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Multiple mapping conditioning �MMC� combines the probability density function �PDF� and the
conditional moment closure �CMC� methods via the application of a generalized mapping function
to a prescribed reference space. Stochastic and deterministic formulations of MMC exist, and the
deterministic implementation has been applied here to a piloted jet diffusion flame �Sandia Flame
D�. This paper focuses on the feasibility of MMC and its closures for real �laboratory� flames and
a relatively simple one-dimensional reference space that represents mixture fraction has been used.
The remaining chemically reactive species are implicitly conditioned on mixture fraction and their
fluctuations around the conditional mean are neglected. This work primarily evaluates the ability of
the deterministic form of MMC to provide accurate and consistent closures for the mixture fraction
PDF and the conditional scalar dissipation which do not rely on presumed shape functions for the
PDF such as the commonly used �-PDF. Computed probability distributions agree well with
measurements, and a detailed comparison of the modeled conditional and mean scalar dissipation
with experimental data and conventional closures demonstrate MMC’s potential. Predictions of
reactive species and temperature are in good agreement with experimental data and similar in
quality to singly conditioned, first-order CMC predictions. MMC therefore provides an
attractive-since consistent-alternative approach for the modeling of scalar mixing in turbulent
reacting flows. © 2009 American Institute of Physics. �DOI: 10.1063/1.3081553�

I. INTRODUCTION

The accurate prediction of turbulent small-scale scalar
mixing is one of the key challenges of turbulence modeling
due to its importance in, for example, heat transfer, atmo-
spheric pollutant dispersion, and combustion. Scalar mixing
is particularly relevant for reacting flows where fuel and oxi-
dizer are issued separately into the combustion chamber and
where the combustion process is largely controlled by turbu-
lent mixing rather than chemical kinetics. The difficulty for
the modeller is not only that turbulence is a stochastic phe-
nomenon but also that scalar mixing is a molecular process
which occurs at the smallest scales. The smallest scales
are explicitly calculated in direct numerical simulations
�DNSs� but computational expense limits application to
flows with relatively low Reynolds numbers in simple geom-
etries. Computational modeling of reacting flows of engi-
neering interest is currently limited to Reynolds averaged
Navier–Stokes approaches �RANS� and large-eddy simula-
tions �LES�. In both methods the smallest scales are not
resolved and modeling is required to describe the scalar
mixing.

In nonpremixed combustion the degree of scalar mixing
is often characterized by the mixture fraction, Z, and in tur-

bulent flows this is a stochastic variable with a certain prob-
ability density function �PDF�, PZ. The PDF can be modeled
with knowledge of its first and second moments and by as-
suming a certain shape such as a Gaussian or �-function.

Normally, model equations are solved for the mean, Z̃, and

variance, Z�2̃, of mixture fraction. The rate of dissipation of
mixture fraction variance is determined by the quantity
NZ=D�Z�Z �called the scalar dissipation rate� where D is
the molecular diffusion coefficient. The importance of scalar
dissipation rate to turbulent nonpremixed combustion is
well known. Gradients of reactive species and temperature
are correlated with gradients of the mixture fraction and
therefore NZ controls the diffusional fluxes of these quanti-
ties to and from the reaction zone. The strong physical cor-
relation between chemical source and scalar space diffusion
terms is manifested in mixture fraction models such as the
flamelet1 and conditional moment closure �CMC� methods2–4

where the conditionally averaged dissipation �NZ ���
��D�Z�Z ��� appears as an explicit parameter in the
model formulation. Here � is the sample space of mixture
fraction. Its importance is not just limited to flamelet and
CMC methods but extends to joint PDF combustion models5

where scalar dissipation conditioned on all scalars �not just
on mixture fraction� appears as an unclosed parameter.

The unconditional Favre averaged scalar dissipation rate
is related to the scalar variance by a dissipation time scale �N

according to
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ÑZ =
Z�2̃

�N
. �1�

It is common to assume that �N is proportional to the flow

turbulence time scale, �= k̃ / �̃. Simple models which link

�NZ ��� to ÑZ have been developed but most are inconsistent
with the PDF transport equation.4 Recent CMC based
studies4,6–9 derive the conditional scalar dissipation from the
double integration of the mixture fraction PDF transport
equation, thus enforcing consistency between �NZ ��� and PZ.
Unfortunately this approach suffers from numerical problems
in regions of low probability as the final model formula con-
tains PZ in the denominator.

