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Abstract

We consider time series forecasting in the presence of ongoing structural change where
both the time series dependence and the nature of the structural change are unknown.
Methods that downweight older data, such as rolling regressions, forecast averaging
over different windows and exponentially weighted moving averages, known to be robust
to historical structural change, are found to be also useful in the presence of ongoing
structural change in the forecast period. A crucial issue is how to select the degree
of downweighting, usually defined by an arbitrary tuning parameter. We make this
choice data dependent by minimizing forecast mean square error, and provide a detailed
theoretical analysis of our proposal. Monte Carlo results illustrate the methods. We
examine their performance on 191 UK and US macro series. Forecasts using data-based
tuning of the data discount rate are shown to perform well.
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1 Introduction

It is widely accepted that structural change is a crucial issue in econometrics and forecasting.
Clements and Hendry suggest forcefully (in e.g. 1998a,b) that such change is the main source
of forecast error; Hendry (2000) argues that the dominant cause of forecast failures is the
presence of deterministic shifts. Convincing evidence of presence of structural change was
offered by Stock and Watson (1996) who looked at many forecasting models of a large number
of US time series, and found evidence for parameter instability in a substantial proportion.
This remains relevant: the literature on forecasting in the presence of instabilities was surveyed
in Rossi (2012) for the Handbook of Forecasting. In her conclusions, Rossi (2012) writes ‘the
widespread presence of forecast breakdowns suggests the need of improving ways to select
good forecasting models in-sample.” Our work is a contribution to precisely this, taking
a novel approach that is both robust and data driven. In general, model parameters may
change continuously, drift smoothly over time or change at at discrete points, in an unknown
manner, and both within the sample and over the forecast period. We therefore consider a
very general setting accommodating an unknown model structure and structural change.

There is a large literature on the identification of breaks, and forecasting methods robust
to them, and Rossi (2012) surveys the relevant literature. However, the deeply practical need
to forecast after a recent structural change, or during a period of such change, has received
very little attention. It is further compounded by the unknown and therefore unspecified
nature of any structural change, since most forecast approaches are only effective in specific
cases. Detection has a long history, mainly in the context of structural breaks (although see
Kapetanios (2007) for the case of smooth structural change). The seminal paper on structural
change where the break point is known was Chow (1960). Andrews (1993) introduced a testing
methodology that allowed for unknown break-points, while another influential contribution
on multiple structural changes in linear regression is Bai and Perron (1998). The question
of amendment of forecasting strategies then arises. While this problem has been tackled by
many authors, a major contribution has been made by Pesaran and Timmermann (2007),
who combine a number of alternative forecasting strategies in the presence of breaks. They
conclude that forecast pooling using a variety of estimation windows provides a reasonably
good and robust forecasting performance.

Most of the existing work on forecasting assumes that change has occurred when sufficient

time has elapsed for post-break estimation. However, the issue of change occurring in real



time is a clear problem, which is addressed in Eklund, Kapetanios, and Price (2010). They
consider a variety of forecasting strategies which can be grouped in two distinct groups. One
group monitors for change and adjusts forecasts once change has been detected. The other
group does not attempt to identify breaks, since that requires substantial time lags. Instead
it uses break-robust forecasting strategies that essentially downweight data from older periods
that are deemed to be irrelevant for the current conjuncture.

While moving in an interesting direction, Eklund, Kapetanios, and Price (2010) do not
elaborate two closely related issues: how much to downweight, and whether older data should
be downweighted monotonically. Clearly, any arbitrary discount factor is unlikely to be op-
timal. And neither may monotonicity: for example, if regimes (e.g., monetary policy) come
and go then older data, from a period where the current regime held, would be more relevant
than more recent data from other regimes.!

This paper suggest approaches that address these issues. Our main contribution is to intro-
duce and analyse a cross-validation based method which selects a tuning parameter defining
the downweighting rate of the older data. We show that the implied discount rate minimizes
the MSE of the forecast in the weighting schemes we consider. Further, we consider a non-
parametric approach for determining a flexible weighing scheme for past data, to be used in
constructing forecasts. The latter does not assume any particular shape for the weight func-
tion, such as monotonic decline. We explore the properties of the new methods for variety of
models in terms of theory, with a Monte Carlo exercise and empirically.

An interesting byproduct of our results is a novel and simple way to accommodate trends of
a generic nature in forecasting. Unlike many forecasting approaches that require the removal
of stochastic or other trends before forecasting, our methods are designed for, and work best,
in relative terms compared to existing methods, when applied to the level of the forecast series.

The rest of the paper is organized as follows. Section 2 presents a new approach for
forecasting in the presence of recent structural breaks. We provide its theoretical justification
and asymptotic MSE, and describe some robust forecasting strategies. Section 3 includes
an extensive Monte Carlo study in which all these strategies are evaluated. In Section 4
the forecast methods are used to examine a large number of US and UK macroeconomic
time series, where we find results broadly consistent with the Monte Carlo study. Section 5

concludes. Proofs are reported in Appendix A.

!This might suggest a need to estimate regimes, but as our focus is on time series forecasting methods and
not inference, one is free to be agnostic about the presence of particular regimes.



2 Adaptive forecasting: econometric framework

2.1 Forecasting strategies

Our framework may be summarised by the general model
Yt :ﬁT,t_'_ut? t= 17 7T7 (21)

where Br; is an unobserved process, and w; is a stationary dependent noise process that is
independent of 87,. Unlike most previous work we wish to place as little structure as possible
on the process ;. We do not specify whether 7, is a stochastic or deterministic process, or
whether it is discontinuous or smooth. We will consider two distinct but related approaches
to the question of forecasting under such a model.

Eklund, Kapetanios, and Price (2010) find that simple robust forecasting, based on weight-
ing schemes that discount past data, works very well in practice. Examples include expo-
nentially weighted moving average forecasting, or forecast combinations based on different
estimation windows. By varying a tuning parameter of parametrically defined weights, such
methods simply impose different shapes on the weight functions that downweight past data.
One crucial problem with most such methods is that the tuning parameters driving weight
functions, are usually a prior: pre-selected. Hence, they can be suboptimal and a data
dependent method for choosing these parameters is of great interest.

One way to calibrate parameters of forecasting strategies is by optimizing on in-sample
forecasting performance. Although this idea is not common in the literature, it is not new.
For example, Kapetanios, Labhard, and Price (2006) suggest forecasts where models are av-
eraged with weights that depend on the forecasting performance of each model in the recent
past. That approach was found to work very well and to be preferable to alternative ways of
determining the weights. In what follows we formalize the above ideas, presenting a data
driven weighting strategy and its theoretical analysis. It is instructive to focus first on a sim-
ple location model such as (2.1). Extension of the results to models with regressors is briefly
discussed.

The error process {u;} is stationary linear process with mean zero and finite variance o>
and independent of {f87,}. The persistent component fr; is allowed to be a triangular array,
and can be a deterministic trend, a unit root type process or a combination of both. This
set-up provides sufficient flexibility to our theoretical analysis since it allows for r;’s such as

those used in locally stationary models (e.g. Dahlhaus (1996)), or persistent stochastic trend
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models. For simplicity of notation, we write y7; as y; and Br; as S.

We consider the properties of a linear forecast of y;, based on past values y;_1,- -,y
t—1
Uejt—1 = Gepe—1(H) = Z Wy HYt—j = Wi, HYt—1 + - * + Wer—1,HY1- (2.2)
j=1
Such an averaging-type forecast involves standardized non-negative weights wyj.pr, j = 1,- -+ ,t—

1, wy.g + -+ + w1, = 1, parameterized by a single tuning parameter H, controlling the
rate at which past observations are downweighted (e.g., the width of the rolling window). We
assume that H € Iy = [a, T'7%] where a > 0 and § > 0 is small.

The class of weights w;;,z which we consider are described in the following assumption.
f and f denotes the first and second derivatives of a function f, a A b = min(a,b), a Vb=

max(a,b) and I(A) is the indicator function. ar ~ br indicates that ar/br — 1, as T increases.

Assumption 1 Fort=1,--- T, T > 1,

K(7)
Wi H = S o 0 ]:17 at7 HGIT (23)
YL E()

The function K(z) > 0, x > 0 is a continuous function twice differentiable on its support and

such that [[° K(u)du =1,

inf K(z) >0, max{K(z),|K@),| K@)} <2

0<a<1/a 1+ a8

(2.4)

The main classes of weights that are commonly employed satisfy this Assumption. For
example,

(i) Rolling window
K(u)=1(0<u<1). (2.5)
(i) Ezponential weighted moving average (EWMA) weights
K(u)=e", u € [0, 00). (2.6)

Let p = exp(—1/H). Then K(j/H) = p/ and wyr = p'7/ S0t pF 1< j <t —1.

(ili) Triangular window

K(u) =2(1-wI(0<u<1). (2.7)



The forecasts g¢—1 in (2.2) are based on (local) averaging. While the rolling window simply
averages the H previous observations, the EWMA forecast uses all observations yq,- -+, 41,
increasinly downweighting more distant observations.

