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1 INTRODUCTION 

The deterioration of infrastructure facilities such as 
highway bridges built in 50s and 60s has raised 
concerns over objective methodology to quantify 
the change in their safety level during the service 
life. 

Highway structures are always subject to de-
structive effects of material ageing, harsh weather 
conditions, extensive corrosion etc. These factors, 
accompanied with uncertainty of design and con-
struction, influence the deterioration of highway 
structures and result in the loss of serviceability and 
load carrying capacity over the long term, (Dong et 
al., 2010). The rate of strength loss is dependent on 
the deterioration mechanism, the aggressive envi-
ronment, the degree of protection of structure 
against environment attack etc. (Ohadi & Micic, 
2011). In many engineering problems but in partic-
ular for infrastructure such as highway bridges, 
there is very low availability of data i.e. sometimes 
only one or two observations.  

Extensive data is needed to estimate the current 
safety level of existing structures and identify the 
degradation process. In recent years, modern tech-
nology has enabled greater variety of monitoring 
techniques and therefore availability of data from 

sensors, video imaging, etc. is increasing. It is iden-
tified that long established infrastructure inspection 
processes can be reviewed to reconcile quality and 
diversity of site-specific data, physical behavior 
models and technology. However, the non-
destructive inspection techniques can bring in addi-
tional uncertainty in the deterioration model due to 
the uncertainty of inspection techniques (Ohadi & 
Micic, 2011). If the current status of deterioration is 
to be established on the basis of inspections it has 
become evident that the quality and consistency of 
the of the data acquired needs to be taken into ac-
count.  

The deterioration of structures can be represent-
ed using deterministic or probabilistic approach. 
However, considering that the current and the fu-
ture status of the structure are associated with many 
sources of uncertainty the deterministic approach 
cannot provide an appropriate mathematical model. 
Instead, probabilistic approach should be consid-
ered as more appropriate alternative (Frangopol et 
al., 2004). In order to develop a probabilistic dete-
rioration model, all uncertainties associated with 
the deterioration process need to be identified 
(JCSS, 2008). 

The random variable and stochastic processes 
are two alternative probabilisitc models to represent 
the deterioration process. In the last decades, re-
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searchers have focused on the random variable ap-
proach (Frangopol et al., 2004). However, it has 
been established that for civil engineering structures 
in particular available data is often insufficient to 
establish appropriate random variable models. 
Highway structures are often unique in design and 
site exposure so the lack of data for random varia-
ble models is even more pronounced. Availability 
of data is often poor and process of inspection or 
site testing very expensive. That is why, increasing-
ly, stochastic process models have emerged as an 
alternative. 

2 DETERIORATION REPRESENTATION 

In the first decades after the Second World War, 
when much of developed world experienced rapid 
investment in infrastructure, highway bridge 
maintenance, repair, rehabilitation, and replacement 
activities were decided on an as-needed basis, em-
ploying the best existing practice (Frangopol et al., 
2001). Such decision system has no mathematical 
model to predict the structural condition of the 
structure in the future. Thus, in such circumstances, 
decisions were often made using a deterministic 
model that is effectively relying on the expert 
judgment. During this time, the bridge engineering 
community focused on new construction, and the 
reactive strategies appeared sufficient to address 
any potential bridge safety issues (Frangopol et al., 
2001). If aim is to ensure that the deterioration 
model is practical, the expert judgment model could 
be acceptable. However, the expert judgment model 
is discrete, as it cannot result in explicit formulation 
for future deterioration that includes the new in-
spection outcomes as they are obtained. 

Increasingly, distinct deterioration patterns have 
emerged and a variety of techniques have been pro-
posed to model processes associated with structural 
loads (Thoft-Christensen & Sorensen, 1987), and 
materials (Li, 2003, Biondini et al., 2006). 

