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Abstract - This paper presents a data-driven method to estimate a 

high quality depth map of a hand from a stereoscopic camera 

input by introducing a novel regression framework.  The method 

first computes disparity using a robust stereo matching technique.  

Then, it applies Random Forest (RF) to learn the mapping 

between the estimated, noisy disparity and actual depth given 

ground truth data.  We introduce Eigen Leaf Node Features 

(ELNFs) that perform feature selection at the leaf node in each RF 

tree to identify features that are most discriminative for depth 

regression. Experimental results demonstrate the promise of the 

method to produce high quality depth images of a hand using an 

inexpensive stereo camera. 
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I.  INTRODUCTION  

Depth estimation is a fundamental problem in computer 
vision and an essential input to many recent tracking and pose 
estimation techniques.  While many depth estimation methods 
have been described in the literature, including active methods 
such as time-of-flight imaging and photometric stereo, this paper 
focuses on passive stereovision, which shows a number of 
advantages, namely: (a) its low power; (b) it does not dissipate 
energy into the scene; (c) it is inexpensive, and (d) it is suitable 
over a wide range of distances from the camera.  

The aim of this paper is to compute a robust depth image of 
a hand using an inexpensive RGB video stereo camera, as shown 
in Figure 1.  The RGB images are matched to form a disparity 
image.  However, disparity images are well known to have errors 
resulting from ambiguities inherent to stereo matching.  To 
address this issue, we propose a novel, data-driven regressive 
Random Forest (RF) framework that learns the mapping 
between a noisy, lower quality disparity estimation to actual 
depth based on a ground truth dataset.  When applied to a new 
disparity image, it corrects errors in the estimated disparity.  As 
part of this regression framework, we propose a new regressive 
feature selection technique called Eigen Leaf Node Features 
(ELNFs) that factorizes for the posterior probability and 
regresses the depth using features that have been found to be 
highly discriminative. We demonstrate the ability of ELNF to 
more accurately estimate depth of hands compared to 
conventional random RF regression.  Although this paper is 
focused on depth estimation, our ultimate goal is to enable hand 
pose estimation using passive stereovision in an egocentric 
application. The rest of the paper is structured as follows: the 
next section presents a general survey of related work in the field 
of depth estimation and sensing; in Section III, our data 
acquisition process using image registration is explained. 
Section IV describes our RF approach to mapping disparity 

images to depth; experiments are discussed in Section V; and the 
paper concludes in Section VI. 

II. RELATED WORK 

Recently, depth recovery from a single image has been 
proposed [2, 10], modeling the depth estimation as a Markov 
Random Field (MRF) solved using Convolutional Neural 
Networks (CNNs) [8]. While showing much promise, such 
methods lack the advantage of using stronger geometric features 
(like disparity) highly correlated with depth. In [5], a two-
layered RF framework is used to establish the mapping between 
near infrared images of a scene consisting of articulated hand 
poses captured from modified RGB cameras. While this is a 
unique and relatively inexpensive technique, it suffers from 
ambient infrared radiation (e.g. when used in an outdoor scene). 
Also, it requires nontrivial hardware modifications. 

Relatedly, Nyugen et al. [9] argue that, for problems with 
high dimensional data, the performance of RF can degrade as a 
result of randomization in both bagging samples and feature 
selection, and employ feature sampling at split nodes to identify 
informative features. Another recent approach that relates to our 
work is [6], where feature selection is done by optimizing for an 
appropriate weighting allocated to different features when 
building a decision tree. In the context of our work, we choose 
to focus on feature selection at a leaf node by introducing Eigen 
Leaf Node Features (ELNFs). Our approach yields results which 
greatly outperform conventional RF regression. A recent 
increase in interest in hand pose estimation has led to the advent 
of a number of techniques, particularly those working with data 
captured from active depth sensors or monocular cameras [3, 9]. 
However, less attention has been given to hand pose recovery 
based on stereoscopic images [7]. We contribute to this area by 
developing a framework that recovers the depth of a hand from 
stereo. 

