

City Research Online

City, University of London Institutional Repository

Citation: Robert, E.C. (1986). A factorial approach to the study of alkali-silica reaction in concrete. (Unpublished Doctoral thesis, City University London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/14640/

Link to published version:

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

A FACTORIAL APPROACH

TO THE STUDY OF

ALKALI-SILICA REACTION IN CONCRETE

E.C. ROBERT, B.Sc.

Thesis submitted to The City University for the Degree of Doctor of Philosophy in the Department of Civil Engineering

February 1986

ł

-1-

IMAGING SERVICES NORTH

Boston Spa, Wetherby West Yorkshire, LS23 7BQ www.bl.uk

BEST COPY AVAILABLE.

TEXT IN ORIGINAL IS VERY POOR QUALITY

TABLE OF CONTENTS

٠.

TITI	LE PAGE	Page 1
TABI	LE OF CONTENTS	2
LIST	T OF TABLES	6
LIS	T OF ILLUSTRATIONS	9
LIS	T OF PLATES	15
ACKI	NOWLEDGEMENTS	18
DECI	LARATION	19
ABS	TRACT	2 0
1.	INTRODUCTION	22
2.	THE SCOPE OF THE PRESENT WORK	27
3.	ALKALI - SILICA REACTION, A REVIEW OF PUBLISHED RESEARCH	31
	3.1 DISCOVERY OF THE REACTION AND SOME EARLY RESEARCH	31
	3.2 THE CHANGING U.K. SITUATION	35
	3.3 PROCESSES INVOLVED IN A.S.R.	39
	3.3.1 Mechanism of Chemical Reaction and Expansion 3.3.2 Symptoms of Reaction and Mechanism of Damage 3.3.3 Additional Factors contributing to the Extent	39 43
	of Reaction	45
	3.4 LABORATORY RESEARCH INTO A.S.R.	49
	3.4.1 Research Materials 3.4.2 Research Methods	49 52
	3.5 WAYS OF AVOIDING A.S.R.	55
	3.6 THE USE OF PULVERISED FUEL ASH TO PREVENT A.S.R.	60
	3.6.1 The Effectiveness of P.F.A. in Reducing	60
	3.6.2 The Mechanism of P.F.A. when used as a Partial Cement Replacement	65
4.	STATISTICAL METHODS OF EXPERIMENTATION - FACTORIAL ANALYSIS	71
	4.1 STATISTICS IN EXPERIMENTATION	71
з.	4.1.1 General Introduction 4.1.2 Explanation of Terminology 4.1.3 Explanation of relevant Statistical Terms and	71 76
	Processes 4.1.4 Planning an Experimental Programme 4.1.5 The Choice of Experimental Design	80 83 85

	4.2 DETAILED DISCUSSION OF SELECTED DESIGN	Page 90
	4.2.1 Notation 4.2.2 Definition of Main Effects. Interaction	91
	Effects and their Variances	99
	Treatment Effects, Error, and their Variances	104
5.	DETAILS OF THE INVESTIGATION - PHYSICAL	110
	5.1 FRAMEWORK OF EXPERIMENTAL WORK	110
	5.1.1 Standard Test Methods 5.1.2 Laboratory Conditions, Equipment and	110
	Procedures 5.1.3 Analytical Procedures	111 115
	5.2 SERIES 1 EXPERIMENTS	117
	5.2.1 Experimental Treatment Combinations 5.2.2 Materials 5.2.3 Experimental Procedures	117 119 121
	5.3 SERIES 2 EXPERIMENTS	122
	5.3.1 Experimental Treatment Combinations 5.3.2 Materials 5.3.3 Experimental Procedures	122 127 129
6.	PRESENTATION AND DISCUSSION OF EXPERIMENTAL RESULTS - PHYSICAL	150
	6.1 SERIES 1 MORTAR BAR EXPANSION TESTS (Mixes 000 to 222P)	150
	6.1.1 Expansion of Bars in relation to Time 6.1.2 Expansion of Bars in relation to Pyrex Glass content (expressed as a percentage of the	151
	total aggregate) 6.1.3 Expansion of Bars in relation to the Alkali Content of the Cement (expressed as equivalent Na ₂ O, as a percentage of the cement content by	153
	weight) 6.1.4 Expansion of Bars containing P.F.A. as a	153
	Partial Replacement for the Cement Content 6.1.5 Statistical Interpretation of Expansion Data	154 156
	6.2 SERIES 2 MORTAR BAR EXPANSION TESTS - 3 X 4 X 4 X 2 FACTORIAL SET (Mixes 0000 to 2331P)	158
	6.2.1 Expansion of Bars in relation to Time 6.2.2 Expansion of Bars in relation to Pyrex Glass Content (expressed as a percentage of the	160
	total aggregate) 6.2.3 Expansion of Bars in relation to the Alkali Content of the Cement (expressed as equivalent	162
	Napo, as a percentage of the cement content	

			Page
		6.2.4 Expansion of Bars containing P.F.A. as a Partial Replacement for the Cement Content	164
		6.2.5 Expansion of Bars in relation to Free Water Content	167
		6.2.6 Statistical Interpretation of Expansion Data	168
	6.3	SERIES 2 MORTAR BAR EXPANSION TESTS - 'EXTRA PYREX' SET (Mixes 2032P to 2035P, 2041P to 2071P, 2431P to 2731P and 3031P to 6031P)	171
		6.3.1 Expansion of Bars with varying Free Water Contents (Mixes 2032P to 2035P)	173
		Contents (Mixes 2041P to 2071P)	174
		 6.3.3 Expansion of Bars containing P.F.A. used as an Admixture (Mixes 2431P to 2731P) 6.3.4 Expansion of Bars containing Reduced 	175
		Quantities of High Alkali Cement (Mixes 3031P to 6031P)	176
	6.4	SERIES 2 MORTAR BAR EXPANSION TESTS - 'BELTANE OPAL' SET (Mixes 2001 to 2371B)	177
		6.4.1 Expansion of Bars in relation to Time	178
		6.4.2 Expansion of Bars in relation to Beltane Opal Content	179
		6.4.3 Expansion of Bars containing P.F.A. as a Partial Replacement for the Cement Content	180
	6.5	SERIES 2 COMPRESSION TESTS ON 2" MORTAR CUBES (Mixes 2000 to 2331P)	182
		6.5.1 Variations in Strength apparently unrelated	
		to A.S.R. 6.5.2 Variations in Strength in relation to Mortar	183
		Bar Expansion	185
•	DET	AILS OF THE INVESTIGATION - CHEMICAL	254
	7.1	INTRODUCTION TO CHEMICAL INVESTIGATION	254
	7.2	EXPERIMENTAL PROCEDURES	256
		7.2.1 Samples for Chemical Analysis 7.2.2 Analytical Methods	256 257
	7.3	DISCUSSION OF THE EXPERIMENTAL STAGES AND DECISIONS	258
•	PRE: - Ci	SENTATION AND DISCUSSION OF EXPERIMENTAL RESULTS HEMICAL	260
	8.1	ANALYTICAL RESULTS	260
	8.2	THE EFFECT OF P.F.A. ON THE ALKALI LEVELS	261
		8.2.1 Mixes containing no Reactive Aggregate 8.2.2 Mixes containing Pyrex Glass 8.2.3 Mixes containing Beltane Opal	261 265 268

`**-**4-

		Page
8.2.4	Analysis Data	2 68
8.3 THE EXT	TENT OF THE P.F.A. REACTION	271
8.4 DISCUS	SION	273
9. FURTHER DIS	SCUSSION	296
9.1 COMPAR PUBLIS	ISON OF THE EXPERIMENTAL RESULTS WITH HED INFORMATION	296
9.1.1 9.1.2	Mortars containing Pyrex Glass Mortars containing Beltane Opal	296 298
9.2 BEHAVIO BELTANI	DURAL DIFFERENCES BETWEEN PYREX GLASS AND E OPAL	306
9.2.1 9.2.2	Mixes without P.F.A Mixes including P.F.A.	310 312
9.3 IMPLIC	ATIONS FOR THE USE OF P.F.A. IN CONCRETE	324
10. CONCLUSION	S AND SUGGESTIONS FOR FUTURE WORK	348
10.1	CONCLUSIONS	3 48
10.2	SUGGESTIONS FOR FUTURE WORK	3 55
APPENDIX A S	eries 1 - full details of mortar mixes	359
APPENDIX B S	eries 2 - full details of mortar mixes	362
APPENDIX C S	eries 1 - full details of expansion results rom 3 ³ full factorial set of experiments	371
APPENDIX D S	eries 2 - full details of expansion results rom 3 X 4 X 4 X 2 factorial set of experiments	396
APPENDIX E S	eries 2 - full details of expansion results rom 'Extra Pyrex' set of experiments	460
APPENDIX F So	eries 2 - full details of expansion results rom 'Beltane Opal' set of experiments	474
APPENDIX G So	eries 2 - full details of results from ompressive strength tests on 2" mortar cubes	488
APPENDIX H Co o e:	omputational procedures used in the analysis f variance for the results from a factorial xperiment	490
APPENDIX J For an	ull details of results from the chemical nalysis of the mortar bars	509
LIST OF REFEREN	NCES	515

 L	I	S	Т	0	F	Т	A	В	L	Ε	S
_	-	-							-	_	~

		LIST OF TABLES	
TARI F	5.1	Details of environmentally controlled rooms	Page
INDLE		and cabinets	131
TABLE	5.2	Characteristics of mixer	131
TABLE	5.3	Explanation of mix reference numbers - Series 1	131
TABLE	5.4	Properties of materials - Series 1	132
TABLE	5.5	Grading of aggregates	134
TABLE	5.6	Age of specimens at measurement and storage regime - Series 1	134
TABLE	5.7	Explanation of mix reference numbers - Series 2	135
TABLE	5.8	Properties of materials - Series 2	137
TABLE	5.9	Age of specimens at measurement and storage regime - Series 2	139
TABLE	6.1	Expansion of mixes incorporating p.f.a. expressed as a percentage of the expansion of the corresponding non-p.f.a. mix - Series 1	188
TABLE	6.2	ANOVA table for Series 1 - 14 day expansion results, original experimental model	189
TABLE	6.3	ANOVA table for Series 1 - 28 day expansion results, original experimental model	190
TABLE	6.4	ANOVA table for Series 1 - 2 month expansion results, original experimental model	191
TABLE	6.5	ANOVA table for Series 1 - 4 month expansion results, original experimental model	192
TABLE	6.6	ANOVA table for Series 1 - 14 month expansion results, original experimental model	193
TABLE	6.7	Summary of tail probabilities - Series 1, original experimental model	194
TABLE	6.8	ANOVA table for Series 1 - 14 day expansion results, revised experimental model	195
TABLE	6.9	ANOVA table for Series 1 - 28 day expansion results, revised experimental model	196
TABLE	6.10	ANOVA table for Series 1 - 2 month expansion results, revised experimental model	197

Page				
198	ANOVA table for Series 1 - 4 month expansion results, revised experimental model	6.11	TABLE	
199	ANOVA table for Series 1 - 14 month expansion results, revised experimental model	6.12	TABLE	
200	Summary of tail probabilities - Series 1, revised experimental model	6.13	TABLE	
201	Expansion of mixes incorporating p.f.a. expressed as a percentage of the expansion of the corresponding non-p.f.a. mix - Series 2	6.14	TABLE	
204	ANOVA table for Series 2 - 14 day expansion results, original experimental model	6.15	TABLE	
205	ANOVA table for Series 2 - 2 month expansion results, original experimental model	6.16	TABLE	
206	ANOVA table for Series 2 - 6 month expansion results, original experimental model	6.17	TABLE	
207	ANOVA table for Series 2 - 12 month expansion results, original experimental model	6.18	TABLE	
2 08	Summary of tail probabilities - Series 2, original experimental model	6.19	TABLE	
209	ANOVA table for Series 2 - 14 day expansion results, revised experimental model	6.20	TABLE	
210	ANOVA table for Series 2 - 2 month expansion results, revised experimental model	6.21	TABLE	
211	ANOVA table for Series 2 - 6 month expansion results, revised experimental model	6.22	TABLE	
212	ANOVA table for Series 2 - 12 month expansion results, revised experimental model	6.23	TABLE	
213	Summary of tail probabilities - Series 2, revised experimental model	6.24	TABLE	
213	Expansion of mixes incorporating p.f.a. expressed as a percentage of the expansion of the corresponding non-p.f.a. mix - 'Beltane Opal' mixes	6.25	TABLE	
276	Comparison of results from the chemical analysis of the alkali content of the mortar bars and liquids with the alkalis provided by the mix constituents - Series 2, 3 X 4 X 4 X 2 factorial set of mixes	8.1	TABLE	

.

.

.

TABLE 8.2	Comparison of results from the chemical analysis of the alkali content of the mortar bars and liquids with the alkalis provided by the mix constituents - Series 2. 'Extra Pyrex' set of	Page
	mixes	279
TABLE 8.3	Comparison of results from the chemical analysis of the alkali content of the mortar bars and liquids with the alkalis provided by the mix constituents - Series 2, 'Beltane Opal' set of mixes	280
TABLE 8.4	ANOVA table for chemical analysis results - bars only	281
TABLE 8.5	ANOVA table for chemical analysis results - liquids only	282
TABLE 8.6	ANOVA table for chemical analysis results - bars + liquids	283
TABLE 8.7	Summary of ANOVA tables for chemical analysis results	284
TABLE 8.8	Estimation of percentage reaction of p.f.a. for mixes containing no reactive aggregate, no allowance made for original alkali content of sand or p.f.a.	2 85
TABLE 8.9	Estimation of percentage reaction of p.f.a. for mixes containing no reactive aggregate, full allowance made for original acid soluble alkali content of sand and p.f.a.	2 86
TABLE 9.1	Mass ratio of reactive aggregate to p.f.a. for mixes containing Pyrex glass	332
TABLE 9.2	Mass ratio of reactive aggregate to p.f.a. for mixes containing Beltane opal	332
TABLE 9.3	Calculated changes in expansion and expansion rates for certain mixes containing pyrex glass	332
TABLE 9.4	Calculated difference between expansions of non- p.f.a. mixes and their equivalent p.f.a. mixes for certain mortars containing Pyrex glass	333
TABLE 9.5	Calculated changes in expansion and expansion rates for mixes containing Beltane opal	333
TABLE 9.6	Calculated difference between expansions of non- p.f.a. mixes and their equivalent p.f.a. mixes for mortars containing Beltane opal	334

Dage

FIGURE 3.1	Effect of alkali dilution on the expansion of mortar bars with constant Beltane opal	raye
	Nixon (58))	70
FIGURE 3.2	Effect of alkali dilution on the expansion of mortar bars with constant Beltane opal concentration - age 10 Months (after Gaze and Nixon (58))	70
FIGURE 3.3	Effect of alkali dilution on the expansion of mortar bars with constant Beltane opal concentration - age 3 months (after Gaze and Nixon (58))	70
FIGURE 5.1	Cross-sectional diagram showing construction of mould for fabricating mortar bar specimens	140
FIGURE 5.2	Flow chart for computer analysis of expansion data	141
FIGURE 5.3	Explanation of procedure used to calculate batch quantities for mixes containing p.f.a. as a partial replacement for the cement content	142
FIGURE 5.4	Flow chart for preparation, storage and measurement of mortar bars, Series 1 and 2	143
FIGURE 5.5	Flow chart for preparation, storage and testing of 2" cubes	144
FIGURE 6.1	Graph of expansion against age - Pyrex, Mix Reference: 000, 001P and 002P	214
FIGURE 6.2	Graph of expansion against age - Pyrex, Mix Reference: 100, 101P and 102P	214
FIGURE 6.3	Graph of expansion against age - Pyrex, Mix Reference: 200, 201P and 202P	215
FIGURE 6.4	Graph of expansion against Pyrex glass content at age 4 months	216
FIGURE 6.5	Graph of expansion against age - Pyrex, Mix Reference: 002P, 102P and 202P	217
FIGURE 6.6	Graph of expansion against age - Pyrex, Mix Reference: 001P, 101P and 201P	217
FIGURE 6.7	Graph of expansion against age - Pyrex, Mix Reference: 002P, 012P and 022P	218
FIGURE 6.8	Graph of expansion against age - Pyrex, Mix Reference: 202P, 212P and 222P	218
FIGURE 6.9	Graph of expansion against pulverised fuel ash content at age 4 months	219

		Page
FIGURE 6.10	Graph of expansion against Pyrex glass content at age 4 months	219
FIGURE 6.11	Graph of expansion against age - Pyrex, Mix Reference: 102P, 112P and 122P	220
FIGURE 6.12	Graph of expansion against age - Pyrex, Mix Reference: 201P, 211P and 221P	220
FIGURE 6.13	Graph of expansion against age - Pyrex, Mix Reference: 101P, 111P and 121P	221
FIGURE 6.14	Graph of expansion against age - Pyrex, Mix Reference: 0000, 0020P and 0030P	221
FIGURE 6.15	Graph of expansion against age - Pyrex, Mix Reference: 0001, 0021P and 0031P	222
FIGURE 6.16	Graph of expansion against age - Pyrex, Mix Reference: 1000, 1010P, 1020P and 1030P	222
FIGURE 6.17	Graph of expansion against age - Pyrex, Mix Reference: 1001, 1011P, 1021P and 1031P	223
FIGURE 6.18	Graph of expansion against age - Pyrex, Mix Reference: 2001, 2011P, 2021P and 2031P	223
FIGURE 6.19	Graph of expansion against Pyrex glass content at age 6 months	224
FIGURE 6.20	Graph of expansion against Pyrex glass content at age 6 months	224
FIGURE 6.21	Graph of expansion against age - Pyrex, Mix Reference: 2000, 2010P, 2020P and 2030P	225
FIGURE 6.22	Graph of expansion against Pyrex glass content at age 6 months	226
FIGURE 6.23	Graph of expansion against age - Pyrex, Mix Reference: 0030P, 1030P and 2030P	227
FIGURE 6.24	Graph of expansion against age - Pyrex, Mix Reference: 0031P, 1031P and 2031P	227
FIGURE 6.25	Graph of expansion against age - Pyrex, Mix Reference: 0021P, 1021P and 2021P	228
FIGURE 6.26	Graph of expansion against age - Pyrex, Mix Reference: 0011P, 1011P and 2011P	228
FIGURE 6.27	Graph of expansion against age - Pyrex, Mix Reference: 0331P, 1331P and 2331P	229
FIGURE 6.28	Graph of expansion against pulverised fuel ash content at age 6 months	230

-

•

		Page
FIGURE 6.29	Graph of expansion against Pyrex glass content at age 6 months	230
FIGURE 6.30	Graph of expansion against age - Pyrex, Mix Reference: 2031P, 2131P, 2231P and 2331P	231
FIGURE 6.31	Graph of expansion against age - Pyrex, Mix Reference: 0031P, 0131P, 0231P and 0331P	231
FIGURE 6.32	Graph of expansion against pulverised fuel ash content at age 2 months	232
FIGURE 6.33	Graph of expansion against pulverised fuel ash content at age 2 months	232
FIGURE 6.34	Graph of expansion against pulverised fuel ash content at age 6 months	233
FIGURE 6.35	Graph of expansion against pulverised fuel ash content at age 12 months	233
FIGURE 6.36	Graph of expansion against age - Pyrex, Mix Reference: 1030P and 1031P	234
FIGURE 6.37	Graph of expansion against age - Pyrex, Mix Reference: 2030P and 2031P	234
FIGURE 6.38	Graph of expansion against age - Pyrex, Mix Reference: 2020P and 2021P	235
FIGURE 6.39	Graph of expansion against age - Pyrex, Mix Reference: 0030P and 0031P	235
FIGURE 6.40	Graph of expansion against age - Pyrex, Mix Reference: 2032P, 2033P, 2034P, 2035P, 2030P and 2031P	236
FIGURE 6.41	Graph of expansion against free water/cement ratio (w/c) at age 6 months	237
FIGURE 6.42	Graph of expansion against free water/cement ratio (w/c) at age 12 months	237
FIGURE 6.43	Graph of expansion against Pyrex glass content at age 6 months	23 8
FIGURE 6.44	Graph of expansion against age - Pyrex, Mix Reference: 2431P, 2531P, 2631P, 2731P, 2031P, 2131P, 2231P and 2331P	239
FIGURE 6.45	Graph of expansion against age - Pyrex, Mix Reference: 3031P, 4031P, 5031P and 6031P	239

		Page
FIGURE 6.46	Graph of expansion against Beltane opal content at age 6 months	240
FIGURE 6.47	Graph of expansion against age - Beltane opal, Mix Reference: 2041B and 2341B	241
FIGURE 6.48	Graph of expansion against age - Beltane opal, Mix Reference: 2031B and 2331B	241
FIGURE 6.49	Graph of expansion against Beltane opal content at age 6 months	242
FIGURE 6.50	Graph of expansion against Beltane opal content at age 12 months	242
FIGURE 8.1	Graph of alkali content of specimen against p.f.a. content for mixes: 2000 to 2300 and 2001 to 2301	287
FIGURE 8.2	Graph of alkali content of specimen against cement alkali content for mixes: 0000 to 2000 and 0001 to 2001	287
FIGURE 8.3	Graph of alkali content of specimen against cement alkali content for mixes: 0300 to 2300 and 0301 to 2301	2 88
FIGURE 8.4	Graph of alkali content of specimen against cement alkali content for mixes: 0030P to 2030P and 0031P to 2031P	288
FIGURE 8.5	Graph of alkali content of specimen against cement alkali content for mixes: 0330P to 2330P and 0331P to 2331P	289
FIGURE 8.6	Graph of alkali content of specimen against p.f.a. content for mixes: 1000 to 1300 and 1001 to 1301	289
FIGURE 8.7	Graph of alkali content of specimen against p.f.a. content for mixes: 0000 to 0300 and 0001 to 0301	290
FIGURE 8.8	Graph of alkali content of specimen against p.f.a. content for mixes: 2030P to 2330P and 2031P to 2331P	290
FIGURE 8.9	Graph of alkali content of specimen against p.f.a. content for mixes: 2020P to 2320P and 2021P to 2321P	291
FIGURE 8.10	Graph of alkali content of specimen against p.f.a. content for mixes: 2010P to 2310P and 2011P to 2311P	291

			Page
FIGURE	8.11	Graph of alkali content of specimen against p.f.a. content for mixes: 1030P to 1330P and 1031P to 1331P	292
FIGURE	8.12	Graph of alkali content of specimen against p.f.a. content for mixes: 0030P to 0330P and 0031P to 0331P	292
FIGURE	8.13	Graph of alkali content of specimen against Pyrex glass content for mixes: 2000 to 2030P and 2001 to 2071P	293
FIGURE	8.14	Graph of alkali content of specimen against Pyrex glass content for mixes: 1000 to 1030P and 1001 to 1031P	293
FIGURE	8.15	Graph of alkali content of specimen against Pyrex glass content for mixes: 0000 to 0030P and 0001 to 0031P	294
FIGURE	8.16	Graph of alkali content of specimen against p.f.a. content for mixes: 2041B to 2341B and 2071B to 2371B	294
FIGURE	8.17	Graph of alkali content of specimen against Beltane opal content for mixes: 2001 to 2071B	295
FIGURE	9.1	Graph of expansion against Beltane opal content. Comparison of expansions at 6 months with expansions at 4 months after Hobbs (21)	335
FIGURE	9.2	Graph of expansion against Beltane opal content at age 12 months	335
FIGURE	9.3	Graph of expansion against Beltane opal content at age 14 days to 12 months	336
FIGURE	9.4	Graph of expansion against age - Beltane opal and Pyrex, Mix Reference: 2041P to 2071P and 2041B to 2071B	337
FIGURE	9.5	Graph of expansion against age - Beltane opal and Pyrex, Mix Reference: 2011P to 2031P and 2011B to 2031B	337
FIGURE	9.6	Graph of expansion against pulverised fuel ash content at age 12 months	33 8
FIGURE	9.7	Graph of expansion against age - Beltane opal and Pyrex, Mix Reference: 2311P to 2331P and 2311B to 2331B	339
FIGURE	9.8	Graph of expansion against age - Beltane opal and Pyrex, Mix Reference: 2041P to 2071P and 2341B to 2371B	339
FIGURE	9.9	Graph of expansion against age - Beltane opal, Mix Reference: 2051B and 2351 B	340

•

FIGURE 9.10	Graph of expansion against age - Beltane opal, Mix Reference: 2041B and 2341B	Page 340
FIGURE 9.11	Graph of expansion rate against age of specimen, Mix Reference: 2011P and 2311P	341
FIGURE 9.12	Graph of expansion rate against age of specimen, Mix Reference: 2021P and 2321P	341
FIGURE 9.13	Graph of expansion rate against age of specimen, Mix Reference: 2031P and 2331P	342
FIGURE 9.14	Graph of expansion difference against age of specimen for mixes containing Pyrex glass with O% p.f.a. and 45% p.f.a. substitution into the high alkali cement	342
FIGURE 9.15	Graph of expansion difference against age of specimen for mixes containing Pyrex glass with 0% p.f.a. and 30% p.f.a. substitution into the high alkali cement	343
FIGURE 9.16	Graph of expansion difference against age of specimen for mixes containing Pyrex glass with O% p.f.a. and 15% p.f.a. substitution into the high alkali cement	343
FIGURE 9.17	Graph of expansion rate against age of specimen, Mix Reference: 2041B and 2341B	344
FIGURE 9.18	Graph of expansion rate against age of specimen, Mix Reference: 2051B and 2351B	344
FIGURE 9.19	Graph of expansion rate against age of specimen, Mix Reference: 2061B and 2361B	345
FIGURE 9.20	Graph of expansion rate against age of specimen, Mix Reference: 2071B and 2371B	3 45
FIGURE 9.21	Graph of expansion rate against age of specimen, Mix Reference: 2011B and 2311B	346
FIGURE 9.22	Graph of expansion rate against age of specimen, Mix Reference: 2021B and 2321B	3 46
FIGURE 9.23	Graph of expansion rate against age of specimen, Mix Reference: 2031B and 2331B	347
FIGURE 9.24	Graph of expansion difference against age of specimen for mixes containing Beltane opal with O% p.f.a. and 45% p.f.a. substitution into the high alkali cement	347

.

LIST OF PLATES

PLATE 5.1	Environmentally controlled moulding/measurement room	Page
		145
PLATE 5.2	Curing cabinet with specimen moulds in place	145
PLATE 5.3	Temperature controlled storage room with storage containers in place	146
PLATE 5.4	Inside view of moulding/measurement room, showing Hobart mixer, length comparator, heater/ refridgeration unit and humidifier	146
PLATE 5.5	Gang mould capable of making four mortar bar specimens with encastre gauge studs	147
PLATE 5.6	Flow table	147
PLATE 5.7	Typical storage container	148
PLATE 5.8	Comparator with mortar bar specimen in place	148
PLATE 5.9	Gang mould capable of making six cube specimens (2")	149
PLATE 6.1	Mix Ref. 2000, showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	243
PLATE 6.2	Mix Ref. 2010P showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	243
PLATE 6.3	Mix Ref. 2020P showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	244
PLATE 6.4	Mix Ref. 2021P showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	244
PLATE 6.5	Mix Ref. 2030P showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	245
PLATE 6.6	Mix Ref. 2031P showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	. 245
PLATE 6.7	Mix Ref. 2131P showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	246

PLATE 6.8	Mix Ref. 2231P showing the surface condition, of a typical mortar bar subsequent to the expansion	Page
	measurement taken at age 6 months	246
PLATE 6.9	Mix Ref. 2331P showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	247
PLATE 6.10	Mix Ref. 0031P showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	247
PLATE 6.11	Mix Ref. 2301 showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	248
PLATE 6.12	Mix Ref. 2032P showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	248
PLATE 6.13	Mix Ref. 2035P showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	249
PLATE 6.14	Mix Ref. 2731P showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	249
PLATE 6.15	Mix Ref. 3031P showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	250
PLATE 6.16	Mix Ref. 6031P showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	250
PLATE 6.17	Mix Ref. 2041B showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	251
PLATE 6.18	Mix Ref. 2341B showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	251
PLATE 6.19	Mix Ref. 2071B showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	252
PLATE 6.20	Mix Ref. 2371B showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	252

PLATE 6.21	Mix Ref. 2031B showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	Page 253
PLATE 6.22	Mix Ref. 2331B showing the surface condition, of a typical mortar bar subsequent to the expansion measurement taken at age 6 months	253

•

•

.

.

ACKNOWLEDGEMENTS

The author wishes to thank the following people and organisations for their valuable advice, encouragement and assistance during the various stages of this research project:-

The Science and Engineering Research Council and Probe Laboratories Ltd. for the joint funding of the research under a C.A.S.E. agreement.

The City University, Department of Civil Engineering, for provision of the necessary office, computing and laboratory facilities. In particular, Dr L.F. Boswell for his contribution as supervisor and the laboratory staff for assistance with the physical testing stages of the research. Special mention to Mr J. Stoker without whose help the final stages of the physical testing would not have been possible.

Dr P.J.E. Sullivan for his advice and assistance with all aspects of the research in his capacity of industrial supervisor and also Probe Laboratories Ltd. for the provision of laboratory facilities at their Watford headquarters where the initial stage of the experimental work was conducted.

Mr P.L. Owens, then of Pozzolanic Ltd., for the provision and processing of the cements, p.f.a. and aggregates used to produce the test specimens.

Dr F.G. Buttler and Mr S.R. Morgan of Teesside Polytechnic for their valuable assistance and expertise in carrying out the analytical part of the chemical stage of the research. In addition, Dr Buttler for the many hours of discussion and help in reviewing the text of this thesis.

Dr S. Gill for his assistance in reviewing the text and encouragement throughout the project.

Harry Stanger Ltd. for assistance in the production of this thesis and in particular the Chemistry Department for carrying out some additional tests on the mix constituents.

Mrs Jenny Bailey for her expertise and patience in producing this final product of the research.

Finally, I wish to thank my wife without whose support and understanding this thesis would never have been completed.

DECLARATION

I grant the powers of discretion to the University Librarian to allow this thesis to be copied in whole or in part without further reference to me.

This permission covers only single copies made for study purposes, subject to normal conditions of acknowledgement.

ABSTRACT

This thesis describes a research project which investigates certain aspects of the alkali-silica reaction in concrete. A factorial approach was adopted for the experimental stages of the investigation. Such an approach is based on proven statistical techniques and has the advantage of allowing any interaction between the experimental factors to be studied in addition to studying the main effect of each separate factor.

The experimental work was carried out in three stages. The first and second stages comprised physical tests which involved the monitoring of expansion in the test specimens. The third stage involved chemical analysis to determine the alkali content of the test specimens.

The main parameters which were included in the investigation were:-(a) the alkali content of the Portland cement (b) the use of pulverised fuel ash as a cement replacement material (c) the amount of reactive aggregate (d) the free water content of the mix In addition, the use of pulverised fuel ash as an admixture and the

In addition, the use of pulverised fuel ash as an admixture and the different effects produced by the two most commonly used reactive aggregates in laboratory tests (namely Pyrex glass and Beltane opal) were studied.

In general the experimental work was carried out using standard test methods as specified by the British Standards Institution and the American Society for Testing and Materials. In particular the "mortar bar method", as described in A.S.T.M. C227, was used extensively. Where necessary the standard test methods were adapted to suit the experimental nature of the investigation.

It is shown that the main effects of the experimental factors are all highly significant and thus have a considerable contribution towards the expansion of the mortar bar specimens. Moreover, the level of interaction between certain of the factors is also shown to be significant. This indicates that, in some cases, the effects of the individual factors are not independent. The experimental results also show the different responses produced by the two reactive aggregate materials.

With respect to the use of pulverised fuel ash, certain time dependent trends are discussed which may suggest some long term instability in the beneficial effect which pulverised fuel ash can achieve by reducing expansions. The factorial approach assisted in highlighting this time dependent effect in the experimental data.

The chemical analysis results have shown that pulverised fuel ash tends to increase the alkali content of the mortar bars. This is discussed with respect to the mode of operation of pulverised fuel ash in inhibiting expansion due to alkali-silica reaction, which is considered to be one of chemical reaction and not a simple dilution effect. An explanation of the contribution of pulverised fuel ash and the differences noted between its use with Pyrex glass and Beltane opal is hypothesised in terms of the relative affinity of each of these three materials for reaction with the hydroxyl ion present in the pore fluids.

TO HELEN AND MY PARENTS

÷ .

an an mananatra min

· •

The phenomenon of Alkali-Silica Reaction (A.S.R.) in concrete has been known for almost half a century since it was first reported by Stanton in 1940 (1). It is part of the larger group of deleterious reactions known as Alkali Aggregate Reaction (A.A.R.) which may occur in certain concretes. In addition to A.S.R. the A.A.R. group also includes Alkali Carbonate Reaction and some very slow siliceous reactions, however only A.S.R. is considered here.

As the name A.S.R. suggests, the reaction is considered to be associated with cements which contain a relatively high proportion of alkali and with aggregates which contain a significant proportion of reactive silica. The alkaline materials found in cement are the oxides of the metals Sodium and Potassium, which form their respective hydroxides when dissolved in water. Reactive forms of silica include Opal, Chalcedony and Tridymite, which can occur in rocks such as Cherts, Siliceous Limestones and Rhyolites. More recently strained Quartz and some geological glasses have been shown to be reactive.

In the intervening years since Stanton's early work, the problem of A.S.R. appears to have increased if measured by the number of cases being documented. Whether this is due to an increase in its occurrence or simply due to an increased awareness of the problem is open to speculation. Most certainly, concrete structures suffering from the effects of A.S.R. are now known to exist in countries previously thought to be free of the problem. In particular a number of such structures are now documented in the U.K. (2-7) whereas earlier work (8-10) expressed a high degree of confidence in the opinion that there was little chance of such occurrences.

-22-

There are two factors which are worthy of note as possibly having contributed to this apparent increase in A.S.R. Firstly, as transportation costs have risen there has been a trend towards the utilisation of locally-won aggregates, whenever possible, rather than using material already known to be satisfactory from practical experience. In many instances such aggregates were not tested rigorously enough before being considered to be fit for use, particularly where phenomena such as A.S.R. had previously been absent.

Secondly, with the increased use of the dry process kiln in the cement production industry and the associated employment of flue gas recirculation to enhance economy, the alkali content of cements has tended to increase. Further, the relative proportions of the various main components in cements are different for modern U.K. cements in comparison to cements manufactured in the past (11). In particular the ratio of tricalcium silicate (C₃S) to dicalcium silicate (C₂S) is much greater than it was say 25 years ago (12).

It is somewhat ironic that the former possibility above should be put forward as a probable cause of an increase in the rate of occurrence of A.S.R. when in the earliest research on the subject (1) the use of untried and untested locally-won material was already found to be the source of some of the first documented cases. Obviously the early warning went unheeded.

Once the reaction had been recognised and found to be fairly widespread in countries such as the U.S.A., it became an important topic for research. In particular three aspects were seen to have great importance:-

-23-

- i) to establish the exact nature of the reaction
- to devise suitable laboratory techniques capable of assessing the potential reactivity of any given cement, aggregate or cement/aggregate combination.
- iii) to find ways of combatting the adverse effects
 of the reaction.

Whilst many advances have been made in all of these fields, to date there is neither an absolutely foolproof laboratory test nor an undisputed description of the mode of reaction.

Classically the reaction has been described in terms of the alkaline material in the cement combining with the reactive silica in the aggregate to form a gelatinous compound. This gel has an affinity for water, any free water being readily absorbed. Since the intake of water is accompanied by an increase in the volume of the gel, internal pressures are set up in the concrete matrix. Consequently, the concrete expands and extensive cracking and surface spalling usually occur. In addition, the gel may be extruded from the cracks. Whilst the foregoing description is generally accepted, the causes of the reaction and mechanism itself are not universally defined. However, most researchers have agreed that for a deleterious effect to be manifest the three parameters alkali, reactive silica and free water must all be present. If one of these three parameters is missing then no deterioration due to A.S.R. will occur. For example, should the free water not be present, then the actual reaction itself may still take place but there will be no expansion process. Under these

-24-

conditions the silica gel could lie dormant until a source of water becomes available, when rapid expansion may occur.

Many laboratory tests have been devised which attempt to assess the reactivity of aggregates, cements or particular aggregate/cement combinations. The most important and widely used of the tests are petrographic examination of aggregates (13), the gel pat test (14), the rapid chemical testing of aggregate (15), the rock prism test (16), the concrete prism test (17) and the mortar bar test (18).

The latter test has been used most widely to assess the performance of materials in this context and also as a research tool to investigate the reaction itself. It is commonly regarded as the most reliable test available but has the disadvantage of requiring considerable time before meaningful results are obtained. Due to the complexity of the reaction, however, even the mortar bar test can give misleading results. In particular some U.K. aggregates found to be reactive in practice have shown no sign of expansion when tested according to this method (19). With other tests, particularly the rapid chemical test, the converse has often been true since aggregates known to be sound in practice have been designated potentially reactive (20).

The serious and destructive nature of the reaction renders remedial work virtually impossible unless the affected concrete is either nonstructural or of limited extent so that a complete section can be replaced. Consequently there has been greater interest in formulation of methods of prevention rather than cure. The most straightforward means of ensuring that disruption does not occur being the removal of one or all of the three conditions necessary for the phenomenon.

-25-

It is widely accepted that the choice of a non-reactive aggregate permits the safe use of a high alkali cement and conversely that the reduction of the alkali content of the cement below a certain limit can allow reactive aggregates to be used safely. However, some difficulty is experienced when trying to define this safe limit of alkali content. Based on his own early work Stanton (1) suggested a limit of 0.6% by weight for the acid-soluble alkali content expressed as equivalent Sodium Oxide (Na_2O_{eq}). More recently Hobbs (21) expressed a limit for acid- soluble Na₂O_{eq} content in terms of kilogrammes per cubic metre of wet concrete, defining the dividing line between safe and deleterious mixes to be at 3.0kg Na_2O_{eq}/m^3 . The third factor in the deterioration process, water, can be removed in certain instances by waterproof membranes and well designed drainage. Due to the possible formation of the dormant hydrous alkali-metal silicate gel, however, this solution on its own cannot be considered completely stable since disruption may occur should water eventually become available.

In situations where economic restraints or circumstances dictate that it is not practicable to remove any of the three main parameters, other solutions are required. Mineral admixtures such as pulverised fuel ash (p.f.a.), ground granulated blast furnace slag (g.g.b.f.s.), limestone flour and silica fume have been shown to have beneficial effects. The results of some research (10, 22) has even shown that certain reactive aggregates can be effective as preventative treatments when ground to a suitably fine particle size.

-26-

The research described in this thesis can be divided into two sections, each dealing with a separate aspect within the topic of A.S.R., namely its physical and chemical aspects. It is appropriate to first describe the scope of the physical section of the work, since this was largely completed before the major chemical work was started. Consequently the former imposed certain restraints on the latter with respect to the specimens which were available for chemical analysis.

After an extensive initial literature survey, certain parameters associated with A.S.R. were selected for examination. In addition it was proposed to use a statistically based method of experimentation in an attempt to explain the sometimes contradictory conclusions drawn from the results of some previous investigations. The basis of the chosen method of statistical experimentation is known as Factorial Analysis which allows the experimenter some insight not only into the effect of each parameter of the experiments but also the interaction between pairs of parameters and larger groups where applicable. Factorial Analysis has rarely been used in research with concrete (23) and, as far as the author is aware, never when investigating A.S.R.. Hence a further consideration of the work was to examine the advantages to be gained by use of this method of experimentation.

The final choice lay in the selection of a laboratory test able to monitor the effects of A.S.R.. Here it was felt important to follow a recognised standard test method in order to exclude as much extraneous variation as possible and also to facilitate direct comparison of the results with other appropriate published data. Because of its widespread use, both in the construction industry and in research

-27-

projects, the 'mortar bar method' was selected as the main technique for the physical investigation.

The selection of this method, based on the regimes of the American Society for Testing and Materials (A.S.T.M.) C227-71 (18) and C441-69 (24), was made in the absence of any British Standard test specification, and it ensured that practical significance for the work was retained.

The section of the work under the heading 'Physical Investigation' is sub-divided into two stages, these being entitled Series 1 and Series 2. Series 1 represents a small group of preliminary experiments designed to create a level of understanding and appreciation for the subject and the procedures before embarking on the main group of experiments in Series 2.

For both groups of experiments the three parameters listed below were chosen for investigation:-

- i) Alkali content of cement.
- ii) Partial replacement of cement content using pulverised fuel ash.
- iii) Reactive aggregate content (Pyrex glass).

The use of pulverised fuel ash as a replacement for part of the cement content of the mix was included to determine its usefulness in combatting the deleterious nature of A.S.R.. This was a point of some considerable controversy at the time of the experimental work.

-28-

Additionally, Series 2 included extra parameters to extend the scope of the work. In the main group of experiments in Series 2 the free water content of the mix was introduced as a parameter. In a smaller set of parallel experiments the Pyrex glass reactive aggregate was replaced by the other most commonly used research material, namely Beltane opal, thus affording some comparison of the effects produced by these two reactive aggregates. Further experiments were also conducted, outside the statistical framework of the main group of experiments in Series 2, which focussed attention on important issues arising from Series 1 and external sources.

The output from the physical tests of Series 1 and 2 is in the form of linear expansions of the mortar bars at the discrete ages selected for the measurements.

The chemical aspect of this research is a logical extension of the analytical techniques used to classify the individual components of the mortar mixes. Its conception emanated directly from the need to gain further understanding into the mechanism of A.S.R. and in particular the way in which p.f.a. affects the reaction. Whilst the results from the expansion tests, utilizing Pyrex glass as the reactive aggregate, were always positive in identifying p.f.a. as beneficial in reducing expansion, some of the Beltane opal mixes produced an opposite effect. It was also noted that the p.f.a. itself contained a higher level of the alkaline material than was found in the Portland cements which were used, whereas some research has concluded that the p.f.a. reduces expansion simply because it dilutes the alkali component of the reaction. It seems most likely that the high level of alkali in the p.f.a. produces the possibility that the level of alkalis in the pore fluids is actually enhanced with

-29-

The chemical tests comprised the analyses of the mortar bars themselves and also the water from the bottom of the storage containers. This enabled the alkali content of the whole system to be studied and in particular to determine if there was any tendency for the alkalis to be leached out of the bar during the A.S.T.M. mortar bar test.

3.1 DISCOVERY OF THE REACTION AND SOME EARLY RESEARCH

The potential for the deleterious alkali-silica reaction must have existed since the time when aggregate. Portland cement and water were first used to manufacture concrete. However, it was not until the pioneering work of Stanton, published in 1940 (1), that the reaction was first discovered. Stanton's early research, carried out as a materials and research engineer for the State Division of Highways in Sacramento, California, was initiated due to the failure of a concrete road pavement within two years of its construction circa 1936-37. Strong similarities between this very rapid failure and other distressed structures in the same area, such as bridges and sea walls, lead to an extensive investigation, both in the field and in the laboratory. Before this time, any distress caused by A.S.R. would have been attributed to other mechanisms which produce outward features similar to some, but not all, of the features caused by A.S.R..

Stanton concluded that the failure of the structures which he investigated was linked to a chemical reaction between certain mineral constituents present in the aggregate and byproducts found in the cement. His laboratory studies revealed that Portland cements containing a relatively high proportion of alkaline material in the form of sodium and potassium oxides were the most reactive, producing excessive expansion in the laboratory specimens when used with the reactive aggregates. Under his particular experimental

-31-

regime Stanton found expansion to be more or less proportional to the acid soluble alkali content (expressed as total equivalent sodium oxide, as explained in the footnote to Tables 5.4 and 5.8) of the cement.

With respect to the particular rock types found to be reactive, Stanton concluded that siliceous magnesian limestone, cherts and siliceous shale were the most vulnerable and that chalcedony, chalcedonic silica and opaline silica were the minerals most likely to be involved. Many of the structures investigated contained siliceous magnesian limestone aggregate.

Stanton acknowledged that with the siliceous magnesian limestone the reaction, at least in part, may be due to the magnesium carbonate content. Thus two types of alkaliaggregate reaction may be present, namely A.S.R. and A.C.R. (alkali-carbonate reaction).

Stanton's work also drew attention to a product of the reaction which was described as a 'soft viscous substance'. This substance was analysed to be a silica gel containing some form of complex sodium silicate and was held responsible for the expansion and cracking because of its ability to take in moisture and thereby increase in volume.

The earliest published British research on the subject of A.S.R. was produced in 1952 by Jones of the Building Research Station (22). This was the first in a series of five National Building Studies research papers, on the overall

-32-

topic of "Reactions between Aggregates and Cements", which were published by Jones and Tarleton in the period between 1952 and 1958 (8, 9, 10, 14, 22). The subjects covered by this research programme included the following:-

- a review of the field investigations carried out
 by Stanton and updated to include additional work
 by other authors.
- ii) laboratory testing of U.K. Portland cements andU.K. aggregates.
- iii) trials with the different forms of laboratory test methods being developed by various researchers.
- iv) a study of the effect of the reaction on the physical nature of concrete.
- v) investigation of the mechanism of the reaction and the chemical and physical consequences of the reaction.

Much of the work described in Jones' earliest paper produced conclusions along similar lines to those of Stanton's, as might be expected since this paper was primarily a collection of American experiences on the topic. In addition to opal and chalcedony, Jones listed tridymite and cristobalite as reactive forms of silica and included certain volcanic rocks in his list of potentially reactive species.

-33-

In the following stage of his work (8), Jones confined his field of interest to A.S.R. and paid particular attention to the concrete materials being used at that time in the British construction industry. The connection of the deleterious reaction with siliceous aggregates was of particular interest, since this posed questions regarding the suitability of aggregates such as flint, which is widely used in the U.K., when used in conjunction with a high alkali cement.

Data on the composition of British Portland cements, covering an extended period of time, showed that alkali contents generally fell within the range 0.5% to 1.0%, when expressed as a percentage, by weight, of total equivalent sodium oxide. Rare exceptions were noted at both ends of the scale. Since Stanton's work, among others, had indicated that cements needed to have alkali contents below 0.6% to safeguard against A.S.R., the potential for the reaction appeared to be present in respect of most British cements.

The work on British aggregates revolved around those types considered to be the most likely candidates for A.S.R. and resulted in the statement that 'In general, it may be said that, with the exceptions stated, there is reason to believe that little trouble would arise with British aggregates'. The exceptions referred to had been found to be 'reactive' in the laboratory testing reported by others, though only to an extent which may have been considered marginal in comparison to the troublesome American aggregates and often only when used in a mixture with inert material.

-34-
Following this survey of published data, Jones and Tarleton (9, 10) extended the work to gain first-hand experience with the materials commonly used in British concretes. Using the mortar bar test method two series of experiments were undertaken, the first using a medium alkali cement and the second using a high alkali cement. Based on the results obtained, in the concluding remarks it was stated that 'the normal British aggregates so far tested, when used as whole aggregates, are not expansively reactive with high alkali cements at normal temperatures'. In particular, Thames Valley flint was shown to be innocuous whether used as whole aggregate or diluted using an inert material.

3.2 THE CHANGING U.K. SITUATION

Following the discovery of the A.S.R. problem in the U.S.A. and the early British research discussed above, there was a period of little activity as regards British interest in the subject. Confidence was high in the apparent immunity of British aggregates from the deleterious effects of A.S.R.. This confidence was further substantiated by the lack of any known example of A.S.R. in the U.K., with the construction industry believing that there was no reason why this situation should change.

However, in 1971 A.S.R. was diagnosed as the cause of concrete disruption in a dam in Jersey, Channel Islands. The dam, named Val de la Mare, is part of the principal storage reservoir for the island and was found to be exhibiting signs of distress which, after exhaustive investigation, were

-35-

attributed to A.S.R. This discovery of disruption to the concrete was made some nine years after completion of construction in 1962 which would probably indicate that the materials were not 'violently' reactive, unlike some of the early failures examined by Stanton in the U.S.A.

The case study of Val de la Mare dam was first reported by Coombes in 1975 (2) and later by Coombes et al in 1976 (25, 26, 27). In these reports extensive information is presented on the remedial action which was taken. This action included the infilling of cracks by grouting and the anchoring of the most seriously affected section of the dam to the foundation rock. The remedial work was practicable only because of the lack of severity of the damage and the type of structure involved, and was not a cure but represented the beginning of a continuous process of monitoring and corrective action.

By 1977 thoughts of A.S.R. on the U.K. mainland were beginning to awaken, stimulated by articles such as that by Figg (28) warning of the possible dangers in using seadredged flint aggregates. In 1978 the first of a series of review papers by different authors was published by Palmer (4) which highlighted the first recorded cases of A.S.R. on the U.K. mainland, these having been diagnosed some two years earlier in 1976.

Around this time the intensity of British interest and research into A.S.R. saw a dramatic increase, headed by the two main research institutions, namely the Building Research

-36-

Establishment (B.R.E.) and the Cement and Concrete Association (C. α C.A.). Initially this period of activity could be looked upon as one of catching up with the information already available from the extensive research carried out in the U.S.A. and certain other countries. Publications concerning the situation in the U.K. followed from Gutt and Nixon (5) of B.R.E., a second contribution by Palmer (7) and a catalogued review by Allen (6), the latter two authors being from the C. α C.A.

The earliest problems with A.S.R. on the U.K. mainland were not considered to be very serious or of much consequence. The structures involved were relatively low-key, incorporated locally won (often sea-dredged) aggregates and were confined to the South West part of the country. However, with the advent of each of the reviews mentioned above, both the number of structures found to be affected and the locations of the problem became more widespread. Isolated occurrences have now been confirmed in many diverse areas of the country but particularly in the Central Midlands and the South West. Both these areas of higher concentration of A.S.R. cases are known to be associated with Portland cement works which produce a relatively high alkali product.

The severity of the problem has also increased with respect to the type of structures involved. For example, road bridges in the South West (29, 30), Derbyshire (31, 32), West Midlands (29), Warwickshire (33) and Surrey (34); dams in Scotland (4, 6, 34); a car park in the South West (35) and an hospital also in the South West (36) have all been found

-37-

Despite early and continued assurances that the number of structures affected was small in comparison to the total number of concrete structures existing, and that there was no reason to expect a vast increase in the problem (37, 38) the number of cases of A.S.R. being diagnosed has continued to Comparatively recently reports have suggested that arow. hundreds of structures might be involved (39, 40). To a certain extent this increase in the number of cases being diagnosed was to be expected, indeed Palmer in his initial report (4) forecast that this would happen simply due to the new awareness that the possibility of A.S.R. actually existed. Previously, the deterioration would have been ascribed to other possible causes, without the fullest examination being carried out, since A.S.R. would never have been considered.

A more contentious issue is the question of why the problem has been allowed to occur. Certainly the use of locally won, economic but untried aggregates (particularly unwashed sea or river-bed dredged ones) have played a significant part. That this should be put forward as a contributory cause of the problem in the U.K., over thirty years after the same diagnosis was put forward by Stanton in the U.S.A., is surely demonstrative of a serious lack of awareness by the construction industry.

The other possible aspect of the source of the problem lies with the cements which are now in use. Here, there is

-38-

considerable disagreement regarding the changes which have occurred over recent years. On the one hand, opinion linked to the cement manufacturing industry, would consider that no significant changes have occurred over the last few decades either in cement composition or the cement properties which are relevant to A.S.R.. However, other research (11, 12, 41, 42) may show that this is not the case, particularly with respect to the relative amounts of dicalcium silicate and tricalcium silicate and even the alkali content itself.

For some time A.S.R. has been known to occur in countries such as Denmark, Germany, Iceland and South Africa, in addition to the U.S.A. It appears, however, that the U.K. does not stand alone as a country where the infestation has only recently been discovered. Lately, for example, it has been confirmed that the Tarbela Dam project in Northern Pakistan exhibits evidence of the reaction (43). It is reported that the approaches to one of the two main spillways are affected and that this forms part of the earliest construction stage of the project which was carried out using materials which had not been tested for alkali aggregate reactivity.

3.3 PROCESSES INVOLVED IN A.S.R.

3.3.1 Mechanism of Chemical Reaction and Expansion

Commencing with Stanton's early work (1) the mechanism of A.S.R. has been linked with alkalis originating from the cement, in the form of sodium and potassium oxides, and

-39-

certain forms of reactive silica when present as mineral constituents of concrete aggregates. Stanton considered that these two materials reacted together to form a viscous gelatinous substance analysed to be a type of complex sodium silicate. Subsequently, many investigations have been carried out into the actual chemical process involved and, whilst all those which have been consulted tend to agree that the presence of these two components signifies the potential for reaction, there have been some differences in the actual mechanisms postulated.

Jones and Tarleton (14) produced their 'tentative reaction mechanism' in the form of an opal particle reacting with alkalis to give an 'alkali-silica gel'. In more recent times, however, there has been general agreement that the principle reaction is not directly between the positive alkali metal ions (Na^+ and K^+) and the reactive silica but rather that it is the negatively charged hydroxyl counter ions (OH⁻) which first react with the silica particles (12, 44, 45, 46, 47) These negative ions are produced when the alkaline substances go into solution in the pore fluid within the concrete. In addition, hydroxyl ions are also produced when some of the calcium hydroxide, released during cement hydration, enters into solution in the pore fluids. The Na⁺, K^+ and Ca^{2+} cations are then drawn into the reacting particle to maintain electrical neutrality.

The importance of the alkali metal oxide content of the cement is, therefore, that it enhances the hydroxyl ion content of the pore fluids. This creates a pH value above

-40-

that normally expected for concrete, which is determined by the solubility of the ever present calcium hydroxide. The chemical composition of the gel is now thought to be a complex and variable combination of calcium, sodium and potassium silicates (48). Analyses have shown there to be greater proportions of calcium in the gel than either of the other two alkali metals. This may be due to the greater electrical attraction of the Ca^{2+} cation when maintaining the electrical balance during the reaction or, alternatively, due to ion exchange between the Na⁺ and K⁺ ions and the Ca^{2+} ion after formation of the gel.

For expansion, and consequently damage, to occur it has always been understood that a third ingredient is necessary, namely water. The silicate gel takes in the water and expands causing internal pressures to be manifest. If these pressures become large enough to exceed the strength of the concrete then rupturing occurs.

Stanton's work showed that specimens made from a potentially reactive cement/aggregate combination did not react or expand when stored continuously under water. However, the same combination of materials was found to produce a deleterious effect when stored in a high humidity environment, or when subjected to alternate wetting and drying. With present knowledge, the explanation of this apparent anomaly would appear to be that when stored under water, the concentration of the hydroxyl ion in the pore fluids would never reach the level required for reaction. That is, effectively the large volume of water negates the effect of the high alkali cement.

-41-

There has always been a lack of agreement with respect to the way in which the overall process of the reaction progresses and in particular the mechanism by which the water is taken in by the alkali silicate gel. Jones (22) referred to work by other authors which ascribed the pressure build up to the formation of a semi-permeable membrane on the surface of the reacting particle, which then resulted in osmotic action. In the same paper other authors saw the effect as one of simple absorption of water into the gel as the chemical reaction proceeded.

There still does not appear to be a universally accepted and proven description of the mechanism of expansive pressure nor the severity of expansion to be expected (48). Diamond (49) considers that A.S.R. comprises two distinct stages. The first stage is described as purely chemical and involves the reaction of the alkali with the siliceous material, normally taking place within the boundary of the reacting particle. The second stage of the reaction is then the physical or physiochemical absorption of fluid into the gel formed during the first stage. This may produce local swelling at the site of the reacted particle and, if swelling continues, overall expansion and cracking may follow. This two stage approach, however, is not confirmed by Dent-Glasser (50) who describes the complex physiochemical process in concise and understandable terms. It is postulated that the reaction is a continuous process incorporating the imbibition of water as it progresses.

To summarise, from information available in current

-42-

literature, expansive A.S.R. can take place in concrete when the three parameters of high alkali cement, reactive silica in the aggregate and sufficient water are all present. The fundamental reaction which takes place is between the reactive silica and hydroxyl ions (OH⁻) in the pore fluids. As the hydroxyl ions react with the aggregate particles, so positive ions are attracted to the reaction site, thus maintaining electrical neutrality. These positive ions are the Na⁺ and K⁺ ions derived from the alkalis in the cement, in addition to the calcium cations (Ca^{2+}) derived from the calcium hydroxide released during the hydration of any Portland cement. The resulting gel product has an affinity for water, causing imbibition to occur as the reaction proceeds. Consequently, the gel product swells and, due to the attack of the hydroxyl jons on the structure of the siliceous particles (enhanced by the probable occurrence of the reaction sites within existing flaws in the poorly crystalline material), the aggregate particles are weakened and are thus able to swell and crack. This enables more hydroxyl ions to reach reactive sites and hence the process continues as the aggregate particles decompose.

3.3.2 Symptoms of Reaction and Mechanism of Damage

The main outward evidence of alkali-silica reactivity is cracking (5, 47), which enables the concrete to dissipate the internal forces developed by the expanding gel. In unrestrained concrete the cracks characteristically form a random pattern, often referred to as 'map cracking' because of its similar appearance to details such as roads, rivers

-43-

and county boundaries shown on maps. In concrete which is restrained by, for example, reinforcement or prestressing tendons, the crack pattern is modified accordingly, with cracks tending to run parallel to the reinforcement. A more unusual sympton caused by the build up of expansive forces can be the physical movement of a particular section of a structure. This feature was noted on Val de la Mare Dam where misalignment occurred in certain sections of a concrete handrail along the crest walkway bridge (2).

Another common feature of the reaction is the exudation of gel from the surface of the concrete, in particular through any cracks. This gel often produces a white stain on the surface of the concrete as it dries out from its fluid state and reacts with carbon dioxide in the atmosphere. In some instances, where there is limited surface abrasion, the cracks can fill with gel and eventually form a ridge of hard material standing proud of the concrete surface (47).

Where the reaction takes place with discrete and fairly large reactive particles contained in the aggregate a feature known as surface 'pop-outs' can develop. This occurs when a reactive particle lies close to the concrete surface and the expansive forces cause a conical piece of concrete to be forced away from the main body. The reactive particle is normally found at the base of the 'pop-out'. In more severe cases extensive surface spalling can develop.

The physical damage to concrete caused directly by A.S.R. can therefore be any combination drawn from the list of cracking,

-44-

surface pop-outs and surface spalling, the exudation of gel being more of an aesthetic problem. However, in laboratory studies it has been shown that despite even severe cracking the compressive strength of the concrete is often maintained (51). This possibility that the primary damage to the concrete might not render the structural member unserviceable was also recognised by Stanton (1). However, Stanton further commented that the initial cracking caused by A.S.R. may have very serious consequences with respect to the resulting lack of durability against subsequent secondary action from other factors. Frost action, reinforcement corrosion, salt ingress causing cement deterioration and greater susceptibility to carbonation may all result to compound the deterioration of the concrete.

3.3.3 Additional Factors contributing to the Extent of Reaction

Any factor which affects the quality of a concrete must have an effect on the extent of damage occurring due to a reactive aggregate/cement combination. Whether the effect is simply concerned with the physical behaviour of the concrete, and therefore its ability to withstand the disruptive influence of A.S.R., or whether it is of more fundamental relevance to the reaction itself is the important difference.

Stanton (1), Diamond (52) and Hobbs (53, 21) have all carried out research into the effect of the grain size of the reactive aggregate and in so doing have compared their experimental results with other published information. For his part, Stanton concluded that the expansion of mortar

-45-

bars, containing siliceous magnesian limestone as the reactive component, tends to increase as the grain size of the reactive material is decreased, until a limit of maximum expansion is reached. After this limiting value Stanton found that further decreases in particle size quickly lead to virtually zero expansion occurring. Maximum expansion was measured for specimens containing reactive material with a particle size ranging from 170 μ m to 600 μ m, whereas a particle size of less than 170 μ m was found to yield negligible expansion. The work which yielded these conclusions was carried out using a fixed percentage (5%) of reactive material mixed with a known inert aggregate.

In a bid to establish why there should be such an abrupt end to the trend for increasing expansion with decreasing particle size, Diamond carried out similar tests using reactive material in seven size fractions between 150µm and 20µm. According to Stanton's experience all size fractions within this range would produce negligible expansion. However, Diamond found that even for the smallest particle size of 20-30µm significant expansion occurred. One complication to the direct comparison of these two investigations is that the reactive aggregate used by Diamond was an opaline material obtained from the Faroe Islands and therefore did not match the reactive material used by Stanton.

The later work of Hobbs was formulated with the foreknowledge of these apparently irreconcilable observations. Moreover, reference can also be made to observations which show that

-46-

expansion increases with increasing particle size up to a maximum size of 0.5mm (54). Using Beltane opal as the reactive constituent, Hobbs studied the effect of particle sizes within the extremes of the aggregate grading specified for the A.S.T.M. mortar bar test (18). This test and the aggregate grading is fully discussed in the experimental part of the present research. Thus, for reactive material in five size fractions between 4.8mm and 150µm, Hobbs observed that expansion increases with decreasing particle size.

The lack of consistency of the observations gained from these independent research projects is further indication of the complexity of the reaction. One conclusion which must be drawn from these research programmes, when considered collectively, is that different reactive aggregates do not necessarily behave in a similar manner.

Relatively little information has been published concerning the influence of water/cement ratio on A.S.R. Some early comment on this aspect was made by Jones and Tarleton (14) based on observations which showed that expansion increases with increasing water/cement ratio, up to a maximum expansion for a ratio of 0.40. After this maximum expansion there was a small decline noted up to a ratio of 0.44 followed by a steady level of expansion up to the maximum ratio used of 0.56.

This pessimum effect for expansion with respect to water/cement ratio has also been observed by Lenzner (55). However, in this case, the ratio found to give maximum

-47-

expansion was 0.60. It is perhaps worthy of note from Lenzner's results, that the reduction in expansion, caused by increases in the water/cement ratio above the pessimum value, was large when compared with the reduction in expansion caused by similar decreases in the water/cement ratio below the pessimum value.

Some results have failed to demonstrate this pessimum effect related to water/cement ratio, for example Dahms (56) refers only to an increase in damage with increasing ratios.

Highlighting the dependence of the effect of water/cement ratio on the amount of reactive aggregate present, Hobbs (21) produced a 'family' of curves relating the water/cement ratio to expansion. The emphasis placed on the corresponding comment that the curves are unique to the particular mixes which were tested is noteworthy, a point also mentioned by Lenzner.

By designing experimental work in a particular manner and manipulating the results accordingly, expansion caused by A.S.R. can be compared with other mix parameters, such as aggregate/cement ratio, or derived parameters, for example alkali/silica ratio (21). Properties such as porosity (8, 9, 10, 14, 22) and permeability may also be relevant. In particular, the permeability of the concrete must play a part in determining how freely the pore fluids traverse the concrete mass and allow the hydroxyl ions to reach the reactive sites. Moreover, it has been shown that in concrete where evaporation is possible from one surface only

-48-

(e.g. concrete foundation bases) an effect can be produced whereby the alkali concentration is increased near to the open surface (19). This effect is obviously controlled to some extent by the permeability of the concrete and may be responsible for the occurrence of A.S.R. in an otherwise innocuous mix.

Whatever method is chosen for expressing the mix proportions to enable the effect of different parameters on expansion due to A.S.R. to be evaluated, the most important factors still remain the alkali content of the cement and the reactive silica contained in the aggregate. If each of these are present in suitable quantities and a source of water is available then A.S.R. will occur and all other parameters of the mix will only have a secondary effect.

3.4 LABORATORY RESEARCH INTO A.S.R.

3.4.1 Research Materials

The requirement for reliable but rapid laboratory tests into certain aspects of A.S.R. necessitates the use of reactive materials other than those which might be used in normal structural concrete. These materials can involve the artificial enhancement of cement alkali content or the use of an aggregate constituent which is highly reactive but unlikely to be used under practical circumstances.

Much of the research on A.S.R. has been carried out using either crushed Pyrex glass or crushed Beltane opal as the

-49-

reactive aggregate. Beltane opal is a naturally occurring siliceous rock obtained from the Beltane Quarry in Napa Valley, Sonoma County, California. It has been shown to contain approximately 80% potentially reactive siliceous material (57), principally cristobalite and tridymite. A number of research projects have shown Beltane opal to exhibit a strong pessimum content of less than 100% when used in a mixture with a known inert aggregate. This pessimum content yields the maximum expansion under the particular conditions employed and has been found to be generally below 10% by weight of total aggregate. Further, it has been implied (21, 45, 53) that above the pessimum content expansions are progressively reduced until, beyond approximately 20% Beltane opal content, a level of negligible expansion is maintained.

Further research, using Beltane opal, by Hobbs (21) and by Gaze and Nixon (58) has determined that the ratio between the total equivalent alkali content and the reactive silica content (i.e. the Na₂Oeq/SiO₂ ratio) also has a critical value corresponding to maximum expansion. Figures 3.1 and 3.2, which are drawn from the data published by Gaze and Nixon, show this pessimum effect for expansion results taken on mature specimens at ages 4 months and 10 months respectively. At earlier ages of measurement the effect was absent within the range of alkali contents employed, as shown by Figure 3.3 drawn from the 3 month results.

Pyrex glass has also been found by certain authors (59) to exhibit a pessimum type of behaviour. However, in the

-50-

majority of cases, maximum expansion has been gained with the use of 100% Pyrex glass as the aggregate.

The problem arising from these two highly reactive materials is the selection of which one more accurately mirrors the behaviour of reactive aggregates in the practical sense. Nixon and Gaze (60) claim that Pyrex glass appears to behave in a similar fashion to the reactive cherts found in the U.K. Conversely, Hobbs (61) considers that any information gained from research using Pyrex glass relates only to mixes containing this material and that Beltane opal is more suitable since opaline materials are commonly found to be the reactive constituents of natural concrete aggregates. Providing a third opinion, Figg (59) states that neither Beltane opal nor Pyrex glass act like a 'real' aggregate and are therefore both of limited use for relevant research. He suggests that the use of fused silica as the reactive medium may be more appropriate.

Whatever the outcome of this controversy, from the practical sense there is no current substitute for testing the actual cement/aggregate combination that is proposed for use. However, even this safety measure can produce anomalies in determining whether or not the combination will produce a deleterious effect. For example, certain U.K. aggregates, which are known to be reactive in the field and responsible for structural deterioration, have not reacted expansively in laboratory tests (19). Conversely, it has also been reported that some U.K. aggregates which have a long history of successful use in concrete have been categorised as

-51-

reactive in laboratory tests (59). However, this latter case related to chemical tests rather than physical expansion tests.

3.4.2 Research Methods

It is unfortunate that direct comparisons between the results from independently carried out research projects are often not valid because standardised laboratory procedures have not Specimen type, specimen size, reactive been followed. aggregate and storage temperature are often different for two projects designed to study the influence of the same variable. This dilemma is typified by the different observations regarding the effect of particle size which were highlighted in an earlier section. In this way the need for close control on all factors inherent in any research project, but which are not the subject of the particular investigation, becomes apparent. If results are to be both repeatable and reproducible, whilst also accurately defining the effects of the factors being studied, then all other factors must be held constant. In addition, it is implied that the particular effects obtained may be limited to the set of experimental conditions chosen for the work being carried out. This emphasises the need for careful consideration of the most relevant conditions.

Recently, two critical reviews have been published on the variety of standard test methods which are currently available for studying A.S.R. (20, 62). Primarily these reviews considered the tests from the point of view of their

-52-

practical viability in determining the likelihood of A.S.R. occurring in structural concrete. Such practical considerations must, however, also be relevant to the choice of appropriate test methods for research work.

Earlier work on the available forms of rapid and accelerated laboratory tests was carried out in the U.K. in the 1950s (14, 22). At this time some of the recognised standard test methods of today were only in their development stage.

The types of test which may be conducted fall into three broad categories, namely petrographic examination, chemical testing and physical expansion testing. In the practical situation Sims (20) emphasises the need for some kind of petrographic examination of a suspect aggregate as a prerequisite stage in any testing programme, if only to help choose the most suitable further tests to apply. For the type of research involved in the experimental section of this particular investigation, however, this is not of particular usefulness.

Of the remaining two categories of tests, the most widely known standard methods which are currently available are as follows:-

i) the mortar bar test (A.S.T.M. C.227-81) (18)
ii) the concrete prism test (C.S.A. A23.2-14A) (17)
iii) the rock cylinder test (A.S.T.M. C.586-69) (16)
iv) the rapid chemical test (A.S.T.M. C.289-71) (15)
v) the gel pat test (14)

-53-

Of these five tests the mortar bar method is widely regarded as the most reliable in testing for A.S.R. Anomalies can sometimes occur, as referred to earlier, when reactivity in the field cannot be reproduced in the laboratory. In addition, the rapid chemical test is applicable for use with rapidly expanding siliceous aggregates and has the advantage of speed in producing results. However, from the literature it would appear that this test is somewhat less reliable in determining a reactive aggregate, the errors tending to be on the conservative side and therefore causing some innocuous aggregates to be condemned as potentially reactive.

The other test in the above list which produces very rapid results is the gel pat test, which was regarded by Jones and Tarleton (14) as useful for gaining an early indication of materials likely to cause A.S.R. This early British research laid down a recommended test procedure for using this method but this has never been converted into a formally published standard.

Associated with the mortar bar method, described in A.S.T.M. C.227-81, is another form of the test which is designed to test the effectiveness of mineral admixtures in reducing expansion due to A.S.R.. This usage is described in A.S.T.M. C.441-69 (24) and involves the use of Pyrex glass as the reactive siliceous aggregate.

The two remaining test methods mentioned above are not generally considered to be particularly suited for use with rapidly expanding siliceous materials. Their particular

-54-

field of suitability is for either slowly expanding siliceous materials or alkali carbonate reactivity (62).

The comparatively recent discovery of A.S.R. in the U.K. is perhaps responsible for the lack of any British Standard test methods. In B.S. 882: Part 2: 1973 'Coarse and fine aggregates from natural sources', there is no mention of any form of alkali-aggregate reaction. Under these circumstances most research work in the U.K. has been carried out using either the A.S.T.M. methods or individually developed procedures.

From the practical viewpoint, it must be emphasised that accelerated test procedures cannot reproduce field conditions or truly simulate field behaviour. However, the methods discussed have been found to provide reasonable estimates of field durability provided that they are not taken as strict pass/fail criteria. Both the published reviews on test methods which have been referred to recognise this situation. The level of reactivity to be expected in the field and the expansion which can be tolerated in service is a matter for enginering judgement based on the interpretation of the test results.

3.5 WAYS OF AVOIDING A.S.R.

It has been discussed that for a deleterious reaction to occur, that is A.S.R. with resultant damage to the stucture concerned, three parameters must all be present, namely a reactive aggregate, a cement containing sufficient alkalis

-55-

and a supply of moisture. Removal of any of these parameters should therefore ensure avoidance of damage and represent the most simple and effective course of action.

In practice all Portland cements contain alkalis, though the amount is very variable, and in many structures it is difficult to remove all sources of moisture. The easiest and most definite solution is, therefore, the use of an aggregate proven to be inert. Whilst it is difficult to argue any flaw in the logic behind this statement, it is not always possible to implement this course of action due to non-availability of a suitable material within the economic constraints of the particular contract. Moreover, aggregates themselves, being a natural resource, are available only in finite quantities and eventually supplies of the ideal materials will expire. Already local shortages are being noted (63).

In certain applications the removal of the source of moisture may be practicable. An important consideration is that the moisture need not necessarily be in the form of 'running' water, the worst case being an intermittent supply, but that high humidity (above 75%) or heavy condensation can be equally dangerous (48). Also, in mass concrete structures, residual construction moisture within the concrete itself can be sufficient for expansion to occur. In other types of structure the avoidance of A.S.R. by the removal of the source of moisture may involve a continued risk. The highly reactive cement/aggregate combination which remains will chemically react, at least in part, and form the alkali-

-56-

silicate gel. This product may then represent the potential for damage if, at any later stage, a source of moisture becomes available due to an unexpected change in the environment surrounding the structure or the failure of the external moisture protection system.

Where a potentially reactive or untried aggregate is, for particular reasons, specified for use in an unavoidably moist environment, then of the three main parameters involved in A.S.R., only the alkali content of the cement remains available as a means of avoidance. From the earliest published research (1) the use of a low alkali cement has been recommended as an adequate safeguard, a figure of 0.6% Na_2O_{eq} having been considered to be the maximum allowable cement alkali content. Since the richness of the mix also has an effect on the amount of alkali which is present in the concrete, more recently it has been suggested that a limit on alkali content should be expressed in terms of the amount of alkali present in the overall mix (21). Based on the acid soluble alkalis, the proposed limit in the U.K. is 3.0kg Na_2O_{eo}/m^3 of wet concrete (7, 21). In other countries different limits have been proposed, however, generally these have been in the range of 2.5kg Na_2O_{eq}/m^3 to 4.0kg Na_2O_{eq}/m^3 . To some extent the chosen limit has depended on whether concrete or mortar specimens were used to carry out the research programme used to investigate the problem.

It has already been mentioned that conditions extraneous to the concrete itself may produce localised concentration of alkalis. This may result in reaction occurring at particular

-57-

locations in the concrete when, 'on average', the overall cement/aggregate combination is satisfactory. Such a phenomenon can therefore negate an attempt to avoid A.S.R. by reducing the overall alkali level. Nixon et al (19) showed that the movement of moisture through concrete, towards a drying surface, can be responsible for the concentration of alkali metal ions. Some of the early failures in the U.K. which were discussed by Palmer (4) were concrete bases with most of their mass below ground and only their top faces exposed, thus offering a classic example of conditions likely to cause alkali concentration. Other types of structure, such as water retaining structures and road pavements, also offer the potential for water migration and hence alkali concentration.

In addition to the direct methods of avoiding A.S.R. there are a number of mineral admixtures which have been suggested as having a beneficial effect. Such materials have been included into the concrete mix as an additional component, as a partial replacement of the cement content or as a partial replacement of the fine aggregate content. The most commonly used admixtures are ground granulated blast furnace slag (g.g.b.f.s.) and pulverised fuel ash (p.f.a.). The latter is widely available as a waste material from power stations which are fuelled by pulverised coal and its use is reviewed in depth in Section 3.6 which follows.

For some considerable time, the introduction of p.f.a. and g.g.b.f.s. into reactive mixes have been studied as ways of reducing the destructive expansion arising from A.S.R..

-58-

However, they do not represent the complete list of suitable mineral admixtures, one of the most recent materials to be tried being silica fume (64) (also known as silica flour). In certain applications this by-product of the silicon and ferro silicon manufacturing industry has been shown to be very successful in reducing expansions (51, 65). The silica fume is incorporated into the concrete mix in similar fashion to p.f.a. and g.g.b.f.s., that is as a partial replacement of the cement content, but requires much smaller percentages to be used (5-10%).

Other research has shown that under some circumstances even the reactive aggregates themselves can be used to combat A.S.R. if employed in a finely divided state. Jones (22), referring back to Stanton's work of 1942, mentions that shales and opaline cherts can reduce expansion to a negligible amount when finely ground and used to replace 15 to 20% of the cement content. Later, Jones with Tarleton (10) confirmed this beneficial effect by using highly reactive malmstone. However, the reductions in expansion were fairly limited and did not result in a negligible level being achieved even with a 20% replacement.

A wide variety of other naturally occurring materials have been shown to have expansion reducing potential, in particular materials with a pozzolanic ability. For example, Tang Ming-shu et al (66) carried out research using a tuff which was found to be a more effective admixture than either p.f.a. or g.g.b.f.s. when used at the same cement replacement level.

-59-

Working on a different concept, Sprung and Adabian (67) also found mineral admixtures to be successful in reducing expansion. This research utilized the admixtures as a partial replacement for the aggregate rather than the cement, the authors considering this to be the only way in which the true value of these materials may be judged. P.f.a., trass, ground cristobalite and a silicon-glass dust were all found to be successful in reducing expansion to varying degrees. The most efficient material was the silicon-glass dust, which is similar to the silica fume mentioned earlier, requiring a replacement level of less than 5% to prevent severe expansion.

3.6 THE USE OF PULVERISED FUEL ASH TO PREVENT A.S.R.

3.6.1 The Effectiveness of P.F.A. in Reducing Expansion

In Britain, pulverised fuel ash, in the literal sense, is all the solid waste material produced by burning pulverised coal. However, the term p.f.a. is also used to refer to a particular portion of this material, known otherwise as 'fly ash', which makes up approximately 80% of the total. Fly ash comprises the particles which are fine enough to be carried by the flue gases and therefore require collection using mechanical separators and electrostatic precipitators. The remaining 20% proportion of the total material is known as furnace bottom ash which is a clinker formed when the larger ash particles fuse together. With respect to A.S.R. it is the fly ash which has beneficial effects and consequently in this thesis any reference to p.f.a. implies

-60-

the fly ash portion only.

During the last ten years or so, and specifically since the first occurrence of A.S.R. in the U.K., there have been numerous published research projects which have included a study into the effectiveness of p.f.a. in reducing expansion due to the reaction (38, 51, 58, 60, 61, 66 to 71). Many of these investigations have been conducted in the U.K. In general the results obtained have been favourable to the use of p.f.a. which has been recommended as a suitable admixture for use with reactive mixes by two recent reports (48, 72). These reports present advice and guidance notes on the subject of A.S.R. to the construction industry.

