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Introduction 9 

Mathematical and computational models play a crucial role in all sciences and can clearly be 10 
helpful to the study of language evolution as well. A model makes certain theoretical 11 
assumptions about evolutionary forces and linguistic representations and then shows what the 12 
consequences of these assumptions are on the outcome of language evolution. Of course, the 13 
model does not in itself prove that the assumptions are empirically valid but it shows whether the 14 
assumptions are coherent, have the effect they are believed to have, and are in principle 15 
sufficient to generate the phenomena they are claimed to generate. Thus, they provide the 16 
opportunity to test different hypotheses about the ingredients that are necessary for languages 17 
with certain properties to emerge through processes of transmission and interaction between 18 
agents. In turn, they make predictions about the relationship between language acquisition, 19 
communicative interaction, and language change that can be assessed through experiments with 20 
human participants or robotic agents and through comparison with historical data. 21 

In the field of language evolution, a wide range of models has already been explored, but this is 22 
only the beginning. The complexity of the models, the questions they address, and the techniques 23 
used to check the validity of current models vary widely. Consequently, the discussions in our 24 
group did not and could not be expected to lead to a unified and complete picture, partly because 25 
researchers have been looking at entirely different aspects of the enormously complex problem 26 
of language evolution and have been using very different methods. Instead the group tried to 27 
sample the landscape of existing modeling efforts (section 1) and the representations of grammar 28 
and grammatical processing that are used in them (section 2). We then surveyed arguments 29 
regarding why and how modeling can contribute to the overall language evolution research 30 
enterprise (section 3), and outline future research including possible collaboration with biologists 31 
and linguists (section 4).  32 

To avoid a possible misunderstanding, we point out that the discussions in our group, and 33 
consequently the materials of this chapter, mostly concern the cultural evolution of language, to 34 
be distinguished from the biological evolution which is in the focus of other contributions in this 35 
volume. Nonetheless, investigations of cultural language evolution have implications for 36 
research on biological evolution, because if it is found that certain traits of language can 37 
naturally be explained by the former, biological mechanisms are relieved from an explanatory 38 
load. Conversely, biologically evolved, generic, non-linguistic information processing 39 
capabilities (e.g. sequential processing mechanisms) yield the scaffolding for cultural evolution.  40 
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Another preparatory remark is that modeling efforts adopt approaches that are quite standard in 1 
other domains of complex systems science, but may be relatively new to linguists. For example, 2 
there is often an effort to seek simplified models in order to clearly pin down the assumptions 3 
and, in many cases, make the models tractable from a mathematical point of view. Modelers 4 
typically focus on replicating statistical distributions of language phenomena rather than 5 
matching directly the particulars of a given human language. They will first consider 6 
communication systems that have only a rudimentary resemblance to language before increasing 7 
the complexity further step by step. Or they will make assumptions about certain aspects of 8 
language interaction (such as joint attention or perception) in order to make simulations doable at 9 
all. Some models are not about language per se but address the preconditions for language, such 10 
as cooperation (Richerson & Boyd, this volume). It is therefore important to keep in mind that 11 
the modeling work discussed here is primarily concerned with investigating the consequences of 12 
hypotheses rather than trying to model in detail and in a realistic way the origins and evolution of 13 
human language. 14 

1. Paradigms for Studying Language Evolution 15 

The discussions in the group arose from the multi-faceted experience of the participants with 16 
computer-based simulations of language dynamics, robotic experiments, and mathematical 17 
analysis. We are not aware of any generally accepted way of characterizing or classifying 18 
computational modeling approaches in the natural or social sciences. In the present context, we 19 
could nevertheless identify a number of different modeling paradigms that have grown up 20 
historically based on the shared interests of the researchers involved in exploring them. Each 21 
paradigm frames the process of language evolution in a particular way, focuses on some of the 22 
forces that might play a role, and then examines specific fundamental questions through concrete 23 
models and experiments. Within each paradigm we have seen the development of mathematical 24 
models, computational or robotic experiments, and psychological experiments with human 25 
subjects. Of course, the distinctions between paradigms that are made here is to some extent 26 
arbitrary and not always clear-cut. There are continuous dimensions linking these paradigms and 27 
hence considerable opportunities for cross-fertilisation. Moreover, we anticipate that additional 28 
modeling paradigms may spring up in the future to explore other aspects of the vast research 29 
domain of language evolution.  30 

A first distinction that can be made is between agent-based models, which try to pin down the 31 
cognitive and social processes that could give rise to forms of language, and macroscopic 32 
models, that aggregate the behavior of a population and then formulate equations defining the 33 
evolution over time among these aggregate quantities. Another dimension for categorising the 34 
models  concerns the importance given to cultural transmission, cognition, or biology, which has 35 
given rise to Iterated Learning models, Language Games, and genetic evolution models.  36 

In Figure 1 we give a schematic illustration of two main dimensions on which the paradigms 37 
differ. 38 
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Figure 1. Schematic "coordinate system" comparing for agent-based language evolution 16 
paradigms. The simplest models within the Iterated Learning paradigm focus on 17 
transmission across generations of agents in a singleton chain of teacher-learner dyades; 18 
Language Games focus on how language constructs emerge and evolve in interactions 19 
between agents. Numerous other paradigms can be seen as mixtures and ramifications 20 
of these two.  21 

 22 

1.1. Agent-based models  23 

Agent-based models center on models of individual language users as members of 24 
populations. The agents are given certain cognitive capabilities (for example a particular 25 
learning strategy) and made to interact, for example in the simulation of a teacher-learner 26 
situation or a  communicative interaction between two individuals. By simulating the effect 27 
of a large number of interactions, agent-based models can study under what conditions 28 
language systems with similar properties as human natural languages can appear. Agent 29 
models vary greatly in complexity, ranging from simple statistical "bag of words" language 30 
models to robots using complex grammatical and semantical representation formalisms to 31 
communicate with each other in a dynamical environment.  32 

Three types of agent-based models have been developed: iterated learning models which focus 33 
on understanding the role of cultural transmission, language game models which emphasise the 34 
role of communication and cognition, and genetic models which explore the role of biological 35 
evolution.  36 
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Iterated Learning  1 

The first paradigm that has already been explored quite deeply is known as the Iterated Learning 2 
Paradigm. It focuses on understanding the relationship between properties of the individual and 3 
the resulting structure of language by embedding a model of an individual learner in a so-called 4 
"transmission chain" (also sometimes called "diffusion chain", see Kirby, Christiansen, & 5 
Chater, this volume; Briscoe, this volume, for further details, and Mesoudi, 2007, for a review of 6 
this approach to studying cultural evolution more generally). In these models, the linguistic 7 
behavior of one individual becomes the learning experience of another individual who in turn 8 
goes on to produce behavior that will be input for a third individual and so on. The focus of this 9 
framework is on the contribution of learning in shaping the process of cultural transmission, with 10 
the goal of specifying precisely the relationship between constraints and biases provided by 11 
biology and the universal properties of linguistic structure. The idea is that a fundamental 12 
challenge for language is to be repeatedly transmitted between individuals over generations, and 13 
the transmission process is imperfect in important ways (e.g., learners have particular biases, 14 
they only see a subset of the language, there is noise in the world, and so on). The result is an 15 
adaptive system whereby language evolves culturally in such a way to give the appearance of 16 
being designed for transmission fidelity. 17 

The main simplification in many (but not all) of the models of this "iterated learning" process is 18 
that the transmission chain consists of a single individual at each generation, and involves only 19 
vertical transmission (i.e., transmission between generations). This simplification allows 20 
researchers to focus on the sole contribution of the learning bias plus the nature of the selection 21 
of training data (e.g., number of examples, etc.), although it leaves out many of the factors 22 
associated with horizontal transmission (e.g., selection of models to learn from, having shared 23 
communicative goals, and population structure). One avenue for future research is to explore the 24 
implications of other, more realistic models of populations, while maintaining the emphasis on 25 
the role of transmission in shaping language structure. For a recent review of general cultural 26 
evolution models see McElreath and Henrich (2008). 27 

