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Abstract

We analyze a recently proposed method to estimate volatility and correlation when
prices are observed at a high frequency rate. The method is based on Fourier analysis
and does not require any data manipulation, leading to more robust estimates than the
traditional methodologies proposed so far. In the first part of the paper, we evaluate
the performance of the Fourier algorithm to reconstruct the time volatility of simulated
univariate and bivariate models. In the second part, the Fourier method is used to
investigate the volatility and correlation dynamics of futures markets over the Asian
crisis period, with the purpose of detecting possible interdependencies and volatility

transmissions across countries amid a period of financial turmoil.

Keywords: high frequency data, Fourier analysis, Asian crisis, volatility spillover.



1 Introduction

In recent years, high frequency data have become increasingly available for a wide range of
securities allowing for a deeper understanding of complex intraday volatility and correlation
dynamics. Within a high frequency domain the price formation is followed in real time, or
tick-by-tick, resulting in a large amount of observed values and, therefore, in a virtually
continuous process.

So far, temporal dependencies in financial markets have been mainly analyzed by means
of parametric models such as GARCH (Bollerslev, Chou and Kroner, 1992; Bollerslev,
Engle and Nelson, 1994; Shephard, 1996). High frequency data provide novel insights
into the main features of these models. For instance, Andersen and Bollerslev (1998a)
found that better ex-post measure of the underlying daily latent volatility factor, usually
estimated by the daily (absolute or squared) return, can be computed by exploiting the
entire sequence of absolute or square intraday returns. Andersen and Bollerslev (1998b),
building on the continuous time stochastic volatility framework developed by Nelson (1990)
and Drost and Werker (1996), applied the same idea to improve the forecasting performance
of the popular GARCH(1,1), showing that the volatility forecasts closely correlate with the
future latent daily volatility. Andersen, Bollerslev, Diebold and Labys (2001) extended and
theoretically characterized this new measure, termed realized volatility. This methodology
is nonetheless based on the strong assumption of regularly spaced data, whereas tick-by-
tick quotes are, by nature, observed at uneven intervals over times. For implementation
purposes, the observed series of prices are then synchronized or homogenized by imputation
techniques such as linear interpolation and previous-tick interpolation. However, Barrucci
and Reno (2002b) showed that the former, also used in Andersen et. al. (2001), induces
a downward bias in the realized volatility estimator whose magnitude intensifies as the
sampling frequency increases.

Regarding the analysis of volatility within the context of non synchronous quotes, sev-
eral contributions can be found in the financial and econometric literature. Moving back-
ward to the years preceding the large diffusion of high frequency databases, we can refer to
the works of Scholes and Williams (1977) and Choen at. al. (1983); for more recent papers
see Martens (2000), Oomen (2002), Barndorff-Nielsen and Shephard (2002), Brandt and
Diebold (2003), Barndorff-Nielsen and Shephard (2004), among many others. Although
very valid, all these approaches require, either directly or in a less explicit way, synchro-
nization of the original data to be applied. An exception can be found in De Jong and
Nijman (1997) where the cross products of returns are regressed on the number of common
time units to these returns. Nevertheless, the estimation method is based on a discrete
time model and yet no further developments have explored the possibility to extend it to

a continuous time setting. Very recently, Hayashi and Yoshida (2005), also Hayashi and



Yoshida (2006), have proposed a new approach to estimate the covariance (correlation) of
two diffusion processes when they are observed at discrete and asynchronous times. The
method is an alternative, but similar in spirit, to the realized covariance. The resulting
estimator is showed to be still unbiased and consistent as the observation interval shrinks
to zero but it does not require any manipulation of the observed data.

In this paper, we will study an alternative, non parametric approach suggested in
Malliavin and Mancino (2002) where the estimate of the variance-covariance matrix 3(t) of
a multivariate process is computed via Fourier analysis. Being based on integration rather
than on differentiation, the method well adapts to the inhomogeneous time structure of
high frequency data. The procedure employs the observations in their original form as
in Hayashi and Yoshida works but it also allows to recover the time evolution of ()
over a fixed window, an appealing feature that is not share, to our knowledge, by any
other estimator in the field. Early recognition on the validity of the method can be found
in Barrucci, Mancino and Reno (2000) where, by Monte Carlo experiments on equally
spaced data, it was possible to estimate the volatility of a univariate process and the cross-
volatilities of a multivariate process. Further applications have been evaluated in a more
recent literature. Barrucci and Reno (2002a) measure ex-post volatility through the Fourier
algorithm and found an improvement in the forecasting performance of the GARCH(1,1)
model respect to the usual volatility measure given by the cumulative sum of square intraday
returns. Reno (2003) exploits the Fourier approach to prove that the so-called Epps effect,
due to Epps (1979), namely the tendency of correlation to decrease as sampling frequency
increases, can be explained by asynchronous trading and lead-lags relationships. Precup
and Iori (2005) show that the Fourier estimator generates more accurate results respect to
interpolation based methods such as the standard Pearson coefficient and the co-volatility
weighted measures proposed in Dacorogna at. al. (2001).

We initially use the Fourier estimator to reconstruct volatility trajectories of simulated
univariate and bivariate models. Monte Carlo experiments are also performed to analyze
the correlation behavior between two tick-by-tick asset prices as a function of the frequency
scale. In a second stage of the study, we apply the method to the time series of three futures
contracts continuously recorded from April to December 1997, which includes the Asia
crisis. In particular, our dataset contains high frequency prices for two currency futures,
the Australian dollar and the Japanese yen (both in terms of the US dollar) and for the S&P
500 index future. The currency futures were chosen because of the geographical proximity
of these countries to the center of the East Asian Crisis and the index future because of
the role of the underlying index as leading indicator of the US stock market performance.
The objective is to extend the knowledge of price dynamics in futures markets by looking

at possible volatility transmissions among currencies amid a period of financial turmoil.



Several studies have focused on the properties of futures returns and volatility and
temporal relationships between spot and futures markets. For example, Kawaller et al.
(1987) have shown that S&P 500 index futures returns lead S&P 500 spot returns by up to
forty minutes, while the spot market rarely leads the futures market beyond one minute, in
accordance with the hypothesis that investors with better market-wide information prefer
to trade in stock index futures. Chan and Karolyi (1991), Abhyankar (1995), Tse (1999)
and Min (1999) report that unlike a lead-lag relation, there is a bi-directional or contem-
poraneous relationship among the spot and the futures markets volatility, with innovations
in either market spilling on the other. However, while contagion has been so far investi-
gated by analyzing the behavior of several asset classes such as stocks, bonds and exchange
rates, most of the studies have focused on spot rather than on futures markets. A no-
table exception is the paper by Najand at. al. (1992) where the authors study volatility
spillover in five daily currency futures prices over the period January 1980 and December
1989. They find that ARCH and spillover effects are both present but tend to alternate
over time. Tai (2003) looks at contagion effects in both conditional means and volatilities
among British pound, Canadian dollar, Deutsche mark, and Swiss franc futures markets
detecting spillover in coincidence of the 1992 ERM crisis.

The reminder of the paper is organized as follow. Section 2 introduces the Fourier
algorithm and briefly outlines its implementation. Numerical experiments are performed
in Section 3 to test the reliability of the method. Section 4 presents a literature review on
the most common methods used to test for contagion during the Asian crisis. Results are

discussed in Section 5 while section 6 concludes.

2 The Fourier method: theory and implementation

The estimator proposed in Malliavin and Mancino (2002) is a fully non parametric method
to compute the time-varying correlation matrix between two or more assets. It is based on
the only a priori assumption the log-price p;(t) = log S;(t), of an asset i at time ¢, follows

a diffusion process of the form
d
dpi(t) = oy ()dW;(t) + ps(t)dt, i=1,....d, (1)
j=1

where o(t) and u(t) are time dependent random functions and W (t) are independent Brown-

ian motions. For this kind of models, we define the volatility matrix as

d
Sii(t) =) oin(t)ow;(t) (2)
k=1



typically estimated through the well-known pathwise formula, due to Norber Wiener (see,

for instance, Karatzas and Shreve, 1991)

<pi,pj>t=/0 Yij(u)du, (3)

where (p;,pj): is the quadratic covariation of the process. Although the latter is an un-
biased estimator for ¥;;(t), it also requires a differentiation procedure that results to be
quite unstable when observations are missed at the selected mesh points, as it might be
the case working with tick-by-tick data. On the other side, the linear and previous tick in-
terpolation methods then adopted to synchronized the series have the drawback to reduce
the number of observations and to induce spurious autocorrelations among the returns.
The Fourier algorithm instead is based on integration and can be directly applied to the
tick-by-tick data, including all the observations, two important features that highlight its
natural adaptability to the high frequency framework.

The volatility matrix 3;;(¢) is reconstructed on a fixed time window through the Fourier

coefficients of dp; defined as

1 2

ao(dp;) = o )y dp;
1 2

ar(dp;) = 7T/0 cos(kt)dp;
1 2

br(dp;) = 7T/0 sin(kt)dp;.

Note that by changing the origin and rescale the unit of time we can always reduce the ob-
served time window [0, 7] to [0, 27]. Malliavin and Mancino (2002) derived a mathematical
expression for the Fourier coefficients of ¥;; based upon the coefficients of dp;. The result

is reported below without proof.

Theorem 2.1. For a fized integer ng > 0, the Fourier coefficients of the volatility matrix

are given by:

N

ao(Xi;) = ]\}i_{noom Z [as(dpi)as(dp;) + bs(dpi)bs(dp;)] (4)
T S_]\:LO

ar(Xi) = ]\}gnoom _Z [as(dpi)as+k(dpj) + bs(dp;j)bs sk (dpi)] (5)
5—1\70
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The integer ng represents the number of coefficients it is advisable to omit, should they
be affected by the drift term in equation (1). By the Fourier-Féjer inversion formula, ¥;;(¢)

can be then obtained pointwise as

M
Sij(t) = lim Y [ag(Tij)cos(kt) + by(Si;)sin(kt)] (7)

M—oo
k=0

The use of this formula allows us to keep the characteristics of the volatility matrix, i.e.
the partial sums on the right-hand side in the above expression are still symmetric positive
definite matrices.

The implementation is carried out by computing the Fourier coefficients of dp; via

integration by parts as follow

2m o 2m
ar(dp) = 1 /0 cos(ktydp = P =PO) _k /O sin(kt)p(t)dt. (8)

m 7T s

However, a price does not evolve continuously but, instead, it is observed at unevenly
intervals in the form of tick-by-tick quotes p(t¢;), ¢ = 1...,n, where n corresponds to the
number of observations in the re-scaled interval [0, 27r]. Therefore, to implement the method
and, in particular the integration, we need an assumption on the way data are connected.
A possible option is to set p(t;) = p(ti+1), in other words, to consider piecewise constant

prices over the interval [t;,¢;11]. Under this assumption, the integral in (8) becomes

ﬁ /t i+1 sin(kt)p(t)dt = p(t;)— /t i+l sin(kt)dt = p(ti)l (cos(kt;) — cos(kti1)) .

> s

p(2m)—p(0)

In the integration by parts formula (8), the constant term can be set to zero by

adding a drift term in the diffusion equation (1) so that

p(2m) — p(0)

t.

This change of variable will not have any effect on the final estimates and it will also remove
a possible source of bias.

Another aspect of the computation is related with the choice of a convenient frequency
at which to stop the expansions (4)-(6). The smallest Fourier wavelength that can be
evaluated to avoid aliasing is twice the smallest distance between two consecutive prices,
here denote with 7. It can also be seen as the minimum frequency rate at which tick-by-tick
data are sampled, i.e. 7 usually equal to 1 second. In the frequency domain, this correspond
to the highest frequency - also known as Nyquist frequency (see Priestley, 1979), where
n is the number of observations. We can then conclude that a reasonable value for IV is

given by 3.



3 Numerical Analysis

The performance of the Fourier algorithm as volatility estimator was initially tested on
the short interest rate model introduced in Chan et. al. (1992). This is a broad class
of processes that includes the mean reverting version of the Ornstein-Uhlenbeck process
proposed by Vasicek (1977) and the one-factor general equilibrium model developed in
Cox, Ingersoll and Ross (CIR) (1985). It is defined as the solution of the following sto-
chastic differential equation (SDE)

dr(t) = Bla —r(t))dt + nr7 (t)dW (). 9)

To simulate the process, we have used the parameters estimated in Jiang (1998) on the 3-
month Treasury bill rates via an indirect inference approach and given by & = 0.079(0.044),
B = 0.093(0.100), 4 = 1.474(0.008), and 7 = 0.794(0.019), where the numbers in the paren-
thesis are the standard deviations of the estimates.

In order to estimate the volatility path, we have adopted the technique suggested in
Malliavin and Thalmaier (2005) to obtain positive volatility terms despite only a finite
number of coefficients is employed in the summation (7). It follows that the volatility is

estimated by taking instead

M
o?(t) = ng(dk) [ak((f?)cos(kt) + bk(a2)sin(k:t)] , (10)
k=0
with 02 = ¥; in equations (4)-(6) and where (-) is a variant of the Fejer kernel

(Priestley, 1979) defined as

The original Fejer kernel is a smoother method responsible for eliminating a well-know
problem in Fourier analysis, namely the Gibbs phenomenon'.

To mirror the inherent non homogenous nature of the high frequency data, we have
simulated an unevenly series of ticks by extracting the transaction times between contiguous
trades, the so called durations, from an Exponential(A\) with A = 10. The choice of the
Exponential was motivated by a simple statistical analysis of the differences t; — t;_1 for

the 3-month futures contracts used in Section 5. In all cases the empirical distribution is

!The Gibbs phenomenon arises when a piecewise continuously differentiable function is approximate by
a Fourier series. It can be shown, for instance by applying the method to a simple sawtooth function,
that the series displays an overshoot in the left-hand side interval of the discontinuity and a symmetric
undershoot in the right-hand sided of the interval. The overshoot does not vanish as the frequency increases
but, instead, approaches a finite limit, i.e. the height of the overshoot does not decrease by increasing the

number of terms in the series.



well approximated by an Exponential, despite the different level of liquidity of the three
contracts. Figure 1 illustrates the temporal behavior of the diffusion coefficient o2(t) =
7%r27(t) on 10 days of trading of 8 hours each with a time step of 1 second. The estimate
is consistent with the simulated path leading to a good reconstruction of the trajectory
with § = %. It is important to note that the trajectory was estimated directly from the
generated values of the interest rates and not from the simulated volatility time series.

In the model (9) employed so far, the randomness of the volatility component is gener-
ated by the state variable itself with the parameter v measuring the degree of dependence
of the variance from the interest rate level. A natural step into the analysis now consists in
applying the estimation methodology to a more complex structure, where the volatility is
characterized by its own latent stochastic process. In particular, we suppose that a stock

price S and its variance v satisfied the following SDEs

dS(t) = p(t)St)dt + /o()S(t)dW; (11)

and
dv(t) = XNv — v(t))dt +n/v(t)dWs (12)
with
<dW1, dW2> = pdt,

where ) is the speed of reversion of v(t) to its long term mean ©. This process is well-known
in finance as Heston model (Heston, 1993). The process followed by v(¢) may be recognized
as belonging to the class (9) introduced at the beginning of the section when v = %

We have simulated 10 days of trading of 8 hours each with a time step of 1 second.
Figure 2 plots the trajectory of the historical volatility with exponential sampling. Al-
though the Heston framework is quite complex, the obtained reconstruction well follows
the dynamics of the original process (12) with a good representation of both the abrupt
changes and the more regular sections in the volatility path. The value of the smoothing
parameter was set to %

Another noteworthy application of the Fourier algorithm consists in estimating the
integrated volatility matrix ¥;;

1 2w

67 = o ) i (s)ds,

over a fixed time window [0, 27]. With a minimum computational effort, it can be proved

that ~9

)
Gii0jj

5% = 271'(10(2@') = pPij =
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Figure 1: Top panel: squared diffusion coefficient 7%727(t) as simulated by model (9).

Bottom panel: estimated trajectory via Fourier method (unevenly high frequency data).
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with the Fourier correlation coefficient p;; on the right-hand side. Borrowing the idea in

Reno (2003), we performed a numerical test on the bivariate stochastic model

Q9 9
[ V) =

>
=
S
S

|
Q

[
)\2[&12 — O

S 3

t)]dt + \/2M10103(t)dW3(t)
t)]dt 4 \/2X20203 (t)dWy(t)

(13)

with (dWy,dW3) = p. This is the bivariate continuous time limit of the well-known
GARCH(1,1) model, whose parameter were estimated in Andersen and Bollerslev (1998)
on the daily return times series of the DEM-USD and JPY-USD exchange rates as follow

01 =0.035 6 =0.054
wy; = 0.636 wy = 0.476
A1 =0.296 Ag = 0.480.

The value for the correlation was set to p = 0.35. To gain a deeper insight into the accuracy

of the estimates provided by the Fourier algorithm, we have compared the method with

the well-known Pearson correlation estimator. The results are illustrate below.
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Figure 3: Fourier correlation and Pearson correlation between two simulated asset prices

according to model 13. The dotted line represents the true correlation level set to 0.35.

Model (13) was run 1,000 times with a time step of 1 second over a period of 24

hours (86400 seconds) trading. As before, the durations are extracted from an exponential

10



distribution with Ay = 15 and Ay = 40. Up to 30 minutes, we have sampled every 25
seconds, instead of every minute, to ensure a more detailed representation. From the plot,
we observe that at short time scales (less then 10 minutes), which correspond to high
frequencies , the correlation is well out the benchmark to converge very fast towards it as
the frequency decreases. It can be inferred that the frequency scale N in equations (4)-(6)
must be chosen with care in order to obtain a stable correlation spectra. It is also apparent
as the Fourier method, differently from the Pearson estimate, is able to provide a much
smoother correlation trajectory. Moreover, the Pearson approach can only be applied to
homogeneous and synchronous series whereas the Fourier correlation is directly calculated

from the observed prices without any previous data manipulation.

4 Asian Crisis and Contagion

The last decade has witnessed dramatic movements in financial markets starting with the
ERM breakdown in 1992, followed by the 1994-5 Mexican peso crisis, which spawned the
so-called “tequila effect”, the East Asian crisis in 1997 and the Russian virus of 1998.
However, it is since the financial turbulence in Asia that policymakers and economists have
engaged in considerable research to identify and analyze the causes of financial contagion.

The term contagion has been an evolving concept in the academic literature but there
is still disagreement on its precise meaning. The most common definition splits contagion
into two categories: fundamental based contagion and pure contagion (see Calvo and Rein-
hart, 1996). The first category refers to the transmission of shocks between countries or
markets routes through real links such as trade, macroeconomic similarities and financial
connections. Under the second category, contagion arises when comovements cannot be
explained in terms of fundamentals, and common shocks and all channels of potential in-
terconnection are either not present or controlled for. Three major approaches have been
applied by researchers in order to identify contagion: correlation of asset prices, transmis-
sion of volatility changes, and conditional probability of currency crises (Dornbusch, Park
and Claessens, 2000; Pericoli and Sbracia, 2003). The estimation of correlation coefficients
among stock returns is the most common method used to uncover contagion effects. While
high correlations among countries are not necessarily evidence of contagion, but purely
a reflection of cross-country dependence, a significant increase in the correlation coefhi-
cient after a shock to one country is usually interpreted as a sign of contagion. King and
Wadhwani (1990) were among the first to define contagion as a significant increase in the
correlation between assets returns and, by implementing this measure, offered supporting
evidence for contagion during the October 1987 crash. Baig and Goldfajn (1998) show that

the cross-country correlations among currencies and sovereign spreads of Indonesia, Korea,
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Malaysia, the Philippines and Thailand significantly increased during the East Asian crisis
period compared to other periods. They also provide evidence there is cross-border conta-
gion in the currency market after employing dummy variables to control for own-country
news and other fundamentals. However, Forbes and Rigobon (2001, 2002) prove that the
correlation coefficient underlying traditional test for contagion is biased upward during pe-
riod of market turmoil. Indeed, being conditional on the variance of one of the two markets
under analysis, an increase in the market volatility, which is likely to happen after a crisis,
can lead to incorrectly accept that cross-market correlations has also increased and, there-
fore, that contagion has occurred. They suggest a simple way to account for this effect and
show that, once the so adjusted coefficient is applied to the 1997 East Asian crisis, the 1994
Mexican peso collapse, and the 1987 US stock market crash data, the correlation across
multi-country returns is no longer significant. In a recent paper, Arestis et. al. (2005), after
correcting for the heteroskedasticity bias, extend this study by employing the sequential
dummy test proposed in Caporale et. al. (2005), which is based on a set of less restric-
tive over-identifying assumptions then the one used by Forbes and Rigobon (2002) to test
for contagion. They find some evidence of contagion from Indonesia to the UK and from
Korea and Thailand to France during the Asian crisis, mainly concentrated in the second
semester of 1997. Several studies have also attempted to explore how, amid a crisis period,
changes of volatility in one market preceded changes of volatility in another, a phenomenon
refereed to as volatility spillover. A methodology commonly used to asses such changes is
based on the estimation of multivariate GARCH models. Park and Song (1998) apply a
GARCH framework to provide empirical evidence of volatility spillover among foreign ex-
change markets in East Asian countries during the crisis period. They find that the effects
of the crisis in Indonesia and Thailand were transmitted to the Korean foreign exchange
market, while the Korean crisis was not contagious to the two Southeast Asian countries.
Dungey, Fry and Martin (2003) use a bivariate GARCH model between the Asian equity
markets and the Australian equity market to show that the former poorly contributed to
the total volatility in the Australian market over the period leading to a little significant
evidence of contagion. The last approach aims to estimate the probability that one country
is reached by the crisis given that other countries have already experienced it. Eichengreen,
Rose and Wypolsz (1996), by means of a panel of quarterly macroeconomic and political
data covering 20 industrial economies from 1959 to 1993, relate the probability of a crisis
to a set of explanatory variables through a probit model across countries and prove that
contagion appears to spread more easily to countries which are closely tied by international
trade linkages than to countries in similar macroeconomic circumstances. Using a simi-
lar approach, Caramazza, Ricci and Salgado (1999), investigate the Mexican, Asian, and

Russian crises. The results indicate that fundamentals such as trade spillovers, common

12



creditor and financial fragility are highly significant in explaining the three crises, while

exchange rate regimes and capital controls do not seem to matter.

5 Data Analysis

As an application of the Fourier method, we have investigated return correlations and
volatility dynamics of futures contracts over the Asian crisis period. Our analysis is based on
the 3-month S&P 500 index futures, the 3-month JPY-USD futures and the 3-month AUD-
USD futures, all observed tick-by-tick over the period April-December 1997. In particular,
the futures on the S&P 500 is the most liquid contract with 702,165 tick prices followed
by the AUD-USD currency futures with 226,360 and the JPY-USD contract with 19,027
available quotes. The Australian market is therefore characterized by the smaller turnover
of transactions. We analyze only near-to-maturity contracts, which are the most liquid ones
and apply a rolling-over mechanism to construct the actively traded times series shown in
Figure 4 (left-hand panels) together with their relative log returns series (right-hand panels).
The effect of the Hong Kong stock market crash, also known as “mini-crash”, caused by
the Asian crisis on October 27 is evident and translates into a clear price drop for both the
AUD-USD and the S&P 500 index futures. On the other side, by looking at the graphs for
the JPY-USD contract, it appears that the Asian events did not have a remarkable effect
on the Japanese market.

