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Abstract

Restricted Boltzmann machines (RBMs), with many variations and extensions, are

an efficient neural network model that has been applied very successfully recently

as a building block for deep networks in diverse areas ranging from language

generation to video analysis and speech recognition. Despite their success and the

creation of increasingly complex network models and learning algorithms based on

RBMs, the question of how knowledge is represented, and could be shared by such

networks, has received comparatively little attention. Neural networks are noto-

rious for being difficult to interpret. The area of knowledge extraction addresses

this problem by translating network models into symbolic knowledge. Knowledge

extraction has been normally applied to feed-forward neural networks trained in

supervised fashion using the back-propagation learning algorithm. More recently,

research has shown that the use of unsupervised models may improve the perfor-

mance of network models at learning structures from complex data. In this thesis,

we study and evaluate the decomposition of the knowledge encoded by training

stacks of RBMs into symbolic knowledge that can offer: (i) a compact representation

for recognition tasks; (ii) an intermediate language between hierarchical symbolic

knowledge and complex deep networks; (iii) an adaptive transfer learning method

for knowledge reuse. These capabilities are the fundamentals of a Learning, Extrac-

tion and Sharing (LES) system, which we have developed. In this system learning

can automate the process of encoding knowledge from data into an RBM, extrac-

tion then translates the knowledge into symbolic form, and sharing allows parts of

the knowledge-base to be reused to improve learning in other domains. To this

end, in this thesis we introduce confidence rules, which are used to allow the com-

bination of symbolic knowledge and quantitative reasoning. Inspired by Penalty

Logic - introduced for Hopfield networks confidence rules establish a relationship
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between logical rules and RBMs. However, instead of representing propositional

well-formed formulas, confidence rules are designed to account for the reasoning

of a stack of RBMs, to support modular learning and hierarchical inference. This

approach shares common objectives with the work on neural-symbolic cognitive

agents. We show in both theory and through empirical evaluations that a hierar-

chical logic program in the form of a set of confidence rules can be constructed

by decomposing representations in an RBM or a deep belief network (DBN). This

decomposition is at the core of a new knowledge extraction algorithm which is com-

putationally efficient. The extraction algorithm seeks to benefit from the symbolic

knowledge representation that it produces in order to improve network initialisa-

tion in the case of transfer learning. To this end, confidence rules offer a language

for encoding symbolic knowledge into a deep network, resulting, as shown em-

pirically in this thesis, in an improvement in modular learning and reasoning. As

far as we know this is the first attempt to extract, encode, and transfer symbolic

knowledge among DBNs. In a confidence rule, a real value, named confidence value,

is associated with a logical implication rule. We show that the logical rules with the

highest confidence values can perform similarly to the original networks. We also

show that by transferring and encoding representations learned from a domain

onto another related or analogous domain, one may improve the performance of

representations learned in this other domain. To this end, we introduce a novel

algorithm for transfer learning called “Adaptive Profile Transferred Likelihood”,

which adapts transferred representations to target domain data. This algorithm is

shown to be more effective than the simple combination of transferred representa-

tions with the representations learned in the target domain. It is also less sensitive

to noise and therefore more robust to deal with the problem of negative transfer.

Keywords: Unsupervised Learning, Restricted Boltzmann Machines, Deep Belief Networks,

Knowledge Extraction, Neural-symbolic Integration, Transfer Learning.
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Chapter 1

Introduction

Unsupervised models such as restricted Boltzmann machines (RBMs) and deep be-

lief networks (DBNs) can learn useful patterns for recognition tasks in wide range

of domains. In addition, these patterns have been shown to capture domain rep-

resentations at different levels. For example, visualisation of the patterns learned

from handwritten image data indicates that low level patterns represent curves

and edges while the higher level patterns represent more concrete shapes. This

interesting characteristic of unsupervised learning intrigues a question of whether

symbolic knowledge can also be represented by these patterns. This chapter takes

this question as a starting point to propose a research on decomposition of represen-

tations in RBMs/DBNs to build a Learning, Extraction and Sharing (LES) system.

1.1 Motivation

RBMs, with many variations and extensions, are an efficient neural network model

that has been applied very successfully recently as a building block for deep net-

works in diverse areas ranging from language generation to video analysis and

speech recognition. Despite their success and the creation of increasingly complex

network models and learning algorithms based on RBMs, the question of how

knowledge is represented, and could be shared by such networks, has received

comparatively little attention. Breiman argues that one can enjoy the effectiveness

of complex systems while knowledge should be produced separately for explana-

1
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tion purposes [19]. This motivates the development of a learning, extraction and

sharing system as illustrated in Figure 1 [19].

Figure 1.1: LES triangle: learning from data, knowledge extraction, and sharing for
transfer learning.

The exponential growth of digital content has required the development of

robust, flexible, modular and expressive systems in order to handle the challenges

of Big Data. In order to achieve this while being able to provide interpretability,

the ideal system should embody the capabilities of learning, extraction and sharing

of knowledge given rich, complex data. More specifically, learning can automate

the process of encoding knowledge hidden in a large data set, knowledge extraction

from a trained model can further translate the knowledge into more readable forms

such as symbolic or visual languages, and help highlight the relevant knowledge.

It also promotes explicit reasoning, as will be exemplified in what follows. Finally,

such knowledge can be used for sharing, i.e. to improve the learning in another

related task. To realise all these capabilities one has to address the following

challenging research questions:

• How should knowledge be represented?

• how can it be achieved from data?

• How to transfer it from one domain to another?

1.1.1 Knowledge Representation and Learning

Knowledge representation is traditionally concerned with “using formal symbols

to represent a collection of propositions” [18]. Normally, the term “knowledge”
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refers to symbolic knowledge to which reasoning can be applied systematically. In

classical logic, propositional logic is one of the most basic and popular symbolic

languages, built upon propositions and the logical connectives “and”, “or”, “nega-

tion”, “implication”, and “bi-conditional”[118]. Propositions are particular kinds of

sentences which only have either a true or f alse value. Connectives are the symbols

which are used to construct complex sentences from simpler ones. For example,

a 3 × 3 black and white image may represent a “plus” sign. If the pixels are

numbered in the order from left to right, top to bottom, the symbol xi can be used

to represent the proposition ”pixel i is white”. The symbol ¬xi then represents the

proposition “pixel i is not white”. Together with the proposition that there are only

white or black pixels in this case, the above propositions can be reasoned with to

conclude that “pixel i is black”. Let the symbol plus denote the proposition “the

picture is a plus sign”. In a closed world with 9 variables denoting the values of the

9 pixels, knowledge about the plus sign can be represented by the following logical

rule, indicating that plus is true if x1 is false, x2 is true, etc:

plus← ¬x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ ¬x9

In other words, we have used a set of symbols to represent visual information. By

encoding knowledge into a symbolic form, one may be able to reason about such

knowledge in a precise way which follows the rules of logical inference [117].

In order to support more flexible reasoning, however, especially under uncer-

tainty, knowledge can be represented by probabilistic models. For example, a

Bayesian network [103] encodes knowledge into a dependency graph and proba-

bility tables. Let us consider the same “plus sign” example above, where we can

treat a pixel i as a binary variable xi ∈ {0, 1}, with xi = 1 indicating that the pixel

is white and xi = 0 indicating that it is black; plus ∈ {0, 1} indicates whether the

picture is a plus sign (plus = 1) or not (plus = 0). A Bayesian network represents the

knowledge in this domain as a graphical model with distribution table as shown

in Table 1.1. The table assigns a high probability of 0.8 to the “plus” shape, a

probability of 0.022 to all the shapes that have only one pixel different from the

“plus” shape, and probability 0 to all the other shapes.

In a complex domain with high dimensional, real-valued data, the knowledge
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x1 x2 x3 x4 x5 x6 x7 x8 x9 p(plus = 1|x1, x2, x3, x4, x5, x6, x7, x8, x9)
0 0 0 0 0 0 0 0 0 0

...
0 1 0 1 1 1 0 0 0 0.022
0 1 0 1 1 1 0 0 1 0
0 1 0 1 1 1 0 1 0 0.8
0 1 0 1 1 1 0 1 1 0.022

...
1 1 1 1 1 1 1 1 1 0

Table 1.1: Probability table of the “plus” shape graphical model.

representation is more complex. For example, the probability that the picture is a

plus sign given the values of a large number of pixels is

P(plus|x) = pdf(x, θ)

where x is a vector denoting the set of all variables and pdf is a probability distri-

bution function.

Learning algorithms applied to neural networks [49] and Bayesian networks

[103] have been shown capable of representing rich knowledge, being particularly

useful in the case of noisy data. Neural networks, however, in spite of their

success, are difficult to interpret. The area of knowledge extraction [6, 136, 31]

seeks to address this problem mainly by translating the networks into symbolic

knowledge. Knowledge extraction has been normally applied to feed-forward

neural networks trained in supervised fashion using the back-propagation learning

algorithm [115, 116, 75].

More recently, research has shown that the use of unsupervised models [100,

52, 54, 78, 77, 111, 11], may improve the performance of network models at learning

structures from complex data, whereby patterns of interest are captured by basis

vectors. This area became known as representation learning, due to its original

goal of being able to stack unsupervised models on top of each other in order

to learn progressively more complex levels of representations directly from data

[54, 11]. Normally, such deep network models encode knowledge in the form of

weight matrices. In this thesis, we investigate symbolic knowledge extraction from

such unsupervised network models. We decompose the weight matrices into a

set of symbolic knowledge rules called confidence rules, which are associated with
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a real number, as done by Pinkas in the case of Penalty Logic rule extraction for

Hopfield networks [109]. The symbolic form is expected to provide insight into

the representation and reasoning taking place within stacks of restricted Boltzmann

machines, while the associated real values account for reasoning under uncertainty.

A confidence rule is an if-and-only-if statement associated with a real number

c, written c : h ↔ b, where h is called a hypothesis and b is a conjunction of

propositions. For example, uncertain knowledge about the plus sign example can

be represented symbolically as:

0.8 : h↔ ¬x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ ¬x9 ∧ plus

This rule can be read as “If p1 is f alse, p2 is true, p3 is f alse, p4 is true, p5 is true,

p6 is true, p7 is f alse, p8 is true and p9 is f alse, assuming that the hypothesis h holds, then

plus should be true with confidence 0.8”.

Inference using confidence rules, as will be defined precisely in Chapter 4, is

done by finding the truth-value of plus that maximises the sum of the confidence

values of the rules that are satisfied with h = true.

In this thesis, confidence rules will be extracted from stacks of RBMs in a

modular way, and the inference rule referred to above will be used to allow symbolic

hierarchical reasoning and representation under uncertainty. The results of two

approaches, namely partial models and complete models, both defined in this

thesis, will be evaluated on image domains.

Partial-models offer a compact representation for RBMs, a set confidence rules,

which is to be used for hierarchical inference, as defined in Chapter 4. For example:

c(1) : h↔ ¬x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ x5 ∧ x6 ∧ ¬x7 ∧ x8 ∧ ¬x9

c(2) : plus↔ h

Complete-models are a richer form of representation, resembling the set of weights

in an RBM closely, where each proposition in b can also be associated with a real

number, for example (β : b). Intuitively, this real number can be seen as indicating
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the relative importance of the proposition. An example of a confidence rule in a

complete model would be:

c : h↔ (β1 : ¬x1) ∧ (β2 : x2) ∧ (β3 : ¬x3) ∧ (β4 : x4)

∧ (β5 : x5) ∧ (β6 : x6) ∧ (¬β7 : x7) ∧ (β8 : x8) ∧ (β9 : ¬x9)

Both partial-models and complete-models can be obtained from a weight matrix

by converting each column vector into a confidence rule. However, partial-models

are more “symbolic” by having fewer associated real values than complete-models,

which in turn should capture better the influence of the observed variables onto

the hidden variables of an RBM.

Example 1.1.1. Suppose a restricted Boltzmann machine with three visible units (x,

y, z) and four hidden units (h1, h2, h3, h4), as shown in the figure below, has been

trained from data, leading to a set of trained parameters as shown in the weight

matrix W.

The weight matrix of this RBM is: W =


-6.5591 -5.7882 0.8857 1.5601

-6.6418 0.7022 -6.4277 1.386

-6.5909 0.7011 0.7538 -0.39


The probability of a state of the visible layer being true is inversely proportional

to a free energy function[53], as p(x, y, z) ∝ exp(−F (x, y, z)) with:

F (x, y, z)) = −

4∑
j=1

log(1 + exp(w1 jx + w2 jy + w3 jz))

From this model, one can extract confidence rules efficiently, directly from the

weight matrix (the extraction algorithms will be introduced and investigated in

detail in Chapter 3, Chapter 4 and Chapter 5). In this example, let us take
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the simple case where each rule is extracted from a column vector of the weight

matrix, such that positive weights are converted into a positive proposition x, and

negative weights into a negative proposition ¬x. A confidence value for the rule is

then computed as the average of the absolute values of the weights in the column

vector. For example, a vector [−6.5591 −6.6418 −6.5909] will be converted into

6.5972 : h1 ↔ ¬x ∧ ¬y ∧ ¬z. As a result, the set of confidence rules extracted from

the weight matrix W is:

Rcon f idence =

6.5972 : h1 ↔ ¬x ∧ ¬y ∧ ¬z

2.3972 : h2 ↔ ¬x ∧ y ∧ z

2.6891 : h3 ↔ x ∧ ¬y ∧ z

1.1120 : h4 ↔ x ∧ y ∧ ¬z

(1.1)

where h j is a hypothesis, and x, ¬x, y, ¬y, z, ¬z are propositions indicating that

x = 1, x = 0, y = 1, y = 0, z = 1 and z = 0, respectively.

With the confidence rules, one can, for example, apply weighted MAX-SAT

[112, 50] to decide on the propositions which will give the highest satisfiability of

the hypotheses being true. Similar reasoning can also be done in the RBM. Given

the states of two of the inputs, the state of the third input will seek to maximise

the joint probability p(x, y, z). For example, given x = 1, y = 0 then z = 1 because

F (x = 1, y = 0, z = 1) = −3.263 < F (x = 1, y = 0, z = 0) = −2.986, implying that

p(x = 1, y = 0, z = 1) > p(x = 1, y = 0, z = 0).

If we consider z to be a target variable, i.e. a label unit, we can separate the

weight matrix into a lower-level weight matrix (between visible units (x,y) and

the hidden layer) and a higher-level weight matrix (between the hidden layer and

the target z). Applying the same extraction of confidence rules to these matrices,

one obtains two sets of rules to which hierarchical reasoning can be applied, as

discussed in more detail in Chapter 4, as follows:
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R(low)
partial =

6.6004 : h1 ↔ ¬x ∧ ¬y

3.2452 : h2 ↔ ¬x ∧ y

3.6567 : h3 ↔ x ∧ ¬y

1.4730 : h4 ↔ x ∧ y

R(high)
partial =

6.5909 : z↔ ¬h1

0.7011 : z↔ h2

0.7538 : z↔ h3

0.3900 : z↔ ¬h4

Now, by inspecting the symbolic part of the rules, one finds that, for example,

¬x ∧ ¬y ↔ h1 and z ↔ ¬h1 is equivalent to ¬x ∧ ¬y ↔ ¬z. This rule is more

discriminative in that it represents a relationship between a group of non-target

variables and a target variable.

By repeating the above process, the symbolic form of the rules extracted from

the RBM are: ¬x ∧ ¬y↔ ¬z, ¬x ∧ y↔ z, x ∧ ¬y↔ z, x ∧ y↔ ¬z which represent

the XOR function x⊕ y↔ z. The dataset on which the above RBM was trained was

indeed obtained from this XOR function.

Our hypothesis is that a hierarchical representation and reasoning algorithms

can provide insight into the relevance of the knowledge learned by stacks of RBMs

and facilitate transfer learning, as a result.

Even though the combination of rules, as used above, will be shown in some

cases not to be effective for improving prediction accuracy (particularly in complex

image domains), the rules will be shown to offer a compact representation that is

useful for transfer learning, i.e. to improve performance in a related or analogous

domains through a better network initialisation.

Let us now consider the complete-models which would be obtained from the
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weight matrix W:

R(low)
complete =

6.6004 : h1 ↔ (0.9937 : ¬x) ∧ (1.0063 : ¬y)

3.2452 : h2 ↔ (1.7827 : ¬x) ∧ (0.2164 : y)

3.6567 : h3 ↔ (0.2422 : x) ∧ (1.7578 : ¬y)

1.4730 : h4 ↔ (1.0591 : x) ∧ (0.9409 : y)

R(high)
complete =

6.3909 : z↔ (1 : ¬h1)

0.7011 : z↔ (1 : h2)

0.7538 : z↔ (1 : h3)

0.3900 : z↔ (1 : ¬h4)

One can see that each confidence rule in a complete-model accounts for a ba-

sis vector (a column vector of the weight matrix). For example, vector [−6.5591

−6.6418] is converted to rule 6.6004 : h1 ↔ (0.9937 : ¬x) ∧ (1.0063 : ¬y), where the

rules confidence is (6.5591+6.6418)/2 = 6.6004, and the associated values of the two

propositions ¬x and ¬y are 6.5591/6.6004 = 0.9937 and 6.6418/6.6004 = 1.0063, re-

spectively. Notice that the confidence values c of the confidence rules in a complete-

model are the same as in the partial-model of an RBM. With the confidence values

of the propositions accounted for, the rules in a complete model capture exactly the

column vectors of W. Therefore, in practice we only need to compute the confi-

dence values of the rules and we can use the column vectors of the weight matrix

as representation of complete-models.

1.1.2 Knowledge Sharing and Transfer Learning

Following knowledge extraction, confidence rules can be used for reasoning, e.g.

if x is true and y is false, given conflicting rules 0.5 : h↔ x ∧ ¬y ∧ z and 0.01 : h↔

x∧¬y∧¬z, one can be more confident that z is true than it is false. Confidence rules

can also be used to support learning in a related domain. In AI, knowledge sharing

has emerged recently as an important research topic [137, 31, 101, 135, 62]. In neural

networks, the idea of encoding knowledge is not new; symbolic knowledge can be

encoded into the initial set of weights of a neural network in order, hopefully, to
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improve on an otherwise random network initialisation [137, 31]. One might see

this as a continuous process of using reliable knowledge provided by experts to

guide the learning of new knowledge from data, as more and more data becomes

available.

To enable the above knowledge refinement or, more generally, knowledge shar-

ing across different (but related) domains, a system should require: source do-

main(s) for which knowledge is provided; target domain(s) that reuse the knowl-

edge; and a transfer mechanism. For example, suppose that knowledge about a

minus sign is to be used to learn new knowledge about the plus sign (as seen in an

earlier example). A transfer mechanism needs to be designed with useful mapping

rules. For example, a rule for a minus sign might be1:

minus↔ x4 ∧ x5 ∧ x6

This rule can be used when learning new knowledge about the plus sign, as follows:

plus↔ minus ∧ x2 ∧ x8

The transfer mechanism will depend on the transfer medium, i.e. the lan-

guage/model in which knowledge is represented. It does not require the use of

logic rules in every case, and the mapping rules can be created manually by ex-

perts; however, this is a daunting task. When a mechanism automatically learns

the mapping rules then this is called transfer learning [101, 135, 62]. In this thesis,

knowledge extraction and the proposed confidence rules language will be shown

useful as part of a new transfer learning algorithm, which will be shown empirically

to be an effective medium for transfer learning.

1.2 Objectives

The objectives of this research are to propose, develop and evaluate a new form

of knowledge representation for stacks of RBMs and to apply it to knowledge

1This rule uses negation by default [31]: if a proposition xi does not appear in a rule then its
negation ¬xi is assumed to be true by default, unless stated otherwise
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extraction, neural-symbolic integration and transfer learning.

Hypothesis Statement The decomposition of complex RBM representa-

tions into logic-based propositions provides an effective way of achieving

knowledge extraction, insertion and transfer between RBMs.

Specifically, this research addresses the following questions: (i) how knowledge

learned by an RBM can be represented symbolically?; (ii) how learning from data and sym-

bolic knowledge can be integrated into a neural-symbolic system to improve performance?;

and (iii) how symbolic knowledge can be used to improve learning from data in a different,

related domain?.

We show that confidence rules offer an adequate hierarchical decomposition

for the set of weight matrices of deep belief networks (DBNs). We introduce two

types of rules: partial-models and complete-models as briefly discussed in §1.1. The

idea behind partial-models is to offer a compact language for knowledge extraction

and insertion into DBNs. With complete-models, a symbolic rule captures exactly

the information in a basis vector. Such representation can be adapted to improve

state-of-the-art results in transfer learning, by adapting, according to the confidence

values, symbolic knowledge from a domain to data from another.

1.3 Contributions

The main contribution of this thesis is the development and evaluation of a proto-

type of the Learning, Extraction and Sharing system based on deep belief networks,

as described above.

A new form of knowledge representation for stacks of RBMs, called “confidence

rules”, is introduced. It combines logical reasoning and quantitative reasoning. It

is shown to be an adequate and compact representation for a type of hierarchical

probabilistic connectionist system, namely RBMs. Confidence rules are the core

component in the proposed Learning, Extraction and Sharing system. They support

knowledge extraction from deep belief networks, and enable knowledge evaluation

and sharing.
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A new efficient algorithm for extracting symbolic knowledge in the form of

confidence rules from DBNs is introduced and evaluated. The key idea of this

extraction algorithm is to decompose the weight matrix in each layer of the DBN

into a set of independent symbolic elements. The extraction is shown to be use-

ful by offering a compact representation, modular organisation of the rules, and

support for hierarchical inference in the presence of uncertainty. This type of infer-

ence is more flexible than classical logical inference through the use of real-valued

confidence values. It is shown experimentally in image domains that confidence

rules can save significant amounts of memory in comparison to RBMs while still

guaranteeing performance at feature extraction tasks.

A new neural-symbolic system integrating symbolic knowledge and DBNs is

proposed and evaluated. By using confidence rules as an intermediate language,

we translate symbolic rules, serving as background knowledge, into a hierarchical

set of weight matrices. During network training, we employ the rule inference

to guide the learning. The idea of encoding symbolic knowledge into a connec-

tionist system to improve learning is not new. However, this is to the best of our

knowledge, the first neural-symbolic system for unsupervised learning and modu-

lar reasoning using RBMs. We show on experiments using DNA sequence analysis

and the MNIST handwritten digits datasets that the encoding of knowledge can

help improve learning performance and inference in deep belief networks.

We propose and evaluate a method for using confidence values for representa-

tion ranking. The method computes a confidence value as the mean of the absolute

values of the basis vectors corresponding to a representation. We measure the

usefulness of confidence values using: visualisations of the reconstructed images,

classification accuracy, and mutual information. The results show that the repre-

sentations with the highest confidence values capture the majority of an RBM.

Finally, we propose a new transfer learning algorithm based on the idea of

using prior knowledge to guide the learning in a deep neural-symbolic system

and the above representation ranking. Instead of using background knowledge

in the same domain, we develop an algorithm to reuse representations with high

confidence values from a source domain in a target domain. This is possible because

high-ranking representations are chosen for transferring and such representations
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can be adapted as part of the learning process at the target domain, based on

the data available at the target domain. We test the algorithm by transferring

representations from source RBMs trained on handwritten letters onto target RBMs

trained to recognise handwritten digits. The proposed transfer algorithm is shown

to outperform state-of-the-art self-taught learning and combinations of self-taught

learning and RBM learning. Each confidence rule is associated with an adaptation

factor which becomes a parameter for training in the target domain, allowing

representations to be transformed progressively. Furthermore, the use of confidence

rules offers an approach to deal with the problem of “biased sampling”. The “biased

sampling” problem happens when many representations to be transferred make the

learning in the target domain dependent on the source domain. By transferring only

a small number of representations with high confidence values, using confidence

values and mutual information, or applying dropout onto a small set of transferred

representations for each batch learning in the target domain, biased sampling can be

reduced. Extensive experiments confirm that the use of knowledge and adaptation

factors can improve the effectiveness of the transferred representations with the

target domains. Our experiments also show that transfer learning is more effective

when knowledge, and not data, is transferred.

Publications

1. Son N. Tran and Artur d’Avila Garcez. Deep Belief Logic Networks. (submitted)

2. Son N. Tran and Artur d’Avila Garcez. Adaptive Transferred-profile Likelihood Learning.

(submitted)

3. Hazrat Ali, Son N. Tran, Emmanouil Benetos, Xianwei Zhou. Hybrid Representation Learning

for Speaker Recognition. (submitted)

4. Son N. Tran, Srikanth Cherla, Artur d’Avila Garcez, Tillman Weyde. Probabilistic Approach

for Relative Similarity. (in preparation)

5. Son N. Tran, Artur S. d’Avila Garcez. Efficient Representation Ranking for Transfer Learning.

In International Joint Conference on Neural Network. Killarney, Ireland, 2015.

6. Hazrat Ali, Son N. Tran, Artur S. d’Avila Garcez, Tillman Weyde. Convolutional Data: Towards

Deep Audio Learning from Big Data. In 1st UCL Workshop on the Theory of Big Data. London,

UK. 2015.

7. Son N. Tran and Artur d’Avila Garcez. Low-cost Representation for Restricted Boltzmann

Machine. In 21st International Conference on Neural Information Processing. Kunching, Malaysia,

2014.



Chapter 1. Introduction 14

8. Thanh Vu, Dawei Song, Alistair Willis, Son N. Tran. Improving Search Personalisation with

Dynamic Group Formation. In SiGIR. Australia, 2014.

9. Son N. Tran, Emmanouil Benetos and Artur d’Avila Garcez. Learning Motion-Difference Fea-

tures using Gaussian Restricted Boltzmann Machines for Efficient Human Action Recognition.

In International Joint Conference on Neural Network. Beijing, China, 2014.

10. Son N. Tran, Daniel Wolff, Tillman Weyde, and Artur d’Avila Garcez. Feature Preprocessing

with Restricted Boltzmann Machine for Music Similarity Learning. In Audio Engineering Society

53rd conference on Semantic Audio. London, UK, 2014. (Winner of Reproducible Prizes).

11. Hazrat Ali, Artur d’Avila Garcez, Son N. Tran, Xianwei Zhou. Hybrid Features Combination

for Audio Data Classification. In Machine Learning and Data Analytics Symposium, 3-4 March,

Doha, Qatar, 2014.

12. Son N. Tran and Artur d’Avila Garcez. Knowledge Extraction from Deep Belief Networks

for Images. In IJCAI-2013 Workshop on Neural-Symbolic Learning and Reasoning. Beijing, China,

2013.

13. Son Tran and Artur Garcez. Logic Extraction from Deep Belief Networks. In ICML2012

Representation Learning Workshop. Edinburgh,UK, July 2012

Software and code

Link: https://github.com/sFunzi/

1. RepDeepLearn: Implementation of representation/deep learning and reason-

ing models such as restricted Boltzmann machines (RBMs), Auto Encoders,

Non-negative Matrix Factorization, Sparsity, deep belief networks (DBNs),

deep Boltzmann machines (DBMs), Neural Networks

2. ConfidenceLogic: Knowledge Extraction from RBMs and DBNs

3. Motion-Difference: Action recognition

4. RelSim: Relative similarity models, tested on music data

5. ATPL: Extraction and transfer of representation from learned RBMs

1.4 Organisation of the Thesis

The first chapter (this chapter) introduces the concept of knowledge learning-

extraction-sharing, the features of the system, objectives, research questions and
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contributions of the work.

Chapter 2 introduces the deep models used for LES: Learning-Extraction-Sharing.

We review the theory of representation learning, RBMs and deep learning using

unsupervised models. We illustrate the use of stacks of RBMs in a range of ap-

plications in music similarity, action recognition, speaker recognition and melody

modelling. We review the related work on knowledge-based neural networks,

knowledge extraction and transfer learning.

Chapter 3 reviews the related work on Penalty Logic and extends Pinkas re-

sults to DBNs by showing that propositional calculus is equivalent to minimising a

DBNs energy function. We observe that the signs of the weights already represent

the logical propositions, which will serve as the basis for an efficient extraction

algorithm. We introduce the concept of confidence rules formally and show that

confidence rules can be approximated by training a DBN. This indicates that the

extraction of confidence rules from DBNs is promising, which will then be investi-

gated empirically.

In Chapter 4, we introduce the concepts of partial-models and complete-models

formally. We present an algorithm for the extraction of partial-models from RBMs and

DBNs. We then empirically investigate the effectiveness of the extracted partial-

models in terms of representation and inference. Based on the results, we also

propose an encoding algorithm to integrate symbolic background knowledge and

learning in DBNs.