Examples of iterated learning models are given in Kirby, Christiansen and Chater (this volume). 28 
An emphasis in many of these models so far has been the explanation of the emergence of 29 
compositional structure in language. Compositionality, along with recursion, is the fundamental 30 
feature of human syntax that gives us open-ended expressivity. It is also arguably absent in any 31 
other species, despite the prevalence of communication in nature. Accordingly, it is an important 32 
target for explanation for those interested in the evolution of language. Using mathematical, 33 
computational, and experimental models, researchers have examined the conditions under which 34 
compositionality and the relationship between compositionality and frequency may emerge. 35 
Specifically, these models suggest that compositionality arises when there is a "bottleneck" on 36 
the cultural transmission of language - in other words, where learning data is sparse. 37 

Language Games 38 

The second class of models investigates the role of embodiment, communication, cognition and 39 
social interaction in the formation of language. Instead of modeling only teacher/learner 40 
situations as in iterated learning approach, it models the communicative interactions themselves 41 
in the form of language games. A language game is a situated embodied interaction between two 42 
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individuals within a shared world that involves some form of symbolic communication. For 1 
example, the speaker asks for "a cup of coffee" and the hearer gives it to her. When speaker and 2 
hearer have shared conventions for solving a particular communicative problem they use their 3 
existing inventory in a routine way. But when this is not the case, the speaker requires the 4 
necessary cognitive capabilities to extend his inventory, for example expanding the meaning of a 5 
word or coercing an existing word into a new grammatical role, and the hearer requires the 6 
ability to infer meanings and functions of unknown items and thereby expand his knowledge of 7 
the speaker’s inventory.  8 

In typical language game models, the individuals playing language games are always considered 9 
to be members of a population. They interact only in pairs without any centralized control or 10 
direct meaning transfer. There is unavoidable variation in the population because of different 11 
histories of interaction with the world and others, but a proper selectionist dynamics, 12 
implemented by choosing the right alignment and credit assignment strategies for each 13 
individual, causes certain variants to be preferred over others. Language game models often 14 
operate with a fixed population because they examine the thesis that language emerges and 15 
evolves by the invention, adoption, and alignment strategies of individuals in embodied 16 
communicative interactions, but many experiments have been done as well in which a flow is 17 
organized in the population with members leaving or entering the population, in order to show  18 
that the model handles cultural evolution as well.  19 

By now there have been dozens of experiments in language games exploring how different 20 
aspects of language may arise (see Steels, this volume). The simplest and earliest game studied is 21 
the Naming Game, in which agents draw attention to individual objects in the world by using 22 
(proper) names (Steels, 1995). Guessing games have been used to study the co-evolution of 23 
perceptually grounded categories and words (Steels & Belpaeme, 2005), flexible word meanings 24 
(Wellens, et.al., 2008),  and the emergence of spatial language (Steels & Loetzsch, 2008). 25 
Description games have been used in experiments in the emergence of grammar, particular case 26 
grammar (VanTrijp, 2008). 27 

Language games have been explored further from three angles: through mathematical analysis, 28 
particularly using the methods of statistical physics, through computational simulations and 29 
robotic experiments, and through experiments with human subjects as carried out by Galantucci  30 
(2005), Pickering & Garrod (2004), and others. Robotic experiments are particularly useful if 31 
one wants to study the question how embodiment plays a role in language evolution. Data on 32 
actual language change, coming from historical linguistics and sociolinguistics, is currently 33 
being used to constrain the repair and consolidation strategies of agents in grammatical language 34 
games and data from cognitive linguistics and particularly cognitive semantics is used to 35 
constrain the range of possible conceptualizations that could be the target of experiments. The 36 
theoretical tools developed in statistical physics and complex systems science have recently 37 
acquired a central role for the study of Language Games. The suite of methods developed in 38 
these fields has indeed allowed to address quantitatively such issues as the scaling of relevant 39 
features of the models with the system size (e.g. convergence time or memory requirements 40 
(Baronchelli et al., 2006a, 2008), the impact of different underlying topology on global behaviors 41 
(e.g. homogeneous mixing (Baronchelli et al., 2008) vs. regular lattices (Baronchelli et al., 42 
2006b) vs. complex networks (Dall’Asta et al., 2006a, 2006b)), and the detailed study of 43 
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convergence dynamics (Baronchelli et al., 2008). Thus, for example, it has been shown that 1 
complex networks are able to yield, at the same time, the fast convergence observed in 2 
unstructured populations and the finite memory requirements of low dimensional lattices 3 
(Dall’Asta et al., 2006a, 2006b). Moreover, agents’ architectures and interaction rules have been 4 
significantly simplified to allow thorough analysis, and this has allowed to pinpoint the crucial 5 
ingredients responsible for the desired global co-ordination. The pursuit of simplicity, along with 6 
the novelty of the complex systems approach to this field, has so far limited the investigations 7 
mostly to the study of the Naming Game and of the Category Game (in which the population 8 
ends up with a shared repertoire of categories) (Puglisi et al, 2008). Research is however ongoing 9 
in order to tackle higher order problems, such as the emergence of compositionality (De Beule, 10 
2008). Experiments with human subjects show that humans can evolve communication systems 11 
although some are better than others, mostly because of differences in social attitudes. Of course 12 
the greatest challenge is to scale these experiments up to the level of grammatical languages. 13 
Recent examples  already showing the formation of case grammars, tense-aspect-mood systems, 14 
or determiner systems lead to optimism (see e.g. Van Trijp, 2008).  15 

Genetic Evolution  16 

A third class of models explores the role of biology by modeling the genetic transmission of 17 
language. Agents are created based on a model of a genome that codes directly the lexicon or 18 
grammar of their language. Agents then engage in interactions that determine their fitness, and 19 
based on communicative success they have a higher chance to reproduce in the next generation. 20 
Due to random mutations and crossover, offspring has slightly different genomes, possibly 21 
giving higher communicative fitness which then leads to further propagation. These models use 22 
very similar techniques as those used in genetic algorithms and they sprang up first in the context 23 
of Artificial Life (see Cangelosi & Parisi, 1998). Given that the explicit genetic coding of lexicon 24 
and grammar is highly implausible from a biological point of view, more recent models have 25 
considerably weakened this assumption, and encode only strong biases and universal constraints 26 
on possible languages. This is particularly the case for the ENGA model (Szathmary, 2007). 27 
ENGA is an ambitious framework that covers not only the genetics but also the neuro-28 
developmental processes in a biologically realistic way. Linguistic inventories are not coded 29 
genetically but acquired by a learning process. The ENGA model therefore attempts to cover the 30 
whole ground from genetic to developmental and learning processes.  31 

1.2. Aggregate models  32 

In addition to agent-based models, there is extensive research to construct macroscopic models 33 
of language evolution and language dynamics.  34 

Game Theoretic Models of Language Evolution  35 

The main paradigm being explored draws from the tradition of evolutionary game theory in 36 
order to focus on the role of imitation in cultural transmission. Imitation (or re-use) applies both 37 
to the adaptation of linguistic performance between adult speakers and the acquisition of 38 
language by infants. Imitation is framed as a form of replication. An evolutionary dynamics 39 
ensues in any population of replicating entities, provided the entities in the population vary in 40 
certain heritable characteristics, and replicative success is correlated with this variation. This is a 41 
crucial difference to the iterated learning paradigm, where every individual grammar participates 42 
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equally in language replication. On the other hand, the game theoretic model – as a form of a 1 
selectionist model – assumes faithful replication, while replication under iterated learning may 2 
be imperfect. Under certain simplifying assumptions – like the postulation of an infinite 3 
population and a continuous time – such an evolutionary dynamics can be described by a system 4 
of ordinary differential equations. In language evolution this dynamics is necessarily nonlinear 5 
because selection is frequency dependent. This can, for instance, be illustrated by the 6 
development of vocabulary: whether a candidate for a neologism catches on in a linguistic 7 
community (i.e. becomes replicated) depends on whether or not there already is another word for 8 
the same concept within this linguistic community. This indicates that the overall frequency 9 
distribution of words is a decisive factor for the fitness of each individual word. A similar point 10 
can be made for other linguistic units, ranging from phonemes to syntactic constructions. 11 