Figure 1: Using an inexpensive stereo camera (a), RGB images of the 

hand from two perspectives are captured (b, c), a disparity shift image 

is generated (d) and mapped to an improved depth image (e). The 

proposed technique can potentially use a stereo rig to estimate hand 

articulation and pose (f). 
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III. DISPARITY AND DEPTH IMAGE DATABASE 

The first stage in our framework involves building a 

database of disparity and depth images for different hand poses 

to train the regressive framework.  Disparity is estimated from 

a stereo image pair using a robust stereo matching cost function 

(Quantized Census) [1]. Simultaneously, a depth image is 

acquired using a RGBD camera.  The depth image is registered 

to the left image of the stereo pair, so for each disparity image, 

we have a well registered ground truth depth.  This dataset is 

then used to train the regression framework, described in the 

next section.  Once training is complete, the regressive 

framework can predict a depth image solely from the disparity 

image computed from stereo RGB input. 

We generated a real dataset consisting of 1,000 instances of 

hand poses across 5 different subjects (200 from each) with a 

variety of different skin tones, genders and hand sizes. 700 of 

these were used in training while the remaining 300 were used 

in independent testing. In addition, a synthetic dataset was 

produced using OpenGL based computer generated hand poses, 

and rendered from the perspective of a synthetic stereo camera 

pair. The synthetic dataset consisted of 10,000 instances of 

different hand articulations.  

IV. MAPPING DISPARITY TO GROUND TRUTH 

DEPTH 

Our task is to establish the mapping between the computed 

disparity image Idisp(x) and the actual depth Idepth(x) at a pixel 

position x using the ground truth data. We model this mapping 

with a regressive RF [11].  At each split node in each tree, we 

employ a feature 𝑓𝜃  based on the difference in disparity 

between two points with random offset vectors u and v, similar 

to [3], but using a disparity image,   

𝑓𝜃(𝐼, 𝒙) = 𝑑𝐼 (𝒙 +
𝒖

𝑑𝑀

) − 𝑑𝐼 (𝒙 +
𝒗

𝑑𝑀

)            (1) 

where 𝑑𝑀 is a normalizing factor representing the maximum 

disparity in the hand region.  The offset vectors are stored at 

each split node so that they can be used for later prediction. 

A. Random Forest 

We grow N decision trees by recursively splitting the 

training data to reduce entropy. The distribution of the depth 

value (regression target) is modeled using the differential 

entropy as 

𝐸(𝑆) = log (𝑠),                                (2) 

where σs is the standard deviation of the ground truth depth 

values of the pixels within a collection of samples S. Statistical 

analysis is carried out on the pixels that land at each leaf node, 

and, as a result, the distribution of the features computed against 

the actual depth established (Figures 2a & 2d). Acknowledging 

that for a single pixel position an infinite amount of features 

based on Equation 1 could be generated, it would be impractical 

and redundant to use all these features. Hence a subset of these 

features is used to establish the relationship between features 

and ground truth depth. We propose ELNF to determine this 

subset of features, as described in the next subsection. For a 

determined subset, multivariate Kernel Density Estimation 

(KDE) is applied by convolving the features-ground truth depth 

distribution with a Gaussian kernel [4].  For a subset of N 

features, this yields a continuous (N+1)-D distribution of the 

feature(s) against the actual depth. Figures 2c and 2d show the 

resulting distribution when N=1, i.e. the number of features 

used is one. In this setup, the frequency of this distribution is 

represented in the third dimension of the plot. The resulting 

continuous distribution is stored at the leaf node to be evaluated 

during testing (Figures 2e & 2f).  

At test time, each pixel, x, whose depth is to be predicted, is 

passed through each of the trees in the forest. At each node the 

learned splitting function, F(𝑓𝜃, φ) {Ln, Rn} is evaluated, and, 

based on the feature, 𝑓𝜃 , and on the threshold, φ, the pixel sent 

to the left, Ln, or to the right node, Rn. This is repeated 

recursively until the leaf node is reached. At this point, the set 

of features (computed using learned vector pairs as described in 

the section below is used in factorizing for the posterior 

probability of depth, d, given the pixel’s set of features, (as in 

Figures 2e & 2f.)  

𝑝(𝑑|𝐱) =
1

𝑁
∑ 𝑝𝑡(𝑑| )                        (3) 
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Figure 2: At a leaf node, a depth-feature distribution is established (a). Images a, c & e illustrate a poor feature-depth distribution (vertically 

orientated). In contrast, b, d & f illustrate a better feature-depth distribution (obliquely orientated) as factorizing yields a more confident posterior 

(f). ELNF is biased towards the obliquely orientated distribution. 



