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Trading Strategies with Implied Forward Credit Default Swap

Spreads

Abstract

Credit default risk for an obligor can be hedged with either a credit default swap

(CDS) or a constant maturity credit default swap (CMCDS). We find strong evidence

of persistent differences in the hedging cost associated with the two comparable con-

tracts. Between 2001 and 2006, it would have been more profitable to sell CDS and

buy CMCDS while after the crisis between 2008 and 2013 the opposite strategy was

profitable. Panel data tests indicate that for our sample period the implied forward

CDS rates are unbiased estimates of future spot CDS rates. The changes in the com-

pany implied volatility is the main determinant of trading inefficiencies, followed by

the changes in GDP and in the interest rates before the crisis, and the changes in

sentiment index and in the VIX after the crisis.
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1. Introduction

Credit default risk for an obligor can be hedged with either a credit default swap

(CDS) or a constant maturity credit default swap (CMCDS). An investor may be

indifferent to the instrument used since both provide the same terminal payoff. Is it

possible that over a period of several years one type of hedging could be cheaper than

the other? Credit default swaps have been instrumental in the increased trading in

structured credit financial markets until the beginning of 2007 when the sub-prime

crisis has started to develop. The British Bankers Association reported an exponential

evolution of the total notional amount traded on global credit derivatives reaching $20

trillion by the end of 2006, British Bankers’ Association (2006). The single-name credit

default swaps volume as a percentage of total credit derivatives volume was 33% in

2006, being by far the most important instrument in credit markets. In a recent

report by the International Organization of the Securities Commissions (IOSC 2012)

it is revealed that at the end of 2011, the gross notional value of outstanding CDS

contracts amounted to approximately $26 trillion, with a corresponding net notional

value of approximately $2.7 trillion. Single name CDS accounts for almost 60% of the

overall credit market in terms of gross notional.

Following the analogy with the constant maturity swap (CMS) contract, another

traded credit derivative is the CMCDS. In such a contract, the buyer pays a premium

(spread) in exchange for protection. While in a CDS the spread is fixed, in a CMCDS

contract the spread is floating and calculated according to an indexing mechanism.

In particular, the spread is set equal to the observed reference CDS spread at each

reset date, multiplied by a factor known as the participation rate (PR). The CMCDS

instrument allows economic agents to take views on the future shape of the CDS curve.

Moreover, combining a CDS and a CMCDS with the same reference entity leads to

the complete elimination of credit default risk for that obligor, allowing investors to

isolate spread risk (i.e. the risk of changes in the premium not related to an actual

2



credit event) and to hedge default risk. In addition, CMCDS are useful for protection

sellers to hedge against spread widening risk.

One might presume that during the expansion of the market new operators were

joining, trades were increasing due to both the increase in the notional as well as in the

number of traders. We might thus think that the market was growing and that traders

could have different level of information and understanding of the market activity

which in turn may lead to the occurrence of trading inefficiencies1. An important

research issue then is the identification of the credit instrument to use for protection

against default risk. If supply and demand conditions lead to an imbalanced market,

it would be useful to know whether it is more cost effective to pay a floating premium

spread rather than a fixed one. At any point in time, for a given company, buying

protection with a fixed premium may lead to different costs than buying protection

with a floating premium. Nevertheless, for the entire universe as a whole and for a long

period of time, it should not make any difference what type of premium one is using.

Otherwise, there would be a clear inefficiency in the credit market. This situation has

already been investigated in interest rate markets. Brooks (2000) showed that for the

interest rate swap market in the 1990s it was net profitable to pay floating and receive

fixed. His study pointed out to a market anomaly regarding the interest rate swap

market which emerged in the 80s and 90s.

The constant maturity credit default swaps work exactly like constant maturity

interest rate swaps by resetting the premium every period in line with a reference

rate. Upon default, the CDS and CMCDS contracts will offer buyers the same payoff

protection. The main difference between the two default swaps is that one requires a

fixed rate premium while the other requires a floating rate premium. The calculation

of the floating rate premium is more elaborated than the derivation of a fixed rate

1We thank an anonymous referee for suggesting this interpretation.
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premium for CDS. In addition, the floating rate premium is sensitive to the shape

of the credit curve, whether upward trending or inverted or exhibiting humps due

to liquidity pressure at some tenor maturities. Hence, in this paper we conjecture

that market participants may favor overall one contract style over another when in

fact they should be indifferent if the aim is to trade default protection on corporate

single names. While this statement may be more credible for trading data before

the subprime crisis, mainly due to the meteoric expansion of the CDS market, it is

interesting to see if the same conclusion is still valid after the subprime crisis. In

a nutshell, we explore the questions whether there are inefficiencies on single name

credit markets, whether these inefficiencies existed only prior to the subprime crisis,

whether the forward credit default swap rates calculations were biased and what are

the possible determinants of the statistical arbitrage opportunities.

In order to investigate possible trading inefficiencies present on credit markets

covering single name corporates, we calculate the forward CDS curves for a large

database of obligors for which market CDS premia is available. To the best of our

knowledge, this is the first study that takes into consideration the forward credit

curves for the entire universe of corporate single names CDS traded in USD. We

believe that the credit curves contain more useful information than just the individual

rates along the term structure. In particular the shape of the credit curve determines

the forward credit default rates and it contains useful information for investment

strategies. Consider for example two companies that have identical five year CDS

spreads. Suppose that one has a flat credit curve and the other has an upward trending

credit curve. Even if an investor buys or sells simultaneously both names, the value

of the two contracts will very likely evolve differently over the term of the contract.

Therefore a pair trading strategy combining a CDS with a CMCDS (one long and one

short) for the single-name companies may produce significant profit opportunities.

This is because upon default, the pair of CDS and CMCDS contracts will give a net
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zero payment but before default the net payments may be more one sided across all

companies throughout a long period. In this paper, we show that these opportunities

existed before the crisis and also after the crisis, but the direction of the trade has

changed after the crisis. For identifying the statistical arbitrage opportunities we

perform an exhaustive analysis for a large database of corporate companies during

two different periods, before the crisis between 2001 and 2006 and after the crisis

between 2008 and 2013.

The analysis requires bootstrapping the survival probability curve from the market

CDS spreads. To this end, we implement both nonparametric (e.g. piecewise constant

hazard rates) and parametric (Nelson-Siegel interpolation and a method driven by an

Ornstein-Uhlenbeck (OU) process for the hazard rates) methods and mostly used by

investment banks in a real trading environment. By employing these models we hope

to minimize any conclusion bias caused by model risk.

On a large universe of obligors, one expects ex ante that there is no difference

which contract is used to hedge default risk. Nevertheless, we identify, ex post, the

credit market inefficiencies that existed between 2001 and 2006, and between 2008 and

2013, in terms of the number of obligors, size of profits that could have been made and

the timing of the opportunities. The inefficiencies detected are significantly different

from zero, before and after the subprime crisis.

A possible explanation of the inefficiencies related to the forward CDS curves

identified in this paper could be a bias related to forward curve calculations. To this

purpose, we implement recent panel data testing procedures to test for the forward un-

biasedness hypothesis and we show that the forward credit default swaps are unbiased

estimators of future CDS rates. Subsequently, we identify several important determi-

nants of the differential between CDS and CMCDS spreads. Our results show that

statistical arbitrage opportunities that existed before the crisis were mainly driven by

changes in firm-specific volatility, GDP, 10-year treasury rate and to a lesser extent
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investor sentiment index. After the crisis, the important determinants of trading in-

efficiencies were changes in firm-specific volatility, in the volatility index VIX, in the

investor sentiment index and in the equity index.

The remainder of this paper is organized as follows. Section 2 briefly describes

the linkages with previous works in credit risk and investments area. In Section 3 we

review the pricing methodology of CDS and CMCDS contracts including the convexity

adjustment for the latter contract as it was performed by investment banks. The

dataset used for calibration and some examples illustrating some numerical issues are

shown in Section 4. The results of the statistical arbitrage analysis based on a type of

buy and hold trading (static) strategy and also on a dynamic day by day investment

are reported in Section 5. In Section 6 we test the forward unbiasedness hypothesis

while in Section 7 we analyse the determinants of the significant differences between

CDS and CMCDS premia. Section 8 concludes.

2. Connection with Credit Risk Literature

One stream of the literature on CDS has focused on issues like the validity of the

theoretical equivalence of CDS prices and credit bond spreads and the determinants

of credit default swap changes2. Duffie (1999) and Hull & White (2000) point out that

the credit default swap spread for a corporate should be very close to the spread of a

par yield bond issued by the reference entity over the par yield risk-free rate to avoid

arbitrage between the cash and the synthetic markets. The validity of the theoretical

equivalence of CDS spreads and bond yield spreads is tested in Blanco et al. (2005).

Using a dataset of 33 U.S. and European investment-grade firms, the authors find

that the parity relation holds on average over time for most companies, implying that

the bond and CDS markets may price credit risk equally. Deviations from parity are

2The relevant literature on the determinants of credit default swap changes includes Ericsson et al.
(2009), Zhang et al. (2009), Cao et al. (2010) and Tang & Yan (2010)
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found only for three European firms, for which CDS prices are substantially higher

than credit spreads for long periods of time. These cases are attributed to a combi-

nation of imperfections in the contract specification of CDS and measurement errors

in computing the credit spread. For all the other companies they find only short-lived

deviations from parity in the sample.