In Figure 5 we plot the volatility estimates for the three contracts in hand over the
period under consideration. Note as the trajectory for the Australian futures (middle
panel) is thinner compared to the other contracts due to the low liquidity of the asset. We
observe that the volatilities of the AUD-USD and the S&P 500 futures follow each other
rather closely between July and November 1997 and in particular around the “mini-crash”
of October 27. A peak on May 21, following Thailand announced (on May 15) of wide-
ranging capital controls, is detected on the AUD-USD futures but not on the other two
contracts. The JPY-USD futures also presents a spike on October 27, but not a persistently
high volatility after the event. The volatility of the JPY-USD is highest during the end of
May and mid June 1997, before the crisis properly started, and cluster of high volatility
are also detected around June 10. A second period of increased volatility is observed from
August to September 1997. The Japanese economy was only marginally affected by the
1997 turmoil (Dungey, Fry and Martin, 2004). Milton Friedman (1999) argued that the
severe period of recession and stagnation Japan was going through actually predated and
transcended the Asian crisis. Ellis and Lewis (2001), by analyzing daily market-close data
for stock prices, bond futures prices and exchange rates, found that developments in the

US market generally had a much greater influence on price movements and volatility than
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Figure 4: Times series of the tick prices (left-hand panels) and of the log returns (right-hand

panels) for the future contracts under study.

cross-market shocks originating in the Asian crisis economies. They also provide evidence
that stock markets reacted to the developments in Asia after the United States did, instead
of responding directly to the news itself. Volatility of both the Australian dollar and the
New Zealand dollar exchange rates against the US dollar increased remarkably during the
Asian crisis, building towards the end of the period, and remained high into the world
crisis period. Our results seem to strengthen the analysis of Ellis and Lewis and show
that the volatility of the AUD-USD futures follows closely the volatility of the S&P 500
index futures. This conclusion is well supported by the clear, large spike in the volatility
trajectory of the Australian futures which occurs soon after a similar level of volatility is
detected for the futures on the index.

Finally, we have derived the integrated weekly correlations across the three contracts
for the period April-November 1997. Figure 6 illustrates the obtained trajectories. The
frequency scale was set to a value corresponding to 30 minutes in the time domain. This
value is a trade-off between short and long time scales where non synchronicity and lack
of statistics respectively, may generate downward biases in the estimated correlations (see
Figure 3). We also checked that the correlations patterns reconstructed are stable when
changing the frequency scale around the chosen value. Figure 4 and Figure 6 are consistent

with each other. Starting from mid July, both the currency futures curves are downward
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sloping, whereas the S&P 500 index performance is on overall positive. By looking at the
correlation time series, the trajectory relative to the currency futures shows an increasing
level of mutual dependence. An opposite pattern can instead be observed between the JPY-
USD futures and the S&P 500 index futures, with the lowest correlation value reached
towards the end of October. There is no clear evidence that a spike in the correlation
spectra may be due to structural changes affecting cross-market linkages, and as such to
contagion. Indeed, periods of high volatility, that characterized crucial stages of the Asian
crisis, do not seem to play a significant role in driving the correlation up or down. For
instance, the largest correlation value between the Australian and US market is detected
around mid September, during a relative calm period for the S&P 500 index futures, and
not soon after the October “mini-cras”, as expected. Similarly, the futures on the AUD-
USD and JPY-USD exchange rates show a high degree of correlation around mid June

when the volatilities of the two contracts are relatively low.

6 Conclusions

In this paper we have implemented the Fourier methodology proposed by Malliavin and
Mancino (2002) to compute historical volatility and correlation. Whilst classical meth-
ods require equally spaced observations, the Fourier estimator, being based on integration
rather than on differentiation, naturally exploits the inhomogeneous time structure of the
high frequency prices without any prior data manipulation. We have first tested the perfor-
mance of the method through numerical experiments obtaining volatility reconstructions
that very well match the simulated volatility dynamics. Further evidence is provided by
computing the integrated correlation of a bivariate diffusion process. We have then applied
the estimator to futures time series, observed at a high frequency level, during the East
Asian crisis of 1997. Our results are coherent with the exiting literature. We have found
that the Australian economy was not impacted by the Asian events directly but its reaction
was rather driven by the developments in the US market. Also, we have observed that the
Asian turmoil did not have a noticeable effect on the Japanese market.

We believe that our analysis would benefit from a more complete dataset including
pre-crisis and post-crisis samples to gain a deeper insight into the contagion problem. Our
correlation reconstruction considers only a symmetric contemporaneous relationship across
markets, whereas a wider range of data would allow for a better outline of the inherently
non symmetric nature of contagion by capturing the lead-lag relationship between returns
or volatilities across markets. Nonetheless, our method based on time varying estimates
has the advantage to look at contagion from a more dynamical prospective respect to the

existing approaches.
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Figure 5: Estimated volatility via Fourier method for the S&P 500 (top panel), the

AUD-USD (middle panel) and the JPY-USD (bottom panel) futures over the period Apr-
Dec1997.
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Figure 6: Weekly correlation estimated via Fourier method over the period Apr-Dec 1997:
AUD-JPY (top panel), AUD-S&P (middle panel) and JPY-S&P (bottom panel). The time

scale was set to 30 min.

17



Acknowledgments

The authors are indebted to Barry A. Goss for providing the data employed in this study,
for his helpful suggestions and his kind encouragement during the preparation of this man-

uscript. All errors and omissions are our own responsibility.

18



References

[1] Abhyankar, A.H. (1995): Return and volatility dynamics in the FT-SE 100 stock index and stock index
futures markets. Journal of Futures Markets, 15(4), 457-488.

[2] Andersen, T.G. and T. Bollerslev (1998a): Deutche Mark-Dollar volatility: intraday activity patterns,

macroeconomics announcements and longer run dependencies. Journal of Finance, 53, 219-265.

[3] Andersen, T.G. and T. Bollerslev (1998b): Answering the skeptics: yes, standard volatility models do
provide accurate forecasts. International Econimic Review, 39, 885-905.

[4] Andersen, T.G., T. Bollerslev, F.X. Diebold and P. Labys (2001): The Distribution of realized exchange
rate volatility. Journal of American Statistical Association, 96, 42-55.

[5] Arestis, P., G.M. Caporale, A. Cipollini and N. Spagnolo (2005): Testing for financial contagion between
developed and emerging markets during the 1997 East Asian Crisis. International Journal of Finance
and Economics, 10(4), 359-367.

[6] Baig, T. and I. Goldfijn (1998): Financial market contagion in the Asian Crisis. Working Paper 98-155,

International Monetary Fund, Washington.

[7] Barndorfi-Nielsen, O.E. and N. Shephard (2002): Estimating quadratic variation using realized variance.
Journal of Applied Econometrics, 17, 457-477.

[8] Barndorf-Nielsen, O.E. and N. Shephard (2004): Econometric analysis of realized covariation: high

frequency based covariance, regression and correlation in financial economics. Econometrica, 27, 885-925.

[9] Barrucci, E. and R. Ren (2002a): On measuring volatility and the GARCH forecasting performance.
Journal of International Financial Markets, Institutions and Money, 12, 182-200.

[10] Barrucci, E. and R. Ren (2002b): On measuring volatility of diffusion processes with high frequency
data. Fconomics Letters, 74, 371-378.

[11] Barrucci, E., M. Mancino and R. Ren (2000): Volatility estimate via Fourier analysis. Finanza Com-
putazionale, Atti della Scuola Estiva 2000, Universit Ca’ Foscari, Venezia, 273-291.

[12] Bollerslev, T., R.Y. Chou and K.F. Kroner (1992): ARCH modeling in finance: a review of the theory

and empirical evidence. Journal of Econometrics, 52, 5-59.

[13] Bollerslev, T., R.F. Engle and D.B. Nelson (1994): ARCH models. Handbook of Econometrics Volume
1V, in Engle and McFadden eds, North Holland Press.

[14] Brandt, M.W. and F.X. Diebold (2003): A no-arbitrage approach to range-based estimation of return

covariances and correlations. Working Paper 03-013, Penn Institute for Economic Research, Philadelphia.

[15] Calvo, S. and C.M. Reinhart (1996): Capital flows to Latin America: is there evidence of contagion
effects? Private Capital Flows to Emerging Markets, in Calvo, Goldstein and Hochreitter eds, Institute
for International Economics, Washington.

[16] Caporale, G.M., A. Cipollini and N. Spagnolo (2005): Testing for contagion: a conditional correlation
analysis, Journal of Empirical Finance, 12(3), 476-489.

19



[17] Caramazza, F., L. Ricci and R. Salgado (1999): Trade and financial contagion in currency crises. IMF
Working Paper.

[18] Chan, K. and A. Karolyi (1991): Intraday Volatility in the Stock Index and Stock Index Futures
Markets. Review of Financial Studies, 4, 657-684.

[19] Chan, K., A. Karolyi, F. Longstaff and A. Sanders (1992): An empirical comparison of alternative
models of the short-term interest rate. Journal of Finance, 47(3), 1209-1227.

[20] Cohen, K.J., G.A. Hawawini, S.F. Maier, R.A. Schwartz and D.K. Whitcomb (1983): Friction in the

trading process and the estimation of systematic risk. Journal of Financial Economics, 12, 263-278.

[21] Cox, J., J. Ingersoll and S. Ross (1985): A theory of the term structure of interest rates. Econometrica,
53, 385-406.

[22] Dacorogna, M.M., R. Genay, U.A. Mller, R.B. Olsen and O.V. Pictet (2001): An Introduction to
High-Frequency Finance. Academic Press, San Diego, CA.

[23] Dornbusch, R., Y.C. Park and S. Claessens (2000): Contagion: understanding how it spreads. The
World Bank Research Observer, 15(2), 177-197.

[24] Drost, F.C. and B.J.M Werker (1996): Closing the GARCH gap: continuous time GARCH modeling.
Journal of Econometrics, 74, 31-57.

[25] Dungey, M., R.A. Fry and V.L. Martin (2004): Currency market contagion in the Asia-Pacific region.
Australian Economic Papers, 43(4), 379-395.

[26] Dungey, M., R.A. Fry and V.L. Martin (2003): Equity transmission mechanisms from Asia to Australia:

interdependence or contagion? Australian Journal of Management, 28(2), 157-182.

[27] Eichengreen, B., A. Rose and C. Wyplosz (1996): Contagious currency crisis. NBER Working Paper
W5681.

[28] Ellis, L. and E. Lewis (2001): The response of financial markets in Australia and New Zealand to news
about the Asian crisis. RBA Research Discussion Papers RDP2001-03, Reserve Bank of Australia.

[29] Epps, T. (1979): Comovements in stock prices in the very short run. Journal of the American Statistical
Association, 74, 291-298.

[30] Forbes, K.J and R. Rigobon (2001): Measuring contagion: conceptual and empirical issues. Interna-

tional Financial Contagion, in Claessens and Forbes eds, Kluwer Academic Publishers.

[31] Forbes, K.J and R. Rigobon (2002): No contagion, only interdependence: measuring stock market
comovements. Journal of Finance, 57(5), 2223-2261.

[32] Milton, F., (1999): How Asia Fell. Hoover Digest No 2, Hoover Institution, Stanford University.

[33] Hayashi, T and N. Yoshida (2005): On covariance estimation of non synchronously observed diffusion
processes. Bernoulli, 11, 359-379.

[34] Hayashi, T and N. Yoshida (2006): Estimating correlations with non synchronous observations in

continuous diffusion models. Preprint (2005), Submitted.

20



[35] Heston, S.L. (1993): A closed-form solution for option with stochastic volatility with applications to
bond and currency options. The Review of Financial Studies, 6(2), 327-343.

[36] Jiang, G.J. (1998): Nonparametric modeling of U.S. interest rate term structure dynamics and im-
plications on the prices of derivative securities. Journal of Finance and Quantitative Analysis, 33(4),
465-497.

[37] Karatzas, I. and S.E. Shreve (1991): Brownian Motion and Stochastic Calculus (2 ed.). Volume 113 of
Graduate Texts in Mathematics, Springer-Verlag, Berlin.

[38] Kawaller, I. G., P.D. Koch and T.W. Koch (1987): The temporal relationship between S&P 500 futures
and the S&P 500 index. Journal of Finance, 42, 1309-1329.

[39] King, M. and S.B. Wadhwani (1990): Transmission of volatility between stock markets. Review of
Financial Studies, 3(1), 5-33.

[40] Malliavin, P. and M. Mancino (2002): Fourier series method for measurement of multivariate volatili-
ties. Finance and Stochastics, 6(1), 49-61.

[41] Malliavin, P. and A. Thalmaier (2005): Stochastic Calculus of Variations in Mathematical Finance.

Springer Finance.

[42] Min, J.H. and M. Najand (1999): A further investigation of the lead-lag relationship between the spot
market and stock index futures: early evidence from Korea. Journal of Futures Markets, 19(2), 217-232.

[43] Najand, M., H. Rahaman and K. Yung (1992): Inter-currency transmission of volatility in foreign
exchange futures. The Journal of Financial Markets, 12(6), 609-620.

[44] Nelson, D.B. (1990): ARCH models as diffusion approximations. Journal of Econometrics, 45, 7-38.

[45] Oomen, R. (2002): Modeling realized variance when returns are serially correlated. Technical Report,

Warwick Business School, University of Warwick.

[46] Pericoli, M. and M. Sbracia (2003): A primer on financial contagion. Journal of Economic Surveys,
17(4), 571-608.

[47] Precup, O. and G. Iori (2005): Cross-correlation in the high-frequency domain. Forthcoming.
[48] Priestley, M. (1979): Spectral Time Series Analysis. Wiley.

[49] Ren, R. (2003): A closer look at the Epps effect. International Journal of Theoretical and Applied
Finance, 6(1), 87-102.

[50] Shephard, N. (1996): Statistical aspects of ARCH and stochastic volatility. Likelihood, Time Series
with Econometric and Other Application, in Cox, Hinkley and Barndorff-Nielsen eds, Chapman and Hall,

London.

[51] Scholes, M and J. Williams (1977): Estimating betas from non synchronous data. Journal of Financial
Economics, 5, 309-327.

[62] Tai, C. (2003): Looking for Contagion in Currency Futures Markets. Journal of Futures Market, 23(10),
957-988.

21



[63] TseY. (1999): Price discovery and volatility spillovers in the DJIA Index and futures Markets. Journal
of Futures Markets, 19(8), 911-930.

[64] Vasicek, O. (1977): An equilibrium characterization of the term structure. Journal of Financial Eco-
nomics, 5, 177-188.

22



