1.4. OASIS Standard. Available at:

http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-

os.html

[77] OASIS Web Services Security Technical Committee (2004). Web

services security: SOAP message security 1.1 (WS-Security 2004).

Oasis Standard Specification. Available at:

https://www.oasis-open.org/committees/download.php/16790/wss-

v1.1-spec-os-SOAPMessageSecurity.pdf

[78] Papazoglou, M. (2008). Web services: principles and technology.

Pearson Education. ISBN: 9780321155559

[79] Pawar, P. and Tokmakoff, A. (2006). Ontology-Based Context-

Aware Service Discovery for Pervasive Environments. In 1st IEEE

International Workshop on Services Integration in Pervasive

Environments (SIPE workshop, colocated with ICPS'06), 29 June

2006, Lyon, France. Available at:

http://eprints.eemcs.utwente.nl/8117/

[80] Pazzaglia, J. C., Lotz, V., Cerda, V. C., Damiani, E., Ardagna, C.,

Gürgens, S., et al. (2011). Advanced security service certificate for

soa: Certified services go digital. In Information Security Solutions

Europe (ISSE'10) 2010 Securing Electronic Business Processes, pp.

151-160. Vieweg+ Teubner. DOI: 10.1007/978-3-8348-9788-6_15

Security Aware Service Composition

234 / 253

[81] Pino, L., and Spanoudakis, G. (2012, June). Constructing secure

service compositions with patterns. In IEEE Eighth World

Congress on Services, 2012 (SERVICES'12), pp. 184-191. IEEE.

DOI: 10.1109/SERVICES.2012.61

[82] Pino, L., and Spanoudakis, G. (2012, May). Finding secure

compositions of software services: Towards a pattern based

approach. In 5th IFIP International Conference on New

Technologies, Mobility and Security, 2012 (NTMS'12), pp. 1-5.

IEEE. DOI: 10.1109/NTMS.2012.6208741

[83] Pino, L., Mahbub, K., and Spanoudakis, G. (2014, November).

Designing Secure Service Workflows in BPEL. In Proceedings of

the international conference on Service-Oriented Computing

(ICSOC’14), pp. 551-559. Springer Berlin Heidelberg. DOI:

10.1007/978-3-662-45391-9_48

[84] Pino, L., Spanoudakis, G., Fuchs, A., and Gürgens, S. (2014,

April). Discovering Secure Service Compositions. In 4th

International Conference on Cloud Computing and Services

Sciences (CLOSER'14), Barcelona, Spain. DOI:

10.5220/0004855702420253

[85] Pino, L., Spanoudakis, G., Fuchs, A., and Gürgens, S. (to appear).

Generating Secure Service Compositions. In Cloud Computing and

Services Science: Fourth International Conference, CLOSER 2014,

Barcelona, Spain, April 3-4, 2014, Revised Selected Papers.

Springer.

[86] Ponnekanti, S. R., and Fox, A. (2002, May). Sword: A developer

toolkit for web service composition. In Proc. of the Eleventh

Security Aware Service Composition

235 / 253

International World Wide Web Conference (WWW'02), Honolulu,

HI, Vol. 45. Available at:

http://www2002.org/CDROM/alternate/786/

[87] Raman, B., Agarwal, S., Chen, Y., Caesar, M., Cui, W., Johansson,

P., et al. (2002). The SAHARA model for service composition

across multiple providers. In Pervasive Computing, pp. 1-14.

Springer Berlin Heidelberg. DOI: 10.1007/3-540-45866-2_1

[88] Rao, J. (2004). Semantic Web Service Composition via Logic-

based Program Synthesis. Doctoral dissertation, Norwegian

University of Science and Technology. Available at:

http://www.cs.cmu.edu/~jinghai/papers/thesis.pdf

[89] Rao, J., Kungas, P., and Matskin, M. (2004, July). Logic-based

Web services composition: from service description to process

model. In IEEE International Conference on Web Services, 2004

(ICWS'04). Proceedings. pp. 446-453. IEEE. DOI:

10.1109/ICWS.2004.1314769

[90] Russell, N., Ter Hofstede, A. H., Edmond, D., and van der Aalst,

W. M. (2005). Workflow data patterns: Identification,

representation and tool support. In Conceptual Modeling–ER 2005,

pp. 353-368. Springer Berlin Heidelberg. DOI:

10.1007/11568322_23

[91] Sabelfeld, A., and Myers, A. C. (2003). Language-based

information-flow security. IEEE Journal on Selected Areas in

Communications, 21(1), 5-19. DOI: 10.1109/JSAC.2002.806121

Security Aware Service Composition

236 / 253

[92] Shen, Z., and Su, J. (2005, July). Web service discovery based on

behavior signatures. In IEEE International Conference on Services

Computing, 2005 (SCC'05), Vol. 1, pp. 279-286. IEEE. DOI:

10.1109/SCC.2005.107

[93] Sholler, D. (2008). SOA user survey: adoption trends and

characteristics. Gartner Group. Available at:

https://www.gartner.com/doc/765720/-soa-user-survey-adoption

[94] Silva, E., Pires, L. F., and Van Sinderen, M. (2009). Supporting

dynamic service composition at runtime based on end-user

requirements. In Proc. 1st International Workshop on User-

generated Services (CEUR workshop, colocated with ICSOC'09).

ISSN: 1613-0073

[95] Singh, S., Grundy, J., and Hosking, J. (2004, April). Developing

.NET Web Service-based Applications with Aspect-Oriented

Component Engineering. In The Fifth Australasian Workshop on

Software and System Architectures (AWSA'04). Vol. 7, p. 19.

Available at:

https://www.cs.auckland.ac.nz/~john-g/papers/asaw2004.pdf

[96] Singh, S., Grundy, J., Hosking, J., and Sun, J. (2005, November).

An architecture for developing aspect-oriented web services.

In Third IEEE European Conference on Web Services, 2005

(ECOWS'05). pp. 11. IEEE. DOI: 10.1109/ECOWS.2005.7

[97] Sivashanmugam, K., Miller, J. A., Sheth, A. P., and Verma, K.

(2005). Framework for semantic web process

Security Aware Service Composition

237 / 253

composition. International Journal of Electronic Commerce, 9(2),

71-106. ISSN: 1086-4415

[98] Society for Worldwide Interbank Financial Telecommunication.

SWIFT website. Available at:

http://www.swift.com/

[99] Society for Worldwide Interbank Financial Telecommunication

(2011). SWIFT messaging services. Factsheet. Available at:

http://www.swift.com/dsp/resources/documents/factsheet_messagin

g_services.pdf

[100] Souza, A. R., Silva, B. L., Lins, F. A., Damasceno, J. C., Rosa, N.

S., Maciel, P. R., et al. (2009, November). Incorporating Security

Requirements into Service Composition: From Modelling to

Execution. In Proceedings of the 7th International Joint

Conference on Service-Oriented Computing (ICSOC-ServiceWave

'09), pp. 373-388. Springer-Verlag. DOI: 10.1007/978-3-642-

10383-4_27

[101] Spanoudakis, G., and Zisman, A. (2010). Designing and Adapting

Service-based Systems: A Service Discovery Framework. Service

Engineering: European Research Results, pp. 261-297. Springer-

Verlag. DOI: 10.1007/978-3-7091-0415-6_10

[102] Stallings, W. (2013). Cryptography and Network Security:

Principles and Practice (6th Edition). Prentice Hall. ISBN:

9780133354690

[103] Stam, K.T., O'Ree, A. (2014). Apache jUDDI Client and GUI

Guide. Available at:

Security Aware Service Composition

238 / 253

http://juddi.apache.org/docs/3.2/juddi-client-

guide/pdf/jUDDI_Guide.pdf

[104] Subashini, S., and Kavitha, V. (2011). A survey on security issues

in service delivery models of cloud computing. Journal of network

and computer applications, 34(1), 1-11. DOI:

10.1016/j.jnca.2010.07.006

[105] Tavakolan, M., Zarreh, M., and Azgomi, M. A. (2009). Web

service discovery based on privacy preferences. International

Journal of Web Services Practices, 4(1), 28-35. ISSN: 1738-6535

[106] Trabelsi, S., Gomez, L., and Roudier, Y. (2007, May). Context-

aware security policy for the service discovery. In 21st

International Conference on Advanced Information Networking and

Applications Workshops, 2007 (AINAW'07). Vol. 1, pp. 477-482.