 
 

 
Figure 1. Illustration of progress of deterioration and suit-

ability of inspection technique 

 
Many factors such as the structural condition at in-
spection time, the sensitivity of inspection tech-
nique, environmental conditions, etc. can influence 
the inspection outcomes (Li, 2003). Figure 1 illus-
trates two alternative pathways for progress of dete-
rioration over time and application of alternative in-
spection techniques. It is evident that the scale of 
deterioration and inspection technique cannot be 
independent as it would be rational to select the in-
spection technique on the basis of likely deteriora-
tion. Current practice specifies rather strict forms of 
inspection at pre-defined intervals and therefore 
over the lifecycle there will be an increase in uncer-
tainty in respect to the true structural condition. 

2.1 Probabilistic model of deterioration  

Recently, many different probabilistic models have 
been considered to represent the deterioration pro-
cess. In the probabilistic representation, deteriora-
tion model has to systematically combine subjective 
source of data such as the expert judgment and ex-
periences from observations to obtain a balanced 
estimate of the bridge condition (JCSS, 2008). This 
is often difficult due to lack of data. 

The applications of some of the probabilistic 
models of deterioration representation are given in 
(Thoft-Christensen & Sorensen, 1987, Mori & 
Ellingwood, 1992, Cheung et al., 1996, Yang et al., 
2006, Cheung et al., 2010).  

The probabilistic model for deterioration can be 
established using random variable or stochastic 
process representation. For random variable models 
see (Yang et al., 2006, Cheung et al., 2010, Marsh 
& Frangopol, 2008, Li, 2003). However, owing to 
the lack of failure data a random variable approach 
solely to represent deterioration process is unsatis-
factory. Pandey et al. (2009) concluded that random 
variable model cannot reflect temporal variability 
associated with deterioration process (Pandey et al., 
2009) because:   A sample for component deterioration is set at 

the start and does not change over the lifetime.  COV of deterioration model is constant over the 
lifetime.  After the first inspection, the deterioration mod-
elling is effectively deterministic. 
Aforementioned concerns, and in particular that 

the deterioration throughout a specific sample path 
is deterministic in the random variable model, have 
brought introduction of stochastic process models 
(Pandey et al., 2009) as an alternative approach. 

2.2 Stochastic processes models for deterioration 

A sample deterioration process such as the loss of 

the section capacity of highway bridge can be iden-

tified as a time-dependent process with a stochastic 
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damage accumulation model so a variety of sto-

chastic process models have been considered to 

evaluate the structural condition. In recent years, 

diverse stochastic processes have been utilized to 

model the bridge deterioration. 
In order to model the structural deterioration 

process using the stochastic process approach, ran-
dom deterioration rate, Markov process, Brownian 
motion with drift and Gamma process can be ap-
plied (Van Noortwijk, 2009). Campoli & 
Ellingwood (2002) applied a Markov process to de-
termine the damage accumulation of the structural 
component subject to aging (Campoli & 
Ellingwood, 2002). They have considered the aver-
age condition rate of the bridge’s component as a 
random parameter. It should be noted that the Mar-
kov process can be classified as discrete Markov 
process i.e. Markov chain and continuous processes 
i.e. Brownian motion with drift. 

Van Noortwijk & Frangopol (2004) have identi-
fied the failure rate model where the deterioration 
process is considered as Markov chain to describe 
and compare the structural condition in terms of a 
limited number of condition states (Van Noortwijk 
& Frangopol, 2004). Due to the characteristic of de-
terioration process that is a non-negative, independ-
ent and monotonic incremental process over the 
time in sequence of small intervals, this can lead to 
rather expensive subsequent actions such as addi-
tional repair, maintenance, etc. 

Orcesi and Frangopol (2011) developed a model 
using the lifetime function to evaluate the probabil-
ity of failure of bridge components. The possible 
outcomes with non-destructive inspections were in-
corporated in an event-tree model. The probability 
function of failure was assumed to be Weibull. It 
has been shown that for poor-quality inspections, 
there is a significant risk to overestimate the proba-
bility of safe performance, with such model. 

3 CONTINOUS GAMMA PROCESS  

Since seventies, continuous gamma process models 
were successfully used to model data on creep of 
concrete (Cinlar et al., 1979), fatigue crack growth 
(Li, 2003), corroded steel gates (Frangopol et al., 
2004), thinning due to corrosion (Kallen & Van 
Noortwijk, 2005), chloride ingress into concrete 
(Bakker, 2004), and degradation of flexural mo-
ment capacity of concrete slab subject to the corro-
sion (Marsh & Frangopol, 2008).  

In mathematical terms for the continuous gamma 
process modelling, we first consider a random vari-
able X that has a gamma distribution with the shape 
parameter α>0 and scale parameter ȕ>0. Its proba-
bility density function is given by: 

,ߙ|ݔሺܽܩ ሻߚ ൌ ఉഀሺఈሻ ఈିଵݔ expሺെݔߚሻ                     (1) Γሺܽሻ ൌ  ஶ௭ୀݖିଵ݁ି௭݀ݖ                                           

where ( ) is the gamma function for a > 0. 
Since gamma processes with different parame-

ters are effectively independent we could obtain the 

conditional distribution for a variable only on the 

basis of the current observation. It is immediately 

noticeable that such representation would be appro-

priate for deterioration processes for standard struc-

tural applications.  

Now, we can assume that α(t) is a non-

decreasing, right-continuous, real valued function 

for t≥0, with α(0)=0. The gamma process with 

shape function α(t)>0 and scale parameter ȕ>0 is a 

continuous-time stochastic process {X(t), t≥0} with 

the following properties: 

 ቐܺሺͲሻ ൌ Ͳ                                                with probability one ܺሺߟሻ െ ܺሺݐሻ ൎ ሻߟሺߙሺܽܩ െ ,ሻݐሺߙ ߟ  ሻ   for allߚ   ݐ Ͳ ܺሺݐሻ                                          has independent increments ቑ 

(2) 

 
For more information of the time-dependent sta-
tionary gamma processes see Ohadi & Micic 
(2011). 

3.1  Continuous Gamma process parameter 
estimation  
Once it is identified that the continuopus gamma 
process is an appropriate model for deterioration, it 
is necessary to define its unique shape parameter 
α>0 and scale parameter ȕ>0. These parameters are 
obtained on the basis of observational data and the 
three most common estimation methods are:  Method of moments  Maximum likelihood  Bayesian statistics 

More information about the estimation methods 
can be found in (Van Noortwijk, 2009). Here we 
implement for illustrative purpose the Method of 
Moments as the simplest of all. 

3.1.1 Method of moments 

In statistics, the method of moments is a very sim-
ple approach to estimate some population parame-
ters, by equating sample moments with unobserva-
ble population moments and then solving the 
equations for the quantities to be estimated (Haldar 
& Mahadevan, 1999). It has to be acknowledged 
that estimates by method of moments can be used 
as the first approximation for gamma process pa-
rameters.  



Once the gamma parameters have been estimat-
ed, the deterioration process can be presented as a 
gamma process over the time. Assuming that per-
fect inspection outcomes are considered to estimate 
the gamma process parameters.  

Figure 2 illustrates the gamma process density 

functions for resistance degradation of a concrete 

bridge deck slab under the corrosion for three dif-

ferent time horizons. It is evident that using the 

functions from Figure 2 one can identify likelyhood 

of target resistance at certain time in the future. 

 

 
 
Figure 2. Sample probability density functions of the re-

sistance degradation process   

 

4 IMPERFECT INSPECTION 

It is well known that unfortunately, available in-
spection techniques aren’t perfect. In order to be 
able to characterize the deterioration using inspec-
tion outcomes the uncertainty associated with in-
spection outcomes needs to be characterized. These 
uncertainties reflect the inspection technique’s fea-
tures and several parameters can be used to quantify 
them, (Zhang & Mahadevan, 2001), namely:   The probability of detection, POD(x), evaluates 

the capability of inspection technique to detect a 
given defect size. Practically, an inspection tech-
nique can’t detect all sizes of a defect with cer-
tainty.   The probability of false alarm, PFA(x), is a 
measure that determines the probability of re-
porting a defect that does not exist. This measure 
actually is the value of POD when the defect size 
is equal zero.  The report ability threshold is another measure 
that represents the lower defect size, which can 
be detected by a particular inspection technique. 
This measure characterizes the inspection 
equipment accuracy and divides the defect’s 
population into two groups; detected and unde-
tected. 