A class of conditional scalar dissipation models, appli-
cable to CMC and joint PDF methods, are based on the con-
cept of mapping closures.10–13 Mapping closures employ tur-
bulent fluctuations and small-scale mixing in a mathematical
reference space, whose PDF is known �or prescribed�, to
model the turbulent fluctuations and small-scale mixing in
the physical composition space, whose PDF is not known in
advance. In the past 5 years a new mapping closure model
called multiple mapping conditioning �MMC� has been
developed.14 MMC shares the basic mapping closure ideas of
the amplitude mapping closure �AMC� method of Chen
et al.10 and includes all the major improvements suggested
by Pope11 and Girimaji.12 However, MMC has the great ad-
vantage of being a generalized model applicable to all flow
conditions. The earlier mapping closure methods derived ex-
pressions for the conditional scalar dissipation in composi-
tion space in terms of the conditional scalar dissipation in
reference space. Unfortunately, the evaluation of the condi-
tional scalar dissipation in reference space still required
knowledge of the mean scalar gradients �i.e., two-point cor-
relations� which could only be determined easily for Gauss-
ian reference PDFs.10,11 Girimaji12 extended the method by
deriving a reference PDF transport equation and demon-
strated that a �-PDF reference variable can also be used. In
practice, however, the reference field PDF transport equation
does not have a known solution and, strictly, Girimaji’s
method is applicable to homogeneous turbulence only. Apart
from MMC, all the other models mentioned are external
methods for calculating the conditional scalar dissipation. In
contrast, MMC is a self-contained turbulent combustion
model which solves the transport equations for turbulent sca-
lar mixing and reaction in the reference space and condi-
tional scalar dissipation is not explicitly present. The solved
quantities in the MMC equations are called mapping func-
tions which map between the reference space and the com-
position space. These equations were derived for generalized
inhomogeneous turbulence and do not depend on the shape
of the reference PDF. Furthermore, the composition joint
PDF need not be presumed as it can be determined directly
from the solved mapping functions.

The principal idea in MMC is the division of all turbu-
lent fluctuations �and scalars� into major and minor groups.
Turbulent fluctuations of minor scalars are correlated with
the unrestricted fluctuations of the major scalars. A reference
variable is assigned to each major scalar and the number of

major scalars therefore determines the dimensionality of the
model. MMC does not restrict the number of major scalars
although in most flame cases of interest it should be possible
to describe the composition space with a small number of
well chosen primary variables14 and thus keeps computa-
tional costs low. The simplest form of MMC has only a
single reference variable emulating the mixture fraction.
Both probabilistic �or stochastic� and conditional �or deter-
ministic� MMC model formulations are possible. In the con-
ditional MMC, used here, fluctuations of minor scalars rela-
tive to major scalars are neglected and conditional reaction
rates are modeled with first-order moments.

Although MMC is a generalized model, most applica-
tions to date have been for homogeneous, isotropic, decaying
turbulence. Wandel and Klimenko15 used a stochastic ap-
proach where a single reference variable is mapped to mix-
ture fraction. Cleary and co-worker16,17 applied a conditional
MMC, where mixture fraction and normalized sensible en-
thalpy are chosen as major species. More recently, Cleary
and Klimenko18 extended MMC modeling to inhomogeneous
flows using a stochastic approach in the LES context. In the
current work conditional MMC with a single reference vari-
able for the mixture fraction is applied to an inhomogeneous
reactive flow �Sandia Flame D�.

It has been established previously that many combustion
models accurately predict reactive species in Flame D and
therefore the emphasis in the current work is to investigate
the suitability of MMC as a generalized scalar mixing model.
The conditional MMC model is presented in generalized
form in Sec. II. In Sec. III the test case configuration, the
specific MMC model formulation conditioned on the mixture
fraction, and closure considerations are discussed in detail.
The accuracy of the MMC mixing field statistics �mean,
standard deviation and PDF� are compared to experimental
data and conventional RANS mixing field predictions in Sec.
IV and detailed analysis of the conditional scalar dissipation,
which can be extracted from the MMC solution, is given in
Sec. V. In Sec. VI we determine the sensitivity of reactive
scalars to different scalar mixing models and conclusions are
made in Sec. VII.

II. THE MMC MODEL

A detailed derivation of the MMC model and its conven-
tional closure assumptions are given in Klimenko and
Pope.14 Here, we summarize the general equations that will
form the basis for further simplifications introduced in Sec.
III below. The MMC equation for the spatial and temporal
evolution of the mapping function, XI=XI�� ;x , t�, is given by

�XI

�t
+ U � XI + Ak

�XI

��k
− Bkl

�2XI

��k�l
= WI, �2�

where the reference space is �= ��1 ,�2 , . . . ,�major�, upper case
subscript I denotes all scalars �major and minor� and lower
case subscripts k and l denote the major scalars only.

In Eq. �2� U, Ak, and Bkl are the coefficients of velocity,
drift, and diffusion, respectively, whose closures are obtained
through consistency with the following joint reference PDF
transport equation:14
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� �̄P�

�t
+ �U�̄P� +

�Ak�̄P�

��k
+

�2Bkl�̄P�

��k�l
= 0. �3�

For a jointly Gaussian PDF with zero mean and unity vari-
ance, Eq. �3� is satisfied if the MMC velocity and drift coef-
ficients follow the relationships14

U = U��;x,t� = U�0� + Uk
�1��k, �4�

Ak = −
�Bkl

��l
+ Bkl�l +

1

�̄
� �̄Uk

�1�, �5�

U�0� = ũ , �6�

Uk
�1���kXi�� = u�Yi�

˜ , �7�

where u is the velocity vector and Yi is the scalar composi-
tion modeled by mapping function �i.e. Yi= �Xi���. The nota-
tion used for different averages is the following: terms with
an overtilde are Favre averages of turbulent flow field quan-
tities; terms in simple angular brackets represent Favre aver-
ages evaluated with the use of the PDF for mixture fraction,
PZ; and the star is added to the angular brackets to denote
Favre averages evaluated with the use of the reference space
PDF, P�. Note that the reference PDF does not have to be
Gaussian, and the coefficients can be determined for any
reasonable choice of the reference PDF. However, the mod-
eling of U and Ak will involve much more complex depen-
dencies than those given in Eqs. �4� and �5� to satisfy Eq. �3�
and a simple implementation may then not be feasible.

Equations �4�–�7� imply that Bkl can be treated as an
independent coefficient �this will be discussed in detail in
Sec. III�. Following convention,14 Bkl is modeled indepen-
dently of ��Bkl=Bkl�x , t�� and is related to the Favre averaged

scalar dissipation tensor Ñij by

Bkl	 �Xi

��k

�Xj

��l

�

= Ñij . �8�

It is apparent from Eq. �8� that closure of the MMC model
requires knowledge of the unconditional scalar dissipation of
the major scalars, but it does not explicitly include the more
difficult to model conditional scalar dissipation. The compo-

nents of the tensor Ñij may be modeled with scaling relations
similar to Eq. �1�. In Sec. V we show how the conditional
scalar dissipation can be extracted in postprocess analysis
from the mapping function gradients in �-space.

III. THE MODEL IMPLEMENTATION

In the previous section the MMC model was presented
as a generalized model without nominating the major scalars.
The fact any choice and any number of major scalars is pos-
sible while maintaining the same equation form is one of the
advantages of the method. For the present case the mixture
fraction is selected as the only major scalar and the specific
model implementation and the associated numerical scheme
are discussed below. Example calculations illustrate the im-
portance of some closure details and therefore the experi-
mental test case is described at this stage.

A. Case configuration

The MMC implementation is validated against experi-
mental multiscalar measurements in a piloted methane-air jet
flame �Sandia Flame D�.19 The fuel composition for Flame D
is 25% methane and 75% air by volume. The burner geom-
etry features an axisymmetric fuel jet with diameter of
D=7.2 mm and a surrounding pilot with outer diameter of
18.2 mm. The exit velocity of the jet is 49.6 m/s and of the
pilot is 11.4 m/s.

Sandia Flame D is well characterized experimentally
through extensive scalar measurements. A large number of
modeling attempts have been performed in the context of
both RANS and LES using different combustion
approaches.6,20–22 Therefore the primary focus of the current
paper is to investigate the suitability of MMC model as a
generalized scalar mixing model.

B. Mixture fraction evolution

The mixture fraction is chosen as the only major scalar
and the multidimensional reference space is replaced by a
single reference variable �=�Z. Eq. �2� holds for the major
and minor scalars but in this section we concentrate on the
mapping function for mixture fraction which we denote by
XZ. The evolution of XZ is given by

�XZ

�t
+ U � XZ + A

�XZ

��
− B

�2XZ

��2 = 0. �9�

For clarity the subscript Z has been dropped from the drift
and diffusion coefficients which are understood to operate in
�-space. The numerical implementation employs the spatially
conservative form of Eq. �9� given by

��̄UXZ + �̄A
�XZ

��
− �̄B

�2XZ

��2 = XZ� � �̄U�1�, �10�

where �̄ is the Reynolds averaged density and time deriva-
tives have been neglected due to the steady nature of the flow
under investigation. Eq. �10� is discretized with a finite vol-
ume scheme and coupled to an axisymmetric, elliptic
RANS-CFD code called GENPOL.9 Flow turbulence is mod-
eled in accordance with the k−� model of Jones and
Launder23 with the standard constants: C�1=1.44, C�2=1.92,
�k=1.0, ��=1.3, and C�=0.09.

The mapping function XZ maps between �, whose statis-
tical details are fully prescribed, and Z. Therefore knowledge
of XZ implies knowledge of all statistical properties of Z. For
example, the first and second moments are given by

�XZ�� = �
−	

	

XZP�d� �11�

and

�XZ�
2�� = �

−	

	

�XZ − �XZ���2P�d� . �12�
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C. MMC model closures

Models for the conditional velocity, drift, and diffusion
coefficients are required to close Eq. �10� and the require-
ment for consistency with Eq. �3� poses restrictions on that
modeling. In the present study we model all coefficients ac-
cording to Eqs. �4�–�7� as proposed by Klimenko and Pope.14

Although the suggested coefficients are consistent with Eq.
�3� this does not imply that they are unique. Taking Eq. �3�
for a spatially and temporally invariant Gaussian reference
PDF as a starting point and expanding the partial derivatives
we obtain

�U�̄P� +
�A�̄P�

��
+

�

��
��̄P�

�B

��
− �B�̄P� = 0 �13�

and integration over �-space gives

A = �−
�B

��
+ B� −

1

�̄P�
� �U�̄P�d� . �14�

Based only on the mathematical constraints of the problem it
is apparent that coefficients U and B can be any reasonable
functions of x and �. We then determine A from Eq. �14� to
ensure that the reference PDF transport equation is satisfied.
Eq. �14� demonstrates that the range of choices of a model
for A is broader than suggested in Eq. �5� and depends on the
choice of U and B. The modeling of these two terms is dis-
cussed in Secs. III C 1 and III C 2.

1. Conditional velocity

A linear model given by Eq. �4� is used for the condi-
tional velocity. It has a similar form to the linear model for
velocity conditioned on the mixture fraction which is com-
monly used in CMC computations.4 The gradient of U in
�-space, denoted U�1�, is given by Eq. �7�. Following conven-

tion, we model the Favre turbulent flux u�Z�˜ according to the
gradient diffusion hypothesis so that

u�Z�˜ = −
�t

�z
� �XZ��. �15�

The turbulent diffusivity is modeled as �t=C��̄k̃2 / �̃ and the
turbulent Schmidt number �z is set to 0.7.

Since it quantifies the effect of turbulence on the evolu-
tion of XZ, U�1� is one of the most important terms in the
MMC model. Its role is explored in Fig. 1 where profiles of
XZ over reference space are presented at different axial loca-
tions and at r /D=1 which is in the vicinity of the shear layer.
Three alternative test cases are compared to the reference
case where U�1� is as described above. In case 1, U�1� is
omitted from the calculation of the conditional velocity in
Eq. �4� and from the drift term in Eq. �5�. As expected for
this case turbulent fluctuations are not generated by the
model and the XZ profile is horizontal; representing a delta
PDF in mixture fraction space. In case 2, U�1� is omitted
from the conditional velocity model in Eq. �4� only. As for
case 1, XZ is horizontal in �-space at all locations and this
result indicates that it is through conditional velocity, specifi-
cally, that turbulent fluctuations are generated. In case 3, U�1�

is omitted from the calculation of the drift coefficient in Eq.

�5� but retained in the velocity model in Eq. �4�. This results
in a stronger dependence of XZ on � with increasing down-
stream location, implying the physically unrealistic situation
of the mixture fraction variance increasing in the far field.

The analysis above illustrates that while U�1� generates
turbulent fluctuations through the conditional velocity, the
gradient term containing U�1� in the drift coefficient acts to
dissipate those fluctuations. The correct balancing of these
two opposing forces is necessary to accurately predict jet
breakup and flame length. Although from a mathematical
view point many different models for U may be permitted
this does not imply that all such models are good. The suit-
ability of the MMC model with the nominated linear condi-
tional velocity model is assessed against experimental data
and the conventional RANS solutions for the scalar mixing
field in Sec. IV, but further work is required to investigate the
existence of alternate, superior models for U.

Depending on the turbulence conditions, the modeling of
U�1� may not be well defined. Some minimum level of fluc-
tuations needs to be imposed to avoid ��XZ��→0 leading to
U�1�→	. Here we set the minimum value ��XZ�� as 10−8 to
avoid any subsequent numerical problems.

2. Diffusion coefficient

In MMC it is conventional to model the diffusion coef-
ficients, Bkl, independently of the reference variables. There-
fore according to Eq. �8� the diffusion coefficient in �-space
must satisfy the relation

B	 �XZ

��

�XZ

��

�

= ÑZ. �16�

An external model is required for ÑZ but this should not be
considered a restrictive factor as mapping closures can ac-
commodate any model for mean scalar dissipation. For

MMC specifically, ÑZ and the other input parameter ũ, con-
nect the transport equation in the artificial mathematical ref-
erence space with the physical turbulent flow field, thus giv-
ing the mapping functions a physical meaning. In the present

0
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FIG. 1. Profiles of the mixture fraction mapping function, XZ, in reference
space at various axial locations and r /D=1. Solid lines are the reference
case, dotted lines: case 1, stars: case 2, and dashed lines: case 3.
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work ÑZ in Eq. �16� is obtained from the turbulent mixing

parameters k̃ and �̃ and the scalar variance as

ÑZ = CZ
�̃

k̃
�XZ�

2��, �17�

where the constant CZ is set to unity.

D. Numerical scheme

Equation �10� is discretized on an axisymmetric finite
volume grid which is staggered so that velocity is determined
at the cell boundaries and XZ at the cell centers. The compu-
tational domain extends 80 cm vertically and 5 cm radially
and is discretized by 175
60 cells in the axial and radial
directions, respectively. It is refined near the fuel port and
pilot. For the reference variable �, 50 cells cover the interval
�� �−4,4�. The term on the right hand side of Eq. �10� is
modeled with the diffusion approximation of Eq. �15�. It is
normal practice to move such terms to the left hand side of
the equation for implicit inclusion in the finite volume con-
vection scheme �e.g., see Ref. 9�. However here the right
hand side is multiplied by the product XZ� so we instead treat
the term explicitly with a second-order approximation for the
second derivative. In the absence of a balancing spatial dif-
fusion flux on the left hand side of Eq. �10� a numerically
stable first-order upwinding scheme is used for advective
transport. For fluxes in reference space, a hybrid scheme is
used which changes from second-order central differencing
to first-order upwind differencing when the magnitude of the
Peclet number exceeds two. Boundary conditions are defined
in both physical and reference spaces. In the �-plane the two
boundary cells are set dynamically so that �2XZ /��2=0. The
solver for XZ uses the biconjugated gradient method produc-
ing results for all spatial and �-space locations simulta-
neously. Values for U, A, and B are computed explicitly,
based on the solution at the previous iteration.

E. Conventional RANS scalar mixing model

In RANS modeling it is conventional to model the first
two moments of the scalar mixing field directly. Here we
denote the conventional RANS first and second mixture frac-

tion moments as f̃ and f�2̃, respectively. For turbulent flow in
axisymmetric coordinates these quantities can be modeled as

�̄ũ
� f̃

�x
+ �̄ṽ

� f̃

�r
=

�

�x
��t

� f

� f̃

�x
 +

1

r

�

�r
�r

�t

� f

� f̃

�r
 �18�

and

�̄ũ
� f�2̃

�x
+ �̄ṽ

� f�2̃

�r
= 2

�t

�g
� � f�2̃

�x
2

+ 2
�t

�g
� � f�2̃

�r
2

+
�

�x
��t

�g

� f�2̃

�x
 +

1

r

�

�r
�r

�t

�g

� f�2̃

�r


− 2�̃ÑZ. �19�

Here, ũ and ṽ are the Favre averaged axial and radial flow
velocities and the turbulent Schmidt numbers � f and �g are

set to 0.7. Similar to MMC, the mean scalar dissipation in
Eq. �19� is given by

ÑZ = CZ
�̃

k̃
f�2̃ . �20�

Provided the model equations for XZ, f̃ , and f�2̃ are ac-

curate and implemented correctly then �XZ�� and f̃ are two

alternative models for Z̃, and �XZ�
2�� and f�2̃ are two alterna-

tive models for Z�2̃. The flow turbulence determines the tur-

bulent scalar mixing through the models for �t and ÑZ which
are identical in both the MMC and conventional RANS mix-
ing formulations above. The linear closure of the conditional
velocity given by Eq. �4� is the only additional modeling
contained in MMC that does not appear in conventional
RANS. Therefore any differences between the predicted sca-
lar mixing fields will be related to the modeling of this term.

The advantage of MMC is that all the statistics of Z and
not just the mean and variance are contained in solution for
XZ. In this work Eqs. �18� and �19� are used primarily to
provide a comparison for the MMC predictions. For numeri-

cal convenience the f̃ and f�2̃ fields are developed initially
with Eqs. �18� and �19� and used for setting the XZ initial
conditions.

IV. MIXING FIELD STATISTICS

Figures 2 and 3 show radial profiles of �XZ�� and
�XZ,rms��=��XZ�

2�� at several axial locations. Overall the re-
sults are in good agreement with the experimental data and
qualitatively very similar to other published computations of
this flame �see, e.g., Refs. 20–22�. The mean mixture fraction
is well predicted along the centerline at all axial locations
shown, however it is noticeably overpredicted in the shear
layer at x /D=7.5 and x /D=15. The rms is also well pre-
dicted along the centerline but peak values in the shear layer
are somewhat overpredicted close to the nozzle and under-
predicted for x /D�15. Near the nozzle the model is unable
to fully capture the double-peaked rms but further down-
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FIG. 2. Radial profiles of mean mixture fraction. Squares are experimental
data �Ref. 19�, solid lines are MMC predictions, and dashed lines are con-
ventional RANS predictions given by the solution of Eq. �18�.
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stream where a single radial peak exists the predicted trends
are correct. The accuracy of the MMC predictions is put into

context by comparison with the f̃ and f̃ rms=�f�2̃ computa-
tions using Eqs. �18� and �19� which are also included in
Figs. 2 and 3. The similarity of the predicted mixing field
statistics from MMC and conventional RANS is not surpris-
ing. The key closures that control the production and dissi-
pation of scalar fluctuations are identical for both methods.
The mean dissipation is modeled by Eqs. �17� and �20�, and
the modeling of the turbulent scalar flux is based on the
gradient diffusion hypothesis in both cases. It is therefore
rather surprising that small but distinct differences in the
modeling of the mixture fraction rms field persist. An
analysis of the modeling of the turbulent flux of the scalar
variance and the role of the linear conditional velocity
helps explain these differences and this is outlined in the
Appendix.

In addition to the mean and variance, the mixture frac-
tion PDF can be recovered from the solution for XZ:

PZ = P��dXZ

d�
−1

. �21�

Figure 4 shows MMC predicted PZ at various axial and ra-
dial locations alongside experimental data,24 and �-function
PDFs computed with the MMC mean and variance given by
Eqs. �11� and �12�, respectively. Flamelet and CMC combus-
tion models commonly presume a �-function PDF for mix-
ture fraction and the very good agreement between PZ from
MMC and the corresponding �-function was therefore ex-
pected. We reiterate that MMC does not need to presume PZ

and, in fact, the MMC framework given by Eq. �2� can be
applied unaltered to cases where the PDF is not a �-function.
MMC predictions of a bimodal PDF for a reaction progress
variable in homogeneous turbulence are reported elsewhere17

and an extension to laboratory flames is in progress. Com-
pared to the experimental data the PDF shapes and the loca-
tions of maximum PZ in Z-space are very well reproduced
near the nozzle, but further downstream the peak values of

PZ are generally overpredicted. These outcomes are consis-
tent with the MMC predictions for mean and rms. Also
MMC fails to predict the experimentally observed level PDF
skewness at x /D=45 and other far downstream locations.
More complex expressions for the MMC closures, in particu-
lar relaxation of the assumptions of linearity for U��� �see
Eq. �4�� may be necessary to overcome this deficiency. How-
ever any such change in the velocity closure will remain
speculative without detailed analysis of an adequate DNS
database and, therefore, it is not attempted here. It suffices to
say that MMC in its current implementation provides the
conditional statistics that are needed for combustion model-
ing and this is discussed in Secs. VI and VII.

V. CONDITIONAL SCALAR DISSIPATION

A. The MMC model for conditional scalar dissipation

The scalar dissipation conditioned on the mixture frac-
tion does not appear explicitly in the MMC equations, how-
ever Klimenko showed in a conference contribution that it
can be determined from the mapping function solutions for
XZ through a transformation from the reference space, �, to
the mixture fraction sample space, �. This procedure is de-
scribed in detail by Cleary and Kronenburg.16 In the context
of the present work the transformed nonconservative form of
the MMC equation for minor scalars is

�Q�

�t
+ Û � Q� − B̂

�2Q�

��2 = Ŵ�. �22�

The quantities in Eq. �22� are

Q� = �X���� , �23�

Û = U , �24�
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B̂ = B� �XZ

��
2

, �25�

and

Ŵ� = �W���� . �26�

Equation �22� is equivalent to the singly conditioned, first-
order CMC equation for high Reynolds number flows. Of
particular importance to the modeling of scalar mixing is that

B̂ appears in place of, and is therefore a model for, the con-
ditional scalar dissipation

�NZ��� � B� �XZ

��
2

. �27�

B. Model validation

The MMC model for �NZ ��� given by Eq. �27� is vali-
dated against experimental data and two other �NZ ��� mod-
els which are commonly used in CMC computations: the
amplitude mapping closure �AMC� model10 �sometimes
called the inverse error function model�; and the doubly in-
tegrated PDF transport equation model.8 The alternative
models were briefly discussed in Sec. I and a detailed expla-
nation of their performance for the flame conditions consid-
ered is given by Sreedhara et al.6

The three conditional scalar dissipation models depend
directly �MMC and AMC� or indirectly �PDF integration

model� on ÑZ. For MMC, ÑZ is given by Eq. �17� and for the
alternative methods, which rely on the conventional RANS

scalar mixing model, ÑZ is given by Eq. �20�. Figure 5 dis-

plays radial profiles of predicted ÑZ at six axial locations
alongside one-dimensional �1D� radial line-imaging experi-
mental data25,26 which are available at three axial locations
only. Quantitatively both MMC and conventional RANS

overpredict ÑZ, particularly in the region close to the nozzle.
This is consistent with the modeled rms of mixture fraction

being greater than experimental rms in that region of the

flow. Qualitatively the predicted ÑZ trends are in agreement
with the experimental data; the radial locations of the peak
values are predicted quite well for x /D=7.5 and x /D=30 but
some minor discrepancies occur at x /D=15.

Conditional scalar dissipation by MMC is compared to
1D radial line-imaging and a limited set of three-dimensional
�3D� point measurements in Fig. 6. The data are weighted by
the PDF and averaged in the radial direction according to

�NZ��,x�R =
� �NZ�x,r����PZ��,x,r�2rdr

� PZ��,x,r�2rdr
. �28�

Near the fuel jet scalar gradients in the radial direction are
dominant and hence 1D and 3D experimental data are simi-
lar. Further downstream where the flow becomes isotropic
gradients in the axial and circumferential direction are also
important and the 3D results are quantitatively more accu-
rate. MMC predicted �NZ �� ,x�R is in good qualitative and
quantitative agreement with the measurements at x /D=7.5.
However peak values are underpredicted at greater axial lo-
cations, most notably at x /D=30, and this is a direct conse-
quence of the underpredicted variance as shown in Fig. 3. In
addition MMC does not capture the double-peak profile evi-
dent in the 3D data which has a second peak near �=0.6.

Further qualitative comparison is now made with the 1D
radial line-imaging experimental data. Figure 7 shows
�NZ ��� profiles in mixture fraction space at various axial and
radial locations. AMC and doubly integrated PDF model pre-
dictions are also shown. A deficiency of the AMC model is
that �NZ ��� must peak at �=0.5 whereas the alternative
models permit an asymmetric profile. It is observed that the
MMC reproduces the profile shapes and the location of the
peak better than the doubly integrated PDF method. The
MMC also predicts the radial dependence of �NZ ��� more
satisfactorily than the other methods.
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VI. REACTIVE SCALAR MODELING

The most obvious implementation of MMC for model-
ing nonpremixed reacting flows is via Eq. �10� with the re-
placement of XZ, the mapping function for mixture fraction,
by XI, the mapping function for all scalars. However, the
transformation in Eq. �22� to the CMC form of the MMC
model facilitates an analysis of the sensitivity of species pre-
dictions to the modeling of conditional scalar dissipation.
Therefore the CMC form has been used for the present study
and conditional scalar dissipation is modeled by MMC,
AMC and the doubly integrated PDF model. The CMC com-
bustion model and the numerical scheme used for this pur-
pose have been described in detail previously.9 Species pre-
dictions are compared to the experimental data for Sandia
Flame D.19,24 The modeling uses a 35 species and 219-step
reaction mechanism �GRI3.0� and the effects of radiation are
included.

Figures 8–10 present radial profiles of unconditional
temperature and unconditional mass fraction of CO and OH.
For MMC the PDF for convoluting the unconditional aver-
ages is given by Eq. �21� while for AMC and the PDF inte-
gration method a presumed �-function is used with mean and

variance given by f̃ and f�2̃, respectively. Generally, tempera-
ture and species predictions for all three model cases are in
good agreement with the experimental data and each other.
However, there is a discrepancy with the experimental data
at x /D=7.5 and x /D=15. Examination of the conditional
average temperature, CO and OH profiles presented in Fig.
11 reveal that in mixture fraction space predictions are in
excellent agreement with experiments at x /D=15 and,
although not shown, similarly good results are found at
x /D=7.5. Therefore the inaccuracy of the unconditional pre-
dictions is directly attributable to the overprediction of mean
mixture fraction at these axial locations for r /D�1 �see
Fig. 2�. The predicted mixture fraction, by both MMC and
conventional RANS, is in the vicinity of the stoichiometric

value over a greater radial distance than is observed in ex-
periments and hence the predicted temperature and species
are closer to their stoichiometric conditional means beyond
r /D=1.

Very little difference is observed between the predictions
of conditional �Fig. 11� and unconditional �Fig. 8� tempera-
ture for the three different model cases. The same can be said
for CH4, O2, CO2, and H2O. This outcome is expected for
the principal reactive scalars which are not greatly affected
by the relatively small �NZ ��� differences between the three
test cases. However, some small differences between the
model predictions for conditional CO and OH are evident in
Fig. 11 with the MMC giving slightly more accurate results.
In general all three models perform quite well although
MMC produces the most accurate results for peak OH and
for rich side CO at x /D�30. These modest improvements
are attributed to the improved predictions for the conditional
scalar dissipation.
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The inaccuracy of the unconditional reactive scalar pre-
dictions at some locations �most notably at x /D=7.5 and
x /D=15� should not be interpreted as a weakness in the
generalized MMC framework. The inability to fully capture
the rate of spread and breakdown of the fuel jet is a charac-
teristic of the k−� turbulence model and similar results for
the mixing field are reported by others �e.g., Ref. 27�. Flame
D computations with turbulence closures based on the

Reynolds stress model28 �RSM� and LES �Ref. 21� have pro-
duced very accurate mixture fraction field results. The
present MMC formulation could be introduced almost un-
changed into RSM and LES based CFD codes. Based on the
very good agreement between predicted and experimental
conditional averages in Fig. 11 it is reasonable to expect that
if MMC was coupled with a superior turbulence model the
predictions of unconditional reactive scalars would also be
better than those shown in Figs. 8–10. As demonstrated here
MMC produces only slightly improved conditional average
species results relative to models with conditional scalar dis-
sipation closures based on AMC and the doubly integrated
PDF model. However, the considerable advantages of MMC
relative to those alternatives, especially if implemented in the
form of Eq. �10�, are that the conditional scalar dissipation
appears in closed form, the mixture fraction PDF does not
need to be presumed, and those two quantities are automati-
cally consistent with each other.

VII. CONCLUSION

This paper has investigated the suitability of MMC as a
generalized scalar mixing model for turbulent reacting flows.
In MMC the scalar space is divided into major and minor
groups. The turbulent fluctuations of minor scalars are cor-
related with the unrestricted fluctuations of the major scalars,
each of which is assigned a reference variable with a known
or prescribed PDF. In the present work the conditional form
of MMC was used which restricts the minor scalars so that
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they can fluctuate only jointly with the major scalars. For the
nonpremixed flame conditions considered turbulent scalar
statistics are suitably parametrized by the mixture fraction
and this was selected as the only major scalar. The model
solves transport equations for mapping functions which map
between the reference and physical scalar spaces. It was
shown that from the solved mapping function for the mixture
fraction and the prescribed reference PDF one can determine
the mixture fraction PDF and, of course, all its moments. The
great advantage of MMC is that the difficult to model con-
ditional scalar dissipation is contained implicitly and there is
no need for external closure models.

The performance of MMC as a generalized scalar mix-
ing model was tested against experimental data in a nonpre-
mixed jet flame �Sandia Flame D�. Trends for the first two
moments of mixture fraction were well reproduced, although
local underprediction of the rms is evident at some far field
locations. MMC results were also compared to the solution
of conventional RANS equations for the scalar mean and
variance. Predictions by the two methods were generally
very similar and, as the turbulence model was the same, the
small differences can be attributed to the MMC conditional
velocity which was modeled linearly in reference space. The
MMC predicted mixture fraction PDF closely resembles a
�-function and agreement with experimental data was quite
good although due to the underprediction of scalar variance
the peak values of the predicted PDF were too high in the far
field.

Although the conditional scalar dissipation does not ap-
pear in the MMC model equations it can be determined
through a coordinate transformation between the reference
space which has a Gaussian PDF and the mixture fraction
sample space. This casts MMC in the same form as singly
conditioned, first-order CMC but with three significant ad-
vantages: the conditional scalar dissipation appears in closed
form; the mixture fraction PDF is known and does not need
to be presumed; and those two quantities are automatically
consistent with each other. Detailed comparisons of the
MMC closure for the conditional scalar dissipation rate with
experimental data, and the AMC and doubly integrated PDF
transport equation models show that MMC is a qualitatively
better model. It was shown that the quantitative accuracy
depends on the quality of the model for mean scalar dissipa-
tion upon which MMC makes not restrictions. The sensitiv-
ity of reactive species predictions to the conditional scalar
dissipation was also tested. As expected for a flame with low
levels of local extinction the principal reactive scalars were
shown to be relatively insensitive, however, MMC predic-
tions of intermediate and incomplete combustion products
improved modestly relative to the alternative models.

Since the current work is one of the first implementa-
tions of MMC only one major scalar was used in order to
demonstrate the feasibility of the method. However the
MMC approach is not limited to a single, nonreacting major
scalar and implementation for multiple and reactive major
scalars is part of ongoing work to model flames with signifi-
cant local quenching. Furthermore it is noted that the ap-
proach could be easily included in a large-eddy simulation.
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APPENDIX: CONSISTENCY BETWEEN MMC
AND THE SCALAR VARIANCE EQUATION

MMC is PDF compliant if the general form of the pa-
rameters U, Ak, and Bkl are chosen so that Eq. �3� is satisfied.
However, the accuracy of MMC depends on the specific clo-
sures chosen, in particular, on the modeling for the velocity
coefficient. This parameter is analyzed in detail below.

U��� is a model for the conditional velocity �u ��� that
can be decomposed into the unconditional mean and a fluc-
tuation around this mean that depends on �, �u ���= ũ+u�� .
The starting point for the analysis is the steady state mixture
fraction PDF transport equation

���̄�ũ + u���PZ� = −
�2

��2 ��̄�NZ���PZ� . �A1�

The above equation can be multiplied by mixture fraction
and integration over the mixture fraction space yields

���̄ũZ̃� + ���̄�
0

1

�u��PZd� = 0, �A2�

which is equivalent to the high Reynolds number governing

equation for Z̃,

���̄ũZ̃� + ���̄u�Z�˜� = 0. �A3�

Equating Eqs. �A2� and �A3� provides a sufficient condition
for the integral in Eq. �A2�,

�
0

1

�u��PZd� = u�Z�˜ . �A4�

Replacing � in the above with XZ��� and upon using the
linear model for the MMC conditional velocity �Eq. �4�� we
get

�
0

1

�u��PZd� = �
−	

	

XZ���u��P�d�

= �
−	

	

XZ���U�1��P�d�

= U�1��
−	

	

XZ����P�d� = U�1��XZ���. �A5�

Modeling U�1� according to Eq. �7� reproduces Eq. �A4� thus
illustrating consistency with the first moment of the PDF
transport equation.

We now apply a similar procedure for the second mo-
ment. Multiplication of the PDF transport equation by Z2,
integration in mixture fraction space and comparison with
the mixture fraction variance equation gives
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�
0

1

��2 − 2Z̃��u��PZd� = u�Z�2̃ . �A6�

Replacing u�� in Eq. �A6� by U�1�� leads to the relationship

u�Z�˜�XZ�
2���

�XZ���
= u�Z�2̃ . �A7�

In MMC the left hand side of Eq. �A7� can be evaluated with
the aid of Eq. �15� which models the turbulent flux of the
scalar mean via gradient diffusion. In conventional RANS a
separate variance equation is solved and the turbulent flux of
the scalar variance is also modeled by a gradient method �see
the first two terms on RHS of Eq. �19��. This additional
modeling requirement in the variance transport equation
gives rise to differences in conventional RANS and MMC.
Figure 12 compares the MMC and gradient diffusion models

for u�Z�2̃. Differences between the models are largest in the
shear layer particularly at x /D=15 and x /D=30. The dis-
crepancies between the MMC and conventional RANS pre-
dictions of the scalar variance shown in Fig. 3 can now be
explained by these observed differences in its modeled tur-
bulent flux.
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