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On the IYB-property in some solvable
groups

Florian Eisele

Abstract. A finite group G is called Involutive Yang-Baxter (IYB) if
there exists a bijective 1-cocycle χ : G −→ M for some ZG-module M .
It is known that every IYB-group is solvable, but it is still an open ques-
tion whether the converse holds. A characterization of the IYB property
by the existence of an ideal I in the augmentation ideal ωZG comple-
menting the set 1 − G lead to some speculation that there might be a
connection with the isomorphism problem for ZG. In this paper we show
that if N is a nilpotent group of class two and H is an IYB-group of
order coprime to that of N , then N⋊H is IYB. The class of groups that
can be obtained in that way (and hence are IYB) contains in particu-
lar Hertweck’s famous counterexample to the isomorphism conjecture as
well as all of its subgroups. We then investigate what an IYB structure
on Hertweck’s counterexample looks like concretely.

Mathematics Subject Classification (2010). 20C05, 16S34.

Keywords. Involutive Yang-Baxter Groups, Integral Group Rings.

1. Introduction

Recently there has been considerable interest in the problem of characterizing
those finite groups G for which there exists a bijective 1-cocycle χ : G −→ M
(M being a finite ZG-module with |M | = |G|). A group for which such a co-
cycle exists is called an Involutive-Yang-Baxter group. It is easily seen that
preimages of submodules of M are subgroups of G, and hence Hall subgroups
of all possible orders exist in G (since submodules of corresponding order exist
in M). By a well-known theorem of Hall it thus follows that IYB-groups are
solvable. This was first observed in [ESS99], which is also the article that first
introduced the notion of an IYB-group. Whether, conversely, every solvable
group is IYB is an open question. There is an equivalent formulation of the
IYB property, stating that a group is IYB if and only if there is a left ideal I
in the augmentation ideal ωZG such that the elements of the form 1−g form
a complement of I, that is, they form a set of residue class representatives

http://arxiv.org/abs/1304.2063v1


2 Florian Eisele

for the quotient ωZG/I. The relation with bijective 1-cocycles is evident:
given such an ideal I, the map G −→ ωZG/I which maps g to 1 − g + I is
a bijective 1-cocycle. Now if I were a two-sided ideal, then G would be the
circle group of the radical ring ωZG/I and hence it would be determined by
its group ring. But even if I is not two-sided, the group (1 + I) ∩ U(ZG)
complements the trivial units ±G in the unit group U(ZG). However it is not
clear what implications, if any, the existence of a (non-normal) complement
to the trivial units has. In the introduction to [CJO12] it is conjectured that
there is a connection between the question whether every solvable group is
IYB and the integral isomorphism problem. In this short article we show
that the counterexample to the isomorphism problem given by Hertweck in
[Her01] cannot serve as an example for a solvable group which is not IYB
(and we also exclude a plethora of similarly constructed groups). This is done
in some generality in Theorem 2.6, which states that the semidirect product
of a nilpotent group of class two with any IYB-group is again IYB. A deeper
connection with the isomorphism problem therefore seems unlikely. We also
give an explicit description of a bijective 1-cocycle on Hertweck’s counterex-
ample to the isomorphism problem. This seems interesting as it shows that
in the context of IYB-groups there is apparently nothing special about Her-
tweck’s group, which reinforces the conjecture that all soluble groups might
be IYB.

2. Involutive Yang-Baxter structures and their construction

Definition 2.1. 1. A finite group G is called Involutive Yang-Baxter (IYB)
if there is a (left) ZG-module M and a bijective 1-cocycle χ : G −→ M .
We call the pair (M,χ) an IYB-structure on the group G.

2. Assume we are given, in addition to G, a group A which acts on G (from
the left) by automorphisms. If M is a G⋊A-module and χ : G −→ M |G
is a bijective 1-cocycle with the property that

χ(ag) = aχ(g) for all a ∈ A (1)

then we call the pair (M,χ) an A-equivariant IYB-structure on G. Note
that a 1-equivariant IYB-structure simply an ordinary IYB-structure.

3. Let (M,χ) and (M ′, χ′) be two A-equivariant IYB-structures on G.
Then (M,χ) and (M ′, χ′) are called isomorphic if there is a G ⋊ A-
module isomorphism ϕ : M −→ M ′ such that χ′ = ϕ ◦ χ.