 The measurement error that represents the factor 
that is associated with the observed defect size. 
This factor is generally considered as normal 
distributed function and the actual defect size of 
observed established as linear function of the ob-
served size and error. 
௧ݔ  ൌ ௧ݔ   (3a)                                                  ߝ
 
Where the xt

a
 is the actual defect size, ߝ denotes 

the error and xt
m

 is the observed defect size. 
All uncertainties that are described above should 

be taken into account for the comprehensive deteri-
oration model characterization. However, in order 
to establish a realistic deterioration model, each pa-
rameter needs to be characterized separately.  

4.1 Review of imperfect inspection models 

Zhang and Mahadevan (2001) developed a compre-
hensive approach to integrate computational relia-
bility methods and nondestructive inspection for fa-
tigue reliability evaluation. They used three 
measures as POD, measurement error and PFA to 
quantify the inspection outcomes uncertainty. The 
POD has been modeled in form of an exponential 
function of actual fatigue crack depth while the re-
lationship between the actual and measured crack 
depth size is expressed with a linear function. The 
PFA is obtained as POD when the actual defect size 
equals zero (Zhang & Mahadevan, 2001). 

Pandey (1997) presented a probabilistic analysis 
framework to estimate the pipeline reliability incor-
porating the impact of inspection and repair activi-
ties planned over the service life. Two measures, 
POD and measurement error, have been taken into 
account to evaluate the uncertainty of in-line in-
spection outcomes. The POD has been determined 
by a parametric exponential function. Using the 
Bayes theorem, the probability density function of 
detectable defect size has been calculated from the 
overall defect size distribution (Pandey, 1997). 

A Bayesian decision model by Kallen and Van 
Noortwijk (2005) proposed to determine the opti-
mal inspection plans under uncertain deterioration. 
The measurement error has been considered as im-
perfect inspection parameter, which has been repre-
sented as a normal distribution (Kallen & Van 
Noortwijk, 2005).  

Maes and Dann (2011) used a Bayesian ap-
proach in respect to pipelines in-line inspection da-
ta. In order to evaluate the inspection uncertainties, 
they used POD, PFA, measurement error and 
reportability. These measures were modeled simi-
larly to Zhang & Mahadevan (2001) models, how-
ever the hierarchical Bayes model was employed to 
upgrade the deterioration model (Maes & Dann, 
2011). 
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Frangopol et al. (1997) used the cumulative 
normal distribution function to calculate the proba-
bility of detection (Frangopol et al., 1997).  

In this paper, the measurement error as one of 
the most significant and well-known inspection un-
certainties is considered to demonstrate the inclu-
sion of imperfect inspection outcomes for gamma 
process bridge deterioration characterization. 

4.2 Measurement error representation 

The measurement error is a known inspection un-

certainty, which is often presented, as a normally 

distributed random variable with known variance 

and specific mean value (Zhang & Mahadevan, 

2001). In order to take into account the measure-

ment error at inspection with deterioration model, 

the actual defect size Xt
a
insp is presented in form of: 

 ܺ௧ೞ ൌ ܺ௧ೞ  ܺఌ                                           (3b) 

 

where Xt
a
insp is the actual defect size, Xt

m
insp is the 

measured defect size, which is modelled as a nor-

mally distributed random variable in this paper, and 

X is the measurement error. The measurement error 

distribution definitions reflect the inspection tech-

nique features.  

4.3 Gamma process deterioration model with 
inspection measurement error 

Once the definitions of measurement error distribu-
tion function are provided through the empirical 
model, for the purpose of estimation of the gamma 
process parameters through the method of mo-
ments, the characteristic value of the actual defect 
size is needed. This is determined for a certain con-
fidence level (cl).  