In Chapter 5 we investigate the use of confidence values for representation

ranking and transfer learning. The representations are seen as a set of complete-

models extracted from a domain to be ranked and transferred to improve learning

in another domain. We show that confidence values can be used to rank the

representations which are then to be transferred.

In Chapter 6 we tackle the problem of knowledge reuse and propose a general

framework for knowledge reuse and transfer. The framework is based on the idea

of profile likelihood with an assumption that part of the parameters are transferred

and adapted from another domain. Each complete-model is associated with an

adaptive factor which is responsible for transforming the complete-model onto the
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target domain. Experimental results are analysed extensively, indicating that the

proposed transfer method can improve on the state-of-the-art.

Chapter 7 concludes the thesis, summarises the contributions and discusses

directions for future work.



Chapter 2

Background

Recent research has shown that an emerging technique called deep learning can be

effective in vision, audio, and text domains. Furthermore, with an effective layer-

wise unsupervised learning, a deep network can learn a hierarchy of concepts from

data. This chapter reviews deep networks - its building block restricted Boltzmann

machines and deep belief networks - and applications using unsupervised learning.

It also reviews related work on knowledge-based neural networks and transfer

learning.

2.1 The Importance of Unsupervised Learning in Deep Learn-

ing

Deep beliefs networks are one among many machine learning models which have

been categorised as “deep networks” [64, 75, 54, 11, 12, 119, 120, 122, 143]. The term

“deep network” usually refers to a connectionist system which has many hidden

layers. An early deep network model was the multi-layer artificial neural network

(ANN) [64, 65]. However, training deep ANNs is not easy due to a problem called

“vanishing/exploding gradient” with the back-propagation algorithm [59]. This

problem can be alleviated through unsupervised layer-wise learning [122].

With more attention paid to deep learning and further study of unsupervised

layer-wise learning [38, 56, 132], recent research indicates that it is possible to train a

17
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deep network purely by supervised algorithms using rectified linear units [93, 45].

While supervised deep learning is shown to be adequate to the effective learning

of input-output mappings given large amounts of data, some researchers remain

concerned about the role of unsupervised learning for the following reasons.

First, it has been shown through theoretical and experimental results that su-

pervised learning is not always preferred over unsupervised learning [97]. In

particular, even though unsupervised learning tends to achieve higher error (lower

accuracy) it can converge faster than supervised learning in many cases. In deep

learning, a well known experiment in the Google Brain project showed that it is

possible to train a classifier without providing any label by stacking shallow models

one on top of another [73].

Second, Bottou has raised a question about “a new path to AI” in that we can

“algebraically enrich the set of manipulations applicable to training systems, and

build reasoning capabilities from the ground up” [17]. Especially, in the Nature

Review paper [143], Lecun, Bengio and Hinton have expressed their expectation

that unsupervised learning in deep networks should become more important. This

has been echoed by most of the panellists in the Panel Discussion at ICML 2015

Deep Learning workshop 1.

In this thesis we focus on DBNs, unsupervised models of deep learning created

by stacking restricted Boltzmann machines on top of each other [54], as specified

below.

2.2 Energy-based Connectionist Systems

Connectionist systems normally refer to a set of models made by interconnected

networks of neurons (or units) [124, 51]. An energy based connectionist system

(ECS) N is a neural network with bidirectional connections which is characterised

by an energy function:

EN(x) = −
∑
∀i∀ j>i

fi j(x) −
∑
∀i

gi(x) (2.1)

1http://deeplearning.net/2015/07/13/a-brief-summary-of-the-panel-discussion-at-dl-workshop-icml-2015/
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where fi j and gi are potential functions for the state x of the model. There exist

different types of ECSs depending on how this function is defined. This also

characterises a probability distribution of a model as:

p(x) =
e−E(x)/T

Z
(2.2)

where T is the temperature and Z =
∑

x e−E(x)/T is a partition function.

The probability of a unit i being activated (xi = 1) given the states of some other

units x j⊂\i is:

P(xi|x j⊂\i) =
∑
xk, j

p(xi = 1, xk, j|x j⊂\i) (2.3)

where x j⊂\i denotes a subset of the units which does not contain xi, x\i denotes all

the units in the model except xi, and xk, j is another subset such that x\i = x j⊂\i∪xk, j

and ∅ = x j⊂\i ∩ xk, j.

In what follows, we recall three well-known instances of the above model:

Hopfield networks, Boltzmann machines and restricted Boltzmann machines, all

belonging to the same family of potential functions fi j(x) = wi jxix j and gi(x) = sixi,

where wi j is the connection weight between units xi and x j, and si is a bias for xi. If

function f consists of the product of more than two units, e.g fi jk(x) = wi jkxix jxk, then

the model is called “higher-order”. These models can be seen as generative models

[83, 97, 10] which represent a joint probability between the variables and which

can be trained by unsupervised algorithms. The term “generative” is used in this

context to distinguish from “discriminative” models which represent a conditional

probability of the data given a label variable [97, 70]. Discriminative models are

usually trained by supervised learning algorithms.

The connection weights in a Hopfield network, Boltzmann machine, or re-

stricted Boltzmann machine are said to be symmetrical, i.e. having symmetric

connections such that the weight from unit i to unit j is the same as the weight

from unit j to unit i. Such network models are for this reason called symmetrical

networks [40, 82].
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2.2.1 Hopfield Networks

A Hopfield network [61] is a neural network with recurrent connections. The state

of each unit (or neuron) can be 0 or 1, where state 0 indicates “not firing” and

state 1 indicates “firing”. One may see a Hopfield network as an energy-based

connectionist system, with temperature T = 0 [57], and therefore the inference rule

in Eq. 2.3 becomes deterministic.

xi =

 1 if
∑

j wi jx j + si > 0;

0 otherwise ;
(2.4)

Starting from an initial state x(0), the model can iteratively update to a final

state that minimises the function in Eq. 2.1. It can also be seen as a Markov chain

of a symmetric connectionist system with zero temperature. This property makes

Hopfield networks able to act as associative memory systems where each memory

state is a local minimum of the energy function. An example of Hopfield network

is shown in Figure 2.1.

Figure 2.1: A Hopfield network (s = {a,b}).

2.2.2 Boltzmann machines

Boltzmann machines (BMs) [57] are energy-based connectionist systems in which

the temperature T , 0. We use I and J to denote the number of observed (visible)

units and unobserved (hidden) units respectively. As in the case of the Hopfield
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network, the weight matrix of a Boltzmann machine is symmetric, but it can be

expressed in terms of w(xh)
i j ,w(xx)

ii′ ,w
(hh)
j j′ to denote, respectively, the connection weight

between unit x in the visible layer and unit h in the hidden layer, the weight between

two units in the visible layer, and the weight between two units in the hidden layer,

as shown in Figure 2.2. We also use ai and b j to denote the biases of visible unit i

and hidden unit j. The energy function of a Boltzmann machine then becomes:

EBM(x,h) = −

I,J∑
i, j

w(xh)
i j xih j −

I,I∑
i,i′>i

w(xx)
ii′ xixi′ −

J,J∑
j, j′> j

w(hh)
j j′ h jh j′ −

I∑
i

aixi −

J∑
j

b jh j (2.5)

A Boltzmann machine can be trained by maximising the log-likelihood:

Minimise LN = log p(D) (2.6)

whereD is the observed data from a domain. Inference of the state of a unit in one

layer given the state of the other layer is intractable if the number of units in this

layer is large. Normally, then, one can use Gibbs sampling [23] over the network to

get data samples from the marginal distribution p(x) =
∑

h p(x,h) until equilibrium

is reached.

Figure 2.2: A Boltzmann machine.

Learning this type of model is also difficult because the log-likelihood exact

calculation is intractable. Traditional approaches deal with this problem by using

Markov Chain Monte Carlo (MCMC) methods to sample the states of units, which
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are needed for approximating the gradients [94, 44]. However, MCMC methods are

usually computationally expensive and their convergence time is hard to predict. In

order to reduce the inference time in the training, one may use variational methods

[67] to approximate the states of the units.

The gradient of the log-likelihood function in Eq. 2.6 is:

∇θ = E
[∂EBM(x,h)

∂θ

]
h|x
− E

[∂EBM(x,h)
∂θ

]
x,h

(2.7)

The first term gives an expectation of the gradient over the conditional dis-

tribution p(h|x), and the second term, the expectation over the joint distribution

p(x,h). In Boltzmann machines, these expectations are both intractable. To learn

the model, a more recent and popular alternative to variational methods, is the

Contrastive Divergence (CD) algorithm [52]. CD is an efficient algorithm, to ap-

proximate good parameters for the model. The CD algorithm approximates the

negative log-likelihood by minimising the difference of the two Kullback-Leibler

divergences [69, 52].

KL(p(xD)‖p(x;θ)k) − KL(p(x;θ)k‖p(x;θ)∞) (2.8)

where p(xD) is the data distribution, p(x;θ)k and p(x;θ)∞ are the model distribution

after a k step Gibbs sampling and the model distribution at equilibrium state,

respectively.

2.2.3 Restricted Boltzmann Machines

A restricted Boltzmann machine (RBM) with I visible units and J hidden units has

energy function:

ERBM(x,h) = −

I,J∑
i, j

wi jxih j −

I∑
i

aixi −

J∑
j

b jh j (2.9)

RBMs are a simplified version of the Boltzmann machine for which there are

no connections between units in the same layer, as shown in Figure 2.3. With this
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Figure 2.3: A restricted Boltzmann machine.

constraint, the calculation of the probability of a unit in a layer being activated (i.e.

=1) given the state of the other layer becomes tractable :

P(xi|h) = σ(
∑

j

wi jh j + ai)

P(h j|x) = σ(
∑

i

wi jxi + b j)
(2.10)

where σ(x) = 1/(1 + exp(−x)) is a sigmoid function. The gradient of the log-

likelihood w.r.t the RBMs parameters is:

∇wi j = 〈xiP(h j|x)〉0 − 〈xiP(h j|x)〉∞

∇ai = 〈xi〉0 − 〈xi〉∞

∇b j = 〈P(h j|x)〉0 − 〈P(h j|x)〉∞

(2.11)

where 〈.〉0 represents the empirical expectation over a data distribution and 〈.〉∞

represents the expectation over model distribution (See Appendix B.1 for the proof).

Again, we can use CD to efficiently approximate the parameters such that ∇wi j =

〈xiP(h j|x)〉0 − 〈xiP(h j|x)〉k, where k is a finite (small) number of Gibbs sampling. In

many cases k = 1 works surprisingly well.

Despite being efficient, RBMs trained using CD with k small may not represent

the data distribution accurately. Alternatively, persistent CD (PCD) [134] creates

a persistent chain to sample from during the networks training. The chain is

initialised randomly so that the samples are independent of the dataset. However,

as expected, PCD is not as efficient as CD. In order to improve efficiency while

still being able to learn a good approximation of the data distribution, the fast
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weight PCD [134] combines CD and PCD by running two algorithms in parallel

and averaging the updates of the weights.

In case there exists label y, inference can be done through Gibbs sampling, i.e.

by initially setting y = 0.5 and reconstructing the value of y after inferring the

state of the hidden layer. Gibbs sampling is an approximation method which is

necessary because of the intractable partition function. Fortunately, the conditional

distribution p(y = o|x) is tractable. For example, multiple class label can be encoded

as a one-hot vector where y = o is presented by setting the unit o as 1 and the other

units as 0s, and the conditional distribution is computed as:

p(y = o|x) =
elbo

∏
j(1 + ex>w j+uoj+b j)∑

o′ elbo′
∏

j(1 + ex>w j+uo′ j+b j)
(2.12)

where w j are the column vectors of the weight matrix W between the input layer

and the hidden layer, uoj are the elements in the weight matrix U between the label

layer and the hidden layer, b j and lbo are biases for the units in the hidden layer

and the label layer respectively.

2.2.4 Deep Belief Networks

A DBN is constructed by stacking several RBMs one on top of another [54]. The

stacking is necessitated because an RBM may not be able to learn the data distribu-

tion, but an improvement can be achieved by adding one or more RBMs on top of

it so that the latent variables of each RBM become the input variables of the next

RBM in the stack [95, 54]. Learning can be done in sequence, i.e by training each

RBM from the bottom up one at a time. This is called “unsupervised layer-wise

learning” [54, 11]. Although there is no guarantee that this process will produce

the improvement in learning performance mentioned above, the use of a stack of

RBMs with different sizes of hidden layers trained by Contrastive Divergence has

been shown useful at learning hierarchical representations [79, 78, 91, 73, 38] or for

initialising a classifier [54, 11, 119].

One of the most interesting characteristics of unsupervised layer-wise learning

is that it can learn different levels of representation [77, 78, 79, 120]. For example,



Chapter 2. Background 25

Figure 2.4 shows a DBN trained on the MNIST handwritten digits dataset. For each

hidden unit, a visualisation can be generated by setting the unit to 1 while setting

all the other units in the same layer to 0, and performing downward inference to

the bottom (input) layer. In this example, the different levels of representation can

be visualised: in the first hidden layer, the units tend to capture low level, local

information such as curves. In the second hidden layer, the units capture a higher-

level of abstractions such as shapes. And finally, in the third hidden layer the units

seem to represent the highest level of abstraction, i.e. the classes of the digits in the

dataset.

After layer-wise training one can apply bottom-up inference to infer the state of

the top layer which may include the label. One can also use the higher-level features

as input to train a classifier [111, 79, 78, 73] or apply fine-tuning [54, 11, 119]. In this

thesis, fine-tuning is not used because we are interested in investigating the modular

unsupervised training of the networks. Instead, the raw input data is mapped onto

the values of higher-level features (e.g. the values of the neurons in the third

hidden layer of Figure 2.4). Such features are then provided separately as input

to a classifier, together with labels, for the purpose of supervised learning; in our

experiments, Support Vector Machines (SVMs) are used as classifier2. Furthermore,

in order to evaluate the rule inference we will compare it with bottom-up inference

in DBNs ( §4.3).

2.3 Applications

An interesting property of deep networks is the unsupervised modular learning

illustrated in Figure 2.4. In this section, we review a number of applications of this

approach in different domains. More information about these applications can be

found in Appendix A.

We have applied an RBM to learn features that can improve standard music

similarity models (see §A.1 for more details). After training, the probability distri-

bution of the hidden layer given a state of the visible layer, is used as input to an

2We use SVMs because it has a few number of hyper-parameters which is convenient for model
selection
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SVM for classification [125]. The use of the features produces a better classification

performance in the SVM than the original data made of audio signals and texts (user

tagging). The features produced by the RBM also produce a better classification

performance than standard PCA features [105].

In the case of audio data, RBMs also outperform handcrafted features such as

Mel-frequency Cepstral Coefficients (MFCC) [145] in a speaker recognition task

(see §A.3 for more details). If we combine the features from different layers of a

DBN and MFCC features the performance of the classifier can be further improved.

Features from RBMs can also be learned to help improve an action recognition

task, as detailed in §A.2. The filter bases learned from the motion-difference

Weizmann dataset and KTH dataset are visualised in Figure 2.5. Differently from

other approaches which seek to learn local Gabor filters from the image frames

[142, 74], RBMs seem to learn movement patterns as visualised as pairs of black

and white lines and curves. In addition, the use of RBMs offers an improvement of

prediction accuracy and learning efficiency.

Similar results can also be achieved from audio signals, for example in an

application of RBMs to a music genre classification task [4]. In this application,

based on the idea of convolution in unsupervised learning [78], Figure 2.6 shows

representations obtained from RBMs trained on the spectrograms of different types

of music. Each sub-figure corresponds to a spectrogram in a specific duration of

time characterising six music genres.

More detail about applications of RBMs can be found in Appendix A. Our

purpose here has been to illustrate that RBMs and stacks of RBMs can be effective at

learning features and hierarchies of features without fine-tuning. It is our intention

to evaluate, through the use of confidence rules and hierarchical reasoning, whether

symbolic knowledge extraction can capture such hierarchies effectively. In the case

of image domains, the above visualisations can be very revealing, but in the general

case, we are interested in specifying explicitly how features are combined to derive

new features through the application of reasoning to the confidence rules extracted

from the RBMs in a modular way (i.e. one RBM at a time).
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2.4 Knowledge Extraction

We have seen that representation learning can be effective in different domains.

This indicates a promising use for knowledge extraction and sharing from RBMs

and DBNs. The study of knowledge extraction from such networks is new. As far

as we know, we have been the first to propose this challenge [126, 138] building on

the work of others on knowledge extraction from Hopfield networks, Boltzmann

machines and Recurrent Temporal RBMs [109, 36]. In this Section, we review

several knowledge extraction techniques including the above, and discuss how

they differ from our proposal.

A feed-forward neural network (NN) is a multi-layer connectionist system [114,

87, 5], which is different from DBNs, as the term is used in this thesis. The NNs are

representations of input-output mapping functions while DBNs are representations

of joint distributions. Research has shown that using a layer-wise learning for

parameter initialisation in NNs can help achieve better performance in NNs [55,

54, 11]. Nevertheless, as already mentioned, in this thesis we are concerned with

layer-wise unsupervised learning.

Extraction of symbolic knowledge from neural networks is critical for neural-

symbolic integration [32, 48], where the common approach is to learn from data and

background knowledge using NNs and to extract a revised symbolic knowledge

from the trained networks. Most of the work on knowledge extraction has been

focused on extraction algorithms applicable to neural networks trained using su-

pervised learning, notably back-propagation. Towell and Shavlik [136] propose the

M-of-N (MofN) method of rule extraction from a trained neural network. A MofN

rule is expressed as h ← x1 ∧ x2 ∧ ... ∧ xN, meaning ”If any M out of N propositions

in the body of the rule are true then h is true”. For example, with h ← x1 ∧ x2 ∧ x3,

the 2of3 rule means any assignment {x1, x2}, {x2, x3} or {x1, x3} can imply h. Another

notable work from Garcez et. al. [31] uses partially ordered sets for pruning and

simplifying the extraction process. It has been shown that this method is sound

(i.e. the rules extracted can be shown to approximate the function learned by the

network). Similarly to [136], this approach has been evaluated on relatively small

discrete datasets [136, 31].
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In the era of Big Data, knowledge extraction from large networks has become

important to neural-symbolic integration. Many works on knowledge extraction

from text data have been proposed [2, 22, 3]. However, these approaches use

either ontologies or first-order logic to represent the knowledge extracted directly

from the text data. This is different from our approach where knowledge is to

be extracted from the models learned without the support of background theories

such as categories or relations used e.g. by statistical relational learning or inductive

logic programming approaches [113, 92].

Less attention has been paid to vision data; it is difficult to interpret visual

patterns with symbolic knowledge. Recent research on extracting visual sentiment

relies strongly on the context, i.e. the text information associated with the images

[25]. Therefore, extraction in this context is a combination of mapping visual objects

to a context and building the relational knowledge that represents this context.

Differently from this, in this thesis we study extraction at the pixel level without

using context information.

2.5 Knowledge-Based Neural Networks

2.5.1 In-domain Symbolic Knowledge

Considerable research has been devoted to the integration of symbolic knowledge

and connectionist systems [16, 27, 106, 136, 31, 32, 33, 48, 109]. The first reason

for this is that symbolic rules can represent knowledge in a formal language. The

second is that one may find symbolic knowledge helpful when seeking a better

understanding of the connectionist models learned or when seeking to add prior

knowledge to such models. Furthermore, symbolic knowledge extracted from a

connectionist model can be employed as a foundation for some other sub-areas of

Artificial Intelligence, e.g. knowledge-based transfer learning [7].

In several circumstances, prior knowledge can be provided by domain ex-

perts in the form of symbolic rules. This in-domain knowledge can help to improve

the learning in a system. In [137], the authors propose a model named KBANN

(Knowledge-Based Artificial Neural Networks) based on multi-layer feed-forward
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Neural Networks to encode and learn knowledge from datasets given symbolic

prior knowledge. Also using Neural Networks for knowledge representation and

learning, in [8] the authors develop CIL2P (Connectionist Inductive Logic Pro-

gramming). The main difference between CIL2P and KBANN is that CIL2P uses

a two-layered recurrent Neural Network [104, 115] for representing background

knowledge.

Statistical models such as Markov networks and recurrent temporal restricted

Boltzmann machines also have been used for neural-symbolic integration. In [113],

the authors present a method to encode background knowledge into a template

Markov network (named Markov Logic network (MLN)), which can be used to

generate a ground Markov network to represent domain relationships from all

possible instances in a dataset. The idea of representing each formula into a clique

of Markov network is similar to extracting Penalty formulas in [109]. The difference

is that in MLNs a feature is defined as the number of true grounding formulas

corresponding to a clique in a template model, while in Penalty Logic [109] a

feature is given by multiplication of variables in this clique. In practice, MLNs

work successfully in a variety of relational domains. However, the model is not as

comprehensible as should be expected from a symbolic model due to the fact that the

number of groundings can be very large. A recent development in neural-symbolic

integration is the neural-symbolic cognitive agent (NSCA) [106] in which a model

based on the recurrent temporal restricted Boltzmann machines [131] is designed

to represent temporal knowledge for online learning and reasoning. NSCA learns

and extracts temporal rules by sampling, and it has been applied successfully to

the application of driving assessment. Differently from NSCA, in our approach we

are concerned with the modular representation of hierarchical knowledge applied

to DBNs, and with performing hierarchical reasoning symbolically, rather than

through sampling.

2.5.2 Cross-domain Knowledge: Transfer Learning

Obtaining symbolic background knowledge from a complex domain can be chal-

lenging, requiring considerable manual effort from domain experts. An alternative

is to learn such knowledge from data as described above in the case of neural-
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symbolic integration. Even better, one could try and reuse knowledge that has

been already learned and extracted from a domain to improve learning in related

domains, like humans do.

Traditionally, a learning model is designed to learn from a known training

dataset (source data) and use the learned knowledge to perform reasoning within a

test dataset (target data) from the same distribution. Learning becomes much less

effective when the test data is from a different feature space or different distribution,

which can be common in real applications. In practice, collecting and labelling

data is costly. Especially, when moving from one target domain to another target

domain, we have to recollect and label data from that new domain to train an

effective model. In many cases, labelled data from a target domain is insufficient

to train the model, while one can find data from similar domains which might be

easier to obtain. Thus, the idea of transfer learning is to improve the performance

of machine learning applications by making use of knowledge or data from related

domains.

According to [101, 133], transfer learning can be categorised into: Inductive

Transfer Learning, Transductive Transfer Learning, and Unsupervised Transfer Learning

depending on the relationship between the data and the task in the source domain

and the data and the task in the target domain. In Inductive Transfer Learning, the

task in the source domain is different from the task in the target domain while the

data in the two domains can be the same. Transductive Transfer Learning applies to

two domains with different data but the same task. Finally, Unsupervised Transfer

Learning is similar to Transductive Transfer Learning with the difference that the labels

in the target domain are not available.

Given the datasets from source domain and target domain, there are several

options to choose when it comes to which knowledge to transfer.

First, it is possible to transfer the source data itself to the target domain [30, 29,

63]. To be more specific, the data in the source domain can be selectively trained

together with data from the target domain. Here, the focus is on what parts of the

data to transfer to improve performance or accuracy of the target task.

Second, one may be interested in transferring features or representations learned
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from the source domain to the target domain [110, 28, 81, 7]. This approach focuses

on how to learn good features for the target domain with the help of source domain

data. It can be done by either learning common features between source and target

domain [7] or using source domain data to learn basic functions which then will be

used to learn features in the target domain [110].

The third form of knowledge that can be transferred are the parameters learned

[72, 15, 39, 42] so that learning in the source domain and target domain is constrained

by shared parameters with the goal of improving accuracy of the targets task.

Lastly, symbolic knowledge can be transferred between the domains [89, 90, 34].

Such methods are based on the assumption that if some domains are related they

should have some common relationships which can be expressed symbolically. It is

expected that (parts of the) symbolic knowledge learned in the source domain will

potentially help the system to discover relevant relationships in the target domain.

A simple example of this form of transfer would be the learning of the definitions

of plus and minus given in the previous chapter.

In this thesis, we propose a ranking of confidence rules extracted from a source

RBM, which will be shown useful for selecting rules for transferring onto a target

RBM. The transferring of such rules will be shown capable of improving accuracy

in the target domain, without the need for transferring extensive source domain

data.

2.6 Summary

This chapter reviewed the background literature of the thesis. We revised the

theories and applications of energy-based unsupervised learning models. Hopfield

networks, BMs, RBMs and DBNs have been studied. After that we discussed the

promising of such models in knowledge extraction, neural-symbolic integration

and transfer learning. The focus of this thesis, as mentioned in this chapter, is

on unsupervised layer-wise approach to understand the effectiveness of modular

learning and reasoning, inspired by the work of Penalty Logic about symbolic

representation and reasoning in energy-based connectionist systems.
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Figure 2.4: A stack of RBMs trained on handwritten digits with visualisations of
the units in the hidden layers obtained by activating each hidden unit at a time and
performing downward inference to the visible layer thus generating pixels for the
images. The hierarchy is expected to model levels of abstraction by transforming
the feature vectors, in this case from edges to shapes and finally digits.

(a) Weizmman dataset. (b) KTH dataset.

Figure 2.5: Visualisation of 24 filter bases from RBMs trained on motion-difference
of (a) Weizmann and (b) KTH datasets.
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(a) Blues. (b) Classical. (c) Country. (d) Disco. (e) Hiphop. (f) Jazz.

Figure 2.6: Visualisation of the filter bases of a Gaussian RBM trained on spectro-
grams of different types of music.



Chapter 3

Propositional Calculus and Deep

Belief Networks

In this chapter we take a closer look at the related work which establishes a rela-

tionship between propositional logic and DBNs. Propositional calculus has been

shown equivalent to minimising an energy function. We introduce confidence rules

formally as if-and-only-if formulas in propositional logic which are, in addition,

each associated with a real value, called “confidence value”. Confidence rules are

shown to guarantee that the logical models of a formula (true or false assignments

which map the formula to true) will have minimum energy in the corresponding

DBN. We then show that confidence rules can be used to approximate an unknown

set of models trained in a DBN. This suggests that it is possible to extract knowledge

from trained DBNs in the form of confidence rules, which we will study further in

the next chapter.

34
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3.1 Propositional Calculus and Energy-based Neural Net-

works

3.1.1 Propositional Logic

In propositional logic, an atomic proposition is a statement or assertion which can

only be true or f alse. One can use a symbol to represent an atomic proposition,

such as: r for “it is raining”. A well-formed formula (WFF) is constructed by

combining atomic propositions using the connectives: ∧ (AND), ∨ (OR), ¬ (NOT),

← (IF-THEN),↔ (IF-AND-ONLY-IF). For example:

u← ((x ∧ ¬y) ∨ (¬x ∧ y)↔ z)

where x, y, z, u are propositions. We can also represent a well-formed formula as a

combination of other well-formed formulas (called sub-formulas). It is convenient

sometimes to define notation such as x⊕y used to denote the Exclusive-Or operator

between two sub-formulas. The ⊕ operator is shorthand for using the connectives

to express that the outcome is true if and only if the truth-values of the sub-formulas

are different, that is: (¬x ∧ y) ∨ (x ∧ ¬y).

Given a truth-value assignment to a WFF which maps each atomic proposition

to a truth-value true or false, we can decide the truth-value of the formula. Let us

use sϕ(x) to denote the truth-value of a WFF ϕ which consists of x = {xi|i = 1, .., I}

atomic propositions. An assignment is called a model or “preferred assignment”

of a formula if and only if the formula is true with this assignment.

3.1.2 Penalty Logic

The first work to study the symbolic representation of energy-based neural net-

works was Penalty logic [109]. Penalty logic is an extension of propositional logic

where a penalty logic well-formed formula (PLOFF) is defined as a finite set of

pairs (ρ, ϕ), in which each WFF ϕ is associated with a real value ρ called penalty.

Given a truth-value assignment, a PLOFF is evaluated by a ranking function
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Vrank which calculates the sum of all the penalties from the PLOFFs assigned

to f alse. A preferred assignment x is then an assignment with a lowest total

penalty. Applied to classification, for example, to decide the truth-value of a target

proposition y given an assignment x of the other propositions, one will choose the

value of y that has the lowest Vrank(x, y).

Example 3.1.1. Suppose we are given a set of PLOFFs as below:

(1,¬x ∧ ¬y ∧ ¬z)

(1, x ∧ y ∧ ¬z)

(1, x ∧ ¬y ∧ z)

(1,¬x ∧ y ∧ z)

Given x = true and y = f alse we have Vrank(x = true, y = f alse, z = f alse) = 4 and

Vrank(x = true, y = f alse, z = true) = 3, so one should conclude that z = true.

3.1.3 Penalty Logic and Boltzmann Machines

A PLOFF can be represented by an energy-based neural network [109]. It has

been shown that reasoning with ranking function in Penalty logic is equivalent to

minimising energy function in a Boltzmann machine [107, 108, 109]. The idea is to

convert all PLOFFs into a Boltzmann machine with an energy E function such that:

Vrank = Erank + constant

where Erank(x) = minhE(x,h) is the energy function minimised over all hidden vari-

ables. The equivalent Boltzmann machine will have binary visible units capturing

the truth-values of propositions x, with Boolean values f alse, true represented by 0,

1, respectively. The details of this conversion have been discussed in [109]; in what

follows we show an example as a case in point.

Example 3.1.2. The XOR formula: (1, x ⊕ y ↔ z) can be represented by an energy

function E = 2xy − 2xz − 2yz − 8xh − 8yh + 8zh + x + y + z + 12h, where h is an

additional hidden variable (see Appendix B.2 for more details). Notice that x, y, z

are the propositional logic representation of the binary variables x, y, z such that the

true, f alse assignments to the propositions (x, y, z) are equivalent to the assignment
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x y z E(x, y, z, h = 0) E(x, y, z, h = 1) Erank(x, y, z) x ⊕ y↔ z Vrank(x ⊕ y↔ z)
0 0 0 0 12 0 true 0
0 0 1 1 21 1 false 1
0 1 0 1 5 1 false 1
0 1 1 0 12 0 true 0
1 0 0 1 5 1 false 1
1 0 1 0 12 0 true 0
1 1 0 4 0 0 true 0
1 1 1 1 5 1 false 1

Table 3.1: XOR formula and Penalty logic ranking.

of 1, 0, respectively, to the variables (x, y, z). Table 3.1 shows that the truth-values of

x, y, z which assign true to the formula also achieve minimum energy (Erank). With

the energy function above we can represent the XOR formula in an energy-based

neural network, as shown in Table 3.1.

Figure 3.1: A Boltzmann machine for the XOR formula.

Knowledge extraction using Penalty Logic can be done by converting an energy-

based function into PLOFF [109]. First, all hidden units need to be eliminated

before translating every product term in energy functions into a conjunction and

the penalty will be the real value factor in that term, i.e. 15xyz is translated to

(15, x∧y∧z). However, the complexity of elimination process to remove one single

hidden unit in an energy function is exponential on the number of visible units

connecting to it [109]. This makes the extraction of knowledge from a complex

domain intractable.
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3.1.4 Penalty Logic and RBMs

Knowledge extraction of Penalty Logic rules is difficult when there are hidden units

in the network and one wants to extract rules for the visible units only. Extracting

Penalty Logic rules that contain logical propositions for the hidden units is possible,

but one then needs to ask what the meaning of such hidden units might be.

In RBMs the hidden units are assumed to capture levels of abstraction by rep-

resenting independent feature detectors. Therefore, knowledge extraction from

RBMs may be easier to interpret even with the existence of hidden units. However,

extracting Penalty Logic rules without elimination of hidden units from RBMs re-

sults in a set of relations of the form: (visible unit, hidden unit), when we are in

fact more interested in the relations between the visible units. For example, given

an RBM with the energy function E = −5xh + 3yh + 4zh, the Penalty Logic rules

extracted are: (5,¬(x∧h)), (3, y∧h), (4, z∧h)1, which would have to be manipulated

algebraically following extraction to reveal the relationships between x, y, z.

3.2 Propositional Calculus and RBMs

We have reviewed the idea of Penalty Logic as an extension of propositional logic

and discussed the equivalence of Penalty Logic and Boltzmann machines, as proved

by Pinkas [109]. We have seen that it can be difficult to extract knowledge from

RBMs using Penalty Logic. In this section, we show that it is possible to represent

a WFF in an RBM and that each hidden unit of an RBM captures a preferred

assignment of the WFF. To this end, we convert WFFs into disjunctive normal form

(as detailed below) instead of conjunctions of sub-formulas as in Penalty Logic

[108, 109].

In propositional logic, any WFF can be represented in disjunctive normal form

(DNF) [117]:

ϕ =
∨

j

(
∧
t∈T j

xt ∧
∧
k∈K j

¬xk)

where each (
∧

t∈T j
xt ∧

∧
k∈K j
¬xk) is called a “nested conjunction”.

1Theorem 4.13 in [109] with h is treated as same as visible variables
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Definition 3.2.1.

• A “strict DNF” (SDNF) is a DNF where a single nested conjunction is true.

• A “full DNF” is a DNF with each variable appearing once in every nested conjunction.

Example 3.2.1. The XOR formula: ϕ = (x ⊕ y) ↔ z has its truth-table shown in

Table 3.2.

x y z ϕ
f alse f alse f alse true
f alse f alse true f alse
f alse true f alse f alse
f alse true true true
true f alse f alse f alse
true f alse true true
true true f alse true
true true true f alse

Table 3.2: Truth table of XOR formula: (x ⊕ y)↔ z.

For each assignment that returns true for the formula, for example {x = true, y =

true, z = f alse} we create a nested conjunction x ∧ y ∧ ¬z. The XOR formula can

therefore be converted into a full DNF:

ϕ = (¬x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ y ∧ z) ∨ (x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ ¬z)

Example 3.2.2. Given a DNF ϕ = (x ∧ y) ∨ (x ∧ z) ∨ (¬x), a preferred assignment

x = true, y = true, z = true makes both (x ∧ y) and (x ∧ z) true. The sub-formula

(x∧ y) ∨ (x∧ z) can be replaced by a full DNF (x∧ y∧ z)∨ (x∧ y∧¬z)∨ (x∧¬y∧ z)

such that the original WFFϕ becomesϕ = (x∧y∧z)∨ (x∧y∧¬z)∨ (x∧¬y∧z)∨ (¬x)

which is a SDNF. Notice how part of the WFF is converted into a full DNF which is

combined with the remaining part of the WFF to form a SDNF.

Definition 3.2.2. A WFF ϕ is said to correspond to an energy-based network N if and

only if for a truth-value assignment x, sϕ(x) = −AENrank(x) + B, where sϕ(x) is the set of

positive propositions in x, A > 0, B is a fixed real number, and ENrank(x) = minhEN(x,h)

is the energy function of N minimised over all hidden units.

The above correspondence guarantees that all preferred assignments of a WFF

correspond to a minimum in the energy function of the network. In addition, by
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construction, all assignments of the formula to f alse correspond to a maximum of

the energy function. This means that the network must have only two states of

energy which correspond to f alse, true in the formula.

Lemma 3.2.1. Any SDNF ϕ can be mapped onto a corresponding energy-based network

N with energy function E = −
∑

j
∏

t∈T j
xt

∏
k∈K j

(1 − xk) where T j, K j are respectively the

sets of positive and negative propositions of each nested conjunction j in the SDNF.

Proof. By definition,ϕ =
∨

j(
∧

t∈T j
xt∧

∧
k∈K j
¬xk). Each nested conjunction

∧
t∈T j

xt∧∧
k∈K j
¬xk corresponds to

∏
t∈T j

xt
∏

k∈K j
(1 − xk) which maps to 1 if and only if

xt = 1 (xt = true) and xk = 0 (xk = f alse) for all t ∈ T j and k ∈ K j. Since ϕ is

a SDNF, that is true if and only if one nested conjunction is true, then the sum∑
j
∏

t∈T j
xt

∏
k∈K j

(1 − xk) = 1 if and only if the assignment of truth-values for xt ,

xk is a preferred assignment of ϕ. Hence, there exists an energy-based network N

with energy function E = −
∑

j
∏

t∈T j
xt

∏
k∈K j

(1 − xk) such that sϕ(x) = −EN(x). �

x y z sϕ(x, y, z) EN(x, y, z)
f alse f alse f alse true −1
f alse f alse true f alse 0
f alse true f alse f alse 0
f alse true true true −1
true f alse f alse f alse 0
true f alse true true −1
true true f alse true −1
true true true f alse 0

Table 3.3: Energy function and truth table of XOR formula.

Example 3.2.3. Example 3.2.1 showed that the XOR formula can be converted into

a SDNF as:

ϕ = (¬x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ y ∧ z) ∨ (x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ ¬z)

For each nested conjunction, for example x ∧ y ∧ ¬z we create a term xy(1 − z)

and add it to the energy function. After all terms are added, we have the energy

function for N:

E(x, y, z) = −(1 − x)(1 − y)(1 − z) − xy(1 − z) − x(1 − y)z − (1 − x)yz
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The correspondence between this energy function and the truth-values of the for-

mula is illustrated in Table 3.3.

The correspondence between ϕ and N exists because sϕ(x, y, z) = −EN(x, y, z).

If we expand the energy function above we can see it is equivalent to the energy

function used by Penalty Logic minus one (see Example 3.1.2). Note that we use a

different method to generate the energy function (see Appendix B.2 for more details

on how energy functions are generated in Penalty Logic).

We have seen that any SDNF ϕ can be mapped onto energy function E =

−
∑

j
∏

t∈T j
xt

∏
k∈K j

(1 − xk). Let us denote |T j| as the number of positive proposi-

tions in a nested conjunction j. For each term e j(x) = −
∏

t∈T j
xt

∏
k∈K j

(1 − xk) we

can construct another energy function with an additional hidden variable h j as:

ẽ j(x, h j) = h j(|T j| −
∑

t∈T j
xt +

∑
k∈K j

xk − ε) with 0 < ε < 1 such that e j(x) = 1
ε ẽ j rank(x).

This correspondence holds because |T j| −
∑

t xt +
∑

k xk − ε = −ε if and only if xt = 1

and xk = 0 for all t ∈ T j and k ∈ K j that make minh j ẽ j(x, h j) = −ε with h j = 1.

Otherwise, the result is larger than zero and then minh j ẽ j(x, h j) = 0 with h j = 0.

We can conclude that the energy function for a set of SDNFs becomes:

Ẽ(x) = −
∑

j

h j(
∑

t

xt −
∑

k

xk − |T j| + ε) (3.1)

which is an energy function of an RBM. Note that sθ(x) = − 1
ε Ẽrank(x)

Construction 3.2.1. An RBM can be constructed from a WFF as follows:

• Convert a WFF into SDNF.

• For all nested conjunctions j:
∧

t∈T j
xt ∧

∧
k∈K j
¬xk.

– Create a hidden unit h j.

– Create a connection between all visible units t (t ∈ T j) and the hidden unit j

with a weight wt j = 1.

– Create a connection between all visible units k (k ∈ K j) and the hidden unit j

with a weight wkj = −1.

– Set the bias b j = −|T j| + ε with 0 < ε < 1 for the hidden unit j.
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Example 3.2.4. In Example 3.2.1 the XOR formula can be converted into:

ϕ = (¬x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ y ∧ z) ∨ (x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ ¬z)

We can then construct the RBM of Figure 3.2. In this example we choose ε = 0.5.

Figure 3.2: RBM for XOR formula: (x ⊕ y)↔ z.

The energy function of this RBM is:

E(x, y, z) = xh1 + yh1 + zh1 − xh2 − yh2 + zh2 − xh3 + yh3 + −zh3 + xh4 − yh4 − zh4

− 0.5h1 + 1.5h2 + 1.5h3 + 1.5h4

and the correspondence between the formula and RBM is illustrated in Table 3.4.

x y z sϕ(x, y, z) ENrank(x, y, z)
f alse f alse f alse true −0.5
f alse f alse true f alse 0
f alse true f alse f alse 0
f alse true true true −0.5
true f alse f alse f alse 0
true f alse true true −0.5
true true f alse true −0.5
true true true f alse 0

Table 3.4: Minimised energy function of RBM representing truth-table of XOR
formula.
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3.3 Propositional Calculus and DBNs

We have seen how a propositional formula can be encoded into a corresponding

RBM. In this section, we investigate how a set of formulas can be encoded in a DBN

by stacking multiple RBMs. First we show how to construct a DBN from a DNF

by decomposing nested conjunctions into smaller groups of shared conjunctions

that include hidden variables. We will see that such DBNs do not correspond to

the original formula and therefore confidence rules will have to be introduced to

re-establish correspondence.

3.3.1 Decomposition and Stacking

In a nested conjunction, it may be convenient to group some propositions together

with the use of a new hidden variable. For example: x1 ∧ x2 ∧ ¬x3 ∧ x4 may

be expressed equivalently as (h ∧ ¬x3 ∧ x4) ∧ (h ↔ (x1 ∧ x2)), where h is a new

hidden variable. If many nested conjunctions of a WFF share the same subset of

the propositions, the above use of a hidden variable can save space and make the

WFF more readable.

Example 3.3.1. A well-formed formula ϕ = x1 ∧ x2 ∧ (x3 ⊕ x4) can be converted to

DNF as follows [71]:

ϕ = x1 ∧ x2 ∧ (x3 ⊕ x4)

= (x1 ∧ x2) ∧ ((¬x3 ∧ x4) ∨ (x3 ∧ ¬x4))

= (x1 ∧ x2 ∧ ¬x3 ∧ x4) ∨ (x1 ∧ x2 ∧ x3 ∧ ¬x4)

Consider 3 groups of propositions (x1, x2), (¬x3, x4), (x3,¬x4) from which we create

three hidden propositions h1, h2, h3. Therefore:

ϕ = ((h1 ∧ h2) ∨ (h1 ∧ h3))

∧ (h1 ↔ (x1 ∧ x2))

∧ (h2 ↔ (¬x3 ∧ x4))

∧ (h3 ↔ (x3 ∧ ¬x4))

Definition 3.3.1. A conjunctive if-and-only-if formula (CIFF) is an if-and-only-if formula
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with a single hidden variable in one side and a conjunction of propositions in the other side

of the biconditional connective, as follows:

h↔
∧

t

xt ∧
∧

k

¬xk

Given an assignment of truth-values to xt, xk, the truth-value of h will be known

and will be the same as the truth-value of
∧

t xt ∧
∧

k ¬xk.

A set of CIFFs can be encoded into an RBM where each hidden unit represents

a hidden variable, as exemplified below.

Example 3.3.2. The three CIFFs h1 ↔ (x1 ∧ x2), h2 ↔ (¬x3 ∧ x4), h3 ↔ (x3 ∧ ¬x4)

from Example 3.3.1 can be encoded in the RBM of Figure 3.3.

Figure 3.3: RBM for CIFFs.

Construction 3.3.1. One can construct a DBN given a formula as follows. First, a

WFF can be converted into a DNF. After that we find common propositions in its nested

conjunctions to add hidden variables as shown in Example 3.3.1. This allows the creation

of an RBM as illustrated earlier. It is possible to repeat the process, converting the formula

with hidden variables into DNF (or SDNF in the case of the top layer) to create another

RBM to go on top of the previous one. This hierarchical organisation of symbolic knowledge

will be shown useful in practice in the next chapters.

Example 3.3.3. Consider the WFF ϕ = x1 ∧ x2 ∧ (x3 ⊕ x4) from Example 3.3.1.

After adding three hidden variables we have built the RBM from Example 3.3.2.

However, the following (higher-level) formula was left out and is now to be encoded

in another RBM on top of the original one.

(h1 ∧ h2) ∨ (h1 ∧ h3)
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As done before, the formula can be converted into a SDNF:

(h1 ∧ h2 ∧ ¬h3) ∨ (h1 ∧ h2 ∧ h3) ∨ (h1 ∧ ¬h2 ∧ h3)

Three higher-level hidden variables can be created and the process repeated to

produce the DBN of Figure 3.4.

Figure 3.4: A DBN for x1 ∧ x2 ∧ (x3 ⊕ x4).

We have seen how to construct a DBN from a WFF. However, one can notice

that this DBN does not correspond to the WFF. In Example 3.3.3, the formula

will be f alse for the assignment x1 = true, x2 = true, x3 = true, x4 = true, while

Erank(x1 = 1, x2 = 1, x3 = 1, x4 = 1) = −0.5. One can also notice that the energy of

the top RBM corresponds to the formula regardless of the energy of lower RBMs.

This is because the top RBM is constructed from a SDNF while the lower RBMs are

created from CIFFs. For example, the non-preferred assignment x1 = true, x2 = true,

x3 = true, x4 = true implies that h1 must be true given CIFF h1 ↔ x1∧x2. In order to

re-establish correspondence between DBNs and WFFs in what follows we define

confidence rules as an extension of CIFFs.
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3.3.2 Confidence Rules

A DBN can be seen as an approximation of a hierarchy of CIFFs. We now define

confidence rules as an extension of CIFFs.

Definition 3.3.2. A confidence rule is a CIFF associated with a confidence value c, written:

c : h↔
∧

t

xt ∧
∧

k

¬xk (3.2)

where c is a non-negative real number.

Similar to the “penalty” in [109], the term “confidence” in this definition ex-

presses the “strength of belief”, “reliability” of knowledge. The difference is, in

Penalty Logic the inference engine gives preference to the assignments with lower

penalties, whilst in confidence rules the preference is given to the assignments with

higher confidences. In statistic, although sharing the same term “confidence”, the

“confidence interval” is much different from ours in that it is used to estimate a

range of values. The confidence value of a rule is also different from the terms “con-

fidence” and “confidence level” in NSCA [106] which is a probability, although our

“confidence values” and their “confidence” can be used to measure the credibility

of the rules. The reason we use confidence values as real values is that we can treat

them as the parameters of a program, and therefore the inference can be performed

as in parametric models. In particular, our confidence values link closely to the

energy function of RBMs which forms the probability function for an assignment.

However, note that the probability function of an RBM is intractable. Instead, using

the confidences as real values would be useful for inference as we will show in the

next chapter.

A confidence rule, for example c : h ↔ x1 ∧ ¬x2 ∧ x3, can be read as “If x1 is

true and x2 is false then; assuming that h is true, x3 should be true with confidence c”. We

can also apply this to conclude x1 given the truth assignments of x2 and x3, or to

conclude ¬x2 given the truth assignments of x1 and x3 . In the case there exists a

label proposition it will be located at the end of the rule. In §4.1.2 we discuss in

details how confidence rules can be interpreted.
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3.3.3 Confidence Rules and DBNs

The structure of a DBN constructed from a set of confidence rules is the same

as that constructed from CIFFs. The difference is that the confidence values will

alter the weights and biases. In particular, weights and biases will be multiplied

by the confidence value. Therefore, the energy contribution of the part of the

DBN constructed from a confidence rule with confidence value c will be −c × ε for

preferred assignments and 0 for non-preferred assignments.

Example 3.3.4. Let 10 : h ↔ x ∧ y be a confidence rule for a CIFF h ↔ x ∧ y

with confidence value 10. Two networks constructed from this CIFF and the

confidence rule are shown in Figure 3.5. The truth-values and energy for all

(a) A network N1 for CIFF: h↔ x ∧ y. (b) A network N2 for confidence rule: 10 :
h↔ x ∧ y.

Figure 3.5: Networks for CIFF (N1) and confidence rule (N2).

possible assignments are shown in Table 3.5, where N1 and N2 are the networks

constructed given a CIFF and confidence rule, respectively. It is interesting not-

ing that sh↔x∧y(x, y) = − 1
5 EN2rank(x, y), EN1rank(x, y) = minh(−xh − yh + 1.5h), and

EN2rank(x, y) = 10EN1rank(x, y).

x y sx∧y h EN1rank EN2rank
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 -0.5 -5
1 1 1 1 -0.5 -5

Table 3.5: Truth-table of conjunction x ∧ y and energy of the networks constructed
from CIFF h↔ x ∧ y and confidence rule 5 : h↔ x ∧ y respectively.

Theorem 3.3.1. Any confidence rule can be approximated by a corresponding DBN.

Proof. We can use Construction 3.3.1 to build a DBN but converting all CIFFs into
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confidence rules with the same very small confidence value c0 (close to zero). We

also convert the top SDNF into confidence rules sharing a very large confidence

value c∞ (close to positive infinity). The minimum energy of the DBN will be

Erank(x) ≈ −c∞ε for preferred assignments and Erank(x) = −Kxc0ε � −c∞ε for non-

preferred assignments (Kx is the number of CIFFs that are mapped to true given

assignment x). As a result, s(x) ≈ − 1
c∞εErank(x). �

Figure 3.6: DBN corresponding to x1 ∧ x2 ∧ (x3 ⊕ x4).

Example 3.3.5. For the formula (x1 ∧ x2) ∧ (x3 ⊕ x4) in Example 3.3.1, we have seen

that the DBN constructed in Example 3.3.3 does not correspond to the formula. Let

us now convert the three CIFFs:

h1 ↔ (x1 ∧ x2)

h2 ↔ (¬x3 ∧ x4)

h3 ↔ (x3 ∧ ¬x4)

into confidence rules with small confidence values, as follows:

10−10 : h(1)
1 ↔ (x1 ∧ x2)

10−10 : h(1)
2 ↔ (¬x3 ∧ x4)

10−10 : h(1)
3 ↔ (x3 ∧ ¬x4)
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and the top DNF: (h1 ∧ h2 ∧ ¬h3) ∨ (h1 ∧ h2 ∧ h3) ∨ (h1 ∧ ¬h2 ∧ h3) into:

1010 : h(2)
1 ↔ h(1)

1 ∧ h(1)
2 ∧ ¬h(1)

3

1010 : h(2)
2 ↔ h(1)

1 ∧ h(1)
2 ∧ h(1)

3

1010 : h(2)
3 ↔ h(1)

1 ∧ ¬h(1)
2 ∧ h(1)

3

with large confidence values, producing the DBN in Figure 3.6.

Table 3.6 shows the truth-values of the formula and energy of the DBN over all

possible assignments.

x1 x2 x3 x4 s(x1∧x2)∧(x3⊕x4) Erank
0 0 0 0 0 = 0
0 0 0 1 0 ≈ 0 (−0.5 × 10−10)
0 0 1 0 0 ≈ 0 (−0.5 × 10−10)
0 0 1 1 0 = 0
0 1 0 0 0 = 0
0 1 0 1 0 ≈ 0 (−0.5 × 10−10)
0 1 1 0 0 ≈ 0 (−0.5 × 10−10)
0 1 1 1 0 = 0
1 0 0 0 0 = 0
1 0 0 1 0 ≈ 0 (−0.5 × 10−10)
1 0 1 0 0 ≈ 0 (−0.5 × 10−10)
1 0 1 1 0 = 0
1 1 0 0 0 ≈ 0 (−0.5 × 10−10)
1 1 0 1 1 ≈ −0.5 × 1010 (−0.5 × 1010

− 0.5 × 10−10)
1 1 1 0 1 ≈ −0.5 × 1010 (−0.5 × 1010

− 0.5 × 10−10)
1 1 1 1 0 ≈ 0 (−0.5 × 10−10)

Table 3.6: Truth table of (x1∧x2)∧ (x3⊕x4) and the minimised energy of all possible
input state of DBN constructed from confidence rules.

3.4 Approximating WFFs and Training DBNs

Given a training set D = {x(n)
|n = 1, ..,N} of N samples we can consider this as an

incomplete set of all assignments from unknown formula ϕ. We will no longer be

able to create a DNF to build up a DBN to represent the formula. However, we can

assume that an assignment is a preferred assignment if it satisfies rules with high

confidence values constructed from assignments inD. This is similar as assuming

that a sample belongs to a given class if it shares many patterns with the training

samples in this class. In other words, suppose that a DBN is constructed from a
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incomplete set of preferred assignments. A new assignment is more likely to be

a preferred assignment if it has low energy. This is because each confidence rule

contributes to the total energy with a negative amount, therefore more confidence

rules with high confidence values will reduce the total energy. In order to achieve

this we can generate confidence rules from D and adjust the confidence values so

that preferred assignments in D have lower energy, thus relaxing the constraint

that the lower RBMs should have a near-zero confidence value, and the top RBM

should have a near-infinite confidence value.

This process of approximating confidence values from an incomplete set of

preferred assignments can be seen as similar to a layer-wise training of a DBN

given a dataset. Indeed, given a training set D, the first layer will be trained

to maximise the log-likelihood which assigns a low energy to training samples

(preferred assignments) [53]. After that the hidden states are inferred and used as

input to train a higher RBM in the same way. Note that this inference in an RBM can

be seen as a stochastic step to find states of hidden units which minimise the energy

of the RBM given a visible state. Therefore the learning of DBNs can be seen as an

approximation of assigning low total energy to training samples. This instigates

the question of extracting symbolic knowledge from DBNs using confidence rules.

How would confidence rules perform in comparison with the original DBN? This

question will be addressed in next chapter.

3.5 Summary

In this chapter we have discussed the relation between propositional logic and deep

belief networks. We investigated correspondences between logical inference and

minimising energy functions. We have extended the work on Penalty Logic [109] to

construct RBMs and then build DBNs from logical formulas given in a hierarchical

form. We have introduced confidence rules as a natural representation for DBNs.

We argue that approximating a hierarchical set of confidence rules to represent an

unknown formula can be done in a similar way as learning a DBN from a training

set. In the next chapter we will study how to extract rules from DBNs through the

conversion of DBNs into confidence rules.
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Deep Belief Logic Networks

The previous chapter showed how confidence rules are related to RBMs and DBNs.

Representing a trained RBM/DBN in propositional logic, however, is difficult be-

cause the weight matrices in a trained RBM/DBN can vary considerably and yet

represent the same WFF. In this chapter, we propose a method to extract confidence

rules from trained RBMs/DBNs. We show that even though the extracted rules may

not represent exactly the models, they can be useful at describing the underlying

knowledge obtained from data. Furthermore, in some cases, the accuracies of the

extracted rules are significantly close to that of the model. We also investigate how

the encoding of prior symbolic knowledge onto RBMs/DBNs can help improve

performance at unsupervised layer-wise learning.

4.1 Extracting Confidence Rules from RBMs

One basic technique to extract rules from trained networks is to consider all pos-

sible assignments of input variables. Let us consider a unit h j in the hidden layer

of an RBM from which a confidence rule, given a state of the visible layer, can be

extracted as follows:

c j(x) : h j ↔
∧
t∈T j

xt ∧
∧
k∈K j

¬xk

51
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where xt and ¬xk denote that the visible units xt and xk have values 1 and 0

respectively. The confidence value can be computed, for example, as c j(x) = 1 +

exp(
∑

i={t,k}wi jxi) so that the product of all confidence values of the rules that match

the assignment x is proportional to the probability of x in the RBM. This is because

p(x) =
∑

h exp(−E(x,h))
Z while

∑
h exp(−E(x,h)) =

∏
j(1 + exp(

∑
i={t,k}wi jxi)). By doing

this one can extract confidence rules that perfectly represent the RBM. However, the

number of possible states of a layer is exponential on the number of units, which

causes the extraction in this way to become intractable for large RBMs.

Since extracting symbolic rules that are equivalent to the original RBMs is diffi-

cult, heuristic approaches have been applied to obtain sets of rules that in some cases

can perform as effectively as the network models. In Neural-Symbolic Cognitive

Agents (NSCA) [106], a sampling method has been proposed to extract temporal

logical rules from recurrent temporal RBMs. These rules have been used to evaluate

driving skills, and achieved similar performance as driving instructors. Applying

NSCA to RBMs, one can extract rules by setting each hidden unit as activated one

at a time, and performing downward inference. The rule is constructed similarly

to confidence rules in that if the probability of a visible unit being activated is

larger than a threshold (for example, 0.5) then this unit will be represented by a

positive proposition in the rule; otherwise it will be a negative proposition. The

“confidence/confidence level”’ of a rule in NSCA is computed as the probability of

the hidden unit given the truth-value assignment that satisfies the rule. NSCA then

creates propositions containing all the variables. In this thesis, a new extraction

method is proposed that seeks to effectively and efficiently extract knowledge from

RBMs by converting them into an RBM from which extracting confidence rules

is straightforward, as illustrated below (where a trained RBM containing a set of

weight in the real numbers is converted into an RBM with weights c1, −c1, c2, −c2

only, from which the confidence rules below can be extracted directly). Different

from the “confidence/confidence level” in NSCA which is a probability, the confi-

dence value of the confidence rules is a non-negative real number. Furthermore,

while rule extraction in NSCA includes the inference of visible layer after activating

a hidden node, our rule extraction only considers the values of the weight matrix.

There is, of course, no guarantee that the converted RBM will be equivalent to

the original one, but we expect some extracted rules to be useful, as our evaluation
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Trained RBM Converted RBM Confidence rules

c1 : h↔ x1 ∧ ¬x2 ∧ x3

c2 : h↔ x1 ∧ ¬x2 ∧ ¬x3

indicates (e.g. as a compact representation for the RBMs without too much loss

of accuracy). In the next section, we will introduce a basic method to perform the

above conversion, and after that we will give an example of how useful knowledge

can be discovered.

4.1.1 Minimising Euclidean Distance

This section proposes an algorithm to extract confidence rules from a trained RBM.

The objective, as mentioned earlier, is to convert the original RBM into an RBM

from which confidence rules can be extracted directly without too much loss of

accuracy. Each sub-network consisting of a hidden unit, all visible units and their

connection weights will be converted to a new sub-network of the simplified RBM.

This conversion will be done by calculating the confidence-value c j and the sign of

the new weight si j from visible unit i and hidden unit j, as illustrated in Figure 4.1.

Figure 4.1: Converting a sub-network in original RBM to new sub-network in
easy-to-interpret RBM.

Formally, for each hidden unit j of the original RBM we convert the column
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vector w j into a new vector s j associated with a confidence value c j so that the

confidence rule below can be extracted:

c j : h j ↔
∧
st j>0

xt ∧
∧
skj<0

¬xk (4.1)

The idea of the extraction is to identify the positive and negative propositions

and also the confidence value c j that minimises the (squared) Euclidean distance

between w j and c ∗ s j, as follows:

Deuclidean =
∑

i j

‖wi j − c jsi j‖
2 (4.2)

where c j is the confidence value of rule j corresponding to unit j in a hidden layer,

and:

si j =


1 if xi appears in rule j;

−1 if ¬xi appears in rule j;

0 otherwise.

(4.3)

The reason why si j can be 0 is that, differently from NSCA, we do not necessarily

require all propositions to appear in the rule. This should allow the extracted

rules to highlight some interesting relationships between the variables, as will be

illustrated later in a brief discussion about interpretability of rules.

Since Eq. 4.2 is a quadratic function, the confidence values we are looking for can

be found by setting the derivatives to zeros, as follows.

∑
i

2(wi j − c jsi j)si j = 0, for all j (4.4)

from which we obtain:

c j =

∑
i wi jsi j∑

i s2
i j

(4.5)

Since the value of si j is in the set {−1, 0, 1}, we have:
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‖wi j − c jsi j‖
2 = ‖abs(wi j) − c j

si j

sign(wi j)
‖

2 =

=


(abs(wi j) + c j)2 if si j , sign(wi j);

(abs(wi j) − c j)2 if si j = sign(wi j);

abs(wi j)2 if si j = 0.

(4.6)

Here, abs(wi j) and sign(wi j) are functions that return the absolute value and sign of

wi j, respectively. Since (abs(wi j)+c j)2 > (abs(wi j)−c j)2 and (abs(wi j)+c j)2 > abs(wi j)2,

the distance will be minimised if si j = sign(wi j) or si j = 0. In particular, si j = 0 will

minimise the distance function if and only if:

abs(wi j)2
≤ (abs(wi j) − c j)2

c j ≥ 2 × abs(wi j)
(4.7)

From Eq. 4.5 and Eq. 4.7, we derive the extraction algorithm below.

Algorithm 1 RBM EXTRACT

Require: An RBM with visible layer X and hidden layer H
1: for j = 1 to the number of hidden units do

2: Create rule r j of the form c j : h j ↔
∧

wt j>0 xt∧
∧

wkj<0 ¬xk with c j :=
∑

si j,0 abs(wi j)∑
i s2

i j

3: Create sign matrix S with each si j = sign(wi j)
4: Do
5: c′j := c j

6: for each si j , 0 do
7: if c j ≥ 2 × abs(wi j) then
8: si j := 0
9: Remove xi or ¬xi from rule r j

10: end if
11: end for
12: c j :=

∑
si j,0 abs(wi j)∑

i s2
i j

13: Until the value of c j == c′j
14: end for

4.1.2 Interpretability

We mentioned earlier that although equivalence between rules and RBMs is not

guaranteed, we hope that the rules can capture interesting knowledge, in that they

are more compact, and hopefully more interpretable, than NSCA rules. Although

we do not make claims of interpretability, and will evaluate the extraction method
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w.r.t. the accuracy of the rules in relation to that of the RBMs, the rules being

compact is a relevant property of the extraction, as illustrated below.

A confidence rule is different from classical logic. Given a confidence rule, what

can we conclude? For example, how do we reason with the rule:

0.5 : h1 ↔ the dog plays in the garden ∧ the sprinkler is on ∧ the dog is wet

Given that the dog plays in the garden while the sprinkler is on, one can conclude

that the dog is wet, satisfying hypothesis h1. If the sprinkler is off then we cannot

conclude anything about whether the dog is wet because the conjunction is f alse

and h1 will never be satisfied. Similarly, if we observe that the dog is wet and it

plays in the garden then we can conclude that the sprinkler is on. However, the

difference between the sprinkler is on and the dog is wet might be that the former is

a causal factor (i.e. a non-target proposition) of the latter (i.e. a target proposition).

This means that there may exist contradictory non-target propositions in a rule

having the same target proposition. For example, suppose we have another rule:

0.7 : h2 ↔ the dog plays in the garden∧ it rains∧¬the sprinkler is on∧ the dog is wet

Given that the dog plays in the garden while it rains and we observe that the dog is

wet then the first rule concludes that the sprinkler is on while the second rules states

that the sprinkler is off. This is where the confidence values come in, indicating, in

this example, a preference for the second rule, and therefore that the sprinkler is

off.

Given a rule extraction algorithm, one can check whether the accuracy of the

extracted rules approaches that of the network on a data set. One can also evaluate

rule fidelity to the network where, instead of accuracy w.r.t. ground truths in the

dataset, what matters is that the rules mimic the results of the network, whether

those are correct or not. Interpretability, however, is more subjective and domain

dependent. In a given application domain, if a domain expert can inspect the rules

and find new knowledge then the extraction has been justified. In what follows we

exemplify the idea, although our evaluation in the next chapters will be based on
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accuracy and fidelity instead.

Let us start with the XOR example used earlier and then the car evaluation

problem [147].

Inference with weighted symbolic rules can be done through a standard weighted

MAX-SAT algorithm [112, 50]. Given premises (truth-value assignments to some

propositions), the algorithm will search for the the truth-values of the other propo-

sitions (called predicted propositions) that maximise the total weight of the rules

that are satisfied (i.e. true). In the case of confidence rules, we have seen that satisfy-

ing a rule contributes a negative amount to the energy function of a corresponding

RBM. Therefore, inference with confidence rules is to find the truth-values of the

predicted propositions such that the sum of the confidence values of all satisfied

propositions is maximised.

XOR example:

x y z
f alse f alse f alse
f alse true true
true f alse true
true true f alse

Table 4.1: Truth-table of XOR function.

The XOR example shows how confidence rules extracted from an RBM trained

on the XOR function look like. The training examples are the preferred assignments

of the XOR: (x ∧ y) ↔ z. An RBM with visible units {x, y, z} and 10 hidden units

was trained to learn the truth-table in Table 4.1 with input value 0 used to denote

truth-value false, and 1 to denote true.

In this example, ten rules exist with antecedents x, y and z, and consequent hi,

1 ≤ i ≤ 10. The rules extracted from the trained RBM are shown below:

A rule such as 1.340 : h1 ↔ x ∧ ¬y ∧ z can be interpreted as “if x = true and

y = f alse then z should be true to satisfy the hypothesis h1”. Given the truth-values

of x and y one can predict the truth-value of z using MAX-SAT as discussed earlier.

Table 4.3 contains an example.
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1.340 : h1 ↔ x ∧ ¬y ∧ z 1.677 : h6 ↔ ¬x ∧ y ∧ z
2.970 : h2 ↔ x ∧ ¬y ∧ z 2.544 : h7 ↔ x ∧ ¬y ∧ z
6.165 : h3 ↔ ¬x ∧ y ∧ z 7.355 : h8 ↔ x ∧ y ∧ ¬z
0.158 : h4 ↔ ¬x ∧ y ∧ ¬z 6.540 : h9 ↔ ¬x ∧ ¬y ∧ ¬z
2.481 : h5 ↔ x ∧ ¬y ∧ z 4.868 : h10 ↔ ¬x ∧ ¬y ∧ ¬z

Table 4.2: Rules extracted from RBM trained on XOR function.

x y Total confidence if z = f alse Total confidence if z = true Conclusion
false false 11.408 0 z = f alse
false true 0 8.00 z = true
true false 0 9.335 z = true
true true 7.355 0 z = f alse

Table 4.3: Inference of z from the confidence rules extracted from an RBM trained
on the XOR truth-table.

Notice that, if either x or y were chosen as target variable, the same procedure

above could be applied, without the need for retraining the RBM. Differently from

extraction from supervised models [136, 31], here the target does not have to be

chosen in advance or the model retrained for each target.

Car Evaluation example:

Let us now exemplify interpretability of confidence rules in the car evaluation

dataset [147]. We choose this dataset because it is easy to interpret, and the data

consists of all possible preferred assignments. The car evaluation dataset has 6

variables and one label, all categorical as shown in Figure 4.4. The data consists of

Variable name label Possible values
Buying price No low, medium, high, very high

Maintenance price No low, medium, high, very high
Number of doors No 2, 3, 4, more than 5

Number of person to carry No 2, 4, more than 4
Size of luggage boot No small, medium, big

Safety No low, medium, high
Evaluation Yes unacceptable, acceptable, good, very good

Table 4.4: Car evaluation data description. In the second (“label”) column “Yes/No”
indicates whether the variable is the label or not.

1,728 samples covering the non-target variable space. Since the data is categorical

while our examples so far have focused on binary data, we proceed as follows:
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For the learning, each input variable is represented by a group of units [53].

Only one unit of the group will receive a value of 1 while the other units are 0. For

example, a group of units for the “safety” variable can have three possible states

[1 0 0], [0 1 0] and [0 0 1] for “low”, “medium” and “high”, respectively.

For the rule extraction from a group of units for a discrete variable, we take the

highest positive weight of a group as the best representative for that group.

We trained RBMs and extracted confidence rules from them. The best training-

set accuracy of the rules using MAX-SAT was 80.25% compared with 91.32% from

the RBM. As discussed earlier, a loss of accuracy is expected. Nevertheless, the

rules may be useful if they provide interpretable knowledge, as discussed below.

Examples of the extracted rules are provided below. More rules can be found

in Appendix C:

• h1 ↔ sa f ety is low ∧ the car is unacceptable;

h2 ↔ can carry 2 people ∧ the car is unacceptable, indicating that the car is un-

acceptable, in this case, if safety is low or it can carry 2 people only.

• h8 ↔ buying price is high ∧ maintenance price is high ∧ can carry 4 people ∧

sa f ety is high∧ the car is acceptable; a car with high buying price and mainte-

nance cost is acceptable if it can carry 4 people and its safety is high.

• h19 ↔ buying price is low ∧maintenance price is low ∧ can carry 4 people∧

luggage boot size is big∧sa f ety is medium∧the car is good; even though safety

is medium, a car is good if it has low buying and maintenance costs, can carry

four people, and has a big luggage boot.

• h18 ↔ buying price is low∧maintenance price is low∧can carry more than 4 people∧

luggage boot size is big∧ sa f ety is high∧ the car is very good. This is similar to

hypothesis h19 but a car is better if safety is high and it can carry more people.

Next, we define precisely how hierarchical reasoning can be carried out using

confidence rules.
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4.2 Partial Models

In this section, we define precisely how hierarchical inference can be done as

motivated in the Introduction. This makes confident rules behave as a discrete

version of RBMs, which we call “partial-models”.

Many logic programming systems have hierarchical rules in which intermediate

literals exist [85]. An intermediate literal is a proposition (also called a literal) that

appears in the antecedent (or body) of some rule and in the consequent (or head)

of some other rule. In confidence rules, a hypothesis h j can be considered an

intermediate literal. If we assume that each assignment of an input variable is also

associated with a confidence value then the inference of intermediate literals can

be done through combinations of these confidence values. By doing this, a set of

confidence rules can be seen as an RBM with a discrete weight matrix, which we

call “partial-model”, as defined in the next section.

4.2.1 Hierarchical Inference

Seeing confidence rules as logic programs, the rules are organised into hierarchies

and inference is performed bottom-up. Let us consider input variables where each

variable xi can receive a real value from 0 to 1. Given a state of visible variables

where xi = αi we can convert it into a belief that xi = true with confidence value αi.

Here we make we make a distinction between two different types of confidences,

one for the rules and the other for the propositions. For each subset of rules

in the hierarchy, the confidence value of each hypothesis (intermediate literal) in

this subset can be inferred, given the confidence value of each belief, and then

normalised to be used as beliefs in the inference at the next level of the hierarchy.

The following definition formalises this idea.

Definition 4.2.1. Let R(1) be a set of confidence value rules relating a set of beliefs x1, x2, ...

and a set of hypotheses h(1)
1 ,h

(1)
2 , ...; let R(2) be a set of confidence value rules relating

hypotheses h(1)
1 ,h

(1)
2 , ... and new hypotheses h(2)

1 ,h
(2)
2 , ...; let R(3) be a set of confidence value

rules relating hypotheses h(2)
1 ,h

(2)
2 , ... and new hypotheses h(3)

1 ,h
(3)
2 , ..., and so on. We call

R(1),R(2),R(3), ... a hierarchical weighted knowledge-base.
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Given an input to any component R(1),R(2),R(3), ... of a hierarchical weighted

knowledge-base, local inference can be carried out and results propagated to com-

ponents immediately above it in the hierarchy. This type of inference can be seen

as an extension of modus-ponens to deal with uncertainty through the calculation of

confidence values, which allows the inference to work with real-valued data types

through the application of the following inference rule.

INFERENCE RULE 01: INF PARTIAL

Given:
c : h↔

∧
∀t∈T xt ∧

∧
∀k∈K ¬xk

αt′ : xt′ where t′ ∈ T, αt′ ∈ [min,max]
αk′ : xk′ where k′ ∈ K, αk′ ∈ [min,max]
Infer:
αh : h with αh = c × (

∑
t′ αt′ +

∑m∈T
m,∀t′ αm −

∑
k′ αk′ −

∑m∈K
m,∀k′ αm)

where αm = min+max
2

In the inference rule INF PARTIAL, T and K are sets of positive and negative

literals, respectively. The confidence value αm for any missing beliefs is the average

of an upper-bound and a lower-bound on the normalised confidence values in the

program. The upper-bound (max), the lower-bound (min), and the normalisation

function are defined according to the extraction algorithm. For example, with rules

extracted from binary RBMs/DBNs (Algorithm 1) the min, max values are 0 and

1 respectively and the normalisation function is the sigmoid function. However,

if rules are extracted from a top RBM with label (as will be discussed in §4.3.2)

we can define different min, max values and normalisation function to capture the

discriminative relation between non-target variables and the target variable.

Example 4.2.1. For a rule 1.5 : h↔ x1∧¬x2∧x3, given the premises 1 : x1 and 1 : x3

the inference works as follows:

1.5 : h↔ x1 ∧ ¬x2 ∧ x3
1 : x1
1 : x3
———————————
2.25 : h with 2.25 = 1.5 × ((1 + 1) + 0 − 0 − 0.5).

According to INF PARTIAL, the sum of the confidences of all the premises that

match the positive literals in the rule (
∑

t′ αt′), x1 and x3, is 1 + 1 = 2. Since there

are no other positive literals in the antecedent of the rule, both x1 and x3 are given

as premises, then
∑m∈T

m,∀t′ αm = 0. The sum of the confidences of all the premises
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that fail to the negative literals (
∑

k′ αk′) is also 0 because premise x2 is missing.

Suppose that the confidence values of the premises in this case is bound between 0

and 1, then the missing premise can be given a neutral confidence 0.5, which is the

last sum (
∑m∈K

m,∀k′ αm) in INF PARTIAL. This illustrates how the confidence values

of premises and the structure of the rules can be used to calculate the confidence

of the hypothesis. If we represent the rule in the form of a discrete vector [1.5 −1.5

1.5] and the confidence of all premises (including the missing one) as a vector then

the inference can be done through dot product as:

[1.5 − 1.5 1.5][1 0.5 1]>

In this process, with normalisation bounded by [min,max], if ¬x has confidence

value α then x must have confidence value min + max−α. The following algorithm

formalises the inference process.

Algorithm 2 Bottom-up Inference

1: Initialise a set of beliefs B = {αi : xi}, where each belief has a value αi; αi can be
seen as the input value of visible unit vi corresponding to xi

2: for l = 1 to L do
3: for each rule j in level l do
4: Infer c j : hl

j from rule j and B using INF PARTIAL

5: Add c j : hl
j to H

6: end for
7: Normalise H by setting c j := f (c j) such that c j ∈ [min,max]
8: Re-write hypotheses H as a set of beliefs B
9: end for

4.2.2 Low-cost Representation

In RBMs, the state of the hidden units given the state of the visible units can be

used as latent features which, in many cases, can be used to improve the training

of a classifier [111, 79, 78, 73]. In a confidence rule, given the confidences of

the beliefs (i.e. antecedents) we can infer the confidences of the hypotheses (i.e.

consequent) using INF PARTIAL. These confidence values can also be used as input

to a classifier. We now show that in addition the confidence rules can be seen as

a low-cost representation of the RBMs. In this context, the term “low-cost” refers

to the efficient use of memory. In this experiment we apply confidence rules in the

form of partial models to extract latent features from images and use such features
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to train a classifier. We compare the performance of the features extracted from

the rules with ones extracted from RBMs through the prediction accuracy of the

classifier on the test sets.

We performed experiments with the MNIST handwritten digits dataset, TiCC

handwritten characters dataset and YALE face dataset. In each dataset, we divide

the data into training, validation and test sets. For the MNIST dataset, we use

a subset of the training data with 10, 000 samples (MNIST10K), 2000 validation

samples, and 10, 000 test samples for a digits recognition task (from 0 to 9). We also

use the same test set to test the confidence rules extracted from RBMs trained on

the entire training set with 60, 000 samples1 (MNIST60K). The TiCC dataset consists

of 18, 189 training samples, 1, 250 validation samples, and 18, 177 test samples for

a person’s letter recognition task (from A to Z). We divide the YALE dataset into

a training set with 135 samples, thus 9 samples per person, and the test set with

30 samples. We used an SVM with Gaussian kernel as a classifier to measure the

performance of the extracted low-cost representation in comparison with the RBMs.

Model selection is performed by running a grid-like search (except for the YALE

dataset) over the learning rates for the RBMs (between 0.001 and 1), cost (between

0.0001 and 100), and gamma (between 0.0001 and 100)) for the SVM, all on a log-

scale. We did not select the number of hidden units in the RBMs, instead we tested

RBMs with 500 and 1000 hidden units only, simply to investigate whether the size

of the network affects the quality of the extracted rules.

The memory needed by each type of representation, i.e. RBMs and our low-cost

representation using the confidence rules, can be defined as follows:

MRBM = T × Cword × I × J

Mlow−cost = (2 × I × J) + (T × Cword × J)
(4.8)

where I and J are the number of units in visible layer and hidden layer respec-

tively; Cword is the number of bits of a computer word in a device; and T is

the number of computer words of a real-valued data type. For example, in a

32-bit machine, an RBM with 784 visible units and 500 hidden units will cost

2 × 32 × 784 × 500 = 25, 088, 000 bits for a double precision floating point type.

In the case of an implementation of confidence rule in a computing device which

1Here, we re-use the hyper-parameters from the experiment with 10, 000 training samples
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needs 2 bits to represent a literal in the rules then the memory cost should be

(2 × 784 × 500) + (2 × 32 × 500) = 816, 000 bits. The ratio of memory saved by the

rules over the RBM can be measured by:

rsave =
MRBM −Mrules

MRBM
× 100% (4.9)

float double
rsave no pruning 93.622% 96.747%

rsave 20% pruning 94.898% 97.398%
rsave 40% pruning 96.173% 98.048%
rsave 60% pruning 97.449% 98.699%
rsave 80% pruning 98.724% 99.349%

Table 4.5: The expected memory saving ratios for an RBM with 784 visible units
and 500 hidden units using standard floating point data types in a 32-bit computer;
pruning refers to the percentage of the removed hidden nodes which correspond to
the rules with low confidence values.

In our experiments, we have trained RBMs using double-precision floating

point weight matrices on a 32-bit computer in order to evaluate the performance

of the confidence rule in comparison with that of the original RBMs at performing

feature extraction. Hence, our purpose is to compare the accuracy and ratio of

memory saved of the RBMs and their low-cost representation. We also investigate

how accuracy drops as the RBMs are pruned, in comparison with pruning of their

extracted rules with respect to the ratio of memory saved. Pruning of x% of a

network (RBM or its rules) means that the x% sub-networks corresponding to the

rules with the smallest values of c j, are removed, as done in [138].

TiCC MNIST10K MNIST60K YALE face
RBM (J=500) 94.851% ± 0.033 97.198 ± 0.060 98.553% ± 0.031 95.000% ± 2.833

Low-cost 94.711% ± 0.072 97.240 ± 0.089 98.530% ± 0.040 94.333% ± 3.865
RBM (J=1000) 94.928% ± 0.016 97.245% ± 0.031 98.680% ± 0.024 97.000% ± 2.919

Low-cost 94.729% ± 0.070 97.219% ± 0.056 98.562% ± 0.035 96.667% ± 1.757

Table 4.6: Average test set performance of RBMs in comparison with their low-cost
representation on four different datasets. The table shows the prediction accuracy
of the SVMs trained on the features extracted from the model (RBMs) and the
features extracted from the rules (Low-cost).

Table 4.6 contains the accuracies of the RBMs with 500 and 1000 hidden nodes



Chapter 4. Deep Belief Logic Networks 65

trained on four datasets, and the accuracies of the extracted rules, all on the held-out

test sets. We have run each experiment 10 times and report the mean accuracy, along

with standard deviation. The results show that the performance of the low-cost

confidence rules can be almost identical to that of the RBMs, with high consistency.

Next, we evaluate the effectiveness of the extracted rules in comparison with

pruning the RBM. For both the RBM and its extracted rules, one can rank and

remove the rules with small confidence value. For the sake of comparison, we

prune 20%, 40%, 60% and 80% of both the RBMs and the extracted rules, and eval-

uate performance. As expected, the average test set error increases rapidly with

the pruning. However, results show that more than 98% memory saving can be

achieved by the low-cost representation from the extracted rules with the feature

extraction still offering a significant improvement on the baseline SVM classification

obtained from the input data directly.

(a) TiCC dataset. (b) MNIST dataset.

Figure 4.2: Error rate progression in comparison with memory capacity gains for
RBMs and the extracted rules pruned by 0, 20, 40, 60 and 80%.

In order to show the usefulness of the compressed representation in the form of

confidence rules at feature extraction, we use the classification accuracy obtained

by an SVM on the original input data as baseline. We found that for the MNIST60K

and YALE face datasets, the features extracted by either the RBM or the confidence

rules produced only a slight improvement on the original data trained using an

SVM. In the experiments with the TICC and MNIST10K datasets, however, feature
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extraction outperformed the SVMs. Therefore, we have chosen the latter two

datasets to visualise and evaluate the effect of pruning, as shown in Figure 4.2 for

RBMs containing 500 hidden units only.

In Figure 4.2, the SVM line indicates the test set error on the raw input data

without using RBMs at all. This line separates the space into an area where the use

of an RBM, extracted rules or otherwise, can improve performance (on the left hand

side) and an area where feature extraction, whichever the memory capacity gains,

is not warranted (on the right hand side). Notice that, in the case of the MNIST

dataset, since a 0.2% increase in accuracy is generally accepted as a significant

improvement [70], Figure 4.2 shows that approximately 98% of memory capacity

gains can be obtained from storing a confidence rule for feature extraction, while

preserving a significant improvement over the baseline SVM classification applied

to the raw input data.

4.3 Extracting Partial-models from DBNs

Following a layer-wise approach [54, 12], a hierarchy of confidence rules can be

built for the extraction of rules from DBNs through the repeated application of

Algorithm 1. Let us start by considering in more detail the case discussed earlier

of a single-hidden-layer DBN created by splitting the visible layer of an RBM into

input and target subsets and applying Algorithm 1 twice. This will be followed by

the presentation of the general case algorithm for rule extraction from DBNs. For

evaluation we do not use DBNs as feature extractors as in §4.2.2. Instead, we com-

pare the rule inference with probabilistic inference in DBNs using the conditional

distribution p(y = c|x) at the top layer, where both label y and input x are encoded

in the visible layer.

4.3.1 An example: DNA promoter problem

The DNA promoter dataset [136] has 106 examples, each consisting of a sequence of

57 nucleotides (either A, T, G or C) from position−50 to +7 in the DNA; 53 examples

are gene promoters and 53 examples are not. Let us use np to denote a nucleotide
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n at position p, such that ap, tp,gp, cp indicate, respectively, that np = A,np = T,np =

G,np = C.

For each variable np, a group of 4 visible units, was created in the RBM. Two

target units were also added, one for promoter and one for ¬ promoter. Five RBMs

were trained using 96 examples, each with 10 examples randomly selected from

the original 106 for testing. Only three hidden units were used. After repeating

the training and extraction processes, we can find a set of 5 rules with which

by applying Inference Rule INF PARTIAL, all 10 test examples were classified

correctly. On average, for the five RBMs, the rules extracted have achieved a test

set accuracy of 90% ± 6.9296.

Direct comparisons with other extraction approaches such as MofN [136] and

RuleSet [31] would be non-trivial because of the differences in methodology and

learning method (supervised vs. unsupervised). Nevertheless, for completeness,

we report here the results obtained by those extraction methods on the DNA pro-

moter problem. The MofN approach is reported to have achieved 92.5% accuracy

using 10-fold cross-validation, while RuleSet achieved 9 correct classifications out

of 10 test set examples on a rule set extracted from a feed-forward neural network

trained using back-propagation on the remaining 96 examples.

Exploring the DNA promoter experiment more systematically, let us now eval-

uate empirically the impact of the performance loss expected as part of the process

of rule extraction. In order to do this, in what follows, we compare the test set

accuracy of the rules extracted from the DBN with that of the DBN itself. This

evaluation was done for 4 different partitions of training and test data, as shown

in Figure 4.4. For each partition, 20 networks were trained using different settings.

The graphs then plot the classification performance of the network model against

that obtained by the corresponding rule set. The results indicate a high-fidelity of

the rules towards the models.

4.3.2 Knowledge Extraction in the Top Layer

We now turn our attention to the special nature of certain nodes in the network, as

seen in the case of DNA promoter problem, and notably when the target nodes are
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(a) 96/10(train/test). (b) 76/30(train/test). (c) 66/40(train/test). (d) 46/60(train/test).

Figure 4.3: Classification performances of RBMs and the extracted rules on DNA
promoter dataset.

(a) 96/10(train/test). (b) 76/30(train/test). (c) 66/40(train/test). (d) 46/60(train/test).

Figure 4.4: Classification performances of DBNs compared with extracted rules on
the DNA promoter dataset.

expected to be exclusive (e.g. as part of target layer in the network). In this case,

the rules extracted are expected to follow the conditional distribution2:

p(y = o|x) ∝
∏

j

(1 + e
∑

i wi jxi+uoj) (4.10)

where U is the weight matrix between the label layer Y and the hidden layer H.

Here, y denotes the label (target variable) and y is its one-hot vector representation.

For example, y = o represents class o where yo = 1 and yo′,o = 0. Applying the

logarithm to Eq. 4.10 we have:

log p(y = o, x) =
∑

j

log(1 + e
∑

i wi jxieuoj yo) (4.11)

Algorithm 1 accounts for the first product in the above equation by extracting

rules from input I to the hidden layer h(1)
j (or, more generally, from h(i)

j to h(i+1)
j ).

With y = o expressed as yo = 1, the exponential in the second product in the above

equation can be used to normalise the confidence values α(1)
j of h(1)

j , producing:

2We ignore the label biases to give equal preference to all classes.
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log p(y = o, x) =
∑

j

log(1 + α(1)
j euoj) (4.12)

Given Eq. 4.12, for each hidden unit and hypothesis y = o, one can extract

a rule euoj : yo ↔ h(1)
j , whose confidence value is euoj . By applying INF PARTIAL

and summing up the confidence values for each hypothesis normalised by f (α) =

log(1 + α), one would obtain the same confidence values as produced by Eq. 4.12.

Algorithm 3 formalises the resulting rule extraction for a label layer.

Algorithm 3 TOP RBM EXTRACT

Require: An RBM with visible layer X, hidden layer H, and label layer Y
1: R = ∅, T=∅
2: R = RBM EXTRACT(NRBM(X,H)) % NRBM(X,H) is the RBM made by layer X and H only

3: for each hidden unit j ∈ H and output unit o ∈ Y do
4: Add a rule : euoj : yo ↔ h j to T
5: end for
6: return R,T

We are now in position to introduce the general algorithm for rule extraction

from DBNs, Algorithm 4. It follows a layer-wise approach whereby, for a DBN

having n layers, either Algorithm 1 is applied n times or Algorithm 1 is applied

n− 1 times and Algorithm 3 is applied once. We call the first alternative compact as

it generates fewer rules at the top level of the DBN, and it is selected by setting the

Boolean flag COMPACT in Algorithm 4 to true.

Algorithm 4 DBN EXTRACT

Require: A stack of L RBMs: N(1)
RBM, ..., N(L)

RBM; the Boolean flag COMPACT.
1: Create empty rule set R = ∅
2: for l = 1 to L − 1 do
3: R(l) = RBM EXTRACT(N(l)

RBM)
4: Add R(l) to R
5: end for
6: if COMPACT then
7: R(L) = RBM EXTRACT(N(L)

RBM(X,H)) % NRBM(X,H) is the RBM made by visible layer X and

hidden layer H

8: T = RBM EXTRACT(N(L)
RBM(H,Y)) % NRBM(X,H) is the RBM made by hidden H and label layer

Y

9: else
10: R(L),T = TOP RBM EXTRACT(N(L)

RBM)
11: end if
12: Add R(L),T to R
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Example 4.3.1. Suppose we have a trained DBN as in the below DBN with the

weight matrices:

W(1) =


0.1 -0.2 0.3

-0.0001 0.2 -0.3

-0.1 0.2 0.00001



W(2) =


0.15 -0.00001

0.15 0.25

-0.00001 0.25


U =

(
0.5 -0.5

)

The rules extracted from first RBM are:

0.1 : h(1)
1 ↔ x1 ∧ ¬x3

0.2 : h(1)
2 ↔ ¬x1 ∧ x2 ∧ x3

0.3 : h(1)
3 ↔ x1 ∧ ¬x2

If COMPACT = true the rules extracted from the top RBM are:

0.15 : h(2)
1 ↔ h(1)

1 ∧ h(1)
2

0.25 : h(2)
2 ↔ h(1)

2 ∧ h(1)
3

0.5 : y↔ h(2)
1 ∧ ¬h(2)

2
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otherwise they will be:

0.15 : h(2)
1 ↔ h(1)

1 ∧ h(1)
2

0.25 : h(2)
2 ↔ h(1)

2 ∧ h(1)
3

e0.5 : y↔ h(2)
1

e−0.5 : y↔ h(2)
2

4.3.3 Performance Loss in Complex Domains

We now test the general method of rule extraction from DBNs (Algorithm 4) on a

harder problem, namely the MNIST handwritten digit recognition dataset. This is

a difficult problem for rule extraction because the inputs are the values of the pixels

in the images to be classified into 10 classes. The rules are therefore expected to

capture the levels of abstraction learned by the DBN, from the raw data through to

the class, hopefully identifying useful concepts such as edges and shapes as part

of the rule hierarchy. Such image domains are notoriously difficult for symbolic

reasoning.

In what follows, we report the results using COMPACT=False (c.f. Algorithm

4). In the image domain, we found that performance loss is larger when COM-

PACT=True. We attribute performance loss in the case of the MNIST dataset to the

fact that the input data is not binary, showing more variance than the DNA data

evaluated earlier. As a result, in the case of a deep network, performance loss may

be compounded when inference is applied sequentially through the rule hierarchy

(i.e. without sampling). In what follows, we evaluate performance loss in more

detail.

In Section 4.2.2, the confidence values of the rules extracted from an RBM were

provided as input for training an SVM. In the case of a DBN, the same layer-

wise approach would result in each RBM in the hierarchy being trained and rules

extracted before the next RBM can be trained. In order to evaluate performance loss

in DBNs, though, instead of doing the above, we are interested in the extraction of a

complete hierarchy of rules from the entire DBN. We have trained 155 DBNs using

different learning rates, momentums, and cost in a 2 hidden layer DBN: 784 input

nodes, 500 nodes in the first hidden layer, 1000 nodes in the second hidden layer,
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and 10 target nodes. We have used the benchmark MNIST data set with 20, 000

training examples, 10, 000 held-out examples used for early stopping validation

[144], and 10, 000 test examples. Figure 4.5 shows for the MNIST data, as done for

the DNA promoter data, a comparison between the test-set accuracy of the DBNs

(model accuracy) and the test set accuracy of the extracted rules. As expected, the

results indicate more performance loss here than in the case of the DNA data, with

an average performance loss of 15.30% ±5.92 in relation to the DBNs.

The DBNs were trained using learning rate decay and early stopping based on

their performance on the validation set (whenever the validation set error increased,

a lower learning rate would be used for network training). The same can be done

using rule sets extracted from the network, as follows: rules are extracted after

each epoch of training. Instead of the network, the rules are used to calculate the

validation set error. Whenever the validation error increases using the rules, a

lower learning rate is used in the training of the network. In this way, the extracted

rules are used to trigger the early stopping of the network training. Figure 4.6

shows a comparison between the test-set accuracy of the DBNs (model accuracy),

now using rule-based early stopping, and the test-set accuracy of the extracted

rules. Now, an average performance loss of 9.25% ±4.20 is achieved in relation to

the DBNs. In comparison with Figure 4.5, it can be seen that the use of rule-based

early stopping produces rule sets with higher fidelity to the network model (i.e.

lower performance loss). Given the complexity of image domains when it comes

to rule extraction, we interpret the results shown in Figure 4.6 as indicative that

the extracted rules can be useful at highlighting certain important relationships in

the network models, e.g. if the same or very similar rules are extracted from the

various network models. This domain specific analysis is left as future work.

Achieving a higher level of integration between network and rule models at

learning may be desirable, as seen e.g. above when extracted rules were used as

criterion for the network’s early stopping. Such integration can be achieved fully

through the provision of algorithms for inserting rules into network models. This

will be the topic of discussion for the remainder of this chapter.
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(a) 2-hidden layer
DBN

Figure 4.5: Comparison between the test-set accuracies of DBNs (model accuracy)
and extracted rules.

(a) 2-hidden layer
DBN

Figure 4.6: Comparison between the test-set accuracies of DBNs (model accuracy)
and extracted rules using rule-based early stopping.

4.4 Deep Neural-Symbolic Integration Systems

Having seen how symbolic knowledge can be extracted from DBNs, we now inves-

tigate the inverse problem of inserting symbolic knowledge into DBNs to improve

network learning using background knowledge. The idea of encoding knowl-

edge into DBNs to improve learning performance is inspired by early work on

knowledge-based neural networks [137, 8]. In addition to improving learning

time, prior knowledge has been shown capable of improving learning accuracy

by allowing knowledge that is not reinforced through learning, but that might

nevertheless be relevant, to persist in the network model.
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4.4.1 Knowledge Encoding

In this section, we propose a method and algorithm for encoding confidence rules

into DBNs. We also perform an evaluation of knowledge insertion using both the

DNA and MNIST datasets used earlier. This evaluation shows that, as expected,

improvements in performance can be achieved with the use of prior knowledge.

We argue, therefore, that when prior knowledge is available, the provision of algo-

rithms allowing its use within network models (such as the algorithm introduced

in this section) is desirable.

As has been discussed in §4.1 and §4.3, a hierarchical knowledge-base with

associated confidence values can offer an appropriate symbolic representation for

DBNs. In fact, such a representation has been motivated by the way that DBNs

work, as indicated by the way that a hierarchical weighted knowledge-base has

been defined.

Example 4.4.1 and Figure 4.7 illustrate the main idea behind the encoding algo-

rithm to follow using a simple set of rules. Figure 4.7 also illustrates how the DBN

can be extended to account for learning from data and background knowledge,

which is discussed in the sequel.

Example 4.4.1. (Encoding knowledge) Given a hierarchical set of rules Ks = {K(1),K(2),K(3)
},

where:

K(1) = {c1 : y1 ↔ x1 ∧ ¬x2; c2 : y2 ↔ x2 ∧ x3; c3 : y3 ↔ ¬x3 ∧ x4};

K(2) = {c4 : z1 ↔ y1 ∧ y2; c5 : z2 ↔ y3};

K(3) = {c6 : t1 ↔ z1 ∧ z2}.

For a dataset with variables {x1, x2, x3, x4, x5, t1, t2}, consider rule c1 : y1 ↔ x1 ∧

¬x2. We add a unit y1 to the hidden layer of the first RBM and set the weights

to w11 = c1,w21 = −c1. We repeat the process for each rule in K(1), and create

random down-weight connections for the units. We then repeat the process for

each level of the hierarchy. Finally, we allow the addition of extra hidden nodes

with bidirectional random connections to each hidden level. Figure 4.7 shows the

resulting network for hierarchical set K.
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Algorithm 5 shows how a hierarchical weighted knowledge-base can be en-

coded into a DBN. Since the connections in an RBM are bidirectional, while the

rules only support bottom-up inference, the confidence values are encoded as up-

weights in the network, with a set of down-weights with random values being

added from the hidden units to the visible units.

Algorithm 5 Rule Encoding Algorithm

Require: a hierarchical weighted knowledge-base K
1: for l = 1 to L do
2: Initialise an empty RBM N(l);
3: for each rule c(l)

j : h(l)
j ↔

∧
t h(l−1)

t ∧
∧
¬h(l−1)

k ∈ Kl do;
4: Add a unit j to hidden layer l;
5: Set the value of the connection weight wl

t j from node h(l−1)
t to node j to

c j;
6: Set the value of the connection weight wl

k j from node h(l−1)
k to node j to

−c j;
7: end for
8: if l > 1 then
9: Stack N(l) on top of N(l−1);

10: end if
11: end for

Figure 4.7: DBN obtained from hierarchical rule set K from Example 4.4.1.

4.4.2 Learning with Background Knowledge

Let K be a hierarchical weighted knowledge-base, that is, a hierarchical set of

implication rules with confidence values, as defined earlier. We have encoded each

subset of rulesK (l) at each level of the hierarchy into an RBM and have added more

hidden units to it (the number of extra hidden units to add will be investigated

empirically). For each RBM, the energy function is:
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E(x,h) = −
∑

j

h jc j

∑
i

si jxi −
∑
i,k

xiuikhk −
∑

i

aixi −
∑

k

bkhk (4.13)

where, x and h denote units added by Algorithm 5, associated with background

knowledge rules, c j is the initial confidence value of rule j, J denotes the number of

rule-encoded units in the hidden layer (corresponding to the number of rules), K is

the number of extra units added to the hidden layer, si j = 1 if the encoded weight

is positive, si j = −1 if the encoded weight is negative, or si j = 0 if the weight is zero

(c.f. Algorithm 5), and ui j ∈ U is the value of the weights of the extra hidden units

(see Figure 4.7).

The encoded knowledge will be used to guide learning within the neural-

symbolic RBMs by maximising the log-likelihood of the parameters given the data

and background knowledge. Since the connections in an RBM are bi-directional,

while the background knowledge only supports bottom-up inference, we split the

connection weights between visible and rule-encoded hidden units. The confidence

values were used to define the up-weights (Wu), and random values were assigned

to the down-weights (Wd). The learning algorithm below will, therefore, adapt the

parameters that consist of additional connection weights U and the down-weights

Wd given the confidence values.

We use Contrastive Divergence [52] to train the networks. The log-likelihood

function is given by:

LlRBM =
∑
x∈D

P(x|θ = {U,Wd, c};K ). (4.14)

We call the learning algorithm below learning with guidance because prior knowl-

edge is used to partially fix some upward connections in the network; all other con-

nections, both downward and bi-directional, are allowed to change using standard

Contrastive Divergence.
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Algorithm 6 Learning with Guidance

Require: A set of rules K(s)
l ; input data, MAX ITER

1: Select a number of rules in K(s)
l with the highest confidence values

2: Encode K(s)
l in hidden units H(s) with up-weights W(l)

u and random down-

weights W(l)
d

3: Add extra hidden units H(t) with weights U(l)

4: for i = 1 to MAX ITER do
% positive stage: assign the input to visible layer X

5: Xpos := input;
6: Hpos := P(H|Xpos); Ĥpos ∼ P(H|Xpos);
7: Xneg := P(X|Ĥpos); X̂neg ∼ P(X|Ĥpos);
8: % negative stage
9: Hneg = P(H|X̂neg);

10: W(l)
d = W(l)

d + η(〈X>posH
(s)
pos − X̂>negH(s)

neg〉)

11: U(l) = U(l) + η(〈X>posH
(t)
pos − X̂>negH(t)

neg〉)
12: end for
13: % MAX ITER is the number of training epoch which is sellected empirically, i.e. using the validation set.

4.4.3 Experiments

Experiments on DNA Promoter dataset

In this experiment, we use the domain theory provided with the DNA promoter

dataset3 to set up and train a DBN. The data has been described in §4.3.1. As

before, we use variable np to denote a nucleotide at position p such that e.g. ap

for np = A (“the nucleotide at position p is type A”). Hence, background rule

minus10 ↔ n−12 = T ∧ n−11 = A ∧ n−7 = T becomes c : minus10 ↔ t−12 ∧ a−11 ∧ t−7,

with a confidence value c. The prior rules provided by domain experts are shown in

Table 4.7. The knowledge states that promoters should be able to make contact and

have a valid conformation. There are two regions to make contact : minus10 and

minus35. The contact regions and conformation are created by group of nucleotides.

For example, minus10 ↔ t−12 ∧ a−11 ∧ t−7 indicates that the contact region type

minus10 can be created by nucleotides T, A, T in positions −12, −11, −7 respectively.

We consider minus10 and minus35 and conformation as intermediate literals and
3http://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Promoter+Gene+

Sequences)
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L-1{ minus35 ↔ c−37 ∧ t−36 ∧ t−35 ∧ g−34 ∧ a−33 ∧ c−32

minus35 ↔ t−36 ∧ t−35 ∧ g−34 ∧ c−32 ∧ a−31

minus35 ↔ t−36 ∧ t−35 ∧ g−34 ∧ a−33 ∧ c−32 ∧ a−31

minus35 ↔ t−36 ∧ t−35 ∧ g−34 ∧ a−33 ∧ c−32

minus10 ↔ t−14 ∧ a−13 ∧ t−12 ∧ a−11 ∧ a−10 ∧ t−9

minus10 ↔ t−13 ∧ a−12 ∧ a−10 ∧ t−8

minus10 ↔ t−13 ∧ a−12 ∧ t−11 ∧ a−10 ∧ a−9 ∧ t−8

minus10 ↔ t−12 ∧ a−11 ∧ t−7

conformation ↔ c−47 ∧ a−46 ∧ a−45 ∧ t−43 ∧ t−42 ∧ a−40 ∧ c−39 ∧ g−22 ∧ t−18 ∧ c−16 ∧ g−8

∧c−7 ∧ g−6 ∧ c−5 ∧ c−4 ∧ c−2 ∧ c−1

conformation ↔ a−45 ∧ a−44 ∧ a−41

conformation ↔ a−49 ∧ t−44 ∧ t−27 ∧ a−22 ∧ t−18 ∧ t−16 ∧ g−15 ∧ a−1

conformation ↔ a−45 ∧ a−41 ∧ t−28 ∧ t−27 ∧ t−23 ∧ a−21 ∧ a−20 ∧ t−17 ∧ t−15 ∧ t−4}

L-2{ contact ↔ minus35 ∧minus10 }

L-3{ promoter ↔ contact ∧ conformation}

Table 4.7: Hierarchy of rules from background theory in the DNA dataset; the first
four rules appear in level L − 1 of the hierarchy, then level L − 2, and so on. Each
level will be mapped onto a layer of a DBN.

convert two rules

c : promoter↔ contact ∧ conformation

c : contact↔ minus35 ∧minus10

into
c : h(2)

↔ minus35 ∧minus10 ∧ conformation

c : promoter↔ h(2)

We use Algorithm 5 to encode the background theory into a two layer DBN, and

use Algorithm 6 to greedily train each layer at a time as in standard DBNs. Figure

4.8 shows the model being constructed, with five rules:

c : minus10 ↔ t−12 ∧ a−11 ∧ t−7

c : minus35 ↔ t−36 ∧ t−35 ∧ g−34 ∧ a−33 ∧ c−32

c : conformation↔ a−45 ∧ a−44 ∧ a−41

c : h(2)
↔ minus35 ∧minus10 ∧ conformation

c : promoter↔ h(2)

having been encoded.

For evaluation, we partition the data into a training, validation and test sets. In
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Figure 4.8: A deep neural-symbolic integration with 5 rules have been encoded.

order to investigate how background knowledge influences learning on different

amounts of data, we use different training sets with 10, 30, 50 and 70 samples.

The validation and test sets are the same for each of the training sets and consist

of 16 and 20 samples respectively. From this experiment, we observe that when

using the validation set to select the DBNs without background knowledge, this

results in low performance on the test set. For the DBNs encoded with background

knowledge, the models selected by the validation set produce good accuracy on

the test set. This might happen because the number of hyper-parameters is large

compared to the small validation and test sets. Hence, the grid search tends to

produce a DBN that over-fits the validation set. When background knowledge

is encoded into the networks, over-fitting is avoided through the use of the rule

guidance learning algorithm, which seems to have led to a more general model.

In order to make a better comparison between the standard DBN and the en-

coded DBN, we include in Figure 4.9 the best accuracy achieved on the test set

using the standard DBN without using model selection. The figure shows that

with background knowledge to guide the learning, the DBN can achieve a consid-

erable improvement in performance (e.g. up by 15% when the training set has size

50). It also shows that when the training set is larger (70 examples), the standard

DBN seems to have been able to learn from data the knowledge that had been pro-

vided as background theory, and therefore the improvement with prior knowledge



Chapter 4. Deep Belief Logic Networks 80

Figure 4.9: Test set classification performance of 2-layer standard DBN (red and
black lines, with and without model selection), and 2-layer DBN encoded with
prior knowledge from the DNA promoter background theory using training sets
with 10, 30, 50 and 70 samples, and 20 test samples.

is smaller for larger training sets.

Experiments on MNIST dataset

In order to evaluate the influence of background knowledge on the MNIST dataset

(for which no prior symbolic knowledge is available), we have extracted rules from

a network trained on a subset of the data by applying Algorithm 4, and then inserted

such rules into a new network for further training and comparison. In the MNIST

dataset, there were 20,000 examples for training, 10,000 examples for validation,

and 10,000 examples for testing. We have selected 1,000 examples randomly from

the training set for training a 2-layer DBN from which rules were then extracted.

Such rules were encoded into a new DBN, following the procedure above. This

new DBN was then trained on the remaining 19,000 examples. Finally, results were

compared with those obtained by another DBN trained from scratch on the entire

20,000 examples without any rule insertion

Figure 4.10 shows that with the encoding of rules, a DBN can achieve a slightly

higher accuracy faster than a DBN without rules. This suggests that the network

structure may be important. Although there is information loss within the rules

extracted from the DBN trained on the 1,000 examples, the DBN set-up with such

rules and trained on the remaining 19,000 examples performed slightly better than

the DBN trained on the entire 20,000 examples in one goal, which included those
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Figure 4.10: Performance of modular DBNs with and without encoded rules.

1,000 examples. This indicates that maintaining the structures of the representations

learned by deep networks can be beneficial as part of a modular approach to

learning.

4.5 Summary

This chapter introduced and evaluated algorithms for inserting and extracting

knowledge from deep networks. The question of whether modularity can help

the integration of learning and reasoning in deep networks has been investigated

empirically.

In order to support hierarchical inference in complex domain where the input

data is real-valued we extended confidence rules to partial-models. This logical

language was designed to support hierarchical reasoning, and was shown to be

an adequate representation for the modular training and symbolic representation

of deep networks. Knowledge represented by partial-models can be inserted or

extracted from DBNs. It is shown that in single-layer DBNs, also known as re-

stricted Boltzmann machines, confidence logic offers a low-cost representation for

the RBMs. Yet, the modular training of networks as part of a cycle of knowledge

insertion, learning and extraction can produce an improvement in performance.

Knowledge encoding into DBNs in the form of confidence logic rules has been

shown to be useful, leading to an improvement in performance following a layer-

wise training. The results from this work suggest that there is promise in the



Chapter 4. Deep Belief Logic Networks 82

building of a hierarchical reasoning system capable of integrating symbolic and

sub-symbolic capabilities.



Chapter 5

Using Confidence Values for

Representation Ranking

Chapter 4 studied knowledge extraction and encoding using deep belief networks.

A neural-symbolic model has been proposed to show the effectiveness of using

symbolic knowledge to support layer-wise unsupervised learning in a stack of

RBMs. However, obtaining symbolic background knowledge from a complex

domain can be challenging, requiring considerable manual effort from domain

experts. An alternative is to learn and extract knowledge in a (source) domain

to transfer and encode it in another (target) domain. In this chapter we discuss

the use of confidence values for representation ranking and subsequently transfer

learning. First, an efficient method is proposed to compute confidence values.

These confidence values will be used to rank the representations in an RBM by

decomposing each representation into complete-models. Finally, a novel transfer

learning approach is introduced to allow reuse of extracted complete-models.

5.1 Transfer Learning

Normally, in representation learning features are considered to be nonlinear trans-

formations of the original data, which is different from linear techniques such as

Principal Component Analysis (PCA) or Singular Vector Decomposition (SVD). An

advantage of the component analysis approach is that each component represents

83
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a different level of variation in the data, and therefore it can be explained using the

corresponding eigenvalue. In contrast, in (nonlinear) representation learning, find-

ing an explanation for the features learned in an unsupervised way becomes more

difficult. In Chapter 4, confidence values have been shown useful at describing

partially the representations learned, helping identify relevant rules.

In this chapter we investigate that, in the general case, different ways of calcu-

lating confidence values are possible. This takes inspiration from the work in logic

on labelled deductive systems, where logical sentences are labelled and the algebra

used for the labelling can vary, producing different logical systems [41].

The confidence values will be different from the ones in Algorithm 1 RBM EXTRACT,

and will be shown useful at ranking the feature representations, such that if the

higher-ranking feature detectors are kept, the network does not lose accuracy

abruptly. The rule representation used to allow this are what we call complete-

models.

This ranking approach is efficient and independent from the task of the model,

different from the mutual information approach [13]. We choose RBMs because

the exact training is intractable, and approximate algorithms which have been

shown successful such as Contrastive Divergence (CD) [52] should be sensitive to

noise, and therefore learn high confidence value as well as low confidence value

representations. As a result, this efficient confidence value extraction can be useful

for network pruning. In what follows, we will show that the use of confidence

values is also important for knowledge integration and transfer learning when

prior knowledge is not provided.

In Chapter 4, the integration of symbolic knowledge has been studied. How-

ever, in many circumstances, symbolic knowledge is difficult to obtain, especially

in complex domains such as vision and audio. One may use extraction algorithms

to obtain symbolic knowledge from a domain and then use it as background knowl-

edge to support further learning when more examples become available. However,

since rules are extracted from a trained network, why would using the rules be bet-

ter than re-using the network itself? In transfer learning, the idea is to transfer

knowledge from another domain to improve learning in a domain of interest.
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We will show that the efficient extraction of confidence values for complete

models is relevant for representation transfer learning where the learning of new

knowledge in a target domain is dependent on the amount of the transferred

knowledge from a source domain. In particular, we develop a novel guidance

approach to self-taught transfer learning [110] using representation ranking in

RBMs, named Guided Self-taught learning (GSTL). First, an RBM is trained on a

source domain and then its complete-models are transferred to learn additional

representations on a target domain. However, transferring a large number of

complete-models seems to restrict the learning of new knowledge in the target

RBM. Therefore transferring of high-ranking features only from a source to a target

domain can reduce the size of the RBM in the target domain, while preserving most

of the accuracy achieved from the source domain.

This approach is similar to self-taught learning [110] in that it re-uses (parts of)

the trained model, and not the (source domain) data, for the learning in the target

domain. More precisely, given a network NS, which has been trained in domain

S, we extract knowledge θS from NS and encode it in a new network NT to be

trained in an analogous domainT . An advantage of self-taught learning is that the

representation learned can be re-used for transferring to many different domains.

However, it does not take into account the representation which can be learned

from target data. The proposed GSTL approach instead trains a target RBM such

that the transferred knowledge θS will guide the learning of new knowledge from

data in a target domain.

5.2 Feature Selection By Ranking Confidence Values

Feature selection has been studied for many years (c.f. [47] for a survey). The

main focus has been the selection of useful attributes from a dataset for a specific

task, e.g. classification. Differently from that, representation ranking is more

about extraction and selection of knowledge which can capture the most accuracy

from a model, as formally defined in Chapter 4. Since complete-models capture

exactly the representations, the confidence values can be used as scores to rank

the representations based on the relations between complete-models and partial-

models. In this chapter, instead of using the iterative approach as in Algorithm 1,
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a more efficient method is introduced.

In what follows, we present a method for selecting representations from an

RBM by ranking its feature detectors. Based on §4.1.1 we define a ranking function

using the confidence values extracted from RBMs. The difference here is that vector

s j is a vector of the same size as w j, and s j ∈ [−1, 1]I, where I is the number of visible

units. By omitting the zeros in the vector s j the computation of confidence values

will be more efficient because it does not need to remove the small weights in w j,

as shown below.

Similarly to equation Eq. 4.2, confidence value c j can be found by setting the

derivatives to zero, such that c j =
∑

i wi jsi j∑
i s2

i j
. If abs(x) and sign(x) are also defined

as two functions returning the absolute value of x and the sign (−1 or 1) of x,

respectively, then we can see that:

‖wi j − c jsi j‖
2 = ‖abs(wi j) − c j

si j

sign(wi j)
‖

2

≥ ‖abs(wi j) − c j‖
2

(5.1)

holds if and only if si j = sign(wi j), which will also minimise Deuclidean. Applying this

to Eq. 4.5, we obtain:

c j =

∑
i abs(wi j)

I
(5.2)

It is interesting that the confidence value of a complete-model obtained from

Eq. 5.2 is the average strength of all weights in the sub-network represented by

that complete-model. This means that the value can be computed efficiently for

very large networks. We may notice that using c j instead of weights results in a

compression of the network and that the network’s dimensionality can be reduced

by ordering and pruning feature detectors (complete-models) with low confidence

values. Hence, we are interested in investigating whether the detectors with higher

confidence values are useful for transfer learning. In what follows, we use again

the XOR example to illustrate that low-scoring detectors are less important than

high-scoring ones.
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5.2.1 XOR Example revisited

We have trained an RBM with 10 hidden nodes to model the XOR function from its

truth-table such that z = x XOR y. The true, f alse logical values are represented by

integers 1, 0, respectively. After training the network, a score for each sub-network

can be obtained. The score allows us to replace each real-value weight by its sign,

and interpret those signs logically where a negative sign (−) represents logical

negation (¬), as exemplified in Table 5.1.

Network Sub-network Symbolic representation

2.970 : h2 ∼ {+x,−y,+z}

can be interpreted as

z = x ∧ ¬y

with score 2.970

Table 5.1: RBM trained on XOR function and one of its sub-networks with score
value and logical interpretation.

Table 5.2 shows all the sub-networks with associated scores. As one may recog-

nise, each sub-network represents a logical rule learned from the RBM. However,

not all of the rules are correct w.r.t. the XOR function. In particular, the sub-network

scored 0.158 encodes a rule ¬z = ¬x ∧ y, which is inconsistent with z = x XOR y.

By ranking the sub-networks according to their scores, this can be identified: high-

scored sub-networks are consistent with the data, and low-scored ones are not. We

have repeated the training several times with different numbers of hidden units,

obtaining similar intuitive results. We also call the above scores confidence values

(for complete models) based on its similarity with the confidence of [109, 106, 138]

and knowledge weight of symbolic knowledge representation [113].

5.2.2 Complete-models

In Chapter 1 we introduced the concept of complete-models in that they should

capture the same rule structure of partial-models while being in addition associated

with a set of confidence vectors to represent all the network weights.
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Score Sub-network Logical Representation
1.340 h1 ∼ {+x,−y,+z} z = x ∧ ¬y
2.970 h2 ∼ {+x,−y,+z} z = x ∧ ¬y
6.165 h3 ∼ {−x,+y,+z} z = ¬x ∧ y
0.158 h4 ∼ {−x,y,−z} ¬z = ¬x ∧ y
2.481 h5 ∼ {+x,−y,+z} z = x ∧ ¬y
1.677 h6 ∼ {−x,+y,+z} z = ¬x ∧ y
2.544 h7 ∼ {+x,−y,+z} z = x ∧ ¬y
7.355 h8 ∼ {+x,+y,−z} ¬z = x ∧ y
6.540 h9 ∼ {−x,−y,−z} ¬z = ¬x ∧ ¬y
4.868 h10 ∼ {−x,−y,−z ¬z = ¬x ∧ ¬y

Table 5.2: Sub-networks and scores from RBM with 10 hidden units trained on XOR
truth-table.

For each hidden unit in an RBM we can extract a complete-model in the form

c j : h j ↔
∧

t,wt j>0(
wt j

c j
: xt) ∧

∧
k,wkj<0(

−wkj

c j
: ¬xk), where c j is the confidence value

from Eq. 5.2, representing the exact structure of the RBM. The partial-model of the

complete-model

c j : h j ↔
∧

t,wt j>0

(
wt j

c j
: xt) ∧

∧
k,wkj<0

(
−wkj

c j
: ¬xk)(5.3)

is

c j : h j ↔
∧

t,wt j>0

xt ∧
∧

k,wkj<0

¬xk(5.4)

from which we can reconstruct a sub-network as shown in Figure 5.1a

The confidence value of each proposition indicates how strongly a visible unit

correlates with the hidden unit. Therefore a connection weight (wt j or wkj) between

a visible unit and the hidden unit can be constructed by multiplying c j or −c j with
wt j

c j
or −wtk

c j
respectively, which results in the sub-network of an RBM, as shown in

Figure 5.1b. Applying this to all complete-models we can reconstruct the exact

RBM.

It can be seen that complete-models are obtained by decomposing an RBM and

keeping the values of the weights in the confidence values. Hence, complete-models

represent exactly the feature detectors of an RBM. The advantage of complete-

models is we can use their confidence values as scores for ranking the representa-

tions.
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(a) Partial model. (b) Complete model.

Figure 5.1: Sub-networks for partial model in Eq. 5.4 and complete model in
Eq. 5.3, respectively. As we can see, the weights in the sub-network representing
a partial model have the discrete values {c, 0,−c}, while the weights of the sub-
network representing a complete model have real values, similar as the weights of
RBMs.

5.2.3 Representation Ranking

We have trained an RBM with 500 hidden nodes on 20,000 samples from the MNIST

dataset in order to visualise the feature detectors of the 50 highest scoring sub-

networks and the 50 lowest scoring sub-networks (each takes 10% of the network’s

capacity). The visualisation is performed by normalising each feature detector (a

column vector of the weight matrix) to between 0 and 1, and reshaping the vector

to a matrix presenting an image of size 28× 28. Figure 5.2 shows the result of using

a standard RBM, and Figure 5.3 shows the result of using a sparse RBM [77].

(a) Feature detectors with high scores. (b) Feature detectors with low scores.

Figure 5.2: Feature detectors learned from RBM on MNIST dataset.

As can be seen, in Figure 5.2, high-scores are associated with visualisations of

certain MNIST patterns, while low scores are mostly associated with fading or noisy
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(a) Feature detectors with high scores. (b) Feature detectors with low scores.

Figure 5.3: Feature detectors from sparse RBM on MNIST dataset.

patterns. In Figure 5.3, high-scores are associated with sparse representations of the

handwritten digits in the MNIST dataset, while low-scores produce less meaningful

representations, e.g. digit 6 mixed up with digit 7.

5.2.4 Network Pruning

We also examined visually the impact of pruning using the confidence values on

an RBM with 500 hidden units trained on the MNIST dataset with 10,000 examples.

Sub-networks with the highest scores were gradually removed, and the pruned

RBM was compared on the reconstruction of images with the original RBM, as

illustrated in Figure 5.4a. In Figure 5.4b low-scoring feature detectors were gradu-

ally removed and the figure also shows the reconstruction of test images from the

(pruned) RBMs.

(a) Reconstructed test images from RBM with high-scoring feature detectors
pruned. From left to right, number of hidden units remaining: 500 (original
RBM), 400 ,300, 200 and 100.

(b) Reconstructed test images from RBM with low-scoring feature detectors
pruned. From left to right, number of hidden units remaining: 500 (original
RBM), 400 ,300, 200 and 100.
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Finally, in order to obtain accuracy measures, we have provided the features

obtained from the pruned RBMs as input to an SVM classifier. Figure 5.5 shows

the drop in accuracy with the gradual pruning of the RBM. In case of pruning

low-scoring features, at first, the removal of units has produced a slight increase in

accuracy. Then, the results indicate that it is possible to remove units and maintain

performance almost unchanged until a point at which accuracy deteriorates, when

more than half of the number of units is removed. In the case of pruning high-

scoring features, the accuracy decreases significantly when 10% of the hidden units

are removed. We repeated the experiments several times obtaining similar results.

Figure 5.5: Classification accuracy of a pruned RBM, starting with 500 hidden
units, on 10,000 MNIST test samples. The red and blue lines represent the accuracy
following pruning of low-scoring and high-scoring feature detectors respectively.

One may see that the role of confidence values in ranking representations is

similar to that of eigenvalues in PCA. For example, when pruning an RBM with

1, 000 hidden units trained on 10, 000 MNIST samples we obtain the best accuracy

97.54% on the test set with 600 best representations, while the whole RBM achieves

97.34% accuracy. We also performed similar experiments with PCA and observed

that the highest accuracy is 97.16% with 100 best PCA features while the whole set

of PCA features achieved 96.65% accuracy.

5.2.5 Mutual Information Measurement

In a statistical model, mutual information can be used to evaluate learning by com-

paring the dependency between the model distribution and the data distribution.

In RBMs, by considering each feature detector (i.e. complete-model representing

a sub-network) we can evaluate its usefulness by approximating the mutual infor-
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mation between a hidden variable ( h j to which the feature detector connects) and

a visible variable [13], as follows.

ScoreMI(w j) = MI(h j, x) =

1∑
h j=0

∑
x

p(h j, x) log2

p(h j|x)
p(h j)

(5.5)

Using mutual information is statistically sound, however it requires the use of train-

ing data to approximate p(x). Our ranking approach, in contrast, is independent

from the task that the model has been trained for.

We have measured how mutual information relates to our high and low-scoring

complete models by measuring the statistical relevance of the ranked feature de-

tectors using mutual information.

(a) 20000 training samples. (b) 60000 training samples.

Figure 5.6: Mutual Information measurement on ranked feature detectors.

We trained RBMs with 1000 hidden units on two different training sets, one

consists of 20, 000 samples and the other consists of 60, 000 samples. We used

SVMs as in the previous section to evaluate the accuracy obtained by each feature

selection. We ranked the feature detectors in the best RBM (for each training set)

and also measured their mutual information. Figure 5.6 shows the relationship

between the confidence values and the mutual information measurements. The

figures indicate that, in both cases, most of the detectors with higher confidence

values are likely to have higher mutual information, although there is no formal

proof for this relationship.
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5.3 Representation Ranking for Knowledge Reuse

5.3.1 Self-taught Learning using Unlabelled Data

Unsupervised Transfer Learning with Sparse Coding

Self-taught learning [110] is a representation transfer learning method that has

been applied to different target domains using an efficient learning algorithm for

sparse coding [76]. Keeping the notation similar to that of the RBMs above, we use

W ∈ RI×J to denote the J basis column vectors, and h to denote the sparse coder’s

coefficient vector (or feature vector). The basis vectors are learned by solving the

following optimisation:

Minimise
∑

xS∈DS
‖xS −WhS‖22 + β‖hS‖1

s.t. ‖w j‖2 ≤ 1 for all j ∈ J

(5.6)

where w j is a basis column vector j. The basis vectors W are then transferred to a

target domain, as follows.

h∗
T

= arg max
hT

‖xT −WhT ‖22 + β‖hT ‖1 (5.7)

The features are then used in a classification task with an improvement in perfor-

mance expected due to generality [110].

Unsupervised Transfer Learning with RBMs

In general, self-taught learning with unlabelled data can be applied to any unsu-

pervised learning model. In the case of RBMs, the basis vectors are called feature

detector (the column vectors in the weight matrix), which can be learned by solving

the following log-likelihood optimisation:

Minimise −
1
N

∑
n

log(
∑

h

P(xS,hS)) (5.8)



Chapter 5. Using Confidence Values for Representation Ranking 94

The approximation training can be performed using CD [52], and the complete-

models transferred to the target domain, as follows:

h∗
T

= arg max
hT

P(xT ,hT )

= arg max
hT

P(hT |xT )P(xT )
(5.9)

where h∗
T

j = 1 if σ(w>j xT + b j) > 0.5, otherwise, h∗
T

j = 0. However, in practice,

it is common to use the more efficient P(hT |xT ) directly as the features to train a

classifier.

5.3.2 Learning with Guidance

In this section, we investigate how confidence values can be used to guide transfer

learning. The general idea is to transfer the knowledge extracted from a domain

to improve the learning in another domain. In this case, we can transfer the rules

with the highest confidence values. Given an RBM trained on a dataset, we are

interested in investigating whether the representation learned from a domain can

be useful at improving the predictive representation learned by another RBM on

a related, but different domain. We use θS to denote knowledge extracted from a

source RBM, and θT to denote knowledge we want to learn from a target RBM.

Since θS is transferred onto the target RBM which is to learn θT , we expect the

target RBM to learn additional knowledge θ∗. More formally, the target RBM is to

learn θT by combining learning from θS, which is fixed, and θ∗, as follows:

Minimise L
T = −

1
M

∑
m

log P(xT (m)
|{θS, θ∗}) (5.10)

In the case when one would like to treat θS and θ∗ as independent, as follows:

P(xT |θS, θ∗) =
P(θS|xT , θ∗)P(xT , θ∗)

P(θS, θ∗)

=
P(θS|xT )P(xT , θ∗)

P(θS)P(θ∗)

∝ P(xT |θS)P(xT |θ∗)

(5.11)
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The negative log-likelihood in Eq. 5.10 and the conditional probability in

Eq. 5.11 tell us that if θS and θ∗ are independent then minimising the negative

log-likelihood reduces to training an RBM in the target domain, i.e. minimising

− log P(xT |θ∗), since log P(xT |θS) is constant.

When θS and θ∗ are not independent, the learning of θ∗ should be influenced

by the presence of θS. We observe that when the whole set of complete-models

learned in source RBMs is transferred, the transfer model seems to saturate, i.e.

it is dominated by the transferred knowledge which causes very little additional

knowledge to be learned. This happens because the dependency constrains the

model to generate biased samples for learning with CD [54]. In order to reduce the

number of complete-models to be transferred while preserving the knowledge that

has been learned in the source domain, we only transfer a subset of the complete-

models with high confidence values. We model this as shown in Figure 5.7, where

we specify the source knowledge θS as the weight sub-matrix WS selected from a

source RBM, and the additional knowledge to be learned, θ∗, as a weight matrix

W∗; we omit the biases for ease of presentation.

Figure 5.7: General representation transfer model for unsupervised learning.

Knowledge from the source network is selected by ordering the scores (confi-

dence values) obtained from Eq. 5.2, and transferring onto the target network,

as explained in what follows. The connections between the visible layer and the

hidden units transferred onto the target RBM can be seen as two sets of up-weights

and down-weights. How much the down-weights affect the learning in the target

RBM depends on the value of an influence factor α ∈ [0, 1]. If α = 0 then θS and

θ∗ are independent, and the transferred knowledge will not influence learning in

the target domain. Otherwise, if α = 1 then the transferred knowledge will influ-

ence the learning in the target domain by using the source representation in the
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reconstruction of the target data during CD, as formally defined below. We call

this Guided Self-taught Learning because the knowledge transferred from the source

domain is used to guide the learning of representation in the target domain.

The energy function of the proposed learning model in Figure 5.7 (with α = 1)

is given by:

E(xT ,h;θS, θ∗) = E(xT ,h∗;θ∗) + E(xT ,hS;θS) (5.12)

As usual, we train the target RBM to minimise the negative log-likelihood Eq. 5.10

using CD. The gradient in the target RBM is:

∂LT

∂θ∗
= E

[∂E(xT ,h∗;θ∗)
∂θ∗

]
h∗|xT
− E

[∂E(xT ,h∗;θ∗)
∂θ∗

]
h∗,hS,xT

(5.13)

Although, at first sight, the above may seem similar to training the RBM on the

target domain alone, the second term of the expectation must be approximated by

sampling from the distribution P(xT ,h∗,hS). Through the sampling process, the

transfer learning should capture the dependency of the target knowledge on the

source, as is evaluated in the next Section. We detail the learning steps in Algorithm

7.

Algorithm 7 Guidance transfer learning algorithm

Require: A trained RBM: NS, MAX ITER
1: Select a number of sub-networks WS

∈ NS with the highest scores
2: Encode WS into a new RBM: NT

3: Add hidden units H∗ to NT and create new parameters W∗

4: for i = 1 to MAX ITER do
5: Xpos := input %start positive stage: assign data to visible layer.

6: Hpos := p(H|Xpos); Ĥpos ∼ p(H|Xpos);
7: Xneg := p(X|Ĥpos;α); % start negative phase: reconstruct the data with α is set to 0 or 1.

8: X̂neg ∼ p(X|Ĥpos;α) Hneg ← p(H|X̂neg)
9: % Updating additional parameter

10: W∗ = W∗ + η(〈XT
posH∗pos − X̂T

negH∗neg〉)
11: end for
12: % MAX ITER is the number of training epoch which is sellected empirically, i.e. using the validation set.

13: return WT = {WS,W∗
}

14: %WT is used to extract features to learn a classifier as discussed in subsection 5.3.1.
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5.3.3 Experimental Results

In order to evaluate transfer learning in the context of images, we have transferred

features from an RBM trained on the TiCC collection; we denote as TiCCd and TiCCa

the datasets of digits and letters, respectively. In order to show the effectiveness

of reusing a trained network, we train RBMs in source domains and apply GSTL,

Section 5.3, to target domains. The features learned from target domains then are

used to train a SVM classifier. In all experiments, we use the SVM with Gaussian

Kernel (i.e. K = exp(−γ‖x(i)
− x( j)

‖
2 ). For each domain, the data is divided

into training, validation and test sets. Each experiment is repeated 50 times and

validation sets are used for model selection. The percentages show the predictive

accuracy on the target domain, as detailed in the sequel.

(a) TiCC letters to TiCC digits. (b) TiCC digits to TiCC letters.

Figure 5.8: Self-taught learning using RBMs where only a subset of features have
been transferred.

TiCCd : TiCCa TICCa : TiCCd
SVM 59.16 60.34
RBM 62.85 ± 0.079 63.42 ± 0.090
SC STL 60.73 60.13
RBM STL 61.50 ± 0.125 64.71 ± 0.094
GSTL (α = 0) 62.41 ± 0.166 66.10 ± 0.137
GSTL (α = 1) 63.16 ± 0.120 66.25 ± 0.175

Table 5.3: Transfer learning experimental results for datasets in TiCC collection.
The percentages show the average predictive accuracy on the target domain with
95% confidence interval.

For the RBMs in source domain we ranked the complete-models according

to their confidence values and then gradually transferred the detectors with the
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highest scores. We also repeat the same process with the lowest ones. In this

experiment the source RBMs consist of 5, 000 hidden units. The results of elf-

taught learning with RBMs in Figure 5.8 show that by transferring only a half of

the highest scoring detectors we can achieve similar performance as transferring

all detectors.

We compare GSTL with the baseline SVM, and the RBM features learned in the

target domain (also using SVMs as classifier). We also compare GSTL with the self-

taught learning using different models such as Sparse Coding1 (SC STL), PCA (PCA

STL), and RBM (RBM STL). The results in Table 5.3 show a consistent improvement

of GSTL over both STL RBM and RBMs learned in target domains. In both cases,

our approach shows better performance than the use of raw features (SVM), the

RBM features, and the features from self-taught learning with Sparse Coding or

RBMs. For a comparison between using the dependency constraint (α = 1) and the

mixture of features (α = 0), the first experiment (where the representation learned

from digits has been transferred to learn letters) shows a statistically significant

improvement by applying the dependency constraint, while in the other case the

results are slightly better but not significant.

With transfer, it is generally accepted that the performance of the model in a

target domain will depend on the quality of the knowledge it received and the

structure of the model. We evaluated performance of the model using different

numbers of transferred complete-models and number of units added to the hidden

layer. Figure 5.9 shows that if the number of transferred complete-models is too

small, it will be dominated by the data from the target domain. However, if

the number of transferred complete-models is much larger than the additional

knowledge it can cause a drop in performance since the model will try to learn new

knowledge mainly based on the transferred knowledge with little knowledge from

the target domain.

1http://ai.stanford.edu/˜hllee/softwares/nips06-sparsecoding.htm
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(a) TiCC letters to TiCC digits. (b) TiCC digits to TiCC letters.

Figure 5.9: Performance of learning with guidance for different numbers of trans-
ferred complete-models and additional hidden units. The colour-bars map accu-
racy to the colour of the cells as shown so that the hotter the colour, the higher the
accuracy.

5.4 Summary

This chapter presented an efficient method to compute confidence values for the

purpose of ranking representations in RBMs. The hypothesis behind this is that

the confidence value of a rule is capable of representing the confidence of the rep-

resentation it was extracted from. Similar as rule extraction, we showed that high

ranking representation are able to capture the majority of the network, and there-

fore be useful for network pruning to achieve more compactness while preserving

the performance. We also showed that the complete-models with high confidence

values are more likely to be relevant with the data than the ones with low confidence

values, based on mutual information measurement.

From the idea of representation ranking we further showed the usefulness of

high-ranking representations in self-taught learning. In this case the transferred

knowledge can be seen as a set of complete-models with highest confidence values.

The experiment results showed that using only representations with highest confi-

dence values would give the same performance as transferring the whole network.

Furthermore, a small number of highly confident representations can also be used

to guide the learning of useful features in the target RBMs.



Chapter 6

Adaptive Transferred Profile

Likelihood Learning

The previous chapter introduced a method to use confidence values to rank and

transfer complete-models. A complete-model can be seen as a feature detector

(a column vector of the weight matrix) associated with a confidence value. The

complete-models are obtained from an RBM to be transferred and improve the

representation learning in another (target) domain. However, this method does not

take into account the fact that the feature detectors learned in the source domain

may not be useful for learning in the target domain. In order to address this

issue, this chapter proposes a framework for transforming and adapting the source

knowledge onto the target domain.

6.1 Motivation

Chapter 5 discussed a variant of self-taught learning [110, 80] in that the repre-

sentation learned from a source domain is reused by being transferred to a target

domain to improve the representation learning. Even though the representation

learned from a large amount of source data can help extract more general features

from the target data, there exists a problem that the representation learned from the

source domain may contain knowledge that is not useful with the target domain

data [101]. In order to address this potential problem we can treat the source repre-

100



Chapter 6. Adaptive Transferred Profile Likelihood Learning 101

sentation as a set of independent complete-models, and associate each of them with

adaptive factors for integration into an unsupervised learning model in the target

domain. Differently from other methods [110, 80] which only use the source repre-

sentation, our model has what we call supplementary knowledge added alongside

the transferred knowledge. We learn the adaptive factors and the supplementary

knowledge parameters by maximising log-likelihood while keeping the transferred

knowledge fixed. We name this method adaptive transferred profile likelihood because

it is inspired by the idea of profile likelihood [35]. During learning, in order to

maximise the model’s likelihood over the data, the adaptive factors will trans-

form the transferred feature detectors such that they can hopefully improve their

effectiveness in the new domain.

In this transfer learning approach we extend the model proposed in §5.3.2 to

let the transferred representations be transformed (in a precise sense to be defined

below) while at the same time guiding the learning of new representations in the

target domain. To this end we associate each representation w to be transferred

with a factor λ to create a transformed presentation w′ = λ × w in the target

domain. The transferred representations are fixed while the factors are adjusted so

that in the end, after being transformed, the new representations are expected to

be more closely related to the target data. Furthermore, similar to what has been

done in §5.3.2 we also add new biases to the hidden units created by transferred

representations. This makes a transferred hidden feature h = σ(xT(λ × w) + b) a

sigmoid nonlinear function of a fixed transferred representation with adjustable

factors λ and b learned from the target domain.

Example 6.1.1. Figure 6.1 illustrates an example of transferring the representation

from Plus image to Minus image. The Plus image is learned by an RBM from which

we can decompose the weight matrix into a set of feature detectors representing

some parts of the image. Some selected feature detectors (associating with h1

and h2) are transferred to the target domain where the first detector (associating

with h1) will be assigned a zero adaptation factor (λ1 = 0.0) while the second one

(associating with h2) is assigned a positive adaptation factor (λ2 = 1.0). These

assignments are defined based on the fact that the first feature detector does not

bear any related knowledge about the Minus sign. In contrast, the second detector

presents a part of the Minus sign so that it should be useful in the target domain.
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For completeness, new knowledge from the target domain should also be learned

as the supplementary to the transferred one. We expect that aTPL framework can

produce the similar effect by learning adaptation factors automatically, the details

will be presented in §6.2.

Figure 6.1: aTPL example of transferring representations from Plus image to Minus
image.

6.2 Representation Transfer and Adaptation

In this section, first the Profile Likelihood idea is recalled. Then, it is applied to

the problem of transfer learning: restricted Boltzmann machines are adopted for

unsupervised learning in both the source and target domains. Adaptation is added

by training the RBM on the target domain and using the adaptive factors on the

transferred representations.

6.2.1 Profile Likelihood

Maximum Likelihood Estimation (MLE) is a popular method for fitting a statistical

model to a data distribution. Given a training data set D, the MLE will train a
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model parameterised by Θ such that it maximises the likelihood:

L(Θ;D) =
∏
x∈D

p(x|Θ) (6.1)

Suppose that we are interested in a subset of the parameters, say θc, from the

whole set of parameters Θ = {θc, θ f
}. One can estimate such parameters of interest

by profiling out the nuisance parameters θ f and maximising the following profile

likelihood [35]:

Lθ̂ f (θc;D) = L(θc; θ̂ f ,D) (6.2)

where θ̂ f = arg maxθ f L(θ f ;D, θc) is a function of θc.

6.2.2 Proposed Model

Consider a special case of the profile likelihood where the nuisance parameters are

constant, i.e. θ f are independent from θc. In particular, θ f can be seen as estimates

from a related, but different domain S, as follows: θ̂ f = arg maxθ f L(θ f ;DS). Let

us estimate the other parameters with adaptation factors Λ and Ψ, as follows:

Lθ̂ f (θc,Λ,Ψ;D) = L(θc,Λ,Ψ; θ̂ f ,D) =
∏
x∈D

p(x|θc,Λ ◦ θ̂ f ,Ψ) (6.3)

Here, the value of Λ and Ψ will decide how θ̂ f should adapt to the new domain: Λ

applies directly to the representation transferred through an element-wise product,

denoted by ◦, while Ψ influences the learning indirectly, as will be explained next.

In representation learning, the knowledge learned from a domain is normally

denoted by the model’s parameters. We denote the representation knowledge

which has been learned from a source domain S as WS = {w j′ ∈ R
I
| j′ = 1, .., JS};

WS is known as a set of feature detectors, also called basis vectors [100, 76]). Each

feature detector wSj is a column vector of the weight matrix WS. Our objective is to

transform each feature detector wSj to adapt to a target domain T while learning

takes place in the target domain producing new feature detectors WT = {w j′′ ∈

RI
| j′′ = 1, .., JT }.



Chapter 6. Adaptive Transferred Profile Likelihood Learning 104

An RBM as an unsupervised statistical model with observed variable x and

hidden variable h presents an energy-based distribution:

P(x|Θ) =
1
Z

∑
h

exp−E(x,h,Θ)

where Z =
∑

x,h exp−E(x,h,Θ) and Θ = {W ∈ RI×J, a ∈ RI,b ∈ RJ
} with W = {w j ∈

RI
| j = 1, ..J}, and an associated energy function:

E(x,h,Θ) = −

J∑
j=1

h j(x>w j) − x>a − h>b (6.4)

Here, a and b are the biases associated with observed and hidden variables,

respectively. Suppose that a learned representation {WS
} is provided. We are

interested in reusing this knowledge in domain T by forming the joint parameters

Θ = {W = {WS,WT
}, a,bT } to model a distribution P(x,hS,hT |Θ) with:

E(x,hS,hT ,Θ) = −

JS∑
j′=1

hSj′(x
>wSj′) −

JT∑
j′′=1

hTj′′(x
>wTj′′)

− x>a − hT
>

bT

(6.5)

Notice that since only the feature detectors have been transferred, bT ∈ RJT

denote the biases of hidden variable hT . As discussed earlier, in this model, θ̂ f =

{WS
} are fixed parameters, while θc = {WT , a,bT } are adjustable. Furthermore,

adaptation factors are associated with each feature detector w j′ according to Eq.

Eq. 6.3, so that the energy function becomes:

E(x,hS,hT ,Θ) = E(x,hS,hT , θc,Λ ◦ θ̂ f ,Ψ)

= E(x,hS, θ̂ f ,λ,ψ) + E(x,hT , θc)
(6.6)

where Λ =


λ>

...

λ>

 ∈ RI×JS are direct adaptation factors and ψ = Ψ ∈ RJS are the

indirect adaptation factors. The first term in Eq. 6.6 denotes the energy of the
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adaptive transfer, as follows:

E(x,hS, θ̂ f ,λ,ψ) = −

JS∑
j′=1

hSj′(x
>(λ j′ ×wSj′) + ψ j′)

= −

JS∑
j′=1

λ j′hSj′(x
>wSj′) + hS

>

ψ

(6.7)

From Eq. 6.7, one can see that the adaptive factors ψ are added to the biases

of the hidden variable hS. Differently from λ j, the adaptive factor ψ j affects the

transferred feature detectors indirectly depending on the input x and the feature

detector wSj . The probability of activation of hidden variable h j is given by a

sigmoid function P(h j|x,Θ) = σ(λ j(x>wSj ) + ψ j). In the case that the value of ψ j is

large then the feature detector is removed from the presentation. Together with the

second energy term in Eq. 6.6: E(x,hT , θc) = −
∑JT

j′′=1 hTj′′(x
>wTj′′) − x>a − hT >bT ,

the energy function of the target RBMs finally becomes:

E(x,hS,hT ,Θ) = −

JS∑
j′=1

λ j′hSj′(x
>wSj′) + hS

>

ψ −
JT∑

j′′=1

hTj′′(x
>wTj′′) − x>a − hT

>
bT

(6.8)

6.2.3 Learning

We train the model by maximising the following adaptive profile log-likelihood:

logL(θc,λ,ψ; θ̂ f ,D) =
∑

x
log

∑
hS,hT

exp(−E(x,hS,hT ,Θ))

− log Z

(6.9)

where the energy function of the target RBM is in Eq. 6.8.

The gradients of the adaptive profile log-likelihood Eq. 6.9 with respect to the

supplementary parameters and the adaptation factors are estimated as:

∂ logL(θc,λ,ψ; θ̂ f ,D)
∂θc = E

[∂E(x,hT , θc)
∂θc

]
hT |x

− E
[∂E(x,hT , θc)

∂θc

]
x,hS,hT

(6.10)
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∂ logL(θc,λ,ψ; θ̂ f ,D)
∂θλ,ψ

= E
[∂E(x,hS, θ̂ f ,λ,ψ)

∂θλ,ψ

]
hS|x

− E
[∂E(x,hS, θ̂ f ,λ,ψ)

∂θλ,ψ

]
x,hS,hT

(6.11)

Here, the gradient computations become intractable, and a commonly used Markov

Chain Monte Carlo to collect a large number of samples of x, hS and hT , which,

however, will be very computationally expensive. Therefore, the Contrastive Diver-

gence approach [52] was followed to estimate the gradient computations efficiently,

as follows:
∇wTi j′′ = 〈xihTj′′〉0 − 〈xihTj′′〉K

∇ai = 〈xi〉0 − 〈xi〉K

∇bTj′′ = 〈hTj′′〉0 − 〈h
T

j′′〉K

∇λ j′ = β
(
〈hSj′

∑
i

xiwSi j′〉0 − 〈h
S

j′

∑
i

xiwSi j′〉K
)

∇ψ j′ = 〈hSj′〉0 − 〈h
S

j′〉K

(6.12)

Where K is a number of Gibbs sampling steps. Value of βwill decide the adaptation

rate the source knowledge in the target domain. In the case that λ is initialised to

1’s and β = 0 then the adaptation is done according to ψ only. In the experiment

section, we discuss the effectiveness of β. The detail of the learning algorithm is

shown in Algorithm 8.

6.3 Biased Sampling

Transferring the entire set of feature detectors from source domain can be counter-

productive and lead to lower accuracy. This is because samples from representa-

tions transferred can make learning of new knowledge too dependent on the source

domain. This is similar as the co-adaptation effect described by Hinton [58]. In

order to deal with this, a subset of feature detectors is selected from the source

model to transfer. In Chapter 5, we use the confidence values to rank the feature

detectors and transfer the highest scoring detectors. Another method is to rank and

select a feature detector by mutual information (MI) between the hidden variable to

which the feature detector connects to and the target samples. One also could

apply the dropout technique [58, 127] by which the entire set of feature detectors
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Algorithm 8 Adaptive Transferred-Profile Likelihood

Require: A set of learnt representation knowledge : WS, MAX ITER
1: Initialise WT , a,b, set λ = ~1 and ψ = ~0
2: for i = 1 to MAX ITER do
3: % start positive stage:
4: Xp := X % assign batch data X

5: HSp := p(HS|X); ĤSp ∼ p(HS|Xp);
6: HTp := p(HT |X); ĤTp ∼ p(HT |Xp);
7: % start negative phase
8: Xn := p(X|ĤSp , ĤTp ); X̂n ∼ p(X|ĤSp , ĤTp );
9: HSn := p(HS|X); HTn := p(HT |X);

10: % Updating supplementary parameters
11: WT = WT + η × (〈Xp

>HT p − X̂>n HTn 〉);
12: a = a + η × (〈Xp − X̂n〉);
13: bT = bT + η × (〈HTp −HTn 〉);
14: % Updating adaptive factors

15: λ = λ + β × η × (〈HSp ◦ (WS>Xp) −HSn ◦ (WS>Xn))
16: ψ = ψ + η × (〈HSp −HSn 〉);
17: end for
18: % MAX ITER is the number of training epoch which is sellected empirically, i.e. using the validation set.

19: Set wSj′ = λ j′ ×wSj′ for all j′ return Θ = {W = {WS,WT
}, a,b = {ψ,bT }}

is transferred but only a subset of it is selected randomly for use at each learning

batch. In the experiment section we will analyse the effect of all three approaches.

6.4 Experiments

In this section we empirically investigate the effectiveness of aTPL approach on

image datasets. We compare the accuracy of SVMs trained on features from aTPL

with the raw features (image pixels), the features from self-taught learning and the

combined features from the source and the target domains. We also test how aTPL

performs in the case of negative transfer.
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6.4.1 Experimental Setting

Datasets

We performed the experiments on MNIST, TiCC, ICDAR, USPS, MADBASE data

sets. These data sets have been widely used as benchmarks in feature learning and

transfer learning [110, 1].

MNIST30K: ICDARd & TiCCw. The MNIST dataset1 consists of 60, 000 images of

handwritten digits. The size of each images is 28 × 28 pixels. In these experiments

the source representation is learnt from 30, 000 samples (MNIST30k). In the target

domains, we use the natural images of the ICDAR data set2 for the digit recognition

task with 10 classes, and the handwritten images of TiCC 3 for the writer recognition

task with 5 classes. We partition the ICDAR data into 40% for training, 30% for

validation, and 30% for testing. The TiCC writer data (TiCCw) is partitioned into

500, 200, 200 samples for training, validation and testing, respectively.

MNIST5K:TiCCd & TiCCa. The MNIST5k contains 5000 samples from the MNIST

dataset. The first task is to recognise the handwritten digits TiCCd(10 classes)

consisting of 30 training, 1000 validation, and 1500 test samples, extracted from

the TiCC collection. The second task is to recognise the handwritten letters TiCCa

with 10 samples for each class in the training set, the validation and test sets both

consists of 3750 samples, also from the TiCC collection.

USPS4: MADBase5. In this experiment, the source domain is the handwritten

digit dataset USPS, and the target domain is the handwritten Hindi digits. We

divide the target data into 60 samples for training, 1000 for validation and 2000 for

testing.

1http://yann.lecun.com/exdb/mnist/
2http://algoval.essex.ac.uk:8080/icdar2005/index.jsp?page=ocr.html
3http://homepage.tudelft.nl/19j49/Datasets.html
4http://www-i6.informatik.rwth-aachen.de/ keysers/usps.html
5http://datacenter.aucegypt.edu/shazeem/
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Baselines

For completeness, we compare our methods with other methods that use repre-

sentations learned from the source domain for transfer. In all experiments, we use

SVM with a Gaussian Kernel (i.e. K = exp(−γ‖x(i)
− x( j)

‖
2) as the classifier.

• SVM: There is no transfer from the source domain, the SVM classifier is

learned directly from the target data.

• RBM: There is no transfer from the source domain, we train an RBM6 on the

target data and use the latent features to learn the SVM classifier.

• SC STL: The representations are transferred from the source domain using

the self-taught learning approach with Sparse coding. The extracted features

then is used for training the SVM classifier.

• RBM STL: The representations are transferred from the source domain using

the self-taught learning approach with RBMs.

• RBM MIX: The representations learned by an RBM is transferred from the

source domain and combined with the representations in the target domain

also learned by another RBM.

For model selection we applied the grid-like search on the validation sets7. In our

adaptive transferred profile likelihood (aTPL) model, we reuse the representation

knowledge extracted from the self-taught RBM. In order to test the compactness of

the model and also to reduce the computational cost in the testing phase, we only

transfer a part of the complete-models. Therefore, we select T out of JS complete-

models by ranking them based on the confidence values in descending order,

according to [138, 127], for the reuse. In this work, we select T ≤ min{500, JS}. The

number of supplementary complete-models JT are added such that the capacity of

aTPL must be at most as large as the RBM STL (and smaller than RBM MIX).

6The RBMs are trained with sparse constraints following [77]
7For SVM, we search all hyper-parameters (cost and γ) from 0.0001 to 1000 and in a log

scale. For the sparse coding, the number of bases are selected in {20, 50, 100, 150, 200, 500,
1000}, and the sparsity cost is searched from 0.001 to 100 in a log-scale. We select the RBMs by
searching through the number of hidden unit in {50, 100, 500, 1000, 2000} and the learning rate in
{0.0001, 0.001, 0.01, 0.1, 0.3, 0.5, 0.7}, the sparsity cost is searched from 0.001 to 1000 and the sparsity
level from 0.00001 to 0.1 in log scale. In all cases, if the optima is not apparent then the search is
expanded.
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In all experiments, we repeat 30 times and report the average results with a 95%

confidence interval.

6.4.2 Experimental Results

MNIST30k : ICDARd MNIST30k : TiCCw MNIST05k : TiCCa MNIST05k : TiCCd USPS : MADBASE
SVM 39.04 73.44 59.16 60.34 80.4
RBM 37.63± 0.505 75.20 ± 0.745 62.85 ± 0.079 63.42 ± 0.090 80.38 ± 0.120
SC STL 46.23 70.06 55.82 57.78 81.7
RBM STL 52.26 ± 0.331 72.88 ± 0.098 58.13 ± 0.205 62.08 ± 0.321 81.43 ± 0.211
RBM MIX 52.43± 0.132 76.49 ± 0.361 63.21 ± 0.134 65.04 ± 0.330 80.90 ± 0.253
aTPL (β = 0) 51.64 ± 0.384 77.56 ± 0.564 63.00 ± 0.160 65.75 ± 0.110 83.607 ± 0.151
aTPL (β = 0.01) 52.32 ± 0.347 80.45 ± 0.319 63.86 ± 0.185 65.66 ± 0.122 83.11 ± 0.173

Table 6.1: Transfer learning experimental results: each column indicates a transfer
experiment, e.g. MNIST30k:ICDARd uses the MNIST handwritten digits (with
30,000 samples) as the source domain and the natural digit images ICDAR as the
target domain. The percentages show the average predictive accuracy on the target
domain with a 95% confidence interval. Results for SVMs are provided as a baseline.
For the “SVM” and “RBM” lines, there is no transfer. The bold number indicates
a statistically significant improvement. If the improvement is not apparent, then it
indicate more compactness in terms of the model’s capacity.

We present the experimental results in four transfer scenarios in Table 6.1. Each

column indicates a representation reuse in the target domain where the represen-

tation has been learned in the source domain. We use a bold number to indicate

the statistical significance. If the accuracy improvement is not apparent, we give

the preference to the more compact one, i.e. the model with the smaller number of

feature detectors.

The results in Table 6.1 show that self-taught transfer does not always work, es-

pecially when the training data in target domain is adequately large (MNIST30k:TiCCw)

or the source domain is small (MNIST05k:TiCCa). One can see that, combining self-

taught learning and representation learning in the target domain can somehow

solve the problem. It makes sense because the additional representation learned

from the target domain can reduce the negative effect of unsuitable transferred

representation. With the adaptive transfer approach, we can not only further rule

out the incompatible transferred representation but also enhance the useful ones.

As a result, aTPL can significantly improve the performance of the classifiers in all

five recognition tasks. An interesting remark which we will investigate further in

the next section is that the improvement can be achieved by adding a small number

of supplementary sub-networks.
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For completeness we also investigate the effectiveness of aPTL with the use of

Mutual Information to select the complete-models for transfer and the use of the

dropout technique as discussed in Section §6.3. The performance of MI in five

scenarios MNIST30k:ICDAR, MNIST30k:TiCCw, MNIST05k:TiCCa, MNIST05k:TiCCd and USPS:MADBASE is

51.75 ± 0.322, 80.178 ± 0.249, 63.68 ± 0.145, 65.55 ± 0.274, 83.33 ± 0.303 respectively.

These results are slightly lower than the use of confidence values due to the lack

of training samples in the target domain which leads to poor approximation of

the distribution over hidden variables. Moreover, the MI method is less efficient

than the confidence values. The dropout technique achieves similar results to the

confidence values in two cases MNIST30k:TiCCw and MNIST05k:TiCCd, and slightly lower

result in MNIST05k:TiCCa. Interestingly, in MNIST30k:ICDAR and USPS:MADBASE it achieves

54.20 ± 0.233 and 84.08 ± 0.115 which are significantly better than the confidence

values. However, dropout is the least efficient compared to confidence values and

MI.

6.4.3 Adaptive vs. Supplementary Knowledge

In this section, we investigate the relation of the adaptive knowledge and the

supplementary knowledge in our model. We do this by gradually increasing the

size (T) of the reused representation and in each case we gradually increase the size

of the supplementary representation. Figure 6.2 shows that in most of the transfer

(a) MNIST:ICDAR. (b) MNIST5k:TiCCa. (c) MNIST5k:TiCCd.
(d)
USPS:MADBASE.

Figure 6.2: Number of complete-models/feature detectors in the adaptive part and
in supplementary part of aTPL in four scenarios.

scenarios good performance can be achieved when the number of supplementary

detectors is small. It also shows that when a large number of source domain

representation is reused, it will be harder to adapt. In the next section, we will

simulate the effect of unsuitable representation, including the low-scored feature
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detectors (which are generated by decreasing/flattening the value of the detectors).

6.4.4 Representation Knowledge Adaptation

We now show how the adaptive transferred profile model actually works in terms

of transforming the transferred representation so that it is more useful to the target

domain. Since the factors ψ are not directly associated with the representation

then we only visualise the effect of the factors λ. We train a sparse RBM on 20, 000

samples of MNIST handwritten digits and extract the feature detectors as shown

in Figure 6.3. After that, we corrupt the detectors in three ways. At first, we

randomly flatten the value of the feature detectors (by lowering their absolute

value) to make them have lower L1 norm scores, in the second we flip the sign

of the feature detector, and finally we combine both of these operations. We then

transferred these corrupted representations to train the adaptive transferred profile

model on another 2000 samples, also from MNIST. We show the visualisation of

the representation after the learning.

Figure 6.3: Representations (or feature detectors) from sparse RBMs learned on
20,000 MNIST samples.

In each sub-figure in Figure 6.4, the left picture shows the corrupted feature de-

tectors, e.g flattened, flipped, and combined. The right picture shows the detectors

which have been transformed after applying Algorithm 8. One can see that almost

all the corrupted feature detectors are converted back to the original forms which

is more useful to the target domain.

Finally, we show how our approach can deal with problem of negative transfer.

We use the corrupted versions of the representation learned from 20,000 MNIST

samples in the previous experiment and reuse it for writer recognition with the

target dataset extracted from MADBASE. The data consist of 300 training samples

from 10 different writers. In this experiment, in order to test the negative transfer
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(a) Flattened representation.

(b) Flipped representation.

(c) Flattened and flipped representa-
tion.

Figure 6.4: The corrupted representations and their transform after applying Algo-
rithm 8 on 2000 MNIST test samples. For each sub-figure, the left picture shows
the corrupted representation and the right picture show the representation after the
learning.

with features from corrupted source domain, we add Gaussian noise with standard

deviation 0.2 to the MNIST data. The representation learned from this corrupted

data will be transferred to the target domain.

Flattened Flipped Combined Corrupted data
SVM 39.43
RBM 38.92
RBM STL 10.29 31.14 28.57 40.29
RBM MIX 36.74 34.92 36.57 40.46
aTPL(β = 0) 40.29 37.67 38.79 42.07
aTPL(β > 0) 41.31β=0.5 39.75β=0.01 40.79β=0.01 41.43β=0.01

Table 6.2: Negative transfer with corrupted representation from the source domain,
trained on 20,000 MNIST samples. The representations are flattened, flipped, and
combined of both effects. The target domain is the MADBASE data set consisting
of Hindi handwritten digits from 10 writers. The bold numbers indicate that the
improvement is statistically significant.

The results in Table 6.2 show that the corrupted representations severely harm

the self-taught learning. In contrast, our approach is capable of adaptively trans-

forming the corrupted representation such that it is still useful for transfer learning.
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Furthermore, we observed that in the cases of having many incompatible features

transferred, the combination of both direct adaptation factors and indirect adapta-

tion factors, i.e β > 0, results in a better performance.

We also apply this transfer learning framework to sentiment analysis domain.

The preliminary results are shown in Appendix F.

6.5 Summary

This chapter studied further the use of complete-models as independent representa-

tions for knowledge transfer. The source knowledge has been learned from unla-

belled data that will be transformed to adapt with the target domains. In order to

obtain the adaptation, an idea of transferred-profile likelihood has been proposed.

The transferred likelihood learning estimates subsets of parameters while profiling

out other parameters (profile likelihood) by assuming that the other parameters are

already estimated in the other domain. Applying this to representation reuse with

RBMs, the model then learns the adaptation factors for the transferred represen-

tations while estimating new representations in the target domain. We performed

intensive experiments to study the effectiveness of our approach. The results

showed that the adaptive transferred profile model offers an advantage over self-

taught learning and also the combination between self-taught learning and feature

learning in the target domain, with better accuracy and more compactness.



Chapter 7

Conclusion and Future Work

7.1 Summary

Unsupervised models such as restricted Boltzmann machines and deep belief net-

works can learn useful patterns for recognition tasks in wide range of domains.

In addition, these patterns have been shown to capture different levels of domain

representations. For example, visualisation of the patterns learned from the hand-

written image domain indicates that low level patterns represent curves and edges

while the higher level patterns represent more concrete shapes. This interesting

characteristic of unsupervised learning intrigues a question of “whether symbolic

knowledge can also be represented by these patterns?”. This thesis studied the

decomposition of representations in RBMs/DBNs into symbolic rules to build a

learning, knowledge extraction and sharing system.

Chapter 1 has presented the motivation of the work and discussed the idea

of representation decomposition to support learning, extraction, and sharing of

knowledge.

In Chapter 2 we revised the theory and applications of energy-based unsu-

pervised learning models. Hopfield networks, Boltzmann machines, restricted

Boltzmann machines and deep belief networks have been studied. After that we

discussed the promising of such models in knowledge extraction, neural-symbolic

integration and transfer learning. The focus of this thesis, as mentioned in this

115
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chapter, is on unsupervised layer-wise approach to understand the effectiveness of

modular learning and reasoning.

Based on the work of Penalty Logic on symbolic representation and reasoning

in energy-based connectionist systems Chapter 3 studied the relation between

propositional logic and restricted Boltzmann machines, and subsequently deep

belief networks. This chapter showed that it is possible to present a propositional

well-formed formula in an RBM where symbolic reasoning corresponds to energy

minimisation. In order to present a propositional formula in a DBN we introduced

the idea of confidence rules and proposed the use of confidence values to constrain

the minimum energy to preferred assignments and the maximum energy to non-

preferred assignments. It can be seen that confidence rules act as an intermediate

model between interpretable logical programs and a hierarchical connectionist

systems.

With confidence rules have been defined, Chapter 4 discussed the idea of

using them for knowledge extraction and encoding. First, an extraction algorithm

has been proposed. For an RBM, the representation is decomposed into a set of

feature detectors which is subsequently converted into confidence rules. Second,

examples of how confidence rules can be interpreted and what knowledge can be

obtained from a domain through the extraction have been shown. Third, “partial-

models” were extended from confidence rules. Different from symbolic reasoning

in confidence rules,“partial-models” perform hierarchical inference as that in RBMs

instead of satisfiability as in symbolic logic programs. The experiments showed that

in some cases partial-models can achieve similar performance as RBMs/DBNs while

they are more compact and also more symbolic related. Finally, we inverted the

extraction process to integrate prior symbolic knowledge into a deep models. The

experiments on DNA and MNIST dataset showed that this deep neural-symbolic

integration system can take advantage from the given knowledge and achieve

better performance in unsupervised layer-wise learning.

Even though integration of background knowledge from a domain can help

improve the learning in this domain, domain knowledge is not easy to obtain,

especially knowledge for classification tasks. An alternative is to reuse the knowl-

edge that has been learned from a domain by transferring it onto another domain.
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Chapter 5 proposed an efficient algorithm to compute the confidence values and

use them to rank the representations. These representations have been seen as a

set of complete-models which can be reused to transfer to another domain. Exper-

iments showed that a subset of complete-models with highest confidence values

can capture the majority of RBMs, and transferring them to another domain can

also help improve the learning of predictive features.

The effectiveness of transferred knowledge depends on how well it is suitable

for the learning in the target domain. In order to extend the reusability of the

extracted knowledge Chapter 6 proposed an algorithm to adapt the transferred

knowledge for better adaptation with the target domain.

7.2 Limitations of the work

This thesis showed that the decomposition of RBMs/DBNs into logical related

components (confidence rules) provides an effective means to build a system that

incorporates learning, extraction and sharing of knowledge. Although our decom-

position approach using Euclidean distance showed the capability of extracting

useful knowledge efficiently, we have not studied whether this method is optimal

or not. To the best of our knowledge, knowledge extraction from DBNs is new

and has not been investigated thoroughly. This makes the comparison to other

methods difficult. As we presented in Chapter 4, minimising Euclidean distance

for rule extraction is heuristic which does not explicitly guarantee the key property

of confidence rules, i.e. setting the higher total confidence values for the preferred

assignments and the lower ones for the non-preferred assignments. This property,

however, can be seen through the empirical examples of XOR and Car Evaluation

in §4.1.2 which suggest that the property can be satisfied to a certain extent.

Furthermore, the problem of performance loss during the extraction is a critical

issue which should be addressed systematically. As we showed in Chapter 4, the

loss seems trivial in simple and small domains such as XOR and DNA but with

a complex domain as MNIST it is more severe. Theoretical study of the relation

between the loss and the complexity of the domain should be considered, for ex-

ample a mathematical expression to show the correlation between the complexity
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and the expectation of the loss. However, due to the time constraints we leave it

here as an open question and we encourage anyone, who is interested in this topic,

to collaborate in investigating further the theoretical concept of the extraction. In-

tuitively, the loss may be caused by the conversion from real-valued vectors of the

weight matrix to discrete vectors representing the rules. While the weights are

learned directly from the data by assigning lower energy to the training samples,

the extracted rules, however, do not guarantee this assignment. This also raises the

question, “Can learning rules directly from data improve the problem of perfor-

mance loss?”. We will discuss this further as a direction for future work in the next

section.

The idea of using confidence rules as low-cost representation of RBMs attracts

considerable attention from researchers in related fields as it provides an effective

means to implement representation learning at hardware level. Some are inter-

ested in extending it to larger datasets and also deeper models such as DBNs and

SAEs, which has not been done in this thesis. We also believe that this would be

beneficial to real-world applications, i.e design of deep network chips, however in

this thesis we did not study the low-cost representation further because our focus

is on knowledge extraction and sharing.

The transfer learning algorithms we proposed in this thesis have shown promis-

ing results in a number of datasets. However, extended experiments on larger data

such as natural images with convolutional DBNs and convolutional NNs would

provide more understanding of their practical use. Moreover, even though the

comparison between transferring representations and transferring data has been

conducted in the sentiment analysis experiment in Appendix F, more experiment

on other datasets would provide more convincing results. We leave this for the

future work on knowledge extraction for transfer learning using multimodal deep

networks.

Our main interest is to obtain better rules through either extraction or learning.

We expect that confidence rules, with their generative structure, can be useful for

knowledge representation, effective symbolic inference and knowledge discovery.

In the next section we present several directions for future work.
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7.3 Recommendation for Future work

Although the results presented in this thesis have demonstrated that symbolic

knowledge can be represented in a hierarchical unsupervised setting, this study is

in its beginning and can be further developed in a number of ways:

7.3.1 Extension of Confidence Rules

Learning Confidence Rules

In Chapter 3 confidence rules have shown their ability of capturing the majority of

RBMs/DBNs. These hybrid rules were obtained via a knowledge extraction method

from learned models by minimising the distance between the representations and

the vectors representing the rules. One can see this as an indirect way to build a

symbolic-like program which relies heavily on the learning capability of the models.

In future work, this reliance can be avoided by an algorithm that learns confidence

rules directly from the data.

This can be considered as learning a compact representation of deep networks

which, if successful, will help port deep learning applications to limited memory

devices such as mobile phones and tablets. Following a two-phase approach as in

other deep learning techniques, it should start with unsupervised learning of a set

of rules as:
Minimise

∑
m

distance(x(m), x̂(m); R)

with x̂(m)
← f (h(m),NR) and ĥ(m)

← g(x(m),NR)

(7.1)

where NR is an unsupervised model to present a set of confidence rules R, and

x(m) is a sample in the training dataset. This is similar to learning a discrete Auto

Encoder or RBM where each weights wi j will have three possible values −c j, 0, c j

with c j > 0 for all j. For that, the continuous-discrete optimisation techniques

should be employed to the learn optimal positive/negative combinations of literals.

After the unsupervised pre-training, supervised tuning can be applied.
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Deep Logic

Confidence rules can be used for symbolic reasoning with hypotheses satisfiability

as discussed in Chapter 3. If we remove the confidence values and only keep the

symbolic part of confidence rules we will have a hierarchical logic program. But the

question is:“Can we build an effective deep symbolic program for symbolic reasoning”?

This question, when answered, will show how a neural system can be learned

to represents a symbolic program. This will be known as Deep Logic program

which is different from the DBLN in Chapter 4 in that the inference is purely

symbolic. Performing symbolic reasoning on the rules can be seen as a strict

variant of INF PARTIAL. This inference rule means the proposition h holds if and

only if there are no missing propositions in the premises AND all propositions in

the rules must match the premises.

The first objective of this idea is to learn symbolic representations using unsu-

pervised methods. This is similar to the idea of Boolean matrix factorisation [88] in

which the symbolic relations can be represented by Boolean operators.

Minimise ‖X −WH‖22

w.r.t xim = [ f alse, true] for all i,m

wi j = [ f alse, true] for all i, j

h jm = [ f alse, true] for all j,m

(7.2)

However the inference in Boolean matrix factorisation is conducted through

an optimisation process. For example, given a Boolean vector x denoting a set

of propositions the hidden proposition h can be found by minimising
∑

i(xi −∑
j(wi jh j))2. In this case, algebra sum and product operators behave as Boolean ∨

and ∧ operators, i.e true + true = true. This Boolean model is equivalent to a set of

disjunctive if-and-only-if rules: xi ↔
∨

j,wi j=1 h j . Different from this, in Chapter

3 and Chapter 4 we have shown that in order to capture the semantic in a wide

range of domains the rules should be in conjunctive if-and-only-if. However, it

is interesting to investigate whether it is possible to learn a Boolean unsupervised

model such as a Boolean RBM under the similar constraints as in Eq. 7.2. After

that a stack of such Boolean RBMs can be seen as a hierarchical logic program.
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7.3.2 Deep Relational Networks

Deep learning has been successfully applied to conventional data where each data

sample is treated as a vector. The relationships of domain variables however, are

not taken into account. In relational domains, the data consists of background

knowledge B and examples E in the the form of first-order ground facts or rules.

In this research area, the questions of interest are:

• Learning: How to induce hypothesised logic program/relational model from

background knowledge and examples?

• Reasoning: Given a relational model how to give conclusions from new

coming facts?

In order to deal with uncertainty, probabilistic models have been proposed (

see [43] for a list of models). The main idea of statistical relational AI is to encode

relational rules into a probabilistic model to take advantage of its reasoning scheme.

This model can also be used to learn hypothesis for the domain by inducing model’s

structure from background knowledge and examples. We will show that, using

the theory developed in this thesis we can build a deep relational model for both

learning and reasoning.

Let us consider an example with three predicates Mother o f (z, x), Father o f (y, x),

Husband o f (y, z) which present the relations between people, e.g Mother o f (Mary, John) =

true means Mary is mother of John. For each assignment of a predicate we can con-

vert it to a propositional conjunction, for example Mother o f (Mary, John) becomes

mother∧zMary∧xJohn. Here mother is proposition indicating whether the predicate

is Mother o f or not, zMary and xJohn are propositions of assigning Mary, John to vari-

able z and x respectively. As discussed in Chapter 3 this relation can be presented

as a confidence rule c j : h j ↔ mother ∧ zMary ∧ xJohn. Furthermore, if we group the

confidence rules constructed from all possible assignments for a predicate we can

present exactly this predicate. From these rules we can create an RBM. In order to

create a higher level of relationships, we group all hypotheses from a predicate and

create a max-pooling layer [80] such that an unit pk (a predicate unit) is activated

only when at least one hypothesis in the predicate is true. After that another hidden
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Figure 7.1: Proposed deep relational model.

layer is added to present the higher relations. In Figure 7.1 we show a model that

presents three predicates above. We expect that this model may not only be used

for prediction but also for knowledge exploration.

7.3.3 Multimodal Learning-Extraction-Sharing

In the current trend of Big Data, multimodality is emerging to be an important and

challenging topic in data science. Even though there exist several models proposed

for learning from multiple data sources such as visual, text and audio, little or no

study has been conducted on extraction and sharing of knowledge in these domains.

Our future work will primarily focus on developing a comprehensive system that

provides efficient learning, extraction and sharing of knowledge from multimodal

data. The objectives of the research are: (i) To develop a representation learning model

that captures spatial/temporal aspects of the mutimodal data?, (ii)To understand whether

interpretable knowledge can be obtained from multimodality through extraction from this

model, (iii) To investigate whether the learned/extracted knowledge can be effectively reused

to improve the learning in other (unimodal/multimodal) domains.

In order to obtain the first objective we will develop a novel deep learning model

that captures the background knowledge of each modality. Current multimodal

deep learning approaches tend to treat all modalities similarly [98, 128], while in

this proposed model the spatial information of images/video will be learned by

using 2D/3D convolution, and the temporal information of text/video/audio will
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be learned by using recurrence. The effectiveness of the model will be tested on

benchmark datasets of sentiment analysis and emotion recognition.

For the second objective we will develop new algorithms to extract knowledge

from the multimodal system mentioned above. This study will base on recent

research on confidence rules, visual semantic [25] and image description [68]. It

will extend modal logic to capture complex possibilities of temporal representation

of sequence data. We are also interested in studying how to use modal logic to

represent visual semantics. The algorithms will be evaluated in human behaviour

analysis.

Finally, to complete the system with the sharing of learned/extracted knowledge

we will develop a transfer mechanism to allow knowledge to be reused in other

domains. The transfer will be adaptive so that knowledge will be selected/altered

to improve the learning in new domains.
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Appendix A

Applications of

Representation/Deep Learning

A.1 Music Similarity

Similarity measurement is the key component in search engines, recommendation

systems and games. This section applies representation/deep learning to improve

the performance of a similarity model which has been used in the Spot the odd

song out game developed by Daniel Wolff [140]. The game shows three songs to a

player and asks him/her to identify the song that is different from the other two.

To support this game a similarity model should be used to find out given a song x

which one of the other songs y, z is more similar to it. The distance vector between two

songs is defined as:

dist(x, y) = (x − y) ◦ (x − y) (A.1)

The similarity between two songs, say x ∈ RI and y ∈ RI, is measured using the

weighted euclidean metric as:

sim(x,y) =

I∑
i

aidist(x,y)i (A.2)

where ai is the weight parameter. For a triplet {x,y, z} of the training set D the

similarity relation that x is more similar to y than to z can be seen as sim(x,y) <

134
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sim(x, z). One may want to learn the parameter vector a that:

Maximise Γ = C
∑

{x,y,z}∈D

a>(dist(x, z) − dist(x,y)) −
1
2
‖a‖2 (A.3)

where C is a penalty value. This optimisation problem can be solved by using

gradient ascent or a soft-margin approach using SVM, as presented in [130, 141].