Frequency dependent selection can be modeled by means of replicator dynamics within the 12 
mathematical framework of evolutionary game theory (Maynard Smith 1982, Hofbauer & 13 
Sigmund 1998). A model of a communication game consists, in its simplest incarnation, of 14 

• a space of meanings and a space of forms,  15 

• a space of production grammars (mappings from meanings to forms), 16 

• a space of comprehension grammars (mappings from forms to meanings), and 17 

• a utility function, i.e. a measure of success for a pairing of grammars, depending on the 18 
success of communication and complexity of the grammars involved. 19 

Further parameters may be added, like a biased a priori probability distribution over meanings, 20 
or a confusion matrix for noisy transmissions of forms. 21 

There are several off-the-shelf theorems from biomathematics regarding stability conditions for 22 
evolutionary games. Such theorems sometimes render it straightforward to identify the attractor 23 
states of the replicator dynamics without actually delving into the complexities of the underlying 24 
nonlinear differential equations. 25 

The biomathematics literature contains a variety of results concerning the evolution of 26 
communication, where strategies (“grammars”) are assumed to be innate and replication is 27 
interpreted in the biological sense (e.g., Wärneryd 1993, Trapa & Nowak 2000, Nowak & 28 
Krakauer 1999, Nowak, Krakauer & Dress 1999, and Jäger 2008a. These authors mainly 29 
consider biological evolution, and they assume that communicative success is correlated with 30 
biological fitness, i.e. the number of fertile offspring. However, their results are general enough 31 
that they can be extrapolated to cultural evolution. The background assumption here is that 32 
communicative success of a certain behavioral trait is positively correlated with its likelihood to 33 
be imitated, i.e. its cultural fitness. Possible applications of evolutionary game theory to the 34 
study of the cultural evolution of language (in the sense described above) are investigated in a 35 
series of papers by Gerhard Jäger and Robert van Rooij (Jäger 2007, 2008b, Jäger & van Rooij 36 
2007).  37 

Game-theoretic research in language evolution has suggested a formal framework which is quite 38 
useful within this paradigm.  “Universal grammar” or a pre-existing bias of grammar learning 39 
can be represented in the following abstract manner. Suppose we have a finite alphabet (a finite 40 
set of symbols) (see Nowak et al 2001, Komarova et al 2001, Komarova & Nowak 2001, 2003, 41 
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Nowak & Komarova 2001). A language is a probability distribution defined on a set of strings 1 
composed of the symbols of the alphabet. The allowed languages can be represented as 2 
probability distributions on a collection of (intersecting) sets. Then a learning mechanism is a 3 
way to “navigate” in this collection of sets. Pair-wise similarity among languages can be 4 
expressed as a matrix. The process of learning then is a sequence of hypotheses of a learner in 5 
response to the input of a teacher (or teachers), which is a number of strings compatible with the 6 
teacher(s)’ grammar. This framework allows one to use the machinery from mathematical 7 
learning theory, and connect natural language evolution with insights from computer 8 
science/machine learning.  9 

1.5 Summary  10 

There are obvious relations, complementarities and continuities between these approaches and 11 
paradigms. The game-theoretic paradigm focuses on the selectionist dynamics of the language 12 
itself, whereas language game models use an agent based approach, focusing on the cognitive 13 
mechanisms by which agents use, invent and coordinate language so that the selectionist 14 
dynamics of language emerges. The Iterated Learning paradigm focuses on the role of bias and 15 
the vertical transmission bottleneck and therefore tends not to integrate the issue of 16 
communicative success, cognitive effort or population dynamics into the models, whereas the 17 
Language Game paradigm considers vertical transmission as an additional but not crucial effect 18 
on language evolution. Pursuing these different approaches provides the opportunity to explore 19 
how different factors such as learning, communication, and population structure influence the 20 
process of language evolution. 21 

 22 

 23 

2. Linguistic Representations and Processes  24 

Given that this Forum was focused on syntax, it is relevant to ask the question what kind of 25 
representations for grammar are being used in language evolution models and what kind of 26 
syntactic operations and grammatical processes have been incorporated into these models. It 27 
turns out that researchers working on iterated learning and game-theoretic approaches generally 28 
try to use existing ‘symbolic’ formalisms or neural network models. Some have argued however 29 
that the requirements of evolvability put additional constraints on the nature of grammatical 30 
representations and processing and this has lead to some work on novel grammar formalisms 31 
which can cope with emergent grammar. 32 

Symbolic Grammars 33 

There are a variety of grammatical formalisms in the theoretical linguistics literature, some of 34 
which have been utilized in evolutionary models whereas others, such as minimalism (Chomsky 35 
1995), have not (possibly because they are less easily embedded in theories of processing). 36 
Examples of formalisms which have been deployed with minimal modification include 37 
Optimality Theory (Jäger 2004), Extended Categorial Grammar (Briscoe 2000) and Context Free 38 
Grammars (Zuidema 2002). All such models require the embedding of the formalism into a 39 
theory of grammar learning and processing. Modelers have drawn on existing proposals from the 40 
literature, such as Bayesian parameter estimation, compression based algorithms, or non-41 
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statistical parameter setting algorithms for implementing the learning mechanisms used in 1 
vertical transmission (see Griffiths and Kalish 2007, Briscoe 2000).   2 

Simple Recurrent Networks 3 

Other language evolution models have avoided the explicit representation of hierarchical 4 
structures, syntactic and semantic categories and grammatical rules, deploying distributed and 5 
subsymbolic representation. A popular alternative is Simple Recurrent Networks (SRNs, Elman, 6 
1990). In SRNs, knowledge of language is learnt from the presentation of multiple examples 7 
from which the networks learn to process syntactic structure. The general aim of such models is 8 
to capture observable language performance, rather than idealized linguistic competence 9 
(Christiansen, 1992; Christiansen & Chater, 1999). Much of this work has an emphasis on the 10 
integration of multiple sources of probabilistic information available in the input to the 11 
learner/speaker/hearer (e.g., from the perceptuo-motor system, cognition, socio-pragmatics, and 12 
thought as discussed in the chapter by Kirby, Christiansen & Chater, this volume). Although 13 
much of this work tends to target small fragments of language for the purpose of close modeling 14 
of psycholinguistic results (e.g., Christiansen & Chater, 1999; MacDonald & Christiansen, 15 
2002), some efforts have gone into scaling up models to deal with more realistic language 16 
samples, such as full-blown child-directed speech (Reali, Christiansen & Monaghan, 2003). In 17 
this framework grammatical processing can be conceptualized as a trajectory through a high-18 
dimensional state-space afforded by the hidden unit activations of the network (e.g., Elman, 19 
1990) , potentially suggesting an alternative perspective on constituency and recursion in 20 
language (Christiansen & Chater, 2003). These models do not include explicit grammar 21 
formalisms but the behavior of the networks can in some cases be described in terms of such 22 
formalisms. 23 

Formalisms designed for grammar evolution  24 

Some researchers have been developing novel formalisms to be used specifically in language 25 
game experiments. This is particularly the case for Fluid Construction Grammar (FCG). FCG (de 26 
Beule & Steels, 2005) uses representational mechanisms already employed in several existing 27 
symbolic grammar formalisms like HPSG (Sag, et.al. 2006) or Lexical-Functional grammar 28 
(Kaplan & Bresnan, 1982) such as a feature-structure based representation of intermediary 29 
structures during parsing and production, a constraint-based representation of linguistic rules so 30 
that they can be applied in a bi-directional fashion, and unification-style mechanisms for the 31 
application of these rules. FCG is in line with other construction grammar formalisms (such as 32 
Embodied Construction Grammar, Bergen & Chang, 2004) in the sense of supporting  the 33 
explicit representation and processing of constructions, which is de-emphasised in Minimalism. 34 
But FCG on the other hand has various additional facilities to enable language evolution 35 
experiments: (i) Individual agents represent a multitude of hypotheses about the emerging 36 
language, and are therefore able to handle variation in language use, (ii) rule application is 37 
flexible allowing the violation of constraints and robust parsing and production so that sentences 38 
can be understood even if they are not entirely grammatical (according to the preferred grammar 39 
of the agent), (iii) the different variants compete within the individual when it has to make 40 
decisions about how to express something or interpret something and, as an emergent effect, 41 
within the population for dominance in the emergent language, and (iv) rather than coding 42 
systematicity in terms of more abstract rules, FCG maintains links between the rules, based on 43 
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how the rules are formed through composition of other rules. These links are then used for 1 
assigning credit or blame after a game, allowing the implementation of a multi-level selectionist 2 
dynamics. Due to these features, FCG exhibits dynamical systems properties seen in network 3 
representation systems of grammar that do not rely on symbolic structures, such as connectionist 4 
networks or recurrent neural networks, while at the same time incorporating many ideas from 5 
decades of research into theoretical and computational linguistics.  6 

2.3. Summary 7 

The computer simulations carried out in evolution of language research rest on a variety of 8 
formalisms to represent the inventory of the lexicon and grammar of the emerging language in 9 
the first place. In choosing a particular formalism, the researcher makes a commitment to what 10 
aspects of language are isolated for an inspection of their role in evolutionary dynamics, and 11 
what others are (implicitly) excluded.  12 

 13 

3. How can Modeling (Already) Inform the Study of Language Evolution? 14 

Although the mathematical and computational modeling of language evolution is still in its 15 
infancy, there are already quite a few results that show the power of the approach and that may 16 
be of interest to biologists and linguistics.  17 

3.1. Two main sources of added insight 18 

Computational modeling, like in any other field, enables two powerful avenues for accruing 19 
scientific insight: 20 

Formal analysis. Computational models have to be rigorously formalized to make them 21 
operational on computers. When a simulation is running, all aspects of the simulation can be 22 
recorded, including the population aspects. The same is true in robotic experiments where all 23 
perceptual states, motor states, and the full details of all processes going into language 24 
production and understanding can be tracked, something not possible with human subjects. This 25 
full access to relevant data makes the models amenable to mathematical analyses. Typical 26 
questions that can be answered by the analytical methods provided by nonlinear dynamics, game 27 
theory and statistical physics concern asymptotic properties of evolutionary dynamics, the 28 
dependence of these dynamics on scaling parameters, or the prediction of sudden and dramatic 29 
changes (phase transitions).  30 

Simulation studies. Carrying out simulations on a computer differs from carrying out real-life 31 
experiments in two crucial respects. First, the simulated piece of reality is completely specified. 32 
Second, one has full control over varying experimental conditions. There are risks and 33 
opportunities under these circumstances. An obvious pitfall is that the simulation may miss a 34 
crucial component of the real-life target system – this is the problem of abstraction. However, it 35 
should be noted that, in principle, in experimental designs involving human subjects the same 36 
problem is present: a particular experimental design may prevent real-life-relevant mechanisms 37 
from taking effect. The benefits added to empirical experiments (which remain indispensible) by 38 
simulation studies are, in our view, the following: 39 
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• A systematic exploration of large hypothesis spaces is made possible due to the speed 1 
and low cost of simulations. This both facilitates the generation of new scientific 2 
hypotheses, and the testing of existing ones. 3 

• Model simulations can give existence proofs for the efficiency of certain mechanisms to 4 
achieve a certain effect – always, of course, modulo the modelling assumptions. 5 

• In a related vein, model simulations can give non-uniqueness proofs if the same ultimate 6 
effect can be obtained by different mechanisms. Such demonstrations are helpful in 7 
precluding an early "contraction" to a single explanatory venue in theory development. 8 

• Simulations are replicable across different laboratories by sharing code.  9 

• Critiquing and improving simulation setups is transparent, because it is explicit how 10 
assumptions become operationalized in the designs.  11 

If one is carefully conscious of the assumptions that go into a simulation model, research based 12 
on such models can decidedly "open up" the space of possible theories in a field, raising the 13 
awareness of alternative theories. To demonstrate this point, in this section we present a number 14 
of examples that have arisen from the work of group members and which were discussed at the 15 
meeting.  16 

3.2. Examples 17 

In the following we list some of the important contributions to understanding language 18 
evolution, derived from work carried out by authors of this chapter. 19 

Magnification of Learning Bias through Cultural Transmission  20 

Mathematical analyses of the iterated learning model described above provides some interesting 21 
insights into the relationship between the inductive biases of language learners -- the factors that 22 
lead them to find it easier to learn one language than another, as might be the consequence of 23 
genetic constraints on language learning -- and the kinds of languages that will be spoken in a 24 
community. As discussed by Kirby, Christiansen, and Chater (this volume) and Briscoe (this 25 
volume), one way to capture the inductive biases of learners is to assume that they identify a 26 
language from a set of utterances by applying Bayesian inference, with a "prior" distribution 27 
encoding which languages learners consider more probable before seeing any data. Languages 28 
with higher prior probability can be learned from less evidence, and the prior thus reflects the 29 
inductive biases of the learner. Analyses of iterated learning with Bayesian agents show that the 30 
relationship between the prior and the languages that are ultimately produced via cultural 31 
transmission can be complex (Griffiths & Kalish, 2007; Kirby, Dowman, & Griffiths, 2007). 32 
Specifically, iterated learning can magnify weak inductive biases, with a slight difference in the 33 
prior probabilities of two languages resulting in a significant difference in the probability of 34 
those languages being produced via cultural transmission. These mathematical results suggest 35 
that strong genetically-encoded constraints on learning may not be necessary in order to explain 36 
the structure of human languages, with cultural evolution taking on part of the role that might 37 
otherwise have been played by biological evolution. 38 

Restricting the Space of Possible Grammars 39 

It is tempting to reconstruct the notion of a linguistic universal as a property that every language 40 
with a grammar that can be cognitively represented and learned by humans – i.e. a language that 41 
conforms to “Universal Grammar” in the Chomskyan sense – shares. Evolutionary models 42 
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indicate that there may be other sources of universals. Briefly put, a possible language must also 1 
be attainable under the evolutionary dynamics of language transmission.  2 

In Jäger (2004), this basic idea is illustrated with a particular implementation. According to 3 
Optimality Theory, Universal Grammar defines a finite set of constraints, and each particular 4 
grammar is characterized by a linear ordering of these constraints. To account for certain strong 5 
typological tendencies, Aissen (2003) proposed to restrict the space of possible grammars further 6 
by imposing certain sub-hierarchies of constraints that are never violated. 7 

Following proposals by Boersma (1998), Jäger implements a stochastic learning algorithm for 8 
optimality theoretic grammars. However, unlike Boersma, Jäger assumes that language 9 
acquisition is bidirectional, i.e. the learner tries both to mimic the production behaviour and the 10 
comprehension behaviour of the teacher. It turned out that some constraint rankings are strictly 11 
not learnable at all. Among the remaining space of learnable grammars, some are more robustly 12 
learnable than others. After iterating the learning procedure a few dozen or hundred of times 13 
(where in each generation, the former learner becomes the teacher and produces utterances on 14 
the basis of his acquired grammar), only constraint rankings that conform to Aissen’s prediction 15 
were observed.  16 

The Co-Evolution of Categories and Names  17 

One of the big debates in language studies concerns the question of how far perceptually 18 
grounded categories, such as colors, influence and are influenced by language that expresses 19 
these categories. From a Whorfian point of view there is a strong interaction whereas those 20 
arguing for strong modularity have argued that categories are innate or induced from empirical 21 
data and language are just labels for existing categories. Although color categorization and color 22 
naming does not relate directly to grammar, we include this theme here because it exemplifies 23 
the quality of insight that can be obtained from modelling studies, and because categorization 24 
and naming are prerequisites for grammatical language. Research on using for language games 25 
for studying the co-evolution of categories and names started with the BBS paper by Steels and 26 
Belpaeme (2004) in which agent-based models of color naming and categorization were 27 
developed and systematically compared. This paper showed that although a genetic evolution of 28 
color categories was possible, it not only took a long time, but also did not lead to a system that 29 
was adaptive, and did surely not lead to universal categories unless populations remained 30 
homogeneous. The paper also showed that a purely learning-based approach did not lead to an 31 
explanation for trends in color categories and neither to sufficient coherence in a population to 32 
explain how a successful communication was possible. More recently this research was extended 33 
in two directions.  34 

Deepening the Complex Systems Approach to Color Categorization  35 

The Category Game (Puglisi et al., 2008) is a language game that aims at describing how a 36 
population of agents can bootstrap a shared repertoire of linguistic categories out of pairwise 37 
interactions and without any central coordination. The prototypical example of the phenomena 38 
the model addresses is given by color categorization. Individuals may in principle perceive 39 
colors in different ways, but they need to align their linguistic ontologies in order to understand 40 
each others. In the game, a population of N individuals is committed to the categorization of a 41 
single analogical truly-continuous perceptual channel, each stimulus (or “object”) being a real 42 



Ernst Strüngmann Forum on  
Biological Foundations and Origin of Syntax 

 Group Report 4  13 

Unpublished manuscript.  All rights reserved by the authors. 

number in the interval [0,1). A categorization is identified with a partition of the interval [0,1) in 1 
discrete sub-intervals, or perceptual categories. Individuals have dynamical inventories of form-2 
meaning associations linking perceptual categories to words representing their linguistic 3 
counterparts, and they evolve through elementary language games. At the beginning all 4 
individuals have only the trivial perceptual category [0,1). At each time step two individuals are 5 
selected and a scene of M stimuli is presented. The speaker discriminates the scene, if necessary 6 
refining its perceptual categorization, and names one object. The hearer tries to guess the named 7 
object, and based on her success or failure, both individuals rearrange their form-meaning 8 
inventories. The only parameter is the just noticeable difference (JND) of the individuals. The 9 
probability distribution from which stimuli are randomly chosen, finally, characterizes the kind 10 
of simulated environment.  11 

The main result is the emergence of a shared linguistic layer in which perceptual categories are 12 
grouped together into emerging linguistic categories to guarantee communicative success. 13 
Indeed, while perceptual categories are poorly aligned between individuals, the boundaries of the 14 
linguistic categories emerge as a self-organized property of the whole population and are 15 
therefore almost perfectly harmonized at a global level. Interestingly, the model reproduces a 16 
typical feature of natural languages: despite a very high resolution power and large population 17 
sizes, the number of linguistic categories is finite and small. Moreover, a population of 18 
individuals reacts to a given environment by refining the linguistic partitioning of the most 19 
stimulated regions, while non-uniform JNDs (like for instance the human JND function relative 20 
to hue perception) constrain to some extent the structure of the emergent ontology of linguistic 21 
categories. 22 

The Evolutionary Game Theory Approach to Color Categorization 23 

The following simple framework has been designed in order to investigate the influence of 24 
various realistic features (linguistic, psychological and physiological) on the shared color 25 
categorization (see Komarova et al 2007, Komarova & Jameson 2008). The space of colors is 26 
represented as a 3-D spheroid, or a lower-dimension subset of that. Color categorization of an 27 
agent is modeled as a stochastic matrix, which specifies the probability of color names used to 28 
denote color exemplars, which are the psychological representations of, say, various color hues. 29 
The process of color categorization is simulated as repeated discrimination and communication 30 
games played by a number of agents. The discrimination game consists of two exemplars 31 
presented to an agent, followed by the agent using his categorization matrix to assign color terms 32 
to the two exemplars. The outcome of the game (success or failure) is decided based upon the 33 
following pragmatic criterion. If the two color exemplars are “close” to each other and are 34 
classified as the same category, then the game is a success; if they are classified differently, then 35 
it is a failure. On the other hand, if the exemplars are “far apart”, then for success they have to be 36 
categorized as different. The measure of “closeness” of two exemplars is specified (in the 37 
simplest case) by a single “pragmatic similarity” parameter. After each run of the discrimination 38 
game, the categorization matrix of the agent is modified to strengthen the more successful 39 
category and weaken the less successful one. Communication between agents is modeled by 40 
pairs of agents playing the discrimination game and the less successful agent modifying its 41 
categorization matrix accordingly. As a result of a number of iterations of this game, a 42 
population of agents arrives at a shared categorization system, which possesses the following 43 
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qualities: (i) the exemplar space is equipartitioned into a (predictable) number of distinct, 1 
deterministic color categories, (ii) the size of color categories is uniquely defined by the 2 
pragmatic similarity parameter, (iii) the location of category boundaries possesses rotational 3 
symmetry. While this skeleton produces results reasonable from a psychological point of view, 4 
the main raison d’être for this model is to investigate various realistic constraints on color 5 
categorization.  For example, non-uniformities in the “color diet” lead to differential 6 
convergence rates of different color categories. The inhomogenities of exemplar space (the non-7 
uniformity of the pragmatic similarity parameter) lead to changes in size and number of color 8 
categories. Finally, inhomogenities in the agent population can also change the structure of the 9 
common categorization system.  Interestingly, the presence of even a small number of abnormal 10 
observers (e.g. dichromats) in the population leads to the anchoring of color boundaries to a 11 
subset of possible locations. These locations are defined by the confusion regions in the 12 
dichromats’ color representation. Empirical data of confusion spectra of abnormal color 13 
observers can be incorporated to generate specific color boundary predictions and to deduce  14 
how the color categorization of various populations is influenced by the population 15 
inhomogeneities (see Jameson & Komarova, 2009). 16 

The Emergence of Linguistic Ontologies  17 

The final example that shows how modeling can lead to the opening up of new theoretical 18 
avenues and ideas in language evolution comes from the domain of grammar. Grammar exploits 19 
syntactic devices (such as word order or morphology) in order to express additional aspects of 20 
meaning, such as discourse structure, thematic relations (predicate-argument structure), tense-21 
aspect-mood, determination, scoping constraints on anaphora, etc. In all linguistic theories of 22 
today the rules of grammar are expressed using an ontology of syntactic and semantic categories. 23 
These syntactic categories include parts of speech (e.g., noun, verb, adverb), types of 24 
constituents (e.g., noun phrase, relative clause), syntactic constraints (e.g., agreement, 25 
precedence), syntactic features (e.g., nominative, masculine, neuter), etc. The semantic 26 
categories include categorisations of temporal aspects in terms of tense, aspect, or mood, 27 
semantic roles such as agent or beneficiary, categories used for conceptualising discourse, like 28 
topic/comment, different shades of determination (e.g. definite/indefinite, count/mass), 29 
classifiers (as used in Bantu languages), deictic references both for use inside and outside 30 
discourse, epistemtic distinctions, and so on. A complex grammar undoubtedly requires 31 
hundreds of such categories. A fundamental question in understanding the origins and evolution 32 
of language is therefore where such a linguistic ontology might be coming from.  33 

There is a common (usually hidden) assumption among many theorists that linguistic ontology is 34 
universal and innate, but that does not explain yet how it originates. Typologists have argued that 35 
linguistic categories are to a large extent language-dependent (Haspelmath, 2007) and historical 36 
linguists have shown that categories change over time (Heine & Kuteva, 2008). This suggests 37 
that linguistic categories may be similar to categories in other domains of cognition (such as the 38 
color categories discussed earlier), in the sense that they are culturally constructed and 39 
coordinated.  40 

Recent language game experiments in the formation of a case grammar (see Steels, this volume) 41 
have shown that the formation of linguistic ontologies is entirely possible. Concretely, semantic 42 
roles as needed in case grammar have been shown to arise when agents are trying to reuse by 43 
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analogy semantic frames that have already been expressed in the emergent language. This reuse 1 
becomes licensed when particular predicate-argument relations are categorised in the same way 2 
as those already used in the existing semantic frames. Progressively, semantic roles get thus 3 
established and refined, partially driven by the semantic analogies that make sense in the real 4 
world domain that generates the topics in the language game and partly by the conventions that 5 
are being enforced by the emergent language (Van Trijp, 2008).  6 

3.3. Summary 7 

The examples discussed in this section illustrate some of the ways in which models of the 8 
cultural evolution of language can contribute to our understanding of its origins. By identifying 9 
what aspects of the properties of languages can be produced by cultural evolution alone, these 10 
models remove some of the explanatory burden from biological evolution, providing a more 11 
realistic target for research into the origins of language. In broad terms, these models illustrate 12 
how learning, communication, and population structure affect the languages that emerge from 13 
cultural evolution, providing potential explanations for two of the most important aspects of 14 
human languages: their consistent properties across communities – language universals – and the 15 
coherence of linguistic systems within communities. In iterated learning models, universals 16 
emerge as the result of learning biases or the goals of communication, and coherence is the result 17 
of the strength of these biases and the structure of the interactions with other individuals. In 18 
language game experiments, universal trends emerge due to constraints coming from 19 
embodiment, the cognitive mechanisms recruited for language, the challenge of communication, 20 
and the selectionist dynamics that emerges in populations of adaptive communicating agents. 21 
While there are still many questions to explore, these basic results help to illustrate the kinds of 22 
forces that influence the structure of human languages. 23 

 24 

4. Suggestions for Future Research 25 

Given that there is a broad variety of paradigms and modeling efforts, there are also many 26 
possible avenues for deepening current results or for exploring new avenues of research. This 27 
section describes a number of suggestions without any claim to be exhaustive. Generally 28 
speaking, there are also many possible avenues for deepening current results or for exploring 29 
new avenues of research. Generally speaking, we can expect models to be developed that focus 30 
on quite different aspects of language evolution and that will be formulated at very different 31 
levels of abstraction. It will be important to establish the relationships between these models, 32 
such as identifying to what extent a simpler and more abstract model can be understood as an 33 
approximation to a more elaborate one. 34 

Toward a Tighter Coupling Between Models and Laboratory Experiments  35 

An important direction for future research is developing a tighter coupling between models and 36 
laboratory experiments. There are two ways in which conducting laboratory experiments in 37 
cultural evolution can complement the insights provided by mathematical and computational 38 
models. First, they provide a direct way of testing the predictions of these models, allowing us to 39 
ensure that the claims that we make about cultural evolution are actually borne out when these 40 
processes involve real people rather than abstract agents. For example, Kalish, Griffiths, and 41 
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Lewandowsky (2007) and Griffiths, Christian, and Kalish (2008) have conducted direct tests of 1 
the key prediction that arises from models of iterated learning with Bayesian agents – that 2 
structures that are easier to learn will be favored by the process of cultural transmission – by 3 
conducting laboratory experiments in which the structures transmitted by iterated learning were 4 
categories and functional relationships between variables for which previous research in 5 
cognitive psychology had established results on difficulty of learning. However, laboratory 6 
experiments can also be valuable for a second reason: they provide us with a closer 7 
approximation to the true processes involved in language evolution. The models discussed earlier 8 
make assumptions both about how information is passed between agents, and the learning 9 
mechanisms used by those agents. Conducting laboratory experiments in which information is 10 
passed between agents in the way described by a model, but where the agents are real human 11 
beings, removes one level of approximation from these models, allowing us to explore the 12 
plausibility of processes of cultural transmission as an account of why languages have the 13 
properties they do (Dowman, Xu, & Griffiths, 2008). The experiment described by Kirby, 14 
Christiansen, and Chater (this volume) is of this kind, showing that iterated learning with human 15 
learners produces compositional structures. Further experiments testing models of language 16 
evolution and evaluating the impact of different forms of cultural transmission can help us 17 
develop models that provide a closer match to human behavior, and to assess the contributions of 18 
different kinds of evolutionary forces. 19 

Toward a Tighter Coupling Between Models and Data from historical linguistics  20 

Much is known about the historical evolution of human languages over the past 5000 years. This 21 
research shows that there are recurrent patterns of grammaticalisation and lexical change and 22 
detailed case studies exist how a language has developed determiners, or a case system, or a 23 
tonal system, etc. (see e.g. Heine & Kuteva, 2008). It is therefore obvious that these results 24 
should constrain models of language evolution. Although it will of course never be possible to 25 
reconstruct the actual evolution of human languages, it might be possible to see similar 26 
grammaticalisation phenomena as in human languages.  27 

Modeling the Potential Role of Exaptation on Language Evolution 28 

It is widely assumed that language in some form or other originated by piggybacking on pre-29 
existing mechanism – exaptations – not dedicated to language. A possible avenue of language 30 
evolution modeling involves testing the possible effects for language evolution of particular 31 
hypothesized exaptations. For example, improved sequential learning of hierarchically organized 32 
structure in the human lineage has been proposed as a possible preadaptation for language 33 
(Christiansen & Chater, in press; Conway & Christiansen, 2001), in part based on work in 34 
language acquisition (Gómez & Gerken, 2000) and genetic data regarding the potential role of 35 
FOXP2 in sequential learning (discussed elsewhere in this volume). Reali & Christiansen (in 36 
press) have explored the implications of such assumptions by determining the effect of 37 
constraints derived from an earlier evolved mechanism for sequential learning on the interaction 38 
between biological and linguistic adaptation across generations of language learners. SRNs were 39 
initially allowed to evolve “biologically” to improve their sequential learning abilities, after 40 
which language was introduced into the population, comparing the relative contribution of 41 
biological and linguistic adaptation by allowing both networks and language to change over 42 
time. Reali & Christiansen’s (in press) simulation results supported two main conclusions: First, 43 
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over generations, a consistent head-ordering emerged due to linguistic adaptation. This is 1 
consistent with previous studies suggesting that some apparently arbitrary aspects of linguistic 2 
structure may arise from cognitive constraints on sequential learning. Second, when networks 3 
were selected to maintain a good level of performance on the sequential learning task, language 4 
learnability is significantly improved by linguistic adaptation but not by biological adaptation. 5 
Indeed, the pressure toward maintaining a high level of sequential learning performance 6 
prevented biological assimilation of linguistic-specific knowledge from occurring. Similarly, it 7 
may be possible to investigate the potential effects of other hypothesized exaptations on the 8 
relative contribution of cultural evolution and genetic assimilation to language evolution. 9 

In the same line, several language game experiments have examined how generic cognitive 10 
mechanisms could become recruited for language, pushed by the needs to solve specific 11 
problems in communication or in bootstrapping an efficient system (Steels, 2007). For example, 12 
perspective and perspective reversal is often lexicalized in human languages in order to avoid 13 
ambiguity from which point of view a spatial relation should be interpreted.   14 

Effects of Biased Unfaithful Copying 15 

When empirical predictions are derived from dynamical models, the notion of an equilibrium is 16 
central. In the evolutionary context, we expect systems to spend most of their time in an 17 
evolutionarily stable state. The insights from historical linguistics, especially regarding 18 
grammaticalization, indicate that language never actually reaches such a stable state. (This 19 
statement might be too bold in its generality. Some aspects of language are certainly in 20 
equilibrium most of the time. A good example might be vowel systems.) Rather, languages 21 
perpetually change in a partially predictable way. Complex morphology tends to be reduced over 22 
time and to disappear altogether eventually. An example is the loss of case distinctions from 23 
Latin (five cases) to French (no case distinctions). On the other hand, lexical morphemes are 24 
recruited to serve grammatical functions. A recent example is the use of the item “going to” in 25 
contemporary English to express future. This recruitment usually concurs with phonological 26 
reduction, like the change from “going to” to “gonna”. Grammatical words tend to get further 27 
reduced to affixes – an example would be the regular German past tense morpheme “t” that is 28 
originally derived from the Germanic verb for “do”.  29 

The macroscopic consequence of these processes is that languages continually change their 30 
grammatical type, moving from synthetic to analytic due to reduction of morphology, and back 31 
to synthetic due to recruitment of lexical items for grammatical purposes and their subsequent 32 
reduction to affixes. The underlying microdynamics involves biased unfaithful copying – words 33 
and phrases are not imitated verbatim but phonetically reduced and semantically modified. The 34 
challenge for evolutionary models is to connect these two aspects in such a way that the 35 
directedness of language change is connected to empirical insight about unfaithful replication in 36 
language use. Deutscher (2005) in his book proposes a verbal model which resembles the 37 
sociolinguistic arguments of Labov (2001). Individuals often innovate new speech forms in an 38 
effort to find a more emphatic or colorful way of phrasing an idea or grammatical function. 39 
Conventional forms bore us while prose or speech stylists that play with the limits of convention 40 
attract attention. When prestigious people do this, the new speech form tends to spread. 41 
Sometimes the motivations for innovation are social; people seem to favor forms of speaking 42 
that differentiate them from social others. In other words, linguistic equilibria are weakly 43 
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constrained in that communicating individuals must agree sufficiently on meanings for 1 
communication to be possible. But a speech community can easily cope with a modest rate of 2 
innovation driven by social and aesthetic forces. To our knowledge, these mechanisms have not 3 
been incorporated into formal models except in the special case of symbolic markers of group 4 
boundaries (McElreath et al. 2003) 5 

Long-Term Language Change Dynamics: a Mathematical Perspective  6 

It appears that language modeling poses challenges for the existing mathematical methods 7 
commonly used to describe emerging and dynamical real-life phenomenon. A ready example 8 
comes from language games. Language game solutions may vary with regards to their stability 9 
properties depending on the type/purpose of the model use, and depending on the exact question 10 
we address. In certain situations interesting quasi-stable solutions are attained. One instantiation 11 
comes from modeling color categorization in people, where the shared population categorization 12 
solution cannot be described as a stable solution of a dynamical system, or a stationary 13 
probability distribution of a stochastic process. In the Category Game (Puglisi et al, 2008), even 14 
though the only absorbing state is the trivial one in which all the agents share the same unique 15 
word for all their perceptual categories, there are clear signatures of a saturation with time of 16 
metastable states with a finite and “small” number of linguistic categories. This observation 17 
suggests an analogy with glassy systems in physics (Mezard et al 1987), and this view is 18 
confirmed also by quantitative observations. Thus, in this framework interesting solutions would 19 
be long lived (strongly, e.g. exponentially, dependent on the population size) pre-asymptotic 20 
states. In other models of color categorization, the shared population categorization solution 21 
appears dynamically stable on a certain time-scale, but it may drift  or cycle (while retaining 22 
global topological structure) on longer time-scales, depending on the particular constraints (see 23 
Komarova et al 2007). Mathematical properties of such  solutions have not been investigated in 24 
detail but their understanding is important because conventional methods do not grasp the 25 
relevant properties of such solutions. The application of new mathematical technologies thus 26 
developed will be wide, as it has implications in the dynamics of populations of learners trying to 27 
achieve shared solutions on (possibly very complex) topological semantic spaces. 28 

Selectively Neutral Mechanisms of Linguistic Evolution  29 

A further direction for future research is understanding to what extent processes of selection are 30 
necessary in order to explain the properties of languages. In biology, selectively neutral 31 
processes such as mutation and genetic drift have been identified as playing a significant role in 32 
accounting for genetic variation (Kimura, 1983). It remains to be seen whether linguistic 33 
variation is best analyzed as the result of selective pressures acting on the properties of 34 
languages, or the outcome of selectively neutral processes that are the cultural equivalents of 35 
mutation and drift.  Answering this question requires developing a "neutral theory" for language 36 
evolution. In this case, the analogue of mutation is the variation that is produced as a 37 
consequence of failed transmission of languages through the "learning bottleneck" produced by 38 
the fact that learners only observe a finite number of utterances. Iterated learning models thus 39 
provide a starting point for developing a neutral theory, and understanding which properties of 40 
languages can be produced by iterated learning and which properties cannot thus constitutes an 41 
interesting direction for future research.  42 
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Replicators 1 

This discussion opens up the question whether or not we should be thinking about cultural 2 
transmission/social interaction models in terms of competition among replications, or more 3 
excitingly, in terms of different levels or types of replication. On the one hand, it is tempting to 4 
propose (as outlined in Kirby, 2006) that the emergence of syntax marks a change from one type 5 
of replicator (solitary replicators) to another (ensemble replicators), to use terms from Szathmary 6 
(2000).  7 

On the other hand, this gives rise to the question of what exactly these replicators are, and 8 
whether their dynamics are best described in terms of selection at all. It appears that the answers 9 
to these questions vary enormously depending on one's perspective on the best way to represent 10 
the knowledge being acquired/adapted by individuals and the mechanisms for acquiring that 11 
knowledge. For example, one view of language might propose that we internalise a set of 12 
constructions (e.g. Croft, 2000) that have a fairly straightforward relationship with utterances. In 13 
this view, we might reasonably think of these constructions as replicators, with selection being 14 
driven by speakers choosing among constructions to use to produce an utterance. Or perhaps we 15 
could think of learners as providing selection pressure, with the constructions that produce the 16 
most evidence for their existence in the data available to the learner ending up being the most 17 
stable through the learning bottleneck. Here, we can imagine constructions competing for place 18 
in the learners’ input. 19 

Another view might be that a language is a hypothesis which we select on the basis of evidence 20 
combined with an inductive bias. Where are the replicators here? Who is doing the selection? 21 
Give this latter perspective, the neutral model outlined in the previous section appears more 22 
appropriate.  23 

Which of these perspectives is correct? It is possible that in fact they are compatible – that they 24 
are different ways of analysing the same process, namely social/cultural adaptation. The 25 
challenge is in seeing how these analyses relate to one another and to the models that exist in the 26 
literature. 27 

Incidentally, we need to be clear that when we are talking about selection and replication here, 28 
we are not talking about selection of heritable genetic variation (although that is clearly relevant 29 
to language evolution, and to models of language evolution). Nor are we talking about the 30 
natural selection of cultural variants, a mechanism by which fitter individuals are more likely to 31 
survive and pass-on their cultural traits (although this too is likely to be important). Instead, we 32 
are talking about the kind of adaptation that occurs purely through the complex process of 33 
repeated cycle of utterance creation, interpretation, and internalisation that happens in language 34 
transmission – whether it be in an iterated learning model focussing on vertical transmission, or a 35 
negociation model focussing on social coordination. 36 

Gene-cultural coevolution  37 

We pointed out in the Introduction that the current focus of language evolution modelling lies in 38 
cultural evolution. It is however clear that a complete picture must integrate cultural with 39 
biological (genetic) evolution. Formal modeling of gene-cultural coevolution began in the mid 40 
1970s (Cavalli-Sforza & Feldman, 1981). Briscoe (2003, this volume) reviews models of gene-41 
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culture co-evolution applied to language evolution. The basic idea is to use the population 1 
geneticists’ recursion equation formalism for cultural as well as genetic evolution. The result is a 2 
system of linked dynamic equations that keep track of genes and culture as they change through 3 
time. In general genes can influence culture via decision-making rules. An innate syntax might 4 
constrain the evolution of languages. The flow of causation will in general also work the other 5 
way. An element of a culturally transmitted protolanguage might exert selective pressure on the 6 
genes. If genetic variation exists in the innate supports for language, and if more efficient 7 
communication is favored, the variants that make the protolanguage more sophisticated will 8 
increase in the population. Since cultural evolution will tend to be faster than genetic evolution, 9 
cultural evolution will tend to be the driving partner in the coevolutionary circuit and genetic 10 
evolution the rate limiting step. This does not tell us anything about the division of labor between 11 
genes and culture at evolutionary equilibrium. That will depend upon many contingent costs and 12 
benefits of transmitting adaptations genetically versus culturally. Very broadly speaking, the 13 
genetic and cultural subsystems are both adaptive systems, and selection may be more or 14 
indifferent as to how a given adaptation is transmitted.  15 

While a complete coverage of gene-cultural modelling is a task for the future, one question 16 
which has already been studied by gene-culture coevolutionists is whether and how the evolution 17 
of various human adaptations may facilitate or constrain the evolution of language. Richerson 18 
and Boyd (this volume) review models to explain human cooperation and symbolic boundary 19 
marking. Language would seem to require a large measure of cooperation. Otherwise hearers 20 
could not trust speakers. The non-cooperative case seems to exemplify the situation for most 21 
other species. Hence communication systems in other animals are rather limited. Even in humans 22 
people who live in different societies may not be trustworthy sources of information. Hence the 23 
evolution of linguistic differences between human groups may be adapted to limit 24 
communications from untrustworthy others.  25 

Advanced recurrent neural network models 26 

There exist a number of recurrent neural network architectures designed to model complex 27 
linguistic (or visual) processing which are both computationally powerful and partly biologically 28 
plausible. These models have not yet been used as a basis for evolution of language studies. Due 29 
to their expressivity and the availability of advanced learning algorithms, they appear as 30 
promising carrier formalisms for future evolutionary studies of grammatical processing.  31 

The SHRUTI family of connectionist architectures (e.g., Shastri 1999) represents a long-standing 32 
research strand to explain fast forward inferences in semantic text understanding. These models 33 
are very complex, hand-designed networks of semantic and syntactic processing nodes which 34 
communicate with each other by biologically motivated neural spike codes, enabling 35 
combinatorial binding of different representation nodes across the network.  36 

In machine learning, a recent landmark paper (Hinton & Salakhutdinov 2006) has unleashed a 37 
flurry of research in deep belief networks (DBNs) and restricted Boltzmann machines (RBM). 38 
With these models and novel learning algorithms, for the first time it has become feasible to train 39 
deep conceptual hierarchical representations from large-volume real-life data in an unsupervised 40 
way. While this field is so far preoccupied with visual learning tasks, the step toward speech/text 41 
input is imminent (Y. Bengio, personal communication).  42 
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Even more recently, another family of hierarchical RNN-based models for learning 1 
representations of very complex multiscale data is emerging. These models arise as 2 
hierarchical/multiscale extensions of Echo State Networks (Jaeger & Haas 2004) or Liquid State 3 
Machines (Maass, Natschläger & Markram 2002), the two main exemplars of a new 4 
computational paradigm in neuroinformatics referred to as Reservoir Computing (Jaeger, Maass 5 
& Principe 2005). They share a number of important characteristics with the neural models of 6 
speech recognition explored by Peter F. Dominey (e.g. Dominey 2005; Dominey, Hoen & Inui 7 
2006). In this field, language and speech modeling is indeed an important target domain.  8 

An important characteristic of all recurrent neural network models, which sets them apart from 9 
symbolic grammar formalisms, is that speech/language processing is construed as a fast, self-10 
organizing dynamical system, which does not need search subroutines and does not build interim 11 
alternative interpretations. On the positive side, this leads to very fast processing (timescale of a 12 
few neuronal delays); on the negative side, if an interpretation trajectory goes astray, this has to 13 
be detected and separate repair mechanisms have to be invoked.  14 

Creatures-based modelling  15 

Simulation-based studies on language change today concentrate primarily on cultural 16 
transmission dynamics. Neither brain structures nor genetic determinants for such brain 17 
structures are modelled. This makes simulation-based research blind to some of the questions 18 
that are raised in biological evolutionary accounts of the origins of language (Givón, this 19 
volume; Fedor et al., this volume; Hilliard and White, this volume; Deacon, this volume). A 20 
potentially very powerful avenue would be to simulate brain-body coevolution along the lines 21 
staked out in Artificial Life and Evolutionary Robotics (e.g. Sims 1994, Nolfi & Floreano 2000, 22 
Szathmary, 2007). In this research, artificial creatures are evolved in simulation or in physical 23 
robotic hardware. A creature has a body equipped with sensors and actuators, and is controlled 24 
by an artificial neural network that co-evolves with the body. Research of this kind has achieved 25 
to evolve surprisingly complex and adaptive behaviour repertoires driven by neurocontrollers of 26 
surprisingly small size. However, linguistic capabilities have so far largely fallen beyond the 27 
scope of this research (but see Wischmann & Pasemann 2006). It appears a natural and 28 
fascinating endeavour, albeit computationally challenging, to implement simulation scenarios 29 
where body+brain creatures are evolved under selective pressures that favour efficient 30 
communication. In this way, simulation-based research might tell an almost complete (if duly 31 
simplified) story, connecting mechanisms of genetic coding of neural structures and the ensuing 32 
slow "biological" adaptations with the fast cultural transmission dynamics that are the hallmark 33 
of today's investigations.  34 

Detailed models of language learning during development 35 

Most models of language and syntax evolution treat an individual's learning of language during 36 
their "childhood" in a very simplistic fashion. However, the transmission of language from one 37 
generation to the next is clearly a central aspect of the evolution of language. Thus, more 38 
elaborate modeling of the acquisition of language during infancy and childhood is called for. 39 
Ideally, such models would take the embodied nature of language learning into account, 40 
capturing how the learner interacts with their physical and social environment. At the same time 41 
such models should be constrained by developmental psychology and developmental 42 
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neuroscience, providing constraints regarding the underlying neural structures, representations, 1 
and learning mechanisms, as well as the nature of the language input that infants are typically 2 
exposed to. So far, such approaches have been mostly restricted to learning early precursors of 3 
language such as gaze following (Triesch et al., 2006) or learning of word meanings (Yu et al, 4 
2005), but the time seems ripe to extend such models toward the acquisition of grammatical 5 
structures. 6 

Case studies  7 

Scientific fields often organise their research around key challenges that are accepted by a large 8 
group of researchers independently of the methods they are using. Also in technical fields, such 9 
as machine learning, robotics, or high performance computing, there are often well-defined 10 
challenges against which different research groups compete, often leading to very rapid progress 11 
(as seen in the Robocup for example). What would such key challenges look like in the case of 12 
language evolution? One possibility is to pick a certain domain which has been grammaticalised 13 
in many languages of the world, although often in different ways, and show what cognitive 14 
mechanisms and interaction patterns are needed to see the emergence of such a system in a 15 
population of agents. Another possibility is to develop evolutionary models that are also capable 16 
of capturing psycholinguistic data on actual human language behavior. 17 

An example domain is the following: Many languages have ways to express predicate-argument 18 
structure through a system of case grammar, either expressed morphologically or through word 19 
order structure. The emergence of such a system requires not only the emergence of conventions 20 
but also the emergence of the semantic and syntactic categories that underly it. A lot of data is 21 
available from historical linguistics showing how such systems have arisen in human natural 22 
languages, often by the grammaticalisation of verbs, and these data could constrain possible 23 
models. There are already some attempts towards explaining the emergence of case grammar,  24 
from the viewpoints of each of the paradigms introduced earlier (see Moy, 2006, Jäger 2007, 25 
VanTrijp, 2007) and they can act as a starting point for tackling this challenge. It is not difficult 26 
to imagine other aspects of grammar that could form the focus of well-defined challenges, and 27 
once  easier challenges are handled we could move to more challenging ones, such as clause 28 
structure with long-distance dependencies.  29 

 30 

5 Conclusion  31 

Mathematical and computational models of language evolution make it possible to examine the 32 
consequences of certain theoretical assumptions by mathematical deduction, large-scale 33 
computer simulation, or robotic experimentation. Several efforts are under way to apply this 34 
methodology to questions related to the problem of the origins and evolution of language. There 35 
is not a single paradigm nor a single methodology, instead multiple paradigms explore different 36 
questions. At this moment the models are mostly focusing on the origins of lexicons, categories 37 
that can act as building blocks for conceptualisation, and simple languages with few of the 38 
complex structuring principles found in human languages (but see Briscoe, this volume).  39 
However we are confident that the technological foundations and mathematical tools will 40 
become progressively more sophisticated and thus be able to tackle increasingly deeper and more 41 
intricate question reating to the origins and evolution of syntax in language.   42 
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