This probability is aggregated across the ensemble of trees, t. 

Note again that in Figures 2c & 2d, the number of features is 

just one, computed from a single learned vector pair. However, 

we found improved results using two features (i.e. N=2). Since 

the cost of the multi-dimensional KDE and the size of its 

resulting distribution increase exponentially, we have not 

attempted to use more than two features. 

B. Eigen Leaf Node Features (ELNF): 

 An issue faced when factorizing for the posterior 

probability, p(d|θ), is that the distribution might not show a 

strong correlation between the feature and the depth to be 

estimated. Consider Figures 2b and 2d, they convey a strong 

negative correlation, hence factorizing for the posterior 

probability of the depth yields a small standard deviation, and, 

subsequently, more distinct predictions is achieved by 

maximum likelihood (Figure 2f). In contrast, the distribution in 

Figures 2a and 2c exhibits a weak correlation. As a result, the 

factorized posterior yields less distinct peak (Figure 2e).  As 

each pixel position at the leaf node has potentially infinite 

features, we would like to select those that are most 

discriminative for regression. The task, thus, is to ensure that 

feature(s) selected at the leaf node will yield a strong positive 

or negative correlation. To establish this, we exploit the 

principal eigenvector and the ratio of the two eigenvalues of the 

covariance matrix of the distribution, using what we call Eigen 

Leaf Node Features (ELNF). In this case we want to establish 

an obliquely orientated distribution (Figure 2a) as opposed to a 

vertically orientated principal distribution (Figure 2b). The ratio 

of the two eigenvalues represents how compact the distribution 

is in the principal direction relative to the perpendicular 

direction. Hence, at the leaf node we select the feature that 

minimizes the following cost function:  

𝐸(𝐼𝑑𝑒𝑝𝑡ℎ(𝒙), 𝑓𝜽) = 𝛼(|(𝒗1)| − 1)2 + (1 − 𝛼)
λ2

λ1
     (4) 

where  (𝑣1 ) is the slope of the principal eigenvector 𝒗1 of the 

covariance matrix of the distribution of the actual depth, 

Idepth(x), and the feature fθ for a set of pixel points x in the leaf 

node; 𝜆1 and 𝜆2 are the two eigenvalues, the former being the 

principal eigenvalue; α ∈ [0, 1] is a weight providing a convex 

combination of the terms. More generally, when the number of 

features selected at the leaf node is more than one, we aim to 

maximize the dependency between all possible pairs of 

dimensions. Subsequently, we apply Eq. (4) to the distribution 

of all pairs of each feature with ground truth depth, i.e. 

𝐸(𝐼𝑑𝑒𝑝𝑡ℎ(𝒙), 𝒇𝜭) =  ∑ 𝐶(𝑛, 𝑝)

𝑛,𝑝

,

∀𝑛, 𝑝 = 1, … , 𝑁 + 1 | 𝑛 ≠ 𝑝                       (5) 

as a generalized cost, where 

𝐶(𝑛, 𝑝) = 𝛼(|(𝒗1,𝑛,𝑝)| − 1)
2

+ (1 − 𝛼)
λ2,n,p

𝜆1,𝑛,𝑝
      (6) 

where (𝒗1,𝑛,𝑝) is the slope of the principal eigenvector, 𝒗1,𝑛,𝑝, 

that corresponds to the distribution of the nth and pth columns of 

a data matrix, D.  

𝑫 = [𝒅𝒙|𝒇𝜽
𝟏 , 𝒇𝜽

𝟐 , . . , 𝒇𝜽
𝑵]                         (7) 

Here, D is the resulting matrix when the ground truth depth 

vector 𝒅𝒙 (consisting of the depth of all pixels at the leaf node) 

is concatenated with the features matrix (consisting of the 

features values computed at these pixel locations). In our 

implementation, α was set to 0.7. Distributions that minimize 

the cost function, E in Eqs. (4) and (5) are those for which the 

principal orientation has a slope closer to 1 or -1, and greater 

compactness along the principal orientation.  