The following two propositions show that a semidirect product N ⋊H
with factors of coprime orders is IYB if and only if N has an H-equivariant
IYB-structure and H is IYB. For a p-group that has an automorphism group
with a large p′-part there may be significantly fewer IYB-structures equivari-
ant with respect to these automorphisms than there are IYB-structures in
general. This is evidenced for instance by Theorem 3.1 below, as well as by
abelian groups where the situation is similar. So finding a p-group which has
no equivariant IYB-structure with respect to some solvable p′-group acting
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on it by automorphisms would lead to a solvable group which is not IYB.
However, at this point, it is unclear whether such a p-group exists, and if so,
where to look for it.

Proposition 2.2 (see also [CJdR10, Theorem 3.4]). Let G = N⋊H be a finite
group. If H is IYB and N has an H-equivariant IYB-structure, then G is
IYB.

Proof. Let (MH , χH) be an IYB-structure on H , and let (MN , χN ) be an
H-equivariant IYB-structure on N . Note that MN is a G-module by defini-
tion, and MH can be construed as a G-module by letting N act trivially.
Then M := MN ⊕ MH is a ZG-module and χ : G −→ M : n · h 7→
(χN (n), χH(h)) (where n ∈ N and h ∈ H) defines a bijective 1-cocycle on
G. �

The following proposition shows that the converse of the above is true
if N is a normal Hall-subgroup of G, that is, if (|N |, |H |) = 1.

Proposition 2.3. Assume G = N ⋊H is IYB and assume that N is a Hall-
subgroup of G. Then H and N are IYB, and N has an H-equivariant IYB-
structure.

Proof. Let (M,χ) be an IYB-structure on G. Decompose M = MN ⊕MH ,
where |MN | = |N | and |MH | = |H | (clearly this is possible since M is an
RG-module with R = Z/|G| ∼= Z/|N | ⊕ Z/|H |). Since G is IYB it must
in particular be solvable, and therefore all Hall-subgroups of a given order
are conjugate. Moreover the preimages of submodules of M under χ form
subgroups of G (this is an elementary computation). Since N is a normal
Hall-subgroup it follows that N = χ−1(MN ). Moreover there is a g ∈ G
such that χ−1(MH) = gH . The map χ̃ := g−1 · χ(g−) is also a bijective
1-cocycle, and χ̃−1(MH) = H . Clearly the restricted maps χ̃|H : H −→ MH

and χ̃|N : N −→ MN are bijective 1-cocycles. All that is left to verify if that
χ̃|N is H-equivariant. But

χ̃(hn)︸ ︷︷ ︸
∈MN

= hnχ̃(h−1)︸ ︷︷ ︸
∈MH

+ hχ̃(n)︸ ︷︷ ︸
∈MN

+ χ̃(h)︸︷︷︸
∈MH

(2)

Since M = MN ⊕MH is a direct sum it follows χ̃(hn) = hχ̃(n). (As a side
note: it also follows that N acts trivially on MH) �

In order to prove Theorem 2.6 below we need a few facts on the aug-
mentation ideal in an integral group ring. In what follows we denote the
augmentation ideal in a group ring RG by ωRG and its i-th power by ωiRG.

Remark 2.4 (see [MS02, Lemma 9.3.6 and Corollary 9.3.7] and [Pas68, The-
orem 7.1]). We are going to need the following two well-known facts. Let G
be a finite group.

1. There is an isomorphism of abelian groups

G/[G,G]
∼
−→ ωZG/ω2

ZG : g[G,G] 7→ 1− g + ω2
ZG (3)
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2. ω2
ZG∩ (1−G) = 1− [G,G] and ω3

ZG∩ (1−G) = [[G,G], G] (the more
general assertion that ωi

ZG ∩ (1 − G) is equal to the i-th term in the
lower central series is, or rather was, known as the dimension subgroup
conjecture; it is wrong in general, but true for odd order groups).

Theorem 2.5 (see [San72, Theorem 1.24]). Let G be a finite group. Then the
embedding

[G,G]/[[G,G], G] −→ ω2
ZG/ω3

ZG : g 7→ 1− g (4)

splits (as a homomorphism of abelian groups).