This characteristic actual defect size represents 
the imperfect inspection outcome and will be used 
within the method of moments estimation. The fol-
lowing equation explains that how the actual defect 
size with certain confidence level can be deter-
mined. 

 ܺ௧ೞ, ൌ ௧ೞݔ  for  ܲ ቀͲ ൏ ܺ௧ೞ  ௧ೞݔ ቁ ൌ ܲ     
(4) 

 

where, Pcl , reflects agreed confidence level and 

Xt
i
insp is the value of the actual defect size at inspec-

tion time with certain probability. The parameter 

for gamma process model are then evaluated in a 

usual way, (Ohadi & Micic, 2011) 

5 NUMERICAL EXAMPLE 

In this section, a bridge slab deck is considered 
when it is subjected to reinforcement corrosion as 
most common defect of RC Highway Bridges. The 
updated gamma process is applied with respect to 
the imperfect inspection outcomes for this bridge to 
identify the percentage loss of moment capacity 
over the lifetime of this bridge. Firstly the degrada-
tion process of moment capacity of such slab is pre-
sented in Figure 3 assuming that the inspection out-
comes are perfect (i.e. no measurement error).  

However, the inspection outcomes that are used 
to estimate the gamma process parameters are often 
associated with uncertainties, as stated above. Here 
two different inspection techniques will be consid-
ered to characterize the inspection uncertainties. 

 
 

 
 
Figure 3 Cumulative distribution functions for moment 

capacity loss  

 
 

Firstly, we consider the sample of perfect inspec-
tion outcomes for the constant (effectively deter-
ministic) corrosion rate of 0.076 mm/year and the 
Gamma process parameters are demonstrated in 
Table 1 and 2 respectively. 

 
 

Table 1 Sample inspection outcome for corrosion (determinis-

tic outcomes of inspections) 

 

Time 

(year) 

 

M 

Before   

inspec. 

(kN.m) 

M 

after       

inspec. 

(kN.m) 

 ܺ௧ 

(%) 

 

 

Ȗi(%) 

 

 

ωi 

(year) 

 

0 62.21 62.21 0 - - 

18 62.21 61.22 1.59 1.59 18 

24 61.22 58.13 6.56 4.97 6 

30 58.13 55.16 11.33 4.77 6 

36 55.16 52.18 16.12 4.79 6 
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where  is the deterioration incerement over the in-
terval and  is the inspection interval and the other 
information in the table includes that deterioration 
initiation has occurred before year 18.  Subsequent-
ly the parameters of the gamma process are ob-
tained for this case of perfect inspection and shown 
in Table 2. 

 
Table 2 Gamma process parameters (deterministic outcomes 

of inspections) 

Time     (year) β c 

24 

30 

36 

0.11 

0.16 

0.19 

0.0314 

0.06 

0.086 

 
For selected time horizons, the cumulative densi-

ty function for Xt
m
 is obtained: 

,ሻݐሺߙ|௧ݔሺܨ  ሻߚ ൌ න ݂ሺݑ௧|ߙሺݐሻ, ௫ݑሻ݀ߚ
ൌ ,ሻݐሺߙሺߛ ሻሻݐሺߙሻΓሺݔߚ   

 
where ((t),x) is the lower incomplete gamma 
function and f(xt

i
 |(t),)=Ga(x|(t),).  

Subsequently we consider uncertainties due to 
imperfect inspection techniques (measurement error 
in this case) to estimate the Gamma process param-
eters. For measured defect size we assume normal 
distribution function with age dependent standard 
deviation and mean value equal to the 0.076 (Marsh 
& Frangopol, 2008). Two inspection techniques are 
assumed to provide the corrosion information. The 
measurement error definitions of each technique are 
demonstrated in Table 3.  

 
 

Table 3 Inspection technique measurement error definitions 

(AASHTO, 2001)       
Technique ݔ.ହሺ%ሻ ߪ 

INS1 

INS2 

0.0714 

0.1714 

1.14 

2.58 

  
 
The measured defect size function and the meas-

urement error function are substituted in Equation 
(3b) to determine the actual defect function. It 
should be noted that the measured defect and meas-
urement error are assumed independent functions. 
Then the characteristic actual defect size at certain 
level of probability (Pcl =0.9) is considered to esti-
mate the actual deteriorarion at the time of inspec-
tion. Using this information Gamma process pa-
rameters are obtained and it is possible to 
characterize the actual degradation process. The 
gamma process parameters with respect to the actu-

al inspection outcomes are demonstrated in Table 4 
and 5, respectively.  

 
Table 4 Sample of inspection (INS1) technique outcomes 

Time 

(year) 

 

 

M  

Before   

inspec. 

(KN.m)  

M  

after           

inspec. 

(KN.m)  

ܺ௧ 

(%) 

 

 

Ȗi(%) 

 

 

 

ωi 

(year) 

 

 

0 

18 

24 

30 

36 

62.21 

62.21 

60.94 

57.00 

53.21 

62.21 

60.94 

57.00 

53.21 

49.41 

0 

2.04 

8.37 

14.46 

20.57 

- 

2.04 

6.33 

6.09 

6.11 

- 

18 

6 

6 

6 

 
 
In the same way as for the perfect inspection 

outcomes we obtain the gamma process parameters 
using the method of moments. These parameters are 
demonstrated for both inspection techniques in Ta-
ble 5 

 
 

Table 5 Gamma process parameters using inspection 1 (INS1) 

and inspection 2 (INS2) outcomes 

  Inspection Technique ͳ Inspection Technique ʹ 
Time 

(year)  

 ଵߚ

 

ܿଵ ߚଶ 

 

ܿଶ 

24 

30 

36 

0.089 

0.138 

0.15 

0.03 

0.066 

0.085 

0.054 

0.083 

0.1 

0.031 

0.068 

0.086 

 

 

Once parameters in Table 5 are obtained it is 

possible to establish capacity loss profiles for se-

lected time horizons. It is evident that with inclu-

sion of further inspection technique characteristics a 

realistic model would emerge and enable a well in-

formed modelling of deterioration projections.  This 

model is therefor reflecting the current status of the 

structure and the current technique quality, there-

fore accounting for multiple sources of temporal 

variablility. 



 
Figure 4 Comparison of cumulative density function of ac-

tual percentage loss of moment capacity with respect to in-
spection techniques INS1 & INS2 

 
Figure 4 demonstrates the comparison of the 

cumulative density functions for degradation pro-
cess of concrete slab bridge when two different in-
spection techniques have been implemented. Thus, 
it has been demonstrated that there is a pronounced 
effect of the inspection technique features. Once 
further inspection imperfections are considered the 
gamma process model would represent a rather ver-
satile tool for planning of maintenance and/or re-
pair. 

6 CONCLUSION 

This paper has considered the structural deteriora-
tion process as a time-dependent stochastic process. 
In particular, the continuous gamma process is 
identified that can represent the deterioration pro-
cess in an efficient manner. The gamma process pa-
rameters are estimated based on the inspection out-
comes, which are associated with uncertainties. 

Due to the imperfect detection and measurement 
capabilities of current inspection techniques, the in-
spection data is represented to reflect the uncertain-
ties associated with the actual defect size. This pa-
per presents the measurement error as the 
inspection data uncertainty. As a result the de-
scriptors for the deterioration process are more real-
istic over the lifetime. 

Benefits of using this method to produce the de-
terioration profile for a bridge are:  Required mathematical calculations are relative-

ly straightforward.  Continuous gamma process model for deteriora-
tion is more realistic in comparison with stand-
ard random variable models.  The inspection intervals can be increased and 
cost interventions such as additional mainte-
nance and repair reduced.  The best available inspection techniques can be 
selected at specific times.  

 An optimization technique could be used to de-
fine the optimum inspection regime. 
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