It is also worthy of note that a wealth of research is still in progress on the use of p.f.a., as demonstrated by the amount of relevant information to be found in the proceedings from a recent international conference on A.S.R. (73) held in Denmark in 1983. This is possibly an indication that the use of p.f.a. is still not universally accepted nor the full extent of its effect understood.

Despite the above generalisation, not all the research has reached positive conclusions regarding the effect of p.f.a. in this context. Evidence from field studies, referred to by Hobbs (61) has sometimes shown pozzolans to be ineffective in controlling concrete deterioration. In one particular case cited, the use of a pozzolan was claimed to be responsible for an increase in both the number and width of cracks in a section of concrete road pavement. The type of

-61-

pozzolan, however, was not defined. Resulting from field observations such as these, it has been recommended that the effect of p.f.a. with the particular aggregate/cement combination under consideration should be laboratory tested before being used in an actual construction.

This point has also been raised after a series of laboratory tests made in the U.K. (60).

From his laboratory investigation. Hobbs (61) concluded that p.f.a., when used as a partial replacement for the cement content in a reactive mix, can sometimes cause an increase in expansion due to A.S.R. The experimental results behind this conclusion were gained from specimens incorporating Beltane opal, as the reactive aggregate, at contents other than the pessimum value. Other features of this research are that the reactive portion of the aggregate was only included in the 150-300µm particle size range (previously found to be the most highly reactive size (53) and when p.f.a. was used the amount of reactive aggregate was adjusted to maintain a sensibly constant ratio between the water soluble alkalis and the reactive silica content. In addition, the specimens were stored at a temperature of 20°C. More commonly the success, or otherwise, of p.f.a. has been judged without making any adjustments to the reactive aggregate content.

In a subsquent study Hobbs (38) acknowledged the beneficial contribution which p.f.a. can make. It was found that with a 30% to 40% cement replacement level long term expansion due to A.S.R. could be reduced. However, the results still

-62-

showed that very early expansions could be greater than those produced by a corresponding control mix containing no p.f.a. and also that the amount of reduction in the long term was variable. An important conclusion reached by Hobbs from this work was that for concrete exposed to external moisture, damage due to A.S.R. is unlikely to occur if the acid soluble alkali content of the mix is kept below $3.0 \text{kg Na}_{20\text{eq}}/\text{m}^3$ by the substitution of p.f.a. for part of the cement content. In this limiting value for alkali content the p.f.a. is assumed to make a contribution of 0.2% by weight. The inclusion of this contribution to the mix alkali content from the p.f.a. represents another controversial aspect of the use of p.f.a.

Research work which has resulted in conclusions supporting the ability of p.f.a. to reduce expansions has been carried out in a number of overseas countries, such as Germany (67) and South Africa (51). This work has included the use of local materials in conjunction with Pyrex glass, Beltane opal and local natural reactive aggregates.

In Germany, Sprung and Adabian investigated the use of p.f.a. as a replacement for up to 60% of the fine aggregate content in reactive mixes containing pure opal in the grain size <0.09mm substituted into a known inert aggregate. The authors found this procedure resulted in expansion reductions and consider that it is the only true way to judge the performance of an admixture.

The South African work, reported by Oberholster and Westra,

-63-

included experiments using both Pyrex glass and locally occurring natural aggregates which were known to be reactive. Initially the effect of p.f.a. was tested using Pyrex glass and the method described in A.S.T.M. C441. The results were positive in showing that p.f.a. was very effective in reducing expansive A.S.R. The follow-up tests, using a natural aggregate from the Malmsbury Group, were designed to examine whether similar effects could be obtained in relation to a natural material. It was found that a 20% replacement of the cement by the p.f.a. was equivalent in expansion reduction to using a cement which just satisfied the limit of 0.6% total acid soluble alkali content for low alkali cements.

As mentioned earlier, at the B.R.E. there is a large, ongoing U.K. research programme concerning the use of p.f.a., from which various progress reports have been published (58,60). In addition, a wide variety of p.f.as. were tested by Buttler, Newman and Owens in 1980 (69). This latter work was carried out using Pyrex glass as the reactive aggregate and produced results which supported the view that all good quality p.f.a. will reduce expansion when used as a cement replacement admixture. One unusual outcome of this particular investigation was the suggestion that p.f.a. may show an 'optimum' characteristic. That is, there may be a maximum replacement level above which the beneficial effect of p.f.a. is curtailed or even superseded by a slight rise in expansion with further increases in the amount of p.f.a. used. This optimum replacement level was found to be in the range of 30%-35% replacement.

-64-

The B.R.E. work has explored not only the question of whether p.f.a. in general reduces expansions but also the relative effects of different p.f.as. in comparison to their alkali contents. In addition, the work includes the use of Pyrex glass, Beltane opal and U.K. reactive chert.

From the initial work with Pyrex glass all the p.f.as. which were tested were found to dramatically reduce the expansions measured on mortar bars when used to replace 10%, 20% or 30% of the high alkali cement content. For the use of p.f.a. to be an improvement on employing a low alkali cement, a replacement level of 20% or 30% was found to be necessary. The relative effectiveness of the p.f.as. was found to have a slight correlation with their alkali contents but was more conclusively governed by their pozzolanicities. For effective expansion reduction in mortar bars containing the reactive natural chert aggregate a replacement level of 30% was found to be required to improve on the use of a low alkali cement.

3.6.2 The Mechanism of P.F.A. when used as a Partial Cement Replacement

In the above discussion the consensus of opinion is shown to be that, in all but the most unusual situations, p.f.a. is a viable method of controlling damage due to A.S.R. However, the mechanism by which this effect is achieved remains a matter for considerable debate and disagreement. Two possibilities are considered to exist, namely that the p.f.a. acts either as a diluent for the alkaline material available

-65-

for the reaction or alternatively that the p.f.a. has a more fundamental effect by inhibiting or modifying the reaction itself.

The notion that p.f.a. simply dilutes the alkali concentration because it is used to replace part of the cement content is complicated by the fact the p.f.a. also Indeed, many p.f.as. could be seen to includes alkalis. provide a much larger alkaline potential than the cement which it replaced when the total alkali content of the p.f.a. However, most of the alkalis within the is considered. p.f.a. are in solid solution and, as such, are probably not relevant to the reaction. Consequently there are two other expressions of alkali content which are used for p.f.a., namely the water soluble and available alkali contents. The latter value expresses the amount of alkali likely to be released from the p.f.a. for dissolution into the pore fluids of a concrete during the pozzolanic reaction and is therefore probably the most relevant to A.S.R. However, if the p.f.a. does actually undergo a reaction this may amount to the same as the total alkalis.

The dilution effect is supported by Hobbs following investigations at the C. α C.A. (38, 61) which were discussed earlier in connection with the 3.0kg Na₂O_{eq}/m³ (equivalent to a water soluble alkali content of approximately 2.5kg/m³) proposed as a safe limit below which A.S.R. is unlikely to occur. Again the experimental results which were used to assess the effectiveness of p.f.a. were gained from specimens containing Beltane opal, in the grain size 150-300µm, as the

-66-

reactive constituent.

The German work of Sprung and Adabian ⁽⁶⁷⁾ used p.f.a. to replace part of the fine aggregate content in recognition of the dilution effect involved in cement replacement. Significant expansion results were still obtained.

Notwithstanding the support for a simple dilution process, the majority of opinion considers that the effect of p.f.a. is more fundamental and greater than can be achieved by Considerable contributions to this effect have dilution. been made by Oberholster and Westra (51) and Gaze and Nixon ⁽⁵⁸⁾ where particular experimental regimes have been devised to test the theory of dilution. Working with a natural aggregate Oberholster and Westra compared the expansion reducing effect of p.f.a. with alkali dilution using a mixture of high and low alkali cements. On the other hand, Gaze and Nixon used a low alkali cement for all mixes but added alkali in the form of potassium sulphate to maintain a constant alkali level even when p.f.a. was used. This latter approach was used in conjunction with Beltane opal in the grain size 150-300µm as the reactive material and included in the mix near to its pessimum level. Earlier work by Nixon and Gaze (60) also concluded that p.f.a. caused a greater reduction in expansion of mortar bars than could be accounted for by alkali dilution, even assuming that the p.f.a. has a zero contribution to the alkali level.

Since the time of some of the earliest work, the quality of the mortar or concrete - as reflected by its physical

-67-

properties - has been seen to be influential on the amount of damage caused by A.S.R.. Jones and Tarleton (9, 10) found that the porosity of the mix was important, though in somewhat confusing fashion blamed both high and low porosity for a lack of expansion in certain mixes. More recently, since A.S.R. has generally been seen to be caused by hydroxyl ions diffusing towards the reactive aggregate particles, the permeability of the cement paste has become of major This, then, is one mechanism by which p.f.a. can interest. be effective in controlling the reaction, that is by reducing the permeability. The partial replacement of cement by p.f.a. can result in a lower water demand to attain a similar workability (74, 75). In addition, the pozzolanic reaction, which is known to take place between p.f.a. and the calcium hydroxide released during cement hydration (12), can be responsible for a reduction in permeability. This can occur because the products of the reaction hydrate to form C-S-H gel which is additional to that normally produced by the Buttler et al (12, 76) regard this hydrated cement alone. as a means of restoring modern Portland cements to the composition of earlier cements which had a much lower C3S : C₂S ratio and consequently produced a greater quantity of C.S.H. gel per unit mass of cement. For the cement replacement levels normally used, the amount of C.S.H. gel produced by the p.f.a. reaction is thought to be greater than that lost due to the reduction in the cement content.

Another aspect of the effect of p.f.a. is that the preferential reaction between the p.f.a. particles and the hydroxyl ions is considered to inhibit the reaction between

-68-

the hydroxyl ions and the reactive silica particles in the aggregate. On the other hand, Hobbs interpreted his own results, obtained with Beltane opal, as showing no suggestion that the hydroxyl ions were depleted by the p.f.a., thus concluding that there was no evidence to suggest a reaction between the hydroxyl ions and the p.f.a. Even with a reaction, however, the depletion of the hydroxyl ion concentration would not be expected since there remains an abundance of the hydroxide materials available to go into solution and maintain the pH level. It may, therefore, be simply the preferential nature of the reaction between the hydroxyl ions and the p.f.a. which assists in inhibiting A.S.R.

One advantage of the pH level being maintained when p.f.a. is used in concrete, is that the passivity effect, known to protect the reinforcement from corrosion, is also maintained.

Whatever the mechanism of its effect, the minimum benefit achieved by the use of p.f.a. must be equivalent to the apparent alkali dilution effect which occurs, assuming that the p.f.a. contributes little to the alkali content of the overall mix. This attitude is reflected in the guidelines on the practical use of p.f.a. (48), produced by the recent working party, which allow for the p.f.a. to be used simply to reduce the amount of alkalis in the mix to below the 3.0kg Na₂O_{eq}/m³ proposed as a safety limit. Should there be a more fundamental effect over and above dilution, then this should serve to secure a more favourable safety factor against the reaction.

-69-

:

Figure 3.1

Figure 3.2

10 months.

Effect of alkali dilution

on the expansion of mortar

bars with constant Beltane opal concentration - age

(after Gaze and Nixon (58))

Effect of alkali dilution on the expansion of mortar bars with constant Beltane opal concentration - age 4 months. (after Gaze and Nixon (58))

Figure 3.3

Effect of alkali dilution on the expansion of mortar bars with constant Beltane opal concentration - age 3 months. (after Gaze and Nixon (58))
4.1 STATISTICS IN EXPERIMENTATION

The overall topic of experimentation using statistical methods is discussed in this chapter with reference to the important principles involved and the types of experimental designs available. Detailed attention has been limited to those sections considered to be most suited to the research topic being studied, namely A.S.R. in concrete. Complete accounts of the topic of statistical experimentation are given by, among others, Winer (77), John and Quenouille (78), Cox (79) and Davies (80).

As with any specialised subject, there is a particular vocabulary associated with the use of statistical experimentation and this is explained in some detail in Section 4.1.2 below.

4.1.1 General Introduction

The advantages of statistical methods of experimentation have long been recognised in many diverse fields of interest. In particular such methods have been used extensively for research in agricultural, biological and behavioural science. All these disciplines tend to involve observations which are affected by fluctuations caused by parameters outside the control of the experimenter. Thus, experimental error is quite large in comparison to the effects being investigated

-71-

and, if conventional methods of experimentation are used, the interpretation of the results can become difficult leading to a low level of confidence in any conclusions which may be drawn. This situation produces the first requirement for a statistical approach which enables many replications of the experiment to be carried out and the experimental error estimated.

Another feature of many fields of investigation and research is the need to include a large number of variables in any experiment, so that the effect of each variable may be established in relation to the performance of the whole experimental unit. The inclusion of a large number of variables in an experiment leads to a vast amount of output being obtained and again the requirement is for statistical methods to assist with interpretation.

Having realised the need for a statistical approach to assist at the interpretation stage it is important also to realise that for a meaningful analysis of experimental results to be possible the whole experiment must have a statistically based design.

Within the field of Civil Engineering there are many areas of interest and topics of research which fall into the category described above. In particular concrete is a classic example since it is a conglomerate material and hence involves a large number of factors in its make-up. Further, each of these factors has its own inherent variation which the experimenter would have great difficulty in controlling.

-72-

Indeed, to attempt to control such variations in the constituent materials may well be considered an unacceptable practice since it would constitute suppression of the natural processes which are normally involved, resulting in the research being less closely related to the practical situation.

Traditionally the method of experimentation employed for concrete studies is that of considering each component of the mix separately by varying it in a step-by-step manner over a suitable range whilst holding the other components constant. The components can be either quantitative or qualitative. This method automatically assumes that the effects of the experimental factors are independent and can correspondingly lead to conflicting experimental results if in truth the factors interact with one another. Moreover, the net result of a large research programme can often be a vast amount of information, the interpretation of which is often extremely difficult. This is because the results cannot be condensed into a form which is sufficiently concentrated to give an immediate overall picture of the recorded effects. Contradictory conclusions can therefore arise because of the restrictions inherent in the basic approach to the experimentation.

This is where the Factorial Method of experimental design and analysis becomes advantageous since not only does it allow an overall comparison to be made of the effects of the individual factors themselves but also permits the evaluation

-73-

of the interactions, if any, between the factors. This is achieved by allowing each factor being studied to vary at each stage of the experiment.

Inevitably certain assumptions must be made so that standard statistical techniques may be applied to the results of the particular experiment. These assumptions concern the nature of the results themselves and they are listed below:-

- normal distribution of unaccountable variations (or errors) in different measurements of the same effect.
- ii) different measurements of the same effect are independent.
- iii) the relative sizes of errors manifest in different measurements are unrelated to any treatment factor of the experiment.

The first assumption requires little explanation. The law of normal distribution of errors is well established and widely accepted for measurements taken on concrete specimens since it forms the basis of the most recent method of concrete mix design as explained in "Design of Normal Concrete Mixes" (81).

The second assumption emphasises the fact that when measurements are repeated the process must be carried out on an independent subject rather than simply repeating the same

-74-

measurement on the original subject.

The final assumption is related to the theory of homogeneity of errors, which enables an overall estimate of experimental error to be made rather than having individual estimates of error for each treatment combination. The case must not arise where larger or smaller errors are associated with certain experimental treatment combinations. Under such circumstances a single estimated value for experimental error would not be valid and any subsequent tests of significance would become meaningless. However, according to the literature (Winer (77)) the method is sufficiently tolerant to allow some departure from this theoretical ideal without complete invalidation of the derived information.

In most types of experimentation, and particularly where a measurement process is involved, there is another type of error which may be manifest due to progressive familiarisation of the experimenter with the procedures involved or an unnoticed link between the experimental treatments and a characteristic of the specimens themselves. This type of error is known as Systematic Error. Serious contamination of the experimental results can arise if suitable steps are not taken to eliminate this error.

Neutralisation of the effects of systematic error is achieved by the process of Randomisation. This method was first devised by Fisher (82) and involves the application of the treatment combinations chosen for inclusion in the experiment in a random order so that any changes in experimental

-75-

procedures are spread out randomly over the whole extent of the experimental programme. In this way unbiased estimates of the treatment effects may be obtained.

Any programme of experimental research must, then, follow the three logical stages of design, implementation and analysis in order that the fullest amount of information may be extracted from the resources which are being utilised.

4.1.2 Explanation of Terminology

Many of the terms associated with the subject of statistical experimentation have already been used in the foregoing introduction. In this section the meaning of these terms is explained with respect to the type of experiment chosen for the experimental work described in Chapters 5 and 6. In some instances mention will be made of certain statistical parameters and processes which are used in the analysis of the results. These are further explained in Section 4.1.3.

The term FACTOR is interchangeable with the term EXPERIMENTAL VARIABLE and is used to define the individual components incorporated in the make-up of the experimental specimens. A factor can be one of two types, either a TREATMENT FACTOR which is under the direct control of the experimenter or a CLASSIFICATION FACTOR which is not under the direct control of the experimenter but which can be used for classifying or grouping the experimental observations. For example a treatment factor in a experiment studying certain aspects of concrete may be the type of cement or aggregate whereas the

-76-

age of the specimens at the time of measurement would be a classification factor.

Any experiment which involves the use of only a single factor is known as a UNIFACTOR experiment. Where the make-up of the experimental specimen involves more than one factor the experiment is described as FACTORIAL. Moreover, there are different types of both unifactor and factorial (multifactor) experimental designs, each with their associated methods of results analysis.

In an experiment, each factor or experimental variable can be present in varying stages or LEVELS. These levels can be quantitative such as the proportion of cement in a concrete mix (400g, 500g) or qualitative such as the type of cement (0.P.C., S.R.P.C., H.A.C.)

The DIMENSIONS of a factorial experiment are an expression of the size of the experiment as defined by the number of factors and levels involved. Hence, if an experiment includes four factors each at three levels the dimensions of the experiment are $3 \times 3 \times 3 \times 3$, or alternatively, in a special case of symmetry such as this, 3^4 .

Within the overall dimensions of a factorial experiment each separate experimental unit is made up from a particular TREATMENT COMBINATION which can be considered as analogous to a recipe. In an experiment where the treatment combinations are repeated, each section of the experiment having a consistent treatment combination is known as a CELL of the

-77-

experiment.

The purpose of most experiments is to assess the EFFECT which the treatment factors have with respect to the subject being studied. Normally this involves some form of measurement process which monitors any changes in the DEPENDENT VARIABLE, that is the criterion chosen to quantify any variation. It will be seen in Chapter 5 that the dependent variable for the experimental work described in this thesis is the EXPANSION of mortar bar specimens. Effects which are attributable to the treatment factors come in two forms, namely MAIN EFFECTS and INTERACTIONS.

The main effects obtained from a set of experimental results are an expression of the changes in the dependent variable which are attributable to the variations in each of the individual treatment factors. There is a main effect for each level of each treatment factor and its value may be positive or negative. Strictly, then, a main effect is defined as the difference between the mean of all the observations taken on the dependent variable with a particular factor at a particular level and the grand mean of all the observations in the experiment. From this definition it is seen that the main effects of a factor are not simply concerned with the specific levels of a specific factor but depend upon all levels of all the factors involved in the experiment.

Often of more practical usefulness are the differences between the main effects due to the different levels of a

-78-

factor, which are known as the DIFFERENTIAL MAIN EFFECTS. By definition, a differential main effect is a measure of the extent to which the mean on the dependent variable varies from one level of a factor to the next. Thus it follows that if a factor has a great influence on the dependent variable the differential main effects will be large, whereas for a factor of negligible influence the differential main effects will approach zero.

The interaction effects obtained from a set of experimental results are an expression of the extent to which the changes monitored in the dependent variable from one treatment combination to another cannot be predicted purely from the sum of the corresponding main effects. Interaction can, therefore, be looked upon as an expression of the nonadditivity of the main effects or the interdependence of the effects attributable to the various factors. An interaction effect may be derived from any number of factors from two up to the total number of factors in the particular experiment. The term used to define the level of interaction is its A FIRST ORDER interaction effect is an interaction ORDER. between two factors, the order of interaction increasing numerically by one for each additional factor involved. Alternatively, a first order interaction may be described as a 2-factor interaction.

In similar manner to the main effects, the interaction effects can be split up into DIFFERENTIAL INTERACTION EFFECTS. For the particular usage of factorial experimentation that follows, however, such an in depth

-79-

explanation is not required.

In the practical sense, the requirement of a set of experiments is not so much to establish the numerical value of each main effect and interaction effect, or their differential counterparts, but rather to establish whether or not these effects exist and then to assess their relative overall size and importance. The statistical tool used to achieve this requirement is the analysis of variance, whereby the variance due to each effect can be calculated. For example, the variance which is attributable to the main effects of a particular factor is an overall measure of the extent to which the mean on the dependent variable differs for the various levels of that factor and differs from the grand mean of all the observations. If the variance due to the experimental error inherent in the measurement process is also assessed, then the comparison of these two variances can be used to determine the level of significance of the effect. The various levels of significance for the treatment effects can then be used to compare their relative importance and to show whether or not these effects cause variations which are substantially greater than can be explained by the errors involved in their measurement i.e. than can be explained by pure chance.

4.1.3 Explanation of relevant Statistical Terms and Processes

If the results obtained from an experimental programme are used to estimate the effects caused by the treatment factors involved, then some measure of the reliability of these

-80-

estimates is required. This requirement is usually satisfied by the STANDARD ERROR of the results which have been used to produce the estimate of the effect. The value of the standard error can then be used to set CONFIDENCE LIMITS which represent extreme values between which the true value of the estimated effect may be expected to fall with a specified degree of confidence.

The confidence limits themselves are found by adding and subtracting a multiple of the standard error to and from the mean value of the estimated effect. The appropriate multiple of the standard error is dependent not only on the degree of confidence required but also on the accuracy with which the standard error has been estimated. It is normal for the accuracy of the standard error to be defined by the DEGREES OF FREEDOM inherent in its estimation, which in turn are set by the number of independent observations used to estimate the standard error. Having established the degrees of freedom involved, the appropriate multiple of the standard error can be obtained from standard statistical tables known as 't' TABLES.

The method used to estimate the standard errors from a set of experimental results is known as the ANALYSIS OF VARIANCE (ANOVA). This process enables a single, but complex, set of computations to partition the variations in a suitable set of experimental observations into components which are attributable to particular causes plus one component which is unattributable to any particular cause. The latter component is the component due to experimental error and is

-81-

The ANOVA involves calculation of the MEAN SQUARES of the observations which provide unbiased estimates of the VARIANCES, the variance being directly related to the corresponding standard error. Each component of variance which relates to a particular cause may then be used to test the LEVEL OF SIGNIFICANCE of the effect in relation to the total variation in the observations. The test used in the ANOVA is the VARIANCE - RATIO or 'F' TEST. This is carried out by obtaining the ratios between the mean squares that are attributable to the effects under consideration and the residual mean square. The resulting ratios can then be compared with standard tables of the 'F' DISTRIBUTION and the appropriate level of significance obtained. Again, the level of significance is dependent of the degrees of freedom of the two mean squares used to obtain each particular variance ratio.

The level of significance is often expressed in terms of the probability that the effect is caused by pure chance. This is known as the TAIL PROBABILITY. For example, a tail probability of 0.01 would indicate that the variation would only occur by pure chance in 1% of cases. Conversely, in such a case it may be said with 99% confidence that there is a real variation in the value of the dependent variable which is attributable to the cause being examined.

There are no fundamental rules with respect to the cut-off level for significance below which the variation may be

-82-

considered to be indistinguishable from chance or

experimental error. Hence, the decision of what value to use must be made for the individual case. For guidance, however, it is generally accepted that for tail probabilities of under 0.01 the existence of a true effect can be regarded as highly likely. For tail probabilities of between 0.01 and 0.05 the existence of an effect is normally regarded as probable, though under certain circumstances this range is often extended to a tail probability of 0.10. Whatever value is chosen as the cut-off level, it is important to note that there is always a risk, no matter how slight, of either rejecting a genuine effect or failing to reject a chance variation.

4.1.4 Planning an Experimental Programme

The first, and often most difficult, stage of planning an experimental programme is to decide what the experiment is intended to investigate. In most cases, by necessity only a small proportion of the total range of possibilities can be examined leaving the problem of deciding the overall population, which by induction, the sample is intended to represent. The sample must then be carefully chosen so that it is an unbiased representation of the overall population and, therefore, able to accurately predict the population values which are required. In general, larger populations will require a larger experiment to ensure suitable results.

Perfection can only be achieved through an infinite number of observations, since then the true values will be established.

-83-

However, by utilising correct methods and efficient experimental designs, reasonable estimates may be obtained from a limited number of observations. Provided that the experiment allows the reproducibility of the results to be assessed, then the reliability of these estimates can be measured.

The next stage of planning is, therefore, to decide upon the required accuracy and then to evaluate a means of achieving this accuracy. Once the coverage of the experiment has been established there are many ways of improving accuracy which fall into two main categories, namely experimental technique and statistical procedures.

Experimental technique can be improved by refining the methods of applying the treatments and measuring the results and also by standardising the experimental conditions, procedures and materials. Often, the standardisation of the experimental material provides the largest obstacle to successful experimentation since it may not be susceptible to control. Under such circumstances it may be possible to form groups of experimental units of near homogeneous quality. The experimental treatments can then be applied in such a manner that most of the treatment effects are still obtainable with only a few being lost because they are restricted to within a particular group.

This, then, is the link between improvements in experimental technique and the use of statistical procedures, since the formation of the groups of experimental units is one of the

-84-

statistical methods associated with accuracy enhancement. The other main statistical method of improving accuracy is the analysis of covariance which is useful if a series of extra measurements can be taken and used to account for some of the variability in the final measurements. An example may be the unavoidable but measurable differences in treatment subjects at the start of the experiment. It is important, however, that these measurements should not in any way reflect the treatment effects that are being observed.

In the experimental work which follows it will be seen that the choice of a recognised standard test method does much to eliminate extraneous variations in the observations. Close control of testing procedures, environmental conditions and specimen production methods in conjunction with the processing of the experimental materials into standard forms ensures maximum consistency for the experimental specimens and measurements.

4.1.5 The Choice of Experimental Design

With the foregoing planning of Section 4.1.4 in mind the following three main steps must be taken in choosing the most suitable experimental design:-

- a decision on whether the design is to be of the unifactor or factorial type,
- ii) a decision on whether the observations require grouping in order to eliminate any unwanted source

-85-

or sources of variation in the final measurements and

iii) a decision on whether the number of treatment combinations in a full replication can be fitted into a single block, i.e. whether a 'complete block' design or an 'incomplete block' design is appropriate.

A classification of the main types of design, both unifactor and factorial, is given in the table below:-

			UNIFACTOR DESIGNS	FACTORIAL DESIGNS
COMPLETE BLOCK	ONE	GROUPING	Randomised B	locks (Full factorial replications)
	TWO	GROUPINGS	Latin Squares	
INCOMPLE BLOCK	ONE TE	GROUPING	Balanced Incomplete Blocks Partially Balanced and Cyclic Designs	Confounded Designs Fractional Replication Split-Plot Designs
	TWO	GROUPINGS	Youden Squares Lattice Squares	Quasi-Latin Squares

Since concrete is the topic of research being considered in the present investigation, the unifactor approach to experimentation can immediately be regarded as unsatisfactory for the reasons set out in earlier discussion when the multifactor nature of the material was highlighted. Hence the choice of experimental design rests with those procedures listed under the Factorial Design heading in the above table.

Of the complete block factorial designs the most straightforward type is the Randomised Blocks system since it is probably the easiest to use and is very versatile. Any number of treatment factors and replications can be catered The treatment material is firstly stratified into for. blocks which are, as near as possible, homogeneous. Then, by random application of a full replication of the treatment combinations to each block, the treatment means give rise to unbiased estimates of the treatment effects. The subsequent analysis of variance can therefore be used to obtain the variances due to blocks, treatment factors and residual. The latter may be used to calculate the standard errors of the means and differences between means thus establishing the confidence limits for these statistics.

It is pertinent, here, briefly to consider the format of the experimental work being undertaken. The study of A.S.R. in concrete involves the production of laboratory specimens of concrete or mortar which are made from a combination of the component materials. The treatment factors are, then, the amounts or quality of the component materials. Since the experimental unit is made solely from the treatment materials

-87-

themselves, and does not involve the application of treatment factors to an existing experimental unit whose make-up is not controllable, the question of homogeneity of the experimental units and stratification into blocks does not arise in this special case. Hence the Factorial Design of the Complete Block - One Grouping type (i.e. Randomised Blocks) is appropriate. This may more conveniently be referred to as simply a Full Factorial Replication, as shown in the table above.

The most frequently used incomplete block designs of the factorial type are Fractional Replication and Confounded Designs, probably due to their relative simplicity. Notwithstanding the above comments, whilst the latter type of experiment involves the use of blocking a brief outline of the associated processes will be included.

Confounding is employed when a factorial experiment becomes very large and would therefore require correspondingly large blocks to be used if a randomised block design were attempted. This, in turn, would increase the residual variation due to the lack of homogeneity of the treatment material within each large block. Confounding enables smaller blocks to be used since each block contains only a proportion of the full replication of treatment combinations. The smaller blocks reduce the residual variation but as a result of the confounding some of the treatment effects are lost since they cannot be separated from the effects of the block differences themselves. That is to say some of the information is 'confounded with blocks'. By careful design

-88-

only the least valuable information can be confounded thus leaving the most sought after effects free from any block interference.

Fractional replication is closely related to confounding since the treatment combinations used in a fractional factorial design represent the equivalent to one block out of a confounded design which involves the same treatment The fractional factorial method is also similar to factors. confounding in the respect that some of the information which would be produced by a full replication is lost. This is because only a proportion of the total number of the available treatment combinations are actually employed. However, again by careful design, contamination of the most important information can be minimised. Fractional replication causes the variations due to more than one effect to be grouped together in an inseparable way. It is therefore essential that a feature of the experimental design is for the main effects and the most important interactions to be grouped only with the unimportant high order interactions. Groups of inseparable effects are said to be 'aliased' with one another.

The need for a method such as fractional replication arises because, as the dimensions of a factorial experiment are increased by the inclusion of more factors and more levels then the total number of treatment combinations rises rapidly. For example, if 5 factors are to be investigated and each is to be included at 3 different levels than there are $3^5 = 243$ treatment combinations in each replicate.

-89-

Confounding does not reduce the total number of treatment combinations to be included but merely splits them up into smaller groups. Fractional replication, however, reduces the number of treatment combinations which are actually carried out. In the example quoted the reduction would be by a factor of 1/3^X where 'x' represents the order of the fractional replication.

The method of fractional replication can be effective in one of two ways. The same coverage can be gained from a smaller experiment which requires fewer observations without seriously affecting the most important information or, alternatively, the same number of observations can be used to provide information on a wider field of study.

The design of both types of incomplete block experiments discussed above is controlled by a single parameter or group of parameters selected so that the most important information is retained. These parameters are known as Confounded Interactions or the Defining Contrast for confounded designs and fractional replication respectively.

4.2 DETAILED DISCUSSION OF SELECTED DESIGN

In Section 4.1.5 the two types of experimental design considered to be the most appropriate in this particular instance were found to be Full Factorial Replication and Fractional Replication. The power of the latter, in enabling the number of treatment combinations actually performed to be reduced, has obvious benefits and therefore much

-90-

consideration was given to the use of this type of design. The purpose of the research, however, was to investigate A.S.R. in concrete using statistical experimentation as a research tool, and not vice-versa. Consequently the overriding decisions were made with A.S.R. as the main priority.

At an early stage, it was decided that each factor included in the experiments should be present at as many levels as practicable and that the number of factors should be confined to those considered most relevant. Therefore, it would have been ideal to carry out an experiment involving a fractional replication of perhaps 4 factors each at 4 levels. However. the power of fractional replication lies in experiments involving a large number of factors each at 2 or 3 levels, when the contamination of the treatment effects can be kept to an acceptable level. In the case of the 4⁴ experiment mentioned above, if a 1/4 replicate is attempted, the main effects are aliased with interactions of an unacceptably low order. Since a suitable fractional replication design could not be found, all the experimental work was carried out on a full replication basis.

4.2.1 Notation

To permit the notation to be explained, a two-factor experiment will be taken as an example. The notation for larger experiments is simply an extension of the same system.

It is necessary to consider two frames of reference, these

-91-

being the overall POPULATION and the EXPERIMENT which is intended to represent the population. For both the population and the experiment the two factors are represented by the symbols A and B. In general all other symbols will refer either to the population when they will be upper case or contain upper case suffices, or to the experiment when they will be lower case or contain lower case suffices. All the required symbols are listed below:-

- A , B the two factors
- P , Q the number of levels of each factor present in the population.
- p , q the number of levels of each factor present in the experiment.
 - N the number of possible observations under each cell of the population (often infinite).
 - n the number of observations taken under each cell of the experiment.
- a_I (I=1, P) an arbitrary level of factor A when the reference frame is the population.
- a; (i=1, p) an arbitrary level of factor A when the reference frame is the experiment.
- bj (J=1, Q) an arbitrary level of factor B when the reference frame is the population.
- bj (j=1, q) an arbitrary level of factor B when the reference frame is the experiment.
- ab_{IJ} the general treatment combination when the reference frame is the population.
- ab_{ij} the general treatment combination when the reference frame is the experiment.

The dimensions of the experiment are thus p x q with n observations per cell out of an overall population of dimensions P x Q with N possible observations per cell, as defined by the two reference frames of treatment combinations below:-

!	b1	b2	bj	bQ
aı	ab ₁₁	ab ₁₂	ab ₁ j	ab1Q
a2	ab21	ab22	ab ₂ j	ab2Q
		I	I	1
I I	1	1	•	I
aI	ab ₁₁	ab12	abıj	abiq
I	1	8	1	1
I	{ •	I	I	t
ap	abp1	abp2	abpj	abpQ

Field of treatment combinations in the population

	b1	b2	b _j	bq
	ab ₁₁	ab ₁₂	^{ab} 1j	ablq
a2	ab21	ab22	ab _{2j}	ab2q
L L	1	ŧ	1	
•	1	I	I.	I
a j	ab _{i1}	^{ab} i2	ab _i j	abiq
1	1	I	I	ı
1	1	1	ı	1
ap	ab _{p1}	^{ab} p2	ab _{pj}	abpq

Field of treatment combinations in the experiment

It is pertinent to mention here the equivalent short-hand notation which is used in the experimental sections of the research being described. The treatment combination abil is denoted simply as "00", further examples are listed below for the four-factor experiment actually used:-

0000	abcdllll
2012	a bcd ₃₁₂₃

Hence, the levels of factor A run from 0 to (p-1). Whilst this appears to be a complication at present it simplifies certain processes involved in the design and analysis of experiments, particularly by computer, and is the most common notation used. However, the long-hand version is more suited for use in explaining the techniques involved.

In the two different frames of reference above, the symbol ab_{11} may refer to different treatment combinations since the experiment may not include the first level of each factor which occurs in the overall population.

The factors A and B in the experiment can be designated either FIXED or RANDOM depending on the way in which the levels of each factor present in the experiment were The factor A is a random factor if the p levels selected. present in the experiment were selected from the P levels available in the population in a random manner. If, on the other hand, the full number of levels of factor A are included in the experiment, making p equal to P, then factor A becomes a fixed factor. A special case of the latter designation is where the p levels of factor A in the experiment have been selected in a systematic fashion from the P levels available in the population. Under these circumstances the experiment is only representative of the p levels of the factor A in the population, thus reducing P to Peffective which is equal to p. In the experimental work described later, the levels of the various factors were selected in a systematic, non-random manner thereby causing them to be designated 'fixed'.

-94-

Additional symbols are required with respect to the computations which are carried out on observations obtained; these are listed below:-

- X_{IJK} the general observation under treatment combination a_{IJ} when the frame of reference is the population, where K has the values 1 to N.
- X_{ijk} the general observation under treatment combination a_{ij} when the frame of reference is the experiment, where k has the values 1 to n.
- AB_{IJ} the sum of all the N observations under treatment combination ab_{IJ} in the population.
- AB_{jj} the sum of all the n observations under treatment combination ab_{jj} in the experiment.
- ^µIJ IJ treatment combination ab_{IJ} in the population (i.e. the general cell mean in the population).

- \overline{AB}_{ij} the mean value of the n observations undertreatment combination ab_{ij} in theexperiment (i.e. the general cell mean inthe experiment).
- μ the average value of the cell means for all cells with factor A at level $a_{\rm I}$ in the population.
- \overline{A}_i the average value of the cell means for all cells with factor A at level a_i in the experiment.
 - u... the grand mean of the dependent variable for all the possible observations under all possible treatment combinations (i.e. in all the cells) of the population.
- G the grand mean of the dependent variable for all the observations in all the cells of the experiment.

The two reference frames for all observations and calculated means can now be defined.

	bl	b2	bj	ь _Q	
^a 1	^µ 11	^µ 12	^µ 1J	^μ 1Q	^µ 1.
a,2	^µ 21	^µ 22	^µ 2J	^µ 2Q	^µ 2.
1	8	1	8 8	1 1	
a ,I	μ ₁ 11	^µ 12	^µ IJ	μIQ	μ _I .
1 1	ŧ	8	1 1	1 1	
a _p	^μ Ρ1	^µ P2	^μ pj	^μ ΡQ	^μ Ρ.
	^µ .1	^µ .2	^µ .j	μ.Q	μ

Field of means in the population

where
$$\mu_{IJ} = \Sigma X_{IJK} = AB_{IJ}$$
 (4.1)
 $K_{\underline{N}} = N$

$${}^{\mu}I = \sum_{J} {}^{\mu}IJ = \sum_{JK} {}^{\chi}IJK \qquad (4.2)$$

•

$$\mu_{J} = \sum_{I} \mu_{IJ} = \sum_{IK} \chi_{IJK}$$
(4.3)
$$\frac{I}{P} \qquad \frac{IK}{NP}$$

$$\mu_{..} = \Sigma \mu_{I}, \qquad = \Sigma \mu_{.J} = \Sigma \Sigma \Sigma X_{IJK} \qquad (4.4)$$

$$\frac{I}{P} \qquad \frac{J}{Q} \qquad \frac{IJK}{NPQ}$$

•

1	b1	b2	bj	Þq
a1 a2 ' ' aj	$\frac{\overline{AB}_{11}}{\overline{AB}_{21}}$	\overline{AB}_{12} \overline{AB}_{22} \overline{AB}_{12}	\overline{AB}_{1j} \overline{AB}_{2j} $\frac{1}{AB}_{ij}$	$ \begin{array}{c c} \overline{AB}_{1q} & \overline{A}_{1} \\ \overline{AB}_{2q} & \overline{A}_{2} \\ \vdots & \vdots \\ \overline{AB}_{1q} & \overline{A}_{1} \end{array} $
' ' ^a p	AB _{p1}	AB _{p2}	AB _{pj}	Harris Ha
	\overline{B}_1	B ₂	B j	B _q G
where	ĀB _{ij} =	$\sum_{k} X_{ijk} = AB_{ij}$		(4.5)

Field of means in the experiment

$$\overline{A}_{i} = \sum_{j} \overline{AB}_{ij} = \sum_{jk} \chi_{ijk} = A_{i} \qquad (4.6)$$

$$\overline{B}_{j} = \sum_{i} \overline{AB}_{ij} = \sum_{ik} X_{ijk} = B_{j} \qquad (4.7)$$

$$\overline{G} = \Sigma \overline{A}_{i} = \Sigma \overline{B}_{j} = \Sigma \Sigma \Sigma X_{ijk} = G \quad (4.8)$$

$$\frac{i}{p} \qquad q \qquad \frac{ijk}{npq} \qquad npq$$

Hence, with regard to the symbols for the experiment only, any symbol such as A_i (i.e. where the symbol is not "capped") refers to a summation for all observations which include the particular factor or factors denoted at the level shown and any symbol such as $\overline{A_i}$ refers to the corresponding average value.

4.2.2 Definition of Main Effects, Interaction Effects and their Variances

The terms Main Effect and Interaction Effect have already been explained in Section 4.1.2. The basic definitions can now be translated into symbol form, based on the notation of the previous section. Further, it has also been explained that the statistical tool which is used to quantify the relative size of the treatment effects, which are attributable to the various experimental factors, is the variance due to these effects. Thus, the variance due to each type of effect must also be defined.

Considering the population frame of reference the main effect of factor A at level a_I is defined as

 $\alpha_{I} = \mu_{I} - \mu_{..}$ (4.9) which is the difference between the mean on the dependent variable for all observations with factor A at level a_{I} and the grand mean of all possible observations.

Similarly, the main effect of factor A at level $a_{I'}$ is defined as $\alpha_{I'} = \mu_{I'} - \mu_{..}$ (4.10)

-99-

Now, the differential main effect between these two levels of factor A is the difference between the two main effects

$$\alpha_{I} - \alpha_{I'} = \mu_{I} - \mu_{I'}$$
 (4.11)

This is of more practical use since in the general case differential main effects are always estimable from an experiment whereas the main effects themselves might not be.

Similar definitions hold for factor B using the symbol β to represent the main effects.

By definition, the variance due to the main effects of factor A is

$$\sigma_{\alpha}^{2} = \sum_{I}^{(\mu_{I}, -\mu_{*})^{2}} \frac{1}{P-1}$$

$$= \sum_{I}^{\alpha} \alpha_{I}^{2} \frac{1}{P-1}$$

$$= \sum_{I}^{(\alpha_{I} - \alpha_{I})^{2}} \frac{(4.12)}{P(P-1)}$$
(for all different pairs of I, I' with I

Similarly, the variance due to the main effects of factor B is defined as

$$\overline{\sigma}_{\beta}^{2} = \underbrace{\sum_{j}^{\beta} (\mu_{,j} - \mu_{,j})^{2}}_{Q-1}$$

$$= \underbrace{\sum_{j}^{\beta} \beta_{j}^{2}}_{Q-1}$$

$$= \underbrace{\sum_{j}^{\beta} (\beta_{j} - \beta_{j'})^{2}}_{Q(Q-1)}$$
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13)
(4.13

The variances due to the main effects, σ_{α}^2 and σ_{β}^2 , are overall measures of the extent to which the mean on the dependent variable differs according to the changes between the various levels of the factors. For example, in the case where σ_{α}^2 has a low value approaching zero then the differential main effects of factor A are shown to be negligible, thus indicating the lack of an effect due to factor A. Conversely, where σ_{α}^2 is found to have a large value, this implies that one or more of the differential main effects of factor A are large, indicating the presence of an effect due to factor A.

It is worthy of note that the definitions of the main effects and the differential main effects include the grand mean, $\mu_{..}$, and hence involve all the measurements taken in the experiment. These effects are, therefore, not simply defined in terms of the individual factor being considered.

An Interaction Effect has already been described as a measure of the interdependency of the effect of one factor on another or an expression of the non-additivity of the main effects. If we consider factor A at level a_I and factor B at level b_J then the interaction between them is designated by $\alpha\beta_{IJ}$ and the relevant mean on the dependent variable is μ_{IJ} . The value of this mean can be written as follows

 $\mu_{IJ} = \mu_{I} + \alpha_{I} + \beta_{J} + \alpha_{B}$

hence $\alpha\beta_{IJ} = \mu_{IJ} - (\alpha_I + \beta_J + \mu_{..})$ (4.14)

-101-

using the definitions of α_I and β_J this becomes

$$\alpha \beta_{IJ} = \mu_{IJ} - \mu_{I} - \mu_{.J} + \mu_{..}$$
 (4.15)

It can be shown that the summation of the interaction effects over all values of either I or J produces a value of zero.

In the same way that the main effects were expressed in terms of differential main effects, the interaction effects can also be expressed as differential interaction effects. These are simply the differences between pairs of interaction effects. However, the differential interaction effects can be of two types, namely compound and simple. The compound type involves two differential main effects in addition to the difference between the relevant cell means, whereas a simple differential main effect only involves a single differential main effect. The general example of each type is given below

Compound differential interaction effect $\alpha\beta_{IJ} - \alpha\beta_{I} \cdot J' = \mu_{IJ} - \mu_{I} \cdot J' - (\alpha_{I} - \alpha_{I} \cdot) - (\beta_{J} - \beta_{J} \cdot)$ $= \mu_{IJ} - \mu_{I} \cdot J' - \mu_{I} + \mu_{I} \cdot - \mu_{*} J + \mu_{*} J'$ (4.16) Simple differential interaction effect $\alpha\beta_{IJ} - \alpha\beta_{IJ} \cdot = \mu_{IJ} - \mu_{IJ} \cdot - (\beta_{J} - \beta_{J} \cdot)$ $= \mu_{IJ} - \mu_{IJ} \cdot - \mu_{*} J + \mu_{*} J'$ (4.17) The variance due to the interaction effects of factors A and B is defined as

$$\sigma_{\alpha\beta}^{2} = \sum_{\substack{IJ \\ IJ \\ (P-1)(Q-1)}} (4.18)$$

$$= \sum_{\substack{IJ \\ IJ \\ (P-1)(Q-1)}} (P-1)(Q-1)$$

The final variance which requires definition is that due to experimental error, that is the variance which cannot be attributed to any of the treatment effects. This is required to allow comparisons to be made with the variances which are due to the treatment effects in order to establish whether these variances are significantly greater than can be explained by experimental error (i.e. chance variations).

Within any cell of the population, that is under any treatment combination, the variance of the N possible measurements on the dependent variable is called the withincell variance and is defined as

$$\sigma_{IJ}^{2} = \sum_{K} (\chi_{IJK} - \mu_{IJ})^{2}$$
(4.19)

Since the assumption of homogeneity of error variance has been made then the within-cell variance for the population is constant, hence

$$\overline{\sigma}_{IJ}^{2} = \overline{\sigma}_{E}^{2} \text{ (for all I,J)} \quad (4.20)$$

4.2.3 Definition of Experimental Estimates of Treatment Effects, Error and their Variances

> It has already been stated that the case of current interest is one where the treatment factors are designated 'fixed'. The population is therefore restricted to the factors and levels systematically chosen for inclusion in the experiment. Hence, the definitions of the population effects and variances in the foregoing section can be rewritten using lower case symbols i,j,p and q as direct substitutions for their upper case counterparts. The revised population variances due to the attributable effects and experimental error are listed below

Main effects of factor A

$$\sigma_{\alpha}^{2} = \sum_{i} (\mu_{i} - \mu_{..})^{2} \qquad (4.21)$$

$$\frac{1}{p-1}$$

Main effects of factor B $\sigma_{\beta}^{2} = \Sigma (\mu_{,j} - \mu_{,.})^{2} \qquad (4.22)$ q - 1

Interaction effects

$$\sigma_{\alpha\beta}^{2} = \sum_{\substack{ij \\ (p-1) \ (q-1)}} \sum_{\substack{ij \\ (q-1)}} \sum_{\substack{ij \\ (q-2)}} \sum_{\substack{ij$$

Within cell (experimental error)

$$\sigma_{ij}^{2} = \sum_{K} (\chi_{ijK} - \mu_{ij})^{2}$$
(4.24)
$$\frac{K}{N-1}$$

= σ_{E}^{2} (for all i,j)

The general form of these variances is a SUM OF SQUARES divided by the DEGREES OF FREEDOM inherent in the summation.

It still remains that the experiment will only include a sample of n observations out of the possible N observations under each treatment combination. Considering, firstly, experimental error, under these circumstances the within cell variance for the cell ab_{ij} is given by

$$S_{ij}^2 = \sum_{k=1}^{\infty} (X_{ijk} - \overline{AB}_{ij})^2$$
 (4.25)

which is an estimate of ∇_E^2 . A better estimate of ∇_E^2 is obtained by averaging the value of the within cell variance over all the cells of the experiment, since it is assumed that error variance is homogeneous. This statistic is known as the pooled error variance (S²_{pooled}) or the within cell mean square (MS_{w.cell}) and is an unbiased estimate of ∇_E^2 .

$$MS_{w.cell} = S^{2}_{pooled} = \sum_{\substack{ij \\ pq}} \sum_{pq}^{ijk} \frac{ij}{pq}$$

i.e.
$$\sum_{\substack{\sum \sum (X_{ijk} - \overline{AB}_{ij})^{2} \\ ijk \\ pq(n-1)}} (4.26)$$

In the special case of experimental designs which do not have more than one observation under each treatment combination (i.e. one observation per cell) the error variance is designated the error mean square (MS error) and is often taken to be the mean square due to the highest order interaction in the analysis of variance. The variances obtained from the experiment which are due to the attributable effects are also known as mean squares and for the two factor experiment of n observations per cell these are defined as

$$MS_{a} = SS_{a} = nq\Sigma (\overline{A}_{i} - \overline{G})^{2} \qquad (4.27)$$

$$\frac{1}{df} - \frac{1}{p-1}$$

Mean Square due to the main effects of factor B

$$MS_{b} = SS_{b} = np\Sigma (\overline{B}_{j} - \overline{G})^{2} \qquad (4.28)$$

$$\frac{j}{df} = \frac{j}{q-1}$$

Mean Square due to the interaction effects

$$MS_{ab} = SS_{ab} = n\Sigma\Sigma (\overline{AB}_{ij} - \overline{A}_{i} - \overline{B}_{j} + \overline{G})^{2} \qquad (4.29)$$

$$\frac{1j}{df} = \frac{1j}{(p-1)(q-1)}$$

It can be seen that these mean squares are again a sum of squares divided by the degrees of freedom but that the sum of squares incorporates a multiplier. This multiplier represents the number of observations used to obtain the lowest order mean in the summation term, that is the multipliers nq, np and n represent the number of observations in the means \overline{A}_i , \overline{B}_j and \overline{AB}_{ij} respectively. Apart from this additional component, the mean squares take the same form as the expressions for the population variances but with the means from the experimental observations substituted for the corresponding population values.
The need for the multipliers is derived from the properties of the general linear model, applied to the experiment, in which it is assumed that the variations caused by the experimental error and each of the treatment effects are independent of each other. Under these circumstances, the multipliers ensure that the expected value of each mean square contains the error variance term multiplied by a coefficient of unity, as shown below

$$MS_a : expected value = \sigma \epsilon^2 + nq \sigma_{\alpha}^2 \qquad (4.30)$$

$$MS_b : expected value = \sigma \epsilon^2 + np \sigma^2 \qquad (4.31)$$

$$MS_{ab} : expected value = \sigma z^2 + n \sigma_{\alpha\beta}^2 \qquad (4.32)$$

$$MS_{error}$$
: expected value = σE^2 (4.33)

The multipliers, therefore, aid interpretation since in a situation where no treatment effects exist, the values of all the mean squares above are virtually equal. This is because under such circumstances σ_{α}^2 , σ_{β}^2 and $\sigma_{\alpha\beta}^2$ approach zero and hence, each mean square represents an independent estimate of the error variance Σ^2 . Conversely, if the effects attributable to the treatment factors and their interaction are real then MS_a, MS_b and MS_{ab} should be substantially greater than MS_{error} since σ_{α}^2 , σ_{β}^2 and $\sigma_{\alpha\beta}^2$ should have significant values.

The relative sizes of the mean squares attributable to the treatment effects and the mean square due to experimental error are, then, the mechanism by which a judgement can be made to determine whether the variations can be explained by pure chance or whether they indicate that the experimental

-107-

variables have a real effect on the dependent variable. This is where the variance ratio or 'F'-test is employed to obtain the level of significance of each effect. The 'F' statistic obtained from each ratio of mean squares is compared with tabulated information of the 'F'-distribution in accordance with the degrees of freedom inherent in both the numerator and the denominator of the ratio. In this way the probability that the variation is due to pure chance, i.e. the tail probability, is assessed. Whilst the presence of an effect can never be absolutely proven, the lower the tail probability the greater the likelihood that a real effect exists.

The 'F'-test, then, shows the significance level of the attributable effects. For those effects which are shown to be significant the actual effect itself can be estimated from the experimental results. To obtain the best available estimate the general linear model and its assumed constraints are required, thus

 $\chi_{ijk} = \mu + \alpha_{i} + \beta_{j} + \alpha_{ij} + \xi_{ijk}$ (4.34) with the constraints that $\sum_{i}^{\alpha} \alpha_{i} = 0; \quad \sum_{j}^{\alpha} \beta_{j} = 0; \quad \sum_{i}^{\alpha} \alpha_{ij} = 0; \quad \sum_{j}^{\alpha} \alpha_{ij} = 0; \quad \sum_{j}^{\alpha} \alpha_{j} = 0; \quad \sum_{j}$

For the particular 'fixed' factor experiment under consideration, a set of normal equations can be obtained using the principle of least squares, whereby the sum of the squares of the residual (error) is minimised. The solution of these equations leads directly to the following least

-108-

squares estimates of the required population values:-

Best unbiased estimate of $\mu_{i} = \overline{G}$ (4.35) Best unbiased estimate of $\alpha_{i} = \overline{A}_{i} - \overline{G}$ (4.36) Best unbiased estimate of $\beta_{j} = \overline{B}_{j} - \overline{G}$ (4.37) Best unbiased estimate of $\alpha\beta_{ij} = \overline{AB}_{ij} - \overline{A}_{i} - \overline{B}_{j} + G$ (4.38)

The above equations represent the best unbiased estimates, available from the experiment, which are linear in X_{ijk} and yield minimum standard errors.

CHAPTER 5____DETAILS OF THE INVESTIGATION - PHYSICAL

5.1 FRAMEWORK OF EXPERIMENTAL WORK

5.1.1 Standard Test Methods

Wherever possible the experimental work was conducted according to published standard test methods. In the absence of any appropriate British Standard test for the assessment of the level of alkali-silica reactivity in cement-aggregate combinations, the standard test methods of the American Society of Testing and Materials were selected.

The relevant standards were ASTM C227-71 (re-approved 1976) (18) entitled "Potential alkali reactivity of cement-aggregate combinations (mortar bar method)" and ASTM C441-69 (reapproved 1975) (24) entitled "Effectiveness of mineral admixtures in preventing excessive expansion of concrete due to the alkali-aggregate reaction". Both these standard test methods were current at the time of conception of the experimental proposals. However, they have subsequently been revised as shown in the "List of References" at the end of this thesis.

Due to the complex nature of the current work, in comparison with the purpose for which these standards were designed, some adaptation of these test methods was required to allow for the inclusion of all the aspects of the A.S.R. phenomenon under investigation. In particular, modifications were necessary to allow for greater flexibility in certain of the parameters in

-110-

the mix design which are normally held constant throughout the tests. In addition certain decisions had to be made where the two standards gave conflicting instructions.

Subsidiary information was required regarding the classification and properties of the constituents of the mortar mix. In general, this information was obtained using British Standard techniques. All cements were analysed for the relevant chemical and physical properties in accordance with BS 4550: Part 2: 1970 (83) and BS 4550: Part 3: 1978 (84) respectively. For the former standard the Draft Amendment Slip No. 1 dated October 1979 (85) was used.

The pulverised fuel ash was tested for compliance with BS 3892: Part 1: 1965 ⁽⁸⁶⁾ and was supplied under an Agrement Board certificate No. 81/841 ⁽⁸⁷⁾ thus ensuring consistent quality.

All aggregate material was tested according to the methods of BS 812: Part 2: 1975 (88) "Methods of sampling and testing of mineral aggregates, sands and fillers - Physical Properties".

5.1.2. Laboratory Conditions, Equipment and Procedures

The laboratory facilities required for the production, storage and monitoring of the expansion of mortar bars according to the aforementioned methods comprise three separate rooms or cabinets. Each room represents a different controlled environment, the details of which are given in Table 5.1.

-111-

Plates 5.1, 5.2 and 5.3 show the Moulding/Measurement Room, Curing Cabinet and Storage Room which were set up in The University laboratory and were used for the main Series 2 experiments. The temperature condition in the Moulding/ Measurement Room was maintained by a Rootes Tempair air conditioning unit capable of either heating or cooling the room to a preset level. This unit was in operation continuously throughout the periods of experimentation. The relative humidity requirement was provided by intermittent boosting from an automatically controlled electric spray humidifier which operated only when the room was in use. Both these units are shown in Plate 5.4.

The temperature of the Curing Cabinet was indirectly controlled by the Tempair unit since the cabinet was kept in the Moulding/Measurement Room. Also, as the cabinet was both watertight and airtight, and contained standing water, the relative humidity was maintained at its required high level. Temperature control in the Storage Room was provided by two thermostatically controlled convector heaters. The high required temperature and fineness of control were helped by the extremely high level of thermal insulation inherent in the structure of the room.

The earlier Series 1 work was conducted using the facilities already established for the purpose at Probe Laboratories Ltd, Watford, England.

To enable the 25mm x 25mm x 250mm (gauge length) specimens to be produced, special moulds were fabricated in the University

-112-

workshop (Plate 5.5). The design was such that the gauge studs were supported in the assembled moulds so that they were encastre in the mortar bar. On removal of the bar from the mould the square gauge stud supporting plates could be unscrewed from the specimen, exposing the slightly projecting head of the gauge stud. The gauge length over which the expansions were calculated was measured between the internal ends of the gauge studs, as shown in Fig 5.1.

In order to comply with the requirements of the ASTM standard method of preparation of mortar bars the mortar mixer must have certain operational characteristics; these are detailed in Table 5.2. The Hobart C.E. 100 mixer (Plate 5.4) is suitable for the purpose and was used in the preparation of all the test specimens.

Consistency of the mortar mix was tested with the flow table apparatus shown in Plate 5.6. The flow of the mix under a given input of energy was measured as a percentage increase in diameter of a standard compacted truncated cone of the fresh mortar. In ASTM C227-71 the flow test is included as a compliance clause to ensure constant consistency of the mortars, the results being required to fall within a specified band. The Series 1 experiments followed this procedure. In Series 2, however, where two distinct free water contents were used, the flow test was conducted purely to obtain extra information on the properties of the mortar mixes.

Three specimens were cast from each mortar mix. After initial curing and subsequent removal from the moulds, the

-113-

groups of bars were stored in special airtight containers (Plate 5.7). These containers were lined with blotting paper to enhance evaporation of the water from the reservoir in the bottom of the container, thus maintaining the required high level of relative humidity inside the container. The mortar bars were supported above the surface of the water with no weight on the gauge studs. Each container was covered at the top with a piece of plastic sheeting, the airtight seal being provided by an adhesive strip and heavy duty rubber bands.

The procedure used for monitoring any length changes in the mortar bars did not involve measurement of the physical length of the bars. The length over which the expansion takes place is known as the gauge length and is the distance between the inner ends of the two gauge studs. At each measurement age the length of the specimen was compared with the length of a reference bar which is made from Invar. The length comparisons were made using the device shown in Plate 5.8 which is known as a comparator. Due to the low value of coefficient of linear expansion for Invar, the length of the reference bar remains virtually constant over the permissible temperature range of the Measurement Room. Hence, the change in the difference between the reference bar reading and the specimen reading defines any change in length of the specimen. Expansions were calculated in relation to the initial length measurements taken at age 24 hours, immediately after demoulding.

Within each Series of experiments the mortar mixes were prepared in random order to satisfy the requirements of

-114-

Factorial Analysis. The full sequence of events involved in the preparation, storage and testing of the specimens is discussed separately under the sections on each set of experiments. The chosen ages of measurement were adhered to within ±2 hours up to and including age 2 months and ±1 day thereafter.

In the second series of experiments some of the mortar mixes were repeated in order to produce 2" cube specimens. The cubes were produced in groups of 8, for use in compressive strength tests. Again special gang moulds were fabricated for the purpose of casting the cubes, these are shown in Plate 5.9. Compaction of the mortar in the cube moulds was carried out in a manner similar to that for the mortar bar specimens so that similar mortar densities were achieved.

5.1.3 Analytical Procedures

The raw experimental data obtained as explained in the previous section required conversion to produce expansion figures for each mortar mix. The formula for these computations is given below:-

$$E = (L_{X} - R_{X}) - (L_{R} - R_{R}) \times 10^{-6} \mu E$$
250

where E = expansion 250 = specimen gauge length L_x = length reading for mortar bar at time "x"

- L_R = length reading for mortar bar at start of test
- R_x = length reading for reference bar at time "x"
- R_R = length reading for reference bar at start of test

Hence an expansion expressed in microstrain was calculated for each mortar bar at each chosen age of measurement, "x". Since each mortar mix is represented by three mortar bars the average of each set was then obtained.

As a precautionary measure against spurious results from individual bars, the repeatability of each set of measurements was computed and compared with the repeatability compliance clauses of the relevant ASTM standard test methods. The repeatability of any set of measurements is assessed by calculating the deviation of each individual value from the mean of the set.

In addition to the tabulated numerical output of expansion data, extensive graphical output was obtained in the form of expansion plotted against either time or one of the various treatment factors inherent in the make-up of the experiments. Graphs were assembled as both single and multiple plots, the latter to aid direct comparison of treatment effects.

It has already been stated that one of the main advantages of a statistically based method of experimentation is the suitability of the results for statistical interpretation. The technique known as the "Analysis of Variance" (ANOVA) was used to evaluate the significance of the treatment effects enabling them to be ranked in order of importance. This

-116-

process also evaluates the significance of the interaction effects which shows whether the treatment factors are independent or whether they interact making their effects interdependent and not simply additive.

The repetitive nature of each stage of the computational procedures discussed above make them ideally suited to computerisation. Hence a complete set of computer programs was written to enable the experimental data to be converted directly into the three forms of output required. The various stages of this process are shown diagramatically in the form of a flow chart in Fig 5.2. The statistical part of the computations was carried out using a standard program from the Biomedical Computer Programs package (89) available on the Honeywell system at The City University.

5.2 SERIES 1 EXPERIMENTS

5.2.1 Experimental Treatment Combinations

The Series 1 experiments comprised a 3^3 Full Factorial set which has been discussed in an earlier report (90). Listed below are the criteria chosen for investigation of their effect on A.S.R.

Factor A - cement alkali content

Factor B - percentage replacement of cement by p.f.a. (refer to Figure 5.3)

Factor C - reactive aggregate content expressed as a percentage by weight of the overall aggregate

-117-

Each Factor was considered at three different levels, hence forming the 27 different mixes of the 3^3 Full Factorial design. The levels of Factors B and C could be controlled directly and hence set at any chosen value, whereas the levels of Factor A were predetermined by the commercially produced cements unless extra alkali was used an an admixture. This latter possibility was rejected since it was considered to increase further the complexity of the mix and, in consequence, would make it more difficult to interpret the results.

The replacement of cement by p.f.a. under Factor B was carried out by keeping the volume of cementitious material constant and equal to the volume of Portland cement in the mixes free of p.f.a. In addition, for a 15% replacement level of cement by p.f.a. the cementitious mixture was 15% p.f.a. and 85% Portland cement by mass. It therefore follows that, because of the difference in the relative densities of p.f.a. and Portland cement the total mass of the cementitious material in a blended mixture was less than the mass of cement in an equivalent mix free of p.f.a. This replacement process is fully explained in Figure 5.3.

Factor C, the reactive aggregate content, is simply expressed as the percentage reactive aggregate by weight of the total dry aggregate, the overall weight of dry aggregate remaining constant for each mix.

A three digit mix reference number is used to describe each of the mixes in the Series 1 section of the study. The digits

-118-

in the mix reference numbers denote the level at which each experimental Factor is present, in the order cement - p.f.a. aggregate (i.e. Factors A - B - C as listed above). When Pyrex glass is present in the mix, the mix reference number includes the letter 'P' as a postscript. Full details of the experimental Factors and their respective levels used in Series 1 are shown in Table 5.3. An example of a mix reference number from this table is given below:-

121P - this denotes a mix containing a medium alkali cement with 40% replacement by p.f.a. and an aggregate comprising 50% sand and 50% Pyrex glass.

In addition to Table 5.3, full details of the batch quantities of each mix, the accepted flow reading, the estimated compacted wet density of the mortar bars and the calculated proportions of the mortar bars expressed in kilogrammes per cubic metre of fully compacted wet mortar, are given in Tables A.1 and A.2 of Appendix A.

5.2.2 Materials

It was stated in the previous section that the available levels of Factor A were restricted by the cements which were commercially available. Since one of the reasons underlying the inception of this research was the occurrence of A.S.R. in the UK, the choice was further restricted to cements produced in the UK. The three cements selected for use were known to have a suitable range of alkali contents from data published shortly before the specimens were prepared. (69)

-119-

Representative samples of the cements used in the experiments were analysed in order to determine their alkali contents according to the methods of BS 4550 (84, 85). The values obtained from the analytical results are given in Table 5.4 where the content of the individual alkalis Potassium Oxide and Sodium Oxide are stated separately, together with the widely used combined figure expressed as total equivalent Sodium Oxide (Na_2O_{eq}). All figures are quoted as percentages by weight of total cement. The relevant physical properties of the cements are also given in Table 5.4.

Again recently published work ⁽⁶⁹⁾ was consulted in making the choice of which p.f.a. to use. One of the salient points emerging from this work was that whilst different sources of p.f.a. have a variety of physical and chemical properties they all have a similar effect on A.S.R. when used as a cement replacement material. The choice of which p.f.a. to use was, therefore, quite arbitrary. The physical properties of the selected material are listed in Table 5.4.

For the control mixes with zero reactive aggregate content and also for the non-reactive proportion of the other mixes, crushed flint gravel from a quarry in the Thames Valley region of Essex was used. Earlier work (9,10) had shown this aggregated to be suitable for the purpose. The reactive component was crushed Pyrex glass as specified in ASTM C441-69 (24). Both types of aggregate were crushed and graded into the five size fractions shown in Table 5.5. The crushed material was recombined at the mix batching stage, equal proportions from each size fraction were used to produce the

-120-

grading shown in Table 5.5 and listed in ASTM_C441-69 (24). Both aggregate materials were batched in an oven dry condition. Table 5.4 shows the relevant physical properties of the two aggregate materials.

5.2.3 Experimental Procedures

Preparation of the test specimens followed the stages shown in Figure 5.4 which come directly from ASTM C227-71 (18), with the flow test being used to standardise the consistency of the mortar mix. Due to limitations imposed by the quantity of material available some mixes which marginally failed the repeatability rejection test were necessarily accepted, as shown by certain values in the results section appertaining to Series 1.

After the initial curing period of 24 ±2 hours, the specimens were removed from the moulds and an initial reference measurement taken. Immediately afterwards the gauge studs were greased to prevent rusting and the specimens were then sealed into their storage containers. All containers were then placed in the Storage Room for the high temperature conditioning.

Further measurements were taken at the ages listed in Table 5.6 to enable the expansion, if any, to be calculated. Prior to any measurement the specimens were allowed to acclimatise to the conditions in the Measurement Room for a minimum of 16 hours (Figure 5.4). In addition, the water in the Storage Containers was replaced by fresh tap water each time the

-121-

specimens were returned to their container_after measurement.

At the end of the original 4 month test period a visual examination was conducted on each specimen to assess the condition of the bar on the basis of the criteria listed below.

- (i) state of compaction of mortar
- (ii) extent of warping
- (iii) extent of surface exudation
- (iv) surface appearance (mottled, stained, cracked etc)

After the visual examination the specimens were returned to their Storage Containers and replaced in the Storage Room. On completion of all the visual examinations the Storage Containers were removed from the Storage Room and stored under ambient laboratory conditions (approximately 20°C) until the 14 month expansion measurements were taken. Thereafter storage was continued at ambient laboratory temperature with the specimens sealed into polythene bags. Expansion measurements at age 18 months were taken for the high alkali cement bars only.

5.3 SERIES 2 EXPERIMENTS

5.3.1 Experimental Treatment Combinations

Due to the importance of the factors chosen for investigation in the preliminary experiments of Series 1, the same three factors were again chosen for inclusion in Series 2. However, with the exception of Factor A, i.e. the cement

-122-

alkali content, the number of levels of each factor was increased to four and different increments used. In addition, a fourth factor was incorporated into Series 2, Factor D, the free water content of the mix. By definition the free water content is the amount of water available in the mortar or concrete over and above that which is absorbed by the aggregate in reaching the saturated surface dry condition.

Factor D was introduced at two levels, nominally low and high. For those mixes which did not contain p.f.a., free water/ cement ratios of 0.40 and 0.55 were used for the low and high free water contents respectively. For mixes which did contain p.f.a., however, the free water/cementitious ratios varied slightly from the above values due to the differences in the relative densities of the cements and the p.f.a. and also the manner in which cement replacement was conducted (refer to Section 5.2.1 and Figure 5.3).

The number of levels of each of the four factors described above was restricted to the chosen value to enable all the treatment combinations to be included within an experimental framework of practicable dimensions. The 3 x 4 x 4 x 2 factorial set included 96 different mixes, details of which are shown in Table 5.7. In Tables B.1 and B.2 of Appendix B information on the mixes is expanded to give the batch quantities, the value of flow obtained, the estimated compacted wet density and the calculated mix proportions of the mortar bars expressed in kilogrammes per cubic metre of fully compacted wet mortar.

-123-

Unlike Series 1, the experimental work of Series 2 was not simply restricted to the chosen factorial set but was extended to include mortar bar tests on extra mixes using Pyrex glass as the reactive aggregate. These tests focus their attention on particular aspects of the overall investigation and the mixes are designated the "EP" mixes. Additionally, some mortar bar tests were carried out on mortars using Beltane opal as the reactive aggregate, designated the "BO" mixes. For subsidiary information, compressive strength tests on 2" mortar cube type specimens were also included in the experimental program.

The EP mixes, which are detailed in Table 5.7 and Tables B.3 and B.4 of Appendix B, were designed to investigate further the specific effect on A.S.R. of the four individual factors of Series 2. Two of the factors were simply considered at extra levels thus extending the coverage beyond the framework of the factorial set. However, the remaining two factors, namely cement alkali content and p.f.a. content, were examined from a different perspective, as explained below.

Given that the aggregate being used is reactive, or potentially so, it has been documented (7, 21) that the criterion to be used to avoid the possibility of A.S.R. is the alkali content of the mix, expressed as Na₂O_{eq} in kilogrammes per cubic metre of compacted wet concrete. To investigate this hypothesis, four mixes were designed with differing alkali contents based on the amount of high alkali cement used in the mix rather than the use of cements with different alkali contents. These mixes were designed such that the

-124-

alkali contents of the compacted mixes were similar to those obtained using the different cements of the 3 x 4 x 4 x 2 factorial set and extended to contents below the $3 kg Na_2 O_{eq}/m^3$ recommended by some authorities as the maximum safe limit (7, 21, 57)

The second batch of EP mixes were based on the use of p.f.a. to combat the reaction. In the main experiments the p.f.a. was used as a partial replacement for the cement content of the reactive mix. It has been suggested (57, 61, 67) that the process involved in such usage may be simply due to the dilution of the amount of alkali available for reaction as a consequence of the reduction in the cement:aggregate ratio. Therefore, four mixes were designed using the p.f.a. as an admixture to the main constituents of the most highly reactive non-p.f.a. mix from the 3 x 4 x 4 x 2 factorial set. Whilst this could still be seen as a reduction in the concentration of alkali derived from the cement expressed as a proportion of the total mix, the effective ratio of alkali from the cement:reactive silica from the aggregate remained unaltered.

The third and fourth factors for individual consideration were the reactive aggregate content and the free water content respectively. Both were considered at levels not included in the main factorial programme. In the work already described in Series 2 Pyrex glass contents of 0%, 33.3%, 66.6% and 100% were considered. In anticipation of the low contents required for significant expansions with Beltane opal as the reactive constituent, four comparative mixes with low contents of Pyrex glass were designed. Likewise four different free

-125-

water contents were investigated extending both extremes of the range chosen for the Series 2 factorial set.

All the EP mixes were designed to be potentially highly reactive. The three factors not under consideration in any mix were maintained at their most reactive level.

The BO mixes were included primarily for comparison with their Pyrex glass counterparts, in particular where the success, or otherwise, of p.f.a. used as a cement replacement material to reduce expansion caused by A.S.R. is concerned. Table 5.7 and Tables B.5 and B.6 of Appendix B define the selected mixes. The low proportions of Beltane opal were included to investigate the region of an expected pessimum content which leads to the maximum expansion and is widely discussed elsewhere (21, 45, 53, 92). In addition, mixes containing high proportions of 33.3%, 66.6% and 100% Beltane opal were examined since, although such high contents are not normally used with this material, it was considered desirable to investigate the implied theory (45, 92) that above the pessimum content the expansion tends to zero with increasing Beltane opal content.

To supplement the information emanating from the Series 2 factorial set of expansion results, mortar test cubes (2") were produced for all the mixes containing the high alkali cement. The mix proportions were as detailed in Table B.2 of Appendix B, using batch quantities to enable 8 cubes to be made from each mix. A check was made to ensure that the flow value obtained for each of these mixes was similar to that

-126-

recorded for the corresponding mix used to make the mortar bar specimens.

Again a system of mix reference numbers is used to describe each of the mortars used in the whole of the Series 2 section of the study. The four digits denote the level at which each experimental factor is present, in the order cement - p.f.a. aggregate - free water (i.e. the Factors A - B - C - D). The letter following the mix reference number denotes the presence and type of reactive aggregate used, 'P' representing Pyrex glass and 'B' representing Beltane opal. An example of a mix reference number is given below:-

2321P - this denotes a mix containing high alkali
 cement with 45% replacement by p.f.a., an
 aggregate comprising 33.3% sand and 66.6%
 Pyrex glass and using the higher free water
 content.

The corresponding mix to 2321P incorporating Beltane opal as the reactive component would be denoted by the mix reference number 2321B.

5.3.2. Materials

As far as possible, the materials used for the Series 2 experiments were the same as those used in the earlier experimental work of Series 1. The low and medium alkali cements were identical except for the normal variations expected from any single producer. The high alkali cement, however, had to be different since that used for Series 1 was

-127-

no longer available because of changes made in the manufacturing process at the cement works concerned. In consequence a replacement UK cement was selected which from previously published work (69) was known to be associated with a high level of reactivity. Table 5.8 shows the relevant physical and chemical properties of the three cements used.

P.f.a. was used from the same source as that used for Series 1 and was, therefore, subject only to minor variations. The chemical and physical properties of this material are given in Table 5.8.

Both the Pyrex glass and the flint gravel aggregates were obtained from sources identical to those used for the Series 1 experiments. However, due to the increased quantities required for Series 2, a different process was used for crushing these materials into the correct grading sizes. Moreover, this produced a variation in the particle shape of the crushed material. The Beltane opal was obtained through Professor Sidney Diamond of Purdue University, Indiana and originated from the Beltane quarry in California. This material was crushed and graded to the same size fractions used for the other types of aggregate, as shown in Table 5.5. The physical and chemical properties of all three aggregates used in Series 2 are shown in Table 5.8. For the preparation of the mortar bars of Series 2 procedures identical to those used for Series 1 were followed up to the stage where the flow test was carried out. Since the fourth factor, Factor D - free water content, was included it was no longer possible to comply with the standard consistency clause of ASTM C227-71. Hence, the flow test was incorporated not as a rejection criterion but purely as a parameter to monitor the mix consistency achieved. Reference to Figure 5.4 highlights this difference in the Series 1 and Series 2 procedures.

The storage and measurement procedures adopted were identical to those for the early part of Series 1 in most respects. However, the ages of measurement of the specimens were changed, this being necessary due to the extra number of mixes involved. The ages of measurement are listed in Table 5.9. For reasons explained in Chapter 7, Details of the Investigation - Chemical, after each measurement process the level of water in the Storage Containers was replenished but not replaced.

As a replacement for the lengthy visual inspection procedure, at the end of the main test period of 6 months photographs were taken of the most expansive mixes and also of those which exhibited the greatest amounts of surficial exudation.

Mixing of the mortar for the 2" test cubes followed stages identical to those in the mortar bar procedure. 8 cubes were cast from each mix, compaction techniques being similar to

-129-

those for the mortar bars.

Figure 5.5 shows that after the initial 24 ± 2 hours curing time 2 cubes were placed in a standard curing tank, submerged in water at 20°C. The remainder were wrapped in a cling film, sealed into polythene bags and placed in the Storage Room at 37.8°C. The water cured cubes were tested at age 28 days to give a "standard" compressive strength value. The other cubes were tested in pairs at ages 14 days, 2 months and 6 months during which time the A.S.R. was progressing.

Before compression testing the "dry" cured cubes were soaked overnight during their cooling down period and all cubes were weighed in water and in air so that the saturated density could be computed. The testing procedure for determining compressive strength was based on British Standard test method BS 4551: 1980 (93) using a constant rate of loading equal to 11.6kN/minute (i.e. in the range 0.03 to 0.10 N/(mm²s).

TABLE 5.1 DETAILS OF ENVIRONMENTALLY CONTROLLED ROOMS AND CABINETS

NAME/REFERENCE	TEMPERATURE LIMITS	RELATIVE HUMIDITY LIMITS
Moulding/Measurement Room	23.0°C ± 1.7°C	50% minimum
Curing Cabinet	23.0°C ± 1.7°C	95% minimum
Storage Room	37.8°C ± 1.7°C	-

TABLE 5.2 CHARACTERISTICS OF MIXER

SPEED SETTING	PADDLE ROTATION SPEED	PLANETARY. MOTION
Slow	140 ± 5 r.p.m.	62 r.p.m.
Medium	285 ± 10 r.p.m.	125 r.p.m.