Theorem 2.6. Assume N is a nilpotent group of class two with a group H
of coprime order acting on it by automorphisms. Then N possesses an H-
equivariant IYB-structure. In particular, N ⋊ H is IYB if and only if H is
IYB.

Proof. We can assume without loss that N is a p-group for some prime p
which does not divide the order of H . Let Zp denote the p-adic integers.
Consider the ZpH-module M := ω2

ZpN/ω3
ZpN . We claim that the set 1 −

N ′ + ω3
ZpN (that is, the elements 1 − n + ω3

ZpN for n ∈ N ′ = [N,N ])
form an H-submodule of M . Clearly H maps elements of the form 1 − n to
elements of the same form, so all we need to check is that these elements form
a Zp-submodule (of course this was already implicitly used in the formulation
of Theorem 2.5). So assume n,m ∈ N ′ ⊆ Z(N). We get

(1− n) + (1−m) = (1−mn) + (1−m)(1− n) ≡ 1−mn mod ω3
ZpN (5)

Now we will show that 1 − N ′ + ω3
ZpN is complemented in M as a ZpH-

module. Since every ZpH-module is relatively 1-projective it follows that
1−N ′ + ω3

ZpN is complemented as a ZpH-module if and only if it is com-
plemented as a Zp-module. A more elementary way of stating this is that if
π ∈ EndZp

(ω2
ZpN/ω3

ZpN) is a projection to 1−N ′ + ω3
ZpN , then

π̂ : ω2
ZpN/ω3

ZpN −→ ω2
ZpN/ω3

ZpN : x 7→
1

|H |

∑

h∈H

h−1π(h · x) (6)

is a projection onto 1−N ′+ω3
ZpN as well, but π̂ ∈ EndZpH(ω2

ZpN/ω3
ZpN).

Therefore the kernel of π̂ is an H-module complement for 1−N ′ + ω3
ZpN .

The existence of a Zp-module complement is precisely what is asserted in
Theorem 2.5. Since N acts trivially on ω2

ZpN/ω3
ZpN the complement for

1−N ′ +ω3
ZpN we just obtained is automatically a ZpN -module. Hence we

have obtained an H-stable ideal I ≤ ωZpN such that I ∩ (1 −N) = ∅ (here
we use the second part of Remark 2.4) and

|ωZpN/I| = |ωZpN/ω2
ZpN | · |ω2

ZpN/I| = |G/G′| · |G′| = G (7)

where the first part of Remark 2.4 was used. It follows that I is a complement
for the set 1−N ⊂ ωZpN . Therefore the map

χ : N −→ ωZpN/I : n 7→ 1− n+ I (8)
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is a bijective 1-cocycle which is A-equivariant due to I being stable under the
induced action of A on ZpN . �

The following is another way of constructing an equivariant IYB-struc-
ture on nilpotent groups of class two, provided the order of the group is
odd.

Remark 2.7 (see [AW73] or [CJO12, Proposition 9.4]). For a group N of odd
order there is a well-known IYB-structure on N , by defining the following
addition on N

n1 + n2 := n1n2

√
[n2, n1] (9)

and letting N act from the left by the formula n1n2 := n1n2 + n−1
1 (owed

to the fact that the elements of N , when construed as an N -module, should
correspond to the elements 1−n in the corresponding quotient of the augmen-
tation ideal of the group ring). It is clear by definition that this IYB-structure
is Aut(N)-equivariant. Of course this construction only works when N is of
odd order, because only then will square roots of group elements necessarily
exist.

The following proposition is one of the ingredients required in order to
construct an explicit IYB-structure on the counter-example to the isomor-
phism problem given by Hertweck. It is a slight generalization of [CJdR10,
Corollary 3.5], the latter stating that given two groups G and H , both being
IYB and H being a permutation group, their wreath product G ≀ H will be
IYB as well.

Proposition 2.8. Let G be a finite group and let A be a group acting on
G by automorphisms. Assume G has an A-equivariant IYB-structure. Then
G(n) := G × · · · × G (n factors) has an A ≀ Σn-equivariant IYB-structure
(where Σn denotes the symmetric group on n points).

Proof. Let (M,χ) be an A-equivariant IYB-structure on G. Then A ≀Σn acts
on both G(n) andM (n) :=

⊕n
M in the natural way, by letting (a1, . . . , an)·σ

(where σ ∈ Σn and a1, . . . , an ∈ A) send (x1, . . . , xn) (an element of M (n) or
G(n)) to (a1 · xσ−1(1), . . . , an · xσ−1(n)). We define

χ(n) : G(n) −→ M (n) : (g1, . . . , gn) 7→ (χ(g1), . . . , χ(gn)) (10)

Clearly this is a bijective 1-cocycle, and A≀Σn-equivariance is also clear, since

χ(n)((a1,...,an)·σ(g1, . . . , gn)) = (χ(a1gσ−1(1)), . . . χ(
angσ−1(n)))

= (a1 · χ(gσ−1(1)), . . . , an · χ(gσ−1(n)))

= (a1, . . . , an) · σ · χ(n)(g1, . . . , gn) �

It is of course trivial that if G has an A-equivariant IYB-structure, and
ϕ : B −→ A is a homomorphism from another group into A, then G has a
B-equivariant structure, where b ∈ B acts on G in the same way as ϕ(b).
So it follows more generally that if a finite group H is IYB and it acts on
G(n) through automorphisms induced by elements of A ≀Σn, then G(n)

⋊H is
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IYB. We can also write down its IYB-structure explicitly provided we know
(explicitly) a B-equivariant IYB-structure on G and an IYB-structure on H .

3. Hertweck’s counterexample to the isomorphism problem

In [Her01], M. Hertweck gave an example of a finite group X such that ZX ∼=
ZY for some other finite group Y not isomorphic toX . On the other hand it is
well-known that the circle group of a radical ring (a concept closely related to
IYB-groups) has the property that ZX ∼= ZY implies X ∼= Y (see for instance
[MS02, Chaper 9.4]). Therefore there was some hope that Hertweck’s group
X might be an example of a solvable group which is not IYB. However this
is not the case. Hertweck’s counterexample X is a semidirect product Q⋊P ,
where Q is a 97-group of nilpotency class two, and P is a 2-group which is a
semidirect product of two abelian groups. By Theorem 2.6 it is already clear
that X is indeed IYB. Note that the group Y with ZY ∼= ZX is constructed
in the same way as X , implying that it is IYB as well. In this section we are
going to explain how to explicitly construct an IYB-structure on X . There
clearly is no problem constructing an IYB-structure on P . The group Q is a
direct product of four cyclic groups of order 97, and eight times a group D
which is described below. P acts separately on the direct factors involving
cyclic groups and those involvingD, acting through Aut(D)≀Σ8 on the latter.
Due to Proposition 2.8 it hence suffices to find an IYB-structure on D which
is equivariant with respect to the right subgroup of Aut(D).

Now let q be a prime such that q ≡ 1 mod 4, and let

D := ((d3 : dq3)× (d2 : dq2))⋊ (d1 : dq1) (11)

where d3 is central and dd1

2 = d2d3 (note that this is isomorphic to the q-Sylow
subgroup of GL2(q)). Define the following automorphisms of D:

τ :





d1 7→ d2
d2 7→ d1
d3 7→ d−1

3

α1 :





d1 7→ dζ1
d2 7→ d2
d3 7→ dζ3

α2 :





d1 7→ d1
d2 7→ dζ2
d3 7→ dζ3

(12)

where ζ is a generator of the multiplicative group (Z/q)×. Note that τ2 = id,
τ /∈ 〈α1, α2〉 = 〈α1〉×〈α2〉 (since the αi stabilize the subgroup 〈d1〉, but τ does
not). Moreover ατ

1 = α2 and ατ
2 = α1. Hence it follows that A := 〈τ, α1, α2〉

is isomorphic to (Cq−1 ×Cq−1)⋊C2. In particular it has order 2 · (q− 1)2. It
has a faithful representation over F2

q, which can be obtained by considering
the action of A on Q/Z(Q):

∆ : A −→ GL2(q) : τ 7→

(
0 1
1 0

)
α1 7→

(
ζ 0
0 1

)
α2 7→

(
1 0
0 ζ

)
(13)

Note moreover that since q ≡ 1 mod 4 the group A contains a 2-Sylow
subgroup of Aut(Q). To see this note that GL2(q) has order (q

2−1)·(q2−q) =
q·2·(q−1)2· q+1

2 , and q+1
2 is odd. Therefore ∆(A) contains a 2-Sylow subgroup

of GL2(q). The elements in Aut(Q) which act trivial on Q/Z(Q) must send

d1 to d1d
i1
3 , d2 to d2d

i2
3 and d3 = dd1

2 d−1
2 to d3 for some i1, i2 ∈ Z. It is easily
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seen that the order of such an automorphism is either q or one. Hence the
q′-Sylow subgroups of Aut(Q) have the same order as those of GL2(q).

Now we would like to describe an A-equivariant IYB-structure on D.
Together with 2.8 and the known construction of an IYB-structure on a
semidirect product of abelian groups this is enough to piece together an
IYB-structure on the group given by Hertweck. We will indeed see that, up to
isomorphism,D has a unique A-equivariant IYB structure. While this unique-
ness is not necessary as far as constructing an IYB-structure on Hertweck’s
counter-example goes, it shows that there is not much room for different equi-
variant IYB-structures (whereas computational experiments seem to indicate
that non-equivariant IYB-structures on p-groups exist in abundance).

Theorem 3.1. Let M be the vector space F
3
q with the following left action of

D ⋊A:

d1 7→




1 1 0
0 1 0
0 0 1


 d2 7→




1 0 1
0 1 0
0 0 1


 d3 7→ id a︸︷︷︸

∈A

7→ det(∆(a)) ·




1 0 0
0
0

∆(a−1)⊤


 (14)

Then the map

χ : D −→ M : dn1

1 dn2

2 dn3

3 7→




n3 −
1
2 · n1n2

− 1
2 · n2
1
2 · n1


 (15)

defines an A-equivariant IYB-structure on D, and (M,χ) is up to isomor-
phism the only A-equivariant IYB-structure on D.

Proof. We start with an arbitrary A-equivariant IYB-structure (M,χ) on D
and show that it has to be of the claimed form. First note that A contains the
element τα1 of order 2(q − 1). The q-adic group ring ZqC2(q−1) decomposes
as a direct sum of the unramified extension Zq[ζ2(q−1)] and a number of
copies of Zq. The latter correspond to non-faithful representations. Hence any
faithful ZqC2(q−1)-module has a direct summand of the form Zq[ζ2(q−1)]/q

i

with i ≥ 1. Since A acts faithfully on D it must act in such a manner on
M as well, forcing M to be the direct sum Zq[ζ2(q−1)]/q ⊕ Zq/q (as all other
possibilities would have a cardinality that is too large). That is, M has to be
an Fq-vector space.

Next note that the kernel of the action of D on M must be a normal
subgroup of D which is stable under the action of A. There are only three
such subgroups of D, namely 1, Z(D) = 〈d3〉 and D itself. Clearly D must
act non-trivially on M , since otherwise χ would be an isomorphism between
D and the additive group of M . If D were to act faithfully on M , then
it would map onto a q-Sylow subgroup of Aut((M,+)) ∼= GL3(q). Then A
would be embedded in the normalizer of such a q-Sylow subgroup. This is
impossible, since such a normalizer is isomorphic to the group of invertible
upper triangular 3 × 3-matrices over Fq, and there is no element of order
2(q − 1) in that group.

We have hence established that M is a faithful D/Z(D)-module. Clearly
M cannot be semisimple (because then D would act trivially). Assume
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Rad2(M) 6= 0. Then M > Rad(M) > Rad2(M) > 0 would be a flag which
must be stabilized by A, again forcing A into a subgroup of GL3(q) isomor-
phic to the group of invertible upper triangular matrices, which was impos-
sible. Hence Rad2(M) = 0 and Rad(M) is either one or two dimensional and
semisimple. Assume Rad(M) is two-dimensional. Then Rad(M) = Soc(M)
(since otherwise M would be semisimple). But for any z ∈ Z(D) and any
g ∈ D we have gχ(z) + χ(g) = χ(gz) = χ(zg) = zχ(g) + χ(z) = χ(g) + χ(z),
which implies χ(z) ∈ Soc(M). But then χ(zi) = iχ(z) for all i ∈ Z, which
implies that χ(Z(D)) is a one-dimensional subspace of Rad(M). But A must
fix this subspace (since A fixes Z(D)), and therefore A fixes the flag M >
Rad(M) > χ(Z(D)) > 0, which is impossible by the same arguments as
before. It follows hence that Rad(M) is one-dimensional. The dual of M is
thus an FqD-module with simple top and radical length two. This means