In practice, forecasting of y; with a persistent unobserved deterministic or stochastic com-
ponent f;, e.g. a unit root or a linear trend, is often conducted by averaging over the last few
observations. When persistence in §; falls, wider windows may be expected to yield smaller
forecast MSE. Tt is plausible that for a stationary process {y;}, the sample mean average fore-
cast (y;+- - -+yp)/t will be outperformed by a forecast discounting past data when dependence
in {y;} becomes sufficiently strong. This hypothesis is supported by the theory presented be-
low. The implication is that selection of H depends on the unknown and unspecified level of

persistence in 5; and u;, in contradiction to the usual practice of specifying an arbitrary value.

2.2 Selection of weights

Given a sample yi, - - - , yr, to compute the forecast yr,1r we need to select the parameter H.
We use cross-validation, obtaining H by numerically minimizing the mean squared forecast
error of the forecasts produced at desired horizons. The objective function associated with
the above minimization problem is given by

1 X

Qr(H) = 7 Z(ﬂﬂt*l — )%, H:= argming ;. Qr(H). (2.8)

t=1

Subsequently we will show H defines ‘optimal’ weights for the forecast §r1r(H) of yri1,
minimizing the mean squared error (MSE), er(H) = E(§r417(H) — yr41)? in H, hence
making the forecast procedure (2.2) operational and optimal. In addition, quantity Q7 (H)

will evaluate the forecast error as follows:

inf er(H) ~ep(H) ~Qr(H),  or (2.9)
Helr
Jof er(H) - oy~ er(H) — oy ~ Qr(H) — o,

bearing in mind that in a number of settings discussed below, eq(H) — o2.
Justification of minimization procedure (2.8) will require some restrictions on ; and wuy,

and some technical effort. To give a hint of how the data based selection of the tuning

2 . -1\ 2 :
parameter H works, denote by 67, := T~ > ., uj the sample variance of error process {u,}.



In the main set-ups of f;, considered below, Qr(H) has the following property: as T — oo,

Qr(H) = 67, + E[Qr(H) — 67,)(1 + op(1)),
T B
W+E>(1+OP(1))’ H — oo, (2.10)
with some constants A > 0, |B| < oo, and ~,d € {0,1,2}. The term AHY/T? comes from /3,
while B/H is contributed by wu;.
For a linear or stochastic unit root trend £, § = 0. Then, limy E[Qr(H) — 67,,] = Q(H)

achieves its minimum on a bounded interval, and thus, H remains bounded. In particular,

=67, + (A

H — argming, »@(H). For a bounded smooth deterministic or bounded stochastic (unit
root) trend f;, minimization may reduce to H ~ arming{A(H/T))’ + (B/H)}, § >0, B > 0
which leads to H ~ ¢T7%/(1+9) increasing with T'. For a sufficiently persistent stationary process
yi = uy, H may stay bounded and minimize the limit Q(H) := lims E[Q7(H) — 0% .,), whereas
for i.i.d. or weakly dependent process, H will tend to take large values. Here (2.10) holds
with A = 0. The results for a break in the mean of a stationary process occurring at the time
L < T show that the rolling window forecast will be built using the data from the post-brake
period [L, T] after time 7 := T — L > /T.

2.3 Properties of H

Now we turn to the theoretical justification of the selection procedure of H and investigate
the properties of H.

The next assumption specifies restrictions on a stationary process {u;}. Denote by v, (k) =
Cov(uy, up), k > 0 the autocovariance function, and by s2 := >, ,v,(k) > 0 the long-run

variance of {u;}. Under Assumption 2 on {u;} below, Y, . |y.(k)| < co.

Assumption 2 {w;} is a stationary short memory linear process
w=>» ajj, t€Z,  {g} ~I1ID(0,0?) (2.11)
j=0

such that |a;| < Cj~'7Y for some v > 0 and s2 > 0, with £; having all moments finite.

We will write {u;} € I(0) to denote that {u;} satisfies Assumption 2. We write {3;} € (1),
if {Vp; := By — P11} satisfies Assumption 2 with innovations having four moments finite. The
class I(1) contains unit root processes and will be used to model {£;}. We denote by G the

class of continuous functions g(z),x € (0,1) with a bounded second derivative.
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We will consider the following settings for fy,--- , Or:

bl. Stationary process By =, Y = [+ U
b2.  Unit root {B:} € I(1).

b3. Deterministic trend Br =tg(t/T), where g € G.
b4. Bounded unit root By =T72B,, {B,} € I(1).

b5. Bounded deterministic trend f; = g(¢t/T), where g € G.

pa, t=1,---,L,

o, t=L+1,---,T, (T/2<L<T).
We assume that A := p; — ps # 0.

b6. Break in the mean By =

We will use the following notation:
VMK = fooo (x)zdx)?, VoK = fooo K(z)x?dz, Vs K = f fooo K(z)K(y)(x A y)dzdy.
fo z)dr, g € G; Qur(H):=T"" Zthl | Zi;ﬁ(uj —u) .

We now are ready to analyze the properties of Qr(H), H and the MSE of the forecast error
er(H) = E(yT+1|T(]:I> —yri1)?.
2.4 Stationary case

First we consider {y;} as a stationary process. Denote Ky = fo K?(x)dz, Ky = K(0),

Qu Z Vj:HVk;H Vu .7 - - 2ZUJ Hﬁ)/u u, K = SZ{KQ - KO} + Usz

7,k=1

where v g = kjn/ Y poy kjm, j > 1 with kjp = K(j/H).

Theorem 1 Let y, = p+u,t = 1,--- T, where {us} € 1(0). Then, as T — oo, uniformly
m H € IT,

Qr(H) = &y + ElQur(H) — o3 7)(1 + 0,(1)), (2.12)
ElQur(H) = b3 7] = Qu(H)(1+0(1)), (2.13)
Qu=H by 5 +o(H™), H — oo. (2.14)

Theorem 1 shows that minimization of Q7 (H ) reduces to that of Q. (H) := limy E[Qr(H)—
&?J], while by the corollary below, the forecast, based on H minimizes the MSE of the forecast

with respect to H and allows its evaluation.

Corollary 1 Under assumptions of Theorem 1,

inf er(H) =02+ }}Q}CT{QT(H) — 6o 1+ o(1)). (2.15)

HEIT



Moreover, if Q,(H) has a minimum at some Hy < T, then

inf ep(H) = er(H) + o(1) = Qr(H) + o(1). (2.16)

Helr

Otherwise, if function Q,(H) > 0 is strictly positive, then H ~ T tends to take the largest

possible value in I, and

inf ep(H) = er(H)(1 4 op(1)) = Qr(H)(1 + o(1)). (2.17)

Helr

Remark 1 Equation (2.15) indicates that minimization of ey in H is equivalent to that of
Qr(H). Moreover, EWMA weights may lead to smaller MSE compared to a rolling window:
for rolling windows, b, x = 2 > 0, while for EWMA weights b, x = (202 —s2)/2 < ¢2. In the
latter case b, r < 0 if a stationary sequence {u;} has long-run variance such that s> > 202,
e.g. for an AR(1) model with parameter ¢ € (1/3,1). Hence, the shape of weights and the
strength of dependence in {u,;} have a crucial impact on the the optimal forecast error and the
rate of down-weighting the data. Moreover, for b, < 0, Q,(H) achieves its minimum at some
finite Hy. Thus, H — H, remains finite, and the forecast MSE, er(H) — 02 + Q,(Hy) < 02,
is smaller than that of the sample mean. However, if b, x > 0 and Q,(H) > 0, H € Iy, then
by (2.13), H takes large values of order 7"7% and the asymptotic forecast error ep(H) — o2
is the same as for the sample mean forecast.

Unlike with EWMA weights, under rolling window weights b, 7 > 0 is always positive, and
therefore it is hard to conclude if Q,(H) may be negative for any H. Monte Carlo simulation
in Table 2 for u; following an AR(1) model with parameter 0.7 indicates that the MSE for
rolling window forecast is the same as that for the sample mean, whereas the EWMA weights
reduce it by 33%.

2.5 Strong persistence

This corresponds to stochastic (b2) and deterministic (b3) trend {3;}.
Set 7;3(.].7 k) = E[(BJ - BO)(ﬁk - 60)]7 j7 k > 07
V[?RB,H = Z]o'jczl Vj;HVk;H Vﬂ(j7 k)) V;fr,H = Z;il Uj;Hj-

Theorem 2 Let y; = By + up, t = 1,--- | T with {f;} as in (b2) or (b3), {u;} € 1(0). Then,
as T — oo, uniformly in H € I,
Qr(H) = &z +{EQr(H) — o3 11}(1+ 0,(1)) (2.18)
= Gur + QH)(1+0,(1)),

9



where

QH) = su3Virsn + Qu(H) in case (b2), (2.19)
= {HS%gV&K+H_1bu,[(}(1+0<1)).
Q(H) := /{(f])thH + Qu(H) in case (b3), (2.20)

= {H’k(§)v1c + H by} (1 +0(1)), §(z) =z9(x), x€]0,1].

Again, as in Theorem 1, minimization of Q7 (H) reduces to that of Q(H), and the forecast,
based on H minimizes MSE, and the forecast MSE can be computed.

Corollary 2 Under assumptions of Theorem 2, in cases (b2) and (b3), H = O,(1) and

inf er(H) =02+ HingT{QT(H) — 62 (1 +0(1)). (2.21)

Helr

Moreover, if Q(H) has a unique minimum at some Hy, then H —p Hy and

A A

Jnf er(H) = er () + o(1) = Qr(H) + 0,(1). (2.22)

Remark 2 Theorem 2 shows, that for strongly persistent (;, H — Hy = argminger, Q(H),
assuming Hy is unique. By (2.21), H minimizes the forecast MSE, ep(H) — o2 + Q(Hy).

To illustrate the selection of H for rolling window forecast, consider the case of a random
walk {8;}, when {V3;} ~ IID(0,0%) and {u;} ~ I1D(0,02) are such that o/c2 < 2/3.
Then,

(of +0?), H=1;
(7/4)07 + (1/2)02 < ep(1), H =2.

er(1) ~ o2 +Q(1)
€T(2) ~ 05 -+ Q(2)

2
o, +
2
o, +

Hence, H > 2. MSE could be minimized further by selecting K, giving smallest Qr(H).

2.6 Weakly persistent case and structural break

Next we consider the bounded stochastic trend (b4), deterministic trend (b5), and structural

break (b6). Weaker persistence of these models results in H increasing with 7.

Theorem 3 Lety, = By+uy,t =1,--- T, where {5} is as in (b4), (b5) or (b6), {u;} € 1(0).
Then, as T — oo, uniformly in H € I,

Qr(H) = 6up +{EQr(H) — 6,7]}(1 +0,(1)) (2.23)
= Gur+Qr(H)(1+0y(1)),

10



where

Qr(H) =T 's3,V? Urs T Qu(H) in case (b4), (2.24)
= {(H/T) V3K+H Yok H(1+0o(1)), H — oo.
Qr(H) == (H/T)*k(g)Vi2 g + Qu(H) in case (b5), (2.25)

= {(H/T)*k(9)v1.x + H by} (1 +0(1)), H — 0.

In case of the break (b6), for the rolling window weights, uniformly in H, with 7 :=T — L,

Qr(H) = Qu(H)+ QuH), (2.26)
T L
Qu(H) = AT S wym|” (2.27)
=L j=1
= N?IL(1+o(1), a<H<m
2 2
= A—{ —%+3;[2 (1+0(1)), T<HZT.

Again, minimization of Qr(H) reduces to that of Qr(H), and the forecast, based on H

minimizes MSE.

Corollary 3 Under assumptions of Theorem 3, in cases (b4) to (b6),

Anf er(H) = o, + jof (Qr(H) - ar)(140(1))}; (2.28)
=ep(H)+o LTV = Qr(H 7Y+ o(T7Y%) in cases (b4) and (b6),
— er(H) +o(T™3) = Qr(H) + 0,(T™*) in case (b5). (2.29)

Remark 3 To illustrate selection of H and the order of eT(fI ) for the rolling window forecast
in cases (b4) to (b6), assume that {u;} ~ IID(0,02). Then Q,(H) = ¢ > 0, and Theorem
3 and Corollary 3 imply the following results about H and eT(f[ ).

(b4) For the bounded unit root f;,

ox+ T } T

T Vﬁ P Tix
QT(H) = 0'5 + ZSVB1 /VS,KUUT_ 1/2 + Op(T—l/Q)‘

H~ argmmH{

11



(b5) For the bounded smooth trend 3,

N , H? o2 o2 /3
L A S

QT(ﬁ) = O’i + QUU{QUuK(Q)VLK}l/?’T*Q/?* i Op(T72/3)_

(b6) For the forecast under break, when 7 =T — L >> T'/2,

H ~ (0,/A)V3T, (2.30)
Qr(H) = 02 4 20,A/V3T + 0,(T7/?).

To verify (2.30), notice that

A’H o2 20, A . ou V3T

}iIT%fT Qr(H) ~ gg( 3T + ﬁ) ~ V3T Hy = argming<-Qr(H) ~ A

whereas Qp(H) ~ A*r/T > T2 for H > 7. Hence, for breaks such that 7 > T2,
H ~ Hy ~ (0,/A)V3T and the forecast error er(H) is as in (2.30). In finite samples,
if 7 > (0,/A)V3T, then H; < 7, and the forecast will be based on the data from the
post-break period. However, for more recent breaks, such that 7 < (0,/A)VT, it holds
H ~ argming H (62 + o(1)), indicating that the forecast will not be affected by the break
and not switching to the post-break period.

Similar patterns are observed in the case of EWMA weights. The above examples show

that the tuning parameter H is robustly adjusted to the unknown structure of the data

optimizing the MSE of the forecast. The range of H may stretch over all of the interval /7.

2.7 Examples

In order to get a better feel for the behaviour of the data-selected tuning parameters, we
consider one single realization of sequentially computed fIt, t =Ty, 179+ 1,---, T for two
structural change experiments used in our Monte Carlo study below. We look at rolling
window forecasts. Figures 1 and 2 report the beginning (dashed line) of the data selected
rolling window for a structural break in the mean (Experiment 4 of our Monte Carlo study)
and a unit root model (Experiment 11), respectively. The sample size T is 200 and the

forecasting starts at T, = 100.2 For comparison, we also report the first observation in the

2Details on how the parameter H; is estimated are given in Section 3.
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data-estimated rolling window when the model has no structural change (Experiment 1 in
the Monte Carlo study), based on the same realizations of the noise u;, as in the previous
two cases (solid line). The vertical distance between the diagonal and the dashed (solid) line
for a given ¢ = 100, - - - , 200 shows the time span of observations (graphical realization of the
tuning parameter) used for forecasting, that is t—H,,t. Ttis clearly seen, that under structural
change the estimated tuning parameter selects a much smaller sample used for forecast than
in its absence. Figure 1 shows, that for the structural break (at observation 110) the data
dependent method is attempting to get more information about the change immediately after
the break by initially using a larger sample for forecasting. This then becomes smaller than
that in the no-change case, as more data after the breakpoint accrue. Interestingly, after
observation 125, the starting point of the rolling window is the first post break observation
111 (the dotted line), as suggested by theory. 125 is close to the roughly estimated theoretical
switching time 110 4 \/m = 128 (see Remark 3). Moreover, it remains at that point for
much of the rest of the sample. In Figure 2, we can see that with a unit root, the window
remains short throughout the sample. A final diagnostic for the method may be obtained by
considering the value of the estimated mean squared error obtained in real time. This is given
in Figure 3, where the solid line relates to the stationary case, the long-dashed line to the
structural break case and the short-dashed line to the unit root case. The smallest MSE is
obtained in the stationary case followed by the structural break case and finally the unit root

case, which is the ranking one would expect.

2.8 Extensions

Our proposed method extends in several practically relevant ways. In this section we briefly

discuss some of these extensions.

Sub-samples

The first relates to the possibility that the forecast MSE may be evaluated and minimized
over different sample periods, in order to select the optimal subsample and a specific tuning
parameter. Theory indicates that an optimal tuning parameter and subsample may be se-
lected evaluating MSE over different sample periods [k, --- ,T]. Selecting H, one may wish to
consider only the recent (and most relevant data in the evaluation of the MSE to reflect the

evolution of structural change). This is achieved by an extended two-parameter minimization
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Figure 1: Realization of the data selected rolling window for a structural break. The solid
line represents beginning of the window when there is no structural change, and the dashed
line (long dashes) the starting point of the window for a structural break model with a break
at observation 110 (Experiment 4 of the Monte Carlo study). The dotted line indicates the
first post break observation and the dashed line (short dashes) represents the last observation
in the window.

First observation used in rolling window

60

100 110 120 130 140 150 160 170 180 180 200

T
procedure given by
T
Qr(H, k) T T_k Z Utlt—1 — yt ) {H,k} = argminHeIT,ke{kmi,,,--.,kmaX}QT(H, k).
t=k

(2.31)
The selected values of (]:] , l%) can then be used to construct forecasts based on the subsample
[/%, -+, T]. This value of H may be different from that obtained by the optimization in
(2.8). Such a procedure, when building forecasts, seeks for an optimal subsample y;, - ,yr
(‘stability period’) and an optimal tuning parameter H = H(k) for it. Observe that for the
rolling window forecast, obviously k< H< T, however using exponential downweighting,

only data y;, - -, yr should be used.
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Figure 2: Realization of the data selected rolling window for a unit root. The solid line
shows the beginning of the window when there is no structural change, and the dashed line
the starting point of the window for a unit root model (Experiment 11 of the Monte Carlo
study). The dotted line shows the last observation in the window.
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The advantage of the two parameter procedure becomes obvious in rolling window forecasts
under the break in the mean, discussed in Remark 3. If the rolling window is selected using all
the data in a large sample vy, - - - , yr, then it takes v/T time lags for the forecast to switch to
the postbreak data. However, the switch may be faster when less observations are used (i.e.,
when k >> 1 is selected, reducing the weight of irrelevant past information). Our theoretical
findings show that the two parameter minimization will minimize the forecast MSE leading

to smallest possible MSE with optimal downweighting and the most relevant data subsample.

Non-parametric method

The above analysis presupposes a particular parametric form for the weight function. While

that might be desirable from the usual motivation of parsimony, in some circumstances it
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Figure 3: Realization of the estimated MSE. The solid line shows the MSE for the stationary
case, the long-dashed line for the structural break case and the short-dashed line for the unit
root case.
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will be restrictive. For example, monotonic downweighting might be counterproductive when
data may come from a processes that follows a finite number of regimes. Data from the same
regime as that holding during the latest forecast period may be more relevant compared to
more recent data. To account for such possibilities, we construct a nonparametric weighting
scheme.