Applying representation learning to this model, the original features x, y, z will be

replaced by the latent features learned from a binary RBM, for example hx, hy, hz.

Features
Appr. Original PCA RBM
GRAD 70.47 / 71.68 70.54 / 70.52 73.14 / 73.28
SVM 71.20 / 83.54 70.17 / 75.29 72.18 / 80.17

Table A.1: Comparison of original features and those with PCA and RBM pre-
processing in terms of similarity prediction accuracy. Test and training set results
are listed as percentages of correctly predicted similarity constraints for the config-
urations with the best training success. The SVM original values are taken from
[141].

Table A.1 shows the performance of different feature extraction techniques. For

completeness PCA is also included. The best result of the model trained by gradient

approach within 20 runs is reported for each RBM parameterisation. Unfortunately,

the SVM is much more computationally expensive, then the results of single runs

are displayed for this approach. The results for gradient ascent (GRAD) on original

features are comparable to those published in [141]. One should note that this

gradient approach is similar to that in [129, 141], with the difference is in the latter

the weights ai are constrained to
∑

ai = 1. As shown in Table A.1, the PCA

transformation of music data seems not to work well with the SVM training, these

features are slightly worse than in the original features, while using the gradient

approach shows little improvement. In contrast, improvement can be seen in all

approaches for the RBM features, with gradient ascent has the best test results,

improving by 2.67% over the original features, while SVM gains 0.92%.
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A.2 Action Recognition

Human action recognition is considered to be a fundamental topic in computer

vision research, with numerous applications in surveillance and retrieval systems

[21, 66].Typically, action recognition systems model video recordings as collections

of visual words, which are estimated using hand-crafted features. Extracting fea-

tures from each frame image to build code-words has been proved an efficient and

useful approach [146, 9, 60].

In this application, we employ Gaussian RBMs to efficiently learn spatio-

temporal features using a difference measure between frames in a video sequence,

called motion-difference. A motion-difference (MD) is the subtraction of It+κ by

It, two images at positions t + κ and t in a video sequence respectively, κ is frame

distance. As result, in motion-difference the negative pixels show the part of an

actor which only appears in the previous frame (t) while the positive pixels show

the portion only in the future frame (t + κ). Motion-difference removes the com-

mon shapes and background images that should not be relevant for action learning

and recognition, and highlights the movement patterns in space, making it easier to

learn the actions from such saliency maps using a simple classifier. This application

also employs representation learning to learn the movement patterns from motion

different features, using Gaussian RBMs. The latent features from RBMs then will

be converted into motion-difference words using K Nearest Neighbour.

We evaluate the visual words using the Naive Bayes and probabilistic Latent

Semantic Analysis (pLSA) classifiers. We report our results on two datasets: Weiz-

mann and KTH , along with results from other approaches regarding to different

classes of features such as shape descriptor (SD), motion descriptor (MF), hand-

crafted spatio-temporal (HST), and learned spatio-temporal (LST) descriptor. In

order to make a fair comparison, here we emphasise the approaches that use sim-

ilar classification models such as Naive Bayes and pLSA or their variants. For

completeness, we also include the recent approaches which achieve state-of-the-art

performance. Significance comparisons between the approaches is not possible

since each employed different reprocessing and classification techniques. In addi-

tion, each approach adopts different method such as split or leave-one-out (l-o-o)

for experimental evaluation.
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Method Eval Recog.rate(%)
MD + NB split 98.81
MD + pLSA split 98.77
SD + pLSA [146] split 92.3
SD + s-pLSA [146] split 93.00
ST + pLSA [99] l-o-o 90.00
MF + SVM [139] l-o-o 98.80
SD & MF[84] l-o-o 100.0

Table A.2: Performance on Weiz-
mann dataset. The results of [146, 99,
139, 84] are copied from the original
papers

Approach Eval Recog.rate(%)
MD + NB split 85.65
MD + pLSA split 88.89
HST + pLSA [99] l-o-o 83.33
MF + SVM [139] l-o-o 83.31
HST + SVM [123] split 71.72
HST + iEM+pLSA [142] l-o-o 82.33
LST + SVM [24] split 86.6
SD + S-LDA [139] l-o-o 91.20
LST + SVM [74] split 93.9

Table A.3: Performance on KTH
dataset. Results of [99, 139, 123, 142,
24, 74] are copied from the original
papers

Table A.2 and Table A.3 show that using RBMs for learning motion-difference

features can achieve good performance among state-of-the-art approaches.

A.3 Speaker Recognition

For speaker recognition, the same pipeline as in §A.2 is employed. In order to

build the vocabulary of the audio words we start with converting a audio script

into spectrogram. We consider the spectrogram of a script as a 2-D matrix with

time × frequency dimensions. The number of frequencies is varied, depending on

different types of audio coding. We reduce the dimensions of the data for further

processing steps by applying PCA to linearly transform the frequencies to lower di-

mension space. After that we learn the latent features of the audio data using Deep

Belief Networks where each input sample is the PCA-transformed frequencies at a

time slot. We then use KNN to build a codebook from the DBN features and quan-

tize the features into audio words. At the end, the audio script will be represented

in a bag of words, i.e. a vector of audio word counts. In the experiment, we test dif-

ferent types of features. The MFCC features [145] attempt to eliminate information

from speech data that is not relevant for recognition purposes, thus providing input

representation of modest size. DBNs on the other hand make use of less-processed

input data. Instead, it learns the latent features from the PCA-transformed spectro-

grams. The advantage of DBNs is it can learn useful representation as we can see

from the results in Table A.4. Here, taking the advantage of layer-wise learning in

DBNs we also combine different features in different layers. Let us denote DBN-1
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Approach Accuracy

MFCC 88.6

Audio words (DBN-1) 90.40

Hybrid (DBN-1+MFCC) 91.40

Audio words (DBN-2) 72.20

Hybrid (DBN-2+MFCC) 87.00

Audio words (DBN-1 + DBN-2) 90.60

Hybrid (DBN-1 + DBN-2 + MFCC) 92.60

Table A.4: Test set accuracy for speaker classification

and DBN-2 as the features from the first and the second RBMs in deep networks.

The results in Table A.4 show that the audio words built from features in first

layer of DBNs (DBN-1) outperform the MFCC features. The classification perfor-

mance even achieves improvement when we combine the audio words generated

from DBN-1 features with the MFCC. However, when one more layer is used in the

DBNs the the features are not good enough to build audio words and generalise

the classifier. It seems that the DBN-1 features generalise better than the DBN-2

counterpart because the expansion of the feature’s dimension in fist layer make it

more difficult to learn in the second one. This effect also can be seen when apply-

ing the convolutional DBNs on audio data [79], but in this experiment it is more

severe. As the results, combining DBN-1 and DBN-2 features does not show any

improvement.

A.4 Melody Modelling

The task we are insterested here is music prediction which is closely related with

previous work in language modelling [86]. Let denote a musical event at time t as

s(t). A musical event corresponds to the occurrence of a note in a melody. In this

application, we want to learn a model that predict a future event given the previous

events, i.e P(s(t))|s(1:t−1)).

In sequence modelling, the temporal relation of data is normally defined by

Markov assumption where the current state only depends on n previous states, i.e

P(s(t))|s(1:t−1)) = P(s(t))|s(t−n:t−1)). The simplest models go tightly with this assumption
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is the n-gram model. In this model, the conditional distributions are learned to be:

P(s(t))|s(t−b:t−1)) =
count(s(t−b:t−1))
count(s(t−b:t))

(A.4)

where count(s(tx:ty)) is the occurrence of the events s(tx:ty) in training scripts and n

is context length. Another approach is to employ an algorithmic model such as feed-

forward Neural Network (NN) to learn discriminatively the function f (s(t)); s(t−n:t−1)).

The disadvantages of both n-gram and NN are they cannot model the whole se-

quence of data and the context length must be pre-defined. In order to get rid of the

context length, one can unbound the order in the n-gram [102] and add recurrent

connections to the NN [20].

Another way to model the whole sequence is to use generative model such as the

Recurrent Temporal RBMs (RTRBM) [131] to represent the joint distribution P(s(1:T)),

where T is the length of the sequence. To use RTRBMs for melody modelling, we

set each visible layer of a RBMs to be a pitch such that X(t) = s(t). Here s(t) is the

softmax vector of s(t). Furthermore, for prediction task a discriminative learning

seems to perform better than generative learning [96, 70].

Experiment and evaluation was carried out by Srikanth Cherla on a corpus of 8

datasets of monophonic MIDI melodies from the Essen Folk Song Collection1 [121].

The corpus covers a range of musical styles and was previously used in [102, 26] to

evaluate their respective prediction models. It contains folk melodies of 7 different

traditions, and chorale melodies

Table A.5 contains the best predictive performance of each of the models con-

sidered in the comparison here. The results are averaged across all 8 datasets.

Here, the n-gram, FNN, RBM, DRBM, RNN, RTRBM, RTDRBM indicate n-gram

1Website: http://kern.ccarh.org/browse?l=essen
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Model Cross Entropy

n-gram 2.878
FNN 2.830

DRBM 2.819
RBM 2.799
RNN 2.778

RTRBM 2.764
RTDRBM 2.741

Table A.5: Table comparing the best predictive performance of the different models
in the evaluation. The RTDRBM outperforms the rest.

model,feed-forward Neural Networks, Restricted Boltzmann Machines, discrimi-

native RBM, recurrent Neural Networks, recurrent temporal RBM, and recurrent

temporal dicriminative RBM respectively. One will notice the progressive improve-

ment in the best-case performance from the n-gram models, to the non-recurrent

and recurrent connectionist models, with the RTDRBM performing better than the

rest. A paired t-test carried out over all the 10 resampling sets of each dataset (n

= 80) confirmed the significance of the improvement due to the RTDRBM over the

RTRBM [t(79) = 3.65, p < 0.001] and the RNN [t(79) = 3.70, p < 0.001].



Appendix B

Detail of Derivations

B.1 Update of RBMs

The average log-likelihood

` =
1
M

∑
m

log P(x(m)
|θ) (B.1)

where M is number of training samples, x(m) is a sample in the training set, θ is

a set of parameters that include W, a, b. For a sample x (now p(x|θ) is replaced by

p(x) for shorter notation) we have:

p(x) =
∑

h

p(x,h) =
1
Z

∑
h

exp(−E(x,h)) (B.2)

with the energy function:

E(x,h) = −
∑

i j

xiwi jh j −
∑

i

aixi −
∑

j

b jh j (B.3)
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If we take derivation from one sample:

∂ log p(x)
∂θ

=
∂ log(

∑
h exp(−E(x,h)))
∂θ

−
∂ ln(Z)
∂θ

=
1∑

h exp(−E(x,h))

∑
h

∂ exp(−E(x,h))
∂θ

−
1
Z

∑
x′,h

∂ exp(−E(x′,h))
∂θ

= −
1∑

h exp(−E(x,h))

∑
h

exp(−E(x,h))
∂E(x,h)
∂θ

+
1
Z

∑
x′,h

exp(−E(x′,h))
∂E(x′,h)
∂θ

= −
∑

h

p(h|x)
∂E(x,h)
∂θ

+
∑
x′,h

p(h, x′)
∂E(x′,h)
∂θ

(B.4)

Let us take the derivation of first term on wi j

∑
h

p(h|x)
∂E(x,h)
∂wi j

= −
∑

h

p(h|x)xih j

= −
∑
h1

...
∑
h j′

...
∑

hJ

∏
j′

p(h j′ |x)xih j

= −
∑
h1

...
∑
h\ j

...
∑

hJ

∏
\ j

p(h\ j|x)
∑

h j

p(h j|x)xih j)

= −
∑
h1

...
∑
h\ j

...
∑

hJ

∏
\ j

p(h\ j|x)(0 + p(h j = 1|x)xi)

= −P(h j|x)xi

(B.5)

For the second term

∑
x′,h

p(h, x′)
∂E(x′,h)
∂wi j

= −
∑

x′
(
∑

h

p(h|x′)x′i h j)p(x′)

= −
∑

x′
(P(h j|x′)x′i )p(x′)

(B.6)

Note that P(h j|x) is the probability of h j = 1 given x. Now apply Eq. B.5 and Eq.

B.6 to Eq. B.4 for a parameter wi j we have:

∂ log p(x)
∂wi j

= P(h j|x)xi −
∑

x′
P(h j|x′)x′i p(x′) (B.7)

Applying this to all samples to get the derivation in Eq. B.1 as:

∂`
∂wi j

=
1
M

∑
m

P(h j|x(m))x(m)
i −

M
M

∑
x

P(h j|x)xip(x) (B.8)
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Now we can the update of parameter wi j as:

∇wi j = 〈P(h j|x)xi〉0 − 〈P(h j|x)xi〉∞ (B.9)

here 〈〉0 means (empirical) expectation over the data distribution and 〈〉∞ means

expectation over model distribution. We can use the same process to calculate the

updates for other parameters.

B.2 Energy function for XOR

The propositional calculus Penalty Logic is defined in [109] as: E = 1 −Hp, with

Hp =



x if p is a positive atom literal x

1 − x if p is a negative atom literal¬x

Hp′ ×Hp′′ if p = p′ ∧ p′′

Hp′ + Hp′′ −Hp′ ×Hp′′ if p = p′ ∨ p′′

(B.10)

is characteristic function and p,p′,p′′ are propositional formulas.

In order to find the energy function of the XOR x ⊕ y ↔ z we convert it to a

formula that contains only conjunctives and disjunctives, as belows.

x ⊕ y↔ z = (x ∧ ¬y) ∨ (¬x ∧ y)↔ z

= (((x ∧ ¬y) ∨ (¬x ∧ y)) ∧ z) ∨ (¬((x ∧ ¬y) ∨ (¬x ∧ y)) ∧ ¬z)

= (((x ∧ ¬y) ∨ (¬x ∧ y)) ∧ z) ∨ (¬(x ∧ ¬y) ∧ ¬(¬x ∧ y) ∧ ¬z)

(B.11)

The characteristic function:

Hx⊕y↔z = H(((x∧¬y)∨(¬x∧y))∧z) + H(¬(x∧¬y)∧¬(¬x∧y)∧¬z) −H(((x∧¬y)∨(¬x∧y))∧z)H(¬(x∧¬y)∧¬(¬x∧y)∧¬z)

(B.12)

with1

H(((x∧¬y)∨(¬x∧y))∧z) = (x(1 − y) + y(1 − x) − xy(1 − x)(1 − y))z

= (x + y − 2xy)z
(B.13)

1Note that xy × x = xy
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and
H(¬(x∧¬y)∧¬(¬x∧y)∧¬z) = (1 − x(1 − y))(1 − y(1 − x))(1 − z)

= (1 − (x + y − 2xy))(1 − z)
(B.14)

apply Eq. B.13 and Eq. B.14 to Eq. B.12 we have:

Hx⊕y↔z = 1 − 4xyz + 2xy + 2xz + 2yz − x − y − z (B.15)

and the energy function

E(x, y, z) = 4xyz − 2xy − 2xz − 2yz + x + y + z (B.16)

The high-order term xyz in this function can be replaced by:

xyz = minh(xy − 2xh − 2yh + 2zh + 3h) (B.17)

with h is an additional energy function and minh is a function of h that returns a

minimum value. The energy function in quadratic term then becomes: E(x, y, z) =

minh(2xy − 2xz − 2yz − 8xh − 8yh + 8zh + x + y + z + 12h).



Appendix C

Rules from Car Valuation

h1 ↔ sa f ety is low ∧ the car is unacceptable

h2 ↔ can carry 2 people ∧ the car is unacceptable

h3 ↔ buying price is high ∧maintenance price is very high ∧ the car is unacceptable

h4 ↔ buying price is very high ∧maintenance price is high ∧ the car is unacceptable

h5 ↔ buying price is very high ∧maintenance price is very high ∧ the car is unacceptable

h6 ↔ no o f doors is 2 ∧ can carry more than 4 people ∧ luggage boot size is small ∧ the car is unacceptable

h7 ↔ buying price is high ∧ luggage boot size is small ∧ sa f ety is medium ∧ the car is unacceptable

h8 ↔ buying price is high ∧maintenance price is high ∧ can carry 4 people ∧ sa f ety is high ∧ the car is acceptable

h9 ↔ buying price is very high ∧maintenance price is low ∧ luggage boot size is small ∧ sa f ety is medium ∧ the car is unacceptable

(C.1)
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h10 ↔ buying price is medium ∧maintenance price is high ∧ can carry 4 people ∧ sa f ety is high ∧ the car is acceptable

h11 ↔ maintenance price is very high ∧ can carry more than 4 people ∧ luggage boot size is small ∧ sa f ety is medium ∧ the car is unacceptable

h12 ↔ buying price is low ∧maintenance price is high ∧ can carry 4 people ∧ sa f ety is medium ∧ the car is acceptable

h13 ↔ buying price is low ∧maintenance price is very high ∧ can carry 4 people ∧ sa f ety is high ∧ the car is acceptable

h14 ↔ buying price is medium ∧maintenance price is high ∧ luggage boot size is small ∧ sa f ety is medium ∧ the car is unacceptable

h15 ↔ buying price is very high ∧ can carry 4 people ∧ luggage boot size is small ∧ sa f ety is medium ∧ the car is unacceptable

h16 ↔ buying price is very high ∧maintenance price is low ∧ can carry 4 people ∧ sa f ety is high ∧ the car is acceptable

h17 ↔ maintenance price is very high ∧ no o f doors is 2 ∧ luggage boot size is medium ∧ sa f ety is medium ∧ the car is unacceptable

h18 ↔ buying price is low ∧maintenance price is low ∧ can carry more than 4 people ∧ luggage boot size is big ∧ sa f ety is high ∧ the car is very good

h19 ↔ buying price is low ∧maintenance price is low ∧ can carry 4 people ∧ luggage boot size is big ∧ sa f ety is medium ∧ the car is good

h20 ↔ buying price is low ∧maintenance price is medium ∧ can carry more than 4 people ∧ luggage boot size is big ∧ sa f ety is high ∧ the car is very good

h21 ↔ buying price is low ∧maintenance price is medium ∧ can carry more than 4 people ∧ luggage boot size is big ∧ sa f ety is medium ∧ the car is good

h22 ↔ buying price is low ∧maintenance price is medium ∧ can carry 4 people ∧ luggage boot size is big ∧ sa f ety is high ∧ the car is very good

h23 ↔ buying price is low ∧maintenance price is high ∧ can carry more than 4 people ∧ luggage boot size is big ∧ sa f ety is high ∧ the car is very good

h24 ↔ buying price is medium ∧maintenance price is low ∧ can carry more than 4 people ∧ luggage boot size is big ∧ sa f ety is medium ∧ the car is good

h25 ↔ buying price is low ∧maintenance price is low ∧ can carry 4 people ∧ luggage boot size is big ∧ sa f ety is high ∧ the car is very good

h26 ↔ buying price is low ∧maintenance price is low ∧ can carry more than 4 people ∧ luggage boot size is big ∧ sa f ety is medium ∧ the car is good

h27 ↔ buying price is low ∧maintenance price is low ∧ can carry 4 people ∧ luggage boot size is small ∧ sa f ety is high ∧ the car is good

h28 ↔ buying price is medium ∧maintenance price is low ∧ can carry 4 people ∧ luggage boot size is small ∧ sa f ety is high ∧ the car is good

h29 ↔ buying price is low ∧maintenance price is medium ∧ can carry 4 people ∧ luggage boot size is small ∧ sa f ety is medium ∧ the car is acceptable

h30 ↔ maintenance price is very high ∧ no o f doors is 2 ∧ can carry 4 people ∧ luggage boot size is small ∧ sa f ety is medium ∧ the car is unacceptable

h31 ↔ buying price is low ∧maintenance price is low ∧ can carry 4 people ∧ luggage boot size is small ∧ sa f ety is medium ∧ the car is acceptable

h32 ↔ buying price is low ∧maintenance price is medium ∧ can carry 4 people ∧ luggage boot size is small ∧ sa f ety is high ∧ the car is good

h33 ↔ buying price is low ∧maintenance price is very high ∧ can carry more than 4 people ∧ luggage boot size is medium ∧ sa f ety is high ∧ the car is acceptable

h34 ↔ buying price is medium ∧maintenance price is medium ∧ can carry more than 4 people ∧ luggage boot size is big ∧ sa f ety is high ∧ the car is very good

h35 ↔ buying price is medium ∧maintenance price is medium ∧ can carry 4 people ∧ luggage boot size is big ∧ sa f ety is high ∧ the car is very good

(C.2)
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h36 ↔ buying price is medium ∧maintenance price is medium ∧ no o f doors is 4 ∧ can carry more than 4 people ∧ sa f ety is medium ∧ the car is acceptable

h37 ↔ buying price is medium ∧maintenance price is very high ∧ can carry more than 4 people ∧ luggage boot size is big ∧ sa f ety is high ∧ the car is acceptable

h38 ↔ buying price is medium ∧maintenance price is very high ∧ can carry 4 people ∧ luggage boot size is small ∧ sa f ety is high ∧ the car is acceptable

h39 ↔ buying price is medium ∧maintenance price is very high ∧ no o f doors is 2 ∧ can carry 4 people ∧ sa f ety is high ∧ the car is acceptable

h40 ↔ buying price is high ∧maintenance price is high ∧ can carry more than 4 people ∧ luggage boot size is big ∧ sa f ety is high ∧ the car is acceptable

h41 ↔ buying price is high ∧maintenance price is high ∧ can carry 4 people ∧ luggage boot size is big ∧ sa f ety is medium ∧ the car is acceptable

h42 ↔ buying price is very high ∧maintenance price is low ∧ can carry more than 4 people ∧ luggage boot size is big ∧ sa f ety is medium ∧ the car is acceptable

h43 ↔ buying price is very high ∧maintenance price is low ∧ no o f doors is 4 ∧ can carry more than 4 people ∧ sa f ety is high ∧ the car is acceptable

h44 ↔ buying price is very high ∧maintenance price is medium ∧ no o f doors is 3 ∧ can carry more than 4 people ∧ sa f ety is high ∧ the car is acceptable

h45 ↔ buying price is low ∧maintenance price is very high ∧ no o f doors is 4 ∧ luggage boot size is small ∧ sa f ety is medium ∧ the car is unacceptable

h46 ↔ buying price is very high ∧ no o f doors is 4 ∧ can carry more than 4 people ∧ luggage boot size is small ∧ sa f ety is medium ∧ the car is unacceptable

h47 ↔ buying price is very high ∧maintenance price is medium ∧ no o f doors is 3 ∧ luggage boot size is small ∧ sa f ety is medium ∧ the car is unacceptable

h48 ↔ buying price is very high ∧maintenance price is medium ∧ no o f doors is 2 ∧ luggage boot size is medium ∧ sa f ety is medium ∧ the car is unacceptable

h49 ↔ buying price is medium ∧maintenance price is very high ∧ no o f doors is more than 5 ∧ luggage boot size is small ∧ sa f ety is medium ∧ the car is unacceptable

h50 ↔ buying price is high ∧maintenance price is medium ∧ no o f doors is more than 5 ∧ can carry 4 people ∧ sa f ety is high ∧ the car is acceptable

h51 ↔ buying price is high ∧maintenance price is medium ∧ no o f doors is 2 ∧ luggage boot size is medium ∧ sa f ety is medium ∧ the car is unacceptable

h52 ↔ buying price is very high ∧ no o f doors is 3 ∧ can carry 4 people ∧ luggage boot size is medium ∧ sa f ety is medium ∧ the car is unacceptable

h53 ↔ buying price is very high ∧maintenance price is low ∧ no o f doors is 2 ∧ luggage boot size is medium ∧ sa f ety is medium ∧ the car is unacceptable

h54 ↔ buying price is very high ∧maintenance price is medium ∧ no o f doors is 4 ∧ luggage boot size is small ∧ sa f ety is medium ∧ the car is unacceptable

(C.3)



Appendix D

Visualisation of rules

At first the rules from RBMs trained on 20000 MNIST Handwritten digit samples are

extracted. Here, each image box represents the visualisation of rule from beliefs to

a hypothesis. The white pixels represent positive literals, the dark pixels represent

negative literals, the grey ones represent missing literals. We then extract rules

from fist hidden layer to the label layer using TOP RBM EXTRACT. Since each

literal in the top layer extraction represent the hypothesis in lower layer, therefore

we replace the higher literals by the visualisation of lower rules. For the ease of

presentation we only show the rules in lower layer whose hypotheses are positive

literals in top layer.

0.166 : Zero ↔ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧ ∧

0.144 : One ↔ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧

The following shows the rules extracted from TiCC handwritten character

dataset.

0.102 : A ↔ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧
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∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧

0.091 : B ↔ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧ ∧



Appendix E

Visualisation of Representation

Ranking

We generated the visualisation by normalising all basis vectors (feature detectors)

w j (column vector in the weight matrix) of an RBM to [0 1] and reshaping each

vector to a 2-dimensional image. In order to treat all basis vectors equally we used

min,max method for normalisation with min, max were the minimum and maxi-

mum elements of the weight matrix. After representation ranking, we visualised

the basis vectors in descending order of the scores. The order was from left to right

and then from top to bottom for ease of presentation. In order to visualise large

number of basis vectors, e.g. the whole hidden units of a network, it would be

easier to see the ranking through the bases organised from top to bottom and then

from left to right as in Figure E.1 and Figure E.2. Figure E.1 shows the basis vectors

trained on 2000 face images from Frey faces dataset1 (zoom in the Figure for better

view). In Figure E.2 we show the basis vectors trained on handwritten letters data

from TiCC collection.

1http://www.cs.nyu.edu/˜roweis/data.html
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Figure E.1: Filter bases from RBM trained on Frey face images. The RBM has 500
units in hidden layer, the learning rate η = 0.01, sparsity gain λ = 0.1 (p = 0.00001).
The bases are organised in descending order of their scores from top to bottom and
from left to right.



Appendix E. Visualisation of Representation Ranking 152

Figure E.2: Filter bases from RBM trained on handwritten letters (from A to Z). The
RBM has 500 units in hidden layer, the learning rate η = 0.3, sparsity gain λ = 0 (no
sparsity constraint). The bases are organised in descending order of their scores
from top to bottom and from left to right.



Appendix F

Domain Adaptation for Sentiment

Analysis

In this experiment we use the benchmark version of sentiment dataset of [14]. The

data contains positive/negative reviews on Books, DVD, Electronics and Kitchen,

and each has 2000 samples. The source data consist of 18,668 samples of unlabelled

reviews, also from this dataset. The data is encoded as 2000-dimension vectors

representing the presence/absence of the most frequent uni-grams and bi-grams in

the vocabulary. We use RBMs with rectifier units [93] for representation knowledge

transfer and a linear SVM as classifier. The reason behind this is the rectifier units

can produce sparse representations that are well suited for linear classifier for

sentiment analysis [46]. Experiment evaluation is done by using 10-fold cross

validation.

Similar to previous experiments we apply the raw data of all four domains to

learn the linear classifier which obtains similar results as in [37, 14]. Three transfer

techniques are: RBM MIX - transfer source representation to combine with new rep-

resentation learned in target domain; RBM STL (Transfer Data) - transfer the data

from the source domain to combine with data in the target domain to learn the repre-

sentation; and our adaptive transferred-profile that transfers the complete-models.

With rectifier RBMs, approximation of mutual information becomes difficult due

to the infinite number of binary units in the hidden layer. Also, the domain infor-

mation captured in the rectifier RBMs seems to be distributed all over the feature
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detectors that would result in significant performance loss if pruning is used in the

transfer. Therefore, we employ dropout to avoid biased sampling for the learning

in the target domain.

Books DVD Electronics Kitchen
Linear SVM 80.65 80.85 85.05 85.95
RBM MIX 81.06 80.85 85.53 87.21
RBM STL (Transfer Data) 81.21 81.18 85.59 87.25
aTPL 81.55 81.89 86.17 87.29

Table F.1: Performance of transfer data (RBM STL) and transfer representation
(RBM MIX & aTPL) on Books, DVD, Electronics, Kitchen domains of Amazon
sentiment dataset.

The averaged results in Table F.1 may suggest that it is promising to share the

knowledge which has already learned from a model. Even with the combination of

representation knowledge RBM MIX achieved similar results as RBM STL in two

domains Electronics and Kitchen. The aTPL achieve highest performance in all

four domains.


