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Abstract  

 

Pintle-type outwards opening injectors actuated by piezoelectric technique have demonstrated the ability to meet 

the challenging requirements in spray-guided gasoline direct injection engines. Previous studies carried out by 

spray visualisation showed that the spray had a stable spray cone angle against elevated in-cylinder back 

pressures, which have been be determined by the integral spray images using continuous or flash white light 

illumination. However the fuel cloud structure at the end of injection was not well defined when the injection 

was completed in the white light Mie scattering visualisation. In order to show the details of the spray cloud 

structure, two dimensional flow visualisation illuminated by a laser sheet was used under the atmospheric 

condition. The results showed complex multiple vortices forming a recirculation zone inside the fuel cloud. To 

further study the structure of such vortices, a double pulsed laser sheet illumination was employed to obtain the 

instantaneous velocity fields of fuel droplets using the Particle Image Velocimetry (PIV) technique. The PIV 

system was also used to study air motion induced by the spray near the injector nozzle; a good agreement was 

found in the air entrainment velocities when compared to the LDV measurements. 

Introduction 
  

This experimental work is concerned about the characterisation of the fuel spray structure and of the induced air-

entrainment near nozzle exit using a pintle-type injector. Pintle-type outwards opening injectors are actuated by 

piezoelectric technique and have advantageous features such as the enhanced atomization by high injection 

pressures up to 200 bar and increased surface contact area between fuel cone spray and the surrounding air; 

stable spray structures within the range of engine cylinder pressures from the intake stroke to the late 

compression stroke; and short injection durations comparing to other types of injectors with fast responses at the 

opening and closing of the pintle valves. The spray exiting the conical ring nozzle of a pintle piezoelectric 

injector exhibited a string formed hollow conical structure [1-5]. The conical structure is formed by the conical 

design of the fuel exit passage of the injector. Enlarged injector model tests showed that the string formation on 

the conical surface is due to either fuel cavitation or air entrainment taking place from outside into the region 

inside, but close to the injector nozzle exit[6]. Further investigations of spray stabilities were carried out on three 

prototype injectors operating in a direct injection optical engine by the integral Mie scattering spray visualization 

[7]. The spray was identified having a stable spray cone angle at the injector nozzle exit and a recirculation zone 

at the front of the spray. The stability of the spray cone angle was assessed by statistical analysis of the cone 

angle in terms of the mean cone angle and the standard deviation of the measured cone angles, therefore the 

stability of injector performances was compared under test conditions including the injection pressure, the in-

cylinder backpressure, the injector needle lift and the engine speed. In this paper, the spray cloud structure after 

the end of injection was investigated by the two-dimensional Mie scattering imaging and the PIV technique; also 

air motion induced by the spray was measured by both PIV and LDV techniques under the atmospheric 

condition.  

 

Experimental Setup 
 

The experiment was carried out in atmosphere using the fuel injection system equipped with a constant volume 

chamber[1]. A pintle-type outwards opening injector was connected to a common rail. A three-piston-type pump 

driven by an electric motor delivered high-pressure fuel of Iso-octane to the common rail. Fuel temperature was 

kept at room temperature using a water-cooled heat exchanger in the fuel circulation from the fuel tank to the 

common rail, then back to the fuel tank.  

 

Figure 1 shows the optical setup of the PIV measurement. The TSI PIV system consists of a Pegasus-PIV laser, a 

set of laser sheet formation optics, a Photon FASTCAM-APX RS high-speed video camera system and 

INSIGHT 3G PIV image analysis software. The double-head Nd:YLF laser produces green light at a wavelength 
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of 527 nm with a beam diameter of 1.5 mm. It has the ability to operate at the repetition rate of 10 kHz with a 

total power of 10 watts per head. Energy per pulse is 10 mJ and the laser pulse width is less than 180 ns at 1 kHz 

repetition rate per head.  The energy stability is high with the rms of less than 1% in the laser power. The double 

cavities of the Pegasus-PIV laser are triggered independently by a laser pulse synchronizer, therefore the time 

delay between the two double pulses can be set much smaller than that of the repetition rate. Synchronised with 

the Pegasus-PIV laser was a Photon FASTCAM-APX RS high-speed video camera system capable of recording 

up to 3000 fps with the full resolution of 1024 x 1024 pixels per frame.  

   

 

 

 

Figure 1  Experimental setup of the high-speed PIV system 

 

In the two-dimensional spray visualisation study, the diode pumped Nd:YLF laser was replaced by a 1.5W 

Argon-Ion laser which provided continuous illumination for spray visualisation. The same Argon-Ion laser was 

part of the DANTEC PDA system, which was used for the LDV measurement in this study.    

Results and Discussion 
 

Vortex structures demonstrated by the fuel droplet movement and re-distribution are revealed after the end of a 

fuel injection by the 2D Mie scattering visualisation with an aid of a high speed camera. The light sheet, shown 

in Figure 2, was located at the symmetrical plane of the conical spray. The camera was perpendicular to the light 

sheet and the speed of imaging was 7200 fps with an exposure time of 90 s.  

  

  

Figure 2 Setup of Vertical Mie-scattering Visualisation 

 

Figure 3 shows the evolution of a spray. The nominal cone angle of the spray of this injector was close to 90°. 

The axis of the injector was tilted 45° to the gravitational vertical so that the in-plane spray cone edges are in 

horizontal and vertical directions. Previous studies of conventional spray visualisation have shown that the 

hollow cone of the spray following the annulus nozzle passage was disintegrated into a string structure. The 

string structure of the spray is evident in the images of Figure 3 between 0.11 ms and 0.53 ms. This was during 

the spray injection with the injection duration of 0.6 ms; the light scattered by the fuel droplets in liquid phase 

acted as a secondary illumination, so that the front surface of the spray can be unintentionally visualised and the 

string structure can be identified. At 0.53 ms, a recirculation ring was observed outside the spray. The 
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recirculation area grew with time and formed a ring of vortex outside of the conical spray, as shown in the image 

of 1.09 ms; referred to as outer vortex. This ring of vortex has a counter rotating ring of vortex inside the spray; 

referred to as inner vortex. The inner ring of vortex became clear in the image at 1.64 ms. As the injector needle 

was closed, fuel droplets from upstream near the injector nozzle were observed drawn into these rings of 

vortices. Those fuel droplets became the tracing particles for flow visualisation and for the PIV measurements 

later on. Although the vortices at the two sides of the injector axis are not exactly symmetrical, but the centres of 

the two main vortex rings in the visualisation plane are symmetrical about the injector axis, indicating that the 

two counter rotating vortex rings were formed simultaneously inside and outside following the conical shape of 

the spray. In the images from 1.09 ms onwards, the vortices grew in size with time showing the dissipation of the 

vortices and at the same time, the flow was losing its tracing particles as fuel droplets evaporated. It should be 

pointed out that the circular structures of fuel distribution with dark centres in a single image do not represent 

vortices at the time, as they could be formed at an earlier stage of the injection due to either the instability of the 

spray or the spray induced vortices. The two main vortex rings marked in Figure 3 are the result of the 

observation of consecutive images of the recording. 

 

 
0.11 ms 

 
0.25 ms 

 
0.39 ms 

 
0.53 ms 

 
1.09 ms 

 
1.64 ms 

 
2.20 ms 

 
2.75 ms 

Figure 3  2D Mie Scattering Images of Spray Evolution 

 (Injection Pressure 200bar and Injection Duration 0.6 ms) 

 

 

In Figure 4, the injection pressure was kept constant at 200 bar and injection durations were 0.6 ms, 1 ms and 2 

ms. Figure 4 (a) shows the raw images of the sprays at around 1.1 ms ASOI.  This particular imaging time was 

chosen to show clear differences between the three injection durations. At this time, injection was definitely 

completed for the injection duration of 0.6 ms and it was in the middle of the injection for the injection duration 

of 2 ms. As for the injection duration of 1 ms, the injector needle was just closed, but the string structure of the 

spray was still visible. The three images of injection durations of 0.6, 1 and 2ms show clear geometrical 

similarities in terms of the location of the recirculation and the spray tip penetration.  

 

Figure 4 (b) shows the spray tip penetration as illustrated in Figure 3 at 0.25 ms. The tip penetration is defined as 

the furthest distance of the spray from the injector exit. In each image, a vertical penetration and a horizontal 

penetration distance were measured by a computer program with a fixed threshold for all three cases of injection 

durations. The horizontal and the vertical penetration were found advancing at the same rate at the beginning 

until the penetration of the spray reached around 35 mm, shown as the initial linear part of the graph. The 

averaged penetration speeds over the two sides and the three cases is 115 m/s with 2% variation in the injection 

durations of 0.6, 1, and 2 ms. After the linear part, both horizontal and vertical penetrations were slowed down 

considerably with the horizontal penetration advanced further compared to the vertical side. Comparing the 

vertical penetrations of the three injection durations, marked by hollow symbols in Figure 4 (b), no clear 

difference in the vertical penetrations was found in the three injection durations. Spray droplets after EOI in a 

shorter injection duration of 0.6 ms or 1 ms carried on moving away from the injector at a same speed as those in 

the injection duration of 2 ms, which were in the middle of injection until 2 ms. There was a slight difference in 

the horizontal penetrations, marked by solid symbols in Figure 4, the increase in the injection duration resulted a 

higher penetration length after the linear part of the graph, however the limits of the penetrations were not 

changed much in the three cases. The results also show that at the end of injection the average penetration speeds 

in vertical direction for three injection durations were found between 10 to 12 m/s, whereas in the horizontal 

Tip penetration 

30 mm 

Recirculation 

Outer 

vortex 

 Inner 

vortex 
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direction the penetration speeds were in the range between 14 to 21 m/s for the three injection durations. 

Penetrations on both sides show a massive reduction in droplets momentum compare to those in the beginning of 

the injection which is due to considerable secondary breakup taken place in the early part of injection producing 

smaller droplets and therefore their loss of momentum and penetration; more details can be found in [8] where 

the variation of Webber number, We, with distance from injector are discussed and shows massive reduction in 

We within the first 10 mm from the injector. 

 

  

 
Imaging at 1.09 ms 

Injection Duration: 0.6 ms 
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Imaging at 1.14 ms 

Injection Duration: 1 ms 

 
Imaging at 1.15 ms 

Injection Duration: 2 ms 
(a) (b) 

Figure 4  (a) Spray Visualisation (b) Spray Penetration (Injection pressure 200 bar) 

 

As mentioned earlier, a static image of the 2D Mie scattering of fuel droplets is unable to show the velocity field 

of the vortices in the wake of an injection. This information was obtained by the PIV technique using the floating 

fuel droplets as tracing particles for the air/fuel droplet two-phase flow. Figure 5 shows the instantaneous 

velocities in the wake of sprays, which are superimposed on one of the two processed PIV images used for 

obtaining the velocity vectors. The laser sheet was projected towards the spray from left to right in the images. In 

the areas where no sufficient scattered light existed, the PIV measurements were not available and only one half 

of the images were processed and presented for the PIV measurements.  Due to the restriction of the PIV 

sampling rate, maximum 1500 pairs per second with the full spatial resolution, the PIV results in Figure 5 are 

snap shots of different injections.   

 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5  PIV Measurement of Recirculation Zones 

(Injection Pressure 200bar and Injection Duration 0.6 ms) 

 

The velocity fields presented in Figure 5 show the effect of the mutual interaction of the two counter rotating 

vortices, generating a flow directed into the spray cone. The sequence of images show the expansion of the 

vortices radially toward the axis of the injector at 1.20 ms ASOI and onwards, which can be verified by what 

was observed in the 2D Mie scattering visualisation. In the 2D Mie scattering visualisation, focus of the study 

was on the formation of vortices shown in the images, whereas the PIV results show that the radial expansion is 

the dominant feature of the velocity field.   

 

In addition to radial expansion of the vortices, the rotation of the vortices was also superimposed on translation 

movement of the vortices, especially before 1.60ms ASOI. When a translation velocity is superimposed on the 

relative rotational velocity field, it shifts the location of the zero velocity perpendicularly to the translation 

velocity.  The translation velocity decreased with time as that of the spray tip penetration. At 1.60ms ASOI, it 

can be observed that the centre of velocity field of the outer vortex did not coincide with the centre of the 

background image. It was estimated the outer vortex moved towards the injection jet direction with a sliding 

velocity of around 10 m/s. 

 

Because of the rotation of the inner vortex ring, an upward flow was built up in the upper central region of the 

spray cone. In the image at 1.93ms ASOI, fuel droplets were found moving up towards the injector tip with 

velocities about 15 m/s, indicating a strong upward flow in this region. Finally, at 2.27ms ASOI the centre of the 

velocity field is almost overlapped to the fuel distribution vortex image, which means that the translating speed 

was significantly reduced or in other words the vortex at this stage did not move any further. 

 

The instability in the spray has been demonstrated in terms of the breakdown of annular spray film into a number 

of strings, a wavy surface along a string, flapping in spray cone angle, formation of recirculation around the 

spray and variation in the spray front penetration[7].  Figure 5 shows the instantaneous velocity distributions of 

2.27ms ASOI 
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fuel droplets. Although a pair of vortices is clearly identified after the end of injection, the original start of the 

outer ring of vortex can be traced back to the recirculation developed at the out surface of the spray during an 

injection. Individual snap shorts of the flow field show the repeatability in the occurrence of vortices generated 

by the spray. However the repeatability in the formation of vortices is much less evident due to the instability in 

both spray dynamics and aerodynamics. No attempt was made to obtain an ensemble average over a number of 

sprays in this study. 

   

In the application of the gasoline direct injection engines, in-cylinder air flow and fuel droplet distribution are 

the main factors which affect the air/fuel mixture formation for achieving repeatable and reliable combustion in 

every single engine combustion cycle under a wide range of engine operation condition of load and speed. 

Results of instantaneous velocity distributions will be useful for understanding the time averaged flow 

measurements by other laser diagnostic techniques, such as LDV or PDA, as well as for interpreting CFD 

results. In addition, a single shot image of a flow field gives the information on what happened in a real flow. 

   

The PIV analysis using fuel droplets as tracing particles was successful where the interrogation area was away 

from the injector nozzle and when it was after EOI. In the vicinity of the injector tip, no fuel droplets were 

present for PIV analysis, whereas during a spray injection, fuel droplets were too dense to be distinguished by an 

imaging based optical technique. Extra seeding particles were introduced in order to overcome the lack of tracers 

of naturally existing fuel droplets. For the same experimental setup, shown in Figure 1, the area around a spray 

was seeded with atomised water droplets with sizes of order of 2 m and a mean velocity of 0.3  1.3 m/s, 

measured by LDV. The air flow is now visible with the seeding droplets, as shown in Figure 6, so it is possible 

to study air flow during injections. Air flow surrounding the spray is important, especially the velocity 

component of the air flow towards the spray, as the air entrainment influences the fuel droplet evaporation.  

 

 

    
 

   

Figure 6 Air Entrainment 

(Injection Pressure 200bar and Injection Duration 0.6 ms) 
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Figure 6 shows air entrainment as sprays evolved. At 0.23 ms ASOI, the air entrainment exhibited a jet like 

profile with a peak jet velocity at a distance of about 4 mm from the injector exit and the direction of air flow of 

at the peak velocity was almost normal to the spray flow. As the spray evolved the horizontal component of the 

air velocity increased in intensity with values up to 10m/s and hit the spray in the same near nozzle area, but with 

an expanded effected area on the spray further downstream, so that at 0.33ms ASOI the air entrainment in the 

form of an air jet was found in the area up to 8mm away from the nozzle exit. At 0.43ms ASOI, the onset of the 

outer recirculation can be seen at a distance of about 10-15mm from the nozzle; in fact, the faint bump on the 

spray profile represents the initiation of the outer vortex that was discussed in the previous section. At this stage, 

the air velocity profile becomes wider and takes a shape of double peak jet progressively extending downstream. 

A broader air jet towards the spray was found at 0.53ms ASOI comparing to that at 0.43ms ASOI. 

 

From 0.67 ms ASOI onward the PIV images clearly show how the air entrainment follows the evolving outer 

vortex ring promoting its formation with a horizontal velocity of about 10m/s preceding its motion. Finally, at 

0.30ms after the end of the injection (or 0.90 ms ASOI), the spray starts loosing its density and therefore it is 

possible to visualise the internal cross-section of the spray and the full set of counter rotating vortices as was 

previously shown in Figure 5. The last image at 0.9ms ASOI, also reveals how the air entrainment is interacting 

on the wakes of sprays and more specifically on the inner vortex, which explains its displacement toward the 

injector axis at a later stage shown in Figure 5. 

 

The PIV measurement was validated by a LDV measurement. The measurement location, the control volume of 

the beam crossing, was set close to the injector nozzle exit. Due to the restriction of access, the air flow speed in 

the direction towards the spray was measured at a location above the spray. Its axial symmetrical location in the 

area of the vertical side of the spray is marked as the green dot in Figure 7 (a). The velocity component towards 

the spray is marked as in x direction. The asymmetrical features of the spray and surrounding air flow exist, but 

it is of a secondary importance and not considered in Figure 7.  Figure 7 compares velocity fields at the vertical 

side of the spray at a fixed imaging time of 0.23 ms ASOI and temporal velocity variations at one point, of which 

the relative position to the spray is shown in the graph.      
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(c) Pinj = 50bar                                                                 

(f) Pinj = 50 bar 
(a)-(c) PIV at 0.23ms ASOI (d)-(e) LDV Vx  at CV position x= -1.2 mm, y=0, z=1.2mm 

Figure 7  PIV and LDV Measurements of Air Entrainment  

 

The velocity of the air entrainment was assessed at three injection rail pressures of 200bar, 100bar and 50bar and 

the results are presented in Figure 7. Each of the three rows in Figure 7 corresponds to an injection pressure. The 

first column of images represents the PIV velocity field measurements and the second column of graphs shows 

the temporal variations of LDV measurements for the normal velocity components towards the spray. PIV 

measurements show the velocity component in the direction towards the spray increased with the injection 

pressure. At 50 bar injection pressure the velocity was about 2 m/s which increased to 4 and 7 m/s at injection 

pressures of 100 and 200 bar respectively. The trend of increase in air entrainment velocity with the injection 

pressure matches with the LDV measurements. The LDV results show the air entrained flow motion exhibited a 

steady and relatively strong velocity field near the nozzle exit. A step increase in air motion was observed at 

injection pressures of 100 and 200 bar, whereas the air motion was gradually built up at 50 bar injection 

pressure. At the injection pressure of 200 bar, instantaneous velocities were found in the range between 5 to 10 

m/s. This range was reduced to 3 to 8 m/s at the injection pressure of 100 bar and was decreased further to 1 to 5 

m/s at 50 bar of injection pressure.  

 

The agreement in the PIV and LDV measurements verified that the setup of the PIV technique, including the 

seeding density in the range of 20-30 per interrogation area, was adequate in the study of air entrainment. In the 

spray recirculation measurements the particle density depended on the number of spray droplets, which was 

around 10 droplets per interrogation area to produce a valid result. The maximum displacement of particle 

images was set to be about one eighth of the interrogation window size to reduce the measurement uncertainties 

caused by particles leaving/entering the interrogation area and sub-pixel values were used in the cross-

correlation to increase the measurement accuracy.    

 

Conclusions 
 

An experimental investigation was carried out to characterise the fuel spray structure at the end of injection and 

the induced air-entrainment near nozzle exit of a pintle-type injector using two-dimensional Mie scattering 

imaging, PIV and LDV techniques. The followings are the most important findings:  

 

 A pair of count rotating vortices was identified by the two-dimensional Mie scattering after the end of 

injection. The recirculation zone formed by vortices trapped fuel droplets to propagate further away 

from the injector tip.  

 

 Using the fuel droplets as the natural seeding for Particle Image Velocimetry (PIV), velocity fields were 

obtained to provide the speeds of fuel droplets in the vortices in the recirculation zone. The results 

provided an overview of quantitative instantaneous velocity fields and flow stream patterns, which will 

be useful for understanding the fuel transportation, as well as for CFD validations in the prediction of 

spray characteristics of the outwards opening pintle-type Injectors. 

 

 PIV and LDV measurements of air motion induced by the spray show the degree of air entrainment 

which is vital for the phase change of fuel evaporation. 
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