Again we focus on the simple location model (2.1) assuming that (7, is some smooth
deterministic function of ¢ and u, is a standardized id(0, 1) noise. We consider forecasts of

y;—1 of the form

t—1
Utli—1 = Zwtjyt_j. (2.32)
j=1
We wish to determine a nonparametric set of weights wz;, 7 = 1,---,T — 1, such that the
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forecast MSE of §rj7—; is minimised subject to ZiT:_ll wrj = 1. Letting B, = B — Br,
T—1 T—1
E(Grr—1 —yr)* = (Z wTjBT—j>2 + 0?2 Z w:2rj-
j=1 j=1
We construct the Lagrangean
T-1 T—1 T—1
L\ wry, -+ ,wpp_1) = (Z wTjBT_j)Z + 02 Zw%j - /\(Z wr; — 1).
j=1 j=1 i=1

Taking derivatives of L w.r.t. wr;’s and equalling them to zero, gives T — 1 equations

T-1
(672“—3' + 05)wTj + Br—; Z Broiwr; = A/2, j=1,--- T —1.
i=1,i#j

We need to solve this set of T"— 1 equations. As a system they are written as
(B4 o,)wp = (\/2)1,  or Bwp = A, (2.33)

where B = (Br_;Br_1)jh=1...7-1 is (T —1) x (T —1) matrix, [ is (T —1) x (T'— 1) unit matrix,
wyp = (wrj)j=1,.. 7—1 15 (I’ — 1) x 1 vector and 1 is (7" — 1) x 1 unit vector.

Whence wr = B7'A, and ) is determined such that the sum of the elements of B~!A is
unity. This is not an operational procedure as fr is unknown at time 7' — 1. We suggest
setting (3; = Bt, t=1,---,T—1and pBr = BT = BAT,I where Bt denotes some estimator of [;.
This approach does not allow for a dependent u;, but we discuss possible extensions of (2.1)
below that make the assumption of a serially uncorrerelated u; more plausible.

The method can be extended to allow for time varying variances F(u?) = ait. Then, the

forecast MSE takes the form
T-1 . , I
E(jrr—1 —yr)* = (Z wr;Br—;)” + Z w%jo-i,T—j'
j=1 j=1
Following the steps of the previous argument gives the following system of equations
(B + Dwr = (A\/2)1, or Bwr =A,

where I = diagonal(02 _y,-++ ,02,) is (T — 1) x (T — 1) diagonal matrix. Once again this
procedure becomes operational by replacing af,t with an estimate. We note that estimation
of f; and o2, is discussed widely in the literature when f; and o7, are deterministic functions
of time (see, e.g., Orbe, Ferreira, and Rodriguez-Poo (2005) and Kapetanios (2007)), and is
discussed in Giraitis, Kapetanios, and Yates (2011) for stochastic ;.
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Dynamic weighting and regression models

Another alternative and simple way to allow for extra flexibility in the weight function is to

allow the first p weights wq,--- ,w, (p > 0) to vary freely by specifying

- Wy, ) =t—1,---,t—1,
wtj,HZ{ o ‘7-

K(%), j=1--—-,t-p-1,  Hel,

th H
Z’Cl Wyjm
freely into the forecast rather than through a given parametric function. Then, Q)7 can be

and standardizing the weights: wy; g = . This allows the first few lags of y; to enter
minimized jointly over H, w0y, - ,w,, and, potentially, even p.

Hitherto we have been dealing with a simple location model, which, although allowing
for dependent u; and accommodating a wide range of behaviours for y;, may be considered

somewhat restrictive. It can be extended to a regression model of the form
Yre = By + ug, t=1,---,T7, T>1, (2.34)

where z; is a K x 1 vector of predetermined (stochastic) variables, ;s are K x 1 vectors
of parameters, and wu; is a stationary dependent noise process that is independent of x;.
Setting 8, = (E (x2})) " E (zly) = (25%) "8, where L7 = [o7%], and X3 = [o7]] are
corresponding covariance matrices, we allow the relevant expectations to be time-varying.
Here, the main task of interest becomes to estimate the expectations X% and %}¥ over time
by the robust methods outlined above. To achieve that, we write down z;;; = x;.x;; and
zit = Ty as simple location models: z;;; = o+ Wij, and z;; = a” + u; ;. This way,
the regression (2.34) can be reduced to estimation of a sequence of simple location models.
Subsequently, some practical questions regarding estimation of the tuning parameters arise,
i.e. whether each of those simple location models should be treated independently or pooled,
which is more straightforward to handle.

An alternative and perhaps more attractive way to accommodate regressors is to modify

(2.2) so that

K t-1

Jije—1 = Gepe—1 (Hy s Hiea) = Zwtj sH Yt—j Z Zwt] sHipa Lit—j> (2.35)

i=1 j=1
and then minimise Qp(H,, -+, Hx41) with respect to H = (Hy, -, Hgy1)', where Qp(H,;
, Hg 1) is defined similarly to Qr(H) in (2.8). It is equally easy to consider multi-step
ahead forecasts by simply setting fyi—s = Gye—s(H) = Z] swg)Hyt —;, and then minimizing

the relevant MSE.
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2.9 Theoretical conclusions

We conclude this section by noting some important implications from our analysis. Firstly, the
dominant tendency in the forecasting literature of using models developed for other purposes
such as impulse response or policy analysis, to obtain forecasts may be counterproductive.
Our arguments suggest that if good forecasting is the aim, then forecasting by averaging and
appropriately weighting down past data, without engaging in further modelling, is a viable
strategy.

Secondly, appropriately downweighting past can provide a general approach for handling
trends of any nature. Our theoretical results show that this method applies for stochastic,
linear or nonlinear deterministic trends and structural breaks without knowledge of the na-
ture of the trend. It is therefore a tractable method for forecasting the levels of apparently
nonstationary processes. As a result it bypasses difficult problems of combining appropriate
detrending of level series with the subsequent forecasting of stationary processes. Importantly,

the proposed forecasting approach continues to be valid if a series is actually stationary.

3 Monte Carlo Study

In this section we explore the finite sample performance of the forecasting strategies discussed
in Section 2.1. The simulation study consides Monte Carlo experiments for the forecast of
yr+1 based on the sample yy,--- ,yr for a number of specific designs for the simple location
model (2.1) with §; as in (bl) to (b6). For the one-step ahead forecasts, the benchmark is
the sample mean forecast Gsenchmarkr41 = 1T Zle Y, while for two-step ahead forecasts,
it is (7' —1)7! ZtT;ll y;. The benchmark disregards the possibility of structural change. We
compare the performance of forecasts in terms of relative root MSE.

3.1 Design: data generating processes
We consider the following location shift model for generating the data:
yt:/ﬁt—i_ut? t:]-?"'JT7

namely a version of (2.1), where u; is a standard normal i:d(0, 1) noise, or an AR(1) process
with parameter p = 0.7 and standard normal iid innovations. The process (; is either a
deterministic or stochastic trend as in (b1l) to (b5), or a process with a break in the mean as

in (b6). We consider the following data generating processess, denoted in tables as Fz1-Fx11:
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Y = Uyg.
yr = 0.05¢ + 5u.

Y = 0.05¢0-5+0.75(/T) . 5.
_ €t t S (11/20)T,
Y= 146, t > (11/20)T.

ye = 2sin (325) + 3u,.

yr = 5sin (3) + 3e.

yr = (0.025t — 2.5)% + 5.

yr = (0.025t — 2.5)% + 3u,.

- Y= \/LT 22:1 Vi + Uy

10. y: = \/LT 27;:1 v; + 0.05¢ + uy.
1.y =230 v 4wy,

© oo or e WD

where v; is a standard normal #id(0, 1) sequence.

The selection of deterministic trends provides a variety of shapes of the functions driving
the structural change in the unconditional mean of ;.

Ex1 is the case of no structural change. Here, as long as the noise u; is an iid or very
weakly dependent process, the benchmark (sample mean) forecast should do best, and the
robust methods at most should not lag far behind the benchmark. However, when u; is
sufficiently persistent, such as, e.g., an AR(1) process with p = 0.7, then the robust forecast
with EWMA weights should outperform the benchmark, see Remark 1. Theory indicates,
that the exponential weights should outperform the rolling window, but it leaves open the
possibility that the rolling window can outperform the benchmark when a stationary process
y; becomes persistent. Table 2 indicates that the latter is not true for rolling window, but it
is obvious for exponential weights.

The functional forms in Fx2 and Ez3 are respectively a linear and nonlinear monotonic
trend of type (b2). While such trends may be unrealistic, at least for processes which have
been detrended applying filters or differencing, they provide a useful benchmark. Further,
these trends are sufficiently subtle and minor to be swamped visually by the noise process.
Functions in Fx7 and Ex8 provide hump shaped quadratic trends which again are likely to
be relevant in practice. According to the theory, for such (b2)-type trends, robust methods
should obviously outperform the benchmark. Moreover, performance of the robust methods
should improve when the level of the noise (or Var(u;)) decreases, which is confirmed by
simulations in Tables 1 and 2 comparing Ex7 and Fx8. The tables also show strong benefits
from the use of robust forecasting when the noise u; becomes more dependent, see Fx7 and

Ex8 in Tables 1 and 2. Obviously, presence of a stronger nonlinear trend improves the effect
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of using a robust forecast, as seen from Fx2 and Ex3 in Tables 1 and 2.

The purpose of Fx4 is to introduce a break in the mean, to see if our robust methods can
help under traditional structural change specifications. The break occurs at time L ~ T/2,
and the after-break time T/2 is greater than +/T, as required in (b6). Hence the break is not
‘too recent’ and it will be taken into account by the robust forecasting method, leading to
significant improvement of forecast quality comparing to the benchmark, see Tables 1 and 2.
Moreover, the effect is amplified by the increase of dependence in the error process u;.

Functions in Fx5 and Ez6 represent smooth cyclical bounded trends. These are more likely
to remain after standard detrending and provide a realistic scenario. Tables 1 and 2 show that
presence of cyclical trends is taken into account by the adaptive forecast. Moreover, wider
oscillation of the trend in Ez6 seems to lead to a stronger deterioration of relative performance
of the benchmark.

Finally, Fx9—10 deal with a bounded stochastic trend /3; which is relevant to popular time-
varying coefficient specifications in the macroeconometric and forecasting literature, while
Ex11 deals with a random walk (unit root) process, observed under noise. Tables 1 and 2
show that robust forecast outperforms the benchmark in Ex9 — 10, and by more than 80% in

Ex11. Moreover, exponential weights outperform rolling windows.

3.2 Forecast methods

We examine the robust forecasting using three classes of parametric weight functions.

Rolling window. This is a flat weight function

wijg = 1/H, t—H<j<t—1, ifH<t-1,
=1/t, 1<j<t—1, ifH>t,

=0, otherwise,

giving equal weight to recent data and zero weight to older data, see (2.5).
We denote it in tables by ‘Rolling H’ where H is the window size.
Exponential weights (EWMA). For 0 < p <1,

p
Wiy = ———— 1< j<t—1.

Sy ok
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Here the main weight is placed on the last few data, downweighting others to zero exponentially
fast when p is small, and more equally when p is close to 1, see (2.6).

We denote this as ‘Exponential p’.

Polynomial weights. For o > 0,

(t—j)°
—1 —a
S

Wjp = 1<j<t—1 (3.1)

They are downweighting the past slower than exponential weights. We denote them in tables
by ” Polynomial .

We consider forecasts with fixed values of H and p, and data selected values H , p and
& for the tuning parameters. In case of polynomial weights we do not use fixed values of
parameters. We set H = 20,30 for rolling window; p = 0.99,0.95,0.9,0.8,0.7 and 0.5 for
exponential weights. Using fixed values will allow us to compare the performance of the
forecast with data tuned parameter with the best fixed one that gives the smallest Monte
Carlo forecast MSE among fixed tuning parameters, roughly speaking with the best possible.
Our objective is to verify in simulations that these two MSE’s are comparable, as indicated

by Corollaries 1 to 3.

Non-parametric method. We also consider the non-parametric forecast method as in
(2.32) and (2.33) based on the non-parametric weighting scheme. In the Tables 1-3 the

corresponding results are referred to as ‘Non-parametric’.

‘Rolling (/%H ) method’ This is the rolling window forecast where k and H are selected
minimizing Qrx(H) in H and k as in (2.31).

Averaging method. The final robust method we examine is the averaging method of rolling

window forecasts over different periods advocated by Pesaran and Timmermann (2007):

T T

_ L < - (H) 1

yreur = Z Yriur Yroyr = g7 Z Y- (3:2)
H=1 t=T-H+1

It combines rolling window forecasts of y7,, using all possible windows that include the last
available observation. One major advantage of this method is that it does not require selecting

tuning parameter apart from choosing the mimimum sample size used for forecasting, which
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choice is usually of minor significance for the performance of this method. We refer to this

method as Averaging.

3.3 Monte Carlo results

Tables 1-3 are produced as follows. We choose a particular starting point in time Tj of the
forecasting by any given method. Then, one-step ahead forecasts yrn -1, yrr—1 are
computed for the subsequent period ending at T'. To compare different forecast methods, as
the performance criterion we use the forecast root MSE relative to the benchmark of the sample
mean of all data (M SFEgg) . For method 7", we compute M SE; = T+TO Z;F:TO @t(rt)—1 — yp)?
and define the relative root MSEgrr = VMSE;/\/MSE, where MSEj correspond to the
benchmark forecast by the sample mean. For all experiments, forecasting starts at Ty =

100, an the samples size is T" = 200. M SFErgr below unity shows that the forecast method

outperforms the sample mean.

The relative root MSE results for models Ex1 to Ex11 obtained applying various forecast-
ing methods with data selected and fixed tuning parameters are reported Tables 1 and 2. In
Table 1, the noise u; is an iid standard normal process, whereas in Table 2, u; are dependent
variables, generated by a stationary AR(1) process with parameter p = 0.7 and iid standard
normal innovations. Finally, in Table 3 we report similar results as in Table 1 but for two-step
ahead forecasts. The results in Table 3 are, in general, similar to those in Table 1 and so we
focus mainly on Tables 1 and 2.

The first column, labelled Fx1, corresponds to the stationary case y; = u;, or no-change
baseline. In the iid case, as expected, the sample mean outperforms the forecasts for each
method, especially those penalised by the loss of information from strong discounting. How-
ever, for sufficiently dependent u;, discounting improves the forecast as indicated by Remark 1.

For the other experiments, in almost all cases, downweighting beats the sample mean in the
sense that the M SEgg is considerably below unity. Generally, all these methods are useful,
including the simple rolling window and averaging method. In the case of a fixed tuning
parameter, for the model with a strong trend, the largest reduction of M SFExrr comes from
the exponential weights with the highest discount rates. In the set of experiments with iid
noise u;, for this particular design, the exponential weights with a p = 0.9 discount perform
well in the sense that it has the largest number of minimum MSFEgg’s. Although the tuned

exponential weights are not the best, they are where they should be according to theory:
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comparable to the best fixed value methods and never among the poor performers. Note,
that the exponential weights with a p = 0.9 discount can perform considerably worse than
the tuned exponential weights in cases such as Fx3 and Ex11 illustrating the importance of
data-dependent tuning.

Given that optimal fixed p for exponential weights cannot be observed in practice, our
simulation study suggests the efficiency and usefulness of data based downweighting. The
nonparametric method similarly offers a powerful alternative, for iid noise u; slightly beating
the tuned parameter methods in all cases except Ex11, see Table 1. However, being designed
for an iid noise u;, in case of a dependent AR(1) noise this method is outperformed by the
parametric tuning methods, see Table 2.

Comparing exponential, rolling window and polynomial methods, exponential method out-
performs rolling windows while the latter beats polynomial windows when the noise u; is de-
pendent and is outperformed by it when the noise is iid. The averaging method outperforms
the benchmark but is beaten by the rolling windows with data selected H. The rolling window
forecast using a data dependent window, H, and an evaluation period [/2?, T}, is equivalent to
a rolling window with H and k = 1 under the iid noise, but outperforms it when the noise,
Uy, is dependent.

It is worth noting that, in applications, one could select from a set of available forecasts
with data dependent and fixed discounting rates, the one minimizing the criterion function
Qr(H) of (2.8), and respectively, the forecast MSE, o2 + E(Qr(H) — 62). This possibility
illustrates the more wide relevance our cross-validation approach.

Simulation results suggest that robust forecasting methods with data selected parametric
downweighting are effective in the face of a variety of types of structural change, and that
data-dependent tuning is a viable approach, in some cases preventing significant errors. For
models with iid noise, nonparametric methods can be very effective. It remains to be seen in

the next section whether they are effective in practice.

4 Empirical Application

In this section we examine how our methods would have fared when applied to a large range

3

of UK and US quarterly data series.” We are not trying to establish the best methods for

particular data series, but instead to get an impression of whether the issues identified above

3We take no account of real-time data revisions.
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are important in practice. In all cases we transform series to stationarity and employ either a
simple location or an AR(1) forecasting model. We use data on 94 series for the UK and 97 for
the US, taken for ease of comparison from Eklund, Kapetanios, and Price (2010). * The data
span 1977Q1 to 2008Q2 for the UK (1960Q1 to 2008Q3 for the US). We examine two forecast
evaluation sub-periods within this (1992Q1 to 1999Q4 and 2000Q1 to 2008Q2 for the UK and
1992Q2 to 200Q1 and 2000Q2 to 2008Q3 for the US) so that the periods evaluated are the same
length for comparability. For each series, we compare RMSFEs to that from the benchmark
simple location model estimated using equal weights on all data. The methods we report
relate to those in the Monte Carlo study, and are rolling window forecasts, averaging across
estimation periods, exponentially weighted moving average forecasts, polynomially weighted
moving average forecasts and forecasts produced using nonparametric weights.

Table 4 reports results for the location model over the two samples we examine. We report
the median RRMSFE (relative to the full sample (equal weight) benchmark. We also report
some other summary statistics for the RRMSFE. Namely, the minimum, maximum, variance
and skewness. DM1 and DM2 report the number of significant Diebold-Mariano tests where
the null is equality of the robust method and the benchmark. The alternative for DM1 is that
the benchmark is the better forecast, and for DM2 that the robust method is superior.

In almost all cases, the methods beat the benchmark for the median. Results are partic-
ularly good for the first half of the sample. Clearly, looking at the minima, in some cases
there is an enormous gain, whereas the penalty in the worst case, although large in some
cases, is several orders of magnitude lower. As for the Monte Carlo, the EWMA with a fixed
large discount (p = 0.50) performs poorly. Tuning parameters for EWMA provides a good
median performance, whereas (in contrast to the Monte Carlo) the nonparametric methods
perform relatively badly. Nevertheless, all methods significantly outperform the equal weight
benchmark in at least 19% of cases.

Qualitatively, for the US the results are even stronger. The median reduction in the
optimised EWMA is large, over 30% in both samples. Generally, most methods preform
relatively better than for the UK data.

One final issue we examine relates to the well known fact that AR models are a good
benchmark for many macroeconomic series. We have not attempted to incorporate lags into

the procedure (as described in Section 2.8). Despite this, when we compare the tuned expo-

4See Eklund, Kapetanios, and Price (2010) for details of the data.
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nential method to a benchmark AR process, the median relative RMSE for the UK remains
below unity (0.925 for the first subsample and 0.962 for the second). For all other meth-
ods, the relative RMSE slightly exceeds unity. Rather less favourable results hold for the US
(0.992 and 0.996), but the median RMSE is still below unity. This is further evidence for the

usefulness of the data based tuning.

5 Conclusions

Forecast methods that are known to be robust to historical structural change, have been re-
cently found to be useful forecasting tools under ongoing structural change. They include
rolling regressions, forecast averaging over different windows and exponentially weighted mov-
ing averages. However, the, a priory set, degree of downweighting older data, which is a
common feature shared by these methods, is suboptimal by its nature. The alternative ap-
proach suggested here is that, although we do not know the structure of the model and the
nature of structural change, we can make the choice of the tuning parameter data-dependent
and select it by cross-validation using in sample forecast performance. As we have shown,
such discounting has a number of attractive properties. It minimizes asymptotic forecast
MSE over the class of parametrically weighted moving average forecasts. Rather remarkably,
it allows also the evaluation of the forecast error, and provides a framework for a number
of new developments for forecasting under ongoing structural change. Our theory and small
sample evidence suggests that exponential weighting may be most helpful and efficient, and
that data selected tuning can provide a useful framework for avoiding large forecast errors.
The simulation study and the empirical exercise using over 190 UK and US macroeconomic
series show that fixed low-discount EWMA weighting is often good, but is outperformed by
the data selected downweighting. This is strong support for our approach, motivated by the

impossibility of knowing the optimal degree of discounting ez ante.
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A Appendix: Proofs

A.1 Proof of Theorems 1-3 and Corollaries 1-3

We decompose the objective function Qr(H) and the forecast MSE, er(H) = E(§r41r —yr)?,
into terms corresponding to 3; and wu; of (2.1) which will be analyzed separately.

Let
Vol = Wep—g, 1< <t—1; v =0, t<j<oo. (A.1)

Then

@t\t—l—yt = ZthH ZUUH Yt—j — t) (A-2)

7j=1
t—1 -1
= thj;H(ﬁt =B+ Vgjor (Wi—j — W) =: €ger + €y th-
j=1 j=1

- 2 _ 2 2
Hence, (Ji:-1 — y1)* = €545 + €aom + 2€p1€um, and

T
:%Zytlt 1=yt = ZeﬂtH+ ZeutH+ ZeBtHe"tH

t=1

= Qpr(H) + Qur(H )+2Qﬂu,T( ).

Because {f3;} and {u;} are independent,

EQr(H) = 6&,] = EQur(H) - o]+ EQsr(H), (A.3)
Var(Qr(H)) < C{Var(Qur(H)) + Var(Qsr(H)) + [EQgur(H)]}.

Similarly,

er(H) = Elej, (r+1ym) T Ele; (+nyul =epr(H) +eur(H). (A4)

In the next lemmas we derive asymptotic of the terms on the r.h.s. of (A.3) required for
the proof of the main results.

Claims of Theorems 1, 2 and 3 and Corollaries 1, 2 and 3 is straightforward implication of
the Lemmas A.1, A.2, A.3 and A.4 below.

Recall that I = [, T'°] where § > 0 is assumed to be small.
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A.2 Properties of Qs r(H)

First we consider the case when f; is a unit root process as in (b2). Then (; := V3, = i — i1

is stationary 1(0) process, and the correlation

v8(j, k) := E[(B; — Bo)(Be — Bo)]l = E[(Br — Bi—j)(Br — Be—r)], 0<7k<t

does not depend on t. Since 3; — By = S1_, G, then E(B; — fy)? ~ js%g, J — 00, where s,

is the long-run variance of {(;}, and

75(]?’0 = 3%5(]/\/{?)4—0(]/\]6), (]/\k')—)OO, (A5)
s k)| < C(ik)Y2

First we approximate the mean E[Qgsr(H)| by Vi := 37 vjavenays(j, k). By standard
argument, from definition of weights v; i, using (A.5) and (A.51) it follows

© 2
Vi < C(Xwmi?) <CH Helr,
j=1

Vig = Hsyg Z Vv (jAK) +o(H ') = Hsgavsx +o(H™ '), H — oco. (A.6)
jk=1

The next lemma deals with the case of a unit root trend 3; (b3), and implies the corre-

sponding results for the bounded unit root trend (b4).

Lemma A.1 Let B, be as in (b2) and Assumption 1 be satisfied. Then uniformly in H € I,
the following holds.

(i) As T — oo,
sup V; | E[Qs,r(H)] = Vi = 0, (A7)
Helr
sup Vﬂf§|eg7T(H) — V;H] — 0. (A.8)
Helr

(i) In addition,

sup Vi ilQsr(H) — E[Qpr(H)]| = 0y(1). (A.9)

T

Proof. (i) We first show that for H € I,
|Ele3,0] — Vil < CH* (tv H) L. (A.10)
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Denote by i; the Lh.s. of (A.10). Since by (A.5), |v5(j, k)| < C(jk)*/?, and for any real
numbers (ajar — bjby) = (a; — bj)(ax — bg) + bi(a; — b;) + bj(ar — by), then

i <D logavis — vivkal [s(s k)| (A.11)
k=1

< C Z VsVt — ViV | (7K) T2 < C{pY, + prapes}
jk=1
where py; := Z;’il [vejm — vim |72 and pyy = Yooy venk?. By (A45), p1y < CH32(tV
H)™, and by (A.51), po; < CHY2. Hence, iy < C{H3(tV H)2+ H*(tVv H)"'} < CH?(t Vv
H)~!. Therefore,

T
Hil’E[Qﬁ,T(Hﬂ - V,BZH’ < C(HTY1 ZE|625¢H - VBQH‘

=1
T
< CHT 'Y t7' <CHT 'logT < T °logT
=1
which proves (A.7), bearing in mind (A.6).
Finally, by (A.10), H ep(H) — V3| < CHT™' < T7° — 0, which together with (A.6)
implies (A.8) and completes the proof of (i).
(ii) Let hyj := Bij — B¢ and Uy := H~Y?v,.5. Recall that Qg r(H) := T ZtT:l €301

We will approximate

-1 (LH]
Eour = H M Peg = Z@tj;Hht,j by eapin = Z vighe, (A.12)
j=1 j=1
T T
H'Qpr(H) =T Z €apin by Quapr(H):=T"" Z CApei
t=1 t=1

where eapr is defined below. We shall show that, as 7" — oo,

E[Sg |H'Qpr(H) — Qapr(H)] — 0, (A.13)
sup Qapr(H) = o0,(1), (A.14)

which proves (A.9).

We set L =logT', whereas vtAj; 5 is a step function in H: letting A :=log™* T we split the
interval Ir = UY[H;, H; + A) into small subintervals, where H; = a + Ai, i = 0,-++- , N =
[T779] + 1. We define
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Variables Bt,j are m-dependent having all moments finite. Recall that Bt,j = Bij — B =
—Zfzt_jﬂ (j, where by Assumption 2, (; = Vf; = > p-benj_x is a linear process, n; ~
I1D(0,07), and |bi| < Ck~'7" for some v > 0. Set (; = " b where 7; := n;I{|n;| <
(log T)*} is the truncated noise with m = my = (log T)?, p > 8/v. Define h; , = — Zfzt_jﬂ (.
Notice that 77;’s are m-dependent r.v.’s, whereas by construction eag ¢x, €A g 5 are m-dependent
r.v.’s, with m := (log T)? + [LH] < CH(log T')?

Proof of (A.13). First we show that

lesinr — enpen| < CHA+ L°}Sr+ S;l, (A.16)

esem| + leagen| < CSr

where St := Z;;llj*?’/zhm and S; = Zlej*3/2|ht,j — hy ;| do not depend on H. The first
claim follow applying to the r.h.s. of

T t—1 [LH]
Coen — eapen| < > B — vl hesl + D vGalhegl + D 05 alhey —
Jj=1 j=[LH]+1 j=1

the bound (A.47) and (A.46),

Dyr < CJ7Y 1< <ty Oy <CLTPj7P [LH] <j <t L>1;(A17)
Ojirr — Dol < CIALTY2, 1< <t 0€(0,4],

which also imply the second claim of (A.16).
Hence, by (A.16) and equality a* — b* = (a — b)(a + b),

€5 — €l < ({A+L7°}S7+5rSh), (A.18)

T
[H'Qsr(H) = Qapr(H)| < TV |€5,m — hsanl
t=1

= CO({A+LP°}S2+ SrS3).

By the bound E|h; jh. | < C(jk)Y2,
T
ES; < C (jk)PE[|hyjhis]] < Clog®T.
j.k=1

Similarly, by definition of hy;, using E(n; — 7;)? = E[nI(|n;| > log' T)] < C(logT)*E[n}],
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then

E(he; —hij)? < Cj{(z |b])? + E(n; — 7;)%} (A.19)

< Cj{( Zk )2 4 (log T) %} < Cj(log T)™®
Therefore, with L = log T and A = (logT) ™%,
ES:* < C(logT)~ Zj > < ClogT)™®

E[(A+ L7°}S2 + STST] < C[(A+ L°YES2 + (BES2ES;:*) ™ < C(logT) ™2 = o(1),

which together with (A.18) proves (A.13).
Proof of (A.14). 1t suffices to show that, as T" — oo,

max, |Qapr(H;) — EQapr(H;)| = op(1). (A.20)

Notice that Qagr(H;) = T3, €A4.y, is the sum of m;-dependent r.v.’s with m; <
H(logT)? < CT'*%/2 (H < T, and N < CT*PA~! < OT. Thus, by Lemma 2, (A.20)
holds if

max E(eiﬂ,“{i)% < C(logT)%. (A.21)
To show the latter, firstly observe, that is ﬁt’j the sum of linear variables with i.i.d. innovations

7;, and therefore its moments satisfy

En;"]
(Eﬁj)
see, e.g., Proposition 4.4.3 in Giraitis, Koul, and Surgailis (2012). Since E[73*] < (log T)*
En? — En? > 0 and Eh}; < Eh}; < Cj, we conclude that

Ehi < O (B, k> 1,

ER% < Cj*(logT)™, 1<j<t—1. (A.22)

By (A.22) and Cauchy inequality,

t—1
> vy < HV2, (A.23)
J=1
[HL] ik t—1 n
ko1 _ 3 _
Elexs ) = E<Z1 Utj;Hht,j> < (Zl Utj;H)  Jax, En"
J= 1=

< H™"{(LH)*(log T)*} < C(log T)"*,
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which implies (A.21) and completes the proof of the lemma. [

In the next lemma we consider the case of a bounded deterministic trend §; (b5) and the
break in the mean (b6), while the corresponding results for the deterministic trend (b3) follow
straightforwardly from (b5).

In case (b5), recall Vi := 3272 v;u(j/H), £(g) = fol g(x)?dz. By (A5L), Vi2 y — vk

as H — oo.

Lemma A.2 (i) Let 5; be as in (b5). Then, T — oo,

T .
Yesr(H) — g(1)*Viiy| = 0. (A.24)

T
sup [(5)°Qar — wl9)Vim| = 0. sup|(57)

Herp H Helr

(i) Let By be as in (b6). Then (2.26) holds.

t—

Proof. (i) For simplicity, denote g((t — j)/T) = g—jyyr- Then egpy = Ejzll Ve (9—j) /T —
gyr).- Let egg = —(H/T)giyrve. By Taylor expansion,

t—1
lepan — epanl < D v — viallge—ym — el + vialge—sm — gyr + (H/T)gyr|}
j=1
t—1
< C(H/T)Y {lvgr — vin|(/H) +vjou (5 H)*(H/T)}.
j=1

For H € Iy, (H/T) < T, by (A.45) 23;11 v —vjn|(j/H) < CH(tV H)™! and by (A.51),
S v (i/H)? < C. So,
(T/H)legsn — €penr] < C{H(tV H) ' +T7°}, (A.25)
t—1
(T/H)(leg | + legunl) < CD (viin(j/H)+1) < CH(EAH)™,
=1
(T/H)?|e5 5 — €3] < C{]H(t VH) '+ T YHAANH) P < CHE +T7°).

Notice that

]~

T
(T/H)?*T! é%,tH =T Zg(t/T>2%3,H = “(9)‘/5,1{ +o(1),
=1

T
€50 — Ehul SCT' Y (HE' 4+ T7°) < CT™ =0,

1 t=1

t=1

E

(T/H)*T!

which proves the first claim of (A.24). The second claim follows from (A.25):

T ) _
() 2ear(H) = 902 VEu| = (T/HI6} s — & ranm

< CHT'+T7%)<CT™? =0,
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which completed the proof of the lemma.

(ii) In case of the break in the mean f; of (b6), (2.26) follows by standard calculus. [J

A.3 Properties of Q,r(H)

Lemma A.3 Let y, = w; be a stationary process. Under Assumptions of Theorem 1, as
T — oo,
(i) sup H|EQur(H)] - o — Qu(H)| — 0, (A.26)
HEIT
sup Hler(H) — 02 — Q.(H)| — 0, (A.27)
Helr

where Qu(H) = H by, rc +o(H™') as H — oo.

(i) sup H|Qur(H) — 62 — E[Qur(H) —67]| —, 0,

Helr

Proof. (i) Because of stationarity of {u,},

EQur(H) —d2] = E(fyi—1 —ye)* — 0o},

|
—
=
~=

E(gﬂt—l - %)2 - UZ = Z Utj; HVtk; H Vu ] - - Qth] H%L
jk: 1
Qu(H) = Z iUk V(] — k) — QZUJH%
7,k=1

Below we show that

|{E(yt\t 1 ) - Ju} Qu( >| < Ct_la t> 27

where C' does not depend on ¢t and H € Iy. Then,
T
EQur(H)—6)) = Qu(H)| < CHT'Y ¢
t=1
< CHT 'logT <T7%72,
which proves (A.26). In addition, by (A.30)
Hler(H) —op — Qu(H)| < C(H/T) < CT™,
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which implies (A.27). The last claim of the lemma about Q,(H) is shown in (A.52).
(i) Proof of (A.28). We shall use the following notation:

7 t—1
htJ' = E Ut—j, ] = 1, s ,t — 2, ht,tfl = E Ut—j,
=1 =1
@tj;H = Hl/Q(vtj;H - Ut,jJrl;H)? Jg=1-t=2 ﬁtj;H = Hl/QUt,tfl;H-

Using summation by parts, write

t—1 -
Cup = H'? Y vgun =Y Vgl . (A.31)
j=1 =1
Then,
T
H(Qu,T(H) - &3) = T IZ EutH — H /2 ) - Ha'i <A32)
t=1

I
IIMH

—2qu/2T Ze AH = QiT( H) - 2QuT< )-

=1
To prove (A.28) it suffices to show that
sup Q5 (H) = EQUr (]| = 0(1), =12 (A.33)
€lr

Case ¢ = 1. The proof follows by the same argument as the proof of Lemma A.7. By
(A.49) and (A.48), the weights 0,5y have properties (A.17) and (A.23). Moreover, hy; is
a sum of linear variables satisfying Eh2 < Cj. Therefore, similarly as in (A.15), defining

A LH]
Vgtjor = Vgjsr, H € [Hyy Hy + A) and ey ppr = ZE L U ght.;, we obtain same bounds as

ewirr — eunsn| < CHA+L7°}Sr + Sil, (A.34)

|éu7tH| + |6uA,tH| < CSr,

and (A.33) follows by the argument as in the proof of (A.9).
Consider the case i = 2. To handle the addition factor H'/2, we modify definition (A.15)

as follows:
0oy = H oy,  HelH, Hi+A), i=0,---,N; (A.35)
t—1 T
Cautt = Y Uhpte-g, Qg (H) =T unuem.
j=1 t=1
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The bound (A.48) with v = 1 yields
|H' 0y — vy < CAGT2, |H'Peuumr — nugn| < CAG2 (A.36)

Recall that A = (log 7). Hence,

T t—1
QP (H) - Q%) (H)| < T~ Zru{H/eutH—eM}|<0AT SN i s,
t=1 j=1

where the r.h.s. does not depend on H. Since E|h, suy| < (Eh} Fu?)'/? < Cj/2, then

T oo
E[ sw [QP1(H) - QR p(H)|] < caT Y Y j 2 <oa .

Helr t=1 j=1
Since Q(AQQ)L +(H) is a step function in H, it remains to show that

2
Jmax |QR, 7 (H:) = E[QR, r(H)]| = op(1).
As in (A.58), it suffices to verify, that there exist £ > 1 and v > 1, such that
_max Elgr|™ < OT7, g = Q) 7 (Hy) — EIQR) +(H,)]. (A.37)

To prove (A.37), let H = H;. Notice that

T -1 T t-1
~ (2 -
Q(AgL,T( = H,T" IZU th] HUt—j = = HT Zzwtjutut —j
t=1  j=1 t=1 j=1
is a centered quadratic form with weights w; ;. Set wy; =0, 7 =1¢,--- T

The 2k-th moment, k& > 1, of a general centered quadratic form py := ijzl by jugus—j of

a linear process u; (2.11) with i.i.d. innovations ¢; satisfies the bounds

T
E(pr — Elpr])* < CAY, Ar:= > brygbrapu(t— )G -5, (A38)

t,t',5,5'=1

as long as Fej¥ < co. For a linear process u;, for k =1 (A.38) follows from Lemma 4.5.1. in
Giraitis, Koul, and Surgailis (2012), while its generalization for k£ > 2 is also straightforward.

Notice that for br; = wijm,

Ar < C(logH +TH™) (A.39)
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because wy; < CK((t —)/H)C;7, Cig = Z_:ll K(k/H), > ey |u(j)| < oo, and Gy <
C(t AN H)™! of (A.43) imply

T
Ar <0 > whllt =)l - 5) |<CZQ {ZK G/HHD S (OIY
t’tlvjvj/ 1 - ]EZ
T
< C) Cpy <C(logT+TH™).
t=1

Consequently, from (A.38) and (A.39), for H < Iy, H/T < T~°, we obtain

Eq = (H/T)*(pr — Elpr]) Epy* < C(H/T)™ A},
< C(H/T)*(log H+TH "k < CT™",

which implies (A.37) choosing k > 1/d. This completes the proof of the lemma. [J

A.4 Properties of Qg

In the following lemma we set dg = 1 for 5; and in (b2), (b4) and (b6), and dg = 2 for 5; and
n (b3) and (bb).

Lemma A.4 (i) Under assumption of Theorems 2 and 3,

glelp {H~ B‘quT )‘} —, 0, asin (b2) and (b3); (A.40)
sup {[(%)dﬁ A H]|Qpur(H)|[} =, 0, asin (b4), (b5) and (b6). (A.41)

Helr

Proof. Consider the case when f; is a unit root process (b2). Then E[Qg,r(H)] = 0, and
using notation (A.2), €g,m of (A.12), &5 of (A.31), we can write

t—1
€8tHEutH = €EBtH thj;H(utfj — Up) = €54HCutH — €5.1HUt,
j=1
T T T
Qpur(H) = T Z €BtHCutH = T Z €8, tHCutH — (HT)_l Z Hl/zéﬁ,tHUt
t=1 t=1 =1
; 1 (2
= gy — H 'ary.
We will verify that
sup gy =, 0, i=1,2. (A.42)

HEIT
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The terms ég:y and €,y are of the similar type, satisfy conditions (A.16) and (A.34) and
Eléstnéuin] = 0. Therefore, the same argument as in the proof of (A.9) yields (A.42) for
i = 1. For i = 2 the latter follows using (A.36) and the argument used in the proof of (A.9).
Clearly this implies (A.40) for the rescaled unit root process S, (b4).
The bound (A.41) for 5; (b5) and (b6) follows combining the approached used in the proofs
of Lemmas A.1, A.4 and A.3. The case (b5) also implies (A.40) for (b3). O

A.5 Auxiliary results
Denote Cyy = Z;ll K(j/H), t>1. Recall (A.1).

Lemma 1 Under Assumption 1, uniformly in H € Iy, T > 1, the following holds.
(i) There ezists C' > 0 such that for allt > 1 and j > 1.

Coyf <CtNH), vyng<CEANH)", vg<CHV, (A.43)
|Utj;H - Uj;Hl S Ct_la ] Z 17 (A44)
> v —vpul(i/H)Y <CH(tVH)™,  (0<y<2). (A.45)
j=1

i e following holds uniformly in t, H,H' € Iy an > 1.
i) Th llowing hold ) ly 1 HH ] dL>1
(a) Let 0 <~ <2 and 4.5 := H vy, 1 <j<t—1. Then
v < G377 vym <CLT25, (A.46)
O — V| < C|H'—H|j7? |H' —H|<1. (A.47)

(b) Let 0 < ~v <1 and vyj,p = H"(vijop — vpjern), 1 < j <t —2and 01,54 == H'vyy1,1.
Then

IN

Cj~ 27, ¥y < CLP5727, (A.48)
C|H — H|j7*", |H —H|<1. (A.49)

Etj;H

IA

Vg, — Vijim|

(iii) As H — oo,

ZU?;H = H_l/ K*(z)dx 4+ o(H™Y), vo.y = H'K(0) +o(H);  (A.50)
j=1 R

ivj;H(%)V = / K(z)x"dx + o(H™), 0<~y<2, (A.51)
j=1 R
Qu(H)=H 'b,x +o(H™"), (A.52)
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where b,k 15 as in Theorem 1.

Proof (i) Proof of (A.43). Let € > 0 be a small number. Assume that H > 1/e. Then for
1<j<eH, K(j/H) > info<y<e K(u) =: ¢, > 0 since K(0) > 0 and K is continuous at 0 by
Assumption 1. Hence, for t > 2, C;y > ¢, min(t,eH) > c.e(t A H), for some ¢, > 0 implying
(A.43). Assume that H < 1/¢, then by assumption (2.4), C;g > K(1/H) > infocy<i/a K(u) >
c(t AN H) > 0, for some ¢ > 0, which completes the proof of (A.43).

The second claim of (A.43) follows from the first because K is bounded, while the third
claim follows for j > H from vy < CH'K(j/H) < Cj~!, because K(z) < Cz™', and for
J < H it holds vy < C(tV H)™.

Proof of (A.44). For t < H, |vy;.;r — vj.r| < Ot~ by (A.43).

Let ¢t > H. First notice that by (A.43) and K(x) < Cx?,

> v <HTYY (H/j)? < CHE (A.53)
j=t t=t
This and (A.43) imply
|Utj;H — Vj;H| = Utj;H ZUJ‘;H < CH_l{Ht_l} < Ct_l (A54)
j=t
completing the proof.
Proof of (A.45). Write
o0 j H [e%S)
Z Ve — Uj;H|(ﬁ)7 = Z[' ]+ Z [+ ] = 515 + Sam.
j=1 Jj=1 Jj=H+1

Then s14 < Zle(vtj;H + v;.i) < 1, whereas by (A.53) and (A.54),

s < thj;H(%)v{Zvj;H}gT;{Zvj;H(j/H)V}(HAt)t1
j=1 j=t j=1

H HANt
= Ot/\H{C} t
in view of (A.43) and (A.51), completing the proof.

(ii) (a) Proof of (A.46). Let t < H, j < t. Then similarly as above v;,gH™7 <
CK(j/H)t 'H™™ < Cj7'77. Next let j < H. Then t > H and using K(z) < z777},
vjpH " < CK(j/H)H =7 < j~'77. The proves the first claim of (A.46), while the sec-
ond claim follows using K(z) < Cz~7°, which for t > H and j/H < L gives vy H 7 <

CK(j/H)H ™ < j=-7L75,

=CHt™ !,
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Proof of (A.47) By the mean value theorem,

1 g = H gy = UL BWED i), i e, i)
gt#) = A SEL - BUBVIIE sy

/2 (d/dH)Cuy
HHCy  HICZ,

Let t > H. Then by (A.43) Cyyr > cH, and by (2.4), | K (z)x| + K(z) < cz=%/2. So,
g(H) < CHT(|K(/H)G/H)| + K(j/H)) < €577

Let t < H. Then by (A.43) Ciy > ¢t > ¢j, H > j, and by (2.4), we can bound |K (z)z| +
K(z) < C. So, g(H) < Cj7772, which completes the proof of (A.47).

(b) To show (A.47) and (A.46) for the weights (b) Uy, == H" (v —v1j41.1), 1 < j < t—2,
apply the mean value theorem to obtain oy := H_(I_W)(K(}/H)/C’m), j €[j,7+1] and
use the same argument as for the weights (a). Proof of (A.47) and (A.46) for 0,1, follows
similarly as above.

(iii) Proof of (A.50) and (A.51). Under (2.4), these claims follow using standard argument
of approximation of a sum by an integral.

Proof of (A.52). Let s = > 1y Vb gUktjs,ir and fom = 05,5 — bo.n — V5,5 + vVo,m,
s € Z. Then

Qu(H) = > vimvenyu(i—k) =2 vin7u())
j=1

7,k=1
= D O = vam)7u(5) + 0,7 (0)
= { o —v0m) 3 () T 0O} + Y Saruls) =i+ 7
js=—o0 js=—o0

By (A.50), ig = H 's2(Ky — Ko) + H Ko +0o(H™') = H b, x + o(H™'). To complete the
proof, it suffices to show that

ry = o(H™). (A.55)

Notice that by (A.43),

k+ |s|

Hlvgy s,z — veu| < C1K( H

)—K(%)\ < Csup K(z), for all s,

< C'sup |K(x)||iH| — 0, Vs fixed.
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Hence,

max H|fs.n| < ka,HH|Uk+|s|,H — Vsm| + Hlve g — vo,r| < CZW;,H < 00,
k=1 k=1
H|fon| < Cls|[H — 0, Vs fixed.
Since > 77 |vu(s)| < oo, this by dominated convergence theorem implies (A.55). O

Lemma 2 Let Sp; = T71 Zthl 2rii, = 1,--- N, N < T, be the sums of arrays of zero
mean m;-dependent r.v.’s zp.; such and max; m; < T'% 0 < § < 1. If for some integer

k= (1/2)+1/(20),
max E[th]] < C(logT)?, (Ip > 1), (A.56)
then as T — 0o, max;—_i... Ny |STi| = 0p(1).
Proof. It suffices to show that, for some k£ > 1 and v > 1,
max ES# < CT™7, (A.57)

since then for any a > 0,

=

=1

N
P( max |Sri| > a) Z (1S7i] > a) <a™* Y " E[SP] < CNT™ 0. (A.58)
=1

By assumption, v* = (2k — 1)0 > 0. Because r.v.’s 27, are m;-dependent, then

2k
E[SJQ“]:] S CT?zk Z [H 2Tt K 2T¢ K :|

1<t2k <. <t2k ST: tl —tgk Skal

< C’{ max E[thZ]}(mi/T)%_1 < C(log TY*T~°C*=1 < C(log T)PT 7,

which proves (A.57). O
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