The CMCDS contract requires the reconstruction of the forward CDS curve. The

evolution and calibration of these curves for the entire universe of corporate obligors

can be decided from the models used by the major banks in the period of investiga-

tion. The CMCDS contract is the mirror image in credit markets of the CMS used in

interest rate markets. Its main appeal is that it allows one to take views on the shape

of the forward CDS curves. Evidence that there exists an over-the-counter CMCDS

market is provided by the literature in this area, see Berd (2003), Calamaro & Nas-

sar (2004), Brigo & Mercurio (2006), Krekel & Wenzel (2006), Li (2007), Jonsson &

Schoutens (2009). There is comprehensive data available on corporate CDS spreads

but there is no data available on CMCDS spreads. One possible explanation is that

the CMCDS contracts embed the forward CDS spread rates and since there has never

been a forward CDS or futures CDS contract available on the financial markets, the

best banks could do is to us internal models calibrated on the available CDS spread

market information in order to price CMCDS. Hence, at this point in time the best

the researcher can do is to employ a suite of models used in practice by the invest-

ment banks for pricing credit products, and apply those models to derive the implied

forward CDS curves for all obligors for which market CDS premia is available. The

calculation requires bootstrapping the survival probability curve from the observed

CDS quotes. To this end, the piecewise constant hazard rate method, the Nelson-

Siegel interpolation and a method driven by an Ornstein-Uhlenbeck (OU) process for

the hazard rates methods, utilised by the main investment banks, are implemented.

Our work differs from Pan & Singleton (2008), where the focus is on sovereign
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credit risk, and from Blanco et al. (2005) and Longstaff et al. (2005), where the

comparison is between the synthetic and cash credit markets, in that we investigate

arbitrage between two synthetic credit markets for corporates. In addition, our sample

of corporate reference entities covers market panel data for approximately 200 obligors

for the period before the crisis and 650 obligors for the period after the crisis. The

closest to our work is Jarrow et al. (2011) who considered statistical arbitrage in CDS

markets in North America based on a reduced-form model of credit risk. The novelty in

their paper resides in the affine model estimated for the term structure of CDS spreads

of a given company leading to the identification of mis-valued CDS contracts along

the credit curve. The model versus market statistical arbitrage is different from the

ideas explored in our paper. We look mainly at the inefficiency resulted from trading

the shape of forward CDS curves and what are the determinants of the inefficiencies.

3. Market Models for CDS and CMCDS Pricing

In this section, we describe how premia for CDS and CMCDS contracts are derived.

The survival probabilities are inferred from the market CDS spreads and subsequently

used to determine the participation rate driving the CMCDS premium.

3.1. The Pricing Framework for CDS and CMCDS

The methodology of CDS valuation described in Hull & White (2000) is applied

here. Consider a CDS contract with periodic premium S(0, T ) to be paid at times

s1 < s2 < . . . < sN = T or until default, in exchange for a single protection payment

to be made at the default time τ , provided that τ ∈ (s0, sN ]. Let θt be the risk neutral

default probability density at time t, so that the probability of default in [0, T ] is
∫ T

0
θtdt. The probability that no credit event occurs up to time t is πt = 1−

∫ t

0
θudu.

Denoting by R the recovery rate upon default, the periodic premium to be paid by
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the buyer of the CDS when the risk-free rate is constant and equal to r is

S(0, T ) =
(1− R)

∫ T

0
DF (u)θudu

∑N

i=1∆(si, si−1)πsiDF (si) +
∫ T

0
auDF (u)θudu

(1)

where au is the accrual payment at time u, ∆(si, si−1) is the time accrual between

the market paying coupon times si−1 and si, which are quarterly, and DF (u) =

exp
(

−
∫ u

0
rtdt

)

is the discount factor calculated from deterministic interest rate curve

{rt, t ≥ 0} calibrated from market Libor and swap rates. The denominator is the risky

PV01, the value of the premium leg assuming a premium of 1 basis point, with the

first term indicating the value of a risky annuity and the second term representing the

present value of the accrual payments. The numerator is the expected present value

under the risk-neutral measure of the payoff received by the protection buyer.

Based on a complete database of UK main listed firms between 1979 and 2009,

Bauer & Agarwal (2014) showed that hazard models are superior to alternative models

such as accounting-based or contingent claims approach. They showed that there is a

clear economic benefit of using a hazard rate model particularly when the performance

is judged with return on risk weighted assets computed under Basel III. Hence, in

this paper we employ four hazard rate models. For numerical calibration purposes

standard practice in the industry was to approximate the integrals in (1). We assume

that the default intensity is driven by a hazard rate λ, which can be either constant

or stochastic. Let us assume a monthly grid {uj : j non negative integer} for the time

of default, and that the default arrives on average in the middle of the time interval.

Thus, the CDS premium spread is calculated as

S(0, T ) =
(1− R)

∑n

j=1DF (uj)[SP (uj−1)− SP (uj)]
∑N

i=1∆(si, si−1)DF (si)
1
2
[SP (si−1) + SP (si)]

. (2)

where SP (·) is the survival probability and n is time to maturity T in months.

In what follows, we discuss how to derive a CMCDS premium participation rate
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on single obligors based on the information from CDS markets. Closed-form solutions

for constant maturity credit default swaps, as well as credit default swaps and credit

default swaptions, are derived also in Krekel & Wenzel (2006), where a Libor market

model with default risk is used. Further developments on CMCDS pricing can be

found in Brigo & Mercurio (2006), Li (2007) and Jonsson & Schoutens (2009).

The participation rate impacts on the magnitude of the premia that will be paid

under the terms of this contract and its size is strongly related to the slope of the

CDS curve. A participation rate not exceeding 100%, reflects the fact that the CDS

curve is upward sloping. On the other hand the participation rate can be bigger than

100%, indicating a downward slope for the term structure of CDS spreads. To derive

the PR, we exploit the fact that the loss leg from a CMCDS is identical to the loss leg

from a CDS on the same obligor and same maturity and thus the the fixed payment

legs ought to coincide in their NPV. Hence, when the reference CDS has maturity m

PR

N
∑

i=1

E0[S(si−1, si−1 +m)]∆(si, si−1)DF (si)
1

2
[SP (si−1) + SP (si)]

= S(0, T )

N
∑

i=1

∆(si, si−1)DF (si)
1

2
[SP (si−1) + SP (si)],

where the right hand side term comes from (2). Therefore the formula for PR that is

applied for all corporates in our sample is

PR =
S(0, T )

∑N

i=1∆(si, si−1)DF (si)[SP (si−1) + SP (si)]
∑N

i=1 E0[S(si−1, si−1 +m)]∆(si, si−1)DF (si)[SP (si−1) + SP (si)]
. (3)

The major problem with (3) is the evaluation of the expected value of future spreads

in the denominator. It is clear that, when spreads evolve in a completely deterministic

setting, future realised spreads are completely determined from today’s spread curve

and thus the expected value equals the corresponding forward spread. However, for

high volatility names or long maturities a convexity adjustment is required in addition
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to the forward CDS spread calculation, as described next.

The Forward CDS Spread and the Convexity Adjustment

A long position in a forward default swap gives a credit protection that is active

for a period of time in the future at a premium agreed upon today, but paid only

during the active period of the contract. The price for a forward contract for default

protection during the time period (t, t+m) can be calculated as in Berd (2003):

FS(t, t+m) =
S(0, t+m)− δ(t, t+m)S(0, t)

1− δ(t, t+m)
(4)

where δ(t, t+m) ≡ RiskyPV01(0,t)
RiskyPV01(0,t+m)

.

In practice there is a discrepancy between the realised future rate and the implied

forward rate. The difference is attributed mainly to a convexity adjustment. This

issue has been investigated in mathematical finance especially in interest rate deriva-

tives pricing (see Pelsser 2003, Benhamou 2000, 2002, Henrard 2005a,b). It plays

an important role for CMCDS pricing as discussed also in Li (2007) and Jonsson &

Schoutens (2009). Our approach for taking into account a convexity adjustment is to

use the default intensity described by the following OU process

dλt = (k − αλt)dt + σdBt. (5)

The choice of an OU process for the hazard rate underpinning a credit derivative

calculation is motivated by the fact that this model has been used in a real trading

environment by investment banks and it has been also mentioned in the academic

literature, see Brigo & Mercurio (2006), Duffie & Singleton (2003). Another advantage

of employing this process is that calculations can be carried out analytically.

Then, as detailed in Calamaro & Nassar (2004), one can derive an approximate

formula for the expected value of the future spread when the default intensity fol-
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lows (5), which is different from the forward credit default swap rate FS over the

same period. The OU hazard rate with convexity correction gives the formula for the

expected future CDS

E0[S(si, si +m)] ≈ FS(si, si +m) +
1

2
σ2Ci[FS(si, si +m)− S(0, m)] (6)

with Ci =
1−e−αsi

kα
. The second term on the right in (6) is the adjustment term due to

convexity correction. Then the PR can be rewritten as

PR =
S(0, T )

FS(0, T ) + σ2

2
C(0,T )
D(0,T )

(7)

where

D(0, T ) =
n
∑

i=1

∆(si, si−1)DF (si)
1

2
[SP (si−1) + SP (si)]

C(0, T ) =

n
∑

i=1

∆(si, si−1)DF (si)
1

2
[SP (si−1) + SP (si)]Ci[FS(si−1, si−1 +m)− S(0, m)]

and FS(0, T ) is a weighted average of the forward CDS spreads over the reset dates:

FS(0, T ) =

∑n

i=1∆(si, si−1)DF (si)[SP (si−1) + SP (si)]FS(si−1, si−1 +m)
∑n

i=1∆(si, si−1)DF (si)[SP (si−1) + SP (si)]
.

Now we briefly describe the alternative methods we use to approximate the fair CM-

CDS prices that come out of trading over the counter.

3.2. Extracting Survival Probability Curves

The schedule of fixed payments is quarterly as this is the dominating market stan-

dard for corporate entities. The number of quarters fitting into the pricing time grid

until maturity T is equal to k =
[

n
3

]

, where [x] denotes the integer part of x and n

corresponds to the number of months until maturity. It is evident that k = n
3
only if
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tv = t0 ≡ 0, that is the settlement of the credit contract (tv) coincides with a credit

market quarterly coupon paying date (t0). The first premium is paid at time tn−3k+3

(which coincides with t3 when n is a multiple of 3). A cash flow diagram is reported

in Figure 1 for both the standard CDS contract and the CMCDS contract referencing

the same entity. We take into account when the trading occurs within a month.