V. EXPERIMENTAL RESULTS 

Experiments were carried out with the aim of exploring (i) 

the significance of ELNF, and (ii) the usefulness of disparity to 

predict depth.  

A. Evaluating the significance of ELNF 

We evaluated our ELNF approach by comparing it to a 

conventional regression forest. A qualitative comparison is 

illustrated in the 2nd and 3rd columns in Figure 3. A substantial 

improvement in the predicted depth can be seen based on how 

well the algorithm matches depth to the ground truth (last 

column). In all cases, ELNF predicts a better hand shape 

compared to RF. For example, the digits are more discernible.  

ELNF is equipped to select the features that better predict the 

ground truth depth.  Quantitative results are presented in Figure 

4, and measure the average absolute difference between the 

actual depth and the predicted depth across all hand region 

pixels.  At low tree depth, the significance of ELNF is very 

apparent, as the entropy at the leaf node is high, and ELNF 

implicitly reduces entropy when the distribution is factorized. 

This superiority of ELNF is still maintained even at high tree 

cm 

RF RF + 

ELNF 

Dist. 

Trans. 

Eroded 

 
Ground 

Truth 

 

Disparity 

Image 

DT 

Image 

Figure 3: Qualitative Results using real captured poses. The 1st and 

4th columns are input to the Distance Transform-based Prediction 

and to the Disparity based Prediction respectively. The 2nd and 3rd 

columns are predicted depth from our proposed framework with and 

without determining ELNF respectively, while the 5th and 6th 

columns show predicted depth based on distance transformed images 

and eroded disparity images. 



depth, which inherently has less entropy. At a depth of 12, 

ELNF still produces a 33.834% reduction in error compared to 

RF (12.631mm compared to 19.090mm). In both cases, the 

error begins increases again at even deeper tree depth (16) due 

to over fitting.  

B. Disparity input compared to distance transform input  

One of our early concerns was that the successful prediction 

of depth was mainly dependent on the contour of the hand and 

not the disparity image. Two experiments were carried out to 

explore this. First, we trained and tested our framework with an 

image generated solely from a hand region segmentation of a 

single view image, as opposed to a disparity image. We used a 

distance transform (DT) of the hand region segmented image 

(4th column in Figure 3). The predicted depth image using the 

DT is shown in the 5th column of Figure 3. Notice that the entire 

shape of each finger is not discernable from the contour –for 

instance, in the distal end of the ring finger in the second row. 

Quantitative results in Figure 4b show that the average error in 

using disparity is 19.047mm in comparison to 77.89mm when 

DT is used. This clearly illustrates the significance of depth 

information from the disparity image. The distance transformed 

input and disparity input are affected similarly as the depth of 

the tree increases and the trees become more specialized.  

To investigate to what extent our framework depends on the 

segmentation pre-step, we tested our method on instances of 

eroded segmentation of the disparity images, which remove 

shape information so depth prediction is based more on 

disparity. Qualitatively, the results from the eroded disparity 

look promising (Figure 3, 6th column), as one can still discern 

from part of the bent finger. Therefore, we infer the method is 

not highly dependent on the hand contour.    

VI. CONCLUSION 

In this paper an innovative regression RF technique for 

upgrading disparity information to depth for images of the hand 

is presented. More specifically, we have proposed ELNF, a new 

way to identify features more suitable for regression.  ELNF 

regression is applicable beyond the context of this paper. We 

have demonstrated the use of a relatively inexpensive stereo 

camera to generate a high quality depth image of the hand. 

Quantitative and qualitative analysis convey promising results 

in terms of retrieving high quality depth from a stereo setup. 

The proposed technique relies on a robust hand 

segmentation procedure [12]. Future research will aim at 

eliminating this step from the system. Furthermore, we also will 

explore the use of the recovered depth to predict hand pose and 

articulation.  
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Figure 4: Quantitative results showing error in depth prediction at different tree depth and number of trees. Regressive RF is compared to 

conventional RF, (a) and evaluated in its ability to predicting depth from a distance transform (DT) input and from a disparity that its segmentation  

had being eroded (b). 

Significance of ELNF  

b a 
Significance of Disparity  

♦ RF + Disp.  

▲ RF + ELNF + Disp. 

 

█ RF + ELNF + DT 

█ RF + ELNF + Eroded 

█ RF + ELNF +Disp. 