that this dual is an epimorphic image of FqD/Rad2(FqD), and it is in fact
isomorphic since the latter also has dimension 3. Hence M is isomorphic (as

an FqD-module) to the dual of FqD/Rad2(FqD). So we can assume with-
out loss that d1 and d2 act on M as claimed. Write ∆M : D ⋊ A −→
GL3(q) for the action of D ⋊ A on M . Then it follows, using the identity
∆M (a) ·∆M (di) ·∆M (a−1) = ∆M (adi) for all a ∈ A and i ∈ {1, 2}, that an
element a ∈ A acts in the following way




ϕ(a) g1(a) g2(a)

0
0

ϕ(a) ·∆(a−1)⊤


 (16)

where ϕ : A −→ F
×
q is a group homomorphism and g1, g2 are arbitrary

functions from A to Fq. We can conjugate the matrices in such a way that g1
and g2 both become the zero map (just find an A-stable complement for the
subspace generated by the first standard basis vector).

Since we already know that Z(D) maps into the socle of M we can say
that χ(d3) must be a non-zero multiple of the first standard basis vector.
By applying an automorphism of M we can hence choose χ(d3) to be the
first standard basis vector, and therefore χ(di3) = i · χ(d3) for all i ∈ Z. The
A-equivariance of χ now implies ϕ = det ◦∆. Now we determine the images
χ(d1) and χ(d2). The fact that α2 fixes d1 implies that χ(d1) lies in the
eigenspace of ∆M (α1) with associated eigenvalue one. So χ(d1) = (0, 0, x)⊤

for some x ∈ F
×
q . In the same manner one sees that χ(d2) = (0, y, 0)⊤ for some

y ∈ F
×
q . Using

τd1 = d2 we can conclude x = −y (again by A-equivariance).

By comparing χ(d1d2) = d1χ(d2) + χ(d1) = (−x,−x, x)⊤ and χ(d1d2) =
χ(d−1

3 d2d1) = −χ(d3) + d2χ(d1) + χ(d2) = (x − 1,−x, x)⊤ we infer that
−x = x− 1, i. e. x = −1/2. Formula (15) now follows easily: χ(dn1

1 dn2

2 dn3

3 ) =
n3χ(d3) + dn1

1 n2 · χ(d2) + n1 · χ(d1). �
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4. Concluding remarks

There are actually not that many groups of small order which cannot be seen
to be IYB using Theorem 2.6. Using the SmallGroups library that comes with
the computer algebra system Gap ([GAP13]) one can show that the potential
counterexamples of order ≤ 200 have orders 48, 96, 144, 162 and 192 (exclud-
ing prime powers). For all except the groups of order 192 one can compute an
IYB-structure using a brute-force approach (a slightly more intelligent ap-
proach might actually work for the groups of order 192 as well). For (small)
p-groups one can use a heuristic approach to compute an IYB-structure.
Namely, given a p-group P one can pick a normal subgroup N = 〈n〉 of or-
der p. Assume we already computed an ideal I ≤ ωZpG/N complementing
1−G/N . Then we can take the preimage of I under the natural epimorphism
ωZpG ։ ωZpG/N and try to find a maximal submodule in this preimage
which does not contain 1 − n. If such a maximal submodule exists then it
is indeed an ideal in ωZpG complementing 1 − G. While such a maximal
submodule does not always exist, trying this multiple times with different
subgroups N and different choices of I will typically work (actually no po-
tential counterexamples were found in this way). Using an implementation
of this heuristic in Gap it was possible to show that all 2-groups of order up
to (and including) 512 are IYB. Also all other p-groups of order strictly less
than 1024 turned out to be IYB. So the evidence that all nilpotent or even
all solvable are IYB seems to be piling up.
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