[Figure 1 about here.]

There are four methods (OU process with and without convexity adjustment, piece-

wise constant hazard rates, Nelson-Siegel interpolation) underpinning our results that

are commonly used in practice to infer survival probabilities from CDS market quotes

and which are presented next. We refer to Brigo & Mercurio (2006) and O’Kane &

Turnbull (2003), for more technical details.

3.2.1. Fitting the CDS Curve Using an OU Process for the Hazard Rate

With stochastic hazard rates the survival probability up to a time t under the

risk-neutral measure is given by SP (t) = E0

[

exp
(

−
∫ t

0
λsds

)]

. When the hazard

rate follows an OU process as in (5) the expectation can be derived in closed form

(see for instance Vasicek 1977, Luciano & Vigna 2008)

SP (t) = exp[a(t) + b(t)λ0], (8)

a(t) = −
(b(t) + t)(αk − σ2

2
)

α2
−

σ2

4α
b(t)2; b(t) =

e−αt − 1

α
. (9)

One way to derive this formula is to express the stochastic intensity λ as a function

Λ of an affine process X whose dynamics is given by the equation:

dXt = f(Xt)dt + g(Xt)dB̃t

where B̃ is a multidimensional Brownian motion and the drift f(Xt) and the covariance

matrix g(Xt)g(Xt)
′ have affine dependence on Xt (see Duffie et al. 2003). It can be
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shown that, under technical conditions (see Duffie & Singleton 2003), for any w ∈ R

Et

[

e
∫
T

t
−Λ(Xu)du+wXT

]

= ea(T−t)+b(T−t)Xt (10)

where the coefficients a(·) and b(·) satisfy generalized Riccati ordinary differential

equations. If we assume that the intensity itself is an affine process as in (5), then we

can apply (10) with w = 0 and Λ(x) = x and obtain analytically the result in (9).

Note that the condition SP (0) = 1 is automatically satisfied. There are four

parameters to calibrate (k, α, σ and λ0). We follow the standard market practice

and we estimate the obligor individual parameters by minimising the squared residual

error between the model implied and market CDS spreads.

3.2.2. Piecewise Constant Hazard Rates

The survival probabilities can be bootstrapped from (2) when there are sufficient

maturities for traded contracts to cover the entire set of time points for which survival

probabilities must be calculated. One common approach, feasible also in presence of

a small number of maturities, advocated by O’Kane & Turnbull (2003), is to assume

that the hazard rate curve is piecewise constant. Suppose that the CMCDS contract

we are interested in is traded at time tv and there are CDS market spreads for the same

obligor for maturities T1, . . . , TM . Denoting λ1 = λ0,T1
, λi = λTi−1,Ti

, i = 2, . . . ,M ,

the survival function SP (T − tv) is then given by3

−log SP (T−tv) = λ1(T−tv)1[0,T1)(T−tv)+

M−2
∑

i=1

[

i
∑

j=1

(λj − λj+1)Tj + λi+1(T − tv)

]

×

1[Ti,Ti+1)(T − tv) +

[

M−1
∑

j=1

(λj − λj+1)Tj + λi+1(T − tv)

]

1[TM−1,∞)(T − tv). (11)

For each maturity expressed in months a numerical searching algorithm is applied

31{A}(x) denotes the indicator function that is equal to one if x ∈ A and zero otherwise.
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to determine λi, i = 1, . . . ,M .

3.2.3. Calibration with Nelson-Siegel Interpolation

Another possibility is to consider a deterministic time-varying hazard rate such

that
∫ t

0
λ(s)ds = Ψ(t)t. The role of function Ψ(t) is to capture any term structure

variation. One of the common choices for function Ψ(t) is the Nelson & Siegel (1987)

function4

Ψ(t) = α0 + (α1 + α2)

(

1− exp(− t
α3
)

t
α3

)

− α2 exp

(

−
t

α3

)

(12)

This function can generate many different curve shapes. The parameter α0 is the long

term mean of the default intensity. Parameter α1 is the deviation from the mean,

with α1 > 0 implying a downward sloping intensity and α1 < 0 implying an upward

sloping term structure. In addition, the reversion rate toward the long-term mean is

negatively related to α3 > 0. The parameter α2 is responsible for generating humps

when it is different from zero. Bluhm et al. (2003) argue against using humps as this

may lead to overfitting problems. We therefore assume that α2 = 0 and estimate

α0, α1, α3 only from CDS spread data using a nonlinear optimization algorithm for a

suitable minimization function such as sum of squared errors.

4. Data Description and Some Examples

4.1. Single Name CDS Data

Our dataset consists of daily single-name composite spreads covering the period

January 2001–November 2006 and the period June 2008–March 2013, for all corporates

traded in US dollar and for maturities 6m, 1y, 2y, 3y, 4y, 5y, 7y, 10y, 15y, 20y, 30y

downloaded from Markit, the industry standard provider in credit markets. The

composite spread is the average spread for a credit contract from price information

4Markit, the leading data provider, employs a similar approach based on Nelson-Siegel interpola-
tion to produce theoretical credit curves when liquidity of data is very low.
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provided to Markit by its contributors. Markit applies a series of data quality tests to

remove unreliable information from the sample set5. For each day and for each obligor

there is also a recovery rate reported that we use later in our analysis. Additional

information like sector, rating and country are reported as well. Only the CDS market

spreads related to senior tier of debt have been retained for liquidity reasons.

While some banks may feel that their CDS quotes are truly the market prices, the

data from Markit on CDS spreads is the only data that can be viewed as the “market”

data. Markit’s database has been used in almost all recent research involving credit

spreads. Moreover, from an industry point of view, the process of marking to market

also implies calibrating the internal models to the credit curves provided by Markit.

Since the CDS prices were followed through according to the quarterly schedule of

payments, we have selected only those reference entities for which at least one coupon

payment was scheduled in 20 September 2001, for the first sample, and, likewise, all

reference entities with at least one coupon payment scheduled on 20 June 2008, for

the second sample. We kept in our samples only the names for which there was data

for recovery rates and spreads covering the entire calendar of payments until the end

of the survey period. A further reduction was due to the elimination of obligors with

either low liquidity (only one or two maturities traded) or for which we faced numerical

convergence problems again due to sparsity of the data. The final sample consists of

198 companies for the static analysis and 207 names for the dynamic analysis in the

first period and 626 and 647, respectively, for the second period.

4.2. Reference Rate Yield Data

For our empirical analysis, we also need the calculation of discount rates, at daily

frequency and over the entire sample period. While traditionally the government bond

5Markit only builds composites when there are at least three contributors to each composite. The
cleaning process includes testing for stale, flat curves and outlying data. On average Markit rejects
approximately 45% of the CDS data received due to failure under any combination of the three
criteria above.
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yields were the obvious choice, more recently the yield curve build from Libor and swap

contracts has been employed as a proxy for the riskless curve. The next best proxy

would be the general collateral or repo rates as recommended by Duffie (1999) and

Houweling & Vorst (2005) but the maturities for these rates are mainly up to one year.

This does not fit our analysis which needs discounting from much longer maturities.

The discount factor curves are constructed daily from Libor rates with maturities 1

month to 11 months and swap rates with maturities 1y, 2y, 3y, 4y, 5y, 7y, 10y, 20y,

30y. A continuum of discount factors is obtained with log-linear interpolation. The

discount factor for t ∈ [Tj, Tj+1], DF (t), is given by

log (DF (t)) =
Tj+1 − t

Tj+1 − Tj

log (DF (Tj)) +
t− Tj

Tj+1 − Tj

log (DF (Tj+1)) .

Data on the USD interest rates and it has been downloaded from Bloomberg.

5. Arbitrage Evidence in Credit Markets

The main aim of this section is to explore arbitrage opportunities when CDS and

CMCDS contracts are two alternative instruments. A market participant should be

indifferent to which instrument to use to hedge default risk. We show that the above

conjecture was not true for either the period 2001–2006 or 2008-2013. We base our

analysis on a quarterly comparison between the two competing contracts for a large

sample of corporates in our dataset. Statistical arbitrage is explored by pairing the

two contracts in opposite directions (buy CDS and sell CMCDS) and by looking at

what would have been the net cumulative profit and loss for an investor employing a

static strategy, similar to buy and hold. Then, we analyse the outcome of a dynamic

trading strategy that assumes the investor enters the same trade every day between

the 20th September 2001 and the 19th December 2001 and carries until November

2006, and again enters the same trade every day between 20th June 2008 and the
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19th September 2008 and carries the trade until March 2013. With a large universe of

obligors we can explore, ex post, the credit arbitrage in terms of the number of obligors

and the size of profits that could have been made and the timing of the opportunities.

The relative value arbitrage position is monitored across all 20 quarters in each of

the two periods of study. For each obligor in our sample the quarterly time series for

the static strategy {yi : i = 0, . . . , 19} is calculated as

yi = PRt0 × S(t3i, t3i +m)− S(t0, t0 + T ),

where t0 is the settlement date, PRt0 is the participation rate on the day t0, and S is

the periodic premium of the CDS contract.

For illustration purposes, let us first consider two obligors with liquid CDS curves,

namely AT&T and Goldman Sachs Gp Inc. In our analysis, the settlement date is the

20th September 2001, while the maturity of both the CDS and CMCDS contracts is

five years (T = 5) with the CMCDS contract indexed to a five year CDS (m = 5). Ta-

ble 1 reports descriptive statistics for y. The two obligors show a contrasting situation.

AT&T has a positive mean net spread payments and negative median. The graphs

of the time series y and its empirical density depicted in the top of Figure 2 suggest

both negative and positive payments with the empirical density centered around zero.

This is the typical outcome expected if there is no statistical credit arbitrage. Gold-

man Sachs however is quite the opposite, with all values between the 5% quantile and

95% quantile negative, under all methods. The graph of the spread payment series

and the empirical density (see bottom of Figure 2) confirm that this name provided

a great arbitrage opportunity. The illustration using AT&T and Goldman Sachs as

reported above is exemplary. In what follows, we investigate whether the synthetic

credit universe of corporates in our sample is closer to AT&T or to Goldman Sachs.

[Table 1 about here.]
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[Figure 2 about here.]

5.1. Static Investment Analysis

For all companies in our sample we compute the net cumulative profit/loss (NCPL)

that an investor would have realized by selling protection with CMCDS and buying

protection via CDS. Both contracts are issued with five years maturity and same

settlement date, the 20th September 2001 in the first period and the 20th June 2008

in the second period. For each company j = 1, 2, . . . , 198 in the first sample and

j = 1, 2, . . . , 626 in the second sample, we compute the NCPL as

zj =

k−1
∑

i=0

∆(tn−3i, tn−3(i+1))
[

PRt0
j × Sj(tn−3(i+1), tn−3(i+1) +m)− Sj(t0, t0 + T )

]

(13)

where ti denotes a payment date, Sj(u, u+m) denotes the CDS spread at time u for

maturity m and company j, and PRt0
j is the participation rate for company j at t0

6.

Table 2 reports the summary statistics for the NCPL calculated using the four

methods described in Section 3 for all single name corporates, before and after the

subprime crisis. The results indicate that, before the subprime crisis, there were sig-

nificant trading opportunities in the single name CDS market in US. For the period

2001-2006, on average the NCPL measure of performance is negative, but its distri-

bution is skewed towards the range of negative values. This means that the actual

profitable strategy during that time was to trade long CDS and short CMCDS.

[Table 2 about here.]

6Following market practice, a cap is applied on the floating payment and the NCPL is derived as

z
tv,cap
j =

k−1
∑

i=0

∆(tn−3i, tn−3(i+1))
[

min
{

800bps,PRt0
j × Sj(tn−3(i+1), tn−3(i+1) +m)

}

−Sj(t0, t0 + T )
]

.

The results obtained in this case do not differ from those calculated using (13).
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For the period 2008-2013 on average there is a clear increase in the uncertainty of

the cash-flows generated by this strategy, with large positive as well as large negative

values. The results presented in Table 2 for the period 2008-2013 reveal that overall for

the entire universe of single name CDS contracts, the paired trading strategy will not

produce significant NCPL results generated by a buy and hold strategy. However, this

does not mean that there were no names for which the NCPL performance measure

was large in absolute value. The average sample values for the NCPL in this second

period are not statistically significant. This may be caused by the fact that in the

second period the strategy is put in place on the 20 June 2008, just before the Lehman

Brothers collapse, that led to great uncertainty short term which was cleared out

subsequently by the 20th March 2013. It is still possible that a more dynamic trading

strategy to be able to adjust to the flow of information and still identify trading

inefficiencies in the credit market system. This is shown shortly below in Section 5.2.

Table 3 reports the number of obligors with a positive (negative) NCPL at various

threshold for both periods. Before the crisis, for all methods, we observe that there

were at least 166 companies with a negative NCPL ranging. The results are consistent

across the four methods at different NCPL thresholds. The same conclusion can be

drawn for the second period, after the crisis when we also had a bigger sample of oblig-

ors, with the only important difference that the direction of the trading inefficiency

was the opposite way of the pair trade. The main conclusion so far is that the NCPL

measure was mainly negative before the crisis but it has changed to mainly positive

after the crisis.

[Table 3 about here.]

It is rather surprising that much of the statistical arbitrage was in the negative

NCPL extreme, when the credit spread curves were narrowing. This finding emphasize

the important role played by the shape of the CDS term structure curve, something
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that has been neglected in the credit risk literature so far. The large possible difference

in cumulative realised profit and loss is somehow surprising, given that both trades

cover the same risk of default. The CMCDS financial product is not so much sensitive

to the levels of the premia but to the shape of the CDS curve or alternatively the

survival curve.

[Table 4 about here.]

[Table 5 about here.]

In Table 4 we report the average NCPL by sector. For the period before the sub-

prime crisis, the sectors with most statistical arbitrage opportunities were Technology

followed by Consumer Goods, Industrials, and Consumer Services. When convexity

is taken into account Energy sector also showed viable statistical arbitrage oppor-

tunities. For the period after the subprime crisis, the NCPL performance measure

indicates that there is a shift in efficiency, the average NCPL value for most sectors

seems to decay. The results cross-classified by rating category and model for hazard

default rate, reported in Table 5, show that before the crisis most trading inefficiencies

could be found for companies rated A or BBB, where a negative mean NCPL is re-

ported for all models. After the crisis, there is a clear reversal, with the average NCPL

being positive under each model for all rating categories superior to B. However, these

results may be influenced by the fact that the NCPL calculations were all calculated

on a fixed date in 2008 when the financial markets were still turbulent, there was

a lot of discussion that the crisis may contaminate the real economy and therefore

credit risk sellers were perhaps more cautious in their valuation of credit default swap

contracts.

5.2. Dynamic Investment Analysis

In this section, we report the results of the dynamic trading strategy for the CDS

and CMCDS contracts, following the paired trades on a daily basis. This is a gener-
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alization of the static trading strategy in that the same algorithm is applied for many

consecutive days. Our sample contains only the obligors for which there is data avail-

able until the maturity of the five year contract. For each company j = 1, . . . , 207 in

the period 2001-2006, and j = 1, . . . , 647 over the period 2008-2013, we calculate the

NCPL

ztvj =
k−1
∑

i=0

∆(tn−3i, tn−3(i+1))
[

PRtv
j × Sj(tn−3(i+1), tn−3(i+1) +m)− Sj(tv, tv + T )

]

for all settlement days tv between 20th September 2001 and 19th December 20017 for

the first period and between 20th June 2008 and 19th September 2008, for the second

period. Hence, there are exactly 20 coupon payments on the CDS and CMCDS

contracts that are paired and followed up cumulatively. For a given company j, nj

denotes the number of days tv for which we can determine ztvj . The yardstick measure

for comparison is the average net cumulative profit and loss (ANCPL) denoted by z̄j.

Each paired trade that starts on any given day within the above period is followed

through maturity and the profit and loss is calculated and reported comparatively on

an average basis.

Table 6 reports the results for the ANCPL for the paired trade. As in the case of the

static investment strategy, there is a clear shift of the ANCPL performance measure

from a negative average value for the entire universe of single name corporates in the

period 2001-2006 before the subprime crisis to a positive average value in the second

period 2008-2013 after the subprime crisis. Furthermore, the inefficiencies detected

7Following the credit market convention, we compute the first term of the summation as follow

∆(t3, tv)1{t3−tv>1mth}

[

PRtv
j × Sj(t3, t3 +m)− Sj(tv, tv + T )

]

+∆(t3, tv)1{t3−tv≤1mth}

[

PRtv
j × Sj(t6, t6 +m)− Sj(tv, tv + T )

]

= ∆(t3, tv)
[

PRtv
j

(

Sj(t3, t3 +m)1{t3−tv>1mth} + Sj(t6, t6 +m)1{t3−tv≤1mth}

)

− Sj(tv, tv + T )
]

to take into account the different behavior of the first coupon.
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in both samples are strongly statistically significant for all four models used, except

the method using convexity adjustment in the period prior to the crisis. Furthermore,

while the inefficiency seems to change direction in the aftermath of the crisis, our

analysis also shows that the magnitude of the paired payoff strategy has also increased

significantly as revealed in the table by the values under the min and max headings.

The results suggest that overall there was credit statistical arbitrage before but

also after the crisis. The magnitude of the ANCPL varies according to the method

applied and it seems that the convexity correction could play a an important role.

[Table 6 about here.]

[Table 7 about here.]

The analysis presented in Table 7 and based on the ANCPL measure confirms the

results and behaviour observed for the NCPL measure. In the period before the crisis,

the majority of trade opportunities were for negative ANCPL, that is trade long CDS

and short CMCDS. However, after the crisis, there were still trading opportunities

but in the opposite direction, that is trade the pair short CDS and long CMCDS on

the same obligor.

Table 8 and Table 9 show the mean ANCPL classified by sector and rating, re-

spectively. For this dynamic strategy approach, before the crisis the majority of the

trading opportunities seem to fall in the Consumer Goods sector where the mean

ANCPL value across the companies in that sector varied across the models between

-656.73 for the OU method and -290.51 for the OU with convexity method. With the

exception of Consumer services, in this period, all sectors had a negative ANCPL.

After the crisis the sector with the most profitable opportunities was Financials, fol-

lowed by Consumer Services and Consumer Goods. This was true for all four models

and all mean ANCPL values in that subtable were positive, indicating an important

change in the relationship between the CDS and CMCDS spreads. Looking at the
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mean ANCPL by rating in Table 9, after the crisis there were limited opportunities

for higher rating grades but there were substantial opportunities for the lower credit

rated companies. This is not surprising since the turbulence of the sovereign bond

crisis in Europe during the period 2008-2013 affected the default premia of many

companies and therefore increased the CMCDS spread over time during that period.

Thus, a B rated company for which a pair CDS and CMCDS trade will be initiated in

June 2008 will carry the fixed CDS premium for the next five years while the CMCDS

spread is reset at each quarter. Then, the differential between the CDS and CMCDS

spreads will increase.

[Table 8 about here.]

[Table 9 about here.]

From the full set of results reported in this section, there is evidence of the existence

of inefficiencies between CDS and CMCDS markets that allows statistical arbitrage

opportunities. One possible explanation is that investors do not play a lot of attention

to the shape of the credit curve for a particular company. If the shape of the credit

curve for a single name corporate changes from flat (almost constant) to upward

trending, the participation rate determined by formula (7) will change substantially.

The participation rate determines the premium to be paid in the CMCDS contracts

and it is a function of the weighted average of the forward CDS spreads over the

reset dates. Thus, considering the graph in Figure 1 it becomes clear that even if

the five-year CDS spread (so m = 5) stays the same, changes in the shape of the

credit curve will impact on the calculations of the participation rate PR. Hence, we

suggest that investors should consider not only the current values of a five-year CDS

spread, say, with the desired maturity but to look at the entire credit curve that may

contain information about the future values of the five-year CDS spread. If, for a

particular company, the outlook shows that CDS premia are likely to increase then
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buying protection with a standard CDS is better. However, if the outlook shows

that the future values of five-year CDS spreads are likely to decrease then getting

protection with a CMCDS is more efficient. The argument works in reverse for an

investor looking to sell credit protection, that is she should sell CMCDS when CDS

spreads look to rise and sell CDS when the CDS spreads seem to decline. The failure

to get this information into consideration is leading to the statistical arbitrage revealed

in our empirical analysis above. It shows the importance of looking at the entire CDS

curve and not only at individual maturities such as five-year. This conclusion calls for

a further investigation on whether the forward CDS rates are unbiased estimators of

future spot CDS rates. If the forward rates are biased, this could explain the statistical

arbitrage opportunities identified in this paper. On the other hand, if the forward CDS

rates are unbiased then the cause of arbitrage may lie elsewhere. In addition, unbiased

estimators will give more confidence to apply our analysis with different data. Hence,

in the next section we test the forward rate unbiasedness hypothesis.

6. Testing the Forward Unbiasedness Hypothesis for CDS Rates

The forward rate unbiasedness hypothesis (FRUH) postulates that the forward rate

is an unbiased predictor of the corresponding future spot rate. This hypothesis has

been extensively tested for exchange rates (see Liu & Maddala 1992, Maynard 2003,

Westerlund 2007, among the others), either by regressing the future spot rate, st+k,

on a constant and the forward rate, ft, or by checking for a unit slope in a regression

of the spot return st+k− st on the forecasting error, ft− st, which ought be stationary

under the FRUH (see Froot & Frankel 1989, for instance). An alternative approach

could be testing st+k and ft for cointegration like in Baillie & Bollerslev (1989) and

Hai et al. (1997).

In this paper we adopt the latter approach to a panel data analysis. This is the

most appropriate approach given that our study follows a large number of companies
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over many years at quarterly intervals. This choice is motivated by our aim to study

the inefficiencies in the credit default swap market as a whole. Any testing of a

clear relationship between actual forward rates and future spot rates should have

an explanatory power for the entire single name corporates universe. Aggregating

either over time or cross-sectionally may have the effect of biasing our conclusions.

Therefore we test for cointegration as implied by the FRUH and test for stationarity

in the resulting panel forecasting errors Fj(ti, ti + m|Fti−1
) − Sj(ti, ti + m). The

FRUH cannot be rejected if the panel of forecasting errors is found to be stationary.

Consistent with the notation used in Section 5, t0 refers to the 20th September 2001

for the first sample, and to the 20th June 2008 for the second sample, i = 1, . . . , 20

and m is five years. Thus, at each coupon paying day, we calculate the forward spread

for a contract entered into the next quarter and five years maturity.

We apply the panel unit root test of Pesaran (2007) suitable in presence of a number

of obligors much larger than the number of time observations and to take into account

the cross-sectional dependence in the data. Let yit (i = 1, . . . ,M , t = 1, . . . , Q)

denote a variable observed both cross-sectionally and over time. The Pesaran (2007)

test statistic we use is defined as CIPS(M,Q) = M−1
∑M

i=1 ti(M,Q), representing

the mean of the t-ratios of bi in the OLS cross-sectionally augmented Dickey-Fuller

regression

∆yit = a′idt + biyi,t−1 + ciȳt−1 + di∆ȳt + eit, (14)

where ȳt = M−1
∑M

i=1 yit, ∆ȳt = M−1
∑M

i=1∆yit = ȳt− ȳt−1. The vector dt represents

the deterministic component. The relevant case for us is dt = 0, equivalent to no

intercept and no trend, but for completeness of our econometric analysis we also con-

sider dt = 1 when there is intercept and no trend, and dt = (1, t)′ with intercept and

individual specific time trends. Cross-section dependence is controlled by including

the cross-sectional means ȳt−1 and ∆ȳt, in (14). The critical values are obtained from
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Pesaran (2007, Table II(a)–(c)). We apply the CIPS test statistics when yit represents

the realized spreads (S), the forward spreads (FS) and the forecasting error (S −F ).

[Table 10 about here.]

The results are reported in Table 10 and they indicate overall that both the realized

spreads and the calculated forward rates are non-stationary before and after the crisis.

When we look at the panel of forecasting errors, the test leads to a rejection of the null

of non-stationarity, with only one exception, the Nelson-Siegel method when both the

intercept and a deterministic trend are included in the panel regression (14) before

the crisis and for the Nelson-Siegel model with and without intercept and trend after

the crisis. This means that, in general, the forward CDS spread calculated using the

four methods considered is an unbiased estimator for the future CDS rates before

and after the crisis. Hence, the trading inefficiencies cannot be attributed to a bias

resulting from forward rates calculations. Notice that we did not report any results for

the OU method with convexity adjustment. This is because the same forward default

rates are calculated under the OU method and under the OU method with convexity

adjustment so the results of the CIPS tests are identical.

7. The Determinants of the difference between CDS and CMCDS premia

The literature on the determinants of credit spreads has grown over the last decade.

An important early reference is Collin-Dufresne et al. (2001) who tried to see if the vari-

ables explaining the corporate bond credit spreads also explain the changes in credit

spreads. Their conclusion was that those theoretical variables carry little explanatory

power but there might be a common systematic factor not captured. Nonetheless,

Campbell & Taksler (2003) and Cremers et al. (2008) advocate the idea that the

firm’s volatility, in particular the option implied volatility, contains substantial infor-

mation on the credit spread. More recently Zhang et al. (2009) and Ericsson et al.
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(2009) run linear regression analysis to identify the linkage between credit spreads and

key economic variables such as firm-specific volatility or risk-free rates.

In this section, we explore some possible explanations of the significant quarterly

differences between CDS and CMCDS, denoted subsequently by Spreadi,t. In addition

to the main variables listed above investigated in the literature, we also consider

as explanatory variables the change in GDP, the change in University of Michigan

Consumer Sentiment index, the change in Russell 200 index, change in VIX index.

Since premia are paid in arrears, Spreadi,t represents the difference for company i and

period t. Our dataset spans the period September 2001 to September 2006 and June

2008 to June 2013, respectively, and it consists of quarterly series where the dependent

variable Spreadi,t is explained by a set of potential explanatory variables. Hence, we

have 20 coupon payment dates for each single-name company in the sample.

We use panel data regression analysis in the same spirit and framework as high-

lighted in Section 6. First, the following dynamic equation is estimated:

Spreadi,t = αi + β1 ∗ Spreadi,t−1 + β2 ∗∆IVi,t + β3 ∗∆IVi,t−1 (15)

+β4 ∗ Spreadt + β5 ∗ Spreadt−1 + β6 ∗∆IVt + β7 ∗∆IVt−1 + ǫi,t

where ∆IVi,t is the change of firm specific implied volatility (ATM) from a call option

maturing in 30 days. Moreover, we also insert cross-sectional means (all terms with

bar) of regressors and dependent variable to control for cross-sectional dependence in

the data.

Secondly, in a second dynamic regression the cross-sectional mean terms are re-

placed by a series of macro-variables which in the previous equation were indistin-
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guishably incorporated into the common factors.

Spreadi,t = αi + β1 ∗ Spreadi,t−1 + β2 ∗∆IVi,t + β3 ∗∆IVi,t−1

+ γ1 ∗∆GDPt + γ2 ∗∆TRESt + γ3 ∗∆SENTt

+ γ4 ∗∆RUSSt + γ5 ∗∆VIXt + ǫi,t (16)

The macro-variables considered are ∆GDPt = change in the U.S. GDP (data is ob-

tained from the Federal Reserve Economic Database8); ∆TRESt = change in the 10-

year Treasury Constant Maturity Rate; ∆SENTt= change in the Investor sentiment

(we consider the University of Michigan Consumer Sentiment); ∆RUSSt= change in

the Russell 2000 index, and ∆VIXt=change in the VIX index.

[Table 11 about here.]

[Table 12 about here.]

The results for equation (15) are presented in Table 11 for the 2001-2006 period

and in Table 12 for the 2008-2013 period. Likewise, the results for equation (16) are

shown in Table 13 for the period before the crisis and in Table 14 for the period after

the crisis. First of all, all models show correct specification and remarkable goodness-

of-fit, in both periods. We notice a high degree of persistence in the data generating

process for Spreadi,t which shows a high autocorrelation coefficient, above 0.8 for all

regressions before the crisis and above 0.5 for all regressions after the crisis. Highly

significant and positive is also the impact of the implied volatility variable. Table 13

reports the results where cross-sectional means are replaced by macro-variables in

order to capture the cross sectional dependence between companies.

There is evidence of a statistical significant negative impact of the changes in

GDP on Spreads for the “Piecewise Constant” and “OU” methods, before and after

8http://research.stlouisfed.org/fred2/
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crisis, but this variable is not significant when hazard rates are calculated with the

OU convexity. One possible explanation is that GDP provides some kind of overall

market driver that could be an information proxy for the convexity correction term.

The negative sign is correct since a decrease in GDP will lead to more turbulent

credit markets and an increase in the difference between the CDS spread rate and the

CMCDS spread rate. The changes in the 10y Treasury yield have a weak positive

statistical significance, for the “Piecewise Constant” and “OU” methods before the

crisis, see Table 13, but they are not significant at all after the crisis as revealed in

Table 14. It is well known that after the crisis interest rates went into a downward

spiral movement reaching very low levels that remained like that for long periods.