TABLE 5.3 EXPLANATION OF MIX REFERENCE NUMBERS - SERIES 1

FACTOR LEVEL NUMBER	FACTOR A - CEMENT	FACTOR B - REPLACEMENT OF CEMENT USING PFA	FACTOR C - Aggregate
0	Low alkali (SRPC)*	0%	100%S-0%P
1	Medium alkali (OPC)	20%	50%S-50%P
2	High alkali (OPC)	40%	0%S-100%P

Note:- S = sand P = Pyrex glass (Reactive Aggregate)

* to BS 4027: 1980 (91)

TABLE 5.4PROPERTIES OF MATERIALS - SERIES 1

(1) CEMI	ENTS				
ALKALI	CEMENT TYPE	ACID SOLUBLE ALKALI CONTENT (%) *			SPECIFIC
LEVEL		Na ₂ 0	K ₂ 0	Na20eq +	GRAVIIV
0-LOW	SRPC	0.20	0.44	0.49	3.15
1-MEDIUM	OPC	0.30	0.79	0.82	3.06
2-HIGH	OPC	0.21	1.75	1.36	3.14

(11) PULVERISED FUEL ASH

CHEMICAL/PHYSICAL P	MEASURED VALUE	
PARTICLE SIZE	Residue on 150µm sieve Residue on 45µm sieve	0.6% 8.0%
CARBON CONTENT	Loss on ignition (LOI)	3.6%
SPECIFIC GRAVITY	Using Kerosine ⁺⁺ Using distilled water	2.31 2.35
WATER SOLUBLE ALKALIS	Na20 K20 Na20 _{eq} +	0.14% 0.06% 0.18%
TOTAL ALKALIS **	Na ₂ 0 K ₂ 0 Na ₂ 0 _{eq} +	1.83% 3.52% 4.15%

,

.

TABLE 5.4 continued

(111) AGGREGATES		.	
	•	MEASUR	ED VALUE
CHEMICAL/PHYS	ICAL PROPERTY	SAND	PYREX GLASS
RELATIVE DENSITY *	** Oven dry	2.51	2.24
	Saturated surface dry	2.56	2.24
	Apparent	2.65	2.24
WATER ABSORPTION C	OEFFICIENT ***	2.0%	0.0%
TOTAL ALKALIS**	Na ₂ 0	0.07%	4.13%
	К ₂ 0	0.07%	0.06%
	Na ₂ 0 _{eq} +	0.12%	4.17%

Note:- * = test conducted to BS 4550: Part 2: 1970 (83, 85) ** = hydrofluoric (H.F.) extraction *** = test conducted to BS 812: Part 2: 1975 (88) + = Na20eg% = Na20% + 0.658K20% ++ = test conducted to BS 4550: Part 3: 1978 (84)

SIE	SIEVE SIZE	
PASSING	RETAINED ON	BY WEIGHT
4.75mm	2.36mm	20%
2.36mm	1.18mm	20%
1.18mm	600µm	20%
600µm	300µm	20%
300µm	150µm	20%

TABLE 5.5 GRADING OF AGGREGATES

TABLE 5.6AGE OF SPECIMENS AT MEASUREMENT AND STORAGE REGIME -
SERIES 1

SPECIMEN AGES AT MEASUREMENT	STORAGE CONDITIONS	PRE-MEASUREMENT ACCLIMATISATION
24 hours ± 2 hours	Hot Room	16-20 hrs in Measurement Room
14 days \pm 2 hours	Hot Room	16-20 hrs in Measurement Room
28 days ± 2 hours	Hot Room	16-20 hrs in Measurement Room
2 months \pm 2 hours	Hot Room	16-20 hrs in Measurement Room
4 months \pm 1 day	Hot Room	16-20 hrs in Measurement Room
14 months *	Ambient Room Temp.	16-20 hrs in Measurement Room
18 months *	Ambient Room Temp.	16-20 hrs in Measurement Room

Note:- Ambient room temperature 20°C * = approximate age only ** = specimens stored in sealed plastic bag having been removed from the normal Storage Containers at the previous measurement age.

 TABLE 5.7
 EXPLANATION OF MIX REFERENCE NUMBERS - SERIES 2

(i) 3x4	x4x2 FACTORIAL SI	т		
FACTOR LEVEL NUMBER	FACTOR A - Cement	FACTOR B - REPLACEMENT OF CEMENT USING P.F.A.	FACTOR C - Aggregate	FACTOR D - FREE WATER CONTENT *
0	Low alkali (SRPC) **	0%	100%S - 0%P	Low (0.40)
1	Medium alkali (OPC)	15%	67%S - 33%P	High (0.55)
2	High alkali (OPC)	30%	33%S - 67%P	-
3	-	45%	0%S - 100%P	

(ii) E.P. MIXES					
FACTOR LEVEL NUMBER	FACTOR A - REDUCTION IN CEMENT_CONTENT	FACTOR B - P.F.A. CONTENT AS AN ADMIXTURE	FACTOR C- Aggregate	FACTOR D - FREE WATER CONTENT *	
0	-	0%	-	-	
1	-	-	-	High (0.55)	
2	0%	-	-	V.Low (0.35)	
3	70%	-	0%S-100%P	Low/Medium (0.45)	
4	63%	10%	96%S-4%P	Medium/High (0.50)	
5	54%	20%	92%S-8%P	V.High (0.60)	
6	37%	30%	88%S-12%P		
7	-	40%	84%S-16%P		

TABLE 5.7 continued

.

٦

(111) B	.O. MIXES			
FACTOR LEVEL NUMBER	FACTOR A - Cement	FACTOR B - REPLACEMENT OF CEMENT USING P.F.A.	FACTOR C - Aggregate	FACTOR D - FREE WATER CONTENT *
0	-	0%	-	-
1	-	-	67%S - 33%B	High (0.55)
2	High alkali (OPC)	-	33%S - 67%B	-
3	-	45%	0%S - 100%B	-
4	-	-	96%S - 4%B	-
5	-	-	92%S - 8%B	_
6	-	-	88%S - 12%B	-
7	-	-	84%S - 16%B	-

figures in brackets represent free w/c ratio for control mixes containing no p.f.a. to BS 4027: 1980 (91) all cement high alkali (OPC) * =

- ** =
- + =
- S = Sand

P = Pyrex Glass B = Beltane Opal

TABLE 5.8 PROPERTIES OF MATERIALS - SERIES 2

(1) CEM	(1) CEMENTS						
ALKALI	KALI CEMENT ACID SOLUBLE ALKALI CONTENT (%) *			SPECIFIC			
	ITPE	Na ₂ 0	K ₂ 0	Na ₂ 0 _{eq} +	GRAVITY		
0-LOW	SRPC	0.19	0.41	0.46	3.13		
1-MEDIUM	OPC	0.30	0.64	0.72	3.07		
2-HIGH	OPC	0.40	1.17	1.17	3.03		

(11) PULVERISED FUEL ASH			
CHEMICAL/PHYSICAL	MEASURED VALUE		
PARTICLE SIZE	Residue on $45\mu m$ sieve	8.7%	
CARBON CONTENT	Loss on ignition (LOI)	4.7%	
SPECIFIC GRAVITY	Using distilled water	2.33	
WATER SOLUBLE ALKALIS	Na20 K20 Na20eq +	0.13% 0.07% 0.18%	
TOTAL ALKALIS ++	Na20 K20 Na20 _{eq} +	1.32% 2.36% 2.88%	
ACID SOLUBLE ALKALIS*	Na20 K20 Na20 _{eq} +	0.37% 0.71% 0.84%	

TABLE 5.8 continued

1

(111) AGGREGATES

CHEMICAL/PHYSICAL PROPERTY		MEASURED VALUE		
		SAND	PYREX GLASS	BELTANE OPAL
RELATIVE DENSITY ***	Oven dry	2.56	2.23	2.02
	Saturated surface dry	2.60	2.23	2.08
	Apparent	2.66	2.23	2.16
WATER ABSORPTION COEFFICIENT ***		1.4%	0.0%	3.2%
TOTAL ALKALIS **	Na ₂ 0	0.06%	3.77%	0.11%
	к ₂ 0	0.10%	0.47%	0.13%
	Na ₂ 0 _{eq} +	0.12%	4.09%	0.20%
ACID SOLUBLE ALKALIS *	Na ₂ 0	0.02%	0.11%	0.02%
	К ₂ 0	0.02%	0.03%	0.02%
	Na20eq +	0.03%	0.13%	0.03%

* = test conducted to BS 4550: Part 2: 1970 (83, 85) Note:-

** = hydrofluoric (H.F.) extraction *** = test conducted to BS 812: Part 2: 1975 (88) + = Na₂O_{eq}% = Na₂O% + 0.658K₂O% ++ = test conducted to BS 4550: Part 3: 1978 (84)

SPECIMEN AGES AT MEASUREMENT	STORAGE CONDITIONS	· PRE-MEASUREMENT ACCLIMATISATION
24 hours ± 2 hours	Hot Room	16-20 hrs in Measurement Room
14 days ± 2 hours	Hot Room	16-20 hrs in Measurement Room
2 months ± 2 hours	Hot Room	16-20 hrs in Measurement Room
6 months ± 1 day	Hot Room	16-20 hrs in Measurement Room
12 months \pm 1 week	Hot Room	16-20 hrs in Measurement Room

..

 TABLE 5.9
 AGE OF SPECIMENS AT MEASUREMENT AND STORAGE REGIME

 SERIES 2

Figure 5.2 Flow chart for computer analysis of expansion data

FIGURE 5.3 EXPLANATION OF PROCEDURE USED TO CALCULATE BATCH QUANTITIES FOR MIXES CONTAINING P.F.A. AS A PARTIAL REPLACEMENT FOR THE CEMENT CONTENT

- Let:- W_c = weight of cement per batch for non-p.f.a. mixes. W_b = weight of combined cementitious material per batch. R = percentage replacement parameter (by mass).
 - S = specific gravity of p.f.a.

Assume: specific gravity of cements = 3.15.

NON-P.F.A. MIXES

All the cementitious material was cement, hence $W_b = W_c$.

P.F.A. MIXES

The cementitious material was a mixture of cement and p.f.a. where R% by mass was p.f.a. and (100-R)% by mass was cement. In calculating the value of W_b a further restraint was applied such that the volume of the cementitious material remained constant at the value set by the volume of the cement in the non-p.f.a. mixes. It follows that the combined weight of the cementitious material in a p.f.a. mix was not equal to W_c, unless S = 3.15.

Hence,
$$W_b = W_c \times \frac{100}{[100-R + R(3.15/S)]}$$

Note:- For the Series 2 materials where S = 2.33, the ASTM C441 regime of replacing 25% of the cement by an equal volume of p.f.a. would be equivalent to substituting a value of R = 19.78 in the above equation.

-143-

testing of 2" cubes

-144-

Plate 5.1
Environmentally controlled
moulding/measurement room

Plate 5.2 Curing cabinet with specimen moulds in place.

Plate 5.3 Temperature controlled storage room with storage containers in place.

Plate 5.4 Inside view of moulding/measurement room, showing Hobart mixer, length comparator, heater/refridgeration unit and humidifier.

Plate 5.5 Gang mould capable of making four mortar bar specimens with encastre gauge studs.

Plate 5.6 Flow Table

Plate 5.7 Typical storage container

Plate 5.8 Comparator with mortar bar specimen in place

Plate 5.9 Gang mould capable of making six cube specimens (2").

CHAPTER 6 PRESENTATION AND DISCUSSION OF EXPERIMENTAL RESULTS -PHYSICAL

6.1 SERIES 1 MORTAR BAR EXPANSION TESTS (Mixes 000 to 222P)

The average expansions for each of the 27 mortar mixes of the Series 1 experiments are listed in Table C.1 of Appendix C for each of the 5 measurement ages (6 measurement ages in the case of the high alkali cement bars). These data are expressed in microstrain (μ E) computed from the measured length changes and the nominal gauge length of 250mm. An explanation of the system of mix reference numbers is given in Chapter 5, Section 5.2.1.

In Table C.1 the level of reactivity of each mix is given a designation which is based on the limit of 'harmful' reactivity of 1000μ E at 6 months (or 500μ E at 3 months when no 6 month results are available) stated in ASTM C33, which is referred to directly by ASTM C227. The limiting value in this case was taken to be 670 μ E at 4 months which is a linear interpolation between the two figures previously quoted. It must be emphasised that the intended purpose of the ASTM mortar bar test is to examine particular cement/aggregate combinations which are proposed for use in constructional concrete. ASTM C227 was not originally designed to include the use of p.f.a. nor synthetic aggregates such as Pyrex qlass. Hence, the designation of the mixes herein as either 'harmful' or 'non-harmful' is purely for the purpose of comparison.

Full details of the repeatability computations which were carried out on the expansion measurements are presented in Table C.2 of Appendix C. To maintain the completeness of the experimental results some measured values which fell marginally outside the ASTM repeatability tolerance limits were of necessity retained. In Table C.1 any set of results falling into this category is identified.

.

The expansion results for each individual mortar mix are also presented graphically in Appendix C (Figures C.1 to C.27). The discrete points plotted on these graphs at the appropriate measurement ages are joined using linear interpolation, since the relatively few data points make curve-fitting inappropriate. Under a different experimental regime continuous monitoring could be used to produce a smooth curve.

Information arising from the visual examination of the mortar bars subsequent to the 4 month expansion measurements is presented in Table C.3 of Appendix C. Certain bars were found to have warped by more than an obviously negligible amount. Subsequent calculations, however, proved that, within the bounds of the accuracy of the expansion measurements, even the maximum noted warping was not sufficient to significantly affect the expansion values.

6.1.1 Expansion of Bars in relation to Time

Reference to the tabulated and graphical results in Appendix C shows that the most rapid expansion occurred during the first two months after casting. Generally, there was no

-151-

significant increase in expansion beyond four months up to the end of the monitoring period (e.g. mixes 201 to 202P). Notable exceptions to this generalisation are listed below:-

Mix Reference Numbers 012P 022P 112P 122P 211P 212P 222P

In particular mixes 012P, 112P, 211P and 212P showed considerable increases in expansion up to the measurement at age 14 months. Beyond this age a further measurement, at age 18 months, was made only on those bars containing the high alkali cement (200 to 222P) by which stage the expansion of mixes 211P and 212P appeared to have terminated. It should, however, be mentioned that subsequent to the measurements taken at 4 months the specimens were stored under different conditions, as explained in Chapter 5, Section 5.2.3. In addition further changes were made after the measurements at 14 months. Despite these changes in storage regime, mix reference 222P continued to show a slow but steady increase in expansion, even up to the measurement taken at 18 months.

From the mix references listed above it seems likely that the expansion characteristics which relate to time are also linked to the experimental factor B, that is the use of p.f.a.. This link is discussed in detail in the section on p.f.a. below.

-152-

6.1.2 Expansion of Bars in relation to Pyrex Glass Content (expressed as a percentage of the total aggregate)

> Within the results from the Series 1 experiments all possible comparisons show that the trend is for expansion to increase with increasing Pyrex glass content. This is shown in Figures 6.1, 6.2 and 6.3 for the low, medium and high alkali cement mixes respectively (vid. mixes 000 to 002P, 100 to 102P and 200 to 202P). The three mixes 000, 100 and 200, which do not contain any reactive aggregate, may be considered to be controls and effectively represent the 'zero' level for expansion.

> In Figure 6.4 it is shown that the above trend increases in prominence as the alkali content of the cement increases, and that in each case the maximum expansion is attained when 100% Pyrex glass aggregate is used. There is no evidence from the results to suggest a pessimum level for Pyrex glass of less than 100%. However, the use of only two levels of Pyrex glass addition does not permit this possibility to be completely eliminated. Reference should also be made to the results of the Series 2 experiments where additional levels of Pyrex glass addition were included.

6.1.3 Expansion of Bars in relation to the Alkali Content of the Cement (expressed as equivalent Na₂0, as a percentage of the cement content by weight)

> For the most highly reactive mixes, that is those containing 100% Pyrex glass aggregate, Figure 6.5 clearly shows that

> > -153-

increasing the level of alkali in the cement results in an increase in the observed expansion (vid. mixes 002P, 102P and 202P).

As regards the mixes containing only 50% Pyrex glass aggregate, whilst the overall magnitude of the observed expansions is reduced, the effect of the level of cement alkalis is consistent with that for the 100% Pyrex glass specimens. This is shown in Figure 6.6 for mixes 001P, 101P and 201P.

Reference to the tabulated results for the non-Pyrex glass mixes 000, 100 and 200 shows that the three cements produce similar results, which is to be expected for a non-reactive aggregate. These results represent, therefore, the 'zero' level of expansion any variation in length not being attributable to A.S.R..

6.1.4 Expansion of Bars containing P.F.A. as a Partial Replacement for the Cement Content

A marked reduction in the measured expansions of bars containing Pyrex glass was noted when p.f.a. was introduced as a partial replacement for the cement content. Up to the measurement at age 4 months this effect is consistent for mixes containing either 50% or 100% Pyrex glass in the aggregate and also for all three types of cement (vid. mixes 001P, 011P, 021P; 002P, 012P, 022P; 101P, 111P, 121P; 102P, 112P, 122P; 201P, 211P, 221P; 202P, 212P, 222P). For the lowest alkali cement only, this trend is broken by the results

-154-

taken at 14 months since the expansion of mix reference O12P exceeds the corresponding expansion for mix reference O02P, as shown in Figure 6.7. In the same Figure it is also shown that the observed expansion for mix reference O22P remains substantially below the values for either of the other two compared mixes. The trend for reduction in expansion by use of p.f.a. continues up to the 14 month readings for all the other relevant groups of mixes. This positive effect is demonstrated in various ways in Figures 6.8 to 6.10.

The data in Table C.1 indicate an apparent change with time in the effectiveness of p.f.a. as an expansion inhibitor. Comparisons show that the p.f.a. reduces expansion by a diminishing degree as time progresses. The rate of expansion for mixes containing p.f.a. tends to decline with time more slowly than the corresponding non-p.f.a. mix. This effect is more clearly shown in Figures 6.7, 6.8 and 6.11 to 6.13 where, at the later measurement ages, the graphs for the p.f.a. mixes are seen to begin converging with the associated graph for the non-p.f.a. mix.

Further evidence of this time-dependent feature can be gained by expressing the expansion of the p.f.a. mixes as a percentage of the corresponding non-p.f.a. mix, as in the data of Table 6.1. At early ages, up to the 4 month measurements in certain cases, the p.f.a. reduces the expansion to a percentage of the corresponding non-p.f.a. mix which decreases with time. Beyond this initial stage, however, with further increases in time, there is a recovery in the percentage expansion value, indicating the convergence seen in the

-155-

graphs.

For all three cement types this effect is much more pronounced for the mixes which contain a 20% p.f.a. replacement relative to those containing the higher 40% replacement.

6.1.5 Statistical Interpretation of Expansion Data

The results presented in Sections 6.1.1 to 6.1.4 give clear indications of the level of involvement of the three experimental factors in the expansion of mortar bars due to A.S.R.. In statistical terminology, the main effects of the experimental factors are highly significant and, therefore, cause strong trends to be evident in the expansion results. Additional information can be sought from the statistical manipulation of the basic expansion figures since the design of the set of experiments was carried out on a statistical basis.

It was explained in Section 5.1.2 of Chapter 5 that the bulk of the statistical analysis was carried out using a standard statistical package program from a suite of commercially available computer programs (89). Later, however, a set of results from the Series 2 experiments will be used to carry out a long-hand version of the computations in order to illustrate the procedure involved in the Analysis of Variance (ANOVA). Output from the computer for the five main measurement ages of Series 1 (14 days, 28 days, 2 months, 4 months and 14 months) are given in Tables 6.2 to 6.6 together with a summary of the tail probabilities in Table 6.7.

-156-

The ANOVA tables confirm the high level of significance of the main effects of the three experimental factors. These derived data are also indicative of a fairly strong interaction between the experimental factors A and B, namely between the effect of cement alkali content and the use of p.f.a.. If 10% is taken to be the cut-off level for significance, below which the variations are considered to be indistinguishable from any experimental error or uncontrollable variation, then the interactions involving the reactive aggregate content (namely AC and BC in the ANOVA tables) can be regarded as negligible.

The model used to perform this ANOVA incorporates the second order interaction (ABC) as the estimate of experimental error, because the data comprise only one result per cell of the experiment. The variations which are due to the insignificant interactions may be removed from the ANOVA by pooling them with the experimental error term. This would form the basis of an alternative model and thus enable further and better interpretation of the data. It is not permissible, however, to remove the variations due to particular interactions whilst retaining other variations due to interactions of the same order. Hence, to remove the two insignificant first order interactions AC and BC from the ANOVA table, the remaining first order interaction AB must also be removed.

The ANOVA tables corresponding to this revised experimental model are given in Tables 6.8 to 6.12 with a summary of the Tail Probabilities in Table 6.13. It can be seen in these

-157-

tables that the main effects continue to show a high level of significance. This indicates that the main effects are an order of magnitude more important than even the most significant interaction.

When the variance of the 14 month measurements is analysed according to the original model, the main effects of the Experimental Factors A, B and C are shown to be significant at the 99.1%, 97.7% and 98.9% levels respectively. The most highly significant interaction, between Factors A and B, yields a value of 92.8%. Using the revised model, the significance of levels of the main effects are reduced to 97.8%, 94.2% and 97.4% and thus all remain highly significant in comparison to the new error term.

The ANOVA shows that within the ranges of the experimental factors chosen for inclusion in this set of experiments, the alkali content of the cement has the greatest influence on observed expansion. The remaining two main effects have marginally lesser influence, but even the least effect, which is produced by the use of p.f.a., is highly significant in determination of the extent of expansion due to A.S.R..

6.2 SERIES 2 MORTAR BAR EXPANSION TESTS - 3x4x4x2 FACTORIAL SET (Mixes 0000 to 2331P)

The expansions of the 96 mortar mixes which comprise the 3 X 4 X 4 X 2 factorial section of Series 2 were measured at four ages (14 days, 2 months, 6 months and 12 months). The results from these measurements are contained in Table D.1 of

-158-

Appendix D, expansions being quoted in microstrain (μE). The system of mix reference numbers is explained in Chapter 5, Section 5.3.1.

Table D.1 also contains an assessment of the level of reactivity of each mix which is again based on the limit of 'harmful' reactivity of 1000μ E at 6 months given in ASTM C33 and referred to directly by ASTM C227. The mixes are designated either harmful or non-harmful. However, it must be reiterated that this ASTM designation is included herein purely for the purpose of comparison of one mix relative to the next.

Graphical representations of the expansion results for each individual mortar mix are found in Figures D.1 to D.96 of Appendix D where the discrete data points are again joined by straight lines.

In continuation of the experimental regime adopted in Series 1, a record was kept of the outcome of the repeatability checks required by the ASTM standard test methods. Output from the associated computer calculations for each of the four measurement ages is also contained in Appendix D (Table D.2).

Typical examples of the photographs taken of the mortar bars after the 6 month expansion measurements are shown in Plates 6.1 to 6.11. The first group of photographs, Plates 6.1 to 6.6 demonstrate the increase in surficial exudation and deposits which occurred when Pyrex glass was included in a mortar containing the high alkali cement. In Plates 6.7 to

-159-

6.9 these phenomena are seen to reduce as p.f.a. is used to partially replace the cement content of the mix. For comparison, the remaining photographs, Plates 6.10 and 6.11, show the surface condition of the most highly expansive mix containing the low alkali cement and the control mix containing the high alkali cement with maximum replacement by p.f.a..

6.2.1 Expansion of Bars in relation to Time

The time-based trends established from the Series 1 results are also evident in those from Series 2, the most rapid expansion occurring at early ages. To the extent that it can be judged from the few data points available, by plotting expansion versus time graphs, the most usual overall form of this relationship is a rapid rise in the rate of expansion very soon after casting followed by a decay type curve thereafter. This suggests that the expansion tends to a finite limit, a different limit applying for each individual mortar mix.

In particular it is seen that the bulk of the ultimate expansion, as monitored by this test procedure, was manifest within the first 2 months after casting. After 2 months there was, in most cases, little further expansion up to the final measurements taken in this series of tests at an age of 12 months (e.g. Mixes 2000 to 2030P and 2001 to 2031P). In a manner similar to Series 1, not all the mixes followed this generalisation. Those which had significantly different expansion/time characteristics are listed below:-

-160-

0131P	*	
0231P	x	
1121P	*	
1131P	*	
1221P	x	
1231P	*	
1331P	X	
2 021P	*	
2111 P	*	
21 21P	*	
2131P	*	
2221 P	*	
223 1P	*	•
23 21P	x	
233 1P	x	

where * denotes expansion at 6 months 'harmful'

x denotes expansion at 6 months 'non-harmful'

All the above mixes showed a significant increase in expansion beyond the measurement at 2 months. This can be looked upon as evidence that the attenuation of their expansion rates with time is considerably lower than normal. The link between this characteristic and the presence of p.f.a. in the mix is quite prominent, 2021P being the only exception to this observation in the list of mixes.

It is also apparent that the list contains exclusively mixes which incorporate the higher free water content. This point is discussed at length later when a possible connection between the use of p.f.a. and the free water content of the

-161-

mix is established.

6.2.2 Expansion of Bars in relation to Pyrex Glass Content (expressed as a percentage of the total aggregate content)

Significant expansions were only observed for mixes containing Pyrex glass. Any mixes without Pyrex glass can, therefore, be treated as experimental controls and used to quantify the base level of expansion unrelated to A.S.R..

··· ···

The overall trend was for expansion to increase with increasing Pyrex glass content, approaching a maximum expansion for mixes containing an aggregate comprising 100% of the reactive material (vid. mixes 0000 to 0030P, 0001 to 0031P; 1000 to 1030P. 1001 to 1031P; 2001 to 2031P). This is shown in Figures 6.14 to 6.18 where expansion is plotted against age of measurement for each set of compared mixes grouped together on a single set of axes. Further representations of this effect are included in the plots of expansion versus Pyrex glass content which form Figures 6.19 and 6.20. Similar trends are mirrored in the corresponding groups of mixes which include p.f.a. to the various levels, though the absolute values of expansion are dissimilar.

In contrast, the group of mixes omitted from the above comments, namely 2000 to 2030P, shows an indication of a pessimum content for Pyrex glass of less than 100%. In Figure 6.21 it can be seen that the measured expansion for mix 2020P is greater than that for mix 2030P at all measurement ages after 14 days. For the expansion measurements taken at

-162-

6 months, Figure 6.22 shows this pessimum effect more clearly, the indications being that maximum expansion would be obtained with a Pyrex glass content in the latter half of the range 33.3% to 100%. The use of p.f.a. with this group of mixes takes the expansions back into step with the generalisation that maximum expansion occurs with mixes containing 100% Pyrex glass aggregate. This may indicate that either mix 2020P or mix 2030P yielded a spurious result. Conversely, the general form of the expansion versus Pyrex glass content curves, shown in Figures 6.19 and 6.20, could be construed to indicate the possibility of a peak expansion for a Pyrex glass content below 100% and in the range 66.6% to 100%.

6.2.3 Expansion of Bars in relation to the Alkali Content of the Cement (expressed as equivalent Na₂O, as a percentage of the cement content by weight)

> For the mortars containing 100% Pyrex glass aggregate, the results show that, within the bounds of alkali content set by the cements chosen for the experiments, cements with higher alkali contents promote larger expansions. The expansion against age of measurement graphs for the groups of mixes 0030P/1030P/2030P and 0031P/1031P/2031P, shown in Figures 6.23 and 6.24 respectively, demonstrate this effect for both the chosen free water contents. Figures 6.25 to 6.27 indicate further that neither reducing the proportion of Pyrex glass in the aggregate to either 66.6% or 33.3% nor the introduction of p.f.a. to any of its three levels, caused any noticeable change to the observation.

> > -163-

For the expansion measurements taken at age 6 months, consider the average expansion for all the potentially reactive mixes (i.e. those containing any level of Pyrex glass) which involve the high alkali cement, to represent 100%. The corresponding figures for the medium and low alkali cements can be shown to be 48% and 18% respectively. This clearly expresses the dominant effect of the alkali content of the cement over all the levels of the other factors involved in the experimental set of mortars.

6.2.4 Expansion of Bars containing P.F.A. as a Partial Replacement for the Cement Content

Comparisons similar to those used for the Series 1 results confirm that p.f.a. reduces the expansion of mortar bars which contain Pyrex glass. In particular, Figure 6.28 shows the magnitude of this effect at age 6 months for bars containing 100% Pyrex glass aggregate and the higher free water content. The expansion reducing effect caused by a p.f.a. replacement level of 45% used with the high alkali cement over the full range of Pyrex glass contents is shown in Figure 6.29.

It has been discussed previously that there may be a change in the characteristics of the expansion versus age of measurement graphs brought about by the use of p.f.a.. This trend is again evident in the Series 2 results. Figures 6.30 and 6.31 reveal a tendency for the rate of expansion to decline more slowly with age when p.f.a. is incorporated into the mix. It can be seen from these two figures that, in general, at later ages the curves for the p.f.a. mixes begin to converge with

-164-

the curve for the appropriate non-p.f.a. mix. In most cases, however, the reduction in expansion attributable to the use of p.f.a. remains extremely significant.

The expansions of the p.f.a. mixes expressed as percentages of the related non-p.f.a. mixes form the basis of Table 6.14. For the high free water content mixes this percentage figure generally falls to a minimum at the 2 month measurement and then shows a recovery over the later measurements, thus substantiating the Series 1 results. However, the corresponding Series 2 figures for the lower free water content mixes do not follow this trend but rather yield a sensibly steady percentage for all measurement ages. This is again suggestive of a strong link between the long term expansion reducing properties of p.f.a. and the free water content of the mix, which has already been referred to in Section 6.2.1.

In addition to the above, the Series 2 factorial set of experiments show p.f.a. to be more effective in reducing the expansions of mixes containing the higher free water content. This is clearly demonstrated by the graphs in Figures 6.32 and 6.33 where expansion is plotted against p.f.a. content. Note the intersection of the curves for the high and low free water content mixes. Such is the difference in the effectiveness of the p.f.a., that the normal condition of the higher free water content being associated with higher expansions is completely reversed at high replacement levels.

A comparison of the magnitude of this effect for measurements

-165-

taken at 2 months (Figure 6.32), 6 months (Figure 6.34) and 12 months (Figure 6.35) shows that it tends to diminish with time, as shown by the progressive movement of the intersection point on these graphs towards greater age intervals. This change with time might be expected from the earlier discussion concerning the expansion rates of p.f.a. mixes. It is apparent, therefore, that the effectiveness of p.f.a. as an expansion inhibitor is more stable with the lower free water content mixes which, under most circumstances, represent better quality mortars.

The decline in the effectiveness of p.f.a. with time for the high free water content mixes is emphasised by the results from the mixes listed in Section 6.2.1. From this list it is clear that the mixes which continue to exhibit significant rates of expansion beyond the 2 month measurements are exclusively those with the higher free water content. In addition, only one is a mix which does not contain p.f.a. This same list also comprises mainly mixes where the expansion remains above the ASTM 'harmful' limit (at age 6 months) despite the use of p.f.a. Conversely, this would suggest that where the reduction in expansion due to the use of p.f.a. is sufficient for the 'harmful' limit not to be exceeded the effect is reasonably stable with time and, therefore, likely to remain active.

Notwithstanding the foregoing, for reactive mixes within the Series 2 factorial set, p.f.a. was never found to increase expansion to a level above that for the corresponding nonp.f.a. mix at any of the measurement ages within the

-166-

monitoring period of 12 months.

6.2.5 Expansion of Bars in relation to Free Water Content

Extensive discussion on the effect of the free water content of the mix has already been included in the earlier sections due to its involvement in the explanation of other effects.

Within the range considered, the effect of the free water content of the mix on the level of observed expansion of the mortar bars is shown to be rather less outstanding than the main effects of the other experimental factors. Generally, it is apparent that larger expansions are obtained from mixes containing the higher free water level, as shown in Figures 6.36 and 6.37. This generalised observation was sometimes reversed for mixes containing p.f.a.

For the non-p.f.a. mixes which contain significant amounts of Pyrex glass, thus making them expansive, there is an occasional tendency for the early expansions of the lower free water content mixes to marginally exceed their higher free water content counterparts (Figures 6.38 and 6.39). At later ages the figures show that this situation is reversed to bring the relative expansions into line with the norm referred to above. It is therefore apparent that the onset of rapid expansion can be delayed in mixes containing a high free water content.

The link between the effect of free water content and the effectiveness of p.f.a. as an expansion inhibitor, which can

-167-

cause a change in the relationship between the expansions of high and low free water content mixes, is fully discussed in the preceding section.

6.2.6 Statistical Interpretation of Expansion Data

For the initial statistical analysis of the Series 2 factorial expansion results, the experimental model includes all the main effects, first order interactions and second order interactions. The single third order interaction (ABCD) is removed from the analysis to provide an estimate of the experimental error.

The ANOVA tables for this model are set out in Tables 6.15 to 6.18 for the four measurement ages at which the expansions of the mortar bars were measured (14 days, 2 months, 6 months and 12 months). The Tail Probabilities for all the measurement ages are summarised in Table 6.19. In addition to these computer derived ANOVA tables, Appendix H contains a fully explained hand-calculated set of computations for the 6 month expansion results of Series 2.

Tables 6.15 to 6.19 show that most of the effects, both main effects and interaction effects, produce high levels of significance. However, the Tail Probabilities of the second order interactions, in particular ABD and ACD, are generally an order of magnitude higher than any of the other values. On a relative basis, therefore, these effects are not as important. Correspondingly, Tables 6.20 to 6.23 contain the results of a second ANOVA based on a new experimental model

-168-

which excludes the second order interactions in addition to the third order interaction, the variations due to these five effects being pooled together in the experimental error term. A summary of the Tail Probabilities from the new ANOVA tables is given in Table 6.24.

The statistics from the new model show clear confirmation of the high significance level of the main effects of the three experimental factors which are a repetition of the Series 1 experiments, namely the cement alkali content, the p.f.a. replacement level and the reactive aggregate content. From the ANOVA table for the 14 day results, however, the fourth factor, the free water content, is shown to have a low level of significance and, therefore, to have a negligible effect on expansion. At the later measurement ages this situation is dramatically altered, as shown by the rise in significance level to a value comparable with those for the other three main effects.

It is apparent, then, that the statistical analysis of the main effects produces the same interpretation as the observations derived directly from the expansion data. The high level of significance obtained for the main effects of the first three experimental factors shows that each has a strong influence on the observed expansion. The initial temporary stage of insignificance for the main effect of the free water content, followed by a rapid rise to a very high level of significance thereafter, confirms the general observation that increasing the free water content from its lower value to its higher value increases expansion. The

-169-

early low significance level indicates a time dependent aspect in the main effect due to this factor.

Regarding the interactions between the experimental factors, the ANOVA tables show that most of the first order interactions have a high level of significance, only the interaction AD between the cement alkali content and the free water content shows a relatively large Tail Probability, indicating that this effect is comparatively weak. Even in the revised model only the AD interaction has a tail probability greater than 10% indicating that this is the only insignificant first order interaction.

The high significance value for the BD interaction between the use of p.f.a. and the free water content is confirmation of the observed link between these two factors, where p.f.a. was seen to be more effective in reducing the expansion of reactive mixes incorporating the higher free water content. The high significance of the remaining first order interactions AB, AC, BC and CD is an expression of the nonadditivity of effects caused by the individual factors themselves.

For example, considering the 12 month expansion results, the use of p.f.a. at the 45% replacement level (for mixes containing 100% Pyrex glass aggregate and the high free water content) produces a reduction in expansion over the non-p.f.a. mix of 2659 μ E, 4000 μ E and 5984 μ E for the low, medium and high alkali cement mixes respectively. The high level of significance of the AB interaction is an expression of the

-170-

differences between these and the other figures inherent in its calculation. If there was no interaction, all three differences would be similar.

The importance of the information which indicates the existence of strong interactions, is that it shows the mechanism of the reaction to be complex and that the effects of individual parameters cannot be used to forecast the expansion of bars incorporating combinations of the parameters.

Similar treatment of the least significant interaction (AD) between the cement alkali content and the free water content shows that the sum of the effects caused by these factors taken individually is more nearly equivalent to the combined effect. Again considering the 12 month expansion results, the increase in free water content from the lower level to the higher level (for mixes containing 0% p.f.a. and 100% Pyrex glass aggregate) results in expansion increases of 1448μ E, 1522μ E and 2928μ E for the low, medium and high alkali cements respectively. In particular, for the low and medium alkali cements these figures are quite similar indicating the weaker nature of the interaction.

6.3 SERIES 2 MORTAR BAR EXPANSION TESTS - 'EXTRA PYREX' SET (Mixes 2032P to 2035P, 2041P to 2071P, 2431P to 2731P and 3031P to 6031P)

The mortar bars of the 'Extra Pyrex' extension to the coverage of the Series 2 factorial set of mixes were produced,

-171-

conditioned and monitored in a manner identical to that for all the other Series 2 mortar bars. The expansion results are set out in Table E.1 of Appendix E, together with a record of the repeatability compliance checks in Table E.2. These numerical expansion data are also translated into individual plots of expansion versus age of measurement which form Figures E.1 to E.16, also in Appendix E.

Unlike their counterparts from the factorial sets of Series 1 and 2, the expansion results from the EP mixes are not suitable for any advanced statistical manipulation.

The set of 16 mixes fall into 4 groups, each of which examines a particular aspect of the alkali silica reaction that is linked to the Series 2 factorial set of experiments. Full details of the mixes can be found in Chapter 5, Section 5.3. Each aspect of the reaction is considered separately and, when possible, independently of any changes to the other factors involved in the make-up of the mortar mixes. It is important to consider, however, that these additional experiments are not able to take account of any interaction between the experimental factors.

The following discussion takes each group of 4 mixes in turn, any trends found in the results being related back to the appropriate foregoing results of Series 1 and 2. Photographic records of certain mortar bars from this set of mixes are contained in Plates 6.12 to 6.16.

-172-

6.3.1 Expansion Bars with varying Free Water Contents (Mixes 2032P to 2035P)

The four mixes were designed to examine the effect of variations in the free water content on the expansion of . mortars containing 100% reactive aggregate and no p.f.a. They are in addition to the two related mixes included in the Series 2 factorial set, namely 2030P and 2031P. Since p.f.a. has not been used in these mixes it is both possible and more meaningful to refer to the free water contents in terms of the free water/cement ratios (w/c) which are listed below:-

Mix Reference Number	Free w/c ratio
2 032P	0.30
2030P *	0.40
2033P	0.45
2034P	0.50
2031P *	0.55
2035P	0.60

(* denotes mix from Series 2 factorial set)

Figure 6.40 shows a combined plot of expansion versus age of measurement for the mixes. Close examination of the curves at the initial measurement age of 14 days reveals further evidence of the tendency for the early expansions of high free water content mixes to be temporarily supressed, this was discussed in Section 6.2.5.

For the later ages it can be seen that within the lower range

-173-

of free water contents the trend is for higher expansions to be promoted by increases in the amount of free water, again referring back to the earlier discussion in Section 6.2.5. However, Figure 6.40 demonstrates that, above a free w/c ratio of 0.55, a further increase in the free water content yields a reduction in expansion. It is therefore apparent that a pessimum value of free w/c ratio exists, which for these mixes lies between 0.50 and 0.60. This pessimum effect is more clearly shown in Figure 6.41 and 6.42 where expansion is plotted versus free w/c ratio for the 6 month and 12 month results respectively.

6.3.2 Expansion of Bars with Low Pyrex Glass Contents (Mixes 2041P to 2071P)

For the four levels of Pyrex glass content used in the Series 2 full factorial set it has been shown that generally 100% Pyrex glass is associated with the largest expansion and thus represents the pessimum content. Further, successive reductions in the range 100%, 66.6% and 33.3% were each shown to cause reduced expansion. The results of the four mixes 2041P to 2071P show that this trend is continued for Pyrex glass contents of 16%, 12%, 8% and 4% incorporated into mixes using the high alkali cement, no p.f.a. and the higher free water content from the main set. Figure 6.43 shows the plot of expansion versus Pyrex glass content, including the supplementary points, demonstrating the lack of a possible irregularity in the curve at low Pyrex glass contents.

-174-

6.3.3 Expansion of Bars containing P.F.A. used as an Admixture (Mixes 2431P to 2731P)

In contrast to the use of p.f.a. as a partial replacement for the cement content, this group of four mixes incorporated p.f.a. as a direct addition to the most highly reactive nonp.f.a. mix from the Series 2 main set of experiments, namely mix 2031P. Thus, the effect of p.f.a. addition may be compared with the effect of cement replacement in the range of mixes 2031P to 2331P.

Reference to the results in Table E.1 and Figures E.9 to E.12 of Appendix E shows that for additions of 10% to 40% (by weight of cement), p.f.a. used as an admixture has a beneficial effect as an expansion inhibitor. The comparison of the two methods of utilizing p.f.a. is illustrated in Figure 6.44 which also shows further evidence of the progressive reductions in expansion in the group of mixes 2431P to 2731P. It is apparent that the direct addition of p.f.a. to a reactive mortar mix is not as effective in terms of expansion reduction as a similar percentage cement replacement. On a relative basis, a 30% addition is shown to be similar in effectiveness to a 15% replacement. Whilst this difference is obviously significant it does not detract from the beneficial effect that p.f.a. produces.

The success of p.f.a. addition in reducing the expansion of a highly reactive mix indicates that when it is used as a partial replacement of the cement content it does not simply act as a diluent of the cement alkali/reactive silica ratio

-175-

thereby reducing expansion. Rather there is evidence of a more fundamental effect which is still active when a direct addition of p.f.a. is used, the cement alkali/reactive silica (from the aggregate) ratio thus remaining constant. Two possibilities remain for the mechanism of this effect. It may be purely physical, with the p.f.a. acting as a filler to occupy the voids, interstices and capillaries within the mortar matrix and thus obstructing the expansive nature of the A.S.R.. Alternatively, the mechanism may be chemical with the p.f.a. acting as a chemical inhibitor. This problem will be investigated further in the Chemical Investigation section described in Chapters 7 and 8.

6.3.4 Expansion of Bars containing Reduced Quantities of High Alkali Cement (Mixes 3031P to 6031P)

> The range of alkali contents in this group of four mixes, produced by using different quantities of the highest alkali cement, is comparable with the range produced by the three different cements used in the Series 2 factorial set (that is in mixes 0031P, 1031P and 2031P). Below is a list of the calculated alkali contents of the various mixes which are given in kilogrammes equivalent sodium oxide per cubic metre $(kg Na_2O_{eq}/m^3)$ of fully compacted wet mortar for alkalis derived from the cement only.

Mix	Reference	Number	Alkali Content
			(kg Na_20eq/m^3)
	0031P *		2.42
	1031P *		3.76

-176-

2031P *	6.10
3031P	2.68
4031P	3.23
5031P	3.74
6031P	4.64

(* denotes mix from Series 2 factorial set)

The effect of the alkali content of the cement itself on the expansion of mortar bars has already been discussed in Section 6.1.3 for Series 1 mixes and Section 6.2.3 for Series 2 mixes. This effect can now be reviewed in comparison with the expansions of the new group of mixes. Reference back to Figure 6.24 gives an indication of the variation in expansion derived from the different cements of mixes 0031P, 1031P, 2031P. Similarly, Figure 6.45 shows the variation in expansion derived from the different levels of high alkali cement used in mixes 3031P to 6031P. Comparison of these two sets of graphs, shows that reducing the amount of alkalis available from the cement by lowering the cement content of the mix has a far greater effect on expansion than reducing the mix alkali level to a similar value by using a fixed amount of lower alkali cement. This effect may be due in full or in part to an increased porosity and void space corresponding to the mortars with reduced cement contents.

6.4 SERIES 2 MORTAR BAR EXPANSION TESTS - 'BELTANE OPAL' SET (Mixes 2001 to 2371B)

The results of the mortar bar expansion tests for mixes incorporating Beltane opal as the reactive aggregate are set

-177-

out in Appendix F in tabulated (Table F1) and graphical (Figures F1 to F16) form. Repeatablity compliance checks were also conducted, the results of which comprise Table F2.

It is immediately apparent from the results that the expansions of the Beltane opal mixes are much lower that their Pyrex glass counterparts, the difference being in the region of a factor of ten. Much greater expansions have been achieved with the use of Beltane opal (45) under different experimental regimes involving the incorporation of only the most reactive size fraction and different storage temperatures.

Despite the much lower expansion values, Plates 6.17 to 6.22 show that the Beltane opal mixes still exhibit substantial amounts of surficial exudation and staining. This is particularly true for the mix 2041B (Plate 6.17) which produced the maximum expansion.

6.4.1 Expansion of Bars in relation to Time

The expansion versus time graphs take a similar form to the comparable graphs for mortars containing Pyrex glass, notwithstanding the scale change of the expansion itself. In general the bulk of the expansion again occurs during the first 2 months after casting. However, in every case the Beltane opal bars show an increase in expansion between the ages 2 months and 6 months, although in certain instances this increase is fairly nominal. Beyond 6 months and up to the final expansion measurements at 12 months, the mixes listed

-178-
below show a further increase which, in all cases, is fairly nominal.

2011B 2021B 2031B 2341B

6.4.2 Expansion of Bars in relation to Beltane Opal Content

The mixes 2001 and 2301, which contain purely non-reactive sand as aggregate, represent the datum level against which all expansions from the Beltane opal mixes may be compared. From the results in Appendix F, it can be concluded that, in all the cases included in this set of experiments, the inclusion of Beltane opal into the mix produces a greater expansion value than the datum level. However, the form of the graph showing expansion versus Beltane opal content (e.g. Figure 6.46, for the 6 month results) is quite different from the corresponding curve for Pyrex glass (cf Figure 6.46 with Figure 6.43).

There is clear evidence of a strong pessimum content lying between 0% and 8% Beltane opal content by weight of total aggregate. The most likely position for this pessimum value is around 4% Beltane opal, since this is the point of maximum expansion in these experiments. This observation is in agreement with the published findings of other research workers, even when the Beltane opal has been included in the mortar only in its most reactive particle size range of 150 to

-179-

300um (21).

With further increases in Beltane opal content, above the pessimum value, the expansion is seen to fall off rapidly to a minimum in the region of 12% to 33%. Beyond this region the expansion rises again, towards a secondary maximum at 100% Beltane opal content. In the literature (21, 45) it has been implied that above the pessimum content the expansion of mortars containing Beltane opal tends towards zero, becoming negligible beyond a content of approximately 20% by weight of total aggregate. Notwithstanding the fact that the information in the literature is again related to the different experimental regime referred to earlier, these two different forms of the relationship between expansion and Beltane opal content would appear to be irreconcilable.

6.4.3 Expansion of Bars containing P.F.A. as a Partial Replacement for the Cement Content

It has been stated previously (94) that at the pessimum Beltane opal content of 4% the use of p.f.a. at a high cement replacement level of 45% produces a marked reduction in the observed expansion (see Figure 6.47). At all other Beltane opal concentrations, after the initial expansion measurements taken at 14 days, the use of p.f.a. yields increased expansion (e.g. Figure 6.48). The increases are small in comparison with the decrease observed at the pessimum Beltane opal content and also relative to the comparable Pyrex glass mixes. (cf. mixes 2011P - 2311P, 2021P - 2321P and 2031P - 2331P with mixes 2011B - 2311B, 2021B - 2321B and 2031B - 2331B

-180-

respectively). For the expansions observed at ages 6 months and 12 months respectively, Figures 6.49 and 6.50 show the overall effect of using p.f.a. with Beltane opal reactive mixes.

There is some evidence contained in the results from the Beltane opal mixes to suggest that p.f.a. produces an initial delay in the onset of rapid expansion. This is similar to the observation made for the Pyrex glass mixes. In Table 6.25 the expansions of the Beltane opal mixes which contain p.f.a. are expressed as a percentage of their non-p.f.a. counterparts. At the pessimum Beltane opal concentration of 4%, where the p.f.a. has a similar effect to that observed when it is used with Pyrex glass, the trend with time for the percentage expansion value is for it to diminish to a minimum at age 2 months followed by a recovery up to the final measurement taken at age 12 months. This is in complete agreement with the trend observed for the Pyrex glass mixes.

At all other Beltane opal concentrations, where the use of p.f.a. causes increased expansion, the situation is reversed, since the percentage expansion values of Table 6.25 now rise to a maximum at age 2 months and thereafter tend to diminish. Thus in the case of the Beltane opal mixes it is the nonp.f.a. mixes which show the greater tendency to continue expanding at later ages except where the pessimum Beltane opal concentration is used. This is the converse of the observation for the Pyrex glass mixes.

-181-

6.5 SERIES 2 COMPRESSION TESTS ON 2" MORTAR CUBES (Mixes 2000 to 2331P)

> The main purpose of the mortar cube tests was to gain some insight into the level of deterioration of the mortar in comparison with the measured linear expansion of the equivalent mortar bar. Whilst the microcracking associated with expansion will have its greatest effect on the tensile strength of the mortar, if the disruption is serious one would also expect the homogeneity of the mortar structure to be affected, thus causing a reduction in compressive strength,

> The compressive strength of each mix (mixes containing high alkali cement only) was measured at the three earliest ages selected for expansion measurement in the mortar bars, namely 14 days, 2 months and 6 months. Ideally the cube specimens for these tests would have been stored under identical conditions to those for the corresponding mortar bars. However, due to practical limitations regarding the facilities available at the time the work commenced, this was not possible. Insufficient storage containers of the type where specimens are able to be supported over a reservoir of water were available. The alternative method of storage which was selected, whereby the damp cubes were wrapped in polythene film, was considered to be the most suitable method that was available. The procedure assumed that the moisture sealed within the polythene film would be sufficient to allow the expansive reaction to proceed uninhibited, as suggested by Diamond et al (49) who carried out expansion tests on specimens sealed in butyl rubber jackets.

> > -182-

For comparison, a further set of compression tests was carried out on mortar cubes cured and stored under the normal conditions employed for standard compression testing of mortar cubes as defined in BS 4551: 1980 (93).

The compression test results are given in Table G.1 of Appendix G. Each figure in the table is an average value obtained from the results of two individual cubes. Also shown in Table G.1 is the average measured saturated density of each set of 8 cubes, which in most cases compares favourably with the calculated wet density given in Table B.1 of Appendix B.

6.5.1 Variations in Strength apparently unrelated to A.S.R.

Before considering the variations in measured strength in relation to expansion caused by A.S.R., it is pertinent to consider those variations in strength which exist and appear unrelated to this phenomenon.

From the results of Table G.1 it can be seen that for the 'wet' cured cubes tested at 28 days, there is a trend for the use of p.f.a. to reduce the measured strength, particularly with the percentage cement replacements of 30% and 45%. This is true for both levels of free water content and all levels of Pyrex glass content, for example, comparing the 28 day strengths of the pairs of mixes 2000/2300P, 2030P/2330P and 2011P/2211P. In the last two pairs the strength is reduced by the use of p.f.a. despite the reduction in the expansive reaction which p.f.a. is known to achieve (see expansion

-183-

results in Table D.1 of Appendix D).

With respect to the 'dry' cured cubes, the effects are similar for the three sets of results taken at 14 days, 2 months and 6 months. The use of p.f.a. at cement replacement levels of 15% and 30% causes a progressive increase in measured strength for the non-reactive mixes (i.e. those containing 100% nonreactive aggregate). For the 45% cement replacement level, however, the measured strength falls off again but remains above the strength of the corresponding non-p.f.a. mix. This trend is fairly consistent for both levels of free water content.

It is generally accepted that the partial replacement of the cement content by the use of p.f.a. can cause early strength reductions in comparison with the equivalent non-p.f.a. mix. At later ages, this early strength loss is generally followed by the production of higher strengths from the p.f.a. mixes. The results in Table G.1 indicate that for the 'dry' (and hot) cured cubes the measured strengths of the non-reactive p.f.a. mixes exceeds the value of their non-p.f.a. counterparts even at the earliest measurement age of 14 days and for the highest replacement level of 45%.

The reduction in the 28 day strength of the 'wet' cured cubes, brought about by the inclusion of p.f.a., is then indicative that the pozzolanic properties of the p.f.a. have not had sufficient time to allow them to compensate for the reduced cement content. This effect is normal and totally expected when consideration is given to the method used for the cement

-184-

replacement calculation. However, the strength results from the 'dry' cured cubes show that the high storage temperature more than compensates for this effect, enabling the mixes incorporating p.f.a. to produce the higher strengths.

6.5.2 Variations in Strength in relation to Mortar Bar Expansion

Considering firstly the 'wet' cured specimens, the compressive strengths at 28 days, as shown in Table G.1, indicate a trend for measured strength to decrease with increasing Pyrex glass content and hence increasing expansion. This effect is much more evident for mixes containing no p.f.a. or containing p.f.a. at the lowest cement replacement level of 15% but appears to be consistent for both levels of free water content used in the experiments.

At the higher levels of cement replacement of 30% and 45% there are two possible factors which may contribute to the reduction in the effect of Pyrex glass content on measured strength. In Section 6.2.4 the expansion has been shown to be greatly reduced by the use of 30% and 45% p.f.a., even for the highest level of Pyrex glass content. The effect on strength relative to Pyrex glass content might, therefore, also be expected to be reduced. In addition, the tendency for p.f.a. itself to reduce the 28 day strength of 'wet' cured mortar may mask the effect due to the Pyrex glass content.

Incorporated within any effect on strength, which is attributed to expansion and disruption caused by the inclusion of Pyrex glass into the mix, is the effect due to the strength

-185-

of this material itself. The Pyrex glass and the crushed sand are unlikely to produce mortars of identical strength even if used with a very low alkali cement and hence in the absence of serious expansion. Since no testing was carried out to pursue this particular point, apportionment of the effect into these two components is not possible.

The results obtained from the compression tests carried out on the 'dry' cured mortar cubes do not exhibit such a well defined trend in relation to Pyrex glass content. For the higher free water content mixes there is no recognisable trend In many cases for the lower free water content whatsoever. mixes, any decrease in strength due to increasing Pyrex glass content only occurs over the highest part of the Pyrex glass range (66.6% and 100%). In particular it is notable that for the non-p.f.a. mixes the results obtained at 2 months and 6 months show the minimum strength to be obtained from the mix containing 0% Pyrex glass. This is indicative that any trend for strength to be reduced by increases in Pyrex glass content cannot be simply dismissed as being caused by the Pyrex glass being a weaker and less physically suitable aggregate than the crushed flint gravel (sand). At higher levels of p.f.a. inclusion, however, the successive increases in the amount of Pyrex glass used in the mix do show a slight trend towards strength reductions.

Notwithstanding the possible degradation effect of using mortars containing p.f.a. under water, the differences in the trends of strength relative to the Pyrex glass content which are exhibited at each level of cement replacement for the two

-186-

curing regimes, would seem to indicate that the 'dry' method does not allow the system to behave in the expected manner. It therefore appears that there is insufficient moisture for the cubes to respond in the same way as the mortar bars respond to the high humidity environment established in the storage containers. This observation complicates any attempt to relate variations in strength measurements to the measured expansions from the mortar bars.

No satisfactory explanation has been found for the trend in strengths of 'dry' cured cubes to show an increase with time up to age 2 months and then to fall off again at the 6 month measurement. This effect is consistent at all levels of cement replacement, all levels of Pyrex glass content and for both free water contents.

			Age of Mea	surement		
Source of Expansion Ratio	14 days	28 days	2 months	4 months	14 months	18 months
212P × 100%	29.4%	21.6%	22.2%	24.8%	31.8%	31.5%
222P × 100%	18.7%	12.5%	12.0%	11.7%	13.4%	13.9%
211P × 100%	24.1%	17.0%	16.3%	19.5%	29.4%	28.9%
$\frac{221P}{201P} \times 100\%$	14.0%	9.3%	8.8%	9.3%	12.1%	11.1%
112P 102P × 100%	45.4%	34.5%	34.7%	35.8%	44.7%	-
122P × 100%	19.9%	15.4%	15.1%	15.1%	18.1%	-
111P 101P × 100%	48.6%	35.2%	33.3%	35 .3%	50.8%	-
$\frac{121P}{101P} \times 100\%$	30.9%	27.9%	24.4%	26.7%	39.8%	-
012P 002P x 100%	80.0%	58.7%	49.1%	72.3%	134.9%	-
022P × 100%	82.4%	44.3%	32.9%	33.5%	43.7%	-
011P 001P × 100%	78.7%	63.2%	65.8%	69.5%	101.6%	-
021P 001P × 100%	90.7%	50.5%	39.2%	33.3%	91.3%	-
$\frac{102P}{202P} \times 100\%$	34.3%	30.9%	30.89	31.7%	32.7%	-
002P × 100%	4.9%	5.6%	8.3%	9.1%	10.4%	-
$\frac{201P}{202P} \times 100\%$	52.4%	53.8%	57.8%	58.0%	58.0%	-
101P × 100%	21.6%	20.4%	22.1%	22.4%	22.7%	•
$\frac{001P}{002P} \times 100\%$	6.5%	5.7%	4.3%	5.3%	6.1%	

TABLE 6.1 EXPANSION OF MIXES INCORPORATING P.F.A. EXPRESSED AS A PERCENTAGE OF THE EXPANSION OF THE CORRESPONDING NON-P.F.A. MIX - SERIES 1

PAGE 6 ASTM RESULTS ANALYSIS,F-TESTS,MICROSTRAIN EXPANSION SERIES 1,REPEAT.MEAS. ANALYSIS OF VARIANCE FOR 1-ST DEPENDENT VARIABLE - EXPN1

THE HIGHEST ORDER INTERACTION IN EACH TABLE WAS BEEN REMOVED FROM THE MODEL DUE TO ONE SUBJECT PER CELL.

EFFECT	SUM OF SQUARES	DEGREES (Freedom	DF MEAN SQUARE	F	TAIL Prob.
A B C AB AC BC	4528046.25926 2885750.51852 1900414.74074 2504864.29630 1915140.81481 1686039.25926 1236086.37037	1 2 2 4 4 4	4528046.25926 1442875.25926 950207.37037 1252432.14815 478785.20370 421509.81481 309021.59259	31.00 9.88 6.51 8.58 3.28 2.39 2.12	0.0005 0.0069 0.0210 0.0102 0.0718 0.0944 0.1704
	A B C AB AC BC	EFFECT SUM OF SQUARES 4528046.25926 4528046.25926 A 2885750.51852 B 1900414.74074 C 2504364.29630 AB 1915140.81481 AC 1686039.25926 BC 1236086.37037 1168390.74074	EFFECT SUM OF SQUARES DEGREES OF FREEDOM A 2885750.51852 2 B 1900414.74074 2 C 2504864.29630 2 AB 1915140.81481 4 AC 1686039.25926 4 BC 1236086.37037 4 1168390.74074 8	EFFECTSUM OF SQUARESDEGREES OF FREEDONMEAN SQUARE4528046.2592614528046.25926A2885750.518522B1900414.740742950207.370372C2504364.296302AB1915140.814814478785.20370AC1686039.259264421509.81481309021.592591168390.740748146048.84259	EFFECT SUM OF SQUARES DEGREES OF FREEDOM MEAN SQUARE F 4528046.25926 1 4528046.25926 31.00 A 2885750.51852 2 1442875.25926 9.88 B 1900414.74074 2 950207.37037 6.51 C 2504864.29630 2 1252432.14815 8.58 AB 1915140.81481 4 478785.20370 3.28 AC 1686039.25926 4 421509.81481 2.39 BC 1236086.37037 4 309021.59259 2.12 1168390.74074 8 146048.84259 5

TABLE 6.2ANOVA TABLE FOR SERIES 1 - 14 DAY EXPANSION
RESULTS, ORIGINAL EXPERIMENTAL MODEL

PAGE 7 ASTM RESULTS ANALYSIS, F-TESTS, MICROSTRAIN EXPANSION SERIES 1, REPEAT. MEAS. ANALYSIS OF VARIANCE FOR 2-ND DEPENDENT VARIABLE - EXPN2

THE HIGHEST ORDER INTERACTION IN EACH TABLE HAS BEEN REMOVED FROM THE MODEL DUE TO ONE SUBJECT PER CELL.

SOURCE	EFFECT	SUM OF	DEGREES	OF MEAN	F	TAIL
		SNUARES	FREEDUM	SQUARE		PRUB.
MEAN		8941831.25926	1	3941831.25926	20.31	0.0020
CEMENT	Α	6515265.40741	2	3257632.70370	7.40	0.0152
PFA	В	5809643.18519	2	2904821.59259	6.60	0.0203
AGGRGATE	С	5263914.96296	2	2631957.48148	5.98	0.0258
СР	AB	5368130.81481	4	1467032.70370	3.33	0.0692
CA	AC	3712506.37037	4	928126.59259	2.11	0.1714
PA	BC	3777579.25926	4	944394.81481	2.15	0.1663
ERROR		3521546.74074	8	440193.34259		

TABLE 6.3ANOVA TABLE FOR SERIES 1 - 28 DAY EXPANSION
RESULTS, ORIGINAL EXPERIMENTAL MODEL

PAGE 8 ASTM RESULTS ANALYSIS,F-TESTS,MICROSTRAIN EXPANSION SERIES 1,REPEAT.MEAS. ANALYSIS OF VARIANCE FOR 3-RD DEPENDENT VARIABLE - EXPN3

۰.

THE HIGHEST ORDER INTERACTION IN EACH TABLE HAS BEEN REMOVED FROM THE MODEL DUE TO ONE SUBJECT PER CELL.

SOURCE	EFFECT	SUM OF	DEGREES	0 F	MEAN	F	TAIL
		SQUARES	FREEDO	M	SQUARE		PROB.
MEAN		11292093.37037	1	11292	2093.37037	21.41	0.0017
CEMENT	A	8255159.18519	2	4127	7579.59259	7.83	0.0131
PFA	В	7693240.07407	2	3349	2120.03704	7.30	0.0157
AGGRGATE	С	6752450.29630	2	3376	5225.14815	6.40	0.0219
CP	AB	7405751.70370	4	1851	437.92593	3.51	0.0616
CA	AC	4252666.81481	4	1063	3166.70370	2.02	0.1850
PA	BC	4715206.59259	4	1178	3801.64815	2.24	0.1547
ERROR		4218724.96296	8	527	7340.62037		

TABLE 6.4ANOVA TABLE FOR SERIES 1 - 2 MONTH EXPANSION
RESULTS, ORIGINAL EXPERIMENTAL MODEL

PAGE 9 ASTM RESULTS ANALYSIS,F-TESTS,MICROSTRAIN EXPANSION SERIES 1,REPEAT.MEAS. ANALYSIS OF VARIANCE FOR 4-TH DEPENDENT VARIABLE - EXPN4

THE HIGHEST ORDER INTERACTION IN EACH TABLE HAS BEEN REMOVED FROM THE MODEL DUE TO ONE SUBJECT PER CELL.

SOURCE	EFFECT	SUM OF	DEGREES	OF	MEAN	F	TAIL
		SQUARES	FREEDC	11	SQUARE		PROB.
MEAN		13666136.33333	1	1366	6136.33333	23.52	0.0013
CEMENT	A	9196957.55556	2	459	8478.77778	7.91	0.0127
PFA	В	8352134.88889	2	417	6067.44444	7.19	0.0163
AGGRGATE	С	7926888.66667	2	396	3444.33333	6.82	0.0187
CP	AB	7861949.55556	4	196	5487.38889	3.38	0.0670
CA	AC	4664914.44444	4	116	6228.61111	2.01	0.1864
PA	BC	5228066.44444	4	130	7016.61111	2.25	0.1530
ERROR		4648543.11111	8	58	1067.88889	_	

TABLE 6.5ANOVA TABLE FOR SERIES 1 - 4 MONTH EXPANSION
RESULTS, ORIGINAL EXPERIMENTAL MODEL

PAGE 10 ASTM RESULTS ANALYSIS,F-TESTS,MICROSTRAIN EXPANSION SERIES 1,REPEAT.MEAS. ANALYSIS OF VARIANCE FOR 5-TH DEFENDENT VARIABLE - EXPN5

THE HIGHEST ORDER INTERACTION IN EACH TABLE HAS BEEN REMOVED FROM THE MODEL DUE TO ONE SUBJECT PER CELL.

SOURCE	EFFECT	SUM OF	DEGREES	OF	MEAN	F	TAIL
		SQUARES	FREEDU	014	SQUARE		PROB.
MEAN		18388426.81481	1	1838	8426.81481	32.33	0.0005
CEMENT	Α	10105080.51852	2	505	2540.25926	8.88	0.0093
PFA	В	7178158.74074	2	358	9079.37037	6.31	0.0226
AGGRGATE	С	9586148.96296	2	479	3074.48148	8.43	0.0107
CP	· AB	7449262.59259	4	186	2315.64815	3.27	0.0720
CA	AC	4643323.70370	4	116	2080.92593	2.04	0.1809
F'Λ	BC	5149073.48143	4	128	7268.37037	2.26	0.1513
ERROR		4549675.1851?	8	56	8709.39815		

NUMBER OF INTEGER WURDS OF STORAGE USED IN PRECEDING PROBLEM 3148 CPU TIME USED 11.580 SECONDS

-193-

1

TABLE 6.6ANOVA TABLE FOR SERIES 1 - 14 MONTH EXPANSION
RESULTS, ORIGINAL EXPERIMENTAL MODEL

	Fourse		Age of I	Measurement		
	of Variation	14 days	28 days	2 months	4 months	14 months
MAIN EFFECTS	Cement - A	0.0069	0.0152	0.0131	0.0127	0.0093
	P.f.a B	0.0210	0.0203	0.0157	0.0163	0.0226
	Aggregate - C	0.0102	0.0258	0.0219	0.0187	0.0107
1st OPDER	AB	0.0718	0.0692	0.0616	0.0670	0.0720
INTERACTONS	AC	0.0944	0.1714	0.1850	0.1864	0.1809
	BC	0.1704	0.1663	0.1547	0.1530	0.1513

TABLE 6.7 SUMMARY OF TAIL PROBABILITIES - SERIES 1, ORIGINAL EXPERIMENTAL MODEL

PAGE 6 ASTH RESULTS ANALYSIS,F-TESTS,MICROSTRAIN EXPANSION SERIES 1,REPEAT.MEAS. ANALYSIS OF VARIANCE FOR 1-ST DEPENDENT VARIABLE - EXPN1

	SOURCE	EFFECT	SUN OF SQUARES	DEGREES FREEDOM	OF MEAN I SQUARE	F	TAIL Prob.	
	MEAN		4528046.25926	1	4528046 . 25926	15.08	0.0009	
	CEMENT	A	2385750.51852	2	1442875.25926	4.81	0.0198	
	PFA	В	1900414.74074	2	950207.37037	3.16	0.0640	
	AGGRGATE	С	2504864.29630	2	1252432.14815	4.17	0.0306	
1	ERROR		6005657.13519	20	300282.85926			

TABLE 6.8ANOVA TABLE FOR SERIES 1 - 14 DAY EXPANSION
RESULTS, REVISED EXPERIMENTAL MODEL

PAGE 7 ASTM RESULTS ANALYSIS,F-TESTS,MICROSTRAIN EXPANSION SERIES 1,REPEAT.MEAS. ANALYSIS OF VARIANCE FOR 2-ND DEPENDENT VARIABLE - EXPN2

SOURCE	EFFECT	SUN OF	DEGREES	OF MEAN	F	TAIL
		SQUARES	FREEDOM	SQUARE		PROB.
MEAN		8941831.25926	1	8941831.25926	10.59	0.0040
CEMENT	Α	6515265.40741	2	3257632.70370	3.86	0.0382
PFA	В	5809643.18519	2	2904821.59259	3.44	0.0519
AGGRGATE	С	5263914.96296	2	2631957.48148	3.12	0.0662
ERROR	•	16879763.18519	20	843988.15926		

TABLE 6.9ANOVA TABLE FOR SERIES 1 - 28 DAY EXPANSION
RESULTS, REVISED EXPERIMENTAL MODEL

PAGE 8 ASTM RESULTS ANALYSIS, F-TESTS, MICROSTRAIN EXPANSION SERIES 1, REPEAT. MEAS. ANALYSIS OF VARIANCE FOR 3-RD DEPENDENT VARIABLE - EXPN3

SOURCE	EFFECT	SUM OF	DEGREES	OF MEAN	F	TAIL
		SQUARES	FREEDON	SQUARE		PR03.
NEAN		11292093.37037	1	11292093.37037	10.97	0.035
CEMENT	Α	3255159 . 18519	2	4127579.59259	4.01	0.0344
PFA	В	7698240 .07407	2	3849120.03704	3.74	0.0417
AGGRGATE	С	6752450 <u>.</u> 296 30	2	3376225.14815	3.28	0.0587
ERROR		20592350.07407	20	1029617.50370		

TABLE 6.10ANOVA TABLE FOR SERIES 1 - 2 MONTH EXPANSION
RESULTS, REVISED EXPERIMENTAL MODEL

PAGE 9 ASTH RESULTS ANALYSIS/F-TESTS/MICROSTRAIN EXPANSION SERIES 1/REPEAT.MEAS. ANALYSIS OF VARIANCE FOR 4-TH DEPENDENT VARIABLE - EXPN4

SOURCE	EFFECT	SUM OF Squares	DEGREES FREEDOM	OF MEAN 1 SQUARE	F	TAIL Prob.
NEAN		13666136.33333	1	13666136.33333	12.20	0.0023
CENENT	Α	9196957.55556	2	4598478.77778	4.11	0.0321
PFA	В	8352134.888 89	2	4176067.44444	3.73	0.0421
AGGRGATE	С	7926888 .66667	2	3963444.33333	3.54	0.0483
ERROR		22403473 . 555 56	20	1120173.67778		

TABLE 6.11ANOVA TABLE FOR SERIES 1 - 4 MONTH EXPANSION
RESULTS, REVISED EXPERIMENTAL MODEL

PAGE 10 ASTN RESULTS ANALYSIS,F-TESTS,MICROSTRAIN EXPANSION SERIES 1,REPEAT.MEAS. ANALYSIS OF VARIANCE FOR 5-TH DEFENDENT VARIABLE - EXPNS

	SOURCE	EFFECT	SUM OF	DEGREES	OF	MEAN	F	TAIL
			SGUARES	FREEDO	F1 S	SQUARE		PROB.
	MEAN		18388426.81481	1	18388420	6.81481	16.87	0.0005
	CEMENT	Α	10105080.51852	2	5052540	0.25926	4.64	0.0222
	PFA	В	7178158.74074	2	3589079	9.37037	3.29	0.0580
	AGGRGATE	С	9586148.96296	2	479307	4.48148	4.40	0.0261
1	ERROR		21796334.96296	20	108981	6.74815		
NUMB	ER OF INTEGER	WORDS OF	STORAGE USED IN PRE	CEDING	PROBLE	4 2762		
CPU	TIME USED	12.054 SE					*	

TABLE 6.12ANOVA TABLE FOR SERIES 1 - 14 MONTH EXPANSION
RESULTS, REVISED EXPERIMENTAL MODEL

۲.

	Course		Age of I			
	of Variation	14 days	28 days	2 months	4 months	14 months
	Cement - A	0.0198	0.0382	0.0344	0.0321	0.0222
MAIN	P.f.a B	0.0640	0.0519	0.0417	0.0421	0.0580
EFFECTS	Aggregate - C	0.0306	0.0662	0.0587	0.0483	0.0261

TABLE 6.13 SUMMARY OF TAIL PROBABILITIES - SERIES 1, REVISED EXPERIMENTAL MODEL

Source of	Age of Measurement					
Expansion Ratio	14 days	2 months	6 months	12 months		
$\frac{2131P}{2031P} \times 100\%$	46.2%	43.1%	46.1%	48.0%		
$\frac{2231P}{2031P} \times 100\%$	24.0%	21.6%	21.6% 26.9%			
2331P × 100%	12.7%	10.1%	11.5%	12.6%		
2130P × 100%	47.8%	48.7%	49.5%	49.4%		
2230P 2030P × 100%	38.8%	39.2%	40.0%	39.6%		
2330P × 100%	27.0%	27.2%	27.7%	27.7%		
$\frac{2121P}{2021P} \times 100\%$	51.5%	46.8%	55.0%	55.6%		
2221P 2021P × 100%	20.6%	14.5%	18.0%	21.9%		
$\frac{2321P}{2021P}$ × 100%	10.9%	7.5%	8.4%	9.1%		
2120P × 100%	37.9%	35.4%	36.1%	35.6%		
2220P × 100%	24.8%	22.5%	23.5%	23.4%		
2320F × 100%	14.5%	13.1%	13.9%	13.9%		
2111P × 100%	38.8%	33.1%	56.8%	61.6%		
2211P × 100%	23.0%	13.9%	16.1%	17.2%		
2311P × 100%	14.3%	8.1%	10.1%	9.9%		
2110P × 100%	40.9%	30.6%	30.0%	29.9%		
2210P 2010P × 100%	22.9%	17.2%	18.6%	19.1%		
$\frac{2310P}{2010P} \times 100\%$	19.2%	15.3%	16.6%	16.8%		

TABLE 6.14 EXPANSION OF MIXES INCORPORATING P.F.A. EXPRESSED AS A PERCENTAGE OF THE EXPANSION OF THE CORRESPONDING NON-P.F.A. MIX - SERIES 2

TABLE 6.14 - continued

fourne of	Age of Measurement					
Expansion Ratio	14 days	2 months	6 months	12 months		
1131P 1031P × 100%	40.2%	51.4%	60.4%	62.5%		
1231P 1031P × 100%	19.0%	18.4%	28.2%	34.6%		
$\frac{1331P}{1031P} \times 100\%$	7.3%	6.0%	8.0%	8.7%		
1130P 1030P × 100%	41.7%	42.3%	42.2%	41.5%		
1230P × 100%	27.5%	27.4%	28.2%	28.3%		
1330P × 100%	14.7%	14.4%	15.1%	15.5%		
1121P x 100%	37.6%	42.3%	66.1%	74.4%		
1221P × 100%	9.8%	6.8%	10.7%	14.3%		
$\frac{1321P}{1021P} \times 100\%$	8.1%	5.1%	6.6%	6.9%		
1120P × 100%	32.6%	29.9%	29.5%	28.7%		
1220P × 100%	14.7%	14.6%	16.4%	15.5%		
$\frac{1320P}{1020P} \times 100x$	11.9%	12.3%	13.6%	13.8%		
1111P × 100%	98.6%	66.3%	72.3%	76.6%		
1211P 1011P × 100%	53.2%	33.3%	45.8%	44.1%		
1311P × 100%	48.9%	37.7%	45.4%	46.0%		
1110P × 100%	52.4%	46.7%	49.2%	40.6%		
1210P × 100%	32.2%	37.1%	41.2%	41.3%		
1310P × 100%	44.2%	36.8%	44.1%	49.8%		

TABLE 6.14 continued

<i>. .</i> .	Age of Measurement						
Expansion Ratio	14 days	2 months	6 months	12 months			
0131P x 100%	79.3%	40.8%	71.8%	79.3%			
0231P × 100%	60.6%	8.3%	10.5%	20.8%			
0331P 0031P × 100%	49.7%	6.1%	5.3%	5.9%			
0130P 0030P × 100%	31.0%	24.8%	28.0%	27.3%			
$\frac{0230P}{0030P} \times 100\%$	16.3%	11.3%	12.6%	12.8%			
0330P × 100%	14.8%	9.4%	10.3%	9.5%			
0121P 0021P × 100%	107.8%	58.7%	100.0%	133.8%			
$\frac{0221P}{0021P} \times 100\%$	75.0%	26.0%	29.3%	36.3%			
0321P 0021P × 100%	135.9%	97.1%	116.2%	130.0%			
0120P 0020P × 100%	60.6%	43.6%	54.1%	63.3%			
0220P 0020P × 100%	75.8%	45.6%	34.9%	34.5%			
0320F × 100%	77.8%	45.6%	45.9%	43.9%			
0111P 0011P × 100%	118.3%	89.4%	96.7%	83.1%			
0211P 0011P × 100%	112.7%	70.6%	85 .7%	48.2%			
$\frac{0311P}{0011P} \times 100\%$	108.5%	67.1%	86.8%	71.1%			
0110P 0010P × 100%	119.6%	86.8%	80.0%	159.5%			
0210P 0010P × 100%	107.1%	58.8%	78.8%	56.8%			
0310P 0010P × 100%	76.8%	39.7%	38.8%	43.2%			

PAGE 11 ASTM RESULTS ANALYSIS,F-TESTS,MICROSTRAIN EXPANSION SERIES 2,REPEAT.MEAS. ANALYSIS OF VARIANCE FOR 1-ST DEPENDENT VARIABLE - EXPN1

THE HIGHEST ORDER INTERACTION IN EACH TABLE HAS BEEN REMOVED FROM THE MODEL DUE TO ONE SUBJECT PER CELL.

SOURCE	EFFECT	SU11 OF SQUARES	DEGREE: Freed	SOF MEAN	F	TAIL Prob.
MEAN		29810646.00000	1	29310646.00000	960.76	0.
CEMENT	Α	14726965.75000	2	7363482.87500	237.32	0.
PFA	В	13830909.41667	3	4610303.13889	148.58	0.
AGGRGATE	C	17587286.25000	3	5862428.75000	188.94	0.
FREEWCON	D	3601.50000	1	3601.50000	0.12	0.7373
CP	AB	7356014.08333	6	1226002.34722	39.51	0.
CA	AC	8576315.25000	6	1429385.87500	46.07	0.
РΛ	BC	9908740.66667	9	1100971.18519	35.48	0.
CF	AD	49015.75000	2	24507.87500	0.79	0.4690
PF	BD	112360.41667	3	37453.47222	1.21	0.3356
AF	CD	5524.75000	3	1841.58333	0.06	0.9804
CPA	ABC	4267579.58333	18	237087.75463	7.64	0.0000
CPF	ABD	247996.58333	6	41332.76389	1.33	0.2938
CAF	ACD	146804.75000	6	24467.45833	0.79	0.5904
PAF	BCD	169100.33333	9	18788.92593	0.61	0.7766
ERROR		558506-91667	18	31028-16204		

TABLE 6.15ANOVA TABLE FOR SERIES 2 - 14 DAY EXPANSION
RESULTS, ORIGINAL EXPERIMENTAL MODEL

-204-

PAGE 12 ASTM RESULTS ANALYSIS, F-TESTS, MICROSTRAIN EXPANSION SERIES 2, REPEAT. MEAS. ANALYSIS OF VARIANCE FOR 2-ND DEFENDENT VARIABLE - EXPN2

THE HIGHEST ORDER INTERACTION IN EACH TABLE HAS BEEN REMOVED FROM THE MODEL DUE TO ONE SUBJECT PER CELL.

SOURCE	EFFECT	SUM OF	DEGREES	S OF	MEAN	F	TAIL
		SQUARES	FREED	DM	SQUARE		PROB.
MEAN		53041930.37500	1	5804	1930.37500	1087.09	0.
CEMENT	Α	24836603.25000	2	1241	8301.62500	232.59	0.
PFA	В	34737197.70833	3	1157	9065.90278	216.87	0.
AGGRGATE	С	32479480.70833	3	1082	6493.56944	202.77	0.
FREEWCON	D	2161200.16667	1	216	1200.16667	40.48	0.0000
CP	AB	14002278.91667	6	233	3713.15278	43.71	0.
CA	AC	11384729.41667	6	189	7454.90278	35.54	0.0000
PA	BC	21075653.87500	9	234	1739.31944	43.86	0.
CF	AD	895392.58333	2	44	7696.29167	8.39	0.0027
PF	BD	2859195.58333	3	95	3065.19444	17.85	0.0000
AF	CD	1335904.91667	3	44	5301.53889	8.34	0.0011
CPA	ABC	7494882.75000	18	41	6382.37500	7.80	0.0000
CPF	ABD	1490965.91667	6	24	8494.31944	4.65	0.0050
CAF	ACD	561957.08333	6	9	3659.51389	1.75	0.1657
PAF	BCD	2129863.33333	9	23	6651.48148	4.43	0.0035
ERROR		961053.41667	18	5	3391-85648		

TABLE 6.16ANOVA TABLE FOR SERIES 2 - 2 MONTH EXPANSION
RESULTS, ORIGINAL EXPERIMENTAL MODEL

٠

-205-

PAGE 13 ASTM RESULTS ANALYSIS,F-TESTS,MICROSTRAIN EXPANSION SERIES 2,REPEAT.MEAS. ANALYSIS OF VARIANCE FOR 3-RD DEFENDENT VARIABLE - EXPN3

THE HIGHEST ORDER INTERACTION IN EACH TABLE HAS BEEN REMOVED FROM THE MODEL DUE TO ONE SUBJECT PER CELL.

SOURCE	EFFECT	SUM OF SQUARES	DEGREES FREED	S OF OM	MEAN SQUARE	F	TAIL Prob.
NEAN		73138196.34375	1	7313	8196.34375	1013_43	0.
CEMENT	Α	26559549.18750	2	1327	9774.59375	184.01	0
PFA	В	35999823.36458	- 3	1199	9941-12153	166.28	0
AGGRGATE	С	40076651.03125	3	1335	8883,67708	185.11	0.
FREEWCON	D	4734372.51042	. 1	473	4372,51042	65.60	0,0000
CP	AB	12996523.47917	6	216	6087-24653	30.01	0.0000
CA	AC	11286771.56250	6	185	1128,59375	26.07	0.0000
PA	BC	22609453.76042	9	251	2161-52894	34.81	0.
CF	AD	1038167.14583	2	51	9083.57292	7.19	0.0051
PF	BD	3757056.86458	3	131	2018.95486	18.28	0.0000
AF	CD	2995050-86453	3	99	8350,28819	13.83	0.0001
CPA	ABC	7602630.77085	18	42	2363,37616	5.85	0.0002
CPF	ABD	1202315.35417	6	20	0385-89236	2.78	0.0432
CAF	ACD	965096-60417	6	16	0849.43403	2.23	0.0877
PAF	BCD	2863146.92703	9	31	8682-99190	4.47	0.0036
ERROR		1299043-22917	18	7	2169-06829		

TABLE 6.17ANOVA TABLE FOR SERIES 2 - 6 MONTH EXPANSION
RESULTS, ORIGINAL EXPERIMENTAL MODEL

PAGE 14 ASTM RESULTS ANALYSIS,F-TESTS,MICROSTRAIN EXPANSION SERIES 2,REPEAT.MEAS. ANALYSIS OF VARIANCE FOR 4-TH DEFENDENT VARIABLE - EXPN4

THE HIGHEST ORDER INTERACTION IN EACH TABLE HAS BEEN REMOVED FROM THE MODEL DUE TO ONE SUBJECT PER CELL.

SOURCE	EFFECT	SUM OF	DEGREES	ЭF	MEAN	F	TAIL	
		SQUARES	FREEDOM		SGUARE		PROB.	
NEAN		75710880.37500	1	7571	0880.37500	1024.95	Ο.	
CEMENT	Α	27783643.75000	2	1389	1821.87500	188.06	Ű.	
PEA	В	34374940.70833	3	1145	8313.56944	155.12	0.	
AGGRGATE	С	43350486.87500	3	1445	0162.29167	195.62	0.	
FREEWCON	D	5380600.00000	1	588	0600.00000	79.61	0.0000	
CP	AB	12923146.16667	6	215	3857.69444	29.16	0.0000	
CA	AC	11765218.00000	6	196	0869.66667	26.55	0.0000	
PA	BC	22054269.70833	9	245	0474.41204	33.17	0.	
CF	AD	1127856.25000	2	56	3928.12500	7.63	0.0040	
PF	BD	3719656.08333	3	130	6552.02778	17.69	0.0000	
AF	CD	3311106.25000	3	127	0368.75000	17.20	0.0000	
CPA	ABC	7695761.41667	18	42	7542.30093	5.79	0.0003	
CPF	ABD	1158825.16667	6	19	3137.52778	2.61	0.0531	
CAF	ACD	1232082.00000	6	20	5347.00000	2.78	0.0430	
PAF	BCD	2603877.33333	9	28	9319.70370	3.92	0.0066	
ERROR		1329627.91667	18	7	3868.21759			

NUMBER OF INTEGER WORDS OF STORAGE USED IN PRECEDING PROBLEM 13448 CPU TIME USED 54.618 SECONDS

TABLE 6.18ANOVA TABLE FOR SERIES 2 - 12 MONTH EXPANSION
RESULTS, ORIGINAL EXPERIMENTAL MODEL

-207-

	Founda		Age of Mea	surement	
	of Variation	14 days	2 months	6 months	12 months
MAIN EFFECTS	Cement - A	0.0000	0.0000	0.0000	0.0000
	P.f.a B	0.0000	0.0000	0.0000	0.0000
	Aggregate - C	0.0000	0.0000	0.0000	0.000.0
	Free Water - D	0.7373	0.0000	0.0000	0.000.0
	AB	0.0000	0.0000	0.0000	0.0000
1	AC	0.000	0.0000	0.0000	0.0000
151	BC	0.0000	0.0000	0.0000	0.0000
UNTEDACTIONS	AD	0.4690	0.0027	0.0051	0.0040
INTERACTIONS	BD	0.3356	0.0000	0.0000	0.0000
	CD	0.9804	0.0011	0.0001	0.0000
	ABC	0.0000	0.0000	0.0002	0.0003
2nd	ABD	0.2938	0.0050	0.0432	0.0531
INTEDACTIONS	ACD	0.5904	0.1657	0.0877	0.0430
INTERACTIONS	BCD	0.7766	0.0035	0.0036	0.0066

TABLE 6.19 SUMMARY OF TAIL PROBABILITIES - SERIES 2, ORIGINAL EXPERIMENTAL MODEL

PAGE 11 ASTM RESULTS ANALYSIS,F-TESTS,MICROSTRAIN EXPANSION SERIES 2,REPEAT.MEAS. ANALYSIS OF VARIANCE FOR 1-ST DEPENDENT VARIABLE - EXPN1

SOURCE	EFFECT	SUTI OF	LEGREES	OF MEAN	F	TAIL
		SQUARES	FREEDO	M SGUARE		PROB.
MEAN		29810646.00000	1	29810646.00000	315.25	0.
CEMENT	Α	14726965.75000	2	7363482.87500	77.87	Ο.
FFA	В	13830909.41667	3	4610303.13889	48.75	Ο.
AGGRGATE	C	17587286.25000	3	5862428.75000	62.00	Ο.
FREEWCON	D	3601.50000	1	3601.50000	0.04	0.8460
CP	AB	7356014.08333	6	1226002.34722	12.97	0.
CA	AC	8576315.25000	6	1429385.87500	15.12	0.
PA	BC	9908740.66667	9	1100971.18519	11.64	0.
CF	AD	49015.75000	2	24507.87500	0.26	0.7726
P.F.	BD	112360.41667	3	37453.47222	0.40	0.7563
AF	CD	5524.75000	3	1841.58333	0.02	C.9963
ERROR		5389986 .16667	57	94561.19591		•

TABLE 6.20ANOVA TABLE FOR SERIES 2 - 14 DAY EXPANSION
RESULTS, REVISED EXPERIMENTAL MODEL

PAGE 12 ASTM RESULTS ANALYSIS,F-TESTS,MICROSTRAIN EXPANSION SERIES 2,REPEAT.MEAS. ANALYSIS OF VARIANCE FOR 2-ND DEPENDENT VARIABLE - EXPN2

SOURCE	EFFECT	SUII OF	DEGREES	OF MEAN	F	TAIL
		SCUARES	FREEDO	1 SQUARE		PROB.
MEAN		53041930.37500	1	53041930.37500	261.77	0.
CEMENT	A ¹¹	24836603.25000	2	12418301.62500	56.01	0.
PFA	В	34737197.70833	3	11579065.90278	52.22	0.
AGGRGATE	C	32479480.70833	3	10826493.56944	48.83	0.
FREEWCON	D	2161200.16667	1	2161200.16667	9.75	0.0028
CP	AB	14002278.91667	6	2333713.15278	10.52	0.000
CA	AC	11384729.41667	6	1897454.90278	8.56	0.0000
PA	BC	21075653 .87500	9	2341739.31944	10.56	0.
CF	AD	395392 . 583 33	2	447696.29167	2.02	0.1422
PF	BD	2859195.58333	3	953065.19444	4.30	0.0084
AF	CD	1335904.91667	3	445301.63889	2.01	0.1230
ERROR		12638722.50000	57	221731.97368		•

TABLE 6.21ANOVA TABLE FOR SERIES 2 - 2 MONTH EXPANSION
RESULTS, REVISED EXPERIMENTAL MODEL

PAGE 13 ASTM RESULTS ANALYSIS,F-TESTS,MICROSTRAIN EXPANSION SERIES 2,REPEAT.MEAS. ANALYSIS OF VARIANCE FOR 3-RD DEPENDENT VARIABLE - EXPN3

SOURCE	EFFECT	SUN OF	DEGREES	OF M	IEAN	F	TAIL
		SQUARES	FREEDO	n sa	UARE		PR0-3.
MEAN		73138196.34375	1	73138196.	34375	299.12	0.
CEMENT	Α	26559549.18750	2	13279774.	59375	54.31	Ο.
PFA	В	35999823.36458	3	11999941.	12153	49.08	0.
AGGRGATE	С	40076651.03125	3	13358883.	67708	54.63	Ο.
FREEWCON	D	4734372.51042	1	4734372.	51042	19.36	0.0000
CP	AB	12996523.47917	6	2166087.	24653	8.86	0.0000
CA	AC	11286771.56250	6	1881128.	59375	7.69	0.0000
PA	BC	22609453.76042	9	2512161.	52894	10.27	0.
CF	AD	1038167.14583	2	519083.	57292	2.12	0.1290
PF	BD	3957056.86458	3	1319018.	75486	5.39	0.0024
AF	CD	2795050.36458	3	998350.	28819	4.08	0.0107
ERROR		13937232.88542	57	244512.	85764		•

TABLE 6.22ANOVA TABLE FOR SERIES 2 - 6 MONTH EXPANSION
RESULTS, REVISED EXPERIMENTAL MODEL

ASTH RESULTS ANALYSIS, F-TESTS, MICROSTRAIN EXPANSION SERIES 2, REPEAT. MEAS. PAGE 14 ANALYSIS OF VARIANCE FOR 4-TH DEPENDENT VARIABLE - EXPN4

SOURCE	EFFECT	SU11 OF SQUARES	DEGREES	0 F 11	MEAN SQUARE	F	TAIL Prob.
		-					
TEAN		75710880 .37500	1	75710	37500	307.81	0.
CEMENT	Α	27783643.75000	2	13891	1821.87500	56.48	0.
PEA	В	34374940.70833	3	11458	3313,56944	46.58	Ο.
AGGRGATE	С	43350486.87500	3	14450	0162.29167	58.75	Ο.
FREEWCON	D	5330600.0000 0	1	5880	0600.00000	23.91	0.0000
CP	AB	12923146.16667	6	2153	3857.69444	8.76	0.0000
CA	AC	11765218.000 0	6	1960	0869.66667	7.97	0.0000
PA	BC	22054269.70833	9	245	3474.41204	9.96	0.0000
CF	AD	1127856.25000	2	563	3928.12500	2.29	0.1102
PF	BD	3919656.03333	3	1306	552.02778	5.31	0.0027
A F	CD	3811106.25000	5	1270	368.75000	5.16	0.0032
ERRÓR		14020173.83333	57	249	5967.96199		•

NUMBER OF INTEGER WORDS OF STORAGE USED IN PRECEDING 8348 PROBLEM 44.955 SECONDS CPU TIME USED

> TABLE 6.23 ANOVA TABLE FOR SERIES 2 - 12 MONTH EXPANSION RESULTS, REVISED EXPERIMENTAL MODEL

	Founda	Age of Measurement				
	of Variation	14 days	2 months	6 months	12 months	
MAIN EFFECTS	Cement - A	0.0000	0.0000	0.0000	0.0000	
	P.f.a B	0.0000	0.0000	0.0000	0.0000	
	Aggregate - C	0.0000	0.0000	0.0000	0.0000	
	Free Water - D	0.8460	0.0028	0.0000	0.0000	
144	AB	0.0000	0.0000	0.0000	0.0000	
	AC	0.0000	0.0000	0.000.0	0.0000	
OPDEP	ВС	0.0000	0.0000	0.0000	0.0000	
INTERACTIONS	AD	0.7726	0.1422	0.1290	0.1102	
INTERACTIONS	BD	0.7563	0.0084	0.0024	0.0027	
	CD	0.9963	0.1230	0.0107	0.0032	

TABLE 6.24 SUMMARY OF TAIL PROBABILITIES - SERIES 2, REVISED EXPERIMENTAL MODEL

```
TABLE 6.25 EXPANSION OF MIXES INCORPORATING P.F.A. EXPRESSED AS A PERCENTAGE OF THE EXPANSION OF THE CORRESPONDING NON-P.F.A. NIX - BELTANE OPAL MIXES
```

(Age of Measurement					
Expansion Ratio	14 days	2 months	6 months	12 months		
2311B × 100%	127.3%	171.2%	159.8%	153.5%		
2321B × 100%	151.2%	170.3%	156.0%	137.3%		
2331B 2031B × 100%	133.3%	156.6%	141.0%	130.3%		
$\frac{2341B}{2041B} \times 100\%$	46.8%	44.4%	47.4%	50.8%		
2351B × 100%	84.0%	118.0%	123.5%	124.0%		
23618 × 100%	97.3%	147.4%	150.3%	160.3%		
23718 × 100%	84.4%	159.3%	164.7%	143.6%		

EXPANSION IN

Figure 6.1

OOOP

5 6 7 8 9 10 11 12 13 14

ACE OF SPECIMEN IN MONTHS

5

0

EXPANSION IN MICROSTRAIN

-215-

Figure 6.4

Figure 6.5

Figure 6.6

-217-

EXPANSION IN MICROSTRAIN

Figure 6.7

Figure 6.8

Figure 6.10

EXPANSION IN

Figure 6.11

-220-

Figure 6.12

EXPANSION IN MICROSTRAIN

EXPANSION IN MICROSTRAIN

EXPANSION IN MICROSTRAIN

-222-

-223-

Figure 6.19

Figure 6.20

EXPANSION IN MICROSTRAIN

Figure 6.21

Figure 6.22

EXPANSION IN

Figure 6.24

-227-

EXPANSION IN MICROSTRAIN

Figure 6.25

Figure 6.26

X102

\$ 30

2011P

1011P

10 11 12

EXPANSION IN MICROSTRAIN

x10 ² 90			×10 ²
85	GRAPH OF EXPANSION	AGAINST AGE	-PYREX 85
80	MIX RFFERENCE: 033 133 233		80
75	200		75
70			70
65			65
60			_ 60
55			55
50			50
45			45
40			40
35			35
30			- 30
25			25
20			20
15			15
10			2331P 10
5 0	- · · · · · · · ·		1331P 5
	ACE OF SPECIM	EN IN MONTHS	10 11 12 0
		Fig	ire 6.27

Figure 6.29

EXPANSION IN

5

0

Figure 6.32

Figure 6.33

EXPANSION IN MICROSTRAIN

AGE OF SPECIMEN IN MONTHS

EXPANSION IN

Figure 6.36

Figure 6.37

EXPANSION IN MICROSTRAIN

Figure 6.38

-235-

EXPANSION IN MICROSTRAIN

-236-

Figure 6.42

EXPANSION IN MICROSTRAIN

EXPANSION IN MICROSTRAIN

Figure 6.45

-239-

Figure 6.49

Figure 6.50

Plate 6.1 Mix Ref. 2000, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.2 Mix Ref. 2010P, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.3 Mix Ref. 2020P, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.4 Mix Ref. 2021P, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.5 Mix Ref. 2030P, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.6 Mix Ref. 2031P, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.7 Mix Ref. 2131P, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.8 Mix Ref. 2231P, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.9 Mix Ref. 2331P, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.10 Mix Ref. 0031P, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.11 Mix Ref. 2301, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.12 Mix Ref. 2032P, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.13 Mix Ref. 2035P, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.14 Mix Ref. 2731P, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.15 Mix Ref. 3031P, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.16 Mix Ref. 6031P, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.17 Mix Ref. 2041B, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.18 Mix Ref. 2341B, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.19 Mix Ref. 2071B, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.20 Mix Ref. 2371B, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.21 Mix Ref. 2031B, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months.

Plate 6.22 Mix Ref. 2331B, showing the surface condition of a typical mortar bar subsequent to the expansion measurement taken at age 6 months. CHAPTER 7 DETAILS OF THE INVESTIGATION - CHEMICAL

7.1 INTRODUCTION TO CHEMICAL INVESTIGATION

In the preceding chapter mention was made of the apparent controversy surrounding the use of p.f.a. to inhibit expansion due to A.S.R.. The group of mixes 2431P to 2731P from the "Extra Pyrex" set produced expansion results which go part way towards dispelling the opinion that the introduction of p.f.a. acts to simply dilute the amount of alkalis available for reaction. This led to the suggestion, in the discussion section of Chapter 6, that the results are indicative of a more fundamental reaction taking place, which involves the p.f.a. and thus inhibits the normal course of A.S.R.

In addition, at the time of the experimental stages of this research, there was a growing weight of opinion gathering behind the hypothesis that the important criterion to consider, when designing a concrete mix using an aggregate known to be either reactive or suspect, was the alkali content of the mix expressed in kilogrammes of equivalent sodium oxide per cubic metre of wet concrete (kg Na_2O_{eq}/m^3). A figure of 3.0kg Na_2O_{eq}/m^3 had been expressed as a safe limit for the acid soluble alkali content, below which the deleterious reaction would not occur.

The success of p.f.a. in reducing expansions in the physical tests, together with the two subjects of debate listed above, provided ample stimulus for the chemical investigation which can be seen as an extension to the scope of the original

-254-

research. The physical information in respect of mortar bar expansions, gained from the standard ASTM test methods, was already supplemented by certain chemical properties of the constituent materials, in particular their equivalent sodium oxide alkali contents. As a logical extension to this supplementary information a particular analytical approach was developed by which further information could be gained concerning the chemical aspects of the reaction, including the contribution made by p.f.a..

The mortar bars which had been used in the Series 2 expansion tests were themselves subjected to chemical analysis of their acid soluble alkali contents. The method of analysis was based on the BS 4550 method used in the analysis of cements. This work was done in order to establish the effect, if any, that p.f.a. has on the alkali balance within the mortar system. In addition, the water from the reservoir at the bottom of each of the mortar bar storage containers was also analysed for its alkali content. This established any tendency for leaching to take place and thereby completed the overall picture.

When used together, these two values of alkali content allow comparisons to be drawn between the alkalis previously found to exist in the constituent materials and the alkalis now found to be liberated in the mortar bars and their storage environment.

4

In this introductory section it is, perhaps, pertinent to mention that the inception of this chemical stage of the

-255-

research came towards the completion of the physical expansion tests. Consequently the whole experimental regime was not designed with any chemical stage in mind. Moreover, the various stages of the analytical work were each conceived from the outcome of the previous stage. As a result of this stepby-step decision process, the modus operandi of the complete chemical investigation may not appear to be the most suitable approach. Indeed, if the work were to be repeated or continued, with the benefit of hindsight and foreknowledge, more rigorous and closely controlled methods would undoubtedly be adopted.

7.2 EXPERIMENTAL PROCEDURES

7.2.1 Samples for Chemical Analysis

The chemical tests were carried out on samples obtained from the mortar mixes of the Series 2 set of experiments only. A single mortar bar was removed from each storage container leaving two bars available for any future expansion measurements. In addition, the liquid at the bottom of the storage containers was removed for analysis and replaced with fresh water.

Removal of the mortar bar and the liquid sample was not always carried out simultaneously. Further, the age of the specimens varied considerably when the chemical analyses were carried out. Full details of the age of the specimens when the samples for chemical analysis were removed from the storage container can be found incorporated into the

-256-

tabulation of the analytical results of Chapter 8. However. to summarise, for the mortars containing the high alkali cement (including the 'EP' and 'BO' mixes) the bar for chemical analysis was removed from the storage container immediately after the expansion measurement at 6 months. The chemical analysis was carried out as soon as practicable The liquid analyses corresponding to these thereafter. mortars followed approximately 9 months later. As regards the remaining mortars of the Series 2 experiments, namely those containing the low and medium alkali cements, both the bar and liquid specimens for chemical analysis were removed from the storage containers together, but at a much later stage in the overall experimental programme. The ages of the specimens in the latter group varied between approximately 16 months and 27 months when the chemical analyses were underataken.

7.2.2 Analytical Methods

Following the same ideals as the expansion tests, the chemical analyses were carried out, wherever possible, using recognised standard test methods. To this end the dilute hydrochloric acid soluble alkali contents of the mortar bars were determined using the method described in BS 4550: Part 2: 1970.

The liquids from the bottom of the storage containers were simply diluted to a suitable concentration and analysed for their sodium and potassium contents using a flame photometer. The total volume of liquid in each storage container was measured approximately during the sampling procedure using a

-257-

conventional measuring cylinder. A more accurate method of volume determination was considered inappropriate because of the possible errors already existing in the form of spillages during expansion monitoring and the residue of liquid left trapped in the blotting paper lining to the storage containers.

7.3 DISCUSSION OF THE EXPERIMENTAL STAGES AND DECISIONS

The considerations behind the development of the need for the chemical investigations have already been outlined above, where the stage-by-stage approach to the experimentation was also mentioned. A more detailed discussion of the stages in the experimentation and the basis of the decision making process is now presented.

In the first instance the chemical tests were devised simply to assess the level of alkalis in the mortar bar and facilitate comparison of the results from mixes containing p.f.a. and those free from p.f.a. respectively. Highly reactive mixes were considered to be of prime importance and hence the tests were initially restricted to the mortars containing the high alkali cement. The decision to undertake this first set of chemical analyses was taken prior to the expansion measurements at 6 months. Hence, the most convenient procedure to adopt was to remove the bar for chemical analysis during the 6 month expansion test.

The results from this first stage of the chemical tests were found to contain some unexpected inconsistencies which, as

-258-

will be seen in the following chapter, concerned an imbalance in the total amount of alkalis in the bars which contained no Pyrex glass or p.f.a.. That is to say, the total amount of alkalis in a mix such as 2000 did not add up to the alkalis supplied to the mortar by way of the consistuent materials.

To complete the picture it was therefore decided that the liquid in the reservoir at the bottom of the storage containers should be analysed since this appeared to be the only remaining source for the missing alkalis. Any alkalis found in this liquid are indicative of the amount of leaching taking place during the expansion tests. It was possible to carry out this stage of the chemical tests only because the liquid in the storage containers had not been changed during the earlier stages of the expansion tests.

On completion of the two-stage chemical testing carried out on the specimens from mixes containing the high alkali cement, the results were found to exhibit certain trends. It was therefore considered appropriate to carry out the same tests on the mortars containing the low and medium alkali cements to investigate whether similar trends existed. Unavoidably the ages of the mortar specimens had by this stage increased significantly beyond the age of 6 months when the bars containing the high alkali cement were analysed. However, for the final set of mortars it was possible to remove both the mortar bar and the liquid samples for chemical analysis at the same time.

CHAPTER 8 PRESENTATION AND DISCUSSION OF EXPERIMENTAL RESULTS -CHEMICAL

8.1 ANALYTICAL RESULTS

The full results from the chemical analysis of the alkali contents of the mortar bars and the liquid from the bottom of their storage containers are presented in Tables J.1 to J.3 of Appendix J. These data are from the Series 2 experiments, the three tables containing the results for the 3 x 4 x 4 x 2 factorial set, the 'E.P.' mixes and the 'B.O.' mixes respectively.

Tables J.1 to J.3 also give details of the age of the specimens when the sample for chemical analysis was removed from the storage container.

•

The alkali contents are given in terms of the individual sodium and potassium oxides in addition to a combined figure of total equivalent sodium oxide. For ease of comparison the alkali contents of both the bars and the liquids are expressed as percentages with respect to the mass of the mortar bar with which they are associated. The total equivalent sodium oxide figure is also expressed in kilogrammes per cubic metre based on the actual measured density of the bar which was analysed. The measured densities are quoted in the results tables and may be compared with the calculated values given in Tables B.1 to B.3 of Appendix B.

Using the relevant data from Tables J.1 to J.3, Tables 8.1 to

-260-

8.3 combine the results of the chemical analyses of the bars and liquids with information gained from the anlaysis of the individual mix constituents. In this way the acid soluble alkali content of the bars and liquids can be compared with acid soluble alkalis provided by the mix constituents in their original form.

8.2 THE EFFECT OF P.F.A. ON THE ALKALI LEVELS

8.2.1 Mixes containing no Reactive Aggregate

Considering firstly the mixes containing the highest alkali cement with no p.f.a. substitution, namely Mix Refs. 2000 and 2001, the appropriate results from Table 8.1 show that both the mortar bars and the liquid yielded a considerable amount of alkalis. The combination of these two values, bar plus liquid, represents the amount of alkali found in the overall system. This is shown in Table 8.1 where it is compared with the combined acid soluble alkali content of the individual mix constituents.

On substitution of 15% of the cement content by p.f.a., as in Mix Refs. 2100 and 2101, the amount of alkali in the overall system increased, despite the acid soluble alkali content of the p.f.a. being considerably less than the equivalent figure for the cement. This rise in alkali content continued for substitutions of 30% and 45% p.f.a. in Mix Refs. 2200, 2300, 2201 and 2301. For the mixes containing p.f.a. there is a considerable imbalance between the amount of alkali found in the overall system and the combined acid soluble alkali

-261-

content of the individual mix constituents.

The general increase in the alkali content of the overall system was not the only observed effect attributable to the inclusion of p.f.a. in the mix. Reference to the individual alkali contents of the bars and the liquids for the same series of mixes shows that whilst the alkali content of the bars was increased when p.f.a. was used, the alkali content of the liquids was reduced. Thus, p.f.a. was responsible for a reduction in the amount of alkali being leached from the bars during the A.S.T.M. mortar bar test.

The relationships between the amount of alkali in the bars, the amount of alkali leached from the bars and the level of p.f.a. substitution are shown in Figure 8.1 for the two groups of mixes 2000 to 2300 and 2001 to 2301. The curves show that the relationships are regular but non-linear.

Before considering whether parallel effects attributable to the use of p.f.a. are shown for the mixes containing the medium and low alkali cements, it is perhaps pertinent to examine the effects which the three different Portland cements themselves had on the various alkali levels. This can be seen in Figures 8.2 to 8.5.

For mixes containing no p.f.a. and no reactive aggregate, there was a clear and steady increase in both the alkali content of the bar and the alkali content of the liquid corresponding to the change from low, through medium, to high alkali cement. This is shown in Figure 8.2 for the groups of

-262-

mixes 0000 to 2000 and 0001 to 2001. Figure 8.2 also shows evidence that the increase in the alkali content of the specimens is proportional to the change in the alkali content of the cement.

When 45% p.f.a. was substituted into the cementitious material, Figure 8.3 shows that the rise in alkali content of the bars continued to be proportional to the alkali content of the cement (mixes 0300 to 2300 and 0301 to 2301). The gradient of the increase, however, is shown to be reduced since there was less cement in the mix. Unlike the mixes containing no p.f.a., Figure 8.3 shows that the amount of alkali being leached from the bars and into the liquid was unaffected by the cement alkali content when 45% p.f.a. was included. The value remained at the base level set by the lowest alkali cement.

For mixes containing 100% Pyrex glass but no p.f.a., the alkalis in the bar again increased with increasing cement alkali content. However, Figure 8.4 shows that the relationship does not take a linearly proportional form for the two groups of mixes 0030P to 2030P and 0031P to 2031P. This figure also shows that when Pyrex glass was present in the mix the cement alkali level did not cause any significant changes to the amount of alkalis leached from the bars.

The inclusion of both p.f.a. and Pyrex glass in the mix resulted in the alkali content of the bars being proportional to the level of alkalis in the cement with little evidence of the type of cement having any effect on the amount of alkalis

-263-

leached from the bars. These comments relate to mixes O330P to 2330P and O331P to 2331P as shown in Figure 8.5.

The effect of p.f.a. on the alkali content of mixes containing the medium and low alkali cements can now be examined to investigate whether the response is similar to that found for the high alkali cement.

With respect to the amount of alkali in the overall system and the amount of alkali in the bars, the results for the mortars containing the medium and low alkali cements show parallel trends to those noted for the high alkali cement. That is for the groups of mixes 1000 to 1300, 1001 to 1301, 0000 to 0300 and 0001 to 0301 both the amount of alkali in the overall system and the amount of alkali in the bar increase with increasing p.f.a. substitution. This is shown in Figures 8.6 and 8.7 for the medium and low alkali cements respectively.

The results for the mixes containing the low alkali cement, however, did not show any significant tendency for the level of p.f.a. substitution to reduce the amount of alkali leached from the bars. The amount of alkali in the liquids remained sensibly constant over the range of p.f.a. substitution employed. This lack of an effect is probably due to the low level of alkali leached from bars containing the low alkali cement even in the absence of p.f.a., thus offering little potential for the p.f.a. to further reduce leaching.

When the medium alkali cement was used, the effect of p.f.a. on the amount of alkali leached from the bars was for a slight

-264-

reduction with increasing p.f.a. substitution. It is noteworthy that the graphs of the amount of alkali in the liquid against p.f.a. substitution for the three different cements, Figures 8.1, 8.6 and 8.7, all tend towards similar minimum values of alkali content at 45% p.f.a. substitution.

To summarise, when used as a partial replacement of the cement content, p.f.a. was found to be associated with an increase in the alkali content of the overall mortar bar system for specimens stored in a closed environment as in the A.S.T.M. mortar bar test. This trend for increasing alkali content was also noted for the amount of alkali in the mortar bars considered alone. Both these effects were similar for mixes containing the high, medium and low alkali cements. With respect to the amount of alkali leached from the mortar bars, the p.f.a. was found to cause a reduction in the amount of alkali contained in the liquid at the bottom of the storage containers. This effect occurred provided that the alkali content of the cement was high enough to allow sufficient alkali to be leached from the bars containing no p.f.a.. The latter effect is consistent with the trends noted in the various alkali contents in relation to the alkali content of the cement employed.

8.2.2 Mixes containing Pyrex Glass

In general, the results show evidence of an increase in the alkali contents of the mortar bars containing p.f.a in comparison to the corresponding bars in which Portland cement was the only cementitious component. Using the same

-265-

comparison, the results exhibit some evidence of a small decrease in the amount of alkali leached from the bars as the level of p.f.a. substitution was increased. The latter effect showed a tendency to be more prominent for the lower Pyrex glass concentrations. The combination of these two effects, for mixes containing Pyrex glass, is that, generally, the amount of alkali in the overall system was found to increase when p.f.a. was used as a partial replacement of the cement content. These comparisons are shown in Figures 8.8 to 8.12, in which the effects with different concentrations of Pyrex glass and for the three different Portland cements are examined.

The relationships between the amount of alkali in the bars, the amount of alkali leached from the bars and the level of p.f.a. substitution are not as clearly defined for these mixes containing Pyrex glass. This is probably due to the more complex system which develops within a reactive mortar and the effect which Pyrex glass itself has on the alkali levels.

Figures 8.13 to 8.15 examine the effect produced by the Pyrex glass. There is evidence that the amount of alkali present in the bars was greater when Pyrex glass was included in the mix, in comparison to the corresponding mix containing no Pyrex glass. For the medium and low alkali cements the relationship between the alkali content of the bar and the amount of Pyrex in the mix was found to be fairly linear (Figures 8.14 and 8.15). There is also evidence that the amount of alkali leached from the bars was reduced when Pyrex glass was included in the mix. This effect was found to be

-266-

more clearly defined for the high and medium alkali cements where a linear relationship is evident. The combined effect is that the Pyrex glass was responsible for an increase in the amount of alkali in the overall system.

These effects, observed with respect to Pyrex glass, bear a marked resemblance to those previously discussed for p.f.a. substitution in mixes containing no reactive aggregate. Thus, the two materials must act in competition when both are included in the mix. This is no doubt an over simplification of the true situation, but may explain the reduced effect which p.f.a. had on the various alkali contents with mixes containing Pyrex glass.

For the mixes containing the high alkali cement, Pyrex glass concentrations of 66.6% and 100% are shown in Figure 8.13 to reduce the level of alkali found in the liquid from the storage tank to a value approaching that which would be anticipated with 45% p.f.a. substituted into a mix containing no reactive aggregate. Thus, with such a mix, the p.f.a. has no further contribution to make in reducing the amount of alkalis leached from the bars.

Similarly, the observed increase in the alkali content of the bars when Pyrex glass was included in the mix, may explain the reduced effect which p.f.a. had on the alkali content of bars containing Pyrex glass, when compared with the parallel effect for bars devoid of reactive aggregate. The p.f.a. and the Pyrex glass compete for the same reactant, namely the hydroxyl ion, the Pyrex glass reacting to a much reduced extent as

-267-

indicated by the large decrease in the observed expansion. Consequently, some of the alkali which would normally be released by the Pyrex glass was retained. This would have offset some of the alkali released by the p.f.a., thus making it appear that the p.f.a. was having a reduced effect.

8.2.3 Mixes containing Beltane Opal

Comparison of the numerical results in Table 8.3 again shows that there was a considerable increase in the amount of alkali present in the mortar bars when p.f.a. was used. There was not, however, any significant evidence that p.f.a. produced a reduction in the amount of alkali leached out of the bars, no trend being evident in either direction. These effects are shown in Figure 8.16.

The lack of a p.f.a. derived effect on the amount of alkali leached out of the bar may be explained by the contribution made by the Beltane opal itself in this respect. In Figure 8.17 it can be seen that the Beltane opal produced a very marked reduction in the amount of alkali leached out of the bars. The extremely low alkali levels which remained in the liquid, even with a Beltane opal concentration of only 4%, offered little scope for p.f.a. to produce a further reduction.

8.2.4 Statistical Interpretation of Chemical Analysis Data

The chemical analysis results from the main $3 \times 4 \times 4 \times 2$ factorial set of mixes are suitable for the same type of

-268-

statistical treatment as was applied to the corresponding expansion measurements. To this end, analysis of variance computations were carried out on the alkali contents of the bars, the alkali contents of the liquids and the overall alkali content of the mortar bar/liquid system. The resulting ANOVA tables are presented in Tables 8.4 to 8.6.

The ANOVA tables are summarised in Table 8.7, using symbols to denote the significance level of the individual effects and interactions.

The summary shows that the four treatment factors employed in the experiments have highly significant main effects on all three alkali contents. This confirms the earlier discussion which highlighted the contribution made by the cement alkali content, the p.f.a. substitution level and the Pyrex glass concentration towards the alkali concentration in the experimental specimens.

It is also apparent from Table 8.7 that there is considerable interaction between the various treatment factors, the free water content being the notable exception. The lack of significant interactions with free water content probably indicates that the main effect attributable to this factor are not chemical effects but are simply caused by the physical changes in the density and permeability of the specimens associated with the different free water contents.

The first order interactions between the other three treatment factors, all of which have significant levels in excess of

-269-

90%, show that to a certain extent the effects of these factors are interdependent. This may have been anticipated for the interactions AB and AC which involve the cement alkali content, since this remains the major source of alkali in the It is reasonable to assume that the effect which specimens. p.f.a. had on the alkali content of the specimens would be partially dependent on the alkali content of the cement for which it was being substituted. Thus the interaction AB should be significant. It is also reasonable to assume that if Pyrex glass was to have an effect on the alkali content of the specimen, then the extent of the effect would depend on the alkali content of the corresponding Pyrex free mix. This is largely controlled by the alkali content of the cement and thus suggests a significant AC interaction.

The high significance of the BC interaction between the level of p.f.a. substitution and the Pyrex glass concentration cannot be explained in these terms. The occurrence of this interaction is thought to substantiate the description given in Section 8.2.2. Here the effect which p.f.a. had on the alkali concentration was said to be partially offset in mixes containing Pyrex glass because of a reduction in the effect which the Pyrex glass had on the alkali concentration in the absence of p.f.a. This is further evidence that the mechanism by which p.f.a. helps to inhibit the expansive A.S.R. occurring between the Pyrex glass and the OH⁻ is one of reaction and not simple dilution. The published results of experimental work carried out on pastes of p.f.a. and calcium hydroxide (12) have shown that there is a close correspondence between the rates of dissolution of the p.f.a. and the liberation of alkali metal ions into solution. It has been suggested (94) that this behaviour also occurs in mortars which contain p.f.a., the alkali metal ions being released as the pozzolanic reaction proceeds. The results discussed in Section 8.2 further indicate that this is the case, and hence the results of the alkali analyses may provide a means of estimating the extent to which the p.f.a. has reacted.

For the mixes containing no reactive aggregate, calculations to estimate the percentage reaction of the p.f.a. are presented in two different forms in Tables 8.8 and 8.9. In the former, Table 8.8, the percentage reaction is calculated having made no allowance for the original acid soluble content of either the aggregate material or the p.f.a.. This is the technique that was employed in producing the information presented in an earlier publication (94). However, the results from the chemical analysis carried out on samples of the p.f.a. and the sand, which are given in Table 5.8, show there to be significant quantities of acid soluble alkalis in both these constituent materials. This may be relevant to the percentage reaction calculations, which are therefore repeated in Table 8.9 making full allowance for the original alkali content of both materials.

-271-

The results from the calculations show that the two computational procedures produce considerably differing However, both sets of figures show that there is a values. very high level of reaction. Considering the group of mixes 2000 to 2300, the appropriate results from Table 8.8 show that the reaction of the p.f.a. is estimated to be 94% at a replacement level of 15%, 88% at a replacement level of 30% and 84% at a replacement level of 45%. In contrast, the equivalent data from Table 8.9 shows the level of reaction of the p.f.a. to be 69%, 70% and 68% at replacement levels of 15%, 30% and 45% respectively. Thus, when the original acid soluble alkali contents of all the constituent materials are taken into consideration the estimated percentage reaction of the p.f.a. remains fairly steady at around 70% for all replacement levels up to the maximum used of 45%.

The true percentage reaction value is likely to fall within the range denoted by the two extreme values given above, the remainder of the figures obtained in Tables 8.8 and 8.9 being generally similar to those discussed in detail. The question of whether or not an allowance should be made for the original acid soluble alkali content of all the mix components has, at present, no clear cut answer. It is apparent, however, that the alkali content of the sand must be allowed for otherwise the p.f.a. is being considered to have 'released' the alkali coming from this source in addition to that actually emanating from itself. Again using the group of mixes 2000 to 2300, if an allowance is made for the sand only then the percentage reaction figures become 78% or 79% for all three cement replacement levels. Thus, it seems likely that for cement

-272-

replacement levels of up to 45% a fairly constant level of reaction can be expected.

With respect to making an allowance for the original acid soluble alkali content of the p.f.a. itself, there is no evidence available from the current experiments to tip the balance either way. However, it is possible to surmise that the part of the p.f.a. which holds the acid soluble alkalis will be the most easily broken down component of its particle structure and, hence, the section most likely to react first. This hypothesis would suggest that the originally acid soluble alkalis should be retained in the calculations.

The estimation of the extent of the p.f.a. reaction is only intended to provide a pictorial representation of the actual situation which develops in the mortar bars. The values produced do indicate the considerable reaction which the p.f.a. undergoes, but they should be considered in conjunction with the possible inaccuracies inherent in the experimental procedures which are highlighted in the following Section 8.4.

8.4 DISCUSSION

It is important to reiterate at this point in the discussion the step-by-step approach which was adopted for the chemical analysis stage of the current investigation. To a certain extent, as mentioned in Chapter 7, the mortar bars were analysed at differing ages, and in some instances the liquid from the bottom of the storage container was not sampled at the same time as the bar for analysis was removed from the

-273-

container. Moreover, as the experiments were not originally designed with the chemical analysis stage included, there was no check kept on the spillage of water from the storage containers during the expansion monitoring process and the amount of alkali retained by the blotting paper lining to the storage containers was not measured. An extra degree of uncertainty, therefore, exists in the measured amount of alkali leached from the bars and into the liquid.

Notwithstanding these reservations, in Section 8.2 above, the results from the chemical analyses indicate that where an effect was observed, the substitution of p.f.a. for part of the cement content consistently increased the alkali level in the mortar bar in comparison to the corresponding mix containing only Portland cement as the cementitious material. In addition, the p.f.a. was also found to decrease the amount of alkali leached from the bar, the combined effect being an increase in the amount of alkali in the overall system.

Despite this observation the results presented in Chapter 6 showed that for all Pyrex glass concentrations and for Beltane opal at the pessimum concentration, the use of p.f.a. caused a reduction in the observed expansion.

This further substantiates the opinion that p.f.a. does not act as a simple diluent of the alkali level and thereby contribute towards expansion reduction in reactive mixes. This being the case a more fundamental reaction process must be the mechanism of the p.f.a. effect. The calculations to estimate the extent of this reaction of the p.f.a. produced an

-274-

indication that a minimum reaction level of 68% may be expected for cement replacement levels of up to 45%. This figure was produced by the most conservative method of calculation discussed in Section 8.3.

These observations also undermine the recent stipulation that the alkali content of the mortar or concrete, expressed in kilogrammes per cubic metre, is the criterion to use when judging whether a mix containing a suspect aggregate is potentially reactive (21, 48). As previously mentioned, a safe limit of 3.0kg Na₂O_{eq}/m³ has been suggested for the acid soluble alkali content for concretes. The results of this investigation show that mixes containing a highly reactive material such as Pyrex glass can contain alkalis considerably in excess of this amount and yet remain below the expansion limit used to denote a 'reactive' mix in the A.S.T.M. mortar bar test. Conversely, mix 0031P exceeded the 12 month safe expansion limit but contained an alkali level of only 2.42kg Na₂O_{en}/m³.

Thus, it is clear that the suggested theoretical limit of $3.0 \text{kg Na}_{20eq}/\text{m}^3$ for a safe alkali level is not satisfactory. Further, when p.f.a. is included in the mix, the expansion observed is apparently unrelated to the alkali level of the mix since it has been shown that expansion decreases despite an increased alkali level. It would therefore appear that the alkali content of the mix in kg/m³ is not a suitable criterion on which to base safety limits for minimising the risk of A.S.R.

-275-

TABLE 8.1 COMPARISON OF RESULTS FROM THE CHEMICAL ANALYSIS OF THE ALKALI CONTENT OF THE MORTAR BARS AND LIQUIDS WITH THE ALKALIS PROVIDED BY THE MIX CONSTITUENTS

MIX	ALKALI (k	CONTENT OF g Na2 ⁰ eq/m	SPECIMENS 3)	A	ALKALI CONTENT FROM MIX CONSTITUENTS * (kg Na ₂ O _{eq} /m ³)					
NO.	BAR	L IQUID*	BAR + LIQUID	CEMENT	P.F.A.	SAND	PYREX GLASS	I CONSTITUENTS		
0000	1.83	0.39	2.22	2.84	-	0.42		3.26		
0001	1.56	0.51	2.07	2.59		0.38	6.65	2.97		
0010P	2.39	0.73	3.12	2.76		0.27	0.59	3.62		
0011P	1.92	0.91	2.83	2.53	-	0.25	0.54	3.32		
0020P	3.41	0.88	4.29	2.69	-	0.13	1.14	3.96		
0021P	1.98	1.29	3.27	2.47	-	0.12	1.05	3.64		
0030P	3.28	0.62	3.90	2.62	-	-	1.67	4.29		
0031P	3.19	0.73	3.92	2.42	0.2% I	10.00	1.54	3.96		
0100	3.98	0.71	4.69	2.29	0.74	0.42	-	3.45		
0101	3.76	0.81	4.57	2.09	0.68	0.38		3.15		
0110P	4.53	0.76	5.29	2.23	0.72	0.27	0.59	3.81		
0111P	4.03	0.98	5.01	2.04	0.66	0.25	0.54	3.49		
0120P	4.84	0.87	5.71	2.17	0.71	0.13	1.14	4.15		
0121P	4.01	1.12	5.13	1.99	0.65	0.12	1.05	3.81		
0130P	5.60	0.51	6.11	2.11	0.69	-	1.67	4.47		
0131P	4.64	0.88	5.52	1.95	0.63	1.1	1.53	4.11		
0200	5.79	0.60	6.39	1.80	1.40	0.42		3.62		
0201	5.32	0.67	5.99	1.65	1.29	0.38	2.24	3.32		
0210P	6.00	0.63	6.63	1.75	1.37	0.27	0.59	3.98		
0211P	5.61	0.96	6.57	1.61	1.25	0.25	0.54	3.65		
0220P	6.09	0.56	6.65	1.71	1.33	0.13	1.14	4.31		
0221P	5.70	0.95	6.65	1.56	1.22	0.12	1.05	3.95		
0230P	6.07	0.54	6.61	1.66	1.29	-	1.67	4.62		
0231P	5.64	0.83	6.47	1.53	1.19	10.42	1.54	4.26		
0300	6.14	0.45	6.59	1.35	2.02	0.42	4.100	3.79		
0301	6.07	0.51	6.58	1.23	1.84	0.38		3.45		
0310P	6.30	0.46	6.76	1.32	1.97	0.27	0.59	4.15		
0311P	6.20	0.49	6.69	1.21	1.80	0.25	0.54	3.80		
0320P	6.34	0.47	6.81	1.28	1.91	0.13	1.14	4.46		
0321P	5.95	0.53	6.48	1.17	1.76	0.12	1.05	4.10		
0330P	6.42	0.46	6.88	1.25	1.86	-	1.67	4.78		
0331P	6.18	0.54	6.72	1.15	1.71	-	1.53	4.39		

SERIES 2, 3 x 4 x 4 x 2 FACTORIAL SET OF MIXES

TABLE 8.1 Continued

MIX	ALKALI (CONTENT OF kg Na2Oeq/r	SPECIMENS m ³)	ALKALI CONTENT FROM MIX CONSTITUENTS * (kg Na ₂ O _{eq} /m ³)						
NO.	BAR	LIQUID*	BAR + LIQUID	CEMENT	P.F.A.	SAND	PYREX GLASS	E CONSTITUENTS		
1000	3.04	0.84	3.88	4.42		0.41	-	4.83		
1001	2.99	0.88	3.87	4.05		0.38	-	4.43		
1010P	3.70	0.77	4.47	4.31	-	0.27	0.58	5.16		
1011P	3.13	0.99	4.12	3.95	-	0.25	0.53	4.73		
1020P	5.25	0.57	5.82	4.20	-	0.13	1.14	5.47		
1021P	4.75	0.79	5.54	3.85	-	0.12	1.04	5.01		
1030P	5.66	0.42	6.08	4.09	-	-	1.66	5.75		
1031P	5.42	0.46	5.88	3.76	-	-	1.53	5.29		
1100	5.47	0.77	6.24	3.58	0.74	0.42	-	4.74		
1101	4.56	0.88	5.44	3.26	0.67	0.38	-	4.31		
1110P	6.09	0.74	6.83	3.48	0.72	0.27	0.59	5.06		
1111P	4.73	0.88	5.61	3.19	0.66	0.25	0.54	4.64		
1120P	6.35	0.64	6.99	3.38	0.70	0.13	1.14	5.35		
1121P	6.03	0.77	6.80	3.11	0.65	0.12	1.05	4.93		
1130P	7.13	0.54	7.67	3.30	0.68		1.66	5.64		
1131P	6.37	0.49	6.86	3.04	0.63		1.53	5.20		
1200	6.55	0.69	7.24	2.82	1.40	0.42	-	4.64		
1201	5.93	0.79	6.72	2.57	1.28	0.38	-	4.23		
1210P	6.51	0.68	7.19	2.74	1.36	0.27	0.59	4.96		
1211P	5.96	0.89	6.85	2.51	1.24	0.25	0.54	4.54		
1220P	7.38	0.59	7.97	2.66	1.33	0.13	1.14	5.26		
1221P	6.81	0.99	7.80	2.45	1.22	0.12	1.04	4.83		
1230P	7.77	0.51	8.28	2.59	1.29	-	1.66	5.54		
1231P	6.92	0.74	7.66	2.39	1.19	-	1.53	5.11		
1300	6.73	0.48	7.21	2.11	2.02	0.42		4.55		
1301	6.57	0.74	7.31	1.92	1.84	0.38		4.14		
1310P	6.75	0.65	7.40	2.05	1.96	0.27	0.59	4.87		
1311P	7.17	0.42	7.59	1.88	1.80	0.25	0.54	4.47		
1320P	7.35	0.73	8.08	2.00	1.91	0.13	1.14	5.18		
1321P	6.92	0.73	7.65	1.84	1.75	0.12	1.05	4.76		
1330P	7.51	0.57	8.08	1.94	1.86	-	1.67	5.47		
1331P	6.98	0.54	7.52	1.79	1.71	-	1.53	5.03		

TABLE 8.1 Continued

MIX	ALKALI (k	CONTENT OF g Na20eq/m	SPECIMENS 3)	A	ALKALI CONTENT FROM MIX CONSTITUENTS * (kg Na ₂ O _{eq} /m ³)					
NO.	BAR	LIQUID*	BAR + LIQUID	CEMENT	P.F.A.	SAND	PYREX GLASS	E CONSTITUENTS		
2000	5.53	1.62	7.15	7.16		0.41	03	7.57		
2001	4.27	1.60	5.87	6.56		0.38	• . •	6.94		
2010P	6.94	0.93	7.87	6.98		0.27	0.58	7.83		
2011P	6.40	1.02	7.42	6.40	-	0.25	0.53	7.18		
2020P	6.49	0.62	7.11	6.81	-	0.13	1.13	8.07		
2021P	7.66	0.65	8.31	6.25	-	0.12	1.04	7.41		
2030P	6.51	0.51	7.02	6.63	-	-	1.66	8.29		
2031P	5.72	0.40	6.12	6.10	-	2.45	1.52	7.62		
2100	7.14	1.03	8.17	5.79	0.74	0.41	0,27	6.94		
2101	6.24	1.20	7.44	5.30	0.67	0.38	0.40	6.35		
2110P	7.34	0.83	8.17	5.64	0.72	0.27	0.58	7.21		
2111P	7.39	1.19	8.58	5.17	0.66	0.25	0.53	6.61		
2120P	8.85	0.58	9.43	5.49	0.70	0.13	1.13	7.45		
2121P	8.13	0.84	8.97	5.04	0.65	0.12	1.04	6.85		
2130P	8.74	liquid	lost	5.35	0.68	-	1.66	7.69		
2131P	7.98	0.67	8.65	4.94	0.63	-	1.53	7.10		
2200	7.93	0.81	8.74	4.56	1.39	0.42	-	6.37		
2201	7.05	1.16	8.21	4.17	1.28	0.38	-	5.83		
2210P	7.89	0.80	8.69	4.45	1.36	0.27	0.58	6.66		
2211P	7.72	0.94	8.66	4.07	1.24	0.25	0.54	6.10		
2220P	8.35	0.72	9.07	4.33	1.33	0.13	1.14	6.93		
2221P	7.60	0.75	8.35	3.98	1.22	0.12	1.04	6.36		
2230P	8.30	0.61	8.91	4.21	1.29	10/- T	1.66	7.16		
2231P	7.96	0.64	8.60	3.87	1.18	-	1.53	6.58		
2300	8.47	0.68	9.15	3.42	2.01	0.42	-	5.85		
2301	7.69	0.68	8.37	3.12	1.84	0.38	- 199	5.34		
2310P	7.60	0.45	8.05	3.32	1.96	0.27	0.58	6.13		
2311P	6.83	0.73	7.56	3.04	1.79	0.25	0.53	5.61		
2320P	8.71	0.58	9.29	3.24	1.91	0.13	1.14	6.42		
2321P	7.74	0.68	8.42	2.98	1.75	0.12	1.05	5.90		
2330P	7.98	0.47	8.45	3.16	1.86	-	1.67	6.69		
2331P	8.22	0.76	8.98	2.90	1.71	-	1.53	6.14		

TABLE 8.2 COMPARISON OF RESULTS FROM THE CHEMICAL ANALYSIS OF THE ALKALI CONTENT OF THE MORTAR BARS AND LIQUIDS WITH THE ALKALIS PROVIDED BY THE MIX CONSTITUENTS

MIX REF.	ALKALI CONTENT OF SPECIMENS (kg Na ₂ O _{eq} /m ³)			A	ALKALI CONTENT FROM MIX CONSTITUENTS * (kg Na ₂ O _{eq} /m ³)					
NO.	BAR	LIQUID*	BAR + LIQUID	CEMENT	P.F.A.	SAND	PYREX	I CONSTITUENTS		
2032P	8.48	0.60	9.08	6.82			1.71	8.53		
2033P	8.51	0.57	9.08	6.45	-	1-35	1.61	8.06		
2034P	8.29	0.46	8.75	6.27	-	0.004	1.57	7.84		
2035P	7.53	0.58	8.11	5.94	-		1.49	7.43		
			1.00	3-37				57.50		
2041P	4.37	1.47	5.84	6.53	-	0.36	0.07	6.96		
2051P	4.42	1.42	5.84	6.53		0.35	0.13	7.01		
2061P	5.03	1.58	6.61	6.49		0.33	0.20	7.02		
2071P	4.71	1.34	6.05	6.48	-	0.31	0.26	7.05		
2431P	9.37	0.54	9,91	5.80	0.42	81.58 	1.45	7.67		
2531P	9.27	0.72	9,99	5.53	0.80		1.38	7.71		
2631P	9.29	0.93	10.22	5.28	1.13	1.5.18	1 32	7 73		
2731P	9.27	0.91	10 18	5.05	1 45	1.1.1	1 26	7.75		
27017	5.27	0.51		5.05	1.45		1.20	1.76		
3031P	3.85	0.55	4.40	2.68	1+81	1-11	2.27	4.95		
4031P	4.32	0.40	4.72	3.23	3-00	1-12	2.15	5.38		
5031P	5.21	0.52	5.73	3.74			2.04	5.78		
6031P	6.70	0.61	7.31	4.64	a et ales	-	1.85	6.49		

SERIES 2, EXTRA PYREX SET OF MIXES

TABLE 8.3

COMPARISON OF RESULTS FROM THE CHEMICAL ANALYSIS OF THE ALKALI CONTENT OF THE MORTAR BARS AND LIQUIDS WITH THE ALKALIS PROVIDED BY THE MIX CONSTITUENTS

MIX	ALKALI CONTENT OF SPECIMENS (Na ₂ O _{eq} kg/m ³)			A	ALKALI CONTENT FROM MIX CONSTITUENTS * (Na20 _{eq} kg/m ³)					
NO.	BAR	LIQUID*	BAR + LIQUID	CEMENT	P.F.A.	SAND	PYREX GLASS	I CONSTITUENTS		
2001	4.27	1.601	5.871	6.56	3.2.2	0.38	14 80 15 14	6.94		
2011B	6.63	0.097	6.727	6.27	1-1-2	0.24	0.12	6.63		
2021B	6.01	0.085	6.095	6.01	-	0.12	0.23	6.36		
2031B	5.47	0.118	5.588	5.77	-	-	0.33	6.10		
2041B	5.53	0.563	6.093	6.52	-	0.36	0.02	6.90		
2051B	6.15	0.312	6.462	6.48		0.34	0.03	6.85		
2061B	6.14	0.191	6.331	6.45	-	0.33	0.04	6.82		
2071B	6.41	0.194	6.604	6.42	·	0.31	0.06	6.79		
2301	7.69	0.676	8.366	3.12	1.84	0.38	1 20 100	5.34		
2311B	8.29	0.215	8.505	2.98	1.76	0.24	0.12	5.10		
2321B	7.59	0.134	7.724	2.87	1.68	0.12	0.23	4.90		
2331B	7.72	0.109	7.829	2.75	1.61	2.	0.33	4.69		
2341B	7.49	0.476	7.966	3.11	1.83	0.36	0.02	5.32		
2351B	7.90	0.307	8.207	3.09	1.8i	0.35	0.03	5.28		
2361B	7.84	0.297	8.137	3.08	1.81	0.33	0.05	5.27		
2371B	7.99	0.249	8.239	3.07	1.80	0.31	0.06	5.24		

SERIES 2, BELTANE OPAL SET OF MIXES

PAGE 9 ALKALI CONTENT RESULTS , ANOVAS & F-TESTS SERIES 2 ANALYSIS OF VARIANCE FOR 1-ST DEPENDENT VARIABLE - NA2OB

THE HIGHEST ORDER INTERACTION IN EACH TABLE HAS BEEN REMOVED FROM THE MODEL DUE TO ONE SUBJECT PER CELL.

SOURCE	EFFECT	SUM OF SQUARES	DEGREES OF FREEDOM	MEAN Square	F	TAIL Prob.
MEAN		3300,22240	1	3300-22240	20102-09	0.
CEMENT	A	107.35102	2	53.67554	326.94	0.
ΓFΛ	B	110,32031	3	36.79694	224.14	0.
AGGRGATE	С	16.40247	3	5.46749	33.30	0.0000
FREEWCON	D	5.26260	-	5.26260	32.06	0.0000
CP	AB	10.84227	6	1.80705	11.01	0.0000
CA	AC	2.85821	6	0.47637	2.90	0.0390
PA	BC	5.51241	9	0.61249	3.73	0.0094
CF	AD	0.00968	2	0.00484	0.03	0.9710
P F	BD	0.35211	3	0.11737	0.71	0.5565
ΛF	CD	0.06548	3	0.02183	0.13	0.9391
CPA	ABC	4.30106	18	0.23895	1.46	0.2220
CPF	ABD	0.38996	6	0.06499	0.40	0-8715
CAF	ACD	0.80689	6	0.13448	0.82	0-5702
PAF	BCD	0.27141	9	0.03016	0.18	0.9932
ERROR		2.79094	17	0.16417		

TABLE 8.4 ANOVA TABLE FOR CHEMICAL ANALYSIS RESULTS - BARS ONLY

-281

1

PAGE 10 ALKALI CONTENT RESULTS , ANOVAS & F-TESTS SERIES 2 ANALYSIS OF VARIANCE FOR 2-ND DEPENDENT VARIABLE - NA2OL

THE HIGHEST ORDER INTERACTION IN EACH TABLE HAS BEEN REMOVED FROM THE MODEL DUE TO ONE SUBJECT PER CELL.

SOURCE	EFFECT	SULL OF	DEGREES OF	MEAN	F	TAIL
		SQUARES	FREEDON	SQUARE		PROB.
MEAN		48.46124	1	48.46124	5463.44	0.
CEMENT	Α	0.20428	2	0.10214	11.52	0.0007
PFA	В	0.78014	3	0.26005	29.32	0.0000
AGGRGATE	С	0.69605	3	0.23202	26.16	0.0000
FREEWCON	D	0.50074	1	0.50074	56.45	0.0000
CP	AB	0.16179	6	0.02696	3.04	0.0330
CA	AC	1.06500	6	0.17750	20.01	0.0000
PA	BC	0.40001	9	0.04445	5.01	0.0021
CF	AD	0.02612	2	0.01306	1.47	0.2572
PF	BD	0.07667	3	0.02556	2.88	0.0663
AF	CD	0.02167	3	0.00722	0.81	0.5036
CPA	ABC	0.83751	18	0.04653	5.25	0.0006
CPF	ABD	0.09778	6	0.01630	1.84	0.1513
CAF	ACD	0.05257	6	0.00876	0.99	0.4639
PAF	BCD	0.04760	9	0.00529	0.60	0.7831
ERROR		0.15079	17	0.00887		

TABLE 8.5 ANOVA TABLE FOR CHEMICAL ANALYSIS RESULTS - LIQUIDS ONLY

-282-

1

PAGE 11 ALKALI CONTENT RESULTS , ANOVAS & F-TESTS SERIES 2 ANALYSIS OF VARIANCE FOR 3-RD DEPENDENT VARIABLE - NA2OBL

THE HIGHEST ORDER INTERACTION IN EACH TABLE HAS BEEN REMOVED FROM THE MODEL DUE TO ONE SUBJECT PER CELL.

SOURCE	EFFECT	SUM OF	DEGREES OF	MEAN	F	TAIL
		SUUARES	FREEDUM	SQUARE		PRUB.
MEAN		4148.51582	1	4148.51582	26130.27	0.
CEMENT	Α	115.54290	2	57.77145	363.89	0.
PFA	В	98.78341	3	32.92780	207.40	0.
AGGRGATE	С	11.65966	3	3.88655	24.48	0.0000
FREEWCON	D	2.51668	1	2.51668	15.85	0.0010
CP	AB	11.04914	6	1.84152	11.60	0.0000
CA	AC	2.38920	6	0.39820	2.51	0.0634
PA	BC	3.71499	9	0.41278	2.60	0.0429
CF	AD	0.06716	2	0.03358	0.21	0.8115
PF	BD	0.13658	3	0.04553	0.29	0.8343
AF	CD	0.10760	3	0.03587	0.23	0.8771
CPA	ABC	4.28273	18	0.23793	1.50	0.2047
CPF	ABD	0.35379	6	0.05896	0.37	0.8871
CAF	ACD	0.72995	6	0.12166	0.77	0.6064
PAF	BCD	0.38531	9	0.04281	0.27	0.9747
ERROR		2.69897	17	0.15876		

NUMBER OF INTEGER WORDS OF STORAGE USED IN PRECEDING PROBLEM 12648 CPU TIME USED 53.153 SECONDS

TABLE 8.6 ANOVA TABLE FOR CHEMICAL ANALYSIS RESULTS - BARS + LIQUIDS

·283-

1

TABLE 8.7 SUMMARY OF ANOVA TABLES FOR CHEMICAL ANALYSIS RESULTS CONTRACTION CONTRACTOR

				Significance level	of effect
	Source of Variation		Alkali Content of Bar	Alkali Content of Liquid	Alkali Content of Overall System (Bar + Liquid)
	Cement	-A		•	
MAIN	P.f.a.	-B	•	-B.A. •	· · · · · · · · · · · · · · · · · · ·
EFFECTS	Aggregate	-C	•	2.49 • 2.39	•103
	Free water content	-D	•	A.40 • . A.29	• 9%
		AB	*	***	1
lst		AC	***	-1.32 •	****
ORDER		BC	**	2.45	***
INTER-		AD	0	0	0
ACTIONS		BD	0	5.35 *** %.ER	0
		CD	0	0	0
2nd		ABC	0	0 3.65	0
ORDER		ABD	0	4.42 • 34.75	0
INTER-	23	ACD	0	0 0 0	0
ACTIONS		BCD	0	0	0
	12	6,61	3.88	2.15 2.30	I Test 2

 Notes:- * =
 Tail probability ≤ 0.0010 ;
 Significance level ≥ 99.9%

 ** = 0.0010 < Tail probability ≤ 0.0100 ;</td>
 99.9% > Significance level ≥ 99%

 *** = 0.0100 < Tail probability ≤ 0.0500 ;</td>
 99% > Significance level ≥ 95%

 **** = 0.0500 < Tail probability ≤ 0.1000 ;</td>
 95% > Significance level ≥ 90%

 0 = 0.1000 < Tail probability ≤ 0.1000 ;</td>
 95% > Significance level ≥ 90%

 0 = 0.1000 < Tail probability < 90% > Significance level

		Alkali Content (kg Na2 ⁰ eq/m ³)									
Mix	Bar	Liquid	A	B	С	D	Percentage				
Ref	Alkali	Alkali	Bar +	Alkali	A - B	Total Alkali	Reaction				
No.	Content	Content	Liquid	Content		Content	= C/D x 100%				
				From Cement		From P.f.a.	AND STREET				
		*		•		• • • • • • •	mouther a 2				
					1		THE PER				
0000	1.83	0.39	2.22	2.84	-0.62	-					
0100	3.98	0.71	4.69	2.29	2.40	2.53	95%				
0200	5.79	0.60	6.39	1.80	4.59	4.79	96%				
0300	6.14	0.45	6.59	1.35	5.24	6.89	76%				
				. U. 13	1		4.78				
0001	1.56	0.51	2.07	2.59	-0.52	34 . 1.80	1.15 4.5				
0101	3.76	0.81	4.57	2.09	2.48	2.32	107%				
0201	5.32	0.67	5.99	1.65	4.34	4.39	99%				
0301	6.07	0.51	6.58	1.23	5.35	6.29	85%				
			- C				4.85 2.11				
1000	3.04	0.84	3.88	4.42	-0.54	36 . 3.25	1.00				
1100	5.47	0.77	6.24	3.58	2.66	2.53	105%				
1200	6.55	0.69	7.24	2.82	4.42	4.79	92%				
1300	6.73	0.48	7.21	2.11	5.10	6.89	74%				
1001	2.99	0.88	3.87	4.05	-0.18		-				
1101	4.56	0.88	5.44	3.26	2.18	2.30	95%				
1201	5.93	0.79	6.72	2.57	4.15	4.36	95%				
1301	6.57	0.74	7.31	1.92	5.39	6.29	86%				
			1.00								
2000	5.53	1.62	7.15	7.16	-0.01	-	-				
2100	7.14	1.03	8.17	5.79	2.38	2.53	94%				
2200	7.93	0.81	8.74	4.56	4.18	4.76	88%				
2300	8.47	0.68	9.15	3.42	5.73	6.86	84%				
2001	4.27	1.60	5.87	6.56	-0.69	C	-				
2101	6.24	1.20	7.44	5.30	2.14	2.30	93%				
2201	7.05	1.16	8.21	4.17	4.04	4.36	93%				
2301	7.69	0.68	8.37	3.12	5.25	6.29	83%				
		0.00	0.07		0.120						

TABLE 8.8 ESTIMATION OF PERCENTAGE REACTION OF P.F.A. FOR MIXES CONTAINING NO REACTIVE AGGREGATE, NO ALLOWANCE MADE FOR ORIGINAL ALKALI CONTENT OF SAND OR P.F.A.

				ALKALI	CONTENT (kg Na20eq/m	n ³)				
MIX	BAR	LIQUID	A	b1	b2	b3	В	С	D	E	103
NO.	ALKALI CONTENT	ALKALI CONTENT	BAR + LIQUID	ALKALI CONTENT FROM CEMENT	ALKALI CONTENT FROM P.F.A	ALKALI CONTENT FROM SAND	b	A - B	TOTAL ALKALI CONTENT FROM PFA	D - 62	PERCENTAGE REACTION = C/Ex100%
0000	1.83	0.39	2.22	2.84		0.42	3.26	-1.04		12	-
0100	3.98	0.71	4.69	2.29	0.74	0.42	3.45	1.24	2.53	1.79	69%
0200	5.79	0.60	6.39	1.80	1.40	0.42	3.62	2.77	4.79	3.39	82%
0300	6.14	0.45	6.59	1.35	2.02	0.42	3.79	2.80	6.89	4.87	57%
0001	1.56	0.51	2.07	2.59	-	0.38	2.97	-0.90			1.1
0101	3.76	0.81	4.57	2.09	0.68	0.38	3.15	1.42	2.32	1.64	87%
0201	5.32	0.67	5.99	1.65	1.29	0.38	3.32	2.67	4.39	3.10	86%
0301	6.07	0.51	6.58	1.23	1.84	0.38	3.45	3.13	6.29	4.45	70%
1000	3.04	0.84	3.88	4.42	-	0.41	4.83	-0.95	-		-
1100	5.47	0.77	6.24	3.58	0.74	0.42	4.74	1.50	2.53	1.79	84%
1200	6.55	0.69	7.24	2.82	1.40	0.42	4.64	2.60	4.79	3.39 .	77%
1300	6.73	0.48	7.21	2.11	2.02	0.42	4.55	2.66	6.89	4.87	55%
1001	2.99	0.88	3.87	4.05		0.38	4.43	-0.56		P. 6	
1101	4.56	0.88	5.44	3.26	0.67	0.38	4.31	1.13	2.30	1.63	69%
1201	5.93	0.79	6.72	2.57	1.28	0.38	4.23	2.49	4.36	3.08	81%
1301	6.57	0.74	7.31	1.92	1.84	0.38	4.14	3.17	6.29	4.45	71%
2000	5.53	1.62	7.15	7.16		0.41	7.57	-0.42	-		-
2100	7.14	1.03	8.17	5.79	0.74	0.41	6.94	1.23	2.53	1.79	69%
2200	7.93	0.81	8.74	4.56	1.39	0.42	6.37	2.37	4.76	3.37	70%
2300	8.47	0.68	9.15	3.42	2.01	0.42	5.85	3.30	6.86	4.85	68%
2001	4.27	1.60	5.87	6.56	•	0.38	6.94	-1.07		-	-
2101	6.24	1.20	7.44	5.30	0.67	0.38	6.35	1.09	2.30	1.63	67%
2201	7.05	1.16	8.21	4.17	1.28	0.38	5.83	2.38	4.36	3.08	77%
2301	7.69	0.68	8.37	3.12	1.84	0.38	5.34	3.03	6.29	4.45	68%

TABLE 8.9 ESTIMATION OF PERCENTAGE REACTION OF P.F.A. FOR MIXES CONTAINING NO REACTIVE AGGREGATE, FULL ALLOWANCE MADE FOR ORIGINAL ACID SOLUBLE ALKALI CONTENT OF SAND AND P.F.A.

-287-

Figure 8.2

Figure 8.3

-288-

-289-

Figure 8.6

-290-

Figure 8.9

-291-

Figure 8.10

Figure 8.11

-292-

Figure 8.12

-293-

Figure 8.14

40

-295-

9.1 COMPARISON OF THE EXPERIMENTAL RESULTS WITH PUBLISHED INFORMATION

In Chapters 6 and 8 the experimental results were presented and their meaning discussed. Following on from this discussion the results will now be compared with other similar information gained from comparable experimental investigations. The literature referred to originates primarily from British based research but extends to overseas work if no suitable British reference could be found.

9.1.1 Mortars containing Pyrex Glass

The order of magnitude of the expansion results obtained from the mortar bars containing Pyrex glass compares favourably with the results from similar research investigations which have been published. In particular Nixon and Gaze of B.R.E. (60) and Buttler et al (69) have produced results showing expansions for the most highly reactive mixes in the region of 5000 to 6000 μ E at 6 months.

The basic effects produced by the experimental work, and discussed in detail in Chapter 6, are summarised below.

- (i) Expansion increased with increasing cement alkali
 content within the range 0.46% to 1.17% Na₂O_{eg}
- (ii) Expansion was reduced by the inclusion of p.f.a. in the

mix as a partial replacement of the cement content. Greater reduction was achieved by increased cement replacement in the range 15% to 45%.

- (iii) Pyrex glass did not exhibit a pessimum content below a concentration of 100% expansion increasing with increasing concentration of Pyrex glass.
- (iv) There was a pessimum effect associated with free water/cement ratio, with increased expansion being promoted by increasing free water/cement ratio in the range 0.30 to 0.55 followed by a reduction in expansion with a further increase in free water/cement ratio to 0.60.

Each of these effects is consistent with the findings from work already published (55, 60, 69) notwithstanding the slight variations that have been noted in certain instances.

With respect to cement alkali content, within the range dictated by the experimental materials employed, there seems little doubt that expansions increase with increasing alkali content. This is confirmed by published British research (69) and dates back to Stanton's original report (1).

Results produced using p.f.a. as a cement replacement material have not always produced consistent results for expansion reduction. Buttler et al (69) found that under some circumstances there was an optimum content for p.f.a., above which expansion began to increase again. There was no

-297-

evidence of such an effect from the observations produced by the present investigation despite the p.f.a. used being from one of the sources used in this earlier research investigation.

The trend for increasing expansion with increasing Pyrex glass concentration throughout the range 0% to 100% is the most common observation. However, Figg (59) has commented that Pyrex glass can produce a pessimum effect. In the present investigation one set of expansion results did indicate the possibility of a pessimum value in the range 33.3% to 100%. This occurred only for the mixes containing the highest alkali cement in conjuction with the lower free water content.

The pessimum effect with free water/cement ratio is in agreement with the work published by Lenzner (55), though the values obtained are slightly different. Lenzner achieved maximum expansion for a water/cement ratio of 0.60 as compared with the value of 0.55 obtained in the present investigation. The close relationship between these two values is worthy of note since Lenzner's work was carried out using a reactive opaline sandstone and not Pyrex glass.

9.1.2 Mortars containing Beltane Opal

The pessimum behaviour observed for Beltane opal, is consistent with the effect found by other research investigations using the same material. This work is well documented in the literature. In particular, Hobbs et al of the C α C A have published information on this subject which

-298-

was derived from experimental work conducted in the UK (21, 45, 53, 92). In this work, for mortars having mix proportions similar to those specified in the A.S.T.M. mortar bar test, Hobbs generally found the pessimum to be in the region of 2.5% to 6% by weight of total aggregate. This compares favourably with the value of 4% gained from the results of the Series 2 mortar bar tests conducted in the present investigation. The similarity of the results does not, however, extend to the remaining characteristics of the expansion versus Beltane opal content curve.

In Figure 9.1 the expansion versus Beltane opal content curves are compared for the results obtained in the present investigation and the results published by Hobbs (21). Both the form of the overall curve and the scale of the measured expansions are shown to be significantly different.

Considering the difference in the magnitude of the expansion values, those obtained by Hobbs are in the region of a factor of thirty larger than the expansions observed in the present investigation. To find the possible reasons for this vast difference the two experimental regimes require careful comparison.

The experimental methods employed by Hobbs were different with respect to the following details

(i) the particle size of the reactive aggregate
(ii) the storage temperature for the specimens
(iii) the type of storage container used

-299-

(iv) the technique used to monitor any length changes.

The latter two differences are not considered to be of major importance except that it does not seem clear whether or not the type of storage container used by Hobbs would allow the mortar bar specimens to be in continuous contact with the reservoir of water. This could possibly have a considerable effect on the expansion level. However, it is the storage temperature and, in particular, the particle size of the reactive aggregate which are considered to be of fundamental importance and merit further discussion.

Some of the early work by Hobbs (53) studied the effect of particle size on the expansion level. At the pessimum concentration, it was shown that Beltane opal in the particle size range of 150µm to 300µm produced the greatest expansion in comparison to the other size ranges used. These other size ranges were 300µm to 600µm, 600µm to 1.2mm and 2.4 to 4.8mm. Consequently, all further work by Hobbs et al included the Beltane opal in the 150µm to 300µm size fraction only, as compared with the present investigation where equal proportions were used in each of five size fractions between 150µm and 4.75mm.

With respect to storage temperature, the ASTM temperature of 37.8°C was not used by Hobbs. The storage temperature selected was 20°C, this being the normal storage temperature for concrete specimens made to British Standard methods.

These two features, in conjunction with the known chemical and

-300-

physical properties inherent to Beltane opal, may provide a possible reason for the different scales of expansion from the two experimental programmes. It is recognised that Beltane opal is a very highly reactive material in the sense of alkali silica reaction and that as a material it is very porous. In the present investigation Beltane opal was found to have a water absorption coefficient of 3.2%. Further details on the general chemical and physical properties of the material are provided by Gutteridge and Hobbs (57) who analysed Beltane opal and concluded that it contained 82%, by weight, of potentially alkali-reactive siliceous material.

In the present investigation, the use of equal proportions of Beltane opal in the five particle size ranges must produce a considerably different surface area to weight ratio than that produced by using Beltane opal entirely in the smallest particle size range. It seems reasonable to contend that the smaller particles will react more quickly than the larger particles, since the smaller particles offer a greater concentration of available reactive sites per unit mass.

To some extent the porous nature of the aggregate will offset this effect by allowing ready access to reactive sites other than those on the external surface. However, it is considered that this counter effect is unlikely to be sufficiently large as to neutralise the particle size contribution. The main contribution of the porous nature of Beltane opal probably lies in the ability of the larger reactive particles to absorb the initial quantities of the reaction product, namely the gel, and allow it to expand

-301-

unhindered and without imparting internal stress to the mortar.

The combination of high porosity and lower surface area to weight ratio of the larger particles may result in the reaction starting more slowly in addition to the initial expansion being absorbed. Both of these effects will tend to reduce both the early and the ultimate expansion.

Part of this hypothesis may appear contradictory to the discussion given by Hobbs (53). He concluded that for particle sizes from 150µm to 2.4mm, the factor controlling the rate of gel production is the chemical reaction itself, which takes place between the hydroxyl ions and the reactive silica. The basis for this conclusion was that the graphs of expansion versus reactive aggregate content were found not to broaden with increasing particle size within the defined limits, it being considered that they would broaden if particle surface area were having a significant effect. However, for the largest particle size range of 2.4mm to 4.8mm some broadening of the curve was found to be evident and it was concluded that diffusion of the hydroxyl ion was therefore beginning to be important. This implies a surface area to weight ratio related effect.

If the Hobbs description is correct, it does not necessarily negate the explanation presented earlier, since the largest particle size range represents a 20% proportion of the total reactive material employed in the present investigation. In addition, the work published by Hobbs did not include the

-302-

second largest size of reactive aggregate, namely 1.18mm to 2.36mm which may also fall into the 'broadening' category.

The small particle size of the Beltane opal used by Hobbs is therefore likely to produce a higher level of expansion. This is due to the probability that the small particles will react more quickly and have a reduced ability to absorb the expanding gel.

The other major difference between the two experimental regimes is the storage temperature, where the lower value is associated with the higher expansion. It is difficult to see how the lower storage temperature could increase the rate of A.S.R. and thus influence expansion. Consequently the most likely contribution made by the temperature is that the high value of 38°C may have a secondary effect by accelerating the curing rate of the mortar. This would enable the mortar to withstand the expansive forces more successfully and accordingly reduce the expansion value obtained.

Given the considerable difference in the particle size ranges utilised for the Beltane opal, and the effect which particle size is known to have on expansion, the similarity of the values obtained for the pessimum reactive aggregate content might be somewhat unexpected. If, however, the critical factor which determines the maximum expansion is the alkalisilica ratio, as has been suggested in the literature (45, 60, 94), then the particle size should not have a serious effect on the position of the pessimum. This ratio is between the amount of alkalis available to produce OH⁻ and the amount of

-303-

silica available for reaction. Hence it may be more appropriate to refer to the effective alkali-reactive silica ratio, since materials such as Beltane opal contain both reactive and non-reactive forms of silica.

The second difference noted between the characteristics of the expansion versus Beltane opal content curves shown in Figure 9.1 was the form of the overall curve. This is mainly concerned with the higher Beltane opal concentrations, that is above the pessimum value. The curves reproduced from the work by Hobbs are shown to fall steeply after the pessimum and attain an expansion value of virtually zero. From the results obtained in the present investigation, however, for Beltane opal contents above 16% the curve is shown to increase again. For the 12 month results, the curve plotted in Figure 9.2 shows that the mix containing 100% Beltane opal produced an expansion which was approximately 60% of the value observed at the pessimum. This is a highly significant proportion of the pessimum value, particularly when considering the very localised nature of the pessimum effect itself. Moreover. another feature of the curve in Figure 9.2 is that the slope upwards to the secondary maximum expansion at 100% Beltane opal content is continuous for all mixes above 16% Beltane opal content.

Examination of the same curve, but plotted for the 14 day results, reveals that its form changes progressively with time. At this early age the pessimum remains at 4% Beltane opal content, but the minimum expansion for Beltane opal concentrations above the pessimum is not reached until 66.6%.

-304-

Figure 9.3 shows the set of curves for the four ages of measurement, namely 14 days, 2 months, 6 months and 12 months. Comparison of these curves shows that there is a transition with time with respect to the form of the curve beyond the pessimum. Two effects are apparent, firstly the point of minimum expansion moves from 66.6% Beltane opal content at 14 days to 12% Beltane opal content at 12 months and secondly the slope of the curve beyond the minimum shows some evidence of getting progressively steeper with time.

This transitional effect towards relatively greater expansions with the higher Beltane opal concentration mixes at later ages, is considered to be evidence of a slower reaction taking place in the larger Beltane opal particles and the capacity of these particles to absorb a certain initial quantity of gel. In the lower Beltane opal concentration mixes there is not sufficient quantity of the larger particles to significantly add to the early expansions observed around the pessimum. However, for the higher Beltane opal concentrations the amount of material available for the slower expansion is large enough to create the observed effect.

It is interesting to note from Figure 9.3 that, on a much reduced expansion scale, the graph of expansion versus Beltane opal content for the later ages of measurement begins to look more like the equivalent curve for Pyrex glass except for the very localised and extraordinary discontinuity represented by the pessimum.

-305-

In the foregoing Section 9.1 the results gained from the present investigation were compared with relevant published information. Following on from this discussion, the results from within the present investigation will now be examined with respect to the important behavioural differences noted between Pyrex glass and Beltane opal.

It is known that the alkali-silica reaction occurs between hydroxyl ions (OH⁻) and reactive silica (SiO₂). Both Pyrex glass and Beltane opal are primarily composed of silica, not all of which is in a reactive form. There are, however, significant differences between the two materials with respect to their subsidiary composition, as shown below in the chemical analyses for typical samples:-

Pyrex Glass	Si02	80.20%	Beltane opal	\$10 ₂	91.38%
	A1203	2.33%		A1203	2.10%
	Fe ₂ 03	0.11%		Fe2 ⁰ 3	0.13%
	К ₂ 0	0.10%		K ₂ 0	0.20%
	Na20	4.07%		Na ₂ 0	0.10%
	MgO	0.02%		MgO	0.10%
	Others	13.13%	Loss on ignit	tion, as	H ₂ 0 5.60%

as CO₂ 0.30%

(Pyrex glass - Corning Ware (after Gutteridge Glassworks, after Figg (59)) and Hobbs (57)) The Beltane opal composition shows that it is only an 'acid' type system due to its very low proportion of alkaline material represented as K₂O and Na₂O, which combine together

-306-

to give a total alkali content of 0.23% Na₂O_{eq}. This compares favourably with the value of 0.20% obtained from the analysis conducted on the Beltane opal used for the present work.

Conversely, the Pyrex glass contains a considerable amount of alkalis and therefore constitutes a 'basic' type system in addition to the main 'acid' system. For the Pyrex glass used in the Series 2 set of experiments from the present investigation a value of 3.06% Na₂O_{eq} was obtained by chemical analysis. This again compares favourably with the value of 4.14% Na₂O_{eq} obtained by combining the two individual alkali content figures from the typical analysis listed above.

The high level of alkaline material in the Pyrex glass means that it is not only able to react with the OH^- in the pore fluids because of its reactive silica content but that it is also a source of Na⁺ and K⁺. Thus the Pyrex glass can be its own source of positive counter ions, which help to maintain electrical neutrality during A.S.R.. In addition, the production of the Na⁺ and K⁺ ion may assist in enhancing the OH^- concentration in the pore fluids and thereby generate reactive sites as the A.S.R. progresses.

The Beltane opal, on the other hand, has less ability to provide its own positive counter ion and is therefore less likely to generate OH⁻. Thus, it is more reliant on those positive ions found in the pore fluids and acts to reduce the OH⁻ concentration as A.S.R progresses. Therefore, Beltane opal has less ability to generate reactive sites as the reaction proceeds.

-307-

Beltane opal, then, appears to be a much better 'sink' for OHsince, as the A.S.R. proceeds, it is constantly drawing on the OH⁻ from the pore fluids without generating any in return. The only significant source of OH- remains the cement, as a result of the calcium hydroxide $(Ca(OH)_2)$ produced during the normal hydration process of all Portland cements and the alkalis which differ in concentration for different cements. The $Ca(OH)_2$ is relatively insoluble in water and therefore only maintains a pH level of about 12. This is the pH value which would be expected for a low alkali cement and consequently would not be expected to support A.S.R. if the alkali content of the cement is a critical factor. The sodium and potassium alkalis, however, are more readily soluble and for high alkali cements boost the pH up to a value which can support vigorous A.S.R..

The action of Beltane opal as a 'sink' for OH⁻ may be sufficient to quickly reduce the pH of the pore fluids in the vicinity of the reactive particles to a level below the threshold value required for A.S.R.. Conversely the Pyrex glass assists in maintaining a pH level above any threshold which may exist. Threshold values have also been discussed by Hobbs (45).

The additional material which can effect the alkali balance of the pore fluids is p.f.a., which in some respects seems to act in a similar manner to Pyrex glass. P.f.a. is composed primarily of silica and reacts strongly with OH⁻. Moreover, as it reacts, because of its high alkali content, the p.f.a. releases alkalis into the pore fluids. Initially most of the

-308-

alkali in the p.f.a. is in solid solution within the glassy matrix of the particles and therefore not available to enter the pore fluids. However, in Chapter 8 it was shown that these alkalis are released as the pozzolanic reaction progresses. Again this release of alkalis could produce an increase in the OH- concentration.

The p.f.a. is apparently able to react at OH⁻ concentrations below the apparent threshold for A.S.R. with Pyrex glass or Beltane opal. The level of OH⁻ concentration produced by the $Ca(OH)_2$ only would appear to be sufficient for the pozzolanic reaction to occur, but higher concentrations are likely to accelerate the process.

In addition to the differences in the chemistry of the two reactive aggregates, there is one very important physical difference, this being the porosity of the materials. The highly porous nature of the Beltane opal was discussed in Section 9.1.2 and results in the material having a high coefficient of water absorption. The Pyrex glass, however does not have this porous characteristic and yields a water absorption coefficient of effectively zero.

The differences in expansion behaviour of mortars containing Pyrex glass and Beltane opal, both with and without p.f.a. in the mix, will now be discussed in light of these physical and chemical differences inherent in the two materials. The discussion will centre on the apparent differences shown by each material with respect to their relative affinities for the hydroxyl ion.

-309-

To review the discussion of Chapter 6, in the absence of p.f.a., two fundamental differences were noted from the Series 2 experimental results regarding the expansion data obtained from mortar bars containing either Pyrex glass or Beltane opal as the reactive aggregate. These differences are that the expansions gained from bars containing Pyrex glass were an order of magnitude greater than those gained using Beltane opal and that the Beltane opal aggregate produce a marked pessimum concentration of approximately 4% by weight of total aggregate.

The difference in the scale of the expansion data obtained is further demonstrated in Figures 9.4 and 9.5 where, for all reactive aggregate concentrations except the pessimum for Beltane opal, the Pyrex glass promotes larger expansions. This occurs despite the probability that Pyrex glass contains less reactive silica than the extremely reactive Beltane opal.

The explanation for the difference in expansion levels is considered to involve the particular experimental regime used for the laboratory specimens in addition to physical and chemical differences inherent in the materials. It is these physical and chemical differences which will be discussed initially.

Firstly, there is the ability of the Beltane opal to act as a much better 'sink' for OH⁻ than the Pyrex glass, thus tending to reduce the OH⁻ concentration. Secondly, the very porous

-310-

nature of the Beltane opal has been discussed as a possible mechanism for reaction to proceed without any expansion in the initial stages. This feature has been linked, in particular, to the larger Beltane opal particles. Pyrex glass does not have this porous characteristic and, therefore, does not offer any facility to allow the gel to expand in an unrestrained manner. For mortars containing reactive aggregate of fairly large particle size, if similar amounts of gel are produced then more expansion may be anticipated with the Pyrex glass mixes. Both these features of Beltane opal would, then, tend to reduce the amount of expansion caused by Beltane opal in comparison to that produced by Pyrex glass.

In addition, Beltane opal has been shown by Hobbs (21, 45, 53) to be capable, under different laboratory and experimental conditions, of producing expansions which exceed by a factor of thirty those measured in the present investigation. Such an expansion level is considerably greater than that produced by the most highly expansive mortar containing Pyrex glass from the Series 2 set of experiments. This could be an indication that the A.S.T.M. mortar bar method represents ideal conditions for expansion with Pyrex glass but poor conditions for expansion with Beltane opal.

At the pessimum concentration the expansion produced by Beltane opal is seen in Figure 9.4 to exceed the corresponding expansion due to Pyrex glass. The expansion of the Pyrex glass mix is in line with the low concentration of reactive aggregate and follows the general trend of the expansion versus reactive aggregate curve. Thus, the reversal of the

-311-

normal relationship between the expansions produced by the two reactive materials is entirely associated with the apparently disproportionate amount of expansion produced by the Beltane opal at its pessimum.

At the pessimum the Beltane opal effectively offers few reactive sites and is fully saturated with OH⁻, that is the optimum reactive combination exists ⁽⁹⁴⁾. This situation has been described by Hobbs ⁽⁴⁵⁾ as one where complete reaction of the Beltane opal will just reduce the OH⁻ concentration in the pore fluids to the threshold level. Both these explanations relate to the pessimum being the occurrence of the most critical value of the alkali/silica ratio, resulting in an extraordinary level of expansion.

9.2.2 Mixes including P.F.A.

When the 45% level of p.f.a. was included in the mix containing the pessimum Beltane opal content a dramatic reduction of approximately 50% was achieved in the measured expansion. At all other Beltane opal concentrations an opposite effect was observed with the p.f.a. resulting in an increased expansion value. The increase, however, was less marked than the 50% reduction at the pessimum. These two different effects are illustrated in Figure 9.6.

For 45% p.f.a. used in conjunction with Pyrex glass, a reduction in the measured value of expansion of approximately 90% was observed for all the Pyrex glass concentrations that were examined.

-312-

It is therefore apparent that there is a considerable difference between the responses of the two reactive aggregates to the use of p.f.a.. Despite this difference, however, for all the reactive aggregate concentrations used in conjunction with p.f.a. and both types of reactive aggregate, namely 33.3%, 66.6% and 100%, the expansion for the mixes including Beltane opal remained below its Pyrex glass equivalent. This is demonstrated in Figure 9.7. The two curves, however, become very much closer together when p.f.a. is introduced into the mix, as can be seen by comparing Figure 9.7 and Figure 9.5.

At the lower reactive aggregate concentrations of 4%, 8%, 12% and 16% the mixes containing p.f.a. were not included in the experimental work with Pyrex glass. However, on Figure 9.8 the curves for the equivalent Pyrex glass mixes without p.f.a. have been superimposed over the curves for the Beltane opal mixes which did include p.f.a.. The comparison of the pairs of curves obtained indicates that, except for the 4% and 8% concentrations, the curves for Pyrex glass remain above the corresponding curves for Beltane opal. This presumes that the p.f.a. would not have caused any increase in expansion for any of the Pyrex glass mixes which would be in keeping with all the results which have been obtained in the current investigation.

Now, let us firstly consider the case of Pyrex glass and p.f.a.. The experimental results show that, for all the Pyrex glass concentrations investigated, the introduction of p.f.a. causes a reduction in expansion. This observation

-313-

extends over all the results obtained for the three levels of cement replacement that were employed, that is 15%, 30% and 45% p.f.a.. The inference is, then, that the p.f.a. has a much higher affinity for OH⁻ than the Pyrex glass. This is further substantiated by Table 9.1 where the mass ratio of Pyrex glass to p.f.a. is calculated for each of the nine mixes containing both materials. The data show that even when the mass ratio of Pyrex glass : p.f.a. is 15.7 : 1, as in Mix Ref 2131P, a reduction in expansion was still achieved. Thus, the p.f.a. has a far more preferential reaction with OH⁻ and may be considered to starve the Pyrex glass of the OH⁻ concentration it requires for A.S.R. to proceed.

The explanation must now be extended to the expansion gained from mixes containing Beltane opal. It has been stated earlier that Beltane opal contains a very high proportion of potentially reactive material (over 80%). In addition, a typical Pyrex glass contains approximately 80% of siliceous material, not all of which will be in reactive forms. Consequently, it is most likely that the Beltane opal contains considerably more reactive material and will therefore have a much higher affinity for OH⁻. This being true, two possibilities remain with respect to OH⁻ affinity, and they are:-

Beltane opal > p.f.a. > Pyrex glassCASE Ap.f.a. > Beltane opal > Pyrex glassCASE B

If CASE B were correct, then, based on the argument put forward for the Pyrex glass mixes, it would be anticipated

-314-

that p.f.a. would reduce expansions for Beltane opal mixes. This is clearly shown by the expansion results to not be the general observation, which indicates that CASE A may provide the answer.

For all Beltane opal concentrations above the pessimum the p.f.a. fails to reduce the measured expansion and actually has the opposite effect (see for example Figure 9.9). The only feasible situation with respect to OH⁻ affinity is, therefore, that the Beltane opal has a greater affinity than the p.f.a.. However, despite this situation under normal circumstances, at the pessimum concentration where the non-p.f.a. mix produces such an extraordinarily large expansion, the introduction of p.f.a. into the mix results in a reduction in expansion (see Figure 9.10). Thus, it appears that at the pessimum the p.f.a. does maintain a preferential reaction with the OH⁻ and thereby starve the Beltane opal from reaction.

This may arise from the occurrence of the pessimum at such a low Beltane opal concentration and does not necessarily imply that CASE B, above, applies at the pessimum. It is possible that the large amount of p.f.a. in comparison to the small amount of Beltane opal is sufficient to make up for the difference in their relative affinities for OH⁻.

At the next higher Beltane opal concentration of 8% the situation is already back to normal, the p.f.a. causing a slight increase in expansion (Figure 9.9). Thus, the difference in the amount of p.f.a. relative to the amount of Beltane opal is no longer sufficient to compensate for their

-315-

different affinities for OH⁻.

In Table 9.2 the mass ratio of Beltane opal to p.f.a. is calculated for each of the seven mixes containing both materials. From this data it can be seen that at the pessimum there is 4.3 times the quantity of p.f.a. than Beltane opal, whereas for the 8% Beltane opal concentration this ratio is reduced to 2.2. It may be deduced, therefore, that the relative affinity for OH⁻ between Beltane opal and p.f.a. is somewhere between 2.2 and 4.3 and that CASE A, above, satisfies all the expansions observed in the present investigation.

The discussion so far indicates that the use of p.f.a. in conjunction with the pessimum Beltane opal content produces an effect very similar to that observed with Pyrex glass. However, at concentrations above the pessimum zone the Beltane opal produces a totally opposite effect. Let us now take the discussion a stage further and consider the effects of time, again taking Pyrex glass first.

Table 9.3 shows the change in expansion for the relevant Pyrex glass mixes over each increment between the specimen ages selected for expansion measurement. This change in expansion is also converted into an expansion rate, in microstrain per day, for each age increment. A graph can now be plotted of expansion rate against age of specimen, as in Figures 9.11 to 9.13 for the mortars containing 33.3%, 66.6% and 100% Pyrex glass respectively. For convenience these curves are plotted to a log scale on the y-axis, all values extending beyond the

-316-

minimum value available on the scale being plotted on the xaxis at the base of the graph.

Figures 9.11 to 9.13 show that at early ages the curve for the mix containing p.f.a. stays below the curve for the corresponding non-p.f.a. mix. At later ages, however, there is a tendency for the curves to be much closer together and in the case of the mortar containing 100% Pyrex glass the curve for the mix containing p.f.a. actually intersects its nonp.f.a. equivalent.

This effect was first mentioned in Chapter 6 and can be further demonstrated by taking the difference between the expansions from the non-p.f.a. mix and its equivalent mixes containing p.f.a.. This is done for the high free water content mixes in Table 9.4 and the data are plotted in Figures 9.14 to 9.16 for the mixes containing 45% p.f.a., 30% p.f.a. and 15% p.f.a. respectively. The trend is for these curves to rise rapidly to the earliest measurement age followed by a transition towards a falling curve at later ages. This effect is more pronounced for higher Pyrex glass concentrations and lower p.f.a. contents.

The evidence is, then, that mixes containing Pyrex glass and p.f.a. tend to expand more slowly at early ages, but continue their expansive activity beyond the time when expansion has virtually ceased in the non-p.f.a. mixes. This is particularly true for the higher free water content mortars.

In the earlier discussion it was deduced that the p.f.a., when

-317-

used in conjunction with Pyrex glass, promotes a preferential reaction with the OH⁻ (the pozzolanic reaction) due to its greater affinity for this negative ion. This effectively starves the Pyrex glass of the OH⁻ it requires for A.S.R. to occur. We therefore have

Rate of expansion of Pyrex/p.f.a. mixes <1 9.1 Rate of expansion of Pyrex/non-p.f.a. mixes

As time progresses there are three factors which could contribute towards increasing the value of this quotient, the experimental results having shown this to be the trend.

Firstly, it has been shown in Chapter 8 that as the pozzolanic reaction proceeds a significant amount of alkalis are released into the pore fluids from their previous state of being in solid solution within the glassy particles of the p.f.a.. Secondly, also in Chapter 8, the p.f.a. was shown to reduce the amount of alkalis which leach out of the mortar bars and enter the water at the bottom of the storage containers. Finally, the power of the pozzolanic reaction itself will show some tendency to diminish with time and thereby reduce the ability of the p.f.a. to starve the Pyrex glass of OH⁻.

Thus, all three of these time dependent factors act to increase the amount of OH⁻ which is available for reaction with the Pyrex glass which itself remains in an unchanged reactive state. The pozzolanic reaction has not fundamentally altered the potential for A.S.R. which Pyrex glass provides and therefore the reaction process is delayed

-318-

rather than completely avoided.

At the stage where the reaction between the p.f.a. and the $OH^$ begins to diminish, the rate of expansion due to A.S.R. does not, however, increase dramatically and remains at only a fraction of the level observed for the early expansions of the non-p.f.a. mortars. The reasons for this are two-fold. At the later ages involved, the mortar has matured in respect to its strength and therefore its ability to withstand the internal pressures created by the expanding gel. In addition, and perhaps more importantly, the pozzolanic reaction will have reduced the permeability of the cement paste by the production of C-S-H gel as discussed in Chapter 3. This reduced permeability will both reduce the mobility of the OH⁻ ions, thereby restricting their ability to get to the reactive sites, and also reduce the speed at which water can be absorbed into the reacted particles to initiate swelling.

In some instances the power of this transition with time is sufficient to produce the situation where:-

Rate of expansion of Pyrex/p.f.a. mixes > 1 9.2 Rate of expansion of Pyrex/non-p.f.a. mixes

Now let us study the comparable time related effects for p.f.a. used in conjunction with Beltane opal. Table 9.5 shows the changes in expansion over each increment in specimen age and also the expansion rate for each age increment. The two graphs of expansion rate against age of specimen for each of

-319-

the seven Beltane opal concentrations are given in Figures 9.17 to 9.23, again with the expansion rate plotted to a log scale.

At the pessimum Beltane opal content, the form of the two curves is very similar to the ones obtained for the 100% Pyrex glass mix (cf Figure 9.17 with Figure 9.13). The curve for the mix containing p.f.a. starting beneath the corresponding curve for the mix without p.f.a. but this situation being reversed at later ages.

Above the pessimum Beltane opal concentration (Figures 9.18 to 9.23), at early ages the p.f.a. curve is generally above the corresponding non-p.f.a. curve. At later ages, however, there is a tendency for the curves to become closer together. This tendency increases with increasing Beltane opal concentration. For all Beltane opal concentrations of 16% and above, at later ages the two curves actually intersect indicating that the non-p.f.a. mix was then expanding more rapidly than the corresponding mix containing p.f.a.. These trends are totally opposite to the situation observed with Pyrex glass.

Data derived from subtracting the expansion measured for a mix containing p.f.a. from that measured for its non-p.f.a. counterpart are presented in Table 9.6. Here, most of the figures are negative due to the common effect of increased expansion when p.f.a. is used with Beltane opal. When the difference in expansion is plotted against age of specimen the curves in Figure 9.24 are obtained. These curves correspond

-320-

to a p.f.a. content of 45%, this being the only p.f.a. content used in conjunction with Beltane opal. Comparing Figure 9.24 with Figure 9.14, the corresponding figure for Pyrex glass, emphasises the opposite nature of the effect produced by Beltane opal at all concentrations above the pessimum.

At the pessimum concentration the arguments presented earlier in respect of expansion with Pyrex glass and p.f.a. seem to hold true for the Beltane opal observations. This is because the p.f.a. is present in sufficient quantity, relative to the amount of Beltane opal, for it to react preferentially with the OH⁻.

For the other Beltane opal concentrations there is evidence of a slight tendency for p.f.a. to delay the onset of the very early expansion, an effect noted in the discussion of Chapter 6. The general form of the curves in Figure 9.24, however, is for a rapid early fall followed by a transition towards a rising curve. This effect shows evidence of being more pronounced with increasing Beltane opal concentration and is further confirmation of the opposite trends associated with p.f.a. when used in conjunction with Beltane opal.

The evidence obtained from this investigation indicates that mixes containing p.f.a. and Beltane opal, the latter being above the pessimum concentration, expand more rapidly at early ages than the corresponding non-p.f.a. mixes. At later ages, the non-p.f.a. mixes continue to expand beyond the time at which expansion has virtually ceased for the p.f.a. mixes. We now need to consider how this situation fits into the

-321-

hypothesised concept of the relative affinity for OHexhibited by the materials involved.

It has been deduced earlier that Beltane opal has a higher affinity for OH⁻ than p.f.a., and also that Beltane opal is a good sink for OH⁻ since it is not itself a source of OH⁻. The Beltane opal therefore has a preferential reaction with OH⁻ and to a certain extent starves the p.f.a. of the material it needs for the pozzolanic reaction. The ability of the p.f.a. to slow down the expansion promoted by Beltane opal is therefore drastically reduced. Under these circumstances, the situation with respect to expansion rates is:-

<u>Rate of expansion of Beltane opal/p.f.a. mixes</u> > 1 9.3
Rate of expansion of Beltane opal/non-p.f.a. mixes
(i.e. opposite to effect with Pyrex glass, cf 9.3 with 9.1)

The preferential reaction between the Beltane opal and the OHdoes not fully explain the negative effect of increased expansion when p.f.a. is used. It would explain either a reduction in the ability of p.f.a. to inhibit expansion or a completely null effect. For the increased expansion to occur, other factors must be acting.

It seems unlikely that the Beltane opal will be able to completely stop the pozzolanic reaction but, more probably, allow it to commence at a reduced rate. Thus, a certain amount of alkalis will be released from solid solution within the p.f.a. thus helping to replenish the OH⁻ used by the Beltane opal. Further, the p.f.a. was shown in Chapter 8 to

-322-
restrict the amount of alkalis leached out of the bar, thus slightly enhancing the OH⁻ concentration in the bar. It is also possible that the p.f.a. has a physical effect in reducing the ability of the larger Beltane opal particles to absorb some of the early gel production. These three secondary effects may be responsible for the increased expansion with p.f.a..

As time progresses the capacity of the Beltane opal to act as an OH⁻ sink will reduce as the most highly reactive sites are consumed and only the less reactive sites remain. The ability of the Beltane opal to maintain its preferential reaction with OH⁻ will likewise diminish allowing the pozzolanic reaction to flourish. This in turn will help to curtail the A.S.R. and the expansion process by reducing the permeability of the cement paste thus restricting the supply of OH⁻ to the reactive sites and the water supply to the expansive gel.

In the non-p.f.a. mixes, provided the OH⁻ concentration remains above any threshold level, the less accessible and less reactive sites within the Beltane opal will continue to react, though more slowly, and promote continuing expansion. Thus, with time, the relationship between the rates of expansion of the two types of mixes becomes:-

Rate of expansion of Beltane opal/p.f.a. mixes <1 9.4 Rate of expansion of Beltane opal/non-p.f.a. mixes

(again opposite to the effect with Pyrex glass, cf 9.4 with

-323-

9.3 IMPLICATIONS FOR THE USE OF P.F.A. IN CONCRETE

9.2)

The discussion so far has further highlighted the considerable difference between the two reactive materials most commonly used in experimental research into A.S.R.. Indeed, with respect to p.f.a., the two materials have been shown to behave in a virtually opposite manner. In extrapolating the information gained from the small scale mortar specimens into the domain of concrete and full size structural components, one fundamental question still remains. That is whether concrete aggregates which are susceptible to A.S.R. will produce characteristics similar to Beltane opal or Pyrex glass. The observed differences in their behaviour can be summarised as below:-

Pyrex Glass

- 1. Maximum expansion at 100% Maximum expansion at 4% concentration concentration.
- No pessimum behaviour, increased expansion with increasing reactive aggregate concentration.

Pessimum type behaviour at low concentrations.

Beltane Opal

3. Maximum recorded expansion in Maximum recorded expansion mortar bar at age 6 months in mortar bar at age 6 = $6948\mu E$ months = $529\mu E$

-324-

P.f.a. causes a reduction in P.f.a. causes an increase in expansion for all mixes expansion for all mixes containing reactive aggregate containing reactive aggregate above the pessimum

concentration

5. The reduction in expansion The increase in expansion caused by p.f.a. tends to diminish with time diminish with time

Should any aggregate behave in a similar way to Beltane opal, then, above its pessimum content, there would be no case for using the material with p.f.a. since this would only exacerbate the situation. In the case of aggregates which behave like Pyrex glass or Beltane opal at its pessimum then p.f.a. offers one possible means of protection against A.S.R..

It seems more likely that the Pyrex glass type behaviour will be the norm since the pessimum effect with the Beltane opal is very localised and occurs at such low reactive aggregate concentrations. In addition, much of the behavioural characteristics of Beltane opal depend on its highly porous nature which is not a feature common to normal aggregates. Nevertheless it is important to remember that neither of the experimental materials can be considered as 'natural' in terms of a concrete aggregate material.

Following research using British aggregates, it has been stated by Nixon and Gaze (60) that none of the aggregates that were found to be reactive showed any pessimum effect. More

-325-

recent research and field investigation work (95), however, has indicated that some U.K. reactive aggregates may have a pessimum characteristic. This is normally associated with higher reactive aggregate concentrations than the 4% observed for Beltane opal.

Under normal circumstances the use of p.f.a. represents a means by which an extra safeguard can be provided against the often disastrous effects of A.S.R., provided that care is taken to examine aggregates for materials which exhibit Beltane opal type behaviour. However, the practical implications of the time dependent trends must be considered. The tendency for expansions at later ages to fall into the category of

Rate of expansion with p.f.a. > 1 9.5 Rate of expansion without p.f.a.

provides some uncertainty against the long term stability of the p.f.a. effect in reducing expansion and damage due to A.S.R.. This is despite the association of this time dependent effect with primarily the higher free water content mortars.

In any Portland cement/aggregate system, be it concrete or mortar, the reactive silica in the aggregate will always out live the active life of the p.f.a.. Further, since it has been shown that p.f.a. tends to increase the concentration of the alkali metal ions Na⁺ and K⁺, there may be a corresponding increase in the OH⁻ concentration. If this is so, the

-326-

potential for A.S.R. in the long term will at least be maintained. Rather than a permanent inhibitor the p.f.a. can, therefore, only be seen to delay the onset of reaction.

In the experimental situation, the amount of expansion beyond the point at which the situation expressed in Equation 9.5 is reached, is relatively small even for the most highly active mortars. This observation must be considered in relation to the tremendous pressure which is being placed on the p.f.a. in the experimental test. Under no reasonable circumstances would the p.f.a. be expected to combat a material as reactive as Pyrex glass in a structural concrete, since such a material would not be a viable aggregate.

In practice the p.f.a. would be used with aggregates which are only mildly reactive in comparison to Pyrex glass, but which could cause serious problems if used with a high alkali cement. The inference is, therefore, that when the stage is reached where the reactive silica in the aggregate is able to gain a sufficient supply of OH⁻ for A.S.R. to proceed, the reaction will be so slow that the forces generated within the concrete will not be sufficient to cause significant damage.

Further, for the full benefits of the p.f.a. to be realised, it should be ensured that a reasonably high replacement level is used. The experimental results suggest that 30% - 45% replacement is suitable since at this level a very high proportion of the p.f.a. is still able to react.

-327-

The use of p.f.a. as one possible means of minimising the risk of A.S.R. has been advocated by two comparatively recent UK publications (48, 72) which proffer advice on all aspects of A.S.R. in structural concrete. In particular, the report of the working party (48), which was set up to make specific recommendations to aid practising engineers in the field of concrete construction, presents guidelines on how to assess the quantity of p.f.a. required to avert a potentially reactive aggregate/cement combination.

The basis of the reasoning behind these guidelines is that p.f.a. does not contribute any 'reactive' alkali to the concrete. It is also stated that the true 'inhibiting mechanism is not understood'. Hence, dilution theory is assumed. When used as a cement replacement material, the p.f.a. is considered to dilute the alkali level of the cementitious material and consequently the 'reactive' alkali concentration in the concrete.

The criterion used to assess sufficient alkali dilution is 3.0kg Na_2O_{eq}/m^3 (acid soluble), which has previously been discussed and found to be an unsuitable parameter, at least under certain circumstances. Provided that the alkali content of the concrete, contributed by the cement only, falls below this limit the mix design is considered safe, subject to an additional requirement that a minimum of 25% p.f.a. is used.

The cement/p.f.a. cementitious mixture arrived at in this way will no doubt achieve a beneficial effect in reducing

-328-

expansion. It may also be possible to equate expansion reduction to an 'equivalent alkali dilution'. However, based on the experimental results obtained, the actual mechanism of the beneficial effect has been shown in the earlier discussion to be not simply related to alkali dilution.

Recommendations for the use of p.f.a. are still not universally supported. Recent information provided by Hobbs (96) contains very pessimistic conclusions as to whether or not p.f.a. actually reduces expansion in practical situations.

In this document Hobbs refers to much published research involving the use of p.f.a., some of which produced results showing little or no success with respect to expansion reduction. From the limited detail of the information presented, most of the experimental work which yielded a negative response to p.f.a. appears to have been based on the use of reactive aggregates only in their most reactive size fraction. Often these reactive aggregates appear also to be Beltane opal or similar material. In such cases, the findings of the current work could not disagree with the inability of p.f.a. to reduce expansion, particularly if the proportion of the reactive material is remote from the pessimum concentration.

Hobbs also concludes that the effectiveness of p.f.a. in preventing deleterious expansion is dependent upon the total alkali content of the p.f.a. and that the p.f.a. contributes significant quantities of alkali to the reaction. Both of these statements may be seen to have some link with the

-329-

explanations presented earlier in the present discussion, but do not necessarily have a serious effect on the benefits attributable to the use of p.f.a..

It may be that the total alkali content of the p.f.a. has some bearing on the overall effectiveness of p.f.a. since it has been argued that this alkali is released during the pozzolanic reaction. Further, it has also been shown that there is a tendency for mixes containing p.f.a. to begin expanding more rapidly at later ages. That is, after the pozzolanic reaction has started to diminish. Such expansion may well be adversely affected by high levels of alkali in the p.f.a. and consequently released into solution.

The statement that p.f.a. contributes significant quantities of alkali to the reaction is completely the opposite from previous explanations that the expansion reduction capabilities of p.f.a. were due purely to alkali dilution. It does, however, agree with the findings of the current investigation which has showed that p.f.a. does substantially increase the alkali content of mature mortar bars, and yet normally produces a massive reduction in expansion.

The obstacle which remains for the successful use of p.f.a. to minimise the risk of A.S.R., is the possibility of Beltane opal type behaviour being commonplace in concrete aggregates. In the event that this is the true situation, then p.f.a. should still produce a beneficial effect where the concentration of the reactive material is at or very near to its pessimum value. This is when such an aggregate would

-330-

produce the maximum expansion and greatest destructive effect. At concentrations above the pessimum it seems likely, however, that there will be some risk of p.f.a. exacerbating expansion.

Table 9.1 MASS RATIO OF REACTIVE AGGREGATE TO P.F.A. FOR MIXES CONTAINING PYREX GLASS

.

Mix Ref No.	Dry Pyrex Glass Content (kg/m ³)	P.F.A. Content (kg/m ³)	Mass Ratio Pyrex glass : P.f.a		
2111P	411	78	5.3:1		
2121P	802	77	10.4 : 1		
2131P	1176	75	15.7 : 1		
2211P	412	148	2.8 : 1		
2221P	803	145	5.5:1		
2231P	1175	141	8.3 : 1		
2311P	411	213	1.9:1		
2321P	804	208	3.9 : 1		
2331P	1176	203	5.8:1		

Table 9.2 MASS RATIO OF REACTIVE AGGREGATE TO P.F.A. FOR MIXES CONTAINING BELTANE OPAL

Mix Ref No.	Dry Beltane Opal Content (kg/m ³)	P.F.A. Content (kg/m ³)	Mass Ratio Beltane Opal : P.f.a		
2311B	403	209	1.9 : 1		
23 21B	774	200	3.9 : 1		
2331B	1114	192	5.8 : 1		
2341B	51	218	1:4.3		
2351B	100	216	1:2.2		
2361B	150	215	1:1.4		
2371B	198	214	1:1.1		

TABLE 9.3 CALCULATED CHANGES IN EXPANSION AND EXPANSION RATES FOR CERTAIN MIXES CONTAINING PYREX GLASS

Mix	0 - 14 Days		14 Days to 2 Months		2 Months	to 6 Months	6 Months to 12 Months	
Ref No.	Change in Expansion (µE)	Expansion Rate (vE/day)	Change in Expansion (µE)	Expansion Rate (µE/day)	Change in Expansion (µE)	Expansion Rate (wE/day)	Change in Expansion (µE)	Expansion Rate (uE/day)
2001	92	6.5714	3	0.0714	10	0.0893	-17	-0.1012
2011P	1309	93.5000	1622	38.6190	117	1.0446	-20	-0.1190
2021P	3432	245.1429	2785	66.3095	250	2.2321	145	0.8631
2031P	4680	334.2857	2097	44.9286	171	1.5268	-100	-0.5952
2041P	117	8.3571	43	1.0238	21	0.1875	11	0.0655
2051P	153	10.9286	75	1.7857	17	0.1518	-13	-0.0774
2061P	232	16.5714	187	4.4524	70	0.6250	-17	-0.1012
2071P	372	26.5714	333	7.9286	66	0.5893	1	0.0060
2301	96	6.8571	35	0.8333	32	0.2857	-11	-0.0655
2311P	187	13.3571	50	1.1905	72	0.6429	-9	-0.0536
2321P	375	26.7857	90	2.1429	78	0.6964	57	0.3393
2331P	593	42.3571	90	2.1429	117	1.0446	64	0.3810
2031P	4680	334.2857	2097	49.9286	171	1.5268	-100	-0.5952
2131P	2163	154.5000	756	18.0000	282	2.5179	87	0.5179
2231P	1125	80.3571	336	8.0000	411	3.6696	232	1.3810
2331P	593	42.3571	90	2.1429	117	1.0446	64	0.3810

Mix Ref No.	Mix Ref No.	Reactive	P.f.a.		Expansion Difference (µE)				
For Non-p .f.a . Mix	. For P.f.a. Mix	Aggregate Content (%)	Content (%)	14 days	2 months	6 months	12 months		
2101	2001	0	15	- 33	-29	-51	-68		
2111P	2011P	33.3	15	801	1962	1316	1164		
2121P	2021P	66.6	15	1664	3306	2910	2936		
2131P	2031P	100	15	2517	3858	3747	3560		
2201	2001	0	30	-4	-34	-72	-88		
2211P	2011P	33.3	30	1008	2524	2557	2508		
2221P	2021P	66.6	30	2725	5313	5303	5164		
2231P	2031P	100	30	3555	5316	5076	4744		
2301	2001	0	45	-4	-36	-58	-64		
2311P	2011P	33.3	45	1122	2694	2739	2728		
2321P	2021P	66.6	45	3057	5752	5924	6012		
2331P	2031P	100	45	4087	6094	6148	5984		

TABLE 9.4 CALCULATED DIFFERENCE BETWEEN EXPANSIONS OF NON-P.F.A. MIXES AND THEIR EQUIVALENT P.F.A. MIXES FOR CERTAIN MORTARS CONTAINING PYREX GLASS

TABLE 9.5 CALCULATED CHANGES IN EXPANSION AND EXPANSION RATES FOR MIXES CONTAINING BELTANE OPAL

Mix	0 - 1	4 Days	14 Days to 2 Months		2 Months	to 6 Months	6 Months to 12 Months		
Ref No.	Change in Expansion (µE)	Expansion Rate (wE/day)	Change in Expansion (µE)	Expansion Rate (wE/day)	Change in Expansion (wE)	Expansion Rate (wE/day)	Change in Expansion (wE)	Expansion Rate (vE/day)	
2011B	88	6.2857	51	1.2143	25	0.2232	8	0.0476	
2021B	84	6.0000	88	2.0952	44	0.3929	20	0.1190	
2031B	120	8.5714	115	2.7381	60	0.5357	9	0.0536	
2041B	276	19.7143	217	5.1667	36	0.3214	-1	-0.0060	
2051B	144	10.2857	45	1.0714	11	0.0982	0	0.0000	
2061B	112	8.0000	40	0.9524	7	0.0625	-7	-0.0417	
2071B	109	7.7857	31	0.7381	13	0.1161	3	0.0179	
2311B	112	8.0000	126	3.0000	24	0.2143	2	0.0119	
2321B	127	9.0714	166	3.9524	44	0.3929	-13	-0.0774	
2331B	160	11.4286	208	4.9524	48	0.4286	-20	-0.1190	
2341B	129	9.2143	90	2.1429	32	0.2857	17	0.1012	
2351B	121	8.6429	102	2.4286	24	0.2143	1	0.0060	
2361B	109	7.7857	115	2.7381	15	0.1339	5	0.0298	
2371B	92	6.5714	131	3.1190	29	0.2589	-28	-0.1667	
2001	92	6.5714	3	0.0714	10	0.0893	-17	-0.1012	
2301	96	6.8571	35	0.8333	32	0.2857	-11	-0.0655	

Mix Ref No. Mix Ref No.		Reactive P.f.a.		Expansion Difference (vE)				
For Non-p.f.a Mix	. For P.f.a. Mix	Aggregate Content (%)	Content (%)	14 days	2 months	6 months	12 months	
2 001B	2301B	0	45	-4	-36	-58	-64	
2011B	2311B	33.3	45	-24	-99	-98	-92	
2021B	2321B	66.6	45	-43	-121	-121	-88	
2031B	2331B	100	45	-40	-133	-121	-92	
2041B	2341B	4	45	147	274	278	260	
2 051B	2351B	8	45	23	-34	-47	-48	
2061B	2361B	12	45	3	-72	-80	-92	
2071 B	2371B	16	45	17	-83	-99	-68	

TABLE 9.6 CALCULATED DIFFERENCE BETWEEN EXPANSIONS OF NON-P.F.A. MIXES AND THEIR EQUIVALENT P.F.A. MIXES FOR MORTARS CONTAINING BELTANE OPAL

Figure 9.2

Figure 9.3

EXPANSION IN

Figure 9.9

-340-

Figure 9.11

Figure 9.12

Figure 9.14

-342-

Figure 9.16

Figure 9.17

.344-

-345-

Figure 9.21

-346-

Figure 9.23

10.1 CONCLUSIONS

The following conclusions represent the salient points raised in the discussion sections of Chapters 6, 8 and 9. They are not presented in any specific order of importance.

- 10.1.1 The expansion of mortar bars containing Pyrex glass as reactive aggregate was found to increase with increasing cement alkali content. For mature specimens, approaching ultimate expansion, there was some evidence of a linear relationship between the cement alkali content and expansion.
- 10.1.2 The expansion of mortar bars was found to increase with increasing Pyrex glass concentration throughout the range 0% to 100% by weight of total aggregate. There was little evidence to suggest that Pyrex glass exhibits a pessimum concentration of anything less than 100%.
- 10.1.3 The expansion of mortar bars containing Pyrex glass as reactive aggregate was found to increase with increasing free water content. For mixes which did not contain p.f.a., expansion was found to increase with increasing free water/cement ratio, up to a maximum expansion for a value of 0.55. Above this value a further increase in free water/cement ratio was found to decrease the expansion observed.
- 10.1.4 The expansion of mortar bars containing Pyrex glass as

reactive aggregate was found to be reduced by the use of p.f.a.. This effect was greater when the p.f.a. was used as a cement replacement material but also occurred when the p.f.a. was used as an admixture. Only one exception to this generalisation was noted, for a 20% p.f.a. substitution into the low alkali cement used with 100% Pyrex glass in the preliminary experiments of Series 1.

- 10.1.5 The effects produced by the cement alkali content, p.f.a., Pyrex glass concentration and free water content on the expansion of mortar bars were found to show considerable interaction. Thus, the effect of each individual factor is partially dependent on the remaining factors.
- 10.1.6 The reduction in expansion resulting from the use of p.f.a. as a cement replacement material in mixes containing Pyrex glass, was found to be greater than could be explained by alkali dilution theory. That is the p.f.a. does not act as a simple alkali diluent but undergoes a reaction process which causes expansion due to A.S.R. to be inhibited.
- 10.1.7 P.f.a. was found to be more efficient in reducing the expansion of mixes which contained Pyrex glass when the higher free water content was employed.
- 10.1.8 The reduction in expansion attributable to the use of p.f.a. in mixes containing Pyrex glass was found to be more stable with time for mixes employing the lower free water content. In addition, this expansion reduction effect was found to be more stable with time for all mixes where the p.f.a. was able

to reduce the observed expansion to a value below the A.S.T.M. 'harmful' limits of $500\mu E$ at 6 months and $1000\mu E$ at 12 months.

- 10.1.9 The expansion results showed evidence that p.f.a. acts to delay the expansive reaction of mixes containing Pyrex glass, rather than averting it completely. This delay enables the mortar to have gained greater strength before the expansive forces begin to develop more rapidly and, therefore, be more capable of withstanding the internal pressures created by A.S.R.. Further, the lower permeability of the more mature mortar restricts the movement of both the hydroxyl ion to the reactive sites and also the water required for the reaction product to expand.
- 10.1.10 The rate of expansion of mortar bars containing Pyrex glass was found to decline more slowly with time when p.f.a. was included in the mix. This effect was more prominent for mixes containing the lower p.f.a. substitutions of 15% and 30%.
- 10.1.11 Reducing the amount of alkali provided by the cement by using a smaller quantity of high alkali cement was found to have a relatively greater effect in reducing expansion than was obtained by using a cement of lower alkali content.
- 10.1.12 Beltane opal was found to exhibit pronounced pessimum behaviour, the expansion of mortar bars containing Beltane opal as reactive aggregate being at a maximum for a concentration of 4% by weight of total aggregate.

- 10.1.13 The expansion of mortar bars containing the pessimum Beltane opal concentration was found to be considerably reduced by the use of p.f.a. in partial replacement of the cement content.
- 10.1.14 The expansion of mortar bars containing Beltane opal in concentrations above the pessimum was found to be increased by the use of p.f.a. in partial replacement of the cement content. This increase was generally less than the reduction in expansion achieved at the pessimum concentration.
- 10.1.15 The use of p.f.a. in mixes containing Beltane opal was found to cause a complete transformation in the form of the expansion versus Beltane opal content curve.
- 10.1.16 With both Pyrex glass and Beltane opal as the reactive aggregate the most rapid expansion of the mortar bars was found to occur during the first two months after casting.
- 10.1.17 There was considerably less expansion observed for the mortar bars containing Beltane opal when compared with their Pyrex glass equivalents.
- 10.1.18 The overall level of expansion observed with mortar bars containing Beltane opal is very sensitive to changes in experimental conditions. Large differences of up to a factor of thirty can be expected.
- 10.1.19 In comparing the expansion of mixes containing Pyrex glass with the expansion of mixes containing Beltane opal at its pessimum concentration, the effects produced by p.f.a. were

-351-

found to be very similar.

- 10.1.20 In comparing the expansion of mixes containing Pyrex glass with the expansion of mixes containing Beltane opal at any concentration above its pessimum, the effects produced by p.f.a were found to be totally opposite (contrast with 10.1.19).
- 10.1.21 The differences in the response to p.f.a. which were observed for mixes containing Pyrex glass and Beltane opal can be explained in terms of the relative affinity for the hydroxyl ion (OH⁻) shown by the three materials, and the preferential reactions which result. The order of relative affinity for OH⁻ is considered to be

Beltane opal > p.f.a. > Pyrex glass.

- 10.1.22 In mortar bars the relative affinity for OH⁻ shown by p.f.a. is more than 15 times greater than the relative affinity for OH⁻ shown by Pyrex glass.
- 10.1.23 In mortar bars the relative affinity for OH⁻ shown by Beltane opal is in the range 2 to 4 times greater than the relative affinity for OH⁻ shown by p.f.a.
- 10.1.24 The substitution of p.f.a for part of the cement content was found to produce an increase in the combined amount of alkali found in the mortar bars and their storage environment. This combined increase was made up from an increase in the acid soluble alkali content of the mortar bars and a decrease in the amount of alkali leached out of the bars.

-352-

.

- 10.1.25 P.f.a. was found to release sodium and potassium ions, often referred to as 'alkali', as the pozzolanic reaction progressed.
 - 10.1.26 The amount of alkali in the mortar bars and their storage environment was found to increase linearly with increasing cement alkali content. This overall increase comprised increases in both the alkali content of the mortar bars and the amount of alkali leached from the bars and into the liquid at the bottom of the storage containers.
 - 10.1.27 The amount of alkali in the mortar bars and their storage environment was found to increase with increasing Pyrex glass concentration. This overall increase comprised an increase in the alkali content of the mortar bars but a decrease in the amount of alkali leached into the liquid at the bottom of the storage containers.
 - 10.1.28 The effects produced by the cement alkali content, p.f.a., and Pyrex glass concentration on the alkali content of the mortar bars and their storage environment were found to show considerable interaction. Thus, the effect of each individual factor is partially dependent on the remaining factors.
 - 10.1.29 The amount of alkali leached from the bars into the liquid at the bottom of the storage container was found to reduce as the concentration of Beltane opal was increased.

10.1.30 It was found that mortar bars containing considerably more

-353-

alkali than 3.0kg Na_2O_{eq}/m^3 can be relatively non-expansive, particularly when p.f.a. is used. Conversely, it was also found that mortar bars containing less than 3.0kg Na_2O_{eq}/m^3 can be expansive.

- 10.1.31 The experimental results contained evidence that in the mortar bars the p.f.a. underwent considerable reaction for the 15%, 30% and 45% cement replacement levels employed. Using the group of mixes 2000 to 2300 and the methods of calculation proposed, the percentage reaction of the p.f.a. was found to lie between a minimum of 68% and a maximum of 94%, based on the amount of alkali released from the p.f.a. during its reaction.
- 10.1.32 It was found that a sufficient level of p.f.a. substitution should be used to achieve reliable expansion reduction. From the experimental results, 30% to 45% substitution was shown to be satisfactory.
- 10.1.33 The beneficial effect of p.f.a. in reducing expansion due to A.S.R. is primarily associated with OH- starvation.
- 10.1.34 The use of a statistically based method of experimentation, in particular Factorial Analysis, allows deeper insight into the mechanism of the effects produced by the experimental factors than would be gained by more traditional experimentation with concrete. This advantage is primarily associated with the interactions which occur between the experimental factors.

These conclusions are based on observations made with mortar

-354-

bars produced and conditioned in accordance with the A.S.T.M. mortar bar test method. They are, therefore, directly related to the particular materials used and test method employed. Whilst no particular reasons have been found to suggest that the information presented does not extend beyond the scope of the experimental work, such inference would require verification as suggested in the following section.

10.2 SUGGESTIONS FOR FUTURE WORK

The experimental work carried out in this investigation offers some scope for continuation using the materials and methods already employed. Additional work could also be devised expanding the frame of reference set by the present experimental regime. This latter approach could, in particular, enable the ideas which have been hypothesised to be explored under differing conditions and thus examine whether or not they are universally applicable.

Using similar materials and methods there are certain aspects of the investigation which, with the benefit of hindsight, require examination.

Considering the work carried out using Pyrex glass as the reactive aggregate, the effect produced by p.f.a. has been studied in some considerable depth. However, the effect of p.f.a. in conjunction with the very low Pyrex glass concentrations between 4% and 16% inclusive has not been investigated. It is important that this work should be carried out to ensure that there is no tendency for p.f.a. to

-355-

increase expansions at such low Pyrex glass concentrations.

With respect to the section of the investigation using Beltane opal as the reactive aggregate, only a limited number of mixes were included. This allowed the use of only the highest alkali cement, the higher free water content and a single level of p.f.a. substitution, namely 45%. A study of the remaining mixes required to bring the experimental coverage with Beltane opal up to the level set by the experiments using Pyrex glass would provide useful extra information. The examination of the effect of lower p.f.a. substitutions would be of particular significance since they might offer further information on why the response is so different to that observed with Pyrex glass.

There is also scope for additional work with Beltane opal at reactive aggregate concentrations other than those already employed. The pessimum effect has been shown to be both of prime importance and, apparently, very localised. It would therefore be pertinent to investigate the response of mixes with Beltane opal concentrations very close to the pessimum value in order to examine precisely how localised the pessimum effect is and over what range of Beltane opal concentration p.f.a. produces a beneficial effect on expansion. Further, from the experimental work conducted, no information is available concerning Beltane opal concentrations below the pessimum. Hence it has not been proven experimentally whether p.f.a. produces an increase or decrease in expansion in this region.

-356-

In the discussion of Chapter 9, one aspect of A.S.R. which was considered to have an important effect on expansion was the particle size of the reactive aggregate. This discussion was primarily in relation to two different experimental regimes, both using Beltane opal as the reactive aggregate. 0ne investigation used Beltane opal only in its most reactive size fraction whereas the other, the present investigation, used Beltane opal throughout the whole particle size distribution of the aggregate material. The latter approach was found to be associated with much lower expansions, notwithstanding the other differences in the experimental procedures. Useful information might well be gained from experimental work using Beltane opal where the particle size distribution of the reactive material is the only differing factor. Such work could also be extended to examine the effect on particle size on expansions observed with Pyrex glass. One of the fundamental objectives of any work concerning particle size would be to examine whether or not experimental investigations using only the most highly reactive particle size fraction are a fair representation of the practical situation likely to occur outside the laboratory.

The section of the present investigation involving the chemical analysis of the mortar bars and the liquid from the storage containers was, of necessity, carried out in a stepby-step fashion. Moreover, this section of the work was not part of the originally planned experimental programme. Now that this work has been shown to produce important information it would be appropriate to repeat the exercise using a more formal and controlled experimental procedure. This would

-357-

enable more definitive comparisons to be made between the results obtained and, if repeated at various intervals, allow examination of how the alkali contents of the mortar bars and their storage environment alter with time.

A natural extension to the overall coverage of the experimental work would be to examine the effects of similar experimental factors on concrete specimens. This could incorporate the use of naturally occurring aggregates, in particular those from the UK, which have been found to cause deleterious reaction in actual concrete structures. The effect produced by the use of p.f.a. would be one of the most important aspects of this type of experimental programme. Presuming that p.f.a. was found to produce significant reductions in the expansion of concrete specimens, equivalent to those predicted by the mortar bar tests, then the performance of p.f.a. in actual structures would remain as the final stage of the argument. Some light could possibly be thrown on this by a field study of structures constructed with concrete containing p.f.a. with an aggregate found elsewhere to be associated with deleterious reaction.

The above suggestions for future work do not attempt to cover the whole topic of A.S.R.. They are, however, intended to draw attention to a few of the possible examples of work which could be undertaken. These would further investigate the hypotheses which have been developed in explanation of the experimental results obtained in this research project.

-358-
APPENDIX A

ł

Series 1 - full details of mortar mixes

Tables A.1 to A.2

.

-

			Batch (uantities (kg)	12412183		
Mix Ref No.	Cement and	Content Type	P.f.a. Content	Dry Sand Content	Pyrex Glass Content	Total Water Content	Free Water Content	Flow Reading
000	0.440			0 000		0 240	0.220	1085
0010	0.440			0.990	0 405	0.240	0.230	1075
002P	0.440		14 13 13	0.435	0.990	0.257	0.257	1155
010	0.328		0.082	0.990		0.225	0.205	102%
011P	0.328	Southam	0.082	0.495	0.495	0.235	0.225	101%
012P	0.328	S.R.P.C.	0.082	-	0.990	0.250	0.250	114%
020	0.230		0.154	0.990	-	0.210	0.190	115%
021P	0.230		0.154	0.495	0.495	0.202	0.192	1175
022P	0.230		0.154	-	0.990	0.230	0.230	115%
100	0.440		-	0.990	-	0.235	0.215	116%
101P	0.440		. S.	0.495	0.495	0.245	0.235	116%
102P	0.440		· · · · ·	-	0.990	0.265	0.265	115%
110	0.328		0.082	0.990	-	0.225	0.205	111%
111P	0.328	Masons	0.082	0.495	0.495	0.235	0.225	107%
112P	0.328	0.P.C.	0.082	-	0.990	0.230	0.230	112%
120	0.230		0.154	0.990		0.200	0.180	117%
121P	0.230		0.154	0.495	0.495	0.213	0.203	113%
122P	0.230		0.154	-	0.990	0.218	0.218	109%
200	0.440			0.990	12.2	0.240	0.220	116%
201P	0.440			0.495	0.495	0.233	0.223	110%
202P	0.440				0.990	0.245	0.245	1115
210	0.328		0.082	0.990	200	0.205	0.185	108%
211P	0.328	Plymstock	0.082	0.495	0.495	0.235	0.225	107%
212P	0.328	0.P.C.	0.082		0.990	0.240	0.240	116%
220	0.230		0.154	0.990	-	0.210	0.190	109%
221P	0.230		0.154	0.495	0.495	0.215	0.205	106%
222P	0.230		0.154	-	0.990	0.207	0.207	100%

TABLE A.1 BATCH QUANTITIES, SERIES 1 MORTAR MIXES

		Mix Pro	portions (kg/m ³)		•
Mix Ref No.	Cement	S.S.D. Sand	Pyrex	P.f.a.	Free Water	Wet Density (kg/m ³)
000	574	1318	0	0	287	2180
001P	551	632	619	0	288	2090
002P	516	0	1162	0	302	1980
010	437	1346	0	109	273	2165
011P	413	636	624	103	283	2060
012P	389	0	1173	97	296	1955
020	313	1374	0	210	258	2155
021P	302	663	650	202	252	2070
022P	2 82	0	1216	189	268	1945
100	576	1322	0	0	282	2180
101P	544	624	612	0	290	2070
102P	510	0	1148	0	307	1965
110	435	1339	0	109	272	2155
111P	411	633	621	103	282	2050
112P	396	0	1197	99	278	1970
120	316	1389	0	212	248	2165
121P	297	652	639	199	262	2050
122P	282	0	1216	189	268	1955
200	574	1318	0	0	287	2180
201P	554	636	624	0	281	2095
202P	524	0	1179	0	292	1995
210	450	1384	0	112	254	2200
211P	412	635	622	103	283	2055
212P	393	0	1186	98	288	1965
220	313	1374	0	210	258	2155
221P	297	652	639	199	264	2050
222P	287	0	1237	192	259	1975

TABLE A.2 MIX PROPORTIONS.	SERIES	1	MORTAR	BARS
----------------------------	--------	---	--------	------

Note:- * = Air content of fully compacted wet mortar assumed to be 1.5%.

APPENDIX B

Series 2 - full details of mortar mixes

Tables B.1 to B.6

TABLE	B.1	BATCH	QUANTITIES.	SERIES 2	FACTORIAL	SET	OF	MORTAR MI	XES
-------	-----	-------	-------------	----------	-----------	-----	----	-----------	-----

			Batch	Quantities	(kg)		18 19 C 20 20	
Mix Ref No.	Cement and	Content Type	P.f.a. Content	Dry Sand Content	Pyrex Glass Content	Total Water Content	Free Water Content	Flow Reading
0000 0001 0010P	0.440 0.440 0.440		:	0.990 0.990 0.660	- - 0.330	0.190 0.256 0.185	0.176 0.242 0.176	51% 25 Blows* 35%
0011P 0020P 0021P	0.440 0.440 0.440		:	0.660 0.330 0.330	0.330 0.660 0.660	0.251 0.181 0.247	0.242 0.176 0.242	22 Blows* 52% 20 Blows*
0030P 0031P 0100	0.440		- - 0.063	- - 0.990	0.990	0.176 0.242 0.190	0.176 0.242 0.176	60% 20 Blows* 69%
0101 0110P 0111P	0.355		0.063	0.990	- 0.330 0.330	0.256 0.185 0.251	0.242	22 Blows* 84% 20 Blows*
0120P 0121P	0.355		0.063	0.330	0.660	0.181 0.247	0.176	86% 22 Blows*
0131P 0200	0.355	Southam S.R.P.C.	0.063	0.990	0.990	0.242	0.242	23 Blows* 99% 21 Blows*
0210P 0211P	0.279		0.119	0.660	0.330	0.185	0.176	107% 19 Blows*
0221P 0230P	0.279 0.279 0.279		0.119 0.119 0.119	0.330	0.660	0.247 0.176	0.242	21 Blows*
0231P 0300 0301	0.279		0.119 0.171 0.171	- 0.990 0.990	0.990 - -	0.242 0.190 0.256	0.242 0.176 0.242	18 Blows* 103% 18 Blows*
0310P 0311P 0320P	0.209 0.209 0.209		0.171 0.171 0.171	0.660 0.660 0.330	0.330 0.330 0.660	0.185 0.251 0.181	0.176 0.242 0.176	105% 16 Blows* 113%
0321P 0330P 0331P	0.209 0.209 0.209	÷	0.171 0.171 0.171	0.330 - -	0.660 0.990 0.990	0.247 0.176 0.242	0.242 0.176 0.242	17 Blows* 115% 17 Blows*

Notes:- * denotes FLOW > 150% (number of blows causing mortar to flow off edge of flow table recorded).

TABLE B.1 continued

		Batch	Quantities	(kg)		- Contraction	
Mix	Cement Content	P.f.a.	Dry Sand	Pyrex	Total	Free	Flow
Ref	and Type	Content	Content	Glass	Water	Water	Reading
No.				Content	Content	Content	
							Section Section 1
1000	0.440	-	0.990		0.190	0.176	50%
1001	0.440		0.990		0.256	0.242	25 Blows*
1010P	0.440		0.660	0.330	0.185	0.176	51%
1011P	0.440	-	0.660	0.330	0.251	0.242	22 Blows*
1020P	0.440	-	0.330	0.660	0.181	0.176	54%
1021P	0.440	-	0.330	0.660	0.247	0.242	22 Blows*
1030P	0.440	-		0.990	0.176	0.176	55%
1031P	0.440	-		0.990	0.242	0.242	22 Blows*
1100	0.355	0.063	0.990		0.190	0.176	79%
1101	0.355	0.063	0.990		0.256	0.242	25 Blows*
1110P	0.355	0.063	0.660	0.330	0.185	0.176	74%
1111P	0.355	0.063	0.660	0.330	0.251	0.242	21 Blows*
1120P	0.355	0.063	0.330	0.660	0.181	0.176	85%
1121P	0.355	0.063	0.330	0.660	0.247	0.242	20 Blows*
1130P	0.355	0.063	-	0.990	0.176	0.176	79%
1131P	0.355 Masons	0.063	-	0.990	0.242	0.242	21 Blows*
1200	0.279 0.P.C.	0.119	0.990		0.190	0.176	94%
1201	0.279	0.119	0.990	-	0.256	0.242	18 Blows*
1210P	0.279	0.119	0.660	0.330	0.185	0.176	91%
1211P	0.279	0.119	0.660	0.330	0.251	0.242	19 Blows*
1220P	0.279	0.119	0.330	0.660	0.181	0.176	98%
1221F	0.279	0.119	0.330	0.660	0.247	0.242	18 Blows*
1230P	0.279	0.119	-	0.990	0.176	0.176	102%
1231P	0.279	0.119	-	0.990	0.242	0.242	19 Blows*
1300	0.209	0.171	0.990		0.190	0.176	105%
1301	0.209	0.171	0.990	-	0.256	0.242	19 Blows*
1310P	0.209	0.171	0.660	0.330	0.185	0.176	108%
1311P	0.209	0.171	0.660	0.330	0.251	0.242	17 Blows*
1320P	0.209	0.171	0.330	0.660	0.181	0.176	108%
1321P	0.209	0.171	0.330	0.660	0.247	0.242	16 Blows*
1330P	0.209	0.171	•	0.990	0.176	0.176	114%
1331P	0.209	0.171	-	0.990	0.242	0.242	14 Blows*

Notes:- * denotes FLOW > 150% (number of blows causing mortar to flow off edge of flow table recorded).

TABLE B.1 continued

			Batch	Quantities	(kg)		•	
Mix Ref No.	Cement and	Content Type	P.f.a. Content	Dry Sand Content	Pyrex Glass Content	Total Water Content	Free Water Content	Flow Reading
				20			N. March	
2000	0.440		-	0.990		0.190	0.176	67%
2001	0.440			0.990	•	0.256	0.242	24 Blows*
2010P	0.440		-	0.660	0.330	0.185	0.176	64%
2011P	0.440		-	0.660	0.330	0.251	0.242	25 Blows*
2020P	0.440		-	0.330	0.660	0.181	0.176	64%
2021P	0.440		-	0.330	0.660	0.247	0.242	23 Blows*
2030P	0.440		-	1.00	0.990	0.176	0.176	66%
2031P	0.440		-	•	0.990	0.242	0.242	22 B1ows*
2100	0.355		0.063	0.990	-	0.190	0.176	81%
2101	0.355		0.063	0.990	•	0.256	0.242	20 Blows*
2110P	0.355		0.063	0.660	0.330	0.185	0.176	82%
2111P	0.355		0.063	0.660	0.330	0.251	0.242	21 Blows*
2120P	0.355		0.063	0.330	0.660	0.181	0.176	94%
2121P	0.355		0.063	0.330	0.660	0.247	0.242	19 Blows*
2130P	0.355		0.063	-	0.990	0.176	0.176	92%
2131P	0.355	Oxford	0.063	-	0.990	0.242	0.242	17 Blows*
2200	0.279	0.P.C.	0.119	0.990		0.190 .	0.176	105%
2201	0.279		0.119	0.990		0.256	0.242	17 Blows*
2210P	0.279		0.119	0.660	0.330	0.185	0.176	108%
2211P	0.279		0.119	0.660	0.330	0.251	0.242	17 Blows*
2220P	0.279		0.119	0.330	0.660	0.181	0.176	111%
2221P	0.279		0.119	0.330	0.650	0.247	0.242	18 Blows*
2230P	0.279		0.119		0.990	0.176	0.176	113%
2231P	0.279		0.119		0.990	0.242	0.242	17 Blows*
2300	0.209		0.171	0.990	-	0.190	0.176	113%
2301	0.209		0.171	0.990	-	0.256	0.242	17 Blows*
2310P	0.209		0.171	0.660	0.330	0.185	0.176	123%
2311P	0.209		0.171	0.660	0.330	0.251	0.242	15 Blows*
2320P	0.209		0.171	0.330	0.660	0.181	0.176	119%
2321P	0.209		0.171	0.330	0.660	0.247	0.242	14 Blows*
2330P	0.209		0.171		0.990	0.176	0.176	124%
2331P	0.209		0.171		0.990	0.242	0.242	-

Notes:- * denotes FLOW > 150% (number of blows causing mortar to flow off edge of flow table recorded).

		Mix Pro	portions ((kg/m ³)		•			
Mix Ref No.	Cement	S.S.D. Sand	Pyrex	P.f.a.	Free Water	Calculated Wet Density (kg/m ³)			
0000	617	1407	0	0	247	2270			
0001	564	1286	0	0	310	2160			
0010P	601	913	451	0	240	2205			
0011P	550	836	412	0	302	2100			
0020P	584	445	877	0	234	2140			
0021P	537	409	805	0	295	2045			
0030P	570	0	1282	0	228	2080			
0031P	525	0	1181	0	289	1995			
0100	498	1407	0	88	247	2240			
0101	455	1288	0	81	310	2135			
0110P	485	913	451	86	240	2175			
0111P	444	837	413	79	303	2075			
0120P	471	445	876	84	234	2110			
0121P	433	409	806	77	295	2020			
0130P	459	0	1281	82	228	2050			
0131P	423	0	1179	75	288	1965			
0200	392	1409	0	167	247	2215			
0201	358	1289	0	153	311	2110			
0210P	381	914	451	163	241	2150			
0211P	349	837	413	149	303	2050			
0220P	371	445	877	158	234	2085			
0221P	340	409	805	145	295	1995			
0230P	361	0	1282	154	220	2025			
0231P	333	0	1181	142	289	1945			
0300	293	1409	0	240	247	2190			
0301	268	1287	0	219	310	2085			
0310P	286	914	451	234	241	2125			
0311P	262	838	413	214	303	2030			
0320P	278	445	877	227	234	2060			
0321P	255	409	806	209	296	1975			
0330P	271	0	1284	222	228	2005			
0331P	249	0	1179	204	288	1920			

TABLE B.2 MIX PROPORTIONS, SERIES 2 FACTORIAL SET OF MORTAR BARS

.

Note:- * = Air content of fully compacted wet mortar assumed to be 1.5%

		*				
Mix Ref No.	Cement	S.S.D. Sand	Pyrex	P.f.a.	Free Water	Calculated Wet Density (kg/m ³)
1000	614	1401	0	0	246	2260
1001	562	1283	0	0	309	2155
1010P	598	909	449	0	239	2195
1011P	548	834	411	0	302	2095
1020P	583	444	875	0	233	2135
1021P	535	408	803	0	294	2040
1030P	568	0	1279	0	227	2075
1031P	522	0	1175	0	287	1985
1100	497	1404	0	88	246	2235
1101	453	1282	0	80	309	2125
1110P	484	911	450	86	240	2170
1111P	443	835	412	79	302	2070
1120P	470	444	874	83	233	2105
1121P	432	408	804	77	295	2015
1130P	458	0	1278	81	227	2045
1131P	422	0	1176	75	287	1960
1200	391	1406	0	167	246	2210
1201	357	1286	0	152	310	2105
1210P	380	912	450	162	240	2145
1211P	348	835	412	148	302	2045
1220P	370	444	875	158	233	2085
1221P	340	408	803	145	295	1990
1230P	360	0	1279	154	227	2020
1231P	332	0	1178	142	288	1940
1300	293	1406	0	240	247	2185
1301	267	1284	0	219	310	2080
1310P	285	912	450	233	240	2120
1311P	261	836	412	214	302	2025
1320P	278	445	877	227	234	2060
1321P	255	408	804	208	295	1970
1330P ·	270	0	1281	221	228	2000
1331P	249	0	1179	204	288	1920

Note:- * = Air content of fully compacted wet mortar assumed to be 1.5%

TABLE	B.2	cont	nued
-------	-----	------	------

.

		Mix Proportions (kg/m ³)						
Mix Ref No.	Cement	S.S.D. Sand	Pyrex	P.f.a.	Free Water	Calculated Wet Density (kg/m ³)		
2000	612	1398	0	0	245	2255		
2001	561	1280	0	0	309	2150		
2010P	597	907	447	0	239	2190		
2011P	547	832	410	0	301	2090		
2020P	582	443	873	0	233	2130		
2021P	534	407	801	0	294	2035		
2030P	567	0	1276	0	227	2070		
2031P	521	0	1172	0	287	1980		
2100	495	1401	0	88	246	2230		
2101	453	1282	0	80	309	2125		
2110P	482	909	448	86	239	2165		
2111P	442	833	411	78	301	2065		
2120P	469	443	872	83	233	2100		
2121P	431	407	802	77	294	2010		
2130P	457	0	1275	81	227	2040		
2131P	422	0	1176	75	287	1960		
2200	390	1403	0	166	246	2205		
2201 -	356	1282	0	152	309	2100		
2210P	380	910	449	162	239	2140		
2211P	348	835	412	148	302	2045		
2220P	370	444	875	158	233	2080		
2221P	340	408	803	145	295	1990		
2230P	360	0	1279	154	227	2020		
2231P	331	0	1175	141	287	1935		
2300	292	1403	0	239	246	2180		
2301	267	1284	0	219	310	2080		
2310P	284	910	449	233	239	2115		
2311P	260	834	411	213	302	2020		
2320P	277	444	874	227	233	2055		
2321P	255	408	804	208	295	1970		
2330P	270	0	1281	221	228	2000		
2331P	248	0	1176	203	288	1915		

Note:- * = Air content of fully compacted wet mortar assumed to be 1.5%

TABLE B.3 BATCH QUANTITIES, SERIES 2 'EXTRA PYREX' MORTAR MIXES

		Batch (Quantities (kg)			Contractor 11
Mix Ref No.	Cement Con and Type	tent P.f.a. Content	Dry Sand Content	Pyrex Glass Content	Total Water Content	Free Water Content	Flow Reading
2 032P	0.440			0.990	0.154	0.154	Friable **
2033P	0.440	-		0.990	0.198	0.198	111%
2034P	0.440			0.990	0.220	0.220	136%
2035P	0.440	-		0.990	0.264	0.264	17 Blows *
2041P	0.440		0.950	0.040	0.255	0.242	22 Blows *
2051P	0.440	-	0.911	0.079	0.255	0.242	22 Blows *
2061P	0.440	-	0.871	0.119	0.254	0.242	23 Blows *
2071P	0.440		0.832	0.158	0.254	0.242	24 Blows *
2431P	0.440 Oxf	ord 0.044		0.990	0.266	0.266	19 Blows *
2531P	0.440 O.P	.C. 0.088		0.990	0.290	0.290	16 Blows *
2631P	0.440	0.132	-	0.990	0.315	0.315	13 Blows *
2731P	0.440	0.176		0.990	0.339	0.339	11 Blows *
3031P	0.130		-	0.990	0.072	0.072	Friable **
4031P	0.165			0.990	0.098	0.098	Friable **
5031P	0.202			0.990	0.111	0.111	Friable **
6031P	0.277			0.990	0.152	0.152	38%

Note:- * = Flow > 150% (number of blows causing mortar to flow off edge of flow table recorded).

** = Mix too dry for any measurable flow.

. 6.5 60	Server.	•				
Mix Ref No.	Cement	S.S.D. Sand	Pyrex	P.f.a.	Free Water	Wet Density (kg/m ³)
2032P	583	0	1313	D	204	2100
2033P	551	0	1241	0	248	2040
2034P	536	0	1206	0	268	2010
2035P	508	0	1143	0	305	1955
2041P	558	1224	51	0	307	2140
2051P	558	1171	100	0	307	2135
2061P	555	1114	150	0	305	2125
2071P	554	1062	199	0	305	2120
2431P	496	0	1115	50	300	1960
2531P	473	0	1065	95	312	1945
2631P	451	0	1015	135	323	1925
2731P	432	0	972	173	333	1910
3031P	229	0	1744	0	127	2100
4031P	276	0	1657	0	152	2085
5031P	320	0	1569	0	176	2065
6031P	397	0	1420	0	218	2035

TABLE B.4 MIX PROPORTIONS, SERIES 2 'EXTRA PYREX' SET OF MORTAR BARS

Note:- * = Air content of fully compacted wet mortar assumed to be 1.5%.

TABLE B.5 BATCH QUANTITIES, SERIES 2 'BELTANE OPAL' MORTAR MIXES

	Batch Quantities (kg)							Nelle Car
Mix Ref No.	Cement and	Content Type	P.f.a. Content	Dry Sand Content	Pyrex Glass Content	Total Water Content	Free Water Content	Flow Reading
2011B	0.440			0.660	0.330	0.262	0.242	1425
2021B	0.440		•	0.330	0.660	0.268	0.242	117%
2031B	0.440		•	•	0.990	0.274	0.242	97%
2041B	0.440			0.950	0.040	0.257	0.242	154%
2051B	0.440		•	0.911	0.079	0.257	0.242	25 Blows *
2061B	0.440			0.871	0.119	0.258	0.242	25 Blows *
2071B	0.440	Oxford		0.832	0.158	0.259	0.242	24 Blows *
2311B	0.209	0.P.C.	0.171	0.660	0.330	0.262	0.242	21 Blows *
2321B	0.209		0.171	0.330	0.660	0.268	0.242	25 Blows *
2331B	0.209		0.171		0.990	0.274	0.242	132%
2341B	0.209		0.171	0.950	0.040	0.257	0.242	17 Blows *
2351B	0.209		0.171	0.911	0.079	0.257	0.242	16 Blows *
2361B	0.209		0.171	0.871	0.119	0.258	0.242	16 Blows *
2371B	0.209		0.171	0.832	0.158	0.259	0.242	17 Blows *

Note:- * = Flow > 150% (number of blows causing mortar to flow off edge of flow table recorded).

		•				
		State State	Beltane			Calculated
Mix Ref No.	Cement	S.S.D. Sand	Opal .	P.f.a.	Free Water	Wet Density (kg/m ³)
2011B	536	815	415	0	295	2060
2021B	514	392	796	0	283	1985
2031B	493	0	1146	0	271	1910
2041B	557	1220	52	0	306	2135
2051B	554	1163	103	0	305	2125
2061B	551	1106	154	0	303	2115
2071B	549	1051	203	0	302	2105
2311B	255	818	417	209	296	1995
2321B	245	393	798	200	284	1920
2331B	235	0	1150	192	272	1850
2341B	266	1226	52	218	308	2070
2351B	264	1169	104	216	306	2060
2361B	263	1112 .	155	215	305	2050
2371B	262	1056	204	214	303	2040

TABLE B.6 MIX PROPORTIONS, SERIES 2 'BELTANE OPAL' SET OF MORTAR BARS

Note:- * = Air content of fully compacted wet mortar assumed to be 1.5%.

APPENDIX C

Series 1 - full details of expansion results from 3^3 full factorial set of experiments

Tables C.1 to C.3

Figures C.1 to C.27

TABLE C.1	SERIES	1	MORTAR	BAR	EXPANSION	RESULTS
-----------	--------	---	--------	-----	-----------	---------

		'HARMFUL'					
MIX REF NO.	14 DAYS	28 DAYS	2 MONTHS	4 MONTHS	14 MONTHS	18 MONTHS	REACTIVITY DESIGNATION
000	84	100	85	113	121	-	-
001 P	75	95	79	105	127 *	-	
002 P	165	305 *	495 +	571 +	661 +	-	
010	43	55	15	41	83	-	-
011 P	59	60	52	73	129	-	S S
012 P	132	179	243	413	892	-	-
020	57	44	25	49	124	-	-
021 P	68	48	31	35	116	-	-
022 P	136	135	163	191	289	-	-
100	61	67	93	107	105 *	-	-
101 P	249	341	405	445	472	-	-
102 P	1151	1672	1835	1987	2075	-	Harmful
110	45	31	21	27	95	-	-
111 P	121	120	135	157	240	-	-
112 P	523	577	636	712	927	-	Harmful
120	51	55	47	53	141	-	-
121 P	77	95	99	119	188		-
122 P	229	257	277	301	376	-	
200	129	153	172	169	204	188	-
201 P	1759	2909	3448	3639	3676	3700	Harmful
202 P	3355	5408	5964	6269	6337	6337	Harmful
210	99	103	95	120	224	213	-
211 P	424	495	563	709	1079	1071	Harnful
212 P	985	1167	1325	1552	2016	1997	Harmful
220	104	120	141	181	293	303	100 - 100 S
221 P	247	271	304	339	444	409	-
222 P	629	676	713	732	848	884	Harmful

Note :-

.

* denotes result from 1 bar failed the ASTM repeatability test

+ denotes results from 2 bars failed the ASTM repeatability test

** denotes based on limit referred to in ASTM C227

) -

)

3

4

REPEATABILITY COMPUTATIONS FOR SERIES 1, 14 DAY RESULTS - OUTPUT FROM PROGRAM 'CHECK'

Mix Ref.	AVERAGE	MICRO-
No.	EXPANSION	STRAIN
000	0.021	84.
001P	0.019	75.
002P	0.041	165.
010	0.011	43-
011P	0.015	59.
012P	0.033	132.
020	0.014	57.
021P	0.017	68.
022P	0.034	136.
100	0.015	61.
101P	0.062	249.
102P	0.288	1151.
110	0.011	45.
111P	0.030	121.
112P	0.131	523.
120	0.013	51.
121P	0.019	77.
122P	0.057	229.
200	0.032	129.
201P	0.440	1759.
202P	0.839	3355.
210	0.025	99.
211P	0.106	424.
212P	0.246	985.
220	0.026	104.
221P	0.062	247.
222P	0.157	629.

Mix Ref.	EXPN(1)-AVGE	EXPN(2)-AVG	E EXPN(3)-AVGE	ALLOWABLE
No.				DIFFERENCE
000	0.000	-0.000	0.000	0.003
001P	-0.001	-0.003	0.003	0.003
002P	0.002	0.001	-0.002	0.003
010	0.000	0.001	-0.002	0.003
011P	0.000	-0.001	0.000	0.003
012P	-0.001	-0.002	0.003	0.003
020	0.002	0.001	-0.002	0.003
0210	0.001	0.000	0.001	3.003
0211	-0.001	0.000	-0.001	0.003
UZZP	-0.001	0.001	0.	0.003
100	0.001	0.001	-0.001	0.003
101P	0.005	-0.004	-0.000	0.009
102P	-0.004	0.003	0.000	0.043
110	-0.000	-0.000	0.001	0.003
111P	-0.001	0.003	-0.001	0.003
112P	-0.008	-0.005	0.012	0.020
120	-0.001	-0.001	0.001	0.003
121P	0.001	0.001	-0.001	0.003
122P	-0.001	-0.000	0.002	0.009
200	-0.000	0.002	-0.001	0.003
201P	-0.007	-0.002	0.008	0.066
2028	-0.007	-0.002	0.004	2 126
210	0.044	-0.051	0.000	0.003
2110	0.001	0.001	-0.003	0.003
2112	0.000	-0.001	-0.005	0.010
2128	0.007	-0.004	-0.002	0.037
220	-0.001	0.002	-0.001	0.003
2212	0.001	0.000	-0.002	0.009
2228	-0.000	-0.003	0.004	0.024
Mix Ref				
No. CHE	TY . TE OVAN	ALL VALUES S	HOULD BE POSTTLY	F
000	0.007	ALL VALUES J	0 003	
0018	0.003	0.003	-0.000	
001P	0.002	0.000	-0.000	
002P	0.001	0.002	0.001	
010	0.003	0.002	0.001	
011P	0.003	0.002	0.003	
012P	0.002	0.001	0.000	
020	0.001	0.002	0.001	
021P	0.002	0.003	0.002	
022P	0.002	0.002	0.003	
100	0.002	0.002	0.002	
101P	0.005	0.005	0.009	
102P	0.039	0.040	0.043	
110	0.003	0 003	0.002	
1110	0.002	0.000	0.002	
1100	0.002	0.000	0.002	
1121	0.012	0.015	0.007	
120	0.002	0.002	0.002	
121P	0.002	0.002	0.002	
122P	0.007	0.008	0.007	
200	0.003	0.001	0.002	
201P	0.059	0.064	0.058	
202P	0.081	0.075	0.119	
210	0.002	0.002	0.000	
211P	0.010	0.015	0.011	
212P	0.030	0.033	0.035	
220	0.002	0.001	0 002	
2210	0.008	0.000	0.002	
2220	0.023	0.020	0.000	
2228	0.023	0.020	0.020	

.

-373-

REPEATABILITY COMPUTATIONS FOR SERIES 1, 28 DAY RESULTS - OUTPUT FROM PROGRAM 'CHECK'

AVERAGE	MICRO-
EXPANSION	STRAIN
0.025	100.
0.024	95.
0.076	305.
0.014	55.
0.015	60.
0.045	179.
0.011	44.
0.012	48.
0.034	135.
0.017	67.
0.085	341.
0.418	1672.
0.008	31.
0.030	120.
0.144	577.
0.014	55.
0.024	95.
0.064	257.
0.038	153.
0.727	2909.
1.352	5408.
0.026	103.
0.124	495.
0.292	1167.
0.030	120.
0.068	271.
0.169	676.
	AVERAGE EXPANSION 0.025 0.024 0.076 0.014 0.015 0.045 0.045 0.012 0.034 0.017 0.085 0.418 0.008 0.030 0.144 0.014 0.024 0.038 0.727 1.352 0.026 0.124 0.292 0.030 0.068 0.169

	Mix Ref.	EXPN(1)-AVGE	EXPN(2)-AVGE	EXPN(3)-AVGE	ALLOWABLE
	No.				DIFFERENCE
	000	0.	0.	0.	0.003
	001P	-0.002	-0.002	0.003	0.003
	002P	0.014	-0.011	-0.002	0.011
	010	0.002	0.000	-0.003	0.003
	011P	-0.001	0.001	0.000	0.003
	012P	-0.001	-0.002	0.002	0.003
	020	0.001	0.000	-0.001	0.003
	021P	0.002	0.	-0.002	0.003
	022P	-0.002	0.001	0.000	0.003
	100	0.001	-0.001	-0.001	0.003
	101P	0.005	-0.004	-0.000	0.013
	102P	-0.016	0.016	0.000	0.063
	110	-0.003	0.001	0.001	0.003
	111P	0.	0.002	-0.002	0.003
	112P	-0.008	-0.006	0.015	2.022
	120	0.000	-0.001	0.000	0.003
	121P	0.000	0.000	-0.001	0.003
	122P	-0.001	-0.001	0.003	0.010
	200	0.001	-0.000	-0.000	0.003
	201P	-0.011	-0.008	0.020	0.109
	202P	0.058	-0.071	0.013	0.203
	210	0.000	0.001	-0.002	0.003
	211P	0.006	-0.001	-0.006	0.019
	212P	0.007	-0.005	-0.003	0.044
	220	-0.001	0.002	-0.001	0.003
	221P	0.002	0.000	-0.003	0.010
	222P	-0.001	-0.003	0.004	0.025
MI	x Ref.				

No.	CHECK . IF OKAY	ALL VA	LUES	SHOULD	BE POSITIVE
000	0.003	C	.003		0.003
001P	0.001	C	.001		-0.000
002P	-0.002	C	.000		0.009
010	0.001	0	.003		0.000
011P	0.002	(500.0		0.003
012P	0.002	(.001		0.001
020	0.002	0	.003		0.002
021P	0.001	(.003		0.001
022P	0.001	(.002		0.003
100	0.002	0	.002		0.002
101P	0.008	(.008		0.012
102P	0.047	(.047		0.063
110	0.000	0	.002		0.002
111P	0.003	(.001		0.001
112P	0.013	(.015		0.007
120	0.003	(500.0		0.003
121P	0.003	(.003		0.002
122P	0.008	0	800.0		0.007
200	0.002	0	.003		0.003
201P	0.098	(.101		0.089
202P	0.145	(.132		0.190
210	0.003	(.002		0.001
211P	0.012	0	.018		0.013
212P	0.036	(.039		0.041
220	0.002	(.001		0.002
221P	0.008	0	.010		0.007
222P	0.024	(550.0		0.021

)

Mix Ref.	AVERAGE	MICRO-
No.	EXPANSION	STRAIN
000	0.021	85.
001P	0.020	79.
002P	0.124	495.
010	0.004	15.
011P	0.013	52.
012P	0.061	243.
020	0.006	25.
021P	0.008	31.
022P	0.041	163.
100	0.023	93.
101P	0.101	405.
102P	0.459	1835.
110	0.005	21.
111P	0.034	135.
112P	0.159	636.
120	0.012	47.
121P	0.025	99.
122P	0.069	277.
200	0.043	172.
201P	0.362	3448.
202P	1.491	5964.
210	0.024	95.
211P	0.141	563.
212P	0.331	1325.
220	0.035	141.
221P	0.076	304.
222P	0.178	713.

Mix Ref. No.	EXPN(1)-AVGE.	EXPN(2)-AVGE	EXPN(3)-AVGE	ALLOWABLE
000	0.001	-0.001	0.001	2.003
001P	-0.001	-0.007	0.007	0.003
002P	-0.001	-0.003	-0.003	0.010
010	0.034	-0.044	-0.013	0.017
0110	0.001	0.000	-0.002	0.003
0172	-0.000	-0.000	0.000	0.003
UIZP	0.001	-0.004	0.002	0.009
020	0.002	-0.001	-0.000	0.003
021P	0.001	0.000	-0.002	0.003
022P	-0.001	0.002	-0.002	0.003
100	0.003	-0.002	-0.000	0.003
101P	0.006	-0.003	-0.002	0.015
102P	-0.021	0.020	0.000	0.069
110	-0.003	0.001	0.003	0.003
111P	-0.001	0.002	-0.002	0.003
112P	-0.010	-0.007	0.017	0.024
120	-0.002	0.000	0.001	0.003
121P	0.000	0.001	-0.002	0.003
122P	-0.001	-0.002	0.004	0.010
200	0.	0.001	-0.001	0.003
201P	-0.033	0.004	0.029	0.129
202P	0.084	-0.095	0.011	0.224
210	0.000	0.001.	-0.002	0.003
211P	0.007	-0.002	-0.000	0.021
212P	0.011	-0.006	-0.004	0.050
220	-0.000	0.003	-0.002	0.003
221P	0.003	0.005	-0 003	0.011
222P	-0.000	-0.004	0.005	0.027
Mix Ref.				
No. CHE	CK . IF OKAY	ALL VALUES SHO	OULD BE POSITIV	E
000	0.002	0.002	0.002	
001P	0.002	0.000	-0.000	
002P	-0.041	-0.025	0.003	
010	0.002	0.003	0.001	
011P	0.003	0.003	0.003	
012P	0.008	0.005	0.007	
020	0.001	0.002	0.003	
021P	0.002	0.003	0.001	
022P	0.002	0.001	0.001	
100	0.000	0.001	0.003	
101P	0.010	0.012	0.013	
102P	0.048	0.048	0.068	
110	-0.000	0.002	0.000	
111P	0.002	0.001	0.001	
112P	0.014	0.017	0.007	
120	0.001	0.003	0.002	
121P	0.003	0.002	0 001	
122P	0.009	0.008	0.007	
200	0.003	0.000	0.002	
201P	0.094	0.125	0.100	
202P	0.140	0 129	0 213	
210	0.003	0.002	0.001	
211P	0.014	0.019	0.015	
212P	0.030	0.043	0.045	
220	0.003	0.000	0.001	
221P	0.008	0.011	0.001	
222P	0.026	0.022	0.000	
	0.020	0.022	0.022	

-375-

REPEATABILITY COMPUTATIONS FOR SERIES 1, 4 MONTH RESULTS - OUTPUT FROM PROGRAM 'CHECK'

Mix Ref.	AVERAGE	MICRU-
No.	EXPANSION	STRAIM
000	0.028	113.
001P	0.026	105.
002P	0.143	571.
010	0.010	41.
011P	0.018	73.
012P	0.103	413.
020	0.012	49.
021P	0.009	35.
022P	0.048	191.
100	0.027	107.
101P	0.111	445.
102P	0.497	1987.
110	0.007	27.
111P	0.039	157.
112P	0.173	712.
120	0.013	53.
121P	0.030	119.
122P	0.075	301.
200	0.042	169.
201P	0.910	3639.
202P	1.567	6269.
210	0.030	120.
211P	0.177	709.
212P	0.388	1552.
220	0.045	181.
221P	0.085	339.
222P	0.183	732.

	Mix Ref.	EXPN(1)-AVGE	EXPN(2)-AV	GE EXPN(3)-AVGE	ALLOJABLE
	No.				DIFFERENCE
	000	0.001	-0.001	0.001	0.003
	001P	-0.001	-0.001	0.003	0.003
	002P	0.071	-0.053	-0.019	150.0
	010	0.001	-0.000	-0.000	0.003
	011P	0.001	0.001	-0.001	0.003
	012P	0.009	-0.006	-0.002	0.015
	020	0.002	-0.001	-0.000	0.003
	021P	0.001	0.000	-0.002	0.003
	022P	-0.002	0.003	-0.002	0.003
	100	0.002	-0.002	-0.001	0.003
	101P	0.008	-0.005	-0.002	0.017
	102P	-0.025	0.024	0.000	0.075
	110	-0.003	0.001	0.001	0.003
	111P	-3.030	0.003	-0.002	0.003
	112P	-0.011	-0.010	0.021	J. 027
	120	-0.001	-0.000	0.002	0.003
	121P	-0.001	0.002	-0.002	0.003
	122P	-0.001	-0.004	0.006	0.011
	200	0.001	0.001	-0.001	0.003
	201P	-0.034	0.000	0.033	0.136
	202P	0.105	-0.108	0.004	3.235
	210	0.001	0.001	-0.002	0.003
	211P	0.009	-0.000	-0.008	0.027
	212P	0.013	-0.009	-0.004	0.058
	220	-0.000	0.003	-0.002	0.003
	221P	0.002	-0.001	-0.002	0.013
	222P	-0.001	-0.004	0.005	0.027
Mix	Ref.	Second States	1. N. C. 170-413		
No	. сн	ECK . IF OKAY	ALL VALUES	SHOULD BE POSITIV	/E
00	0	0.002	0.002	0.002	
00	1P	0.002	0.002	0.000	
00	2P	-0.050	-0.031	0.003	
01	0	0.002	0.003	0.003	
01	1P	0.002	0.002	0.002	

010	0.002	0.005	0.005
011P	0.002	0.002	0.002
012P	0.007	0.009	0.013
020	0.001	0.002	0.003
021P	500.0	0.003	0.001
022P	0.001	-0.000	0.001
100	0.001	0.001	0.002
101P	0.009	0.011	0.014
102P	0.050	0.050	0.074
110	0.000	0.002	0.002
111P	0.003	0.000	0.001
112P	0.016	0.017	0.006
120	0.002	0.003	0.001
121P	0.002	0.001	0.001
122P	0.010	0.007	0.006
200	0.002	0.002	0.002
201P	0.103	0.136	0.103
202P	0.130	0.127	0.231
210	0.002	0.002	0.001
211P	0.018	0.026	0.018
212P	0.045	0.049	0.054
220	0.003	0.000	0.001
221P	0.010	0.012	0.011
222P	0.026	0.023	0.022
			- OCC

TABLE C.2(e)REPEATABILITY COMPUTATIONS FOR SERIES 1,
14 MONTH RESULTS - OUTPUT FROM PROGRAM 'CHECK'

Mix Rof.	AVERAGE	MICRO-
No.	EXPANSION	STRAIN
000	0.030	121.
001P	0.032	127.
002P	0.165	661.
010	0.021	83.
OIIP	S.032	129.
012P	0.223	892.
020	0.031	124.
021P	0.029	116.
022P	0.072	289.
100	0.026	105.
101P	0.118	472.
102P	0.519	2075.
110	0.024	95.
111P	0.060	240.
112P	0.232	927.
120	0.035	141.
121P	0.047	188.
122P	0.094	376.
200	0.051	204.
201P	0.919	3676.
202P	1.584	6337.
210	0.056	224.
211P	0.270	1079.
212P	0.504	2016.
220	0.073	293.
221P	0.111	444.
222P	0.212	848.

٦

Mix H	Ref. EXPN(1)-AVG	E EXPN(2)-AVGE	EXPN(3)-AVGE	ALLOWABLE
No.	·			DIFFERENCE
000	-0.000	-0.001	0.002	0.003
001	IP -0.003	-0.002	0.004	0.003
002	2P 0.065	-0.057	-0.007	0.025
010	-0.002	0.000	0.001	0.003
01	1P 0.001	0.001	-0.001	0.003
012	0.020	-0.014	-0.006	0.033
020	0.003	-0.002	-0.001	0.003
021	1P 0.002	-0.001	-0.001	0.003
022	CP 0.002	0.003	-0.004	0.011
100	0.004	-0.000	-0.003	0.003
101	IP 0.007	-0.004	-0.003	0.018
102	2P -0.025	0.024	0.000	0.078
110	-0.002	0.000	0.001	0.003
111	1P 0.002	0.001	-0.003	0.009
112	2P -0.016	-0.012	.0.027	0.335
120	-0.001	-0.000	0.002	0.003
12	1P 0.	0.003	-0.003	0.003
122	2P -0.002	-0.005	0.007	0.014
200	0.002	0.000	-0.002	0.008
20.	1P -0.033	-0.001	0.034	0.138
202	2P 0.104	-0.108	0.005	0.238
. 210	500.0	0.001	-0.003	0.008
21	1P 0.009	0.001	-0.011	0.040
212	2P 0.018	-0.015	-0.003	0.076
220	-0.000	0.003	-0.002	0.011
22	1P 0.004	-0.002	-0.002	0.017
222	-0.001	-0.005	0.006	0.032
Mix Ref.				

No.	CHECK	. IF OKAY	ALL	VALUES	SHOULD	BE	POSIT	IVE
000		0.003		0.005		0.	.001	
001P		0.000		0.001		-0.	.001	
002P		-0.040		-0.033		0.	.017	
010		0.001		0.003		0.	.002	
011P		0.002		0.002		0.	.002	
012P		0.013		0.019		0.	.027	
020		0.000		0.001		0.	.002	
021P		0.001		0.002		0.	.002	
022P		0.009		0.008		0.	.007	
100		-0.001		0.003		-0.	.000	
101F		0.011		0.014		0.	.015	
102P		0.053		0.053		0.	.077	
110		0.001		0.003		0.	.002	
111P		0.007		0.008		0.	.006	
112P		0.019		0.023		0	.007	
120		0.002		0.003		0.	.001	
121P		0.003		0.000		0.	.000	
122P		0.012		0.009		0.	.007	
200		0.006		0.008		0.	.006	
201P		0.105		0.137		0	. 104	
202P		0.134		0.129		0	.233	
210		0.006		0.007		0.	.005	
211P		0.031		0.039		0	.030	
212P		0.058		0.061		0	.073	
220		0.011		0.008		0	.009	
221P		0.013		0.015		0	.015	
222P		0.031		0.027		0	.026	

TABLE C.2(f)

REPEATABILITY COMPUTATIONS FOR SERIES 1, 18 MONTH RESULTS - OUTPUT FROM PROGRAM 'CHECK'

Mix Ref.	AVERAGE	HICRO-
No.	EXPANSION	STRAIN
200	0.047	188.
201P	0.925	3700.
202P	1.534	6337.
210	0.053	213.
211P	0.268	1071.
212P	0.499	1997.
220	0.076	303.
221P	0.102	409.
222P	0.221	884 .

	Mix Ref No.	. EXPN(1)-AVGE	EXPN(2)-AV	GE EXPN(3)-AVGE	ALLOWABLE DIFFERENCE
	200	0.002	-0.001	-0.001	0.003
	201P	-2.033	-0.001	0.034	0.139
	202P	0.100	-0.104	0.005	0.238
	210	1.003	0.004	-0.006	0.003
	211P	0.007	0.003	-0.011	0.040
	212P	0.013	-0.011	-0.001	0.075
	220	0.000	0.004	-0.005	0.011
	221P	2.204	-0.300	-0.003	0.015
	222P	-0.001	-0.005	0.006	0.033
Mix	Ref.				
No	. C:	ECK . IF OKAY	ALL VALUES	SHOULD BE POSITIV	E
20	00	0.001	0.002	0.002	
20	1P	0.106	0.138	0.105	
20	2P	0.138	0.133	0.233	
21	0	0.005	0.004	0.002	
21	1P	0.033	0.037	0.029	
21	2P	0.062	0.064	0.074	
22	20	0.011	0.007	0.007	
22	21P	0.012	0.015	0.012	
22	2P	0.032	0.028	0.027	

Mix Ref No.	Date Cast	Date of Examination	Specimen Ref.	Warping	Twisting	Compaction	Visible Aggregate	Surface Mottling	Surficial Exudation	Other Comments
000	16.7.80	5.11.80	A B C	Zero Zero Zero	Zero Zero Zero	Average	None	None	None	
001 P	22.7.80	11.11.80	A B C	Zero Zero Zero	Zero Zero Zero	Avera ge	None	Slight	Slight	
002 P	2.10.80	29.1.81	A B C	Negligible Zero Negligible	Zero Zero Zero	. Below average	Slight - At ends and on surfaces	Slight	Slight	Some large white deposits
010	24.7.80	13.11.80	A B C	Zero Zero Negligible	Zero Zero Negligible	Avera ge	Slight - At ends	Slight	Slight	Specimen quite wet on surface. Very few white deposits.
011 P	24.7.80	13.11.80	A B C	Zero Zero Zero	Zero Negligibl e Negligibl e	Avera ge	None	Slight	Slight	Specimen quite wet on surface.
012 P	16.9.80	13.1.81	A B C	Zero Zero Zero	Zero Zero Zero	Good	None	Yes	Slight	Specimens quite wet
020	30.9.80	27.1.81	A B C	Zero Zero Zero	Zero Zero Zero	Below average	None	Yes	None	
021 P	15.10.80	11.2.81	A B C	Zero Zero Zero	Zero Zero Zero	Poor	Slight - At surface	Yes	None	
022 P	17.9.80	14.1.81	A B C	Negligible Zero Negligible	Zero Zero Zero	Average	None	Slight	None	

TABLE C.3 SERIES 1 VISUAL EXAMINATION OF MORTAR BARS, AFTER EXPANSION MEASUREMENTS AT 4 MONTHS

Mix Ref No.	Date Cast	Date of Examination	Specimen Ref.	Warping	Twisting	Compaction	Visible Aggregate	Surface Mottling	Surficial Exudation	Other Comments
100	20 0 90	27 1 01	A	Slight	Zero	Augentes	None	Nama	None	
100	30.9.80	27.1.81	C	Zero	Zero	Average	None	None	None	
1			A	Zero	Zero	Below				White deposits
101 P	24.9.80	21.1.81	B C	Zero Zero	Zero Zero	average	None	Yes	Yes	and 'runs' on surface.
1000			A	Negligible	Zero					Signs of conden-
102 P	23.7.80	12.11.80	B C	Negligible	Slight -	Average	None	Yes	Extensive	sation on speci- mens. Appearance
										dark grey/green with white
									a keyanyan Managan	deposits and light patches
			A	Zero	Zero					Minor white
110	23.9.80	20.1.81	C	Slight	Zero	Average	None	Yes	Slight	staining on surface.
	10 0 00	15.1.01	A	Zero	Zero					
111 P	18.9.80	15.1.81	C	Slight	Zero	Average	None	Yes	None	T TRACK STREET
110.0	0.10.00	5 2 21	A	Zero	Zero	Below			611	
112 P	9.10.80	5.2.81	C	Zero	Zero	average	None	tes	Slight	
		10.0.01	A	Zero	Zero	Below	Slight -			
120	14.10.80	10.2.81	C B	Zero	Zero	average	At ends and at surfaces	Yes	None	
			A	Negligible	Zero					
121 P	25.9.80	22.1.81	B C	Zero Negligible	Zero Zero	Poor	None	Slight	None	
			A	Zero	Zero					
122 P	25.9.80	22.1.81	B C	Negligible	Zero	Poor	None	Slight	None	

TABLE C.3 continued

-380-

TABLE C.3 continued

Mix Ref No.	Date Cast	Date of Examination	Specimen Ref.	Warping	Twisting	Compaction	Visible Aggregate	Surface Mottling	Surficial Exudation	Other Comments
200	16.9.80	13.1.81	A B C	Zero Zero Zero	Slight Zero Negligib le	Good	None	Slight	Slight	
201 P	1.10.80	28.1.81	A B C	스 1mm Zero 스 1mm	Zero Zero Zero	Below average	None	Yes	Extensive	No visible cracking. Possible start of surface spalling. Exten- sive white deposits.
202 P	7.10.80	3.2.81	A B C	Negligible ≏1mm Zero	Zero Zero Zero	Aver age	None	None	Extensive	No visible cracking. Extensive white deposits.
210	14.10.80	10.2.81	A B C	Negligible Zero Zero	Zero Zero Zero	Good	None	Yes	None	
211 P	23.9.80	20.1.81	A B C	Zero Zero Zero	Zero Zero Zero	Aver age	None	Slight	Yes	Extensive white staining/deposits on surface.
212 P	7.10.80	3.2.81	A B C	Negligible Zero Zero	Zero Zero Zero	Average	None .	Yes	Slight	
220	17.9.80	14.1.81	A B C	Zero Zero Zero	Zero Negligible Zero	Average	None	Extensive	None	
221 P	18.9.80	15.1.81	A B C	Zero Zero Zero	Zero Zero Zero	Average	None	Yes	None	
222 P	9.10.80	5.2.81	A B C	Zero Zero Slight	Zero Zero Zero	Below average	None	Slight	None	

-381-

11

Figure C.2

Figure C.4

Figure C.6

Figure C.8

Figure C.10

Figure C.12

Figure C.14

Figure C.15

Figure C.16

Figure C.20

Figure C.22

Figure C.24

Figure C.26

.

Figure C.27

APPENDIX D

Series 2 - full details of expansion results from 3 X 4 X 4 X 2 factorial set of experiments

Tables D.1 to D.2

Figures D.1 to D.96

	EXPANSI	'HARMFUL'			
MIX REF NO.	14 DAYS	2 MONTHS	6 MONTHS	12 MONTHS	REACTIVITY DESIGNATION
0000	64	88	91	67	-
0001	77	80	81	21*	
0010 P	56	68	80	37	- S. 18
0011 P	71	85*	91*	83	- 1. A.
0020 P	99	149	172	139	1.00
0021 P	64	104	99	80	
0030 P	912	1421	1425	1379	Harmful
0031 P	193*	1889	2819	2827	Harmful
0100	53	37	52*	24	-
0101	65	81	95	88+	-
0110 P	67	59	64	59+	-
0111 P	84	76*	88*	69	-
0120 P	60	65	93*	88+	-
0121 P	69	61	99	107	Constant - 15
0130 P	283	353	399	376	a de t <u>e</u> tablich
0131 P	153+	771	2023	2243	Harmful
0200	40	0	5	-21	1.
0201	93	53	48	43	
0210 P	60	40	63*	21*	
0211 P	80	60	78	40	-
0220 P	75	68	60	48	-
0221 P	48	27	29	29	
0230 P	149	161	180	176	-
0231 P	117	157	297	587	1. 10-2. 10. 10.
0300	83	59	73	67	
0301	96	91	99	91	-
0310 P	43	27	31	16	100
0311 P	77	57	79*	59	-
0320 P	77	68*	79	61	-
0321 P	87	101*	115+	104+	
0330 P	135	133	147	131*	-
0331 P	96	115	148	168+	

TABLE D.1 SERIES 2 MORTAR BAR EXPANSION RESULTS - 3x4x4x2 FACTORIAL MIXES

Note:- * denotes result from 1 bar failed the ASTM repeatability test + denotes results from 2 bars failed the ASTM repeatability test ** denotes based on limit referred to in ASTM C227 TABLE D.1 continued

	EXPANSI	'HARMFUL'			
MIX REF NO.	14 DAYS	2 MONTHS	6 MONTHS	12 MONTHS	REACTIVITY DESIGNATION
1000	64	88	103	91	1.19
1001	48	85	87	51*	-
1010 P	208	291	311	283	100-10 A
1011 P	141	252*	271	261	
1020 P	1252	1516	1533	1533	Harmful
1021 P	1467	3077	3164	3128	Harmful
1030 P	2633	2831	2864	2859	Harmful
1031 P	3025	4367	4385	4381	Harmful
1100	63	40	51	29+	-
1101	67	83	84	64+	-
1110 P	109	136	153*	115*	-
1111 P	139	167+	196	200*	
1120 P	408	453	452	440	ther-kiel of
1121 P	552	1301	2092	2328	Harmful
1130 P	1099	1197	1208	1187	Harmful
1131 P	1215	2245	2649	2739	Harmful
1200	57	73	91	77	-
1201	80	73	99	96+	-
1210 P	67	108	128	117*	-
1211 P	75	84	124	115	-
1220 P	184	221	251	237	-
1221 P	144+	209	340	448	- 1
1230 P	725	775	807	808	
1231 P	576	804	1236	1517	Harmful
1300	77	117	148	163*	-
1301	77	97	125	99*	-
1310 P	92	107	137	141+	-
1311 P	69	95	123	120	-
1320 P	149	187	208	211	-
1321 P	119	157	209	216	-
1330 P	388	407	433	443	
1331 P	221	261	351	381	-

Note:- * denotes result from 1 bar failed the ASTM repeatability test + denotes results from 2 bars failed the ASTM repeatability test ** denotes based on limit referred to in ASTM C227

TABLE D.1	continued			Sec.	
MTY DEF	EXPANS1	ON IN MICRO	STRAIN (VE)	AT AGE :-	'HARMFUL'
NO.	14 DAYS	2 MONTHS	6 MONTHS	12 MONTHS	DESIGNATION
2000	96	101	125	92	-
2001	92	95	105	88	
2010 P	1317	1953	1993	1952	Harmful
2011 P	1309	2931	3048	3028	Harmful
2020 P	3447	4065	4099	4112	Harmful
2021 P	3432	6217	6467	6612	Harmful
2030 P	3643	3843	3887	3920	Harmful
2031 P	4680	6777	6948	6848	Harmful
2100	71	71	104	96	• • • • •
2101	125	124	156*	156	-
2110 P	539	597	597	584	-
2111 P	508	969	1732	1864	Harmful
2120 P	1307	1441	1479	1464	Harmful
2121 P	1768	2911	3557	3676	Harmful
2130 P	1743	1873	1924	1936	Harmful
2131 P	2163	2919	3201	3288	Harmful
2200	61	87*	137	156+	
2201	96+	129+	177*	176+	-
2210 P	301	335	371	372	
2211 P	301	407	491	520	
2220 P	855	916	964	964	
2221 P	707	904	1164	1448	Harmful
2230 P	1419	1505	1556	1552	Harmful
2231 P	1125	1461	1872	2104	Harmful
2300	91	113	133	140	- 11 (T)
2301	96*	131	163	152	-
2310 P	253	299	331	328	-
2311 P	187	237	309	300	- 3
2320 P	501	532	568	572	-
2321 P	375	465	543	600	-
2330 P	985	1047	1077	1084	Harmful
2331 P	593	683	800	864	-

Note:- * denotes result from 1 bar failed the ASTM repeatability test + denotes results from 2 bars failed the ASTM repeatability test ** denotes based on limit referred to in ASTM C227

1

REPEATABILITY COMPUTATIONS FOR SERIES 2 FACTORIAL SET, 14 DAY RESULTS - OUTPUT FROM PROGRAM 'CHECK'

1.

	AUCDACC	
Mix Ref.	AVERAGE	STRATH
NO.	CAPANSION	STRAIN
0000	0.010	
00108	0.014	54
COLLE	0.018	71
00208	0.075	00
0021P	0.016	AL.
0030P	0.228	912.
0031P	0.048	101
0100	0.013	53
0101	0.015	45
0110P	0.017	67
0111P	0.021	84
0120P	0.015	60
0121P	0.017	60
0130P	0.071	283
0131P	0.038	153
0200	0.010	40.
0201	0.023	93.
0210P	0.015	60.
0211P	0.020	80.
0220P	0.019	75.
0221P	0.012	48.
0230P	0.037	149.
0231P	0.029	117.
0300	0.021	83.
0301	0.024	96.
0310P	0.011	43.
0311P	0.019	77.
0320P	0.019	77.
0321P	0.022	87.
0330P	0.034	135.
0331P	0.024	96.
1000	0.016	64.
1001	0.012	48.
1010P	0.052	208.
1011P	0.035	141.
1020P	0.313	1252.
1021P	0.367	1467.
1030P	0.658	2633.
1031P	0.756	3025.
1100	0.016	63.
1101	0.017	67.
1110P	0.027	109.
1111P	0.035	139.
1120P	0.102	408.
1121P	0.138	552.
1130P	0.275	1099.
1131P	0.304	1215.
1200	0.014	57.
1201	0.020	80.
1210P	0.017	67.
1211P	0.019	75.
1220P	0.046	184.
1221P	0.036	144.
1230P	0.181	725.
1231P	0.144	576.
1300	0.019	77.
1301	0.019	77.
1310P	0.023	92.
1311P	0.017	69.
1320P	0.037	149.
13219	0.030	119.
1330P	0.097	388.
1331P	0.055	221.
2000	0.024	90.
2001	0.023	1717
2010	0.327	1300
20111	0.862	3447
20201	0.858	3432
20208	0.011	34/3
20318	1.170	4680.
2100	0.018	71.
2101	0.031	125.
21100	0.135	539.
2111P	0.127	508.
2120P	0.327	1307.
2121P	0 442	1768.
2130P	0.436	1743.
21310	0.541	2163
2200	0.015	61.
2201	0.024	96
2210P	0.075	301.
2211P	0,075	301.
2220P	0,214	855
2221P	0,177	707.
2230P	0.353	1413.
2231P	0.281	1125.
2300	0.023	91.
2301	0.024	96.
2310P	0.063	253.
2311P	0.047	187.
2320P	0.125	501.
2321P	0.094	375.
2330P	0.246	985.
2331P	0.148	593.

\mathbb{N}_{2} bef.	EXPN(1)-AVGE	$E \times P \cong (2) - A \vee G E$	EXPN(3)-AVGE	ALLOWABLE
10000	0.	0.	0.	0.003
0001	0.001	0.001	-0.001	0.003
0011P	-0.002	0.000	0.002	0.003
0020P	0.001	0.001	-0.003	0.003
0021P	-0.000	0.000	0.000	0.003
0030P	0.008	0.010	-0.018	0.034
0100	0.001	-0.001	0.001	0.003
0101	-0.002	0.001	0.002	0.003
0111P	0.001	-0.002	0.000	0.003
0120P-	-0.000	-0.001	0.001	0.003
0121P	-0.000	0.001	-0.000	0.003
0131P	-0.005	-0.003	0.004	0.003
0200	-0.000	-0.000	0.000	0.003
0201 0210P	-0.001	0.001	0.001	0.003
0211P	-0.002	-0.000	0.002	0.003
0220P	-0.001	0.001	-0.001	0.003
0230P	-0.001	0.000	0.001	0.003
0231P	0.001	0.001	-0.001	0.003
0301	-0.001	0.001	-0.001	0.003
0310P	0.001	-0.001	-0.001	0.003
0311P	-0.001	0.001	0.001	0.003
0321P	0.000	-0.001	0.000	0.003
0330P	0.002	-0.001	-0.002	0.003
0331P 1000	0.001	-0.000	-0.001	0.003
1001	0.	0.	0.	0.003
1010P	0.	0.	0.	0.008
1020P	0.003	-0.003	0.001	0.003
1021P	0.001	-0.019	0.017	0.055
1030P	-0.021	0.012	0.010	0.099
1100	-0.005	0.002	0.004	0.113
1101	0.001	-0.001	-0.001	0.003
1110P	0.001	0.001	-0.001	0.003
1120P	-0.002	0.000	0.002	0.015
1121P	0.006	-0.008	0.002	0.021
1131P	0.022	-0.011	0.004	0.041
1200	0.002	-0.001	-0.000	0.003
1201 1210P	0.000	0.000	-0.000	0.003
1211P	-0.001	0.000	0.000	0.003
1220P	0.	-0.002	500.0	0.003
1230P	0.013	-0.011	-0.001	0.027
1231P	-0.004	-0.002	0.006	0.022
1300	0.001	0.001	-0.001	0.003
1310P	0.000	0.001	-0.001	0.003
1311P	0.001	0.001	-0.001	0.003
1321P	0.000	-0.002	0.001	0.003
1330P	0.003	-0.004	0.001	0.015
2000	0.001	-0.001	0.001	0.003
2001	-0.001	0.000	0.001	0.003
2010P	0.009	-0.009	0.001	0.049
2020P	0.010	-0.013	0.002	0.129
2021P	-0.032	-0.010	0.042	0.129
2030P	0.026	-0.014	-0.012	0.175
2100	0.000	0.000	-0.001	0.003
2101 2110P	-0.001	-0.001	0.001	0.003
2111P	0.009	0.000	-0.009	0.019
2120P	-0.007	0.005	0.001	0.049
2121P 2130P	0.012	-0.006	-0.005	0.065
2131P	0.003	0.007	-0.011	0.081
2200	-0.002	0.001	500.0	0.003
2210P	0.001	-0.001	0.001	0.011
2211P	0.001	-0.003	0.003	0.011
2220P 2221P	-0.010	-0.001	0.010	0.032
2230P	0.005	-0.013	0.009	0.053
2231P	0.007	-0.011	0.005	0.042
2301	0.004	-0.002	-0.002	0.003
2310P	-0.001	0.003	-0.001	0.010
2311P 2320P	-0.001	-0.003	0.003	0.003
2321P	0.004	-0.003	-0.002	0.014
2330P	-0.003	-0.006	0.010	0.037

L. J. 0.03 O. (13) J. 003 Contin 0.001 0.011 0.002 Contin 0.001 0.011 0.003 Contin 0.003 0.011 0.003 Contin 0.003 0.014 0.003 Contin 0.003 0.014 0.003 Contin 0.003 0.012 0.001 Contin 0.003 0.012 0.001 Contin 0.003 0.012 0.001 Contin 0.002 0.001 0.002 Contin 0.003 0.002 0.001 Contin 0.003 0.002 0.001 Contin 0.003 0.002 0.003 Contin 0.003 0.002 0.003 Contin 0.003 0.002 0.003 Contin 0.003 0.002 0.003 Contin 0.003 0.003 0.003 Contin 0.003 0.002 0.003 Contin		CHECK	. IF OKAY	ALL	VALUES	SHOULD	HE POSITIVE
Construction Construction Construction Constre Construction Constr	0001		0.003		0.003		0.003
2011 0.101 0.071 0.032 0014P 0.003 0.003 0.003 0.003 0014P 0.003 0.002 0.003 0.002 0014P 0.003 0.002 0.002 0.002 0101 0.002 0.002 0.002 0.002 0111P 0.003 0.002 0.003 0.002 0.003 0111P 0.003 0.002 0.001 0.003 0.002 0.001 0111P 0.003 0.002 0.001 0.003 0.002 0.001 0111P 0.003 0.002 0.001 0.003 0.003 0.003 0111P 0.002 0.002 0.002 0.002 0.002 0.002 0111P 0.002 0.002 0.002 0.002 0.002 0.002 0111P 0.002 0.002 0.002 0.002 0.002 0.002 0111P 0.002 0.002 0.002 0.002 0.002 0.0	00105		0.001		0.003		0.001
Dot StP D. 003 D. 024 D. 001 D. 022 D. 001 D. 002 D. 001 D. 002 D. 001 D. 002 D. 002 D. 001 D. 002 D. 002 <thd. 002<="" th=""> <thd. 002<="" th=""> <thd. 002<="" t<="" td=""><td>0011P</td><td></td><td>0.001</td><td></td><td>0.001</td><td></td><td>0.002</td></thd.></thd.></thd.>	0011P		0.001		0.001		0.002
0000 0.026 0.024 0.024 0.016 0100 0.002 0.002 0.002 0.001 0100 0.002 0.001 0.002 0.001 0110P 0.002 0.002 0.001 0.003 0111P 0.002 0.002 0.003 0.002 0.003 0121P 0.003 0.002 0.003 0.002 0.003 0131P 0.007 0.008 0.001 0.002 0.002 0.002 0201 0.002 0.002 0.002 0.002 0.002 0.002 0211P 0.002 0.002 0.002 0.002 0.002 0.002 0231P 0.002 0.002 0.002 0.002 0.002 0.002 0330P 0.003 0.002 0.002 0.002 0.002 0.002 0330P 0.003 0.003 0.003 0.002 0.002 0.002 0330P 0.003 0.003 0.003 0.003	0021P		0.003		0.003		0.003
Description Description 0100 0.003 0.002 0.003 01100 0.003 0.002 0.003 011100 0.003 0.002 0.003 011100 0.003 0.002 0.003 011100 0.003 0.002 0.003 011100 0.003 0.001 -0.003 011100 0.003 0.001 -0.003 011100 0.003 0.003 0.003 011100 0.002 0.002 0.003 01010 0.002 0.002 0.003 01010 0.002 0.002 0.003 01010 0.002 0.002 0.002 01010 0.002 0.002 0.002 010110 0.002 0.002 0.002 010110 0.003 0.003 0.003 010110 0.003 0.003 0.003 010110 0.002 0.002 0.002 010110 0.003	0030P		0.026		0.024		. 0.016
0101 0.001 0.002 0.001 0110P 0.002 0.001 0.002 0112P 0.003 0.002 0.003 0113P 0.003 0.002 0.003 0130P 0.003 0.001 -0.003 0131P -0.002 0.001 -0.003 0201 0.002 0.002 0.003 0201 0.002 0.002 0.002 0210P 0.002 0.002 0.002 0210P 0.003 0.002 0.002 0220P 0.002 0.002 0.002 0231P 0.002 0.002 0.002 0311P 0.002 0.002 0.002 0312P 0.003 0.002 0.002 0314P 0.002 0.003 0.002 0314P 0.002 0.003 0.003 0314P 0.002 0.003 0.003 0314P 0.003 0.003 0.003 0314P 0.	0100		0.003		-0.000		0.002
0110P 0.002 0.001 0.003 0112P 0.003 0.002 0.003 0120P 0.003 0.002 0.003 0130P 0.007 0.003 0.002 0.003 0130P 0.003 0.002 0.003 0.003 0200 0.003 0.002 0.002 0.003 0210P 0.002 0.002 0.002 0.002 0210P 0.002 0.002 0.002 0.003 0231P 0.002 0.002 0.002 0.002 0300 0.002 0.002 0.002 0.002 0301 0.002 0.002 0.002 0.002 0301 0.002 0.002 0.002 0.002 0302P 0.003 0.003 0.003 0.003 0304P 0.001 0.002 0.003 0.003 0304P 0.001 0.002 0.003 0.003 0304P 0.001 0.002 0.003	0101		0.001		0.002		0.001
1121P 0.003 0.002 0.003 1131P 0.007 0.003 0.003 1131P 0.003 0.003 0.003 1131P 0.003 0.003 0.003 1131P 0.003 0.003 0.003 1131P 0.002 0.002 0.003 1131P 0.002 0.002 0.003 1131P 0.003 0.003 0.003 1131P 0.002 0.003 0.003 1131P 0.002 0.003 0.003 111P 0.003 0.003 0.003 111P 0.002 0.002 0.003 111P 0.003 0.003 0.003 1101 0.003 0.003 0.003 1101 0.003 0.003 0.003 1101P 0.003 0.003 0.003 1101P 0.003 0.003 0.003 1011 0.003 0.003 0.003 1011P 0.003 <td>0111P</td> <td></td> <td>0.002</td> <td></td> <td>0.001</td> <td></td> <td>0.003</td>	0111P		0.002		0.001		0.003
111P 0.003 0.072 0.033 0130P 0.002 0.001 -0.001 0200 0.002 0.003 0.003 0210P 0.002 0.002 0.003 0210P 0.002 0.002 0.002 0210P 0.002 0.002 0.002 0210P 0.002 0.002 0.002 0221P 0.003 0.002 0.002 0230P 0.002 0.002 0.002 0300 0.002 0.002 0.002 031P 0.002 0.002 0.002 0330P 0.001 0.002 0.003 0331P 0.002 0.003 0.003 031P 0.003 0.003 0.003 101P 0.000 -0.003 0.003 101P 0.000 -0.003 0.003 101P 0.000 0.002 0.002 101P 0.002 0.002 0.002 101P 0.002 <td>0120P</td> <td></td> <td>0.003</td> <td></td> <td>0.002</td> <td></td> <td>0.002</td>	0120P		0.003		0.002		0.002
b b	0121P		0.003		0.002		0.003
0200 0.003 0.003 0.003 0210P 0.002 0.002 0.002 0.003 0210P 0.002 0.002 0.003 0.003 0220P 0.002 0.002 0.003 0.003 0230P 0.002 0.002 0.002 0.002 0300 0.002 0.002 0.002 0.002 0311P 0.002 0.002 0.002 0.002 0311P 0.003 0.003 0.002 0.002 0311P 0.002 0.003 0.003 0.003 0330P 0.001 0.002 0.003 0.003 0311P 0.002 0.003 0.003 0.003 0311P 0.002 0.003 0.003 0.003 0311P 0.002 0.003 0.003 0.003 0310P 0.003 0.003 0.003 0.003 0101 0.003 0.003 0.003 0.003 0100 0.002	0131P		-0.002		0.001		-0.001
1 0 0.02 0.022 0.022 0.002 0 0.01 0.023 0.012 0.002 0.002 0 0.03 0.013 0.002 0.002 0.002 0 0.02 0.012 0.002 0.002 0.002 0.002 0 0.02 0.012 0.002 0.002 0.002 0.002 0 0.02 0.012 0.002 0.002 0.002 0.002 0 0.01 0.02 0.002 0.003 0.003 0.003 0 0.02 0.003 0.003 0.003 0.003 0.003 0 0.001 0.003 0.003 0.003 0.003 0.003 0 0.002 0.003 0.003 0.003 0.003 0.003 0 0.002 0.003 0.003 0.003 0.003 0 0.002 0.003 0.003 0.003 0.003 0 0.002 <	0200		0.003		0.003		0.003
0211P 0.001 0.002 0.002 0220P 0.002 0.002 0.002 0230P 0.002 0.002 0.002 0300 0.002 0.002 0.002 0301 0.002 0.002 0.002 0300 0.002 0.002 0.002 0300 0.002 0.002 0.002 0300 0.002 0.002 0.002 0300 0.002 0.003 0.003 0300 0.003 0.003 0.003 0300 0.003 0.003 0.003 0300 0.003 0.003 0.003 0301 0.003 0.003 0.003 0301 0.004 0.002 0.003 0301 0.005 0.012 0.003 0301 0.006 0.022 0.002 0301 0.007 0.027 0.027 0301 0.002 0.003 0.003 0301 0.002	0210P		0.002		0.002		0.003
Deckop D. 002 D. 002 D. 002 D. 002 0231P 0. 002 0. 002 0. 002 0. 002 0300 0. 002 0. 002 0. 002 0. 002 0300 0. 002 0. 002 0. 002 0. 002 0311P 0. 002 0. 002 0. 002 0. 002 0320P 0. 003 0. 003 0. 003 0. 003 0331P 0. 001 0. 003 0. 003 0. 003 0300P 0. 001 0. 003 0. 003 0. 003 0301P 0. 002 0. 003 0. 003 0. 003 0301P 0. 003 0. 003 0. 003 0. 003 1001P 0. 003 0. 003 0. 003 0. 003 101P 0. 003 0. 003 0. 003 0. 003 102P 0. 033 0. 030 0. 003 0. 003 103P 0. 033 0. 033 0. 033 0. 033 103P 0. 044 0. 042 0. 002 0	0211P		0.001		0.003		0.001
2230P 0.002 0.002 0.002 0300 0.002 0.002 0.002 0311P 0.002 0.002 0.002 0311P 0.002 0.002 0.002 0311P 0.003 0.002 0.002 0320P 0.002 0.002 0.002 0331P 0.003 0.003 0.003 0331P 0.002 0.003 0.003 0311P 0.002 0.003 0.003 0310P 0.003 0.003 0.003 0311P 0.002 0.003 0.003 1000 0.003 0.003 0.003 1010 0.002 0.003 0.003 1020P 0.054 0.056 0.052 1031P 0.108 0.112 0.110 1030 0.002 0.002 0.002 1101 0.002 0.002 0.002 1101 0.002 0.002 0.002 1111P 0.002 <td>0221P</td> <td></td> <td>0.003</td> <td></td> <td>0.003</td> <td></td> <td>0.003</td>	0221P		0.003		0.003		0.003
Description Description Description 0300 0.002 0.002 0.002 0311P 0.002 0.002 0.002 0311P 0.002 0.002 0.002 0320P 0.001 0.002 0.002 0330P 0.001 0.003 0.003 0330P 0.001 0.003 0.003 0300 0.003 0.003 0.003 0100 0.003 0.003 0.003 0101 0.003 0.003 0.003 0101P 0.008 0.002 0.003 0102P 0.033 0.030 0.002 0102P 0.033 0.002 0.002 0103P 0.77 0.027 0.022 0.002 1101 0.002 0.002 0.002 0.002 1110P 0.002 0.002 0.002 0.002 1110P 0.002 0.002 0.002 0.002 1110P 0.002 0.002 <td>0230P</td> <td></td> <td>500.0</td> <td></td> <td>0.002</td> <td></td> <td>0.002</td>	0230P		500.0		0.002		0.002
6311 0.003 0.003 0.003 0311P 0.002 0.002 0.002 0320P 0.002 0.002 0.002 0330P 0.001 0.002 0.003 0330P 0.001 0.002 0.003 0330P 0.003 0.003 0.003 1000 1.003 0.003 0.003 1001 0.003 0.003 0.003 1011P 0.008 0.022 0.003 1022P 0.333 0.036 0.002 1030P 0.777 0.022 0.003 1030P 0.777 0.022 0.003 1100 0.002 0.002 0.002 1110P 0.002 0.002 0.002 1110P 0.002 0.002 0.002 1111P 0.002 0.002 0.003 1120P 0.015 0.013 0.013 1120P 0.016 0.022 0.002 1201 0.003 </td <td>0300</td> <td></td> <td>0.002 200.C</td> <td></td> <td>0.002</td> <td></td> <td>0.002</td>	0300		0.002 200.C		0.002		0.002
0 3 0 P 0 .002 0 .002 0 .002 0 3 0 P 0 .002 0 .002 0 .002 0 3 0 P 0 .001 0 .002 0 .002 0 3 0 P 0 .001 0 .002 0 .002 0 3 0 P 0 .001 0 .002 0 .003 0 0 0 0 .003 0 .003 0 .003 1 0 0 P 0 .003 0 .003 0 .003 1 0 0 P 0 .003 0 .003 0 .003 1 0 0 P 0 .003 0 .003 0 .003 1 0 0 P 0 .003 0 .003 0 .003 1 0 0 P 0 .003 0 .003 0 .004 1 0 0 P 0 .003 0 .003 0 .004 1 0 0 0 P 0 .002 0 .003 0 .003 1 0 0 0 P 0 .002 0 .002 0 .002 1 1 1 P 0 .002 0 .002 0 .002 1 1 1 P 0 .002 0 .002 0 .003 1 1 2 0 P 0 .013 0 .003 0 .003 1 2 0 P 0 .002 <t< td=""><td>0301</td><td></td><td>0.003</td><td></td><td>0.003</td><td></td><td>0.003</td></t<>	0301		0.003		0.003		0.003
0320p 0.002 0.002 0.002 0.003 0331P 0.003 0.002 0.003 0.002 0331P 0.002 0.003 0.003 1000 0.003 0.003 0.003 1010 0.003 0.003 0.003 1010 0.003 0.003 0.003 1010 0.000 -0.000 0.002 1020P 0.033 0.030 0.044 1021P 0.054 0.036 0.038 1030P 0.077 0.027 0.028 1031P 0.108 0.112 0.110 1000 0.002 0.002 0.003 1101 0.002 0.002 0.002 1111P 0.002 0.002 0.003 1120P 0.013 0.013 0.0119 1130P 0.022 0.002 0.002 1200 0.002 0.002 0.002 1210P 0.003 0.014 0.0011	0310P 0311P		0.002		0.002		0.002
0331P 0.003 0.001 0.002 0.003 0330P 0.001 0.003 0.003 0.003 1000 0.003 0.003 0.003 0.003 1010P 0.008 0.002 0.008 0.002 1010P 0.008 0.002 0.008 0.002 1020P 0.033 0.030 0.002 0.002 1020P 0.033 0.030 0.003 0.003 1030P 0.777 0.022 0.003 0.003 1100 0.002 0.002 0.002 0.002 1110P 0.002 0.002 0.002 0.002 1110P 0.002 0.002 0.002 0.002 1111P 0.002 0.002 0.003 0.013 1120P 0.015 0.013 0.013 0.013 1201 0.002 0.002 0.002 0.003 1210P 0.002 0.002 0.002 0.002 1211P	0320P		0.002		0.002		0.002
Construct Construct <thconstruct< th=""> <thconstruct< th=""> <thc< td=""><td>0321P</td><td></td><td>0.003</td><td></td><td>0.002</td><td></td><td>0.003</td></thc<></thconstruct<></thconstruct<>	0321P		0.003		0.002		0.003
1000 0.003 0.003 0.003 1010P 0.003 0.003 0.003 1010P 0.008 0.002 0.008 1011P 0.000 -0.000 0.002 1020P 0.033 0.030 0.044 1021P 0.054 0.036 0.003 1031P 0.108 0.112 0.110 1000 0.002 0.003 0.003 1101 0.002 0.002 0.002 1101 0.002 0.002 0.002 1111P 0.002 0.002 0.002 1112P 0.013 0.013 0.019 1130P 0.241 0.633 0.003 1210P 0.002 0.003 0.003 1210P 0.003 0.001 0.001 1221P 0.003 0.001 0.001 1220P 0.003 0.002 0.002 1230P 0.018 0.016 0.026 1231P 0.018	0331P		0.002		0.003		0.002
0001 0.003 0.003 0.003 0.003 1010P 0.000 -0.000 0.002 1020P 0.033 0.030 0.044 1021P 0.054 0.030 0.044 1031P 0.108 0.112 0.110 1100 0.002 0.003 0.003 1101 0.002 0.002 0.002 1110P 0.002 0.002 0.002 1110P 0.002 0.002 0.000 1120P 0.015 0.013 0.019 1121P 0.023 0.019 0.001 1200 0.001 0.002 0.003 1210P 0.002 0.003 0.001 1210P 0.003 0.001 0.002 1221P 0.003 0.001 0.002 1221P 0.003 0.001 0.002 1220P 0.003 0.002 0.002 1230P 0.015 0.016 0.026 1230P	1000		0.003		0.003		0.003
1011p 0.000 -0.000 0.000 1021P 0.033 0.030 0.044 1031P 0.002 0.038 0.030 1031P 0.108 0.112 0.110 1100 0.002 0.003 0.003 1101 0.002 0.002 0.002 1110P 0.002 0.002 0.002 1110P 0.002 0.002 0.002 1112P 0.015 0.013 0.019 1130P 0.233 0.013 0.019 1130P 0.023 0.013 0.003 1200 0.001 0.022 0.003 1211P 0.002 0.003 0.001 1220P 0.003 -0.001 0.001 1230P 0.015 0.016 0.026 1300 0.002 0.002 0.002 1300 0.002 0.002 0.002 1300 0.002 0.002 0.002 1300 0.002 </td <td>1001 1010P</td> <td></td> <td>0.003</td> <td></td> <td>0.003</td> <td></td> <td>0.003</td>	1001 1010P		0.003		0.003		0.003
0020P 0.033 0.036 0.036 0.038 1031P 0.077 0.027 0.038 0.038 1031P 0.108 0.112 0.110 1100 0.002 0.003 0.002 1110P 0.002 0.002 0.002 0.002 1121P 0.015 0.013 0.019 0.041 1200 0.002 0.002 0.003 0.003 1210P 0.003 0.001 0.001 0.001 1220P 0.003 0.001 0.001 1.001 1220P 0.003 0.002 0.002 0.002 121P 0.003 0.002 0.002 0.002 1221P 0.018 0.022 0.002 0.002 1230P 0.013 0.002	1011P		0.000		-0.000		0.002
D30P 0.077 0.130 0.038 1031P 0.108 0.112 0.110 1100 0.002 0.003 0.002 1111P 0.002 0.002 0.002 1111P 0.002 0.002 0.002 1111P 0.002 0.002 0.002 112P 0.013 0.013 0.019 112P 0.021 0.022 0.003 1200 0.001 0.022 0.003 1201 0.003 0.013 0.003 121P 0.003 0.011 0.003 1220P 0.003 0.021 0.003 1221P 0.003 0.021 0.002 1300P 0.002 0.002 0.002 1300P 0.002 0.002 0.002 1300P 0.002 0.002 0.002 1300P 0.002 0.002 0.002 1300P 0.012 0.011 0.016 1331P 0.002 <td>1020P</td> <td></td> <td>0.033</td> <td></td> <td>0.030</td> <td></td> <td>0.044</td>	1020P		0.033		0.030		0.044
031P 0.108 0.112 0.110 1100 0.002 0.003 0.003 1110P 0.002 0.002 0.002 1111P 0.002 0.002 0.002 1120P 0.015 0.013 0.019 1130P 0.023 0.019 0.031 1131P 0.023 0.019 0.041 1200 0.002 0.002 0.003 1201 0.002 0.002 0.003 121P 0.002 0.003 0.001 1220P 0.003 -0.01 0.001 1220P 0.003 -0.02 0.002 1300 0.002 0.002 0.002 1300 0.002 0.002 0.002 1311P 0.003 0.011 0.012 1320P 0.012 0.002 0.002 1331P 0.002 0.002 0.002 1331P 0.003 0.003 0.003 1331P 0.0043 <td>1030P</td> <td></td> <td>0.077</td> <td></td> <td>0.027</td> <td></td> <td>0.089</td>	1030P		0.077		0.027		0.089
100 0.002 0.002 0.002 0.002 1110P 0.002 0.002 0.002 1112P 0.013 0.013 0.013 112P 0.014 0.013 0.013 113P 0.023 0.019 0.041 1200 0.002 0.003 0.003 121P 0.002 0.003 0.003 121P 0.002 0.003 0.001 121P 0.002 0.003 0.001 122P 0.003 0.001 0.002 121P 0.003 0.001 0.002 122P 0.003 0.001 0.002 123P 0.018 0.202 0.002 1300 0.002 0.002 0.002 1300 0.002 0.002 0.002 131P 0.003 0.002 0.002 133P 0.003 0.003 0.003 133P 0.0048 0.0047 0.0042 2010P	1031P		0.108		0.112		0.110
1110P 0.002 0.002 0.002 1111P 0.002 0.002 0.000 1120P 0.013 0.015 0.013 1121P 0.015 0.013 0.019 1130P 0.023 0.019 0.041 1200 0.002 0.003 0.003 1201 0.003 0.003 0.003 121P 0.002 0.003 0.003 121P 0.002 0.003 0.001 1220P 0.003 0.016 0.026 1221P 0.003 0.016 0.026 1230P 0.018 0.020 0.002 1300 0.002 0.002 0.002 1300 0.002 0.002 0.002 1320P 0.012 0.011 0.014 1320P 0.002 0.002 0.002 1320P 0.002 0.002 0.002 1320P 0.002 0.002 0.002 1320P 0.003 <td>1101</td> <td></td> <td>0.002</td> <td></td> <td>0.003</td> <td></td> <td>0.002</td>	1101		0.002		0.003		0.002
1110P 0.002 0.002 0.003 1120P 0.015 0.013 0.019 1130P 0.041 0.031 0.030 1131P 0.023 0.019 0.041 1200 0.003 0.002 0.002 1210P 0.002 0.003 0.003 1220P 0.003 0.001 0.001 1220P 0.003 0.001 0.001 1221P 0.003 -0.001 -0.001 1230P 0.015 0.016 0.002 1300 0.002 0.002 0.002 1300 0.002 0.002 0.002 1310P 0.003 0.002 0.002 1311P 0.003 0.001 0.002 1320P 0.002 0.002 0.002 1331P 0.003 0.007 0.008 2000 0.003 0.003 0.002 1331P 0.043 0.044 0.047 2020P 0.11	1110P		500.0		0.002		0.002
1121P 0.015 0.013 0.019 1130P 0.041 0.031 0.030 1200 0.001 0.022 0.003 1201 0.002 0.002 0.003 1210P 0.002 0.003 0.003 1210P 0.002 0.003 0.001 1211P 0.002 0.003 0.001 1220P 0.003 -0.011 -0.001 1230P 0.015 0.016 0.002 1300 0.002 0.002 0.002 1300 0.002 0.002 0.002 1310P 0.002 0.002 0.002 1310P 0.003 0.001 0.002 1320P 0.002 0.002 0.002 1330P 0.012 0.011 0.014 1331P 0.008 0.007 0.008 2000 0.003 0.003 0.003 2011P 0.043 0.449 0.047 2020P 0.119	1111P 1120P		0.002		0.002		0.013
1130P 0.023 0.019 0.041 1200 0.001 0.022 0.003 1210P 0.002 0.003 0.002 1210P 0.002 0.003 0.002 1211P 0.002 0.003 0.003 1220P 0.003 0.001 0.001 1220P 0.003 0.016 0.026 1230P 0.015 0.016 0.026 1300 0.002 0.002 0.002 1300 0.002 0.002 0.002 1301 0.002 0.002 0.002 1310P 0.002 0.002 0.002 1320P 0.002 0.002 0.002 1330P 0.002 0.002 0.002 1330P 0.003 0.007 0.008 2001 0.002 0.002 0.002 1330P 0.008 0.007 0.008 2000 0.003 0.007 0.008 2000 0.041 0.640 0.047 2020P 0.119 0.117 0.	1121P		0.015		0.013		0.019
1200 0.001 0.002 0.003 1201 0.003 0.002 0.002 1210P 0.002 0.003 0.003 1220P 0.003 0.001 0.001 1220P 0.003 0.001 0.001 1220P 0.003 0.001 0.001 1230P 0.015 0.016 0.026 1300 0.002 0.002 0.002 1300 0.002 0.002 0.002 1301 0.002 0.002 0.002 1311P 0.002 0.002 0.002 1320P 0.012 0.011 0.014 1330P 0.002 0.002 0.002 1330P 0.008 0.007 0.008 2001 0.002 0.002 0.002 2011P 0.043 0.044 0.047 2020P 0.117 0.127 0.212 2011P 0.043 0.044 0.047 2020P 0.132 <td>1130P</td> <td></td> <td>0.041</td> <td></td> <td>0.031</td> <td></td> <td>0.030</td>	1130P		0.041		0.031		0.030
1201 0.003 0.003 0.003 1210P 0.002 0.003 0.003 1220P 0.003 0.001 0.001 1220P 0.003 -0.011 0.001 1230P 0.015 0.016 0.026 1230P 0.015 0.016 0.026 1230P 0.018 0.020 0.002 1301 0.002 0.002 0.002 1301 0.002 0.002 0.002 1311P 0.002 0.002 0.002 1320P 0.012 0.001 0.002 1320P 0.012 0.011 0.002 1320P 0.012 0.011 0.002 1330P 0.002 0.002 0.002 1330P 0.012 0.011 0.002 2010P 0.041 0.040 0.047 2010P 0.041 0.049 0.047 2020P 0.119 0.117 0.027 2030P 0.132 0.129 <td>1200</td> <td></td> <td>0.001</td> <td></td> <td>0.002</td> <td></td> <td>0.003</td>	1200		0.001		0.002		0.003
1211P 0.002 0.003 0.003 1220P 0.003 -0.001 0.001 1230P 0.015 0.016 0.026 1230P 0.018 0.020 0.002 1300 0.002 0.002 0.002 1301 0.002 0.002 0.002 1310P 0.003 0.002 0.002 1311P 0.002 0.002 0.002 1320P 0.012 0.001 0.002 1320P 0.002 0.002 0.002 1320P 0.012 0.011 0.002 1320P 0.012 0.011 0.002 1330P 0.012 0.011 0.002 1330P 0.002 0.003 0.002 2010P 0.041 0.040 0.047 2011P 0.043 0.049 0.047 2011P 0.043 0.049 0.047 2020P 0.1129 0.117 0.127 2021P 0.020 0.022 0.002 2100 0.002 0.002	1201 1210P		0.003		0.003		0.003
1220P 0.003 0.001 0.001 1221P 0.003 -0.001 -0.001 1230P 0.015 0.016 0.026 1231P 0.018 0.020 0.002 1300 0.002 0.002 0.002 1310P 0.003 0.002 0.002 131P 0.003 0.002 0.002 1320P 0.003 0.001 0.002 1320P 0.003 0.007 0.008 2000 0.003 0.007 0.008 2010P 0.041 0.002 0.003 2011P 0.097 0.117 0.127 2020P 0.119 0.117 0.127 2030P 0.132 0.129 0.134 2030P 0.132 0.129 0.134 2030P 0.042 0.042	1211P		0.002		0.003		0.003
1230P 0.015 0.016 0.026 1300 0.002 0.002 0.002 1310P 0.003 0.002 0.002 1310P 0.003 0.002 0.002 1310P 0.003 0.002 0.002 1311P 0.002 0.002 0.002 1320P 0.003 0.001 0.002 1321P 0.003 0.001 0.002 1320P 0.003 0.001 0.002 1330P 0.012 0.011 0.002 1330P 0.003 0.007 0.008 2000 0.003 0.007 0.008 2001 0.002 0.003 0.002 2011P 0.0041 0.0049 0.0047 2020P 0.119 0.117 0.127 2030P 0.132 0.129 0.134 2030P 0.150 0.161 0.164 2100 0.002 0.002 0.002 2110P 0.010 0.019 0.010 2120P 0.055 0.060	1220P		0.003		0.001		0.001
1231P 0.018 0.020 0.016 1300 0.002 0.002 0.002 1301 0.002 0.002 0.002 1310P 0.002 0.002 0.002 1310P 0.002 0.002 0.002 1310P 0.002 0.002 0.002 1320P 0.002 0.001 0.002 1330P 0.012 0.011 0.002 1330P 0.012 0.011 0.002 2000 0.003 0.003 0.003 2001 0.002 0.003 0.002 2010P 0.041 0.049 0.047 2020P 0.119 0.117 0.127 2021P 0.097 0.119 0.087 2030P 0.132 0.129 0.134 2031P 0.002 0.003 0.002 2101 0.002 0.002 0.002 2101 0.002 0.002 0.002 2101 0.0010 0.119 0.100 210P 0.042 0.044 0.	1230P		0.015		0.016		0.026
1301 0.002 0.002 0.002 1310P 0.002 0.002 0.002 1310P 0.002 0.002 0.002 1320P 0.002 0.002 0.002 1320P 0.003 0.001 0.002 1321P 0.008 0.007 0.008 2000 0.003 0.007 0.008 2001 0.002 0.003 0.002 2010P 0.041 0.049 0.047 2020P 0.119 0.117 0.127 2021P 0.097 0.119 0.087 2020P 0.119 0.117 0.127 2021P 0.097 0.119 0.087 2030P 0.132 0.129 0.134 2031P 0.003 0.003 0.002 2101 0.002 0.022 0.002 2101 0.002 0.022 0.002 2101 0.0042 0.044 0.048 2121P 0.042 </td <td>1231P</td> <td></td> <td>0.018</td> <td></td> <td>0.020</td> <td></td> <td>0.016</td>	1231P		0.018		0.020		0.016
1310P 0.003 0.002 0.002 1311P 0.002 0.002 0.002 1320P 0.003 0.001 0.002 1330P 0.012 0.011 0.002 1330P 0.012 0.011 0.002 1331P 0.008 0.007 0.008 2000 0.003 0.003 0.002 2011P 0.044 0.049 0.047 2020P 0.119 0.117 0.127 2021P 0.097 0.119 0.087 2030P 0.132 0.129 0.134 2031P 0.150 0.161 0.164 2100 0.003 0.003 0.002 2031P 0.150 0.161 0.164 2100 0.003 0.003 0.002 2101 0.002 0.020 0.022 2100 0.042 0.044 0.048 2121P 0.055 0.060 0.061 2130P 0.055 </td <td>1301</td> <td></td> <td>0.002</td> <td></td> <td>0.002</td> <td></td> <td>0.002</td>	1301		0.002		0.002		0.002
1311P 0.002 0.002 0.002 1320P 0.002 0.000 0.002 1330P 0.012 0.011 0.002 1331P 0.008 0.007 0.008 2000 0.003 0.007 0.008 2001 0.002 0.003 0.002 2010P 0.041 0.049 0.049 2011P 0.048 0.049 0.047 2020P 0.119 0.117 0.127 2021P 0.097 0.119 0.117 2031P 0.003 0.003 0.003 2031P 0.150 0.161 0.164 2031P 0.002 0.003 0.003 2031P 0.150 0.161 0.164 2100 0.003 0.003 0.002 2101 0.002 0.020 0.022 2101 0.002 0.020 0.010 2120P 0.042 0.044 0.048 2121P 0.055 0.060 0.061 2130P 0.055 0.060 0.061 2200 0.001 0.002 0.001 2210P 0.011 0.002 0.001 2210P 0.048 0.400 0.044 2310P 0.015 0.015 0.026 230P 0.048 0.400 0.044 2310P 0.002 0.077 0.008 2311P 0.008 0.077 0.008 2311P 0.002 0.077 0.008 2311P 0.010 0.011 0	1310P		0.003		0.002		0.002
1321P 0.003 0.001 0.002 1330P 0.012 0.011 0.002 1331P 0.008 0.007 0.008 2000 0.003 0.003 0.003 2001 0.002 0.003 0.002 2010P 0.041 0.040 0.049 2011P 0.043 0.049 0.047 2020P 0.119 0.117 0.127 2021P 0.097 0.119 0.011 2030P 0.132 0.129 0.134 2031P 0.003 0.003 0.002 2100 0.003 0.003 0.002 2101 0.002 0.020 0.002 2100 0.003 0.003 0.002 2110P 0.020 0.020 0.010 2120P 0.042 0.044 0.048 2121P 0.055 0.060 0.061 2130P 0.055 0.060 0.061 2200 0.001 0.002 0.001 2210P 0.011 0.001 0.002 2201 0.011 0.001 0.022 2201 0.011 0.002 0.009 2220P 0.022 0.031 0.022 2310P 0.015 0.015 0.026 2320P 0.022 0.031 0.022 2300 0.002 0.077 0.008 231P 0.008 0.077 0.008 231P 0.010 0.011 0.012 232P 0.034 0.077 0.009	1320P		0.002		0.002		0.002
1330P 0.012 0.011 0.011 1331P 0.003 0.007 0.008 2000 0.003 0.003 0.003 2011 0.002 0.013 0.002 2010P 0.041 0.040 0.049 2011P 0.043 0.049 0.047 2020P 0.119 0.117 0.127 2021P 0.097 0.119 0.134 2030P 0.132 0.129 0.134 2031P 0.002 0.003 0.002 2100 0.003 0.003 0.002 2101 0.002 0.020 0.022 2100 0.003 0.002 0.002 2110P 0.020 0.020 0.019 2111P 0.010 0.019 0.010 2120P 0.055 0.060 0.061 2130P 0.078 0.074 0.070 2200 0.011 0.002 0.003 2210P 0.011 0.010 0.011 2210P 0.011 0.002 0	1321P		0.003		0.001		0.002
2000 0.003 0.003 0.003 2001 0.002 0.003 0.003 2010P 0.041 0.040 0.049 2011P 0.043 0.049 0.047 2020P 0.119 0.117 0.127 2030P 0.132 0.129 0.134 2031P 0.003 0.003 0.002 2030P 0.132 0.129 0.134 2031P 0.1002 0.022 0.002 2100 0.003 0.003 0.002 2101 0.002 0.022 0.002 2110P 0.020 0.022 0.002 2110P 0.042 0.044 0.048 2120P 0.042 0.044 0.048 2130P 0.055 0.060 0.061 2200 0.001 0.002 0.001 2201 0.011 0.010 0.011 2210P 0.015 0.015 0.026 2230P 0.022 </td <td>1330P</td> <td></td> <td>0.008</td> <td></td> <td>0.007</td> <td></td> <td>0.008</td>	1330P		0.008		0.007		0.008
2001 0.002 0.003 0.002 2010P 0.041 0.040 0.047 2020P 0.119 0.117 0.127 2030P 0.132 0.129 0.134 2030P 0.150 0.161 0.164 2030P 0.150 0.161 0.164 2030P 0.003 0.003 0.002 2100 0.002 0.002 0.002 2100 0.002 0.022 0.002 2110P 0.020 0.022 0.002 2110P 0.010 0.019 0.010 2120P 0.042 0.044 0.048 2130P 0.055 0.060 0.061 2131P 0.078 0.074 0.070 2200 0.001 0.002 0.001 2210P 0.011 0.010 0.011 221P 0.015 0.026 2230P 2230P 0.022 0.026 2230P 2300 0.002 <td>2000</td> <td></td> <td>0.003</td> <td></td> <td>0.003</td> <td></td> <td>0.003</td>	2000		0.003		0.003		0.003
2011P 0.048 0.046 0.047 2020P 0.119 0.117 0.127 2030P 0.132 0.129 0.134 2030P 0.132 0.129 0.134 2031P 0.150 0.161 0.164 2100 0.003 0.003 0.002 2101 0.002 0.022 0.002 2100 0.020 0.020 0.022 2100 0.020 0.022 0.002 2110P 0.020 0.020 0.062 2120P 0.042 0.044 0.048 2121P 0.054 0.056 0.062 2130P 0.055 0.060 0.061 2131P 0.078 0.074 0.070 2200 0.001 -0.001 -0.003 2210P 0.011 0.010 0.011 2211P 0.011 0.002 0.009 2220P 0.022 0.031 0.022 2231P 0.015 0.015 0.026 2230P 0.022 0.031 0.026 2300 0.002 0.067 0.008 2311P 0.008 0.007 0.008 2311P 0.010 0.011 0.011 2320P 0.017 0.011 0.012 2320P 0.017 0.011 0.027 2320P 0.017 0.011 0.027 2321P 0.010 0.011 0.027 2331P 0.014 0.017 0.009	2001 2010P		0.041		0.040		0.049
2020P 0.119 0.117 0.127 2021P 0.097 0.119 0.087 2030P 0.132 0.129 0.134 2031P 0.150 0.161 0.164 2100 0.003 0.002 2101 0.002 0.020 0.020 0.002 2110P 0.020 0.020 0.010 2120P 0.042 0.644 0.048 2121P 0.054 0.056 0.062 2130P 0.055 0.060 0.061 2131P 0.054 0.056 0.062 2130P 0.055 0.060 0.061 2131P 0.078 0.074 0.070 2200 0.001 -0.001 -0.003 2201 0.011 0.002 0.001 2210P 0.011 0.002 0.001 2210P 0.011 0.002 0.022 2230P 0.048 0.040 0.044 2230P 0.04	2011P		0.043		0.040		0.047
2030P 0.132 0.129 0.134 2031P 0.150 0.161 0.164 2100 0.003 0.002 2101 0.002 0.022 2110P 0.020 0.022 2120P 0.042 0.044 2120P 0.042 0.44 2120P 0.042 0.44 2120P 0.054 0.058 0.062 2130P 0.055 0.060 0.061 2131P 0.078 0.074 0.070 2200 0.001 -0.002 0.001 2201 0.001 -0.001 -0.003 2201 0.001 -0.001 -0.003 2201 0.011 0.002 0.001 2201 0.011 0.002 0.001 2201 0.011 0.002 0.009 2220P 0.022 0.031 0.022 2201 0.015 0.026 230P 2300 0.002 0.027	2020P 2021P		0.097		0.117		0.087
2031P 0.150 0.161 0.164 2100 0.003 0.003 0.002 2101 0.002 0.002 0.002 2110P 0.020 0.020 0.022 2110P 0.010 0.019 0.010 2120P 0.042 0.044 0.058 0.062 2130P 0.055 0.060 0.061 2131P 0.078 0.074 0.070 2200 0.001 0.002 0.001 20.001 20.001 20.001 20.011 2201 0.001 -0.001 -0.003 2200 20.011 20.022 20.011 2210P 0.011 0.002 0.001 20.022 20.031 0.022 2211P 0.015 0.015 0.026 2230P 2220P 0.022 0.031 0.022 2230P 0.048 0.040 0.044 2231P 0.036 0.031 0.038 2300 0.002 0.022 0.022 0.002	2030P		0.132		0.129		0.134
2101 0.002 0.002 0.002 2110P 0.020 0.020 0.020 2111P 0.010 0.019 0.010 2120P 0.042 0.044 0.048 2121P 0.055 0.060 0.061 2130P 0.055 0.060 0.061 2131P 0.078 0.074 0.070 2200 0.001 0.002 0.001 2201 0.001 -0.001 -0.003 2200P 0.011 0.006 0.009 2220P 0.022 0.031 0.022 220P 0.022 0.031 0.022 220P 0.048 0.040 0.044 2230P 0.048 0.040 0.044 2230P 0.036 0.031 0.038 2300 0.002 0.022 0.002 2301 -0.001 0.011 0.001 2300 0.002 0.020 0.022 2310P 0.008 </td <td>2031P</td> <td></td> <td>0.150</td> <td></td> <td>0.161</td> <td></td> <td>0.164</td>	2031P		0.150		0.161		0.164
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2101		0.002		0.002		0.002
2110P 0.010 0.042 0.042 0.048 2120P 0.042 0.044 0.048 2121P 0.055 0.040 0.061 2130P 0.055 0.040 0.061 2131P 0.078 0.074 0.070 2200 0.001 0.002 0.001 2201 0.001 -0.001 -0.003 2210P 0.011 0.006 0.009 2220P 0.022 0.031 0.022 2230P 0.048 0.400 0.044 2231P 0.036 0.031 0.038 2300 0.002 0.022 0.001 2310P 0.008 0.07 0.008 2310P 0.008 0.007 0.008 2311P 0.002 0.020 -0.012 2320P 0.017 0.017 0.018 2311P 0.0010 0.011 0.012 2320P 0.017 0.011 0.012 23	2110P		0.020		0.020		0.019
2121P 0.054 0.056 0.062 2130P 0.055 0.060 0.061 2131P 0.078 0.074 0.070 2200 0.001 0.002 0.001 2201 0.001 -0.001 -0.003 2210P 0.011 0.006 0.009 2220P 0.022 0.031 0.022 2230P 0.048 0.400 0.044 2231P 0.036 0.031 0.038 2300 0.002 0.022 0.001 2310P 0.008 0.077 0.008 2311P 0.008 0.077 0.008 2311P 0.002 0.020 -0.022 2311P 0.001 0.011 0.012 2320P 0.017 0.012 0.020 2311P 0.002 0.020 -0.020 2320P 0.017 0.012 0.012 2320P 0.017 0.012 0.012 2320P 0	2120P		0.042		0.044		0.048
2130P 0.033 0.020 0.001 2131P 0.078 0.074 0.070 2200 0.001 0.002 0.001 2201 0.011 -0.001 -0.003 2210P 0.011 0.010 0.011 2211P 0.011 0.008 0.009 2220P 0.022 0.031 0.022 2231P 0.036 0.031 0.026 2230P 0.048 0.400 0.044 2231P 0.036 0.031 0.038 2300 0.002 0.022 0.002 2301 -0.001 0.001 0.001 2310P 0.008 0.007 0.008 2311P 0.002 0.007 0.008 2311P 0.0017 0.011 0.012 2320P 0.017 0.011 0.012 2320P 0.017 0.011 0.012 2330P 0.010 0.011 0.012 2330P 0.034 0.31 0.027 2331P 0.014 0.017	2121P		0.054		0.058		0.062
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2130P 2131P		0.078		0.020		0.070
2201 0.001 -0.001 -0.003 2210P 0.011 0.010 0.011 2211P 0.011 0.006 0.009 2220P 0.022 0.031 0.022 2230P 0.048 0.040 0.044 2231P 0.036 0.031 0.038 2300 0.002 0.0622 0.001 2310P 0.008 0.007 0.008 2311P 0.008 0.007 0.008 2311P 0.002 0.0607 0.008 2311P 0.0034 0.011 0.016 2320P 0.017 0.617 0.008 2311P 0.002 0.007 0.008 2311P 0.0010 0.011 0.012 2320P 0.017 0.617 0.008 2330P 0.010 0.611 0.012 2330P 0.034 0.631 0.027 2331P 0.014 0.617 0.009	2200		0.001		0.002		0.001
2211P 0.011 0.002 0.009 2220P 0.022 0.031 0.022 2230P 0.015 0.015 0.026 2230P 0.048 0.040 0.044 2231P 0.036 0.031 0.038 2300 0.002 0.662 0.002 2301 -0.001 0.061 0.001 2310P 0.008 0.007 0.008 2311P 0.002 0.0607 0.008 2312P 0.017 0.617 0.016 2320P 0.017 0.617 0.016 2320P 0.017 0.617 0.028 2311P 0.002 0.007 0.008 2320P 0.017 0.617 0.016 2320P 0.010 0.611 0.012 2332P 0.034 0.631 0.027 2331P 0.014 0.617 0.009	2201 2210P		0.001		-0.001		-0.003
2220P 0.022 0.031 0.022 2231P 0.015 0.015 0.026 2230P 0.048 0.040 0.044 2231P 0.036 0.031 0.038 2300 0.002 0.662 0.002 2301 -0.001 0.061 0.001 2310P 0.008 0.077 0.008 2311P 0.002 0.0607 0.008 2320P 0.017 0.617 0.016 2320P 0.017 0.617 0.016 2320P 0.017 0.617 0.016 2321P 0.010 0.611 0.012 2330P 0.014 0.631 0.027 2331P 0.014 0.617 0.009	2211P		0.011		300.0		0.009
2230P 0.048 0.040 0.044 2231P 0.036 0.031 0.038 2300 0.002 0.062 0.002 2310P 0.008 0.001 0.001 2310P 0.008 0.007 0.008 2311P 0.002 0.007 0.008 2320P 0.017 0.016 2320P 2320P 0.017 0.011 0.016 2330P 0.010 0.011 0.012 2332P 0.014 0.021 0.009	2220P		0.022		0.031		0.022
2231P 0.036 0.031 0.038 2300 0.002 0.002 0.002 2301 -0.001 0.001 0.001 2310P 0.008 0.007 0.008 2311P 0.002 0.000 -0.000 2320P 0.017 0.617 0.006 2321P 0.010 0.011 0.016 2321P 0.010 0.011 0.012 2330P 0.034 0.631 0.027 2331P 0.014 0.017 0.009	2230P		0.048		0.040		0.044
2301 -0.001 0.002 0.001 0.001 2310P 0.008 0.007 0.008 2311P 0.002 0.007 0.008 2311P 0.002 0.006 -0.000 2320P 0.017 0.016 2321P 0.010 0.011 0.012 2330P 0.012 2331P 0.034 0.631 0.027 2331P 0.014 0.017 0.009	2231P		0.036		0.031		0.038
2310P 0.008 0.007 0.008 2311P 0.002 0.000 -0.000 2320P 0.017 0.016 2321P 2311P 0.010 0.011 0.012 2320P 0.010 0.011 0.012 2330P 0.034 0.031 0.027 2331P 0.014 0.017 0.009	2301		-0.001		0.001		0.001
231P 0.017 0.017 0.016 2320P 0.017 0.017 0.016 2321P 0.010 0.011 0.012 2330P 0.034 0.031 0.027 2331P 0.014 0.017 0.009	2310P		0.008		0.007		0.008
2321P 0.010 0.011 0.012 2330P 0.034 0.031 0.027 2331P 0.014 0.017 0.009	2320P		0.017		0.017		0.016
2331P 0.014 0.017 0.009	2321P		0.010		0.011		0.012
	2330P 2331P		0.014		0.017		0.027

.

.)

REPEATABILITY COMPUTATIONS FOR SERIES 2 FACTORIAL SET, 2 MONTH RESULTS - OUTPUT FROM PROGRAM 'CHECK'

		C	
Mix Pet.	AVERAGE	MICRO-	
	EXPANSION	STRAIN	1.
0000	0.022	88.	
0001	0.020	80.	
0010P	0.017	68.	
0011P	0.021	85.	
0020P	0.037	149	
0021P	0.026	104	A. 0.6 5 11
0030P	0 355	1/21	
00318	0 (7)	1000	
0100	0.472	1009.	
0100	0.009	37.	
0101	0.020	81.	
0110P	0.015	59.	
0111P	0.019	76.	
0120P	0.016	65.	
0121P	0 015	61	
01200	0.015		
01300	0.088	353.	
01312	0.195	111.	
0200	-0.000	-0.	
0201	0.013	53.	
0210P	0.010	40.	
0211P	0.015	60.	
0220P	0 017	68	
0221P	0.007	27	
02200	0.007	<i>ci</i> •	
0230P	0.040	161.	
02312	0.039	157.	
0300	0.015	59.	
0301	0.023	91.	
0310P	0.007	27.	
0311P	0.014	57.	
0320P	0.017	68.	
0321P	0.025	101.	
03200	0.017	177	
0330P	0.035	133.	
03312	0.029	115.	
1000	0.022	88.	
1001	0.021	85.	
1010P	0.073	291.	
1011P	0.063	252.	
1020P	0.379	1516.	
1021P	0 760	3077	
10211	0.707	3077.	
1030P	0.708	2851.	
1031P	1.092	4367.	
1100	0.010	40.	
1101	0.021	83.	
1110P	0.034	136.	
1111P	0.042	167.	
1120P	0 113	1.53	
11210	0 775	1701	
11200	0.325	1301.	
11309	0.299	1197.	
1131P	0.561	2245.	
1200	0.018	73.	
1201	0.018	73.	
1210P	0.027	108.	
1211P	0.021	84 -	
1220P	0.055	221	
12201	0.053	200	
12211	0.052	207.	
12302	0.194	(1).	
1231P	0.201	804.	
1300	0.029	117.	
1301	0.024	97.	
1310P	0.027	107.	
1311P	0.026	95	
1320P	0.047	187.	
1321P	0 030	157.	
12200	0 102	107	
13305	0.102	407.	
1331P	0.005	201.	
2000	0.025	101.	
2001	0.024	95.	
2010P	0.488	1953.	
2011P	0.733	2931.	
2020P	1.016	4065.	
2021P	1.554	6217.	
2030P	0.041	79/7	
2031P	1 40/	6777	
2100	1.074	0111.	
2100	0.018	1.	
2101	0.031	124.	
2110P	0.149	597.	
2111P	0.242	969.	
2120P	0.360	1441.	
2121P	0 728	2011	
21200	0.140	1077	
2130P	0.400	10/3.	
2131P	0.730	2919.	
2200	0.022	87.	
2201	0.032	129.	
2210P	0.084	335.	
2211P	0.102	407.	
2220P	0.229	916	
2221P	0 224	904	
22211	0.220	904.	
2230P	0.376	1505.	
2231P	0.365	1461.	
2300	0.028	113.	
2301	0.033	131.	
2310P	0.075	299.	
2311P	0.059	237	
22200	0 177	672	
23208	0.155	226.	
2321P	0.116	465.	
2330P	0.265	1047.	
2331P	0.171	683.	

Mix Ref.	EXPN(1)-AVGE	EXPN(2)-AVGE	EXPN(3)-AVGE	ALLOWABLE
0000	0.	0.	0.	DIFFERENCE 0.003
0001	0.002	-0.000	-0.002	0.003
0010P	-0.001	0.	0.001	0.003
0020P	0.001	0.001	-0.001	0.003
0021P	-0.000	0.000	0.000	0.003
0030P	-0.008	0.021	-0.012	0.053
0100	0.001	-0.001	0.001	0.003
0101	-0.000	0.003	-0.002	0.003
0111P	-0.001	-0.003	0.004	0.003
0120P	0.001	-0.000	-0.000	0.003
0121P	-0.000	0.001	-0.000	0.003
0131P	-0.017	0.006	0.010	0.029
0200	0.001	-0.000	0.000	0.003
0210P	-0.002	-0.001	0.003	0.003
0211P 0220P	-0.002	-0.000	200.0	0.003
0221P	-0.001	0.001	-0.001	0.003
0230P 0231P	-0.001	-0.000	0.002	0.003
0300	-0.003	0.001	0.001	0.003
0301 0310P	0.001	-0.001	-0.001	0.003
0311P	-0.007	0.001	0.001	0.003
0320P	-0.003	-0.001	0.004	0.003
0321P	0.003	-0.005	-0.003	0.003
0331P	0.002	-0.001	-0.002	0.003
1000	0.	-0.001	0.003	0.003
1010P	-0.003	0.001	0.001	0.011
1011P	0.007	-0.010	0.003	0.009
1021P	-0.023	-0.011	0.043	0.115
1030P	-0.023	0.012	0.010	0.106
1100	0.003	-0.025	-0.000	0.003
1101	0.000	0.000	-0.001	0.003
1110P	0.003	-0.001	-0.002	0.003
1120P	-0.001	-0.001	0.003	0.017
1121P	0.017	-0.025	0.009	0.049
1131P	0.039	-0.033	-0.005	0.084
1200	-0.000	-0.001	0.002	0.003
1210P	0.002	0.000	-0.002	0.003
1211P	-0.001	0.000	0.001	0.003
1220P	-0.002	-0.003	0.002	0.008
1230P	0.012	-0.012	-0.001	0.029
1300	-0.003	-0.002	-0.001	0.030
1301	-0.000	0.001	-0.000	0.003
1310P	0.000	0.001	-0.002	0.003
1320P	-0.003	0.003	-0.001	0.003
1321P	0.001	-0.002	0.002	0.003
1331P	0.001	-0.001	0.001	0.010
2000	0.001	0.001	-0.001	0.003
2010P	0.018	-0.007	-0.010	0.073
2011P	-0.023	0.014	0.008	0.110
2020P 2021P	-0.019	-0.007	0.012	0.233
2030P	-0.005	0.008	-0.004	0.144
20312	0.054	-0.041	0.001	0.003
2101	-0.001	-0.002	0.003	0.003
2110P	-0.001	0.001	-0.030	0.022
2120P	-0.005	0.004	0.002	0.054
2121P	0.000	0.000	-0.001	0.109
2130P	0.014	-0.003	-0.012	0.109
2200	-0.005	0.001	0.003	0.003
2210P	0.003	-0.005	-0.002	0.003
2211P	0.000	-0.004	0.003	0.015
2220P 2221P	-0.007	0.000	0.007	0.034
2230P	0.006	-0.014	0.009	0.056
2231P 2300	0.011	-0.011	0.001	0.055
2301	0.001	0.001	-0.003	0.003
2310P	-0.001	0.001	-0.001	0.011
2320P	-0.002	-0.001	0.003	0.020
2321P 2330P	0.004	-0.003	-0.000	0.017
2331P	-0.009	-0.006	0.014	0.034

-404-

Mix Ref.					
No.	CHECK	. IF OKAY AL	L VALUES	SHOULD	UE POSITIVE
0000		0.003	0.003		0.003
0010P		0.002	0.003		0.001
0011P		0.001	-0.001		0.002
0020P		0.002	0.002		0.002
0021P		0.003	0.003		0.003
00 30 P		0.045	0.033		. 0.041
0031P		0.063	0.050		0.041
0100		0.002	0.002		0.002
0110P		0.003	0.000		0.007
0111P		0.002	-0.000		-0.001
0120P		0.002	0.003		0.003
0121P		0.003	500.0		0.003
0130P		0.010	0.011		0.012
0131P		0.012	0.023		0.019
0200		0.003	0.003		0.003
0210P		0.001	0.002		-0.000
0211P		0.001	0.003		0.001
0220P		0.002	0.003		0.002
0221P		200.0	0.002		0.002
0230P		0.002	0.003		0.003
0300		0.000	0.002		0.002
0301		0.002	0.002		0.002
0310P		200.0	0.002		0.002
0311P		0.001	0.002		0.001
0320P		-0.000	0.002		-0.001
0321P		0.000	0.002	-	0.001
0331P		0.001	0.002		0.001
1000		0.003	0.003		0.003
1001		0.002	0.002		0.000
1010P		0.008	0.010		0.010
1011P		0.002	-0.001		0.006
10200		0.049	0.046		0.054
1030P		0.083	0.096		0.075
1031P		0.160	0.139		0.142
1100		0.003	0.003		0.003
1101		0.003	0.003		0.002
1110P		-0.000	0.002		0.001
11208		0.001	-0.003		-0.002
1121P		0.032	0-023		0.040
1130P		0.045	0.034		0.033
1131P		0.046	0.051		0.079
1200		0.003	0.002		0.001
1201 1210P		0.003	0.002		0.003
1211P		0.007	0.003		0.007
1220P		0.007	0.005		0.007
1221P		0.008	0.002		0.001
1230P		0.017	0.017		0.028
1231P		0.027	0.028		0.025
1301		0.002	0.002		0.002
1310P		0.003	0.002		0.001
1311P		500.0	0.003		0.003
1320P		0.000	-0.000	1.1.1	0.002
1321P		0.002	0.001		0.001
1331P		0.009	0.008		0.009
2000		200.0	0.002		0.002
2001		0.001	0.002		0.003
2010P		0.056	0.066		0.063
2020P		0.127	0.145		0.134
2021P		0.214	0.225		0.221
2030P		0.139	0.136		0.140
2031P		0.200	0.213		0.242
2100		0.003	0.001		0.002
2101		0.002	0.001		0.000
2111P		0.013	0.030		0.006
2120P		0.049	. 0.050		0.052
2121P		0.109	0.109		0.108
2130P		0.057	0.064		0.063
2131P		0.095	0.107		0.098
2200		-0.002	-0.002		-0.000
2210P		0.009	0.011		0.011
2211P		0.015	0.012		0.012
2220P		0.027	0.034		0.027
2221P		0.018	0.018		0.034
2230P		0.051	0.042		0.048
2231P		0.002	0.043		0.054
2301		0.002	0.002		0.000
2310P		0.011	0.010		0.011
2311P		0.006	0.006		0.002
2320P		0.018	0.019		0.017
2321P		0.014	0.014		0.017
2330P		0.017	0.032		0.011

TABLE D.2(c)

)

REPEATABILITY COMPUTATIONS FOR SERIES 2 FACTORIAL SET, 6 MONTH RESULTS - OUTPUT FROM PROGRAM 'CHECK'

Mix Ref.	AVERAGE	MICRO-	
0000	0.023	91.	
0001	0.020	81.	
0010P	0.023	91.	
0020P	0.043	172.	
0021P	0.025	1425.	
0031P	0.705	2819.	
0100	0.013	52.	
0110P	0.016	64.	
0111P	0.022	. 83	
0121P	0.025	99.	
0130P	0.100	399.	
0200	0.001	5.	
0201 0210P	0.012	48.	
0211P	0.020	78.	
0220P	0.015	60.	
0230P	0.045	180.	
0231P	0.074	297.	
0301	0.025	99.	
0310P	0.008	31.	
0320P	0.020	79.	
0321P	0.029	115.	
0331P	0.037	148.	
1000	0.026	103.	
1010P	0.022	311.	
1011P	0.068	27.1 .	
1020P	0.383	1533.	
1030P	0.716	2864.	
1031P	1.096	4385.	
1101	0.021	84.	
1110P	0.038	153.	
1120P	0.113	452.	
1121P	0.523	2092.	
1131P	0.662	2649.	
1200	0.023	91.	
1210P	0.032	128.	
1211P	0.031	124	
1221P	0.085	340.	
1230P	502.0	807.	
1300	0.037	148.	
1301 1310P	0.031	125.	
1311P	0.031	123.	
1320P	0.052	208.	
1330P	0.108	433.	
1331P	0.088	351.	
2001	0.026	105.	
2010P	0.498	1993.	
2020P	1.025	4099.	
2021P	1.617	6467.	
2031P	1.737	6948.	
2100	0.026	104.	
2110P	0.149	597.	
2111P	0.433	1732.	
2120P	0.889	3557.	
2130P	0.481	1924.	
2200	0.034	137.	
2201	0.044	177.	
2210P	0.123	491.	
2220P	0.241	964.	
2221P 2230P	0.389	1556-	
2231P	0.468	1872.	
2300	0.033	133.	
2310P	0.083	331.	
2311P	0.077	309.	
2321P	0.136	543.	
2330P	0.269	1077.	

Mix Ref.	EXPN(1)-AVGE	EXPN(2)-AVGE	EXPN(3)-AVGE	ALLOWABLE
0000	-0.001	-0.001	0.001	0.003
0010P	-0.001	0.003	-0.002	0.003
0011P	-0.004	0.003	0.000	0.003
0020P	0.001	0.000	-0.001	0.003
0030P	-0.010	0.022	-0.011	0.053
0031P	-0.023	-0.007	0.029	0.106
0101	0.002	0.001	-0.002	0.003
0110P	-0.000	-0.003	0.003	0.003
0111P	-0.002	-0.002	0.004	0.003
0121P	0.001	-0.003	0.001	0.003
0130P	0.004	-0.003	-0.002	0.015
0200	0.001	0.002	-0.002	0.003
0201	-0.001	0.001	-0.000	0.003
0210P	-0.004	-0.000	0.003	0.003
0220P	0.001	0.000	-0.001	0.003
0221P 0230P	0.002	0.001	-0.002	0.003
0231P	-0.000	-0.000	0.001	0.011
0300	-0.002	0.002	0.001	0.003
0310P	0.000	0.000	-0.001	0.003
0311P 0320P	-0.004	0.003	0.000	0.003
0321P	0.002	-0.008	0.005	0.003
0330P	0.001	0.000	-0.002	0.003
1000	-0.001	-0.002	0.002	0.003
1001	-0.001	-0.002	0.002	0.003
1011P	0.004	-0.010	0.003	0.010
1020P	0.007	-0.011	. 0.005	0.058
1021P	-0.024	-0.020	0.044	0.119
1031P	0.004	-0.023	0.020	0.164
1100	0.000	-0.001	0.000	0.003
1110P	0.003	0.002	-0.004	0.003
1111P	-0.000	0.003	-0.003	0.003
1121P	0.017	-0.027	0.010	0.078
1130P	0.000	-0.012	0.012	0.045
1200	0.001	-0.001	-0.001	0.003
1201 1210P	0.000	0.001	-0.002	0.003
1211P	0.001	0.000	-0.001	0.003
1220P	0.001	-0.004	0.002	0.009
1230P	0.011	-0.011	-0.001	0.030
1231P	-0.001	-0.006	0.007	0.046
1301	0.002	-0.001	-0.000	0.003
1310P	-0.000	-0.001	-0.001	0.003
1320P	-0.004	0.004	0.000	0.008
1321P	0.001	-0.003	0.003	0.008
1331P	0.000	-0.003	500.0	0.013
2000	-0.001	0.003	-0.001	0.003
2010P	0.018	-0.005	-0.012	0.075
2011P 2020P	0.027	-0.008	-0.020	0.154
2021P	-0.023	0.005	0.017	0.243
2030P 2031P	0.031	-0.031	0.000	0.140
2100	-0.000	0.001	-0.001	0.003
2101 2110P	-0.002	-0.003	0.005	0.003
2111P	0.041	0.004	-0.045	0.065
2120P 2121P	-0.007	0.004	0.002	0.133
2130P	0.019	-0.008	-0.011	0.072
2131P	0.021	-0.009	-0.011	0.120
2201	-0.004	-0.003	0.008	0.003
2210P	500.0	-0.001	-0.002	0.014
2220P	-0.009	0.000	0.009	0.036
2221P	0.019	-0.019	0.009	0.044
2231P	0.016	-0.015	-0.001	0.070
2300	-0.001	-0.001	0.003	0.003
2310P	-0.002	0.001	0.000	0.012
2311P	-0.002	-0.004	0.007	0.012
2321P	0.007	-0.004	-0.004	0.020
2330P 2331P	-0.002	330.0-	0.011	0.040

-407-

No. 0000 0000 0000 0000 0001 0010P 0030P 0031P 0000 0011 0110P 0111P 0120P 011P 0120P 011P 0120P 021P 0300 021P 0200 021P 0200 021P 0300 031P 0300 <td>CHECK</td> <td><pre>, IF 0KAY 0.002 0.003 0.002 -0.001 0.002 0.043 0.003 0.003 0.003 0.003 0.003 0.003 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.003 0.001 0.002 0.003 0.001 0.002 0.003 0.001 0.002 0.003 0.001 0.002 0.003 0.002 0.008 0.004 0.003 0.</pre></td> <td>ALL</td> <td>VALUES 0.0022 0.0003 0.0023 0.</td> <td>SHOUL</td> <td>BE POSITIVE 0.002 0.001 0.003 0.003 0.0042 0.0042 0.001 0.003 0.002 0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.010 0.002 0.010 0.002 0.010 0.002 0.010 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.003 0.002 0.001 0.002 0.002 0.001 0.003 0.001 0.001 0.003 0.002 0.003 0.003 0.001 0.004 0.002 0.005 0.001 0.002 0.002 0.003 0.002 0.004 0.002 0.005 0.014</td> <td></td>	CHECK	<pre>, IF 0KAY 0.002 0.003 0.002 -0.001 0.002 0.043 0.003 0.003 0.003 0.003 0.003 0.003 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.003 0.001 0.002 0.003 0.001 0.002 0.003 0.001 0.002 0.003 0.001 0.002 0.003 0.002 0.008 0.004 0.003 0.</pre>	ALL	VALUES 0.0022 0.0003 0.0023 0.	SHOUL	BE POSITIVE 0.002 0.001 0.003 0.003 0.0042 0.0042 0.001 0.003 0.002 0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.010 0.002 0.010 0.002 0.010 0.002 0.010 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.003 0.002 0.001 0.002 0.002 0.001 0.003 0.001 0.001 0.003 0.002 0.003 0.003 0.001 0.004 0.002 0.005 0.001 0.002 0.002 0.003 0.002 0.004 0.002 0.005 0.014	

1

REPEATABILITY COMPUTATIONS FOR SERIES 2 FACTORIAL SET, 12 MONTH RESULTS - OUTPUT FROM PROGRAM 'CHECK'

Mix Bef	AVERAGE	-03116	
No.	EXPANSION	STRAIN	
0000	0.017	17.	
0001	0.005	21.	
0010P	0.009	37.	
0011P	0.021	٤3.	
0020P	0.035	139.	
0021P	0.020	80.	
0030P	0.345	1379.	
0031P	0.707	2827.	
0100	0.006	24.	
0101	0.022	38.	
0110P	0.015	59.	
OTTP	0.072	09.	
0120P	0.022	107	
0130P	0.094	376.	
0131P	0.561	2243.	
0200	-0.005	-21.	
0201	0.011	43.	
0210P	0.005	21.	
0211P	0.010	40.	
0220P	0.012	48.	
0221P	0.007	29.	
0230P	0.044	176.	
0231P	0.147	587.	
0300	0.017	67.	
0301	0.025	91.	
0310P	0.015	50	
03208	0.015	61.	
0321P	0.026	104 -	
0330P	0.033	131.	
0331P	0.042	168.	
1000	0.023	91.	
1001	0.013	51.	
1010P	0.071	283.	
1011P	0.065	261.	
1020P	0.383	1533.	
1021P	0.782	3128.	
1030P	0.715	2859.	
1031P	1.095	4381.	
1100	0.007	29.	
1101	0.016	64.	
1110P	0.029	115.	
1111P	0.050	200.	
11202	0 582	2328	
11212	0.207	1187	
11302	0.685	2739.	
1200	0.019	77.	
1201	0.024	96.	
1210P	0.029	117.	
1211P	0.029	115.	
1220P	0.059	237.	
1221P	0.112	448.	
1230P	0.202	808.	
1231P	0.379	1517.	
1300	0.041	163.	
1301	0.025	99.	
1310P	0.035	141.	
13112	0.050	120.	
1320F	0.054	216.	
13200	0.111	443.	
1331P	0.095	381.	
2000	0.023	92.	
2001	0.022	. 33	
2010P	0.488	1952.	
2011P	0.757	.3505	
2020P	1.028	4112.	
2021P	1.653	6612.	
2030P	0.980	3920.	
2031P	1./12	0648.	
2100	0.024	156	
2101	0.039	50.	
21109	0.466	1866	
21200	0.366	1464.	
2121P	0.919	3676.	
2130P	0.484	1936.	
2131P	0.822	3288.	
2200	0.039	156.	
2201	0.044	176.	
2210P	0.093	372.	
2211P	0.130	520.	
2220P	0.241	964.	
2221P	0.362	1448.	
2230P	0.388	1552.	
2231P	0.526	2104.	
2300	0.035	140.	
2301	0.038	132.	
2310P	0.075	300.	
23200	0.143	572.	
23210	0.150	. 333	
2330P	0.271	1084.	
2331P	0.216	864.	
	A REAL PROPERTY AND A	A REAL PROPERTY AND A REAL PROPERTY AND	

Mix Ref.	EXEN(1)-AVGE	EXPN(2)-AVGE	EXPH(3)-AVGE	ALLOWABLE
0000	-0.001	-0.003	0.003	0.003
0001 0010P	0.005	-0.001	-0.003	0.003
0011P	- 7.963	0.003	-0.001	0.003
0020P	0.001	0.001	-0.003	0.003
0030P	-0.009	0.019	-0.011	0.003
0031P	-0.027	-0.003	0.029	0.106
0100	0.000	-0.002	500.0	0.003
0110P	-0.001	-0.005	0.005	0.003
0111P 0120P	-0.003	0.001	0.003	0.003
0121P	0.008	-0.003	-0.002	0.003
0130P	0.004	-0.002	-0.002	0.014
0200	-0.031	-0.007	0.037	0.084
0201	0.001	0.001	-0.003	0.003
0210P	-0.005	0.005	0.001	0.003
0220P	-0.002	0.000	0.002	0.003
0221P 0230P	0.003	0.001	-0.003	0.003
0231P	-0.005	0.003	0.001	0.003
0300	-0.001	0.001	-0.001	0.003
0310P	-0.003	0.001	0.001	0.003
0311P	-0.001	0.001	-0.001	0.003
0321P	0.001	-0.001	0.001	0.003
0330P	0.001	0.003	-0.005	0.003
1000	0.004	-0.000	-0.004	0.003
1001	0.001	0.003	-0.005	0.003
1010P	-0.001	-0.005	0.005	0.011
1020P	0.005	-0.005	0.001	0.010
1021P	-0.026	-0.020	0.046	0.117
1030P	-0.017	0.005	0.011	0.107
1100	0.007	-0.005	-0.001	0.003
1101 1110P	0.006	-0.002	-0.004	0.003
1111P	0.003	0.003	-0.007	0.003
1120P	-0.002	-0.002	0.004	0.017
1130P	-0.001	-0.052	-0.014	0.037
1131P	0.033	-0.027	-0.007	0.103
1200	0.003	0.001	-0.003	0.003
1210P	0.005	-0.003	-0.001	0.003
1220P	0.003	-0.001	-0.003	0.003
1221P	-0.002	-0.006	0.008	0.017
1230P	0.012	-0.008	-0.004	0.030
1300	0.001	0.003	-0.005	0.003
1301 1310P	0.005	-0.003	-0.003	0.003
1311P	0.007	0.005	-0.000	0.003
1320P	-0.003	0.005	-0.003	0.008
1330P	0.005	-0.009	0.003	0.017
1331P	0.003	-0.005	0.003	0.014
2001	0.000	-0.001	-0.000	0.003
2010P	0.016	-0.000	-0.016	0.073
2020P	-0.027	0.027	-0.024	0.114
2021P	-0.019	0.	0.019	0.248
2030P	-0.004	0.004	-0.000	0.147
2100	-0.000	0.000	0.000	0.003
2101 2110P	-0.003	0.000	0.003	0.003
2111P	0.046	-0.000	-0.046	0.070
2120P	-0.006	0.006	0.000	0.055
2121P	-0.007	0.000	-0.012	0.138
2131P	0.018	0.000	-0.018	0.123
2200	-0.007	0.000	0.007	0.003
2210P	0.001	-0.000	-0.001	0.014
2211P 2220P	0.	-0.002	0.002	0.020
2221P	0.	0.000	0.000	0.054
2230P	-0.000	-0.016	0.016	0.058
2300	0.	-0.001	0.001	0.003
2301	500.0	-0.002	-0.000	0.003
2311P	-0.004	-0.004	0.000	0.012
2320P	0.	-0.003	0.003	0.021
2330P	-0.00n).	-0.000	0.000	0.022
2331P	-0.014	0.000	0.014	0.032

	cont	11	ue	u		
f.,	CHECK	,	IF	OKAY	ALL	VAL
		1).01	D 2		Ο.
		- (.01	02		0.

Mix Ref.						
No.	CHECK	. IF OKAY	ALL	VALUES	SHOULD	BE POSITIVE
0000		2.002		0.000		-0.000
0010P		-0.002		0.002		-0.000
0011F		0.000		-0.000		0.002
0020P		0.002		0.002		0.000
0021P		0.003		0.003		0.003
0030P		0.043		0.032	10.202	0.041
0100		0.079		0.103		0.077
0101		0.003		0.001		-0.001
0110P		0.003		-0.002		-0.002
0111P		-0.000		0.002		0.000
0120P		-0.005		-0.003		0.001
01212		0.002		0.000		0.002
0130P		0.010		0.012		0.012
0200		0.002		0.002		0.000
0201		0.002		0.002		0.000
0210P		-0.002		-0.002		0.002
0211P		0.001		0.003		0.001
0220P		0.001		0.003		-0.000
0230P		0.003		0.001		0.001
0231P		0.017		0.019		0.021
0300		0.002		0.002		0.002
0301		0.000		0.002		0.002
0311P		0.003		0.003		0.003
0320P		0.002		0.002		0.002
0321P		-0.005		-0.009		-0.001
0330P		0.002		-0.000		-0.002
1000		-0.001		0.003		-0.001
1001		0.002		-0.000		-0.002
1010P		0.010		0.006		0.005
1011P		0.005		0.004		0.009
1020P		0.049		0.044		0.053
1021P		0.091		0.097		0.071
1030P		0.158		0.102		0.096
1100		-0.004		-0.002		0.002
1101		-0.003		0.001		-0.001
1110P		-0.000		-0.000		-0.004
1111P		0.001		0.001		-0.001
1120P		0.074		0.014		0.012
1130P		0.044		0.034		0.033
1131P		0.069		0.076		0.096
1200		0.000		0.002		-0.000
1210P		0.003		-0.001		-0.001
1211P		-0.0002		0.002		0.002
1220P		0.008		0.004		0.002
1221P		0.015		0.011		0.009
1230P		0.018		0.022		0.026
1300		0.002		-0 000		-0.002
1301		-0.002		0.000		0.000
1310P		-0.004		-0.002		0.000
1311P		0.003		0.003		0.003
1320P		0.005		0.003		0.005
1330P		0.011		0.008		0.013
1331P		0.012		0.009		0.012
2000		500.0		0.002		0.003
2001 2010P		0.003		0.001		0.057
2011P		0.087		0.087		0.114
2020P		0.130		0.154		0.130
2021P		0.229		0.248		0.229
2030P		0.143		0.143		0.147
2100		0.003		0.003		0.003
2101		0.000		0.003		0.000
2110P		0.022		0.022		0.022
2111P		0.024		0.070		0.024
2120F		0.049		0.049		0.055
2130P		0.061		0.073		0.061
2131P		0.105		0.123		0.105
2200		-0.004		0.003		-0.004
2201		-0.003		0.003		-0.003
2210P		0.020		0.014		0.013
2220P		0.029		0.036		0.029
2221P		0.054		0.054		0.054
2230P		0.058		0.042		0.042
2231P		0.061		0.061		0.079
2301		0.001		0.002		0.002
2310P		0.008		830.0		0.012
2311P		0.011		0.006		0.006
2320P		0.021		0.018		0.018
2321P		0.022		0.022		250.0
2331P		0.013		0.032		0.018

.

EXPANSION IN MICROSTRAIN

EXPANSION IN MICROSTRAIN

-412-

EXPANSION IN MICROSTRAIN

×102

90.

85E

80L

75

70

65

60

55

50

45

40

35

30

20

15

101

51

0×

EXPANSION IN

Figure D.4

EXPANSION IN MICROSTRAIN

×102

90.

60L

55E

Figure D.5

and the state of the second se

4 5 6 7 8 9 10 11 12

ACE OF SPECIMEN IN MONTHS

×102

GRAPH OF EXPANSION AGAINST AGE -PYREX

MIX REFERENCE: 0020P

-414-

EXPANSION IN MICROSTRAIN EXPANSION IN MICROSTRAIN

-415-

Figure D.8

EXPANSION IN MICROSTRAIN .

EXPANSION IN

EXPANSION IN MICROSTRAIN

MIX REFERENCE: 0110P

×102

90.

85E

801

75

70

65

60L

55

50L

45

40

35E

301

25L

20L

151

10

5

EXPANSION IN

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure D.11

Figure D.12

EXPANSION IN

EXPANSION IN

EXPANSION IN MICROSTRAIN EXPANSION IN MICROSTRAIN

-420-

EXPANSION IN MICROSTRAIN

x102

90.

75E

50L

Figure D.19

EXPANSION IN

EXPANSION IN

-422-

EXPANSION IN MICROSTRAIN

X102

90_

85

80

75E

70E

65

601

55

50

45

401

35

30

25

20

15

10

EXPANSION IN

Figure D.23

Figure D.24

EXPANSION IN MICROSTRAIN

EXPANSION IN MICROSTRAIN

EXPANSION IN MICROSTRAIN

×102

90.

MICROSTRAIN x102 X102 ×102 90. GRAPH OF EXPANSION AGAINST AGE -PYREX GRAPH OF EXPANSION AGAINST AGE -PYREX MIX REFERENCE: 0311P MIX REFERENCE: 0310P 0. ¥ 0 ak Kin 3 4 5 6 7 8 9 10 11 #IIIIXammuni 3 4 5 6 7 8 9 10 11 12 ACE OF SPECIMEN IN MONTHS AGE OF SPECIMEN IN MONTHS

EXPANSION IN

-425-

EXPANSION IN MICROSTRAIN

×102

×102

GRAPH OF EXPANSION AGAINST AGE -PYREX

ACE OF SPECIMEN IN MONTHS

MIX REFERENCE: 0320P

EXPANSION IN MICROSTRAIN

×102

90.

0×

Figure D.31

-427-

Figure D.32

EXPANSION IN MICROSTRAIN

Figure D.34

5

EXPANSION IN

Figure D.35

Figure D.36

EXPANSION IN MICROSTRAIN

EXPANSION IN

Figure D.38

×102

EXPANSION IN

-431-

EXPANSION IN

EXPANSION IN MICROSTRAIN

Figure D.41

EXPANSION IN MICROSTRAIN

-433-

EXPANSION IN MICROSTRAIN

EXPANSION IN

Figure D.45

Figure D.46

EXPANSION IN

EXPANSION IN

×105

MICROSTRAIN

EXPANSION IN MICROSTRAIN

Figure D.49

EXPANSION IN MICROSTRAIN

×102

90.

55E

50L

30L

0×

EXPANSION IN

Figure D.53

Figure D.54

EXPANSION IN MICROSTRAIN

×102

90.

Figure D.57

4 5 6 7 8 9 10 11 12

ACE OF SPECIMEN IN MONTHS

X102

GRAPH OF EXPANSION AGAINST AGE -PYREX

MIX REFERENCE: 1300

'40

EXPANSION IN MICROSTRAIN

-441-

EXPANSION IN MICROSTRAIN

×102

Figure D.62

EXPANSION IN MICROSTRAIN

×102

Figure D.63

-443-

EXPANSION IN

Figure D.65

Figure D.66

-444-

EXPANSION IN

EXPANSION IN MICROSTRAIN

-445-

EXPANSION IN MICROSTRAIN

\$01X

90,

×

Figure D.70

EXPANSION IN MICROSTRAIN

×102

90.

Figure D.71

-447-

Figure D.73

EXPANSION IN MICROSTRAIN

EXPANSION IN MICROSTRAIN

Figure D.74

5

EXPANSION IN MICROSTRAIN

EXPANSION IN MICROSTRAIN

-449-

EXPANSION IN MICROSTRAIN

MIX REFERENCE: 2120P

×102

of -

1 2

Figure D.78

Figure D.77

ACE OF SPECIMEN IN MONTHS

-450-

EXPANSION IN

EXPANSION IN MICROSTRAIN

Figure D.79

-452-

EXPANSION IN

×102

Figure D.84

-454-

EXPANSION IN MICROSTRAIN

-455-

EXPANSION IN MICROSTRAIN

EXPANSION IN

MIX REFERENCE: 23200

×102

Figure D.93

-458-

EXPANSION IN MICROSTRAIN

-459-

APPENDIX E

Series 2 - full details of expansion results from 'Extra Pyrex' set of experiments

Tables E.1 to E.2

Figures E.1 to E.16

NTY DEE	EXPANSI	'HARMFUL'			
NO.	14 DAYS	2 MONTHS	6 MONTHS	12 MONTHS	DESIGNATION
2032 P	1573	1621	1663	1684	Harmful
2033 P	4865	5155	5223	5196	Harmful
2034 P	4903	5979	6088	6136	Harmful
2035 P	3669	6317	6468	6336	Harmful
2041 P	117	160	181*	192+	-
2051 P	153	228	245	232	-
2061 P	232	419	489	472	-
2071 P	372	705	771.	772	-
2431 P	3116	4480	4781	4824	Harmful
2531 P	1669	3221	3731	3888	Harmful
2631 P	1027	2204	2919	3228	Harmful
2731 P	792	1680	2483	2780	Harmful
3031 P	136	153	172	168	-
4031 P	288	305	328	324	-
5031 P	665	701	712	724	-
6031 P	2481	2627	2631	2652	Harmful

TABLE E.1 SERIES 2 MORTAR BAR EXPANSION RESULTS - EXTRA PYREX MIXES

Note:- * denotes result from 1 bar failed the ASTM repeatability test

+ denotes results from 2 bars failed the ASTM repeatability test

** denotes based on limit referred to in ASTM C227

•

7

)

1

REPEATABILITY COMPUTATIONS FOR SERIES 2 'E.P.' SET, 14 DAY RESULTS - OUTPUT FROM PROGRAM 'CHECK'

Mix Ref.	AVERAGE	MICRO-
No.	EXPANSION	STRAIN
2032P	0.393	1573.
2033P	1.216	4865.
2034P	1.226	4903.
2035P	0.917	3669.
2041P	0.029	117.
2051P	0.038	153.
2061P	0.058	232.
2071P	0.093	372.
2431P	0.779	3116.
2531P	0.417	1669.
2631P	0.257	1027.
2731P	0.198	792.
3031P	0.034	136.
4031P	0.072	288.
5031P	0.166	665.
6031P	0.620	2481.

2032P 0.011 0.003 -0.013 0.059 2033P -0.017 0.004 0.014 0.132 2034P -0.025 0.012 0.012 1.134 2035P -0.035 0.006 0.030 0.133 2041P 0.001 -0.001 0.001 0.003 2051P -0.001 -0.000 0.002 0.003 2061P 0.002 -0.002 0. 0.009 2071P -0.004 -0.001 0.005 0.014 2431P 0.007 -0.017 0.008 0.117 2551P 0.011 -0.009 0.063 2.011 2431P 0.007 -0.015 0.017 0.039 2651P -0.003 -0.015 0.017 0.039 2731P -0.000 0.002 0.004 0.033 3031P -0.000 0.001 0.003 0.002 3031P 0.002 -0.002 0.002 0.025 6031P 0.019 0.012 0.020 0.025 6031P		Mix Ref. No.	EXPN(1)-AVGE	EXPN(2)-AVC	E EXPN(3)-AVGE	ALLOWABLE
2033P -0.017 0.004 0.014 0.132 2034P -0.025 0.012 0.012 1.134 2035P -0.035 0.006 0.030 0.133 2041P 0.001 -0.001 0.001 0.003 2051P -0.001 -0.000 0.002 0.003 2071P -0.007 -0.017 0.008 0.117 2531P 0.011 -0.001 0.005 0.007 2071P -0.007 -0.017 0.008 0.117 2531P 0.011 -0.001 -0.009 0.063 2631P -0.003 -0.015 0.017 0.039 2631P -0.006 0.002 0.004 0.033 3031P -0.000 0.001 0.003 0.011 5031P -0.000 0.003 -0.002 0.002 4031P 0.002 -0.002 0.002 0.002 5031P 0.017 -0.002 0.025 0.003 2032P 0.165 0.172 0.172 0.073 2035P		2032P	0.011	0.003	-0.013	0.059
2034p -0.025 0.012 0.012 1.134 2035p -0.035 0.006 0.030 0.133 2041p 0.001 -0.001 0.001 0.003 2051P -0.001 -0.000 0.002 0.003 2061p 0.002 -0.002 0. 0.003 2071p -0.004 -0.001 0.005 0.014 2431p 0.007 -0.017 0.008 0.117 2531P 0.011 -0.001 -0.009 0.063 2631P -0.003 -0.015 0.017 0.0330 2631P -0.004 0.002 0.004 0.0330 3031P -0.000 0.000 0. 0.003 3031P -0.000 0.000 0. 0.011 5031P -0.000 0.003 -0.002 0.003 4031P 0.002 -0.002 0.002 0.002 2032P 0.048 0.056 0.046 2033P 0.165 0.172 0.172 2031P 0.048 0.056 <t< td=""><td></td><td>2033P</td><td>-0.017</td><td>0.004</td><td>0.014</td><td>0.132</td></t<>		2033P	-0.017	0.004	0.014	0.132
2035P -0.035 0.006 0.030 0.133 2041P 0.001 -0.001 0.001 0.003 2051P -0.001 -0.000 0.002 0.003 2061P 0.002 -0.002 0. 0.009 2071P -0.004 -0.001 0.005 0.117 2431P 0.007 -0.017 0.0028 0.117 2531P 0.011 -0.001 -0.009 0.063 2631P -0.006 0.002 0.004 0.033 2631P -0.006 0.002 0.004 0.033 3031P -0.000 0.000 0. 0.003 0.001 3031P -0.000 0.003 -0.002 0.003 0.011 5031P -0.000 0.003 -0.002 0.003 0.025 6031P 0.019 -0.012 -0.002 0.025 0.025 6031P 0.019 -0.012 -0.002 0.025 0.025 2032P 0.165 0.172 0.169 0.025 0.025 2034P		2034P	-0.025	0.012	0.012	3.134
2041P 0.001 -0.001 0.001 0.003 2051P -0.001 -0.000 0.002 0.003 2061P 0.002 -0.002 0.003 0.003 2071P -0.004 -0.001 0.005 0.014 2431P 0.007 -0.017 0.008 0.117 2531P 0.011 -0.001 -0.009 0.063 2631P -0.006 0.002 0.004 0.033 2631P -0.006 0.002 0.004 0.033 2631P -0.006 0.002 0.004 0.033 3031P -0.000 0.001 0.003 0.002 0.003 3031P -0.000 0.003 -0.002 0.025 0.025 6031P 0.019 -0.012 -0.002 0.025 0.025 6031P 0.019 -0.012 -0.002 0.025 0.025 2035P 0.165 0.179 0.169 0.073 0.025 2034P 0.159 0.132 0.108 0.097 0.0102 2051P <td></td> <td>2035P</td> <td>-0.035</td> <td>0.006</td> <td>0.030</td> <td>0.133</td>		2035P	-0.035	0.006	0.030	0.133
2051P -J.001 -0.000 0.002 0.003 2061P 0.002 -0.002 0.005 0.003 2071P -J.004 -0.001 0.005 0.014 2431P J.007 -0.017 0.008 0.117 2531P J.011 -0.001 -0.009 J.063 2631P -J.003 -0.015 0.017 J.033 2731P J.006 0.002 J.004 J.033 3031P -J.000 0.000 0. J.033 4031P J.002 -0.002 J.000 J.011 5031P -J.000 0.003 -0.022 J.003 4031P J.002 -0.002 J.000 J.013 5031P -J.000 0.003 -0.022 J.025 6031P J.017 -J.012 -J.006 J.073 Mix Ref. IF OKAY ALL VALUES SHOULD BE POSITIVE J.025 2032P J.165 0.179 J.169 2033P J.165 0.179 J.169 2034P J.102 J.002 J		2041P	0.001	-0.001	0.001	0.003
2061P 0.002 0.002 0.003 2071P -0.004 -0.001 0.005 0.014 2431P 0.007 -0.017 0.008 0.117 2531P 0.011 -0.001 -0.009 0.653 2631P -0.003 -0.015 0.017 0.039 2731P -0.006 0.002 0.004 0.039 3031P -0.000 0.000 0. 0.003 4031P 0.002 -0.002 0.000 0.011 5031P -0.000 0.003 -0.002 0.003 4031P 0.002 -0.002 0.000 0.011 5031P -0.000 0.003 -0.002 0.025 6031P 0.017 -0.012 -0.002 0.025 6031P 0.019 -0.012 -0.022 0.025 2032P 0.048 0.056 0.046 0.093 2034P 0.159 0.172 0.108 0.092 2034P 0.102 0.002 0.002 0.002 2051P 0.002		2051P	-0.001	-0.000	0.002	0.003
2071P -0.004 -0.001 0.005 0.014 2431P 0.007 -0.017 0.008 0.117 2531P 0.011 -0.001 -0.009 0.063 2631P -0.003 -0.015 0.017 0.039 2731P -0.000 0.000 0. 0.033 3031P -0.000 0.000 0. 0.003 4031P 0.002 -0.002 0.000 0.011 5031P -0.000 0.003 -0.002 0.025 6031P 0.017 0.025 0.025 0.025 6031P 0.017 0.025 0.022 0.025 6031P 0.017 0.026 0.025 0.025 2032P 0.048 0.056 0.046 0.093 2033P 0.165 0.172 0.172 0.072 2034P 0.159 0.172 0.172 0.172 2035P 0.102 0.002 0.002 0.002 2051P 0.002 0.002 0.002 0.002 2051P 0.00		2061P	0.007	-0.002	0.	0.009
2431P 0.007 -0.017 0.008 0.117 2531P 0.011 -0.001 -0.009 0.063 2631P -0.003 -0.015 0.017 0.039 2731P -0.006 0.002 0.004 0.030 3031P -0.000 0.000 0. 0.003 4031P 0.002 -0.002 0.000 0.011 5031P -0.000 0.003 -0.002 0.003 4031P 0.002 -0.002 0.001 0.011 5031P -0.000 0.003 -0.002 0.025 6031P 0.017 -0.012 -0.006 0.073 Mix Ref. IF 0.048 0.056 0.046 2032P 0.048 0.056 0.046 2033P 0.165 0.179 0.169 2034P 0.159 0.172 0.172 2035P 0.102 0.003 0.001 2041P 0.002 0.003 0.001 2051P 0.002 0.003 0.001 2051P		2071P	-2.002	-0.001	0.005	0.014
2531P 0.011 -0.001 -0.002 0.043 2631P -0.003 -0.015 0.017 0.039 2731P -0.006 0.002 0.004 0.030 3031P -0.000 0.000 0. 0.003 4031P 0.002 -0.002 0.900 0.011 5031P -0.002 0.900 0.011 5030 5031P -0.000 0.003 -0.002 0.903 4031P 0.012 -0.012 -0.906 0.011 5031P -0.019 -0.012 -0.906 0.093 Mix Ref. No. CHECK IF OKAY ALL VALUES SHOULD BE POSITIVE 2032P 0.048 0.056 0.046 2033P 0.165 0.179 0.169 2034P 0.159 0.172 0.172 2035P 0.102 0.002 0.002 2031P 0.002 0.002 0.002 2051P 0.002 0.002 0.002 2051P 0.007 0.007 0.009 2431P 0.010		2431P	0.004	-0.017	0.008	0.117
2631P -0.003 -0.015 0.017 0.039 2731P -0.000 0.002 0.004 0.030 3031P -0.000 0.000 0. 0.003 4031P 0.002 -0.000 0.001 0.001 4031P 0.002 -0.000 0.011 0.011 5031P -0.012 -0.002 0.002 0.025 6031P 0.019 -0.012 -0.002 0.025 6031P 0.019 -0.012 -0.006 0.025 2032P 0.048 0.056 0.046 0.093 2033P 0.165 0.179 0.169 0.022 2034P 0.159 0.172 0.172 0.172 2035P 0.102 0.002 0.002 0.002 2051P 0.002 0.002 0.002 0.002 2051P 0.007 0.007 0.009 2431P 2431P 0.010 0.013 0.009 2431P 2731		2531P	0.007	-0.001	-0.009	0.063
2731P -0.006 0.002 0.004 0.030 3031P -0.000 0.000 0.001 0.003 4031P 0.002 -0.002 0.000 0.011 5031P -0.000 0.003 -0.002 0.003 6031P 0.019 -0.012 -0.002 0.025 6031P 0.019 -0.012 -0.006 0.093 Mix Ref. No. CHECK IF OKAY ALL VALUES SHOULD BE POSITIVE 2032P 0.048 0.056 0.046 2033P 0.165 0.179 0.169 2034P 0.159 0.172 0.172 2035P 0.102 0.002 0.002 2041P 0.002 0.002 0.002 2051P 0.002 0.003 0.011 2061P 0.010 0.013 0.009 2071P 0.010 0.013 0.009 2071P 0.010 0.013 0.009 2431P 0.108 0.024 0.021 2731P 0.024 0.028 0.026		2631P	0.007	-0.015	0.017	0.039
3031P -0.000 0.000 0.003 4031P 0.002 -0.002 0.000 0.011 5031P -0.000 0.003 -0.002 0.003 6031P 0.019 -0.012 -0.002 0.025 6031P 0.019 -0.012 -0.006 0.073 Mix Ref. No. CHECK IF OKAY ALL VALUES SHOULD BE POSITIVE 2032P 0.048 0.056 0.046 2033P 0.165 0.179 0.169 2034P 0.159 0.172 0.172 2035P 0.102 0.003 0.001 2041P 0.002 0.003 0.001 2051P 1.002 0.003 0.001 2061P 0.007 0.007 0.009 2071P 0.010 0.013 0.009 2431P 0.108 0.024 0.021 2731P 0.026 0.003 0.003 2631P 0.036 0.028 0.026 3031P 0.007 0.009 0.011 5031P 0.025		2731P	-3.005	0.002	0.004	0.030
JOSTF JOSTF <th< td=""><td></td><td>20210</td><td>-0.000 .</td><td>0.002</td><td>0.004</td><td>0.003</td></th<>		20210	-0.000 .	0.002	0.004	0.003
4031P -0.002 0.002 0.002 0.002 5031P -0.012 -0.002 0.025 0.093 Mix Ref. No. CHECK IF OKAY ALL VALUES SHOULD BE POSITIVE 2032P 0.048 0.056 0.046 2033P 0.165 0.179 0.169 2034P 0.159 0.172 0.172 2035P 0.102 0.002 0.002 2031P 0.0102 0.002 0.002 2035P 0.102 0.132 0.108 2041P 0.002 0.003 0.001 2061P 0.007 0.007 0.009 2071P 0.010 0.013 0.009 2431P 0.108 0.100 0.109 2531P 0.052 0.061 0.053 2631P 0.036 0.024 0.021 2731P 0.024 0.028 0.026 3031P 0.003 0.003 0.003 4031P 0.025 0.022 0.023 6031P 0.025 0.022 0.023 <td></td> <td>1021P</td> <td>-0.000</td> <td>-0.002</td> <td>0,000</td> <td>0.011</td>		1021P	-0.000	-0.002	0,000	0.011
JOSTF J.000 0.003 J.002 J.002 6031P J.019 -0.012 -J.006 J.093 Mix Ref. No. CHECK IF OKAY ALL VALUES SHOULD BE POSITIVE 2032P J.048 0.056 J.046 2033P J.165 0.179 J.169 2034P J.159 0.172 J.172 2035P J.102 0.132 J.108 2041P J.002 J.003 J.001 2051P J.007 J.007 J.009 2071P J.010 J.13 J.009 2071P J.010 J.103 J.009 2431P J.108 J.100 J.109 2531P J.052 J.061 J.053 2651P J.024 J.028 J.026 3031P J.024 J.028 J.026 3031P J.025 J.022 J.023 4031P J.007 J.009 J.033 3031P J.025 J.022		5021P	0.002	-0.002	-0.002	0.025
Mix Ref. No. CHECK IF OKAY ALL VALUES SHOULD SE POSITIVE 2032P 0.048 0.056 0.046 0.046 2033P 0.165 0.179 0.169 2034P 0.159 0.172 0.172 2035P 0.102 0.132 0.108 2041P 0.002 0.002 0.002 2051P 1.002 0.003 0.001 2061P 0.007 0.007 0.009 2071P 0.010 0.013 0.009 2431P 1.108 0.100 0.109 2531P 0.052 0.061 0.053 2631P 0.026 0.024 0.021 2731P 0.024 0.028 0.026 3031P 0.007 0.009 0.011 4031P 0.007 0.009 0.011 5031P 0.025 0.022 0.026 3031P 0.025 0.022 0.023 6031P		6031P	-3.000	-0.013	-2.002	0.093
No. CHECK IF OKAY ALL VALUES SHOULD DE POSITIVE 2032P 0.048 0.056 0.046 0.046 2033P 0.165 0.179 0.169 2034P 0.159 0.172 0.172 2035P 0.102 0.002 0.002 2041P 0.002 0.003 0.001 2061P 0.010 0.017 0.009 2071P 0.010 0.013 0.009 2431P 0.108 0.100 0.109 2431P 0.108 0.100 0.109 2531P 0.052 0.061 0.053 2631P 0.024 0.028 0.021 2731P 0.024 0.028 0.026 3031P 0.003 0.003 0.003 4031P 0.025 0.022 0.023 5031P 0.025 0.022 0.023 6031P 0.074 0.081 0.087	,	Mix Ref.	0.017	0.012		
2032P 0.048 0.056 0.046 2033P 0.165 0.179 0.169 2034P 0.159 0.172 0.172 2035P 0.102 0.132 0.108 2041P 0.002 0.002 0.002 2051P 0.002 0.003 0.001 2061P 0.007 0.007 0.009 2071P 0.010 0.013 0.009 2431P 0.108 0.100 0.109 2531P 0.052 0.061 0.053 2631P 0.036 0.024 0.021 2731P 0.024 0.028 0.026 3031P 0.003 0.003 0.003 4031P 0.025 0.022 0.023 6031P 0.025 0.022 0.023		No. CHE	CK , IF OKAY	ALL VALUES S	HOULD BE POSITIV	E
2033P 0.165 0.179 0.169 2034P 0.159 0.172 0.172 2035P 0.102 0.132 0.108 2041P 0.002 0.002 0.002 2051P 1.002 0.003 0.001 2061P 0.007 0.007 0.009 2431P 0.108 0.100 0.109 2531P 0.052 0.061 0.053 2631P 0.036 0.024 0.021 2731P 0.036 0.024 0.021 2731P 0.024 0.028 0.026 3031P 0.023 0.003 0.003 4031P 0.007 0.009 0.011 5031P 0.025 0.022 0.026 3031P 0.025 0.022 0.023 6031P 0.074 0.081 0.087		2032P	0.048	0.056	0.046	
2034P 0.159 0.172 0.172 2035P 0.102 0.132 0.108 2041P 0.002 0.002 0.002 2051P 0.007 0.007 0.009 2061P 0.010 0.013 0.009 2071P 0.010 0.013 0.009 2431P 0.108 0.100 0.109 2531P 0.052 0.061 0.053 2631P 0.024 0.024 0.021 2731P 0.024 0.028 0.026 3031P 0.003 0.003 0.003 4031P 0.007 0.009 0.011 5031P 0.025 0.022 0.026 3031P 0.007 0.009 0.011 5031P 0.025 0.022 0.023 6031P 0.074 0.081 0.087		2033P	0.165	0.179	0.169	
2035P 0.102 0.132 0.108 2041P 0.002 0.002 0.002 2051P 1.002 0.003 0.001 2061P 0.007 0.007 0.009 2071P 0.010 0.013 0.009 2431P 0.108 0.100 0.109 2431P 0.036 0.024 0.021 2731P 0.036 0.024 0.021 2731P 0.024 0.028 0.026 3031P 0.003 0.003 0.003 4031P 0.025 0.022 0.023 6031P 0.025 0.022 0.023 6031P 0.074 0.081 0.087		2034P	0.159	0.172	0.172	
2041P 0.002 0.002 0.002 2051P 0.002 0.003 0.001 2061P 0.007 0.007 0.009 2071P 0.010 0.013 0.009 2431P 0.108 0.100 0.109 2531P 0.052 0.061 0.053 2631P 0.024 0.024 0.021 2731P 0.024 0.028 0.026 3031P 0.003 0.003 0.003 4031P 0.025 0.022 0.023 6031P 0.025 0.022 0.023 6031P 0.025 0.022 0.023		2035P	0.102	0.132	0.108	
2051P 0.002 0.003 0.001 2061P 0.007 0.007 0.009 2071P 0.010 0.013 0.009 2431P 0.108 0.100 0.109 2531P 0.052 0.061 0.053 2631P 0.036 0.024 0.021 2731P 0.024 0.028 0.026 3031P 0.003 0.003 0.003 4031P 0.025 0.022 0.023 6031P 0.025 0.022 0.023 6031P 0.074 0.081 0.087		2041P	2.002	0.002	0.002	
2061P 0.007 0.007 0.009 2071P 0.010 0.013 0.009 2431P 0.108 0.100 0.109 2531P 0.052 0.061 0.053 2631P 0.024 0.021 2731P 0.024 0.028 0.026 3031P 0.003 0.003 0.003 4031P 0.025 0.022 0.023 6031P 0.025 0.022 0.023		2051P	0.002	0.003	0.001	
2071P 0.010 0.013 0.009 2431P J.108 0.100 0.109 2531P J.052 0.061 0.053 2631P J.024 0.024 0.021 2731P J.024 0.028 0.026 3031P J.003 0.003 0.003 4031P J.025 0.022 0.023 6031P J.025 0.022 0.023 6031P J.074 0.081 0.087		2061P	0.007	0.007	0.009	
2431P J.108 0.100 0.109 2531P J.052 0.061 0.053 2631P 0.036 0.024 0.021 2731P J.024 0.028 0.026 3031P J.003 0.003 0.003 4031P J.002 0.009 0.011 5031P J.025 0.022 0.023 6031P J.025 0.022 0.023		2071P	0.010	0.013	0.009	
2531P 0.052 0.061 0.053 2631P 0.036 0.024 0.021 2731P 0.024 0.028 0.026 3031P 0.003 0.003 0.003 4031P 0.002 0.009 0.011 5031P 0.025 0.022 0.023 6031P 0.074 0.081 0.087		2431P	1.108	0.100	0.109	
2631P 0.036 0.024 0.021 2731P 0.024 0.028 0.026 3031P 0.003 0.003 0.003 4031P 0.009 0.011 1 5031P 0.025 0.022 0.023 6031P 0.074 0.081 0.087		2531P	0.052	0.061	0.053	
2731P J.024 0.028 0.026 3031P J.003 0.003 0.003 4031P J.009 0.009 0.011 5031P J.025 0.022 0.023 6031P J.024 0.081 0.087		2631P	0.036	0.024	0.021	
3031P J.003 0.003 0.003 4031P J.007 0.009 0.011 5031P J.025 0.022 0.023 6031P J.024 J.081 0.087		2731P	1.024	0.028	0.026	
4031P 0.009 0.011 5031P 0.025 0.022 0.023 6031P 0.074 0.081 0.087		3031P	1.003	0.003	0.003	
5031P 0.025 0.022 0.023 6031P 0.074 0.081 0.087		4031P	0.002	0.009	0.011	*
6031P 0.074 0.081 0.087		5031P	1,125	0.022	0.023	
		6031P	0.074	0.081	0.087	

)

)

1

REPEATABILITY COMPUTATIONS FOR SERIES 2 'E.P.' SET, 2 MONTH RESULTS - OUTPUT FROM PROGRAM 'CHECK'

Mix Ref.	AVERAGE	MICRO-
No.	EXPANSION	STRAIN
2032P	0.405	1621.
2033P	1.239	5155.
2034P	1.495	5979.
2035P	1.579	6317.
2041P	0.040	160.
2051P	0.057	228.
2061P	0.105	419.
2071P	0.176	705.
2431P	1.120	4480.
2531P	0.805	3221.
2631P	0.551	2204.
2731P	0.420	1680.
3031P	0.038	153.
4031P	0.076	305.
5031P	0.175	701.
6031P	0.657	2627.

Mix Ref. No.	EXPH(1)-AVGE	EXPN(2)-AVGE	EXPN(3)-AVGE	ALLOWABLE DIFFERENCE
2032P	0.011	0.004	-0.014	0.061
2033P	-0.017	-0.001	0.017	0.193
2034P	-0.032	0.050	-0.019	0.224
2035P	0.011	-0.036	0.026	0.237
2041P	-0.000	-0.002	0.002	0.003
2051P	0.	0.	0.	0.009
2061P	0.003	-0.009	0.005	0.016
2071P	-0.012	0.015	-0.002	0.026
2431P	-0.004	-0.005	0.009	0.168
2531P	0.017	-0.007	-0.009	J.121
2631P	0.003	-0.028	0.025	0.083
2731P	-0.010	-0.000	0.010	0.063
3031P	0.001	-0.000	-0.000	0.003
4031P	0.003	-0.000	-0.002	0.011
5031P	0.001	0.003	-0.003	0.026
6031P	0.017	-0.011	-0.007	0.099
Mix Ref.				
No. CH	ECK . IF OKAY	ALL VALUES SHO	OULD BE POSITIV	E
2032P	0.050	0.057	0.046	
2033P	0.177	0.193	0.176	
2034P	0.193	0.174	0.206	
2035P	0.226	0.201	0.211	
2041P	0.003	0.001	0.001	
2051P	0.009	0.309	0.009	
2061P	0.012	0.007	0.010	
2071P	0.014	0.012	0.024	
2431P	0.164	0.105	0.159	
2531P	0.104	0.115	0.059	
2631P	0.080	0.055	0.050	
2731P	0.053	0.003	0.003	
3031P	0.002	0.003	0.003	
4031P	0.009	0.011	0.007	
5031P	0.026	0.024	0.023	
6031P	0.081	0.083	0.092	

;)

1)

TABLE E.2(c)REPEATABILITY COMPUTATIONS FOR SERIES 2 'E.P.' SET,
6 MONTH RESULTS - OUTPUT FROM PROGRAM 'CHECK'

Mix Ref.	AVERAGE	MICRO-
No.	EXPANSION	STRAIN
2032P	0.416	1663.
2033P	1.306	5223.
2034P	1.522	. 3306
2035P	1.617	6468.
2041P	0.045	181.
2051P	0.061	245.
2061P	0.122	489.
2071P	0.193	771.
2431P	1.195	4781.
2531P	0.933	3731.
2631P	0.730	2919.
2731P	0.621	2483.
3031P	0.043	172.
4031P	0.032	328.
5031P	0.178	712.
6031P	0.658	2631.

Mix Re	ef. EX	PN(1)-AVGE	EXPN(2)-AVO	SE EXPN(3)-AVGE	ALLOJABLE
No.				2	DIFFERENCI
20321		0.010	0.003	-0.014	0.002
20338	2	-0.013	0.000	0.017	0.190
20341		-0.022	0.037	-0.015	J.223
20358	2	0.023	-0.054	0.031	0.243
20418	2	-0.001	-0.002	0.004	0.003
20518	2	-0.000	0.001	-0.000	0.009
20618	2	0.014	-0.017	0.004	0.018
20718	2	-0.015	0.023	-0.009	0.029
2431E	2	-0.002	-0.006	0.009	0.179
2531E	2	0.019	-0.011	-0.009	3.140
26318	>	0.014	-0.035	0.020	0.109
27318	•	-0.001	-0.009	0.009	0.093
30318	0	0.000	0.001	-0.001	0.003
40318	>	0.002	0.000	-0.002	0.012
50318		0.002	0.000	-0.002	0.027
60318		0.016	-0.011	-0.006	0.099
Min Dof					
No.	CHECK	. IF OKAY	ALL VALUES S	SHOULD BE POSITIV	E
2032P		0.052	0.059	0.049	
2033P		0.178	0.196	0.179	
2034P		0.206	0.191	0.213	
2035P		0.320	0.189	0.212	
2041P		0.002	0.001	-0.001	
2051P		0.009	0.009	0.009	
2061P		0.005	0.001	0.015	
2071P		0.014	0.006	0.020	
2431P		0 177	0.173	0.171	
2531P		0 121	0 129	0.131	
2631P		0.005	0.075	0.089	
27310		0.003	0 084	0.084	
20210		0.092	0.002	0.002	
1031P		0.005	0.012	0.010	
4031P		0.010	0.012	0.025	
5031P		0.025	0.027	0.003	
00315		0.032	0.000	0.075	

TABLE E.2(d)REPEATABILITY COMPUTATIONS FOR SERIES 2 'E.P.' SET,
12 MONTH RESULTS - OUTPUT FROM PROGRAM 'CHECK'

Mix Ref.	AVERAGE	51CRO-
No.	EXPANSION	STRAIN
2032P	0.421	1084 .
2033P	1.277	5196.
2034P	1.534	6136.
2035P	1.584	6336.
2041P	0.048	192.
2051P	0.058	232.
2061P	0.118	472.
2071P	0.193	772.
2431P	1.206	4824 .
2531P	0.972	3388.
2631P	0.307	3223.
2731P	0.695	2780.
3031P	0.042	168.
4031P	0.081	324.
5031P	0.181	724.
6031P	0.663	2652.

)

)

)

)

Mix Ref.	EXPN(1)-AVGE	EXPN(2)-AVG	E EXPN(3)-AVGE	ALLOJAJLE
No.				DIFERENCE
2032P	0.011	-0.000	-0.011	0.763
2033P	-0.009	0.009	0.	J.175
2034P	0.000	0.026	-0.026	3.233
2035P	0.058	-0.058	-0.000	0.233
2041P	-0.000	-0.004	0.004	0.003
2051P	-0.000	-0.000	0.000	0.007
2061P	0.014	-0.014	-0.000	0.013
2071P	-0.017	0.017	0.	0.029
2431P	0.000	-0.010	0.010	0.131
2531P	0.016	-0.016	0.000	J.146
2631P	-0.003	0.	0.003	0.121
2731P	0.	-0.009	0.009	0.104
3031P	-0.002	0.002	-0.000	0.003
4031P	0.003	0.000	-0.003	0.012
5031P	0.003	0.000	-0.003	1.327
6031P	0.013	-0.013	0.	0.077
Mix Ref.				
No. CH	ECK . IF OKAY	ALL VALUES S	HOULD BE POSITIV	E
2032P	0.052	0.063	0.052	
2033P	0.186	0.186	0.195	
2034P	0.230	0.204	0.204	
2035P	0.180	0.180	0.238	
2041P	0.003	-0.001	-0.001	
2051P	0.009	0.009	0.007	
2061P	0.004	0.004	0.018	
2071P	0.012	0.012	0.029	
2431P	0.181	0.171	0.171	
2531P	0.130	0.130	0.146	
2631P	0.118	0.121	0.118	
2731P	0.104	0.095	0.095	
3031P	0.001	0.001	0.003	
4031P	0.009	0.012	0.009	
5031P	0.024	0.027	0.024	
6031P	0.086	0.086	0.099	

-466-

-467-

EXPANSION IN

EXPANSION IN

-470-

EXPANSION IN

Figure E.11

Figure E.12

-471-

EXPANSION IN MICROSTRAIN

\$102

0×

10 11 12

×102

GRAPH OF EXPANSION AGAINST AGE -PYREX

MIX REFERENCE: 3031P

4 5 6

ACE OF SPECIMEN IN MONTHS

EXPANSION IN MICROSTRAIN EXPANSION IN MICROSTRAIN

Figure E.16

APPENDIX F

Series 2 - full details of expansion results from 'Beltane Opal' set of experiments

Tables F.1 to F.2

Figures F.1 to F.16

MIY DEE	EXPANSI	'HARMFUL'			
NO.	14 DAYS	2 MONTHS	6 MONTHS	12 MONTHS	DESIGNATION
2001	92	95	105	88	-
2011 B	88	139	164	172	-
2021 B	84	172	216	236	-
2031 B	120	235	295	304	-
2041 B	276	493	529	528	-
2051 B	144	189*	200*	200	-
2061 B	112*	152+	159*	152	-
2071 B	109	140	153	156	-
2301	96	131	163	152 ·	
2311 B	112	238	262	264	-
2321 B	127	293	337	324	-
2331 B	160+	368	416	396	-
2341 B	129	219	251	268	-
2351 B	121*	223	247	248	-
2361 B	109	224	239	244	-
2371 B	92	223	252	224	-

TABLE F.1 SERIES 2 MORTAR BAR EXPANSION RESULTS - BELTANE OPAL MIXES

Note:- * denotes result from 1 bar failed the ASTM repeatability test + denotes results from 2 bars failed the ASTM repeatability test ** denotes based on limit referred to in ASTM C227

.

1 . 1

REPEATABILITY COMPUTATIONS FOR SERIES 2 'B.O.' SET, 14 DAY RESULTS - OUTPUT FROM PROGRAM 'CHECK'

Mix Hef. AVERAGE	ILCRU-
No. EXPANSION	STRAIN
2041B 0.069	276.
2051B 0.036	144.
2061B 0.023	112.
2071B U.027	109.
2011B 0.022	33.
2021B 0.021	34.
2031B 0.030	120.
2341B 0.032	129.
2351B 0.030	121.
23618 0.027	109.
23718 0.023	92.
22118 0.023	112.
22218 0.032	127.
2331B 0.040	160.

Mix Re	ef. EX	PH(1)-AVGE	EXPN(2)-AV	GE EXPN(3)-AVGE	ALLOWABLE DIFFERENCE
20/11	2	1 201	0.003	-0.004	0.010
20412	3	-0.002	0.000	0.002	0.003
20516	2	-0.002	0.002	0.002	0.003
20012	2	-0.001	0.001	0.001	0.003
20116	2		0.000	0.002	0.003
20116		-0.002	-0.101	0.000	0.003
20218		0.001	0.55.	0.	0.003
20318	,	0.000	0.002	-0.000	0.003
23418		-0.001	0.001	-0.002	0.003
23518		0.004	-0.001	0.001	0.003
23618		0.001	-0.001	0.000	0.003
2371B		-0.001	0.001	0.002	0.003
2311B		-0.000	-0.002	0.000	0.003
2321B		-0.002	0.001	-0.002	0.003
2331B		-0.004	0.006	-0.002	
Mix Ref.				NOULD BE POSITIVE	
No.	CHECK	, IF OKAY	ALL VALUES :	0 036	
2041B		0.009	0.007	0.000	
2051B		0.001	0.003	0.001	
2061B		-0.001	0.001	0.001	
2071B		0.002	0.002	0.002	
2011B		0.001	0.003	0.001	
2021B		0.002	0.002	0.003	
2031B		0.003	0.003	0.003	
2341B		0.002	0.001	0.003	
2351B		-0.001	0.002	0.001	
2361B		0.002	0.002	0.002	
2371B		0.002	0.002	0.005	
2311B		0.003	0.001	0.001	
2321B		0.001	0.002	0.005	
2331B		-0.001	-0.003	0.001	

TABLE F.2(b)

REPEATABILITY COMPUTATIONS FOR SERIES 2 'B.O.' SET, 2 MONTH RESULTS - OUTPUT FROM PROGRAM 'CHECK'

Mix Ref.	IVERAGE	ILCRO-
No.	EXPANSION	STRAIN
2041B	0.123	493.
2051B	0.947	189.
2061B	0.038	152.
2071B	0.035	140.
2011B	0.035	139.
2021B	0.043	172.
2031B	0.059	235.
2341B	0.055	219.
2351B	0.056	223.
2361B	0.056	224.
2371B	0.056	223.
2311B	0.059	238.
2321B	0.073	293.
2331B	0.092	368.

Mix Ref.	EXPII(1)-AVGE	EXPN(2)-AVGE	EXPN(3)-AVGE	ALLOWABLE
2041B	-1 105	0.013	-0.007	0.019
2051B	-0.005	0.003	0.003	0.003
2061B	-).)()4	0.004	0.	0.003
2071B	-1.001	0.001	-0.000	0.003
2011B	- 1. 001	0.001	-0.001	0.003
2021B	0.001	-0.001	0.000	0.003
2031B	1.000	-0.001	0.000	0.009
2341B	-0.002	0.003	-0.002	0.008
2351B	0.004	-0.001	-0.004	0.008 .
2361B	2.002	0.	-0.002	0.003
2371B	0.000	0.000	-0.001	0.038
2311B	0.000	0.000	-0.001	0.009
2321B	2.001	-0.000	-0.000	0.011
2331B	-0.004	0.006	-0.002	0.014
Mix Bef				
No. CHE	CK . IF OKAY	ALL VALUES SH	OULD HE POSITIV	E
2041B	1.113	0.006	0.011	
2051B	- 1, 102	0.000	0.000	
2061B	-0.001	-0.001	0.003	
2071B	0.002	0.002	0.003	
2011B	0.002	0.002	0.002	
2021B	0.002	0.002	0.003	
2031B	0.003	0.008	0.008	
2341B	0.007	0.005	0.007	
2351B	0.004	0.008	0.005	
2361B	1.006	0.008	0.006	
2371B	0.003	0.003	0.008	
2311B	0.002	0.008	0.008	
2321B	0.010	0.011	0.011	
2331B	1.010	0.008	0.012	

TABLE F.2(c)

REPEATABILITY COMPUTATIONS FOR SERIES 2 'B.O.' SET, 6 MONTH RESULTS - OUTPUT FROM PROGRAM 'CHECK'

Mix Ref.	AVERAGE	MICRO-
No.	EXPANSION	STRAIN
2041B	0.132	529.
2051B	0.050	200.
2061B	0.040	159.
2071B	0.033	153.
2011B	0.041	164.
2021B	0.054	216.
2031B	0.074	295.
2341B	0.063	251.
2351B	0.062	247.
2361B	0.060	239.
2371B	0.063	252.
2311B	0.065	262.
2321B	0.034	337.
2331B	0.104	416.

Mix Ref.	EXPN(1)-AVGE	EXPN(2)-AVGE	EXPN(3)-AVGE	ALLOWABLE DIFFERENCE
2041B	-1 113	0.012	-0.003	0.020
2051B	-0.003	0.002	0.001	0.003
2061B	-0.004	0.003	0.000	0.003
2071B	1.001	-0.001	0.001	0.003
2011B	-0.002	0.001	0.001	0.003
2021B	0.002	-0.001	-0.001	0.008
2031B	0.000	-0.001	0.000	0.011
2341B	-1.004	0.003	0.000	0.009
2351B	0.005	-0.002	-0.004	0.009
2361B	0.000	-0.001	0.000	0.009
22718	-0.001	0.003	-0.002	0.009
23118	0.000	0.000	-0.000	0.010
23218	-0.000	-0.000	0.001	0.013
2331B	-0.007	0.007	0.	0.016
Mix Pof				
No. CH	FCK . IF OKAY	ALL VALUES SHO	ULD BE POSITIV	E
20418	0.012	0.008	0.017	
20518	-0.000	0.001	0.002	
2061B	-1.001	-0.000	0.003	
20718	0.002	0.002	0.002	
20118	0.001	0.002	0.002	
20218	0.006	0.007	0.007	
20318	0.011	0.010	0.011	
2341B	0.006	0.006	0.009	
2351B	0.004	0.008	0.006	
2361B	0.009	0.008	0.009	
23718	0.008	0.006	0.007	
2311B	0.010	0.009	0.009	
2321B	0.012	0.012	0.012	
2331B	0.009	0.009	0.016	

Mix Ref.	AVERAGE	MICRO-
No.	EXPANSION	STRAIN
2041B	0.132	528.
2051B	0.050	200.
2061B	0.038	152.
2071B	0.039	156.
2011B	0.043	172.
2021B	0.059	236.
2031B	0.076	304.
2341B	0.067	263.
2351B	0.062	248.
2361B	0.061	244.
2371B	0.056	224.
2311B	0.066	264 .
2321B	0.081	324.
2331B	0.099	396 -

Mix Ref. EXPIN(1)-AVGE EXPIN(2)-AVGE EXPIN(3)-AVGE ALLO No. DI DI DI DI 2041B 0. 0.004 -0.004 DI 2051B -0.002 0.002 0.000 DI 2051B -0.000 0.000 0.000 DI 2051B -0.000 0.000 0.000 DI 2071B 0.003 -0.003 -0.000 DI 2011B -0.003 -0.003 0.000 DI 2031B 0.002 -0.002 DI DI DI 2031B 0.002 -0.003 DI DI DI DI 2031B 0.002 0.001 -0.001 DI DI DI DI DI 2351B 0.002 0.002 DI	WABLE FERENCE 0.020 0.003 0.003 0.003 0.003 0.003
No. DI 2041B 0. 0.004 -0.004 2051B -0.002 0.002 0.000 2061B -0.000 0.000 0. 2071B 0.003 -0.003 -0.000 201B 0.003 -0.003 0.000 2031B 0.002 -0.002 0. 2031B 0.002 -0.002 0. 231B 0.003 -0.003 0.000 2351B 0.003 -0.001 0.000 2351B 0.002 0.001 -0.000 2351B 0.002 0.002 0.000 2351B 0.001 -0.001 0.0000 2351B 0.002 0.002 0.000 2311B -0.001 0.000 0.000 2331B -0.007 0.007 0.000 2331B -0.007 0.007 0.000 2311B 0.020 0.016 0.016 2041B 0.020 0.016 0.016	FERENCE 0.020 0.003 0.003 0.003 0.003 0.003
2041B 0. 0.004 -0.004 2051B -0.002 0.002 0.000 2061B -0.000 0.000 0. 2071B 0.003 -0.000 0. 201B 0.003 -0.003 -0.003 201B 0.002 -0.002 0. 203B 0.002 -0.002 0. 2341B -0.003 0.003 0. 2351B 0.003 -0.000 0.000 2371B -0.002 0. 2331B 2321B -0.001 -0.001 0.000 2331B -0.002 0.000 2331B -0.001 0.001 -0.000 2331B -0.007 0.007 0.000 2331B -0.007 0.007 0.000 0.000 231B -0.007 0.007 0.000 231B -0.001 0.001 -0.000 231B -0.007 0.007 0.000 231B 0.020 <td>0.020</td>	0.020
2051B -0.002 0.002 0.000 2061B -0.000 0.000 0.000 2071B 0.003 -0.000 0.003 2011B -0.000 0.003 -0.003 2021B 0.003 -0.003 0.000 2031B 0.002 -0.002 0. 2341B -0.003 0.003 0. 2351B 0.003 -0.001 0.000 2311B 0.001 -0.001 0.000 2311B 0.000 0. 0. 2311B 0.001 0.001 -0.000 2311B 0.001 0.001 -0.000 2311B 0.001 0.001 -0.000 2311B -0.007 0.007 0.000 2311B -0.007 0.007 0.000 2311B 0.001 0.001 -0.000 2311B 0.0020 0.016 0.016 2041B 0.020 0.016 0.016 2041B <	0.003 0.003 0.003 0.003
2061B -0.000 0.000 0. 2071B 0.003 -0.003 -0.000 2011B -0.000 0.003 -0.003 2021B 0.003 -0.003 0.002 2031B 0.002 -0.002 0. 2341B -0.003 0.003 0. 2351B 0.002 -0.003 0. 2351B 0.001 -0.001 0.000 2351B 0.002 0.001 -0.000 2351B 0.001 -0.001 0.000 2311B -0.002 0.000 0. 2321B -0.001 0.000 0. 2321B -0.007 0.007 0.000 2331B -0.007 0.007 0.000 2331B -0.007 0.007 0.000 2041B 0.020 0.016 0.016 2051B 0.021 0.001 0.003	0.003
2071B 0.003 -0.003 -0.000 2011B -0.000 0.003 -0.003 10.003 2021B 0.003 -0.003 0.000 12.003 2031B 0.002 -0.002 0. 12.318 10.003 0.000 12.3518 0.003 0. 12.3518 0.001 0.000 12.3518 0.001 0.000 12.3718 -0.002 0.000 12.3318 0.000 0. 12.3218 -0.001 0.000 12.3318 0.007 0.007 0.000 12.3318 -0.007 0.007 0.000 12.3318 -0.000 12.3318 -0.000 12.3318 -0.000 12.3318 -0.000 12.3318 -0.000 12.3318 -0.000 12.3318 -0.000 12.3318 -0.000 12.3318 -0.000 12.3318 -0.000 12.3318 -0.000 12.3318 -0.000 12.3318 -0.000 12.3318 -0.000 12.3318 -0.000 12.3318 -0.000 12.3318 -0.000 12.3318 -0.000<	0.003
2011B -0.000 0.003 -0.003 2021B 0.003 -0.003 0.000 2031B 0.002 -0.003 0.000 2341B -0.003 0.003 0. 2351B 0.003 0.003 0. 2351B 0.008 -0.001 0.000 2371B -0.002 0.000 1 2311B 0.000 0. 0. 2311B 0.000 0. 0. 2311B 0.000 0. 0. 2311B -0.001 0.001 -0.000 2311B -0.007 0.007 0.000	0.003
2021B 0.003 -0.003 0.000 2031B 0.002 -0.002 0. 2341B -0.003 0.003 0. 2351B 0.008 -0.001 0.000 2351B 0.001 -0.001 0.000 2351B 0.001 -0.001 0.000 2371B -0.002 0.002 0.000 2311B 0.000 0. 0. 2321B -0.001 0.000 0.000 2331B -0.007 0.007 0.000 2331B -0.007 0.007 0.000 2041B 0.020 0.016 0.016 2051B 0.021 0.001 0.003	the second s
2031B 0.002 -0.002 0. 2341B -0.003 0.003 0. 2351B 0.008 -0.008 0. 2351B 0.001 -0.001 0.000 2351B 0.001 -0.001 0.000 2371B -0.002 0.000 0. 2311B 0.000 0. 0. 2321B -0.001 0.001 -0.000 2331B -0.007 0.007 0.000 2331B -0.007 0.007 0.000 231B -0.007 0.007 0.000 2041B 0.020 0.016 0.016 2051B 0.021 0.001 0.003	0.009
2341B -0.003 0.003 0. 2351B 0.008 -0.008 0. 2351B 0.001 -0.008 0. 2361B 0.001 -0.001 0.000 2371B -0.002 0.000 0. 2311B 0.000 0. 0. 2321B -0.001 0.001 -0.000 2331B -0.007 0.007 0.000 2331B -0.007 0.007 0.000 231B 0.007 0.007 0.000 231B 0.007 0.007 0.000 2041B 0.020 0.016 0.016 2051B 0.021 0.001 0.003	0.011
2351B 0.008 -0.008 0. 2361B 0.001 -0.001 0.000 2371B -0.002 0.002 0.000 2311B 0.000 0. 0. 2311B -0.001 0.000 0. 2311B -0.001 0.001 -0.000 2331B -0.007 0.007 0.000 2331B -0.007 0.007 0.000 2311B 0.007 0.007 0.000 2311B -0.001 0.007 0.000 2311B -0.001 0.007 0.000 2311B -0.001 0.000 0.000 2311B -0.001 0.000 0.000 Mix Ref. IF OKAY ALL VALUES SHOULD BE POSITIVE 2041B 0.016 0.016 2041B 0.020 0.016 0.016 0.016 2051B 0.011 0.003 0.003 0.003	0.010
2361B 0.001 -0.001 0.000 2371B -0.002 0.002 0.000 2311B 0.000 0.001 -0.000 2321B -0.001 0.001 -0.000 2331B -0.007 0.007 0.000 Mix Ref. No. CHECK IF OKAY ALL VALUES SHOULD BE POSITIVE 2041B 0.020 0.016 0.016 2051B 0.001 0.003	0.009
2371B -0.002 0.002 0.000 2311B 0.000 0.001 0.000 2321B -0.001 0.001 -0.000 2331B -0.007 0.007 0.000 Mix Ref. No. CHECK IF OKAY ALL VALUES SHOULD BE POSITIVE 2041B 0.020 0.016 0.016 2051B 0.021 0.001 0.003	0.009
2311B 0.000 0. 0. 2321B -0.001 0.001 -0.000 2331B -0.007 0.007 0.000 Mix Ref. No. CHECK , IF OKAY ALL VALUES SHOULD BE POSITIVE 2041B 0.020 0.016 0.016 2051B 0.021 0.001 0.003	800.0
2321B -0.001 0.001 -0.000 2331B -0.007 0.007 0.000 Mix Ref. No. CHECK / IF OKAY ALL VALUES SHOULD BE POSITIVE 2041B 0.020 0.016 0.016 2051B 0.001 0.001 0.003	0.010
2331B -0.007 0.007 0.000 1 Mix Ref. No. CHECK / IF OKAY ALL VALUES SHOULD BE POSITIVE 2041B 0.020 0.016 0.016 2041B 0.020 0.016 0.016 0.016 2051B 0.001 0.003	0.012
Mix Ref. No. CHECK IF OKAY ALL VALUES SHOULD BE POSITIVE 2041B 0.020 0.016 0.016 2051B 0.001 0.003	0.015
Mix Ref. No. CHECK IF OKAY ALL VALUES SHOULD BE POSITIVE 2041B 0.020 0.016 0.016 2051B 0.001 0.003	
No. CHECK IF OKAY ALL VALUES SHOULD BE POSITIVE 2041B 0.020 0.016 0.016 2051B 0.001 0.003 0.003	
2041B 0.020 0.016 0.016 2051B 0.001 0.003	
20518 0.001 0.003	
2061B 0.003 0.003 0.003	
20718 0.000 0.000 0.003	
20118 0.003 -0.000 0.000	
20218 0.006 0.006 0.009	
20318 0.009 0.009 0.011	
23418 0.007 0.007 0.010	
23518 0.001 0.001 0.009	
23618 0.003 0.008 0.009	
23718 J.U06 0.006 0.008	
23118 0.010 0.010 0.010	
23218 0.011 0.011 0.012	
2331B 0.008 0.008 0.015	

-480-

Figure F.2

-482-

-483-

-485-

Figure F.12

Figure F.14

X101

-486-

-487-

Figure F.16

APPENDIX G

Series 2 - full details of results from compressive strength tests on 2" mortar cubes

Table G.1

	COMPRESS	MEASURED			
NO.	28 DAYS *	14 DAYS +	2 MONTHS +	6 MONTHS+	DENSITY (kg/m ³)
2000	51.4	48.5	48.8	44.0	2225
2001	40.1	25.7	34.2	30.7	2135
2010 P	50.6	49.2	56.5	50.4	2155
2011 P	35.6	31.3	36.1	33.3	2080
2020 P	44.1	45.2	52.9	45.7	2100
2021 P	35.9	29.5	35.7	33.4	2020
2030 P	38.6	43.8	51.8	45.0	2040
2031 P	29.0	31.5	37.8	34.0	1965
2100	56.8	59.4	66.6	60.7	2235
2101	38.9	38.0	45.7	43.5	2145
2110 P	46.2	57.7	67.2	60.5	2140
2111 P	35.9	40.1	48.2	43.0	2080
2120 P	43.2	57.2	64.2	58.8	2085
2121 P	33.7	39.1	49.5	44.9	2040
2130 P	37.5	52.8	59.9	55.2	2020
2131 P	29.5	40.1	48.3	44.2	2005
2200	45.2	60.7	72.5	69.8	2 210
2201	26.4	40.7	52.5	50.9	2160
2210 P	40.3	59.5	68.4	63.9	2140
2211 P	25.9	39.4	51.8	49.0	2095
2220 P	37.0	57.8	65.4	59.3	2075
2221 P	26.6	40.8	52.2	50.0	2075
2230 P	34.9	55.8	62.0	57.2	2030
2231 P	24.5	41.3	50.2	47.6	2005
2300	31.0	49.7	62.3	59.5	2175
2301	19.2	30.4	39.9	41.0	2135
2310 P	33.1	52.3	61.5	60.4	2141
2311 P	18.1	33.1	42.9	41.7	2095
2320 P	28.5	49.2	56.4	56.5	2060
2321 P	19.7	32.4	41.7	41.6	2050
2330 P	27.7	48.1	56.0	53.1	2010
2331 P	18.6	31.5	38.5	37.5	1995

TABLE G.1 RESULTS OF COMPRESSION TESTS ON 2" CUBE SPECIMENS

Note:- * cured at 20°C under water

+ cured at 37.8°C enclosed in polythene film

- New Mo

APPENDIX H

Computational procedures used in the analysis of variance for the results from a factorial experiment

APPENDIX H COMPUTATIONAL PROCEDURES USED IN THE ANALYSIS OF THE RESULTS FROM A FACTORIAL EXPERIMENT

H.1 INTRODUCTION TO COMPUTATIONS

In Chapter 4, Section 4.2.3, the theory underlying the analysis of variance (ANOVA) for a set of results from a factorial experiment was outlined. In particular, for the two factor experiment of dimensions p x q with n observations per cell which was chosen to demonstrate the theory, the following mean squares were defined:-

Mean Square due to the main effects of factor A $MS_a = SS_a = nq \Sigma (\overline{A}_i - \overline{G})^2$

Mean Square due to the main effects of factor B

$$MS_{b} = SS_{b} = np \Sigma (\overline{B}_{j} - \overline{G})^{2}$$

$$\frac{j}{df} \qquad q - 1$$

Mean Square due to the interaction effects

$$MS_{ab} = SS_{ab} = n\Sigma\Sigma(\overline{AB}_{ij} - \overline{A}_{i} - \overline{B}_{j} + \overline{G})^{2}$$

$$\frac{ij}{(p-1)(q-1)}$$

Within cell Mean Square (error)

$$MS_{w.cell} = SS_{w.cell} = \sum \sum (X_{ijk} - \overline{AB}_{ij})^2$$

$$\frac{ijk}{df} \qquad pq(n-1)$$

where the notation is as described in Chapter 4.

It can be seen that each mean square can be separated into two components, namely a sum of squares divided by the degrees of freedom. This enables the analysis method to be simplified by calculating the two components individually before combining them to obtain the required mean squares. To this end the computations are carried out in a step-by-step fashion in order to complete the following ANOVA table:-

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	'F' (Mean Square ratio)	Sig Level or Tail Prob
A	SSa	(p-1)	$MS_a = SS_a (p-1)$	M <u>Sa</u> MS _{w•} cell	
B	. SS _b	(q-1)	MS _b = <u>SSh</u> (q-1)	M <u>Sh</u> ^{MS} w.cell	
AB	SS _{ab}	(p-1)(q-1)	MS _a b <u>=SS_{ab}</u> (p-1)(q-1)	M <u>S_{ab}</u> MS _{W•} cell	
Exp.Error (Within Cell)	SS _{w.cell}	pq(n-1)	MSw.cell ≢SSw.cell pq(n-1)		
Total	SS _{total}	pqn-1		•	

H.2 COMPUTATIONAL SYMBOLS AND FORMULAE

The definitions of the sums of squares incorporated in the mean squares given above are presented in their most concise form. However, for computation purposes a more suitable algebraic form is available. Take, for example, the sum of squares due to the main effects of factor A:-

$$SS_a = nq\Sigma (\overline{A}_i - \overline{G})^2$$

It can easily be shown that an equivalent definition is:-

$$SS_a = \sum_{i=1}^{2} \frac{1}{nq} - \frac{G^2}{npq}$$

similarly

$$SS_{b} = \sum_{j=1}^{2} \frac{1}{np} - \frac{G^{2}}{npq}$$

$$SS_{ab} = \sum_{\substack{ij=1\\j \\ n}} (AB_{ij})^{2} - \frac{G^{2}}{G^{2}} - SS_{a} - SS_{b}$$

$$SS_{w.cell} = \sum_{\substack{ij \\ijk}} \sum_{\substack{ij \\ijk}} \frac{2}{npq} - \frac{\sum_{\substack{ij \\ijk}} (AB_{ij})^{2}}{n}$$

$$SS_{total} = \sum_{\substack{ijk}} \sum_{\substack{ij \\ijk}} \frac{2}{npq}$$

The alternative forms for the definitions of the sums of squares involve the use of summation terms rather than mean values. This has practical advantages for the step-by-step approach to the computations. The following COMPUTATIONAL SYMBOLS can now be defined:-

$$(1) = \frac{G^2}{npq} \qquad (2) = \Sigma \chi_{ijk}^2$$

$$(3) = \frac{\Sigma A_i^2}{nq} \qquad (4) = \frac{\Sigma B_j^2}{np}$$

$$(5) = \frac{\Sigma (AB_{ij})^2}{n}$$

where the summations are over all available suffices and the divisors represent the number of basic observations incorporated in the numerator term.

Using these symbols the formulae for the sums of squares can be re-written as COMPUTATION FORMULAE, as follows:-

 $SS_a = (3) - (1)$ $SS_b = (4) - (1)$ $SS_{ab} = (5) - (1)$ $SS_{w.cell} = (2) - (5)$ $SS_{total} = (2) - (1)$

For this particular example the values of the computational symbols can be calculated using a single 2-way summary table showing the sums of all the measurements under each treatment combination ab_{ij} . However, in a more complex experimental field of more than two factors a series of summary tables would be required which would include 2-way summary tables, 3-way tables, etcetera, up to the number of factors involved.

Once the sums of squares are evaluated the degrees of freedom are used to obtain the mean squares which can then be utilized in the variance-ratio tests ('F'-tests) to determine the level of significance of the attributable effects.

H.3 HAND CALCULATION OF ANOVA TABLE

In this section a full set of computations are presented in order to demonstrate the production of an ANOVA table. For this purpose an actual set of experimental results is used from the Series 2, 3x4x4x2 factorial set of experiments described in

-494-

Chapters 5 and 6 of this thesis. The expansion measurements taken at an age of 6 months were selected, and these are tabulated below, using the notation unique to the experimental section of the work.

.

MIX REF. NO.	EXPANSION AT 6 MONTHS	MIX REF. NO.	EXPANSION AT 6 MONTHS	MIX REF. NO.	EXPANSION AT 6 MONTHS
0000	91	1000	103	2000	125
0001	81	1001	87	2001	105
0010P	80	1010P	311	2010P	1993
0011P	91	1011P	271	2011P	3048
0020P	172	1020P	1533	2020P	4099
0021P	99	1021P	3164	2021P	6467
0030P	1425	1030P	2864	2030P	3887
0031P	2819	1031P	4385	2031P	6948
0100	52	1100	51	2100	104
0101	95	1101	. 84	2101	156
0110P	64	1110P	153	2110P	597
0111P	88	1111P	196	2111P	1732
0120P	93	1120P	452	2120P	14/9
0121P	99	1121P	2092	2121P	355/
0130P	399	1130P	1208	2130P	1924
0131P	2023	1131P	2649	21312	3201
0200	5	1200	91	2200	13/
0201	48	1201	99	2201	271
02110	63 70	12100	120	22100	3/1
02110	/0 60	12117	251	22200	491
02207	20	12206	240	2220F	1164
02300	190	1230P	807	22300	1556
02310	207	12310	1236	2231P	1872
0300	73	1300	148	2300	133
0301	99	1301	125	2301	163
0310P	31	1310P	137	2310P	331
0311P	79	1311P	123	2311P	309
0320P	79	1320P	208	2320P	568
0321P	115	1321P	209	2321P	543
0330P	147	1330P	433	2330P	1077
0331P	148	1331P	351	2331P	800

.

The notation and system used for the computations on the results from this four factor experiment are simply an extension of those described for the elementary two factor experiment. Hence, the required computation symbols are:-

(2) = \sum_{ijklm}^{2} (3) (ΣA_1^2) $(1) = G^2$ pgrsn arsn $(4) = (\Sigma B_{j}^{2})$ $(5) = (\Sigma C_k^2)$ $(6) = (\Sigma D_1^2)$ prsn pqsn pgrn (9) = $[\Sigma(BC_{jk})^2]$ (7) = $[\Sigma(AB_{ij})^2]$ (8) = $[\Sigma(AC_{ik})^2]$ qsn psn $(12) = [\Sigma(CD_{k1})^2]$ $(10) = [\Sigma(AD_{j})^{2}] \quad (11) = [\Sigma(BD_{j})^{2}]$ qrn prn pan (13) = $[\Sigma(ABC_{ijk})^2]$ (14) = $[\Sigma(ABD_{ijl})^2]$ $(15) = [\Sigma(ACD_{ik1})^2]$ sn rn qn $(16) = [\Sigma(BCD_{jkl})^2] (17) = [\Sigma(ABCD_{ijkl})^2]$ pn

For the four factor experiment of dimensions 3x4x4x2 we have

In addition, n = 1 since there is only 1 result per cell of the experiment.

The term for the nth observation under the general treatment combination $abcd_{ijkl}$ of the experiment is X_{ijklm}

where i = 1 to p
j = 1 to q
k = 1 to r
l = 1 to s
m = 1 to n

The link between the Mix Reference Numbers and the notation used in the ANOVA for the treatment combinations is explained by the following examples:-

Mix R	Ref. N	10.0	0000	=	Treatment	Combination	abcd1111
Mix.	Ref.	No.	0231P	=	Treatment	Combination	abcd1342
Mix.	Ref.	No.	23 00P	±	Treatment	Combination	abcd3411

The relevant 4-way, 3-way and 2-way summary tables may now be written down. The 4-way table is simply the experimental results table given above written in a different order using the computational notation.

b1 b2							
b1 ABCD_111 b2 ABCD_2111 b3 ABCD_2111 b3 ABCD_2111 b3 ABCD_2111 b3 ABCD_2111 b3 ABCD_2111 b3 ABCD_2111 b3 ABCD_2111 b3 ABCD_3111 b4 BCD_111 b3 b4 ABCD_1211 b3 ABCD_2121 b3 ABCD_2121 b3 ABCD_3111 b4 BCD_3121 b4 BCD_3121 b1 BCD_3121 b1 BCD_3121 b1 BCD_3121 b1 BCD_3211 b2 BCD_3211 b2 BCD_3211 b3 BCD_3211 b3 BCD_3211 b3 BCD_3211 b4 BCD_3211 b3 BCD_3211 b3 BCD_3211 b3 BCD_3211 b4 BCD_3211 b3 BCD_3211 b3 BCD_3211 b3 BCD_3211 b3 BCD_3211 b3 BCD_3211 b3 BCD_3211 b4 BCD_3211 b3 BCD_3211 b4 BCD_3211 b56 BCD_3211 b56 BCD_3212 b56 BCD_3112 b56 BCD_3112 b56 BCD_3112 b56 BCD_3112 b56 BCD_3112 b56 B				ð]	az	az	TOTAL
c1 b2 ABCD2111 ABCD2111 ABCD2111 BCD311 BCD311 b3 ABCD1311 ABCD2111 ABCD3111 BCD3111 BCD311 b4 ABCD121 ABCD2111 ABCD3111 BCD311 BCD311 c2 b1 ABCD121 ABCD221 ABCD3211 BCD321 BCD221 c4 aBCD121 ABCD221 ABCD321 BCD321 BCD221 BCD321 c2 b2 ABCD121 ABCD2231 BECD321 BECD311 BECD311 c4 BCD121 ABCD231 ABED331 BECD311 BECD3131 BECD3131 c4 BCD131 ABED331 BECD331 BECD331 BECD331 c3 ABCD1331 ABED331 BECD331 BECD331 BECD331 c4 BACD1331 ABED331 BECD331 BECD331 BECD331 c4 BACD1331 ABED331 BECD331 BECD331 BECD331 c5 BAED331 ABED331 BECD3311 BECD331 </td <td></td> <td></td> <td>b1</td> <td>ABCD1111 91</td> <td>ABCD2111 103</td> <td>ABCD3111 125</td> <td>BCD111 319</td>			b1	ABCD1111 91	ABCD2111 103	ABCD3111 125	BCD111 319
1 b3 ABCD1311 ABCD2311 ABCD3111 BCD311 BCD311 b4 ABCD1411 ABCD2411 ABCD3121 ABCD3121 SEC0411 c2 b1 ABCD1221 ABCD2221 ABCD3211 BECD321 c2 b2 ABCD1221 ABCD2221 ABCD3211 BECD321 d1 b1 ABCD121 ABCD2221 BECD321 BECD321 b4 ABCD1221 ABCD321 BECD321 BECD321 b4 ABCD131 ABCD2231 BECD3311 BECD331 b2 ABCD131 ABECD331 BECD331 BECD331 b2 ABCD131 ABECD331 BECD331 BECD331 b3 ABCD1331 ABECD331 BECD331 BECD331 b3 ABCD1331 ABECD331 BECD331 BECD331 b4 ABECD1331 ABECD331 BECD331 BECD331 b5 BAECD1331 ABECD331 BECD331 BECD331 b1 ABECD141 ABECD341		61	Þ2	ABCD1211	ABCD2211	ABCD3211 104	BCD211 20711
b4 ABCD1411 73 ABCD2411 148 ABCD3411 133 BCD411 334 b1 ABCD1221 80 ABCD2221 331 ABCD3221 8CD3221 BCD2221 8CD3221 BCD221 8CD3221 c2 b3 ABCD1221 4BCD3221 ABCD2221 ABCD3221 BCD3221 BCD321 BCD221 BCD321 d1 b1 ABCD1321 4BCD2321 ABCD3321 4BCD3321 BCD331 BCD331 BCD331 4SD31 c3 b1 ABCD1331 4BCD2331 ABCD3313 4D99 BCD331 5804 c3 b2 ABCD1331 4BCD331 ABCD2331 4BCD331 BCD331 4D7331 BCD331 2D735 4D3 BCD331 4D735 b1 ABCD1431 4BCD1331 ABCD2331 4BCD331 BCD331 4BCD331 BCD433 4BCD331 BCD433 4BCD331 b1 ABCD141 4BCD2441 ABCD341 4BCD341 BCD431 4BCD341 BCD431 4BCD341 b2 ABCD141 4BC341 ABCD341 4BCD341 BCD431 4BCD341 BCD431 4BCD341 b3 ABCD1312 4BC03112 ABCD341 4BCD341 BCD431 4BCD341 BCD431 4BCD341 b4 ABCD1312 4BC03122 ABCD3122 4BCD3222 BCD3122 4BCD322 BCD3122 4BCD322 BCD3122 4BCD322 BCD3122 4B		-1	b3	ABCD1311	ABCD2311	ABCD3311	BCD311
b1 ABCD1121 ABCD2121 ABCD2121 ABCD2121 ABCD22121 ABCD2321 BBCD121 BBCD121 BBCD121 BBCD121 BBCD121 BBCD2321 ABCD3321 BCD321 BCD321 BBCD321 BBCD331 BBCD341 BBCD341 BBCD341 BBCD341 BBC1431 BBC1431 BBC1431 BBC1431 BBC1431 BBC1341 BBC0341			b4	ABCD1411	ABCD2411	ABCD3411	BCD411
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			b1	ABCD1121	ABCD2121	ABCD3121	BCD121
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			b2	ABCD1221	ABCD2221	ABCD3221	BCD221
d1 b4 ABCD1421 ABCD2421 ABCD2421 ABCD2421 ABCD2421 ABCD2421 ABCD2421 ABCD2331 ABCD2331 ABCD2331 ABCD2331 ABCD2331 ABCD2331 ABCD2331 ABCD2331 ABCD2331 ABCD2331 ABCD2331 ABCD2331 ABCD2331 ABCD2331 ABCD3331 BCD332 BCD322 C2 BD3 ABCD1322 ABCD3322 ABCD3322 BCD322 BCD322 ABCD3322 BCD322 BCD322 BCD322 BCD322 ABCD3322 BCD3		c2	b3	ABCD1321	ABCD2321	ABCD3321	BCD321
01 31 107 105 107 107 105 107 107 105 107 105 107 105 107 105 107 105 107 105 107 105 107 105 107 105 107 105 107 105 107 105 107 105 107			bą	63 ABCD1421	ABCD2421	ABCD3421	BCD421
c3 b2 ABCD1231 ABCD231 ABCD231 ABCD231 ABCD231 ABCD231 b3 ABCD1331 ABCD2331 ABCD2331 ABCD2331 BCD3331 BCD3331 b4 ABCD1431 ABCD2431 ABCD2431 ABCD2431 BCD3311 b1 ABCD1441 ABCD2441 ABCD3441 BCD3411 BCD441 b2 ABCD1441 ABCD2441 ABCD3441 BCD341 BCD441 b4 ABCD1441 ABCD2441 ABCD341 BCD441 BCD441 b4 ABCD1441 ABCD2441 ABCD341 BCD441 b4 ABCD1441 ABCD2142 ABCD341 BCD441 b4 ABCD1441 ABCD2122 ABCD341 BCD411 b4 ABCD1412 ABCD2122 ABCD3122 BCD212 BCD412 b1 ABCD1312 ABCD2312 BCD312 BCD412 BCD412 b2 ABCD1312 ABCD2312 ABCD3122 BCD422 BCD422 b3 ABCD1322 <t< td=""><td>al</td><td></td><td>bı</td><td>ABCD1131</td><td>ABCD2131</td><td>ABCD3131</td><td>BCD131</td></t<>	al		bı	ABCD1131	ABCD2131	ABCD3131	BCD131
c3 L ABCC3231 ABCD331 ABCD2331 ABCD2331 ABCD2331 ABCD2331 ABCD2331 ABCD3331 BCD3331 BCD3331 BCD3331 BCD3331 BCD3331 BCD3331 BCD3331 BCD431 ABCD4331 BCD441 ABCD2441 ABCD2441 ABCD341 BCD441 ABCD2112 ABCD341 BCD441 BCD441 ABCD2112 ABCD341 BCD411 BCD41 BCD441 ABCD2112 ABCD341 BCD411 BCD41 BCD41 BCD411 BCD412 ABCD2122 ABCD312 BCD422 BCD422 BCD422 C2 BCD422 C2 BCD422 BCD422 ABCD322 ABCD322 ABCD322 BCD322 ABCD322 BCD422 BCD422 ABCD322 ABCD322 ABCD322 ABCD322 BCD322 ABCD322 BCD422 BCD422 BCD422 ABCD322 ABCD322 ABCD322 BCD222 ABCD322 BCD322 BCD222 BCD322 BCD322 BCD322 BCD322 BCD322 BCD322 BCD422 BCD422 C2 BCA22 BCD422 C2 BCA22 BCD422 C2 BCA22 C2			b ₂	172	1533	4099 ABCD2221	5804 BCD221
display ABCD1431 79 ABCD2431 208 ABCD3431 568 BCD351 8CD3431 8BCD3431 b1 ABCD1431 1425 ABCD2431 2864 ABCD3431 3887 BCD341 8CD341 b2 ABCD1341 1425 ABCD2241 2864 ABCD341 3887 BCD341 8CD341 b3 ABCD1341 180 ABCD2341 8CD1431 ABCD341 8CD341 BCD341 8CD341 b4 ABCD1312 ABCD1312 ABCD22112 ABCD2112 ABCD341 ABCD3112 BCD411 8CD3112 b1 ABCD1312 ABCD1312 ABCD2212 ABCD2122 ABCD3122 ABCD312 BCD312 BCD312 c1 b2 ABCD1312 ABCD1322 ABCD2212 ABCD2222 ABCD3122 ABCD322 BCD312 BCD312 c1 b1 ABCD1222 ABCD1222 ABCD3222 ABCD3222 ABCD3222 ABCD3222 BCD322 BCD322 c2 ABCD1322 ABCD1222 ABCD3322 ABCD322 ABCD3322 BCD322 BCD322 BCD322 c3 ABCD1322 ABCD1322 ABCD3322 ABCD3322 BCD322 BCD322 BCD322 BCD322 c4 ABCD1322 ABCD1322 ABCD3322 ABCD332 BCD322 BCD322 BCD322 BCD322 c3 ABCD1322 ABCD1322 ABCD3322 ABCD332 BCD332 BCD332 <td></td> <td>с3</td> <td>-2 ba</td> <td>93 ABCD1231</td> <td>452 ABCD0000</td> <td>1479 ABCD2221</td> <td>2024 BCD221</td>		с3	-2 ba	93 ABCD1231	452 ABCD0000	1479 ABCD2221	2024 BCD221
b4 ABCD1431 ABCD2431 ABCD3431 BCD3431 BCD3431 BCD3411 b1 ABCD1411 ABCD2141 ABCD341 BCD341 BCD341 BCD341 b2 ABCD1241 ABCD2341 BCD341 BCD341 BCD341 BCD341 b3 ABCD1341 ABCD2341 BCD341 BCD341 BCD341 BCD341 b4 ABCD1441 ABCD2341 ABCD341 BCD41 BCD41 b4 ABCD1121 ABCD2112 ABCD312 BCD212 BCD112 BCD312 BCD312 b1 ABCD1312 ABCD2312 ABCD3122 BCD312 BCD312 BCD312 b2 ABCD1221 ABCD2412 ABCD312 BCD312 BCD322 BCD322 b3 ABCD1222 ABCD2222 ABCD3122 BCD322 BCD322 BCD322 c1 B1 ABC1122 ABCD2222 ABC0322 BCD322 BCD322 c2 ABCD1422 ABCD2222 ABC0322 BCD322 BCD322 B			03	60	251 ABCD:::::	964	1275 BCD
b1 ABCD1141 1425 ABCD2141 2864 ABCD3141 3887 BCD141 BT76 b2 ABCD1241 339 ABCD241 1208 ABCD341 1208 BCD341 3531 BCD241 BCD341 BCD341 BCD341 BCD341 BCD341 BCD341 BCD341 BCD341 BCD341 BCD341 BCD341 BCD341 BCD341 BCD41 BCD341 b4 ABCD1411 ABCD1112 ABCD2112 ABCD2112 ABCD3112 ABCD312 BCD312 BCD312 BCD312 BCD322 BCD322 BCD322 BCD322 BCD322 BCD222 BCD322 BCD222 BCD322 BCD222 BCD322 BCD222 BCD322 BCD322 BCD322			64	79	208	568	855
c4 b2 ABCD1241 ABCD2241 ABCD3241 BCD241 b3 ABCD1341 ABCD2341 ABCD3341 BCD341 BCD341 b4 ABCD1441 ABCD2441 ABCD341 BCD241 BCD441 b4 ABCD1441 ABCD2441 ABCD3112 BCD2152 ABCD3112 BCD2152 b1 ABCD112 ABCD2112 ABCD2312 BCD212 BCD2152 BCD112 b2 ABCD1312 ABCD2412 ABCD312 BCD312 BCD312 BCD125 b3 ABCD1322 ABCD2412 ABCD312 BCD312 BCD125 b3 ABCD1221 ABCD2122 ABCD312 BCD312 BCD312 b4 ABCD122 ABCD222 ABCD3122 BCD122 BCD322 BCD122 b2 ABCD1222 ABCD2222 ABCD3322 BCD122 BCD322 BCD322 c2 B4 ABCD1322 ABCD2322 ABCD3322 BCD322 BCD322 c4 792 123 309			^b 1	ABCD1141 1425	ABCD2141 2864	ABCD3141 3887	BCD141 8176
1 b3 ABCD1341 180 ABCD2341 807 ABCD341 1556 BCD341 2543 b4 ABCD1441 ABCD2441 ABCD3441 BCD441 1556 BCD441 1556 b1 ABCD1112 ABCD22112 ABCD3112 BCD112 105 BCD112 b2 ABCD1312 ABCD2312 ABCD312 BCD2132 335 BCD312 b3 ABCD1312 ABCD2412 ABCD312 BCD312 BCD312 b3 ABCD1322 ABCD2132 ABCD312 BCD312 BCD312 b4 ABCD1122 ABCD2222 ABCD3122 BCD322 BCD322 b1 ABCD1322 ABCD2222 ABCD3222 BCD322 BCD322 c2 b2 ABCD1322 ABCD2232 ABCD3322 BCD322 b2 ABCD1322 ABCD2232 ABCD3322 BCD322 BCD322 c3 78 124 A91 693 ABCD132 BCD322 c4 ABCD1322 ABCD2322 ABCD332 BCD332 BCD3232 BCD3232 BCD332		C/	b2	ABCD1241	ABCD2241	ABCD3241 1924	BCD241 3531
b4 ABCD141 147 ABCD241 433 ABCD341 1077 BCD41 1657 b1 ABCD1112 81 ABCD2112 81 ABCD2112 85 ABCD3112 105 BCD112 273 b2 ABCD1212 95 ABCD2212 95 ABCD312 155 BCD312 80 BCD312 335 b3 ABCD1312 ABCD1312 ABCD2412 ABCD2412 ABCD3312 ABCD3123 BCD412 BCD412 b4 ABCD1222 99 ABCD2412 173 ABCD3122 3087 BCD322 2016 BCD222 387 b1 ABCD1222 ABCD2222 ABCD3222 ABCD3222 ABCD3322 ABCD3322 BCD222 2016 b2 ABCD1322 ABCD1322 ABCD2322 ABCD2322 ABCD3322 ABCD3322 BCD322 C0132 b4 ABCD1322 ABCD1322 ABCD2132 ABCD2322 ABCD3322 ABCD3322 BCD322 BCD332 b4 ABCD132 ABCD132 ABCD2332 ABCD2332 ABCD332 BCD332 BCD332 BCD332 b2 ABCD1332 ABCD1332 ABCD2332 ABCD2332 ABCD3322 ABCD332 BCD332 BCD332 b3 ABCD1332 ABCD1342 ABCD2423 ABCD2332 ABCD3342 BCD3342 BCD342 BCD342 b1 ABCD142 ABCD242 ABCD2422 ABCD3342 ABCD342 BCD342		-4	b3	ABCD1341	ABCD2341	ABCD3341	BCD341 2543
b1 ABCD112 B1 ABCD2112 B1 ABCD2112 B7 ABCD3112 B7 ABCD3112 B7 BCD12 273 b2 ABCD1212 ABCD2212 ABCD3212 S4 BCD212 B75 BCD212 BCD312 BCD212 BCD312 BCD212 BCD312 BCD212 BCD312 b3 ABCD1412 ABCD2412 ABCD3412 BCD122 BCD312 BCD122 BCD312 BCD122 BCD32 BCD122 BCD322 BCD322 BCD322 BCD322 b1 ABCD1222 ABCD2222 ABCD3222 BCD322 BCD3222 BCD322 BCD322 BCD322 BCD322 BCD322 BCD322 BCD322 c2 ABCD1322 ABCD3322 BCD322 ABCD3322 BCD322 BCD322 BCD322 BCD322 BCD322 BCD322 BCD322 BCD322 BCD322 d2 ABCD1422 ABCD3132 ABCD132 ABCD3322 BCD322 BCD322 BCD322 BCD3242 BCD332 BCD3242			b4	ABCD1441	ABCD2441	ABCD3441	BCD441 1657
b2 ABCD1212 ABCD2212 ABCD2212 ABCD2212 ABCD2212 ABCD2212 ABCD212 BCD212 BCD212 BCD212 BCD212 BCD212 BCD212 BCD312 BCD322 BCD322 <t< td=""><td></td><td></td><td>bı</td><td>ABCD1112</td><td>ABCD2112</td><td>ABCD3112</td><td>BCD112 273</td></t<>			bı	ABCD1112	ABCD2112	ABCD3112	BCD112 273
C1 b3 ABCD1312 ABCD2312 ABCD312 ABCD312 BC0312 BC0312 BC0312 BC0412 324 b4 ABCD1412 ABCD2412 ABCD3412 BC0412 337 324 b1 ABCD1122 ABCD2122 ABCD3412 BCD122 3048 3410 b2 ABCD1222 ABCD2222 ABCD3222 BCD322 BCD222 2016 b3 ABCD1322 ABCD2322 ABCD3322 BCD322 BCD322 b3 ABCD1422 ABCD2422 ABCD3322 BCD322 BCD322 b4 ABCD132 ABCD2322 ABCD3232 BCD422 BCD422 b4 ABCD132 ABCD232 ABCD3322 BCD422 BCD422 b4 ABCD132 ABCD232 ABCD332 BCD422 BCD422 b2 ABCD132 ABCD2323 ABCD332 BCD3232 BC03232 c3 ABCD132 ABCD23232 ABCD3332 BC0332 BC0332 c4 ABCD1432			b2	ABCD1212	ABCD2212	ABCD3212	BCD212
b4 ABCD1412 99 ABCD2412 125 ABCD3412 163 BC0412 387 b1 ABCD1122 ABCD2122 91 ABCD3122 271 ABCD3122 3048 BCD122 3048 BCD122 3048 b2 ABCD1222 ABCD2222 88 ABCD2222 178 ABCD3222 1732 BCD2222 2013 BCD3222 2013 BCD3222 2013 BCD3222 491 BCD3222 693 b4 ABCD1322 ABCD2132 ABCD3322 BCD322 491 BCD322 693 BCD32 511 b1 ABCD132 ABCD2132 ABCD3322 BCD32 5748 BCD32 5748 b2 ABCD132 ABCD2332 99 ABCD3232 3557 BCD32 5748 BCD32 5748 b3 ABCD132 ABCD2332 48CD2332 ABCD3332 48CD3332 BCD32 5748 b4 ABCD1432 ABCD2432 2092 ABCD3332 3501 BCD32 5748 BCD32 5748 b4 ABCD1422 ABCD2332 2092 ABCD3332 3501 BCD32 2092 BCD32 2016 BCD32 2016 b1 ABCD1432 ABCD2442 2023 ABCD2442 2023 ABCD3442 2023 BCD2422 2024 BCD342 2014 BCD242 2023 BCD242 2024	-	-1	b3	ABCD1312	ABCD2312	ABCD3312	BCD312 324
b1 ABCD1122 91 ABCD2122 271 ABCD3122 3048 BCD122 3410 b2 ABCD1222 ABCD2222 88 ABCD3222 195 ABCD3222 1732 BCD222 2016 b3 ABCD1322 ABCD2322 ABCD2322 ABCD3322 ABCD3322 BCD222 2016 b4 ABCD1422 ABCD21322 79 ABCD21322 ABCD3322 ABCD3322 BCD4222 BCD422 b1 ABCD1132 ABCD2132 99 ABCD3323 BCD332 BCD332 BCD332 BCD332 c3 b2 ABCD1332 ABCD2332 209 ABCD3332 BCD332 BCD3332 BCD332 BCD3332 c3 b3 ABCD1332 ABCD2332 209 ABCD3332 BCD332 BCD3332 BCD332 BCD332 c3 b3 ABCD1432 ABCD2132 ABCD3332 BCD332 BCD332 c4 ABCD1432 ABCD2432 ABCD3342 BCD432 b4 ABCD142 ABCD2142 ABCD3342 BCD432 b1 ABCD142 ABCD2142 ABCD342 BCD432 b2 ABCD1442 ABCD2142 ABCD342 BCD432 b3			b4	ABCD1412	ABCD2412	ABCD3412	BCD412 387
b2 ABCD1222 ABCD2222 ABCD2222 ABCD3222 ABCD3222 C2 C2 D3 ABCD1322 ABCD2322 ABCD3322 BCD3222 C2 D3 ABCD1322 ABCD3322 BCD3222 C1732 C2 D3 C1732 C1732 <thc1732< th=""> C1732</thc1732<>			bı	ABCD1122	ABCD2122	ABCD3122 3048	BCD122 3410
d2 b3 ABCD1322 78 ABCD2322 124 ABCD3322 491 BCD322 693 d2 b4 ABCD1422 79 ABCD2422 123 ABCD3422 309 BCD322 511 b1 ABCD1132 99 ABCD2132 309 ABCD3132 511 BCD322 BCD322 b2 ABCD1232 99 ABCD2322 3557 ABCD3322 5748 BCD3232 BCD3232 b3 ABCD1332 99 ABCD2332 2092 ABCD3332 3557 BCD323 5748 b3 ABCD132 99 ABCD2332 2092 ABCD3332 3557 BCD323 5748 b4 ABCD1432 48CD1432 ABCD2432 ABCD2432 ABCD3332 ABCD3342 BCD432 BCD432 b4 ABCD1432 48CD142 ABCD2442 2023 ABCD342 2014 BCD242 4385 6948 b1 ABCD142 2023 ABCD242 2024 ABCD342 2021 BCD342 2021 BCD342 2021 BCD342 2021 BCD342 2021 BCD342 2021 BCD342 2021 BCD342 2021 BCD342 2023 BCD342 2021 BCD342 2023 BCD342 2023 BCD342 2023 BCD342 2023 BCD342 2023 BCD442 2023 BCD342 2023 BCD442 2023 BCD442 2023 BCD442 2023 BCD442 2023		C2	b2	ABCD1222	ABCD2222	ABCD3222	BCD222
d2 b4 ABCD1422 79 ABCD2422 123 ABCD3422 309 BCD422 511 b1 ABCD132 ABCD2132 99 ABCD2132 3164 ABCD3322 6467 BCD3232 9730 c3 b2 ABCD1232 99 ABCD2332 2092 ABCD3332 3557 BCD332 5748 b3 ABCD1332 ABCD2332 29 ABCD3332 340 BCD3332 1164 BCD3332 164 b4 ABCD1432 ABCD2432 209 ABCD3332 543 BCD332 867 b4 ABCD1432 ABCD2432 209 ABCD3432 543 BCD432 867 b1 ABCD142 2819 ABCD2142 4385 ABCD3422 649 BCD422 3201 b2 ABCD1242 2023 ABCD2342 2649 ABCD342 3201 BCD342 7873 b3 ABCD1342 ABCD2242 2649 ABCD3342 3201 BCD342 7873 b3 ABCD1342 ABCD2342 2649 ABCD3422 3201 BCD342 7873 b3 ABCD1422 2023 ABCD2422 2649 ABCD342 3201 BCD342 7873 b4 ABCD1442 ABCD2442 ABCD3442 ABCD3442 BCD442 BCD424 BCD42 8073 t01 A1 9302		-2	b3	ABCD1322	ABCD2322	ABCD3322	BCD322
O2 ABCD132 ABCD2132 ABCD332 BCD32 b1 ABCD1132 ABCD2132 ABCD2132 BCD32 BCD32 b2 ABCD1232 ABCD2232 ABCD3232 BCD32 BCD32 b3 ABCD1332 ABCD2232 ABCD3332 BCD32 BCD32 b4 ABCD1332 ABCD2332 ABCD3332 BCD32 BCD32 b4 ABCD1432 ABCD2432 ABCD3332 BCD32 BCD32 b4 ABCD1432 ABCD2432 ABCD3332 BCD32 BCD432 b1 ABCD142 ABCD2432 ABCD3432 BCD432 BCD432 b1 ABCD142 ABCD2432 ABCD3422 BCD432 BCD432 c4 D1 ABCD142 ABCD242 ABCD3442 BCD242 BCD242 c4 D3 ABCD1342 ABCD2442 ABCD342 BCD342 BCD342 c4 D3 ABCD1342 ABCD2442 ABCD342 BCD342 BCD4242 BCD442 BCD442 <	de		b4	ABCD1422	ABCD2422	ABCD3422	BCD422
b2 ABCD1232 ABCD2232 ABCD2322 ABCD2322 S5736 b3 ABCD1332 ABCD2332 ABCD3332 BCD2322 S5738 BCD2322 b4 ABCD1332 ABCD2432 ABCD3332 BCD332 BCD332 b4 ABCD1432 ABCD2432 ABCD3332 BCD332 BCD332 b4 ABCD1432 ABCD2432 ABCD332 BCD332 BCD332 b1 ABCD1432 ABCD2432 ABCD3432 BCD142 BCD142 c4 b2 ABCD142 ABCD2432 ABCD3432 BCD142 c4 b2 ABCD1242 ABCD2242 ABCD3242 BCD242 c4 b2 ABCD1342 ABCD2342 ABCD342 BCD42 c4 b3 ABCD1342 ABCD2342 ABCD3342 BCD42 c4 ABCD142 ABCD2342 ABCD342 BCD42 3403 c4 ABCD142 ABCD2442 ABCD342 BCD442 3403 3403 c4 ABCD1	u2		b1	ABCD1132	ABCD2132	ABCD3132	BCD132
C3 B3 ABCD1332 ABCD2332 ABCD3332 BCD332 BCD332 b4 ABCD1432 ABCD2432 ABCD3432 BCD432 BCD432 BCD432 b4 ABCD1432 ABCD2432 ABCD3432 BCD432 BCD432 b1 ABCD1142 ABCD2142 ABCD3432 BCD142 BCD142 b2 ABCD1242 ABCD2242 ABCD3242 BCD242 BCD242 BCD242 c4 2819 4385 6948 14152 BCD2432 BCD2432 BCD242 BCD342 BCD242 BCD342 BCD342 BCD342 BCD342 BCD342 BCD342 BCD342 BCD342 BCD442 BCD342 BCD442 BCD442 BCD342 BCD442 BCD342 BCD442 BCD342			b2	ABCD1232	ABCD2232	ABCD3232	BCD232
b4 ABCD1432 115 ABCD2432 209 ABCD3432 543 BCD3432 867 b1 ABCD1142 2819 ABCD2142 4385 ABCD3142 6948 BCD142 14152 b2 ABCD1242 2023 ABCD2242 2649 ABCD3242 3201 BCD242 7873 b3 ABCD1342 ABCD1342 ABCD2342 ABCD2342 ABCD3342 ABCD3342 BCD342 BCD342 b4 ABCD1442 ABCD2442 2023 ABCD3342 297 BCD342 2445 b4 ABCD1442 ABCD2442 ABCD2442 ABCD342 ABCD3342 BCD442 BCD442 t01AL A1 A2 A3 G 9302 24413 50078 83793		c3	b3	ABCD1332	ABCD2332	ABCD3332	BCD332
b1 ABCD1142 ABCD2142 ABCD2142 ABCD2142 ABCD142 CONTACT b2 ABCD1242 ABCD2242 ABCD2242 ABCD3242 BCD242 BCD242 c4 b3 ABCD1342 ABCD2342 ABCD3342 BCD342 BCD342 b4 ABCD1442 ABCD2442 ABCD3342 BCD342 BCD342 b4 ABCD1442 ABCD2442 ABCD3442 BCD342 BCD442 TOTAL A1 A2 A3 G BCD442 BCD442			b4	ABCD1432	ABCD2432	ABCD3432	BCD432
b2 2819 4385 6945 14152 c4 b2 ABCD1242 28CD242 3201 BCD242 BCD242 b3 ABCD1342 ABCD2342 3201 BCD342 BCD342 3405 b4 ABCD1442 ABCD2442 ABCD3342 BCD342 3405 b4 ABCD1442 ABCD2442 ABC03442 BCD442 3405 TOTAL A1 A2 A3 G G 3793		1	bl	ABCD1142	ABCD2142	ABCD3142	BCD142
C4 2023 2649 3201 7873 b3 ABCD1342 ABCD2342 ABCD3342 BCD342 b4 ABCD1442 ABCD2442 ABCD3442 BCD442 b4 ABCD1442 ABCD2442 ABCD3442 BCD442 T0TAL A1 A2 A3 G 9302 24413 50078 83793			b2	ABCD1242	4385 ABCD2242	ABCD3242	BCD242
b4 297 ABCD1442 148 1236 ABCD2442 351 1872 ABCD3442 800 3405 BCD442 1299 TOTAL A1 9302 A2 24413 A3 50078 6 83793		C4	b3	2023 ABCD1342	ABCD2342	ABCD3342	BCD342
148 351 800 1299 TOTAL A1 A2 A3 G 9302 24413 50078 83793			b4	297 ABCD1442	1236 ABCD2442	1872 ABCD3442	3405 BCD442
101AL 9302 24413 50078 83793	TOTAL			148	351	008	1299
	TUTAL			9302	24413	50078	83793

ABCD SUMMARY TABLE

		٩١	a2	ag	TOTAL
	b ₁	ABC111	ABC211	ABC311	BC11
	-	172	190	230	592
	b2	ABC121	ABC221	ABC321	BC21
c ₁	-	147	135	260	542
	bg	ABC131	ABC231	ABC331	BC31
		53	190	314	557
	b4	ABC141	ABC241	ABC341	BC41
		172	273	296	741
	b1	ABC112	ABC212	ABC312	BC12
		171	582	5041	5794
	b2	ABC122	ABC222	ABC322	BC22
c2		152	349	2329	2830
	b3	ABC132	ABC232	ABC332	BC32
		141	252	862	1255
	bą	ABC142	ABC242	ABC342	BC42
		110	260	640	1010
	b1	ABC113	ABC213	ABC313	BC13
		271	4697	10566	15534
	b2	ABC123	ABC223	ABC323	BC23
c3		192	2544	5036	7772
	b3	ABC133	ABC233	ABC333	BC33
		89	591	2128	2808
	b4	ABC143	ABC243	ABC343	BC43
		194	417	1111	1722
	b1	ABC114	ABC214	ABC314	BC14
		4244	7249	10835	22328
C4	b2	ABC124	ABC224	ABC324	BC24
		2422	3 857	5125	11404
	bg	ABC134	ABC234	ABC334	BC34
		477	2043	3428	5948
	b4	ABC144	ABC244	ABC344	BC44
		295	784	1877	2956
TOTAL		A1	A2	A3	G
		9302	24413	50078	83793

...

ABD SUMMARY TABLE

1		Contraction of the local division of the loc		بينائبنا السلسيجيجين الصافات معاقاتها والتقا	
	•	al	az	ag	TOTAL
	b1	ABD111	ABD211	ABD311	BD ₁₁
		1768	4811	10104	16683
	b2	ABD121	ABD221	ABD321	BD ₂₁
d1		608	1864	4104	6576
	b3	ABD131	ABD231	ABD331	BD31
		308	1277	3028	4613
	b4	ABD141	ABD241	ABD341	BD41
		330	926	2109	3 365
	b1	ABD112	ABD212	ABD312	BD12
		3090	7907	16568	27565
	b2	ABD122	ABD222	ABD322	BD22
d2		2305	5021	8646	15972
	b3	ABD132	ABD232	ABD332	BD32
		452	1799	3704	5955
	b4	ABD142	ABD242	ABD342	BD42
		441	808	1815	3064
TOTAL		A ₁	A ₂	A3	G
		9302	24413	50078	83793

-500-

ACD SUMMARY TABLE

		dl	d2	TOTAL
a l		ACD111	ACD112	AC11
		221	323	544
	a2	ACD ₂₁₁	ACD ₂₁₂	AC21
c1		393	395	788
	az	ACD311	ACD312	AC31
		499 601		1100
	a <u>1</u>	ACD121	ACD122	AC12
		238	336	574
	a2	ACD221	ACD222	AC22
c2		729	714	1443
	ag i	ACD321	ACD322	AC32
		3292	5580	8872
	·a1	ACD131	ACD132	AC13
		404	342	746
сз	a2	ACD231	ACD ₂₃₂	AC23
		2444	5805	8249
	ag	ACD331	ACD332	AC33
		7110	11731	18841
	aı	ACD141	ACD142	AC14
c4		2151	5287	7438
	a2	ACD241	ACD242	AC24
		5312	8621	13933
	az	ACD341	ACD342	AC34
		8444	12821	21265
TOTAL		D1	D2	G
		31237	52556	83793

			• · ·		ba	ΤΟΤΑΙ
		D1	D2	<u> </u>		TUTAL
	c1	BCD ₁₁₁	BCD211	BCD311	BCD411	CD ₁₁
		319	207	233	354	1113
	¢2	BCD121	BCD221	BCD321	BCD421	CD ₂₁
d1		2384	814	562	499	4259
	c3	BCD131	BCD231	BCD331	BCD431	CD ₃₁
		5804	2024	1275	855	9958
	с4	BCD ₁₄₁	BCD ₂₄₁	BCD341	BCD441	CD41
		8176	3531	2543	1657	15907
	c1	BCD ₁₁₂	BCD212	BCD312	BCD412	CD12
		273	335	324	387	1319
	c2	BCD122	BCD222	BCD322	BCD422	CD22
d2		3410	2016	693	511	6630
	cз	BCD132	BCD232	· BCD332	BCD432	CD32
		9730	5748	1533	867	17878
	с4	BCD142	BCD242	BCD342	BCD442	CD42
		14152	7873	3405	1299	26729
	TOTAL	B1	B2	B3	B4	G
		44248	22548	10568	6429	83793
	b ₁	b2	. b3	b4	TOTAL	
-------	------------------	----------------	-------	------	----------------	
a1	AB11	AB12	AB13	AB14	A ₁	
	4858	2913	760	771	9301	
a2	AB ₂₁	AB22	AB23	AB24	A ₂	
	12718	6885	3076	1734	24413	
ag	AB31	AB32	AB33	AB34	A3	
	26672	12750	6732	3924	50078	
TOTAL	B1	B ₂	B3	BĄ	G	
	44248	22548	10568	6429	83793	

AC SUMMARY TABLE

	c ₁	c2	сз	C4	. TOTAL
al	AC11	AC12	AC13	AC14	A ₁
	544	574	746	7438	9302
a2	AC21	AC22	AC23	AC24	A ₂
	788	1443	8249	13933	24413
az	AC31	AC32	AC33	AC34	A3
	1100	8872	18841	21265	50078
TOTAL	C1	C2	C3	C4	G
	2432	10889	27836	42636	83793

BC SUMMARY TABLE

	c ₁	c2	сз	cą	TOTAL
b ₁	BC11	BC12	BC13	BC14	^B 1
	592	5794	15534	223 28	44248
b ₂	BC21	BC22	BC23	BC24	B2
	542	2830	7772	· 11404	22548
b3	BC31	BC32	BC33	BC34	B3
	557	1255	2808	59 48	10568
b4	BC41	BC42	BC43	BC44	B4
	741	1010	1722	2956	6429
TOTAL	C ₁	C2	C3	C4	G
	2432	10889	27836	42636	83793

AD SUMMARY TABLE

	d1	d2	TOTAL
al	AD11	AD12	A1
	3014	6288	9302
a2	AD ₂₁	AD22	A ₂
	8878	15535	24413
ag	AD31	AD32	A3
	19345	30733	50078
TOTAL	D1	D2	G
	31237	52556	83793

BD SUMMARY TABLE

	d1	ď2	TOTAL
b1	BD11	BD12	B1
	16683	27565	44248
b2	BD ₂₁	BD22	B2
	6576	15972	22548
bg	BD31	BD32	B3
	4613	5955	10568
b4	BD41	BD42	BĄ
	3365	3064	6429
TOTAL	D1	D2	G
	31237	52556	83793

CD SUMMARY TABLE

	d1	d2	TOTAL
c1	CD11	CD12	C1
	1113	1319	2432
c2	CD ₂₁	CD22	C2
	4259	6630	10889
сз	CD31	CD32	C3
	9958	17878	27836
c4	CD41	CD42	C4
	15907	26729	42636
TOTAL	D1	D ₂	G
	31237	52556	83793

From the column and row totals in these summary tables the values of the computational symbols may be obtained.

•

SYMBOL	FORMULA	COMPUTED VALUE
(1)	G ²	73138196 .3
	pqrsn	
(2)	ΣXϟjklm	249328849.0
(3)	(541 ²)	996977 45.5
	qrsn	
(4)	(_Σ Β _j ²)	109138019.7
	prsn	
(5)	(2C _k ²)	113214847.4
	pqsn	
(6)	(_{2D1} ²)	77872568.9
	pqrn	
(7)	[[(ABij)2]	148694092.4
	rsn	
(8)	[₂ (AC _{ik}) ²	151061168.1
	qsn	
(9)	[r (BC _{jk}) ²]	171824124.5
	psn	
(10)	[ɛ(AD _{il}) ²]	105470285 .2
	qrn	
(11)	[ɛ(BD _{jl}) ²]	117829449.1
	prn	
(12)	[ɛ(CD _{k1}) ²]	120944270.8
	pqn	
(13)	[ɛ(ABC _{ijk}) ²]	230269599 .5
	sn	
(14)	[ɛ(ABD _{ijl}) ²]	159626004 .3
	rn	

-505-

SYMBOL	FORMULA	COMPUTED VALUE
(15)	$[\Sigma(ACD_{ik1})^2]$	160793855 .3
1	qn	
(16)	$[\Sigma(BCD_{jk1})^2]$	186378751.7
	pn	
(17)	[<code>r(ABCD_{ijk1})²]</code>	249328849.0
	n	

The computational formulae for the sums of squares, again an extension of the system defined for the simpler 2-factor experiment, and their calculated values can then be written as follows:-

SSa	(3)-(1)	26559549.2
SSb	(4)-(1)	35999823.4
SSc	(5)-(1)	40076651.0
SSd	(6)-(1)	4734372.5
SSab	(7)-(3)-(4)+(1)	12996523.5
SSac	(8)-(3)-(5)+(1)	11286771.5
SS _{bc}	(9)-(4)-(5)+(1)	22609453.7
SS _{ad}	(10)-(3)-(6)+(1)	1038167.2
ss _{bd}	(11)-(4)-(6)+(1)	3957056.9
SS _{cd}	(12)-(5)-(6)+(1)	29950 50.9
SS _{abc}	(13)-(7)-(8)-(9)+(3)+(4)+(5)-(1)	7602630.8
SS _{abd}	(14)-(7)-(10)-(11)+(3)+(4)+(6)-(1)	1202315.3
SSacd	(15)-(8)-(10)-(12)+(3)+(5)+(6)-(1)	965096.6
\$S _{bcd}	(16)-(9)-(11)-(12)+(4)+(5)+(6)-(1)	2868146.9
SSabcd	(17)-(13)-(14)-(15)-(16)+(7)+(8)+(9)+(10)+(11)+(12)-(3)-(4)-(5)-(6)+(1)) 1299043.2
SSw.cell	(2)-(17)	0.0
SS _{total}	(2)-(1)	176190652.7

Using these values of the sums of squares and the appropriate degrees of freedom the complete ANOVA table can be compiled. Since the within cell experimental error cannot be measured with the inclusion of only 1 result per treatment combination the highest order interaction is removed from the analysis and used as the error term.

ANOVA TABLE

Source of Variation	Sum of Squares (SS)	Degrees of Freedom (df)	Mean Square (MS)	F	Tail Prob.(a)
A (Cement Alkali Content) B (Pfa as cement replacement) C (Reactive Aggregate Content) D (Free water content) AB AC BC AD BD CD ABC ABD ACD BCD	26559549.2 35999823.4 40076651.0 4734372.5 12996523.5 11286771.5 22609453.7 1038167.2 3957056.9 2995050.9 7602630.8 1202315.3 965096.6 2868146.9	$\begin{array}{ccccccc} (p-1) & = 2 \\ (q-1) & = 3 \\ (r-1) & = 3 \\ (s-1) & = 1 \\ (p-1)(q-1) & = 6 \\ (p-1)(r-1) & = 6 \\ (q-1)(r-1) & = 6 \\ (q-1)(s-1) & = 2 \\ (q-1)(s-1) & = 2 \\ (q-1)(s-1) & = 3 \\ (r-1)(s-1) & = 3 \\ (p-1)(q-1)(r-1) & = 18 \\ (p-1)(q-1)(s-1) & = 6 \\ (q-1)(r-1)(s-1) & = 6 \\ (q-1)(r-1)(s-1) & = 9 \end{array}$	13279774.6 11999941.1 13358883.7 4734372.5 2166087.3 1881128.6 2512161.5 519083.6 1319019.0 998350.3 422368.4 200385.9 160849.4 318683.0	184.01 166.28 185.11 65.60 30.01 26.07 34.81 7.19 18.28 13.83 5.85 2.78 2.23 4.42	$\begin{array}{c} 0.00 < \alpha < 0.01 \\ 0.01 < \alpha < 0.05 \\ 0.05 < \alpha < 0.01 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 \\ 0.00 < 0.00 \\ 0.00 \\ 0.00 < 0.00 \\ 0.00 < 0.00 \\ 0.00 \\ 0.00 < 0.00 \\ $
ABCD, used to represent the Within Cell (Experimental Error) term	1299043.2	(p-1)(q-1)(r-1)(s-1) =18	72169.1		•
TOTAL	176190652.7	pq rsn-1 =95			

APPENDIX J

Full details of results from the chemical analysis of the mortar bars

Tables J.1 to J.3

÷

TABLE J.1 SERIES 2 CHEMICAL ANALYSIS RESULTS - 3x4x4x2 FACTORIAL MIXES

Mix Ref	Age of Bar Ref when sample		Age of Bar Measured when sample Density		ANALYSIS OF BAR *			ANALYSIS OF LIQUID FROM STORAGE CONTAINER			
No.	taker	(days)	of bar				Na20eq		12.55		Na2Deq**
	Bar	Liquid	(kg/m ³)	%Na20	\$K20	\$Na20eq	(kg/m ³)	%Na20	\$K20	%Na20eq	(kg/m ³)
0000	463	463	2260	0.022	0.090	0.081	1.83	0.007	0.016	0.017	0.39
0001	525	525	2160	0.022	0.077	0.072	1.56	0.010	0.021	0.024	0.51
0010P	750	750	2280	0.047	0.088	0.105	2.39	0.017	0.023	0.032	0.73
0011P	691	691	2110	0.042	0.075	0.091	1.92	0.023	0.031	0.043	0.91
0020P	742	742	2180	0.088	0.105	0.157	3.41	0.024	0.026	0.041	0.88
0021P	673	673	2090	0.057	0.058	0.095	1.98	0.035	0.041	0.062	1.29
0030P	442	442	2100	0.093	0.096	0.156	3.28	0.020	0.014	0.030	0.62
0031P	467	467	1990	0.098	0.094	0.160	3.19	0.023	0.021	0.037	0.73
0100	743	743	2260	0.058	0.179	0.176	3.98	0.014	0.027	0.031	0.71
0101	673	673	2160	0.061	0.172	0.174	3.76	0.015	0.035	0.038	0.81
0110P	700	700	2240	0.081	0.184	0.202	4.53	0.015	0.029	0.034	0.76
0111P	699	699	2130	0.074	0.175	0.189	4.03	0.020	0.040	0.046	0.98
0120P	691	691	2150	0.102	0.187	0.225	4.84	0.018	0.033	0.040	0.87
0121P	756	756	2060	0.086	0.165	0.195	4.01	0.024	0.045	0.054	1.12
0130P	749	749	2130	0.132	0.199	0.263	5.60	0.012	0.018	0.024	0.51
0131P	755	755	2010	0.117	0.172	0.231	4.64	0.022	0.032	0.044	0.88
0200	748	748	2200	0.100	0.248	0.263	5.79	0.012	0.023	0.027	0.60
0201	687	687	2140	0.082	0.253	0.249	5.32	0.012	0.029	0.031	0.67
0210P	658	658	2230	0.101	0.255	0.269	6.00	0.012	0.024	0.028	0.63
0211P	679	679	2150	0.098	0.247	0.261	5.61	0.019	0.039	0.045	0.96
0220P	708	708	2140	0.121	0.248	0.285	6.09	0.012	0.022	0.026	0.56
0221P	750	750	2070	0.116	0.242	0.275	5.70	0.020	0.039	0.046	0.95
0230P	656	656	2040	0.139	0.241	0.297	6.07	0.014	0.019	0.026	0.54
0231P	673	673	2020	0.124	0.236	0.279	5.64	0.018	0.035	0.041	0.83
0300	701	701	2230	0.097	0.271	0.275	6.14	0.009	0.017	0.020	0.45
0301	659	659	2160	0.097	0.279	0.281	6.07	0.010	0.020	0.024	0.51
0310P	750	750	2170	0.108	0.277	0.290	6.30	0.010	0.017	0.021	0.46
0311P	686	686	2100	0.115	0.275	0.295	6.20	0.010	0.020	0.023	0.49
0320P	677	677	2150	0.123	0.261	0.295	6.34	0.010	0.018	0.022	0.47
0321P	707	707	2040	0.116	0.267	0.292	5.95	0.011	0.022	0.026	0.53
0330P	672	672	2060	0.139	0.263	0.312	6.42	0.011	0.017	0.022	0.46
0331P	685	685	1980	0.136	0.267	0.312	6.18	0.013	0.022	0.027	0.54

* by dilute hydrochloric acid extraction

TABLE J.1 continued

Age of Bar Mix Ref when sample		Measured Density	A	NALYSIS	OF BAR *		ANALYSIS OF LIQUID FROM STORAGE CONTAINER				
No.	taker	(days)	of bar				Na20eo			125.03	Na20eg**
	Bar	Liquid	(kg/m ³)	\$Na20	\$K20	%Na20eq	(kg/m ³)	\$Na20	\$K20	\$Na20eq	(kg/m ³)
1000	460	460	2260	0.047	0.133	0.134	3.04	0.019	0.027	0.037	0.84
1001	454	454	2180	0.050	0.133	0.137	2.99	0.018	0.034	0.040	0.88
1010P	544	544	2200	0.081	0.133	0.168	3.70	0.018	0.026	0.035	0.77
1011P	564	564	2130	0.074	0.111	0.147	3.13	0.025	0.033	0.046	0.99
1020P	573	573	2130	0.140	0.161	0.246	5.25	0.016	0.015	0.027	0.57
1021P	628	628	2120	0.124	0.152	0.224	4.75	0.024	0.020	0.037	0.79
1030P	483	483	2110	0.159	0.166	0.268	5.66	0.013	0.010	0.020	0.42
1031P	482	482	2020	0.159	0.166	0.268	5.42	0.014	0.013	0.023	0.46
1100	586	586	2270	0.094	0.223	0.241	5.47	0.015	0.029	0.034	0.77
1101	543	543	2200	0.078	0.196	0.207	4.56	0.017	0.035	0.040	0.88
1110P	558	558	2260	0.121	0.225	0.270	6.09	0.015	0.026	0.033	0.74
1111P	592	592	2130	0.097	0.190	0.222	4.73	0.019	0.034	0.041	0.88
1120P	571	571	2150	0.147	0.225	0.295	6.35	0.016	0.021	0.030	0.64
1121P	544	544	2100	0.147	0.213	0.287	6.03	0.019	0.027	0.037	0.77
1130P	564	564	2070	0.183	0.245	0.344	7.13	0.015	0.017	0.026	0.54
1131P	635	635	2030	0.167	0.223	0.314	6.37	0.014	0.015	0.024	0.49
1200	543	543	2250	0.108	0.278	0.291	6.55	0.014	0.025	0.031	0.69
1201	564	564	2150	0.104	0.261	0.276	5.93	0.017	0.031	0.037	0.79
1210P	557	557	2170	0.129	0.259	0.300	6.51	0.015	0.024	0.031	0.68
1211P	579	579	2040	0.119	0.264	0.292	5.96	0.020	0.036	0.044	0.89
1220P	565	565	2130	0.160	0.283	0.347	7.38	0.014	0.021	0.028	0.59
1221P	578	578	2080	0.148	0.272	0.327	6.81	0.023	0.038	0.047	0.99
1230P	580	580	2080	0.187	0.283	0.374	7.77	0.014	0.016	0.024	0.51
1231P	627	627	1980	0.173	0.269	0.349	6.92	0.020	0.026	0.037	0.74
1300	570	570	2180	0.115	0.295	0.309	6.73	0.010	0.018	0.022	0.48
1301	635	635	2140	0.112	0.296	0.307	6.57	0.017	0.027	0.034	0.74
1310P	587	587	2180	0.127	0.278	0.310	6.75	0.015	0.023	0.030	0.65
1311P	634	634	2070	0.139	0.316	0.346	7.17	0.010	0.015	0.021	0.42
1320P	573	573	2100	0.160	0.288	0.350	7.35	0.018	0.026	0.035	0.73
1321P	545	545	2060	0.148	0.285	0.336	6.92	0.018	0.026	0.036	0.73
1330P	580	580	2030	0.182	0.285	0.370	7.51	0.016	0.019	0.028	0.57
1331P	642	642	1960	0.168	0.285	0.356	6.98	0.014	0.021	0.027	0.54

* by dilute hydrochloric acid extraction

TABLE J.1 continued

Mix Ref	Age of Bar Mix Ref when sample No. taken (days)		Measured Density	,	NALYSIS	OF BAR *		ANALYSIS OF LIQUID FROM STORAGE CONTAINER			
No.			of bar				NapOeg				Na20eