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Abstract 

Several lines of evidence suggest that motoric brain structures may form the core amodal 

component of a neural network supporting a wide range of timed behaviours. Here, we review 

recent findings which elucidate the neural computations that occur within motor regions, and in 

particular the supplementary motor area, in order to support precisely timed actions. Although 

motor activity may help us represent time, it is also clear that action both enriches and complicates 

the interpretation of sensory inputs. Hence, in the second half of this review, we also consider the 

latest findings regarding the perceptual distortions that our actions can impose upon the subjective 

timeline. 
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Highlights 

• The core timing mechanism resides within the motor system 

• Interval tuning in SMA is a dynamic signal encoding time in different contexts 

• The prediction of sensorimotor events is transmitted from motor to sensory areas 

• Actions lead to highly selective distortions of perceived time 

• Actions distort the subjective timeline before, during and after a movement 
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Introduction 

Precise timing is an implicit component of all skilled actions, and often also an explicit 

requirement, as in musical production and dancing. It is possible to view such motor timing as a 

specific process generated by a dedicated timer. However, it is now clear that brain regions 

traditionally viewed as motoric form part of a core timing network which interacts dynamically with 

sensory regions to support a range of timing needs. Perception, meanwhile, is not merely a passive 

process; it is also an active one operating in tandem with the motor system. This implies that, just as 

for other aspects of perception, we should take account of our actions when interpreting the 

temporal meaning of sensory inputs. In this paper we provide a selective review of recent work in 

these two areas. First, we consider the neural mechanisms that support timed behaviours, with a 

particular focus on the role of the supplementary motor area (SMA), a key node in the cortico-

thalamic-basal ganglia timing circuit (CTBGc). Second, we consider the ways in which temporal 

perception is affected by our ongoing actions. 

 

Neural mechanisms for timed behaviours 

Speech comprehension and articulation, as well as music appreciation and execution, 

depend on intricate loops linking the perception and execution of timed intervals. Hence, the timing 

mechanism engaged in these complex activities is multimodal and needs to extract temporal 

information from incoming stimuli and develop predictive signals about upcoming sensory and 

motor events. This scheme distinguishes time sensation (bottom-up) and time prediction (top-

down). There is a vast functional-imaging literature that indicates that timing is based on a partially 

overlapping neural network that has two elements. The first is a core-timing network that resides in 

the motor system and includes the CTBGc, which emits predictive signals to the rest of the brain 

independently of the timing context.  The second is a set of areas that are selectively engaged 

depending on the specific behavioural requirements of a task [1]. Thus, on one hand SMA and the 

basal ganglia of the CTBGc are activated during time production and perception tasks using both 

visual and auditory stimuli with various interval structures [2,3]. On the other hand, specific sensory 

and association areas are involved in interval timing, depending of the exact temporal paradigm 

[3,4].  

Two basic features of interval timing are a linear increase in temporal variability as a 

function of interval duration, a phenomenon called the scalar property, and a systematic bias in 

estimated durations towards the mean of the input intervals. Using a Bayesian observer model it is 
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possible to capture both features when the temporal context changes, creating a testable 

framework regarding how the core timing network represents the prior distribution of intervals and 

measures time in a scalar fashion [5]. Indeed, a scalar representation of time has been observed 

recently in the primate SMA [6**], as well as in the rodent striatum [7]. 

Recent neurophysiological experiments have confirmed that the SMA is a crucial element in 

the core timing mechanism. The neural activity from this area in macaques was recorded during a 

synchronization-continuation task (SCT), where the tapping behaviour of monkeys was synchronized 

to a metronome of isochronous stimuli, followed by a period where animals internally temporalized 

their movements [8]. Monkeys use an explicit timing strategy to perform this task, tightly controlling 

the duration of the pauses (or dwell times) between movements, then making stereotyped pushing 

movements, across each produced interval in the rhythmic sequence [9]. 

Interestingly, SMA activity during the SCT indicates that the time-keeping mechanism is 

governed by different layers of neural clocks (Figure 1). At the bottom of the hierarchy is ramping 

activity that shows an instantaneous increase or decrease in response magnitude. This peaks at the 

time of the anticipated response, suggesting its involvement in the temporal construction of motor 

intentions and actions [10,11]. In fact, a tight interaction between the ramping cells computing 

elapsed time since the previous tap and a different set of cells encoding time remaining to the next 

tap generates a coordinated cycle of activation during the SCT that ends with the triggering of each 

tap [12]. 

On top of such climbing activity, there are SMA cells that are tuned not only to the duration 

of the produced intervals but also to the serial-order of elements within each reproduced sequence 

in the SCT. This suggests that the SMA uses a cell population signal that works rather like the notes 

of a musical score, representing both the duration and the rank order of the produced intervals in 

the sequence [13**].  Most importantly, a subgroup of these interval-tuned neurons showed similar 

preferred intervals across both auditory and visual modalities and during tasks involving the 

production of one or multiple intervals. This observation supports the notion that SMA is part of the 

core timing mechanism that uses interval tuning as an abstract signal across timing behaviours and 

modalities [13**].  

The multiplexing of duration and serial order is a dynamic process, where discrete neural 

ensembles encode these parameters through small-time windows, so that the pattern of neural 

activity changes dramatically within each interval [6**]. Thus, the rapid activation of small groups of 

cells provides a strong synaptic drive to the next ensemble producing a neural avalanche across an 

interval [6**], which is repeated for every serial-order element of the SCT sequence [14*]. A recent 
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study has shown that the activity of duration/serial-order tuned cells in SMA can be statistically 

linked to either the sensory or motor events of the SCT [14*]. Moreover, a substantial group of 

sensory-aligned cells predict the appearance of the next stimulus in the sequence instead of simply 

responding to the previous stimulus. Therefore, the activity of this neural subpopulation can act as a 

top-down predictive signal to create the indispensable sensory-motor coupling that permits an 

animal to execute the SCT.  

Such predictive capabilities of the motor system seem well designed to sharpen perception in 

rhythmic contexts. When attention is allocated to auditory or visual events in a rhythmic sequence, 

delta oscillations of primary visual and auditory cortices of monkeys are entrained (i.e. phase-locked) 

to the attended modality [15]. Notably, however, the time-dependent processing of input stimuli 

can be further enhanced by using top-down signals coordinated by the motor system (Figure 1). A 

recent psychophysical study provides evidence for the existence of predictive signals associated with 

a rhythmic motor behaviour that are fed back to the sensory areas through a corollary discharge to 

enhance processing of incoming auditory signals at a particular cyclic phase [16**]. It seems that the 

motor system routinely generates strong dynamic signals in order to internally represent time, 

predict sensory events, and drive behaviour [17]. A possible mechanism for such active information 

distribution is through small pieces of spike-encoded data embedded in slow brain oscillations that 

can travel long distances [18]. Indeed, beta oscillations may be the channel for these top-down 

signals during rhythm perception and entrainment. The exact nature of the cell activity inserted into 

the beta oscillations is still unknown, but they have been associated with: (1) both the stimulus-

driven and the endogenous interpretation of the beat in early auditory areas [19]; (2) the prediction 

of the onset of the next temporal event [20]; (3) the dynamical coupling between the motor and 

auditory areas [20], and (4) internally driven timing behaviour [21-23]. Such interactions between 

top-down information and perceptual processes provide a natural segue to our second area of focus: 

The tendency for action to bias temporal perception. 

 

Time perception in the context of action 

Actions induce distortions of the subjective timeline.  Numerous distortions have been 

reported, affecting the events (and thus the intervals they define) occurring before, during, and after 

action (summarised in Figure 2). Here, we provide a brief update on classic findings. 

In the chronostasis illusion, a new percept that is revealed by an action is experienced as 

longer than a control percept. For example, the target of a saccadic eye movement has a subjectively 
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expanded duration, which may explain the commonly experienced stopped-clock effect (i.e. when 

we glance at a clock just after the second hand has advanced, and are surprised when it fails to 

advance again as quickly as we expect; [24]). A similar effect emerges when we reach to touch a 

vibrating stimulus [25]. 

Research conducted in the noughties suggested that saccadic chronostasis reflects an active 

mechanism compensating for sensory degradation during a saccade. The post-saccadic image may 

be being antedated, to stitch up the temporal gap induced by saccadic suppression and masking 

[24,26-29]. An active mechanism is implied because chronostasis emerges over and above any time 

dilation induced in passive control conditions, which simulate the visual effects of a saccade. A 

recent paper, however, included a very realistic passive control condition, and found temporal 

distortion similar to that obtained using real saccades (albeit in a very small sample of observers; 

[30*]). As we will see, action-induced timing illusions are often challenged on the basis that the 

fundamental cause is some correlate of action, rather than the action per se. For saccadic 

chronostasis, this issue bears further scrutiny. 

A similar effect, intentional binding, arises when an action causes a punctate event (such as 

a beep) to occur after a short delay [31]. Typically, the time of both the action and the beep are 

evaluated against a rapidly rotating clock in separate blocks. Judgements are made in a condition 

when the action causes the beep, but also in control conditions when each occurs alone. Generally, 

the time of the action is perceived relatively later, and the beep relatively earlier, when the action 

causes the beep; hence they are “bound.” The logical implication, that the interval from action to 

beep is perceptually compressed, has been verified directly via interval judgements (e.g. [32]). 

How central is action to this illusion? The effect is eliminated (even reversed) when the hand 

movement is triggered by magnetic brain stimulation, removing the sense of agency [30]. However, 

recent findings suggest that causality (rather than agency or intentionality) may be the critical factor 

inducing binding effects. For example, a binding-like effect can emerge between the “action” of an 

intentionless machine and a consequent flash [33]. It is important to keep in mind that this emphasis 

on causality stands against a backdrop of several studies emphasizing the importance of 

intentionality in this illusion [34]. Interestingly, while the focus of the effect has always been the 

interval between the action and  the resulting sensory event, one recent study suggests that a 

similar temporal binding can occur between an imperative stimulus and an action, i.e. for the 

interval prior to action [35*]. The relative contributions of intentionality and causality to this new 

illusion are yet to be fully explored.  
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Shortly after intentional binding was described, a possible alternative account emerged in 

the form of motor-sensory temporal recalibration [36]. Here, an action causes an event, but only 

after a short lag (in baseline conditions the event occurs almost immediately). Participants adapt to 

these temporal relationships over multiple trials. On test trials, various timings are used and the 

time of the sensory consequence is judged relative to the time of the action. Compared to baseline, 

lag adaptation recalibrates the perceived temporal relationship, so that delayed events are now 

more likely to be judged synchronous with (or even preceding) the action. Now recall intentional 

binding. Because that effect is measured in a situation that might be expected to generate 

recalibration, it could be recast as a consequence of adaptation. However, at least one recent study 

suggests that these are actually independent effects [37]. 

Regardless of whether motor-sensory temporal recalibration explains intentional binding, it 

is interesting in its own right. Recent work shows that recalibration emerges when correlated events 

consistently lead (as well as lag) tapping actions ([38]; c.f. [35*]) and can also be induced by delayed-

feedback tracking tasks [39]. Transfer of recalibration occurs when the stimulus changes ([40,41]; 

but see [42]). This, along with the details of the transfer observed between hand and foot tapping 

[43] and the (partial) capacity to adapt the two hands independently [44] suggests that recalibration 

mainly induces an effector-specific change in the perceived time of actions. 

The studies described so far focus mainly on the interval after the action. What happens 

before and during an action? The answers may depend upon which aspect of the subjective timeline 

we assess. For example, Morrone and colleagues briefly flashed two lines before or during a saccadic 

eye movement, and found a compression of the interval between them [45,46]. The effect was most 

pronounced when both lines appeared just before the saccade, and could even result in subjective 

order reversals, but was not found for auditory stimuli.  However, as with other illusions considered 

here, there are some questions about whether these effects are fundamentally motoric in nature, or 

arise from correlated changes in visual sensitivity [47]. 

A recent paper has now found analogous compression for manual actions [48*]. Specifically, 

an interval defined by two brief tactile stimuli was subjectively compressed immediately prior to and 

during a reach when the taps were applied to the reaching hand, but not when they were applied to 

the non-reaching hand. This effect also occurred during static (isometric) force production, but not 

in a passive control experiment when stimulus intensity was adjusted to approximate the reduced 

percept occurring during action (as a result of tactile sensory suppression). 

This manual illusion is intriguing, but also puzzling, because it appears to be at odds with 

another recent report [49*]. Here, participants lifted either their index or middle fingers. When a 
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vibrotactile stimulus was applied to the active finger, its perceived duration increased, but this did 

not occur for a stimulus applied to the static finger. This result is opposite to that described 

previously, despite a similar setup. This increase was also observed when visually judging the 

duration of the same action on a computer screen. It occurred regardless of exact viewing 

perspective and spatial alignment. 

It is difficult to know what procedural differences gave rise to these apparently opposite 

effects, but we might speculate that dilated (filled) intervals generate simultaneous contrast effects 

affecting the empty intervals that they subsume. At first glance, a similar contradiction seems to 

emerge when the interval just prior to an action is considered. As already described, when assessed 

using two taps to the active hand, compression occurs just before movement [48*]. This is broadly in 

line with the bias to perceive a visual imperative stimulus (a change in the colour of a fixation dot) as 

later (assessed via comparison with a rotating clock) when it triggers an action [35*]. However, 

another recent report found that time (assessed visually) is expanded during the preparatory period 

preceding action [50]. In this case, however, the period in question was earlier, coming prior to the 

imperative stimulus triggering movement. Hence expansion of that interval is broadly consistent 

with a delayed perception of the imperative stimulus, and thus contraction of the interval from 

imperative stimulus to action onset. 

 

Conclusions 

 In this brief review, we have highlighted how time is represented within core motor areas 

and translated into meaningful predictions and actions. Balancing the roles of core and dedicated 

timing systems in order to provide a more complete mechanistic explanation of their interactions 

and interdependencies will provide a key challenge for the future. We have also provided a concise 

update regarding the many ways in which time can be distorted by our actions. Researchers should 

focus on nailing down the functional relevance of these curious effects, in order to provide a 

concrete contribution to our understanding of active temporal perception.  
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Figure Legends 

 

Legend to Figure 1. 

A flux diagram for time processing using auditory stimuli, ranging from the extraction of 

temporal features (time sensation) in early sensory areas, to time perception, time production and 

time prediction (green characters) in the motor system. In turn, time prediction is fed back as a top-

down signal to enhance the processing of incoming stimuli in sensory areas. The colored squares on 

the right highlight the tentative neural signals involved at each processing level of time 

quantification [6,7,10-22]. 

 

Legend to Figure 2 

 Schematic overview illustrating the contextual effects of action upon perceived time. 

Temporal distortions are placed along a timeline, beginning with the imperative stimulus that 

instructs action and ending with the consequences of that action. Widened clocks indicate 

subjectively expanded intervals, contracted clocks represent subjectively compressed intervals, and 

arrow shapes indicate subjective shifts of the events demarcating different intervals. Matched 

shading is used to indicate the event biases that belong with different interval biases. A. Visually 

defined intervals dilate during action preparation [50]. B. Visual events are perceived later when 

they trigger actions [35]. C. Vibrotactile and visual filled intervals dilate when they overlap action 

[49]. D. Empty intervals between pairs of visual/tactile markers are compressed before and during 

saccades/manual actions respectively [45,48]. E. Tactile (visual) information revealed at the end of a 

manual action (saccade) is temporally dilated (and antedated) [24-26]. F. Actions and their delayed 

consequences seem compressed in time [31] and adapting to delayed feedback induces a 

recalibration of the perceived timing between action and its sensory correlates [36]. 
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Figure 1 
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Figure 2 
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