On contrast, except for the OU method with convexity adjustment, the investor

sentiment variable has a statistical significant positive impact before the crisis (Ta-

ble 13) and a statistical significant negative impact after the crisis (Table 14). This

is an important behavioural characteristic captured by the data we have analysed

in this paper. The change in credit markets from over-optimism before the crisis to

pessimism after the crisis is well documented in the literature.

Table 13 shows that there is no evidence of an influence from the Russell 2000 index

or the VIX index before the crisis. This is not surprising given that the volatility is

variation is already captured through firm-specific option implied volatility. However,

in the period 2008-2013 there is significant negative influence of both stock and volatil-

ity index, as illustrated by the results in Table 14. The Lehman Brothers collapse and

the long series of problems in the banking sector, realised losses coming from rogue

trading as in the case of UBS and Societe Generale, failure of stress testing exercises

conducted in USA and Europe, and so many other potential problems related to capi-

tal adequacy ratios and new banking regulation being introduced, all these are strongly

reflected in sharp changes in volatility indices, equity indices and sentiment indices

that drive the increase in the difference between the current CDS rates and the future
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average credit default premia quantified by CMCDS rates. This conclusion is true

also when calculating hazard rates with the OU method with convexity adjustment,

which was not true for the other determinant variables like GDP and Treasury rates.

Therefore, we can conjecture that the impact of macroeconomic variables like GDP

and interest rates is equivalent to the convexity adjustment of hazard rates, whereas

equity index, implied volatility index and sentiment index are significant drivers of in-

efficiencies in credit markets particularly in the 2008-2013 period. Our results confirm

other recent results in the literature, most notably, Gemmill & Keswani (2011) who

investigated why spreads on corporate bonds are so much larger than expected losses

from default. They found that systematic factors make very little contribution to

spreads, even if higher moments or downside effects are taken into account. Moreover,

they reveal that spreads are strongly related to idiosyncratic equity volatility. Our

study confirms their conclusion that credit spreads may be large because they include

a large risk premium related to investors fears of extreme losses.

[Table 13 about here.]

[Table 14 about here.]

The OU method with convexity adjustment provides different results than the

other three methods but this is as expected since it is more elaborate. The convexity

adjustment in essence includes a second order term in the calculation of the hazard

rates. Methods that do not have this term are simpler to use but are more exposed to

sudden changes in market conditions such as falls in GDP or interest rate reductions

by the Fed, so the regression models will allow more macroeconomic variables to

provide significant information. Furthermore, for the OU with convexity adjustment

method as well, after the crisis, the implied volatility variables are all significant,

both the individual ones for single-names under investigation and the index volatility

capturing the overall view on the economy. This confirms the recent findings in Wang
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et al. (2013) that the firm-level volatility has an important explanatory power for

credit spreads.

The analysis for the second period confirms to a high degree the results found in

the first period analysis but it also reveals some changes in behaviour on this market,

with more attention being paid to the implied volatility of the companies under study

and of the entire market and also to the changes in sentiment index and less to GDP

and interest rates.

8. Concluding Remarks

This paper presented some innovative trading strategies in corporate credit mar-

kets based on forward CDS curves and hence on the shape of the credit spread curve.

Our research unearthed a clear market anomaly across the entire universe of US cor-

porate companies for which CDS contracts were traded over the periods January

2001–November 2006 and June 2008–March 2013, respectively.

First, a large database covering the entire universe of market single-name credit

default swap premia was employed to produce the corresponding constant maturity

credit default prices. Then we paired trades with fixed premia against trades with

floating premia, by analogy with interest rate swap markets, and we determined the

overall performance of the paired and opposite trading, which should produce net

results close to zero in efficient markets.

Our results are presented across four methods known to be used by investment

banks for pricing CMCDS, thus avoiding model risk. We measured the size of the

statistical arbitrage through a buy and hold type of static strategy and also its dy-

namic version consisting of investing daily between two market reset dates. The main

conclusion is that investors could have taken advantage to sell CDS and buy CMCDS,

or in other words received fixed and pay floating before the crisis and do the opposite,

after the crisis.

32



Trading gains were observed during periods when CDS spreads were widening.

However, before the crisis the majority of credit statistical arbitrage identified was in

the opposite direction, when credit spreads were shrinking, with most names benefiting

from spreads tightening beyond the expected levels implied by the forward curves. The

decrease is beyond what the forward default curves imply, pointing to the conjecture

that there was too much liquidity pumped up in the financial system through various

channels, well beyond the actual needs of the real economy. The situation was reversed

in the second period, after the crisis, when credit spreads were increasing, possibly as

a reaction to an increase in implied volatility in equity markets.

We also tested whether the forward CDS spreads, calculated as part of the pricing

process for CMCDS, were unbiased estimates of the future spot CDS spreads. Using

panel data tests, we failed to reject the unbiasedness hypothesis. Accepting that

the forward CDS rates are unbiased estimates of future spot rates means that the

statistical arbitrage identified cannot be attributed to an estimation bias.

In addition, we investigated possible determinants of the difference between CDS

and CMCDS premia. From a panel regression analysis there is evidence of a change in

behaviour on the credit markets after the subprime crisis. The dynamic panel regres-

sion also shows a high-degree of persistence in spreads. It is perhaps not surprising

that changes in implied volatility of the single-name company are strongly significant

in explaining the trading inefficiencies. This variable was the most important determi-

nant of the statistical arbitrage opportunities. The next most important determinants

were the changes in sentiment index and changes in volatility. Other variables like

GDP and 10y treasury rate may have impacted the CDS-CMCDS differential only as

a substitute of the convexity adjustment in calculating hazard rates.
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APPENDIX

Details on Parameter Estimation

OU Process

Given a set of CDS spreads with maturities {tn}n∈T , in order to estimate the

vector of parameters θ = (λ0, σ, k, α)
′, we first compute the theoretical CDS premium

spread, S(0, tn; θ) following formula (2) and then solve the optimization problems

argmin
θ

∑

n∈T

[S(0, tn)− S(0, tn; θ)]
2 or argmin

θ

∑

n∈T

|S(0, tn)− S(0, tn; θ)| .

subject to the constraints θ > 0, SP ′(TM) < 0 where TM is the last maturity (20yr)

of the available CDS data and SP ′(t) = k
α
(1− e−αt) + λ0e

−αt − σ2

2α2 (1− e−αt)2.

Nelson-Siegel

Given α = (α0, α1, α3)
′ in the parameter space Uα ⊂ R

3, we solve the minimization

problems

α̃ = arg min
α∈Uα

∑

n∈T

[S(0, tn)− S(0, tn;α)]2 = arg min
α∈Uα

f̃(α)

ᾰ = arg min
α∈Uα

∑

n∈T

|S(0, tn)− S(0, tn;α)| = arg min
α∈Uα

f̆(α)

where S(0, tn;α) denotes the theoretical CDS spread maturing at time tn with a

Nelson-Siegel function with parameter α. The optimization should be done under the

following constraints which identify Uα:

α0 > 0, α3 > 0 (17)

SP (t)− SP (t+ 1) ≥ 0 for any t > 0. (18)

The condition (18) is equivalent to α0 + α1 exp
(

− t
α3

)

≥ 0 which is obtained by

imposing that the function Ψ(t)×t is not increasing. As far as the choice of the function
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to be minimized, in practice we set α̂ = α̃ unless f̃ (ᾰ) < f̃ (α̃) or f̆ (ᾰ) < f̆ (α̃). In

particular, provided that the number, N , of contracts at some point in time is more

than six we attach to each CDS market spread the following weights:

Maturity tn (Months) wn

60 40%

36 30%

12 15%

84 6%

120 4%

24 3%

All the Other 2

N −6
%
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Figure 1: Comparison of premia calculations for CDS and CMCDS contracts
referenced by the same obligor. At each quarterly market payment time t0, t3, t6, ... the
fixed CDS rate S(tv, tv + T ) is paired with the floating premium given by the product
of participation rate PRtv and the realised reference market spot rate S(t3i, t3i +m).
The actual coupon is calculated by multiplying those rates to the quarter period using
the market money count conventions. The time tv shows the day when the trading is
realised, which may not coincide with a market scheduled coupon paying day t0; if tv is
within one month of t3 then the first coupon is paid at t6, otherwise it is paid at t3.

t0 tv

PRtv × S(t0, t0 +m)

PRtv × S(t3, t3 +m)

PRtv × S(tn−3, tn−3 +m)

· · · · · ·t3

S(tv, tv + T )

t6

S(tv, tv + T )

tn = T

S(tv, tv + T )
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Figure 2: Comparative series of net coupon spreads (basis points) for the paired
strategy short CDS long CMCDS settled on 20 September 2001, for two obligors AT&T
and Goldman Sachs Gp Inc.; “Piecewise Constant” is for the bootstrapping procedure
with piecewise constant hazard rates, “NS” the Nelson-Siegel interpolation, “NS w” the

Nelson-Siegel interpolation with weights in the objective function and “OU” the
method with the OU process. Coupons are paid quarterly between December 2001 and

September 2006.

(a) AT&T: Series of net coupon spreads payments (left) and smoothed empirical density (right)

(b) Goldman Sachs Gp Inc: Series of net coupon spreads payments (left) and smoothed empirical
density (right)
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Table 1: Summary statistics for the net coupon spreads (basis points) of the paired
strategy short CDS long CMCDS across all four methods, for two obligors AT&T and
Goldman Sachs Gp Inc.. Coupons are paid quarterly between December 2001 and
September 2006. For AT&T there is inconclusive evidence of an inefficiency whereas

the negative values for Goldman Sachs in the entire domain suggests a clear inefficiency
available for this reference entity.

AT&T
Method mean median std min max 5% Percentile 95% Percentile

Nelson Siegel 18.95 -11.24 112.38 -94.02 338.99 -93.19 276.84
Nelson Siegel weighted 26.95 -5.05 119.09 -92.76 366.10 -91.89 300.25

OU process 18.04 -11.95 111.61 -94.16 335.90 -93.34 274.18
Piecewise Constant 16.92 -12.81 110.68 -94.33 332.12 -93.52 270.92

Goldman Sachs Gp Inc
Method mean median std min max 5% Percentile 95% Percentile

Nelson Siegel -50.13 -54.11 11.00 -62.79 -26.36 -62.71 -28.05
Nelson Siegel weighted -42.95 -48.07 14.14 -59.24 -12.38 -59.14 -14.56

OU process -54.32 -57.63 9.16 -64.87 -34.51 -64.80 -35.92
Piecewise Constant -47.86 -52.19 11.99 -61.67 -21.94 -61.58 -23.78

Table 2: Summary statistics across all obligors in the sample for the calculated net
cumulative profit/loss (NCPL) on the paired trade short CDS long CMCDS for the
period 2001-2006 and the period 2008-2013. Results are presented for four models

under study described by the way it calibrates the hazard rate of default: Nelson-Siegel,
piecewise constant, OU process, OU with convexity. The t-test values and associated
p-values are used to test whether NCPL values are significantly different from zero.

Method mean median std min max t-stat p-value
2001-2006

Nelson-Siegel -176.56 -153.79 416.17 -1450.21 1221.59 -5.97 2.37E-09
Piecewise Constant -185.48 -157.05 387.73 -1485.07 1121.22 -6.73 1.68E-11

OU Process -188.80 -160.52 413.96 -1476.73 1366.11 -6.41 1.38E-10
OU with convexity -169.55 -157.21 428.35 -1474.86 1366.11 -5.57 2.55E-08

2008-2013
Nelson-Siegel 5.29 40.90 737.17 -8620.59 2141.00 0.18 0.85

Piecewise Constant 5.77 40.11 733.79 -8689.00 1869.14 0.19 0.84
OU Process -25.12 12.14 731.24 -8620.59 1835.47 -0.85 0.38

OU with convexity 25.48 37.41 759.23 -8620.59 3830.95 0.84 0.40
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Table 3: Number of obligors with a positive (negative), larger than 250 bps (smaller
than −250 bps), larger than 500 bps (smaller than −500 bps) and larger than 1000 bps
(smaller than −1000 bps) NCPL by different methods of calculation for 2001-2006 and
2008-2013. “NS” denotes the Nelson-Siegel interpolation, “Piecewise Constant” the
bootstrapping procedure with piecewise constant hazard rates, “OU” and “OU conv”

are the methods with the OU process without and with convexity adjustment,
respectively.

NS Piecewise Constant OU OU conv
2001-2006

pos 29 23 19 28
neg 168 175 175 166

> 250 bps 17 13 14 17
> 500 bps 11 10 10 11
> 1000 bps 5 4 4 4
< −250 bps 53 53 55 54
< −500 bps 23 23 23 23
< −1000 bps 9 7 8 8

2008-2013
pos 397 393 339 375
neg 229 233 287 251

> 250 bps 129 130 105 130
> 500 bps 51 46 46 60
> 1000 bps 15 13 13 19
< −250 bps 66 61 66 58
< −500 bps 41 41 41 34
< −1000 bps 21 19 22 18

Table 4: Mean NCPL values for each sector for the period 2001-2006 and the period
2008-2013. Results are presented for four models under study described by the way it
calibrates the hazard rate of default: Nelson-Siegel, piecewise constant, OU process,

OU with convexity.

Nelson-Siegel Piecewise Constant OU Process Ou with convexity Number of
2001-2006 Companies

Basic Materials -47.59 4.56 -80.78 -51.87 18
Consumer Goods -258.09 -310.28 -262.48 -327.36 48
Consumer Services -231.19 -235.29 -235.37 -205.07 29

Energy 59.25 60.20 29.71 291.92 12
Financials -110.04 -111.38 -126.62 -120.50 22
Healthcare -91.22 -99.51 -85.47 -85.42 7
Industrials -237.65 -241.16 -249.20 -235.25 31
Technology -486.90 -468.28 -485.24 -485.24 11

Telecommunications 35.84 42.35 18.35 18.57 9
Utilities -23.69 -38.15 -52.62 112.02 11

Nelson-Siegel Piecewise Constant OU Process OU with convexity Number of
2008-2013 Companies

Basic Materials 199.21 204.11 164.68 262.56 55
Consumer Goods -65.19 -62.18 -98.33 -31.44 88
Consumer Services -30.40 -23.15 -61.42 -12.89 79

Energy 124.90 119.63 95.82 105.21 68
Financials -28.44 -22.66 -49.76 -17.33 107
Healthcare 9.73 -22.06 -30.47 55.69 36
Industrials -69.03 -66.75 -98.71 -93.46 78
Technology 76.45 81.69 33.28 293.44 21

Telecommunications -145.42 -143.31 -167.01 -132.96 39
Utilities 75.42 70.00 38.83 78.30 55
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Table 5: Mean NCPL values for each rating category for the period 2001-2006 and the
period 2008-2013. Results are presented for four models under study described by the
way it calibrates the hazard rate of default: Nelson Siegel, piecewise constant, OU

process, OU with convexity.

Nelson-Siegel Piecewise Constant OU Process OU with convexity Number of
2001-2006 Companies

AA -186.38 -194.52 -194.82 -181.28 38
A -277.80 -311.15 -291.93 -340.47 54

BBB -240.41 -236.59 -255.58 -220.58 50
BB -118.87 -124.86 -128.77 -59.71 31
B -7.47 6.13 -21.94 30.70 14

CCC 266.78 280.29 260.26 377.58 11

Nelson-Siegel Piecewise Constant OU Process Ou with convexity Number of
2008-2013 Companies

AA 25.89 23.40 5.15 28.98 117
A 27.73 30.66 1.78 26.03 141

BBB 44.03 38.69 9.30 54.10 199
BB 114.56 119.51 79.60 180.38 103
B -303.46 -293.67 -343.10 -215.34 44

CCC -492.42 -478.93 -524.43 -498.96 22

Table 6: Summary statistics for average net cumulative profit/loss (ANCPL) on the
paired trade long CDS short CMCDS. Results are presented for four models under
study described by the way it calibrates the hazard rate of default: Nelson Siegel,

piecewise constant, OU process, OU with convexity. The t-test values and associated
p-values are used to test whether NCPL values are significantly different from zero.

Method mean median std min max t-stat p-value
2001-2006

Nelson-Siegel -105.43 -109.61 296.00 -1494.80 1129.92 -5.12 2.98E-07
Piecewise Constant -156.20 -152.14 277.61 -1090.60 1100.49 -8.10 0.00

OU Process -173.20 -160.07 280.55 -1475.95 1048.46 -8.88 0.00
OU with convexity -42.73 -82.53 451.02 -1294.75 2.18 -1.36 0.17

2008-2013
Nelson-Siegel 360.52 116.34 720.13 -288.41 3498.77 12.73 0.00

Piecewise Constant 307.92 74.88 689.11 -297.28 3498.77 11.37 0.00
OU Process 281.07 54.18 672.76 -301.73 3498.77 10.63 0.00

OU with convexity 281.52 54.52 673.03 -301.66 3498.77 10.64 0.00
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Table 7: Number of obligors with a positive (negative), larger than 250 bps (smaller
than −250 bps), larger than 500 bps (smaller than −500 bps) and larger than 1000 bps
(smaller than −1000 bps) ANCPL by different methods of calculation. “NS” denotes
the Nelson-Siegel interpolation, “Piecewise Constant” the bootstrapping procedure

with piecewise constant hazard rates, “OU” and “OU conv” are the methods with the
OU process without and with convexity adjustment, respectively.

NS Piecewise Constant OU OU conv
2001-2006

pos 52 30 26 55
neg 154 177 181 152

> 250 bps 14 9 10 22
> 500 bps 7 6 5 11
> 1000 bps 2 2 2 10
< −250 bps 49 61 64 45
< −500 bps 11 14 16 12
< −1000 bps 3 3 3 3

2008-2013
pos 392 380 371 372
neg 255 267 276 275

> 250 bps 253 222 211 211
> 500 bps 154 136 129 129
> 1000 bps 88 78 76 76
< −250 bps 13 17 20 20
< −500 bps 0 0 0 0
< −1000 bps 0 0 0 0

Table 8: Mean ANCPL for each sector for the period 2001-2006 and the period
2008-2013. Results are presented for four models under study described by the way it
calibrates the hazard rate of default: Nelson-Siegel, piecewise constant, OU process,

OU with convexity.

Nelson-Siegel Piecewise Constant OU Process OU with convexity Number of
2001-2006 Companies

Basic Materials -20.50 -36.59 -40.38 7.38 18
Consumer Goods -441.44 -597.04 -656.73 -290.51 48
Consumer Services 23.34 0.48 -5.08 69.87 30

Energy -26.93 -43.23 -45.69 -3.19 14
Financials -17.98 -35.72 -40.03 19.87 25
Healthcare 5.00 -13.83 -15.12 30.16 7
Industrials -16.59 -35.98 -40.37 26.08 33
Technology 11.93 -6.58 -9.53 40.03 8

Telecommunications -9.81 -27.06 -32.40 22.07 9
Utilities 24.40 3.15 -0.24 55.18 15

Nelson-Siegel Piecewise Constant OU Process OU with convexity Number of
2008-2013 Companies

Basic Materials 317.00 262.33 234.47 234.94 55
Consumer Goods 413.89 358.03 329.67 330.14 89
Consumer Services 471.66 412.23 382.07 382.57 83

Energy 135.05 92.24 70.76 71.12 68
Financials 653.75 586.66 552.30 552.87 116
Healthcare 121.57 80.60 60.08 60.42 36
Industrials 334.08 286.26 261.85 262.26 80
Technology 152.63 111.46 90.62 90.96 21

Telecommunications 292.64 243.25 217.19 217.62 41
Utilities 146.82 108.15 88.02 88.36 58
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Table 9: Mean ANCPL values for each rating category for the period 2001-2006 and
the period 2008-2013. Results are presented for four models under study described by
the way it calibrates the hazard rate of default: Nelson-Siegel, piecewise constant, OU

process, OU with convexity.

Nelson-Siegel Piecewise Constant OU Process OU with convexity Number of
2001-2006 Companies

AA -590.72 -766.20 -835.60 -430.12 40
A -24.25 -41.08 -44.41 4.35 57

BBB -0.56 -19.41 -23.58 34.36 53
BB 24.93 -0.75 -6.05 80.05 32
B 81.42 56.77 53.78 117.24 14

CCC 116.29 83.06 72.10 189.84 11

Nelson-Siegel Piecewise Constant OU Process OU with convexity Number of
2008-2013 Companies

AA -39.94 -68.39 -82.74 -82.51 145
A 46.98 11.97 -5.88 -5.57 120

BBB 175.94 130.93 108.28 108.66 47
BB 574.89 501.87 465.03 465.64 107
B 1570.36 1447.17 1383.15 1384.22 203

CCC 2408.17 2295.83 2235.35 2236.38 25

Table 10: CIPS Pesaran’s test statistics for panel data. Here S is for the spot five year
CDS spread and F is the forward CDS spread corresponding to the spot spread. No

asterisk denotes lack of significance at 5% level and two asterisks denote significance at
1% level.

No intercept and no trend
2001-2006 2008-2013

S FS S − FS S FS S − FS

Nelson-Siegel -1.27 -1.13 -2.19** -1.28 -0.76 -1.33
OU process -1.25 -1.20 -2.51** -1.50 -1.50 -3.44**

Piecewise Constant -1.31 -1.21 -2.80** -1.25 -1.24 -3.60**

Intercept only
2001-2006 2008-2013

S FS S − FS S FS S − FS

Nelson-Siegel -1.68 -1.60 -2.43** -1.78 -1.14 -1.52
OU process -1.58 -1.49 -2.54** -1.99 -1.90 -3.90**

Piecewise Constant -1.67 -1.51 -2.88** -1.78 -1.72 -3.59**

Intercept and trend
2001-2006 2008-2013

S FS S − FS S FS S − FS

Nelson-Siegel -2.03 -2.00 -2.49 -2.198 -1.40 -1.85
OU process -1.93 -1.93 -2.74** -2.48 -2.39 -4.12**

Piecewise Constant -2.04 -1.85 -2.90** -2.18 -2.15 -3.55**
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Table 11: Estimated coefficients for regression (15) by different methods of calculation
of the CMCDS spread for the period 2001-2006. P-values computed using robust

standard errors are reported in parenthesis. “NS” denotes the Nelson-Siegel
interpolation, “Piecewise Constant” the bootstrapping procedure with piecewise

constant hazard rates, “OU” and “OU conv” are the methods with the OU process
without and with convexity adjustment, respectively.

NS Piecewise Constant OU OU conv
Spread(-1) 0.8233 0.8242 0.8263 0.8592

(0.000) (0.000) (0.000) (0.000)
∆IV 3.8297 3.9542 3.9179 1.8780

(0.000) (0.000) (0.000) (0.380)
∆IV(−1) 2.9548 3.1269 3.0841 -0.0391

(0.000) (0.000) (0.000) (0.989)

Spread 0.8096 0.7945 0.7952 -0.5044
(0.000) (0.000) (0.000) (0.630)

Spread(−1) -0.6465 -0.6329 -0.6362 0.4099
(0.000) (0.000) (0.000) (0.654)

∆IV -3.2678 -3.3411 -3.3175 -0.1598
(0.000) (0.000) (0.000) (0.922)

∆IV(−1) -2.8722 -3.0397 -2.9986 1.3354
(0.000) (0.000) (0.000) (0.745)

Adjusted R2 0.7520 0.7447 0.7499 0.7269
σ 50.00 53.25 52.26 130.06

Wald (joint) 6450 7290 7180 157000
(0.000) (0.000) (0.000) (0.000)

AR(1) test -0.4270 -0.5776 -0.3993 1.0520
(0.669) (0.564) (0.690) (0.293)

AR(2) test -0.6791 -0.6474 -0.6655 -0.6276
(0.497) (0.517) (0.506) (0.530)

Table 12: Estimated coefficients for regression (15) by different methods of calculation
of the CMCDS spread for the period 2008-2013. P-values computed using robust

standard errors are reported in parenthesis. “NS” denotes the Nelson-Siegel
interpolation, “Piecewise Constant” the bootstrapping procedure with piecewise

constant hazard rates, “OU” and “OU conv” are the methods with the OU process
without and with convexity adjustment, respectively.

NS Piecewise Constant OU OU conv
Spread(-1) 0.6077 0.6083 0.6152 0.4938

(0.000) (0.000) (0.000) (0.000)
∆IV 9.6091 10.1827 9.9603 15.9263

(0.000) (0.000) (0.000) (0.001)
∆IV(−1) 6.1992 6.9207 6.9569 9.3771

(0.000) (0.000) (0.000) (0.079)

Spread 0.9355 0.9293 0.9227 0.3746
(0.000) (0.000) (0.000) (0.293)

Spread(−1) -0.5566 -0.5533 -0.5562 -0.0422
(0.000) (0.000) (0.000) (0.848)

∆IV -9.3174 -9.8595 -9.6285 -12.6830
(0.000) (0.000) (0.000) (0.000)

∆IV(−1) -6.0113 -6.7002 -6.7165 -7.0648
(0.000) (0.000) (0.000) (0.184)

Adjusted R2 0.7200 0.6167 0.6591 0.8889
σ 132.1329 144.0567 144.2024 490.665

Wald (joint) 961.7 1267 1757 1861
(0.000) (0.000) (0.000) (0.000)

AR(1) test -0.5149 -0.5714 -0.722 -0.9362
(0.607) (0.568) (0.470) (0.349)

AR(2) test -0.3639 -0.3029 0.1545 0.6718
(0.716) (0.762) (0.877) (0.502)
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Table 13: Estimated coefficients for regression (16) by different methods of calculation
of the CMCDS spread for the period 2001-2006. P-values computed using robust

standard errors are reported in parenthesis. “NS” denotes the Nelson-Siegel
interpolation, “Piecewise Constant” the bootstrapping procedure with piecewise

constant hazard rates, “OU” and “OU conv” are the methods with the OU process
without and with convexity adjustment, respectively.

NS Piecewise Constant OU OU conv
Spread(-1) 0.8221 0.8226 0.8247 0.8587

(0.000) (0.000) (0.000) (0.000)
∆IV 3.3804 3.4795 3.4423 1.7705

(0.000) (0.000) (0.000) (0.333)
∆IV(−1) 2.1229 2.2524 2.2154 -0.0820

(0.004) (0.005) (0.004) (0.97)
∆GDP -0.1189 -0.1229 -0.1181 -0.0399

(0.000) (0.001) (0.001) (0.552)
∆TRES 5.3754 5.9644 6.0299 5.9645

(0.105) (0.069) (0.07) (0.212)
∆SENT 0.6949 0.8093 0.7912 -0.7709

(0.077) (0.042) (0.047) (0.607)
∆RUSS -0.0070 -0.0192 -0.0159 0.0680

(0.865) (0.636) (0.695) (0.39)
∆VIX -25.5932 -38.9971 -35.7055 240.7870

(0.685) (0.558) (0.585) (0.287)
Adjusted R2 0.7341 0.7271 0.7324 0.7270

σ 52.30 55.61 54.60 130.41
Wald (joint) 11160 11760 11820 111800

(0.000) (0.000) (0.000) (0.000)
AR(1) test -0.4081 -0.5624 -0.3501 1.043

(0.683) (0.574) (0.726) (0.297)
AR(2) test -0.4036 -0.3700 -0.3680 -0.6682

(0.687) (0.711) (0.713) (0.504)
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Table 14: Estimated coefficients for regression (16) by different methods of calculation
of the CMCDS spread for the period 2008-2013. P-values computed using robust

standard errors are reported in parenthesis. “NS” denotes the Nelson-Siegel
interpolation, “Piecewise Constant” the bootstrapping procedure with piecewise

constant hazard rates, “OU” and “OU conv” are the methods with the OU process
without and with convexity adjustment, respectively.

NS Piecewise Constant OU OU conv
Spread(-1) 0.6126 0.6133 0.6198 0.4958

(0.000) (0.000) (0.000) (0.000)
∆IV 8.7586 9.2779 9.0631 14.6401

(0.000) (0.000) (0.000) (0.001)
∆IV(−1) 3.8099 4.2579 4.3046 5.8863

(0.000) (0.000) (0.000) (0.042)
∆GDP -0.1314 -0.1184 -0.1055 -0.0330

(0.000) (0.000) (0.000) (0.783)
∆TRES 0.9659 -2.6025 -6.2660 9.5315

(0.929) (0.810) (0.520) (0.771)
∆SENT -2.5059 -2.6850 -2.6740 -3.0440

(0.002) (0.002) (0.001) (0.253)
∆RUSS -0.0734 -0.0717 -0.0573 -0.1353

(0.029) (0.018) (0.029) (0.149)
∆VIX -9.8513 -10.7572 -10.6097 -18.0371

(0.000) (0.000) (0.000) (0.000)
Adjusted R2 0.7053 0.5962 0.6418 0.8883

σ 135.58 147.87 147.85 491.88
Wald (joint) 782.4 1036 1590 7483

(0.000) (0.000) (0.000) (0.000)
AR(1) test -0.4875 -0.5309 -0.6584 -0.9436

(0.626) (0.595) (0.510) (0.345)
AR(2) test -0.7642 -0.7041 -0.1259 0.5828

(0.445) (0.481) (0.900) (0.560)
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