IEEE. DOI: 10.1109/AINAW.2007.132

[107] van Der Aalst, W. M., Ter Hofstede, A. H., Kiepuszewski, B., and

Barros, A. P. (2003). Workflow patterns. Distributed and parallel

databases, 14(1), 5-51. DOI: 10.1023/A:1022883727209

[108] W3C Web Service Description Working Group (2007). Web

services description language (WSDL) version 2.0 part 0: Primer.

W3C Recommendation. Available at:

http://www.w3.org/TR/wsdl20-primer/

[109] W3C Web Service Policy Working Group (2007). Web Services

Policy 1.5 - Framework (WS-Policy). W3C Recommendation.

Available at:

http://www.w3.org/TR/ws-policy

Security Aware Service Composition

239 / 253

[110] W3C Web Services Architecture Working Group (2004). Web

services glossary. W3C Working Group Note. Available at:

http://www.w3.org/TR/ws-gloss/

[111] Vijaykumar, W. WebserviceX.NET website. Available at:

http://www.webservicex.net/

[112] Xignite. Xignite website. Available at:

http://www.xignite.com/Products/

[113] Ye, Y., and Fischer, G. (2001, November). Context-aware browsing

of large component repositories. In 16th Annual International

Conference on Automated Software Engineering, 2001 (ASE'01).

Proceedings. pp. 99-106. IEEE. DOI: 10.1109/ASE.2001.989795

[114] Zakinthinos, A., and Lee, E. S. (1997, May). A general theory of

security properties. In IEEE Symposium on Security and Privacy,

1997. Proceedings. pp. 94-102. IEEE. DOI:

10.1109/SECPRI.1997.601322

[115] Zisman, A., Spanoudakis, G., and Dooley, J. (2008, September). A

framework for dynamic service discovery. In Proceedings of the

2008 23rd IEEE/ACM International Conference on Automated

Software Engineering (ASE'08), pp. 158-167. IEEE Computer

Society. DOI: 10.1109/ASE.2008.26

[116] Zisman, A., Spanoudakis, G., and Dooley, J. (2009). A Query

Language for Service Discovery. In Proceedings of 4th

International Conference on Software and Data Technologies

(ICSOFT'09), pp. 55-65. DOI: 10.5220/0002260400550065

Security Aware Service Composition

240 / 253

[117] Zisman, A., Spanoudakis, G., Dooley, J., and Siveroni, I. (2013).

Proactive and reactive runtime service discovery: a framework and

its evaluation. IEEE Transactions on Software Engineering, 39(7),

954-974. DOI: 10.1109/TSE.2012.84

Security Aware Service Composition

241 / 253

Appendix A:
Performance Test Results

A.1 Overview

In this appendix we report all the raw results from the performance

tests. In particular each section presents the test results for a given registry

size and security property in a table where each row represents one of the 30

executions of the test. The legend for the columns is the following:

A. Receive and parse query

B. Retrieval of service descriptions from the registry

C. Structural Matching

D. Security Matching

E. Abstract WF Matching

F. Inference rules

G. BPEL Generation

H. Number of generated workflows

I. Number of verified workflows

J. Composition Algorithm

K. Sub-queries time

Security Aware Service Composition

242 / 253

A.2 Registry size: 150 services

A.2.1 Security Property: Availability

A B C D E F G H I J K

173 1 64 0 6 57 930 12 8 362 940

167 2 62 0 4 61 1206 12 8 331 944

172 1 84 0 6 70 808 12 8 450 989

149 2 63 0 5 61 902 12 8 350 1034

152 1 57 1 4 62 786 12 8 311 952

138 1 64 0 5 59 784 12 8 313 945

132 1 67 0 4 54 841 12 8 280 913

134 2 88 0 6 82 927 12 8 293 965

133 1 67 0 4 57 804 12 8 308 1010

131 1 55 1 4 48 801 12 8 277 935

135 2 58 1 4 49 936 12 8 304 909

126 1 61 0 6 51 942 12 8 262 932

125 1 61 1 6 50 795 12 8 264 960

117 2 64 0 6 48 800 12 8 247 908

111 1 58 0 4 42 720 12 8 228 875

136 1 64 1 4 46 692 12 8 231 836

113 1 60 1 4 51 682 12 8 237 888

124 1 56 1 5 49 759 12 8 249 897

115 1 64 0 4 44 743 12 8 226 892

129 1 64 1 5 49 706 12 8 230 919

119 1 66 0 5 51 731 12 8 213 884

124 1 65 0 4 46 662 12 8 230 886

123 1 53 0 5 41 662 12 8 240 890

131 2 59 0 4 45 850 12 8 228 916

118 1 56 0 5 43 634 12 8 238 930

189 1 62 0 5 44 655 12 8 212 837

141 1 61 0 5 48 683 12 8 233 952

116 1 60 0 5 44 734 12 8 224 900

117 1 58 0 5 38 646 12 8 219 895

106 1 65 0 4 42 655 12 8 487 853

Security Aware Service Composition

243 / 253

A.2.2 Security Property: Integrity

A B C D E F G H I J K

128 1 63 0 4 35 328 4 4 76 465

106 2 82 0 5 59 316 4 4 72 450

130 2 58 1 5 36 286 4 4 68 442

115 1 64 0 5 34 294 4 4 73 433

144 2 64 0 5 35 313 4 4 64 450

139 1 65 0 5 42 287 4 4 66 457

122 1 65 0 4 34 293 4 4 65 438

116 1 59 1 4 38 318 4 4 73 434

116 1 59 0 7 35 296 4 4 69 417

125 1 61 0 6 36 285 4 4 67 423

126 1 78 0 6 34 287 4 4 64 433

127 1 63 0 5 32 311 4 4 66 459

142 1 68 0 5 40 315 4 4 76 480

146 2 75 0 5 48 376 4 4 89 491

103 1 63 1 6 30 536 4 4 78 461

107 1 61 1 5 37 311 4 4 65 448

121 2 75 1 5 41 401 4 4 91 537

140 1 70 0 4 46 336 4 4 75 471

123 1 68 0 5 38 293 4 4 84 522

124 1 60 0 6 39 324 4 4 84 546

110 1 68 0 5 29 339 4 4 77 458

121 1 54 0 8 32 282 4 4 78 447

94 1 61 0 6 38 308 4 4 66 471

105 1 69 0 4 38 286 4 4 67 445

114 1 59 1 4 33 261 4 4 60 423

154 1 54 0 5 28 309 4 4 67 449

305 1 60 1 4 36 278 4 4 74 446

122 1 62 0 5 36 323 4 4 74 453

107 1 53 0 4 34 475 4 4 100 545

133 2 71 0 6 62 452 4 4 90 592

Security Aware Service Composition

244 / 253

A.2.3 Security Property: PSP

A B C D E F G H I J K

132 1 85 0 5 53 983 14 12 243 1138

118 2 62 0 5 42 970 14 12 213 1091

106 1 61 0 4 48 972 14 12 188 1097

104 1 56 0 7 39 929 14 12 241 1065

115 2 54 1 5 36 1238 14 12 203 1060

118 1 65 0 5 49 947 14 12 214 1041

128 1 65 1 5 45 1094 14 12 220 1049

108 2 59 0 6 42 938 14 12 188 1058

130 1 59 0 6 49 950 14 12 217 1024

106 1 65 0 4 42 1310 14 12 216 1059

114 1 57 0 4 34 872 14 12 190 1030

101 1 56 0 6 46 1136 14 12 194 1020

102 1 62 0 4 34 940 14 12 188 1072

124 1 78 0 8 69 1027 14 12 225 1121

111 2 62 0 8 40 934 14 12 197 1053

110 2 58 0 5 47 1052 14 12 189 1052

102 1 60 1 5 43 923 14 12 195 1057

116 0 63 0 5 39 933 14 12 202 1072

119 1 69 0 4 49 905 14 12 213 1049

99 1 66 0 5 41 922 14 12 203 1058

725 1 63 0 4 41 938 14 12 186 1066

105 2 57 0 7 39 1262 14 12 192 1053

96 2 59 0 5 47 886 14 12 186 1020

105 2 63 0 5 44 947 14 12 182 1025

152 1 59 0 5 36 925 14 12 195 1031

109 1 77 0 4 52 914 14 12 209 1022

106 1 55 0 4 46 935 14 12 182 1122

90 1 61 0 4 44 1101 14 12 208 1069

114 7 56 0 4 40 894 14 12 196 1064

103 1 71 0 4 53 935 14 12 206 1053

	

 	

Security Aware Service Composition

245 / 253

A.3 Registry size: 300 services

A.3.1 Security Property: Availability

A B C D E F G H I J K

176 2 141 0 10 49 2550 39 28 773 3615

186 3 133 0 6 48 2520 39 28 1173 3701

165 2 139 1 5 48 2485 39 28 694 3604

156 2 154 0 5 46 2752 39 28 690 3615

159 3 144 0 6 49 2418 39 28 667 3642

149 3 146 1 5 50 2291 39 28 835 3476

158 2 134 0 6 53 2330 39 28 664 3678

155 2 152 0 7 51 2522 39 28 656 3770

141 3 146 1 4 49 2263 39 28 656 3657

138 3 147 0 5 45 2393 39 28 642 3589

134 2 147 1 4 47 2165 39 28 615 3582

141 3 145 0 4 47 2366 39 28 622 3670

160 3 134 0 5 47 2135 39 28 603 3564

134 2 143 0 4 45 2185 39 28 621 3600

142 2 145 0 4 44 2314 39 28 659 3535

153 2 148 0 5 47 2253 39 28 627 3556

140 3 145 0 5 46 2469 39 28 612 3623

141 2 152 0 5 43 2337 39 28 594 3563

150 2 143 0 5 46 2172 39 28 752 3486

152 3 133 0 4 51 2254 39 28 615 3596

148 2 146 0 6 43 2388 39 28 623 3655

149 3 154 0 5 45 2123 39 28 621 3674

129 2 140 1 4 46 2436 39 28 579 3503

132 2 143 1 4 41 2116 39 28 574 3481

148 3 147 0 5 44 2435 39 28 602 3523

155 3 140 1 5 45 2286 39 28 570 3461

168 3 141 0 5 53 2202 39 28 590 3593

132 2 143 1 5 46 2136 39 28 893 3586

136 2 147 0 4 44 2311 39 28 574 3487

146 2 139 0 5 41 2325 39 28 612 3561

	

 	

Security Aware Service Composition

246 / 253

A.3.2 Security Property: Integrity

A B C D E F G H I J K

143 2 142 0 5 35 830 12 12 185 1696

131 2 150 0 5 37 827 12 12 202 1744

122 2 133 0 4 31 917 12 12 168 1662

141 3 141 1 4 32 834 12 12 194 1684

136 3 142 0 5 253 905 12 12 198 1729

145 3 145 1 4 39 862 12 12 175 1727

133 3 164 0 5 41 864 12 12 174 1663

144 3 152 0 6 44 853 12 12 255 2215

135 3 139 1 4 32 984 12 12 183 1822

108 2 142 0 8 36 853 12 12 177 1608

126 3 145 1 5 32 1029 12 12 167 1704

133 2 147 0 4 31 919 12 12 267 1871

109 3 137 0 4 30 884 12 12 196 1701

146 2 144 0 5 56 841 12 12 351 1696

124 2 148 0 4 42 827 12 12 177 1688

116 2 142 0 4 34 864 12 12 170 1660

111 2 134 0 5 37 874 12 12 172 1654

131 1 147 0 5 35 837 12 12 187 1678

317 2 137 0 4 32 856 12 12 178 1668

119 1 140 0 5 45 1020 12 12 178 1641

111 3 142 0 5 37 784 12 12 175 1629

98 2 137 1 5 30 852 12 12 176 1618

118 2 130 0 4 31 852 12 12 173 1638

106 3 144 0 5 35 855 12 12 255 1629

104 3 150 0 4 35 814 12 12 169 1612

113 2 147 0 5 29 876 12 12 178 1617

117 3 151 0 5 36 1052 12 12 174 1698

113 2 148 0 5 34 926 12 12 184 1672

103 3 150 0 8 34 1066 12 12 181 1647

129 2 140 0 4 37 928 12 12 181 1655

	

 	

Security Aware Service Composition

247 / 253

A.3.3 Security Property: PSP

A B C D E F G H I J K

128 2 142 1 5 59 3366 45 39 614 4173

143 2 137 0 5 44 2997 45 39 905 4218

134 1 141 0 5 47 3364 45 39 586 4236

151 2 152 0 6 54 3274 45 39 673 4251

144 2 142 0 5 49 3460 45 39 605 4206

125 2 147 0 4 48 3023 45 39 579 4157

127 2 151 0 5 42 3056 45 39 632 4483

140 3 150 0 6 45 3236 45 39 589 4317

198 3 171 0 6 48 3040 45 39 647 4294

128 2 151 1 4 43 3297 45 39 621 4335

129 3 144 0 5 45 3119 45 39 730 4326

128 2 143 0 4 47 3147 45 39 612 4324

111 1 147 0 6 45 2520 45 39 514 3817

128 2 136 0 5 43 2716 45 39 520 3859

142 3 150 1 4 48 2606 45 39 521 3800

111 1 125 1 4 45 3064 45 39 505 3904

140 3 141 1 4 43 2581 45 39 505 3832

107 3 154 0 6 47 2748 45 39 537 3825

130 2 148 0 6 43 2487 45 39 499 3853

124 3 145 0 5 51 2994 45 39 510 3887

130 2 145 0 5 44 2487 45 39 522 3781

133 1 152 1 4 44 2733 45 39 518 3933

151 3 157 0 5 59 2493 45 39 518 3886

126 3 156 1 5 44 2808 45 39 544 3873

235 2 144 0 4 45 2509 45 39 500 3890

147 3 157 0 5 48 2710 45 39 522 3883

131 2 148 0 5 43 2567 45 39 520 3887

111 2 145 0 5 42 2939 45 39 513 3910

130 2 143 1 9 46 2567 45 39 536 3850

112 1 145 0 4 44 2741 45 39 499 3908

	

 	

Security Aware Service Composition

248 / 253

A.4 Registry size: 600 services

A.4.1 Security Property: Availability

A B C D E F G H I J K

145 3 203 0 9 43 3474 72 50 983 8116

174 5 235 0 5 42 3749 72 50 1223 8536

174 5 248 0 5 44 3661 72 50 1171 8735

162 4 242 1 4 45 3815 72 50 922 8323

168 5 226 1 4 45 3509 72 50 991 8298

181 5 257 0 5 53 3357 72 50 920 8319

186 5 242 0 5 48 3424 72 50 937 8604

166 5 265 1 5 52 3404 72 50 933 8507

150 4 244 0 6 45 3636 72 50 900 8404

164 4 243 0 5 52 3454 72 50 1099 8352

175 6 236 0 5 44 3322 72 50 900 8365

194 5 299 0 5 59 3054 72 50 1004 8448

158 5 242 0 4 44 3686 72 50 936 8612

150 4 219 0 4 45 3575 72 50 937 8556

160 4 246 0 5 49 3641 72 50 909 8428

169 4 252 0 4 45 3612 72 50 904 8358

156 5 249 0 5 43 3056 72 50 897 8400

155 4 245 1 4 47 3333 72 50 925 8674

156 5 242 1 5 48 3376 72 50 989 8558

163 3 248 0 5 46 3697 72 50 926 8416

163 4 255 0 5 44 3720 72 50 931 8437

178 5 246 0 5 48 3348 72 50 911 8415

195 5 298 0 6 62 3360 72 50 920 8522

155 4 239 0 5 47 3438 72 50 938 8695

160 5 241 0 5 47 3350 72 50 934 8613

170 4 243 0 5 228 3477 72 50 917 8506

171 6 254 1 5 50 3675 72 50 912 8498

168 4 251 1 5 47 3201 72 50 1054 8506

197 6 297 1 5 57 3253 72 50 936 8573

165 5 248 1 5 41 3142 72 50 1033 8708

	

 	

Security Aware Service Composition

249 / 253

A.4.2 Security Property: Integrity

A B C D E F G H I J K

140 3 253 0 5 35 1966 24 24 306 4323

145 4 228 1 5 35 1384 24 24 303 4298

125 4 245 0 4 35 1464 24 24 300 4311

127 5 213 0 4 27 1378 24 24 333 4415

128 6 251 0 4 36 1375 24 24 307 4274

121 4 207 0 4 28 1432 24 24 366 4682

138 5 210 0 4 26 1607 24 24 303 4244

131 5 211 0 4 34 1490 24 24 297 4313

122 4 206 0 4 28 1390 24 24 442 4257

129 4 206 0 4 35 1404 24 24 291 4299

143 5 214 0 5 29 1381 24 24 303 4259

121 3 211 1 4 25 1628 24 24 310 4294

152 3 236 0 4 29 1703 24 24 306 4215

136 3 211 1 5 37 1439 24 24 313 4344

117 4 207 1 4 25 1386 24 24 304 4253

127 4 208 1 4 26 1689 24 24 334 4378

152 3 235 0 4 27 1377 24 24 312 4180

126 5 209 0 4 35 1415 24 24 306 4294

338 3 233 0 6 36 1348 24 24 276 4043

130 3 238 0 4 26 1385 24 24 288 4117

113 6 217 1 5 27 1544 24 24 292 4147

109 3 202 0 4 27 1385 24 24 296 4133

105 3 208 0 4 37 1403 24 24 408 4159

138 5 229 0 4 24 1438 24 24 283 4117

101 3 207 0 4 32 1388 24 24 292 4132

109 3 203 0 3 27 1533 24 24 296 4139

114 5 226 1 4 50 1385 24 24 294 4137

132 4 237 0 4 33 1358 24 24 303 4118

99 4 206 1 4 33 1408 24 24 295 4143

109 5 204 0 4 26 1435 24 24 302 4181

	

 	

Security Aware Service Composition

250 / 253

A.4.3 Security Property: PSP

A B C D E F G H I J K

116 3 204 1 5 50 4220 68 60 724 8432

150 4 243 0 4 41 4205 68 60 732 8635

158 5 250 0 4 42 4436 68 60 734 8515

161 3 304 0 5 46 4095 68 60 728 8471

156 5 249 1 5 46 4298 68 60 977 8522

143 4 241 0 6 59 3936 68 60 829 8553

147 4 258 0 5 43 3874 68 60 730 8528

148 4 246 1 5 46 3688 68 60 731 8738

134 4 239 1 4 50 4158 68 60 744 8710

147 5 251 0 4 44 4076 68 60 848 8555

155 4 245 0 5 44 4346 68 60 726 8480

142 4 244 0 5 44 4259 68 60 715 8489

165 5 243 0 5 47 4115 68 60 725 8505

179 6 292 1 6 59 4096 68 60 728 8549

144 5 238 0 5 42 3859 68 60 750 8715

152 3 250 0 5 42 3979 68 60 757 8736

144 5 244 0 4 49 4094 68 60 749 8584

150 5 250 1 5 42 4374 68 60 740 8550

146 4 246 0 5 44 3981 68 60 736 8547

152 5 248 0 5 45 4092 68 60 751 8583

186 6 302 0 6 55 3670 68 60 807 8595

148 6 245 0 4 52 5789 68 60 813 8929

144 5 248 0 5 64 3692 68 60 1864 8871

161 4 241 0 5 42 4258 68 60 774 8799

150 5 229 0 4 44 4019 68 60 917 8681

169 5 251 0 5 41 4514 68 60 746 8608

139 4 250 1 5 57 4084 68 60 831 8574

149 5 255 0 5 44 4109 68 60 997 8641

147 5 254 0 6 46 4193 68 60 746 8612

149 3 254 1 5 51 3940 68 60 757 8872

	
	 	

Security Aware Service Composition

251 / 253

A.5 Registry size: 1200 services

A.5.1 Security Property: Availability

A B C D E F G H I J K

169 6 392 0 4 35 5324 120 79 1683 20534

221 8 454 0 5 45 5255 120 79 1523 21006

196 8 483 0 6 41 5181 120 79 1497 20964

382 8 470 1 5 46 5273 120 79 1458 21036

190 6 450 0 5 44 5271 120 79 1573 21031

197 8 465 0 5 45 5918 120 79 1482 21125

379 7 567 0 4 52 5429 120 79 1508 21072

183 9 463 0 5 44 5571 120 79 1450 21078

196 8 479 0 6 52 5319 120 79 1476 21161

206 8 455 1 5 45 5117 120 79 1470 21138

353 7 470 0 6 44 5457 120 79 1472 21195

193 8 432 0 4 50 5174 120 79 1521 21082

328 8 459 0 4 45 5338 120 79 1449 21189

175 9 462 0 5 47 5336 120 79 1488 21168

180 8 471 0 6 41 5443 120 79 1482 21171

193 7 465 0 5 44 5172 120 79 1454 21117

333 6 458 1 4 52 5180 120 79 1464 21142

332 6 457 0 6 46 5221 120 79 1515 21196

185 7 475 1 4 40 5273 120 79 1568 21152

190 6 467 0 4 46 5139 120 79 1532 21373

364 6 472 0 5 46 5325 120 79 1491 21276

177 9 466 1 5 52 5150 120 79 1492 21211

196 9 470 1 4 46 5524 120 79 1507 21290

178 6 462 0 5 46 5330 120 79 1473 21371

185 7 433 0 4 42 5280 120 79 1565 21344

224 7 480 0 6 44 6159 120 79 5464 21642

235 9 527 0 5 70 5177 120 79 1707 21197

202 7 470 1 5 45 5402 120 79 1510 21401

178 8 486 0 6 46 5269 120 79 1570 21448

282 7 448 0 5 51 5593 120 79 1490 21503

	

 	

Security Aware Service Composition

252 / 253

A.5.2 Security Property: Integrity

A B C D E F G H I J K

171 8 487 1 5 35 2180 40 40 510 11827

162 7 513 1 6 40 2291 40 40 777 11865

147 7 461 0 5 65 2625 40 40 522 11639

189 7 472 1 5 34 2459 40 40 516 11954

182 9 529 1 5 38 2815 40 40 498 11544

187 10 449 0 4 35 2431 40 40 531 11525

145 8 486 1 5 36 3065 40 40 482 11579

168 8 473 0 5 36 2497 40 40 599 11559

161 7 489 1 4 34 2731 40 40 495 11559

167 7 484 0 5 36 2529 40 40 486 11607

147 7 491 0 5 39 2460 40 40 500 11566

324 6 491 0 6 36 2437 40 40 489 11624

179 7 443 0 15 33 2450 40 40 576 11663

178 8 470 0 4 49 2155 40 40 505 11634

182 9 563 0 6 60 2404 40 40 566 11683

171 8 462 0 5 50 2351 40 40 533 11695

180 7 470 0 5 33 2593 40 40 463 11112

133 7 447 0 61 39 2440 40 40 525 11225

130 6 444 0 4 34 2400 40 40 458 11092

316 7 463 0 6 35 2360 40 40 454 11109

151 8 463 0 5 45 2421 40 40 458 11138

151 9 468 0 6 32 2452 40 40 649 11147

118 8 461 0 6 34 2376 40 40 537 11148

161 8 449 0 5 46 2037 40 40 458 11190

128 7 434 1 4 32 2175 40 40 486 11395

157 6 390 0 4 33 2309 40 40 628 11346

144 8 444 0 6 32 4273 40 40 736 11236

124 7 382 0 4 26 2312 40 40 592 11275

136 7 471 0 4 33 2708 40 40 463 11177

145 7 469 0 5 35 2429 40 40 473 11079

	

 	

Security Aware Service Composition

253 / 253

A.5.3 Security Property: PSP

A B C D E F G H I J K

187 7 448 0 5 43 6911 104 104 1036 18701

182 7 473 0 5 41 6936 104 104 1340 19161

174 6 470 0 5 43 7035 104 104 1060 19120

180 7 469 0 4 43 7169 104 104 1084 19068

177 8 454 1 4 54 7202 104 104 1050 19163

172 7 463 0 6 44 6963 104 104 1060 19156

182 7 463 1 4 42 6751 104 104 1147 19140

196 7 463 0 5 47 6805 104 104 1081 19217

179 6 440 0 5 44 6760 104 104 1181 19195

191 8 468 0 4 45 6991 104 104 1100 19208

184 7 458 0 5 52 6884 104 104 1562 19340

170 7 454 0 5 45 6863 104 104 1065 19244

188 7 462 1 5 44 6943 104 104 1327 19186

202 8 468 0 6 48 6868 104 104 1172 19229

188 7 465 0 6 44 6884 104 104 1099 19245

179 7 481 0 6 56 7298 104 104 1081 19229

194 7 464 1 4 43 7561 104 104 1111 19225

198 9 460 1 4 65 7159 104 104 1078 19293

183 8 462 0 5 41 7324 104 104 1097 19310

191 7 461 0 6 41 6939 104 104 1088 19332

202 7 462 0 5 43 7015 104 104 1080 19378

192 6 474 0 4 43 6887 104 104 1140 19360

179 6 465 0 5 44 7020 104 104 1109 19410

204 7 463 0 6 53 6939 104 104 1277 19392

216 7 473 0 5 42 6882 104 104 1262 19413

186 9 474 0 4 43 7505 104 104 1106 19431

212 9 462 0 5 42 6926 104 104 1193 19377

185 8 459 0 5 47 6936 104 104 1088 19500

200 7 477 0 6 43 6917 104 104 1286 19521

212 7 487 0 5 44 6950 104 104 1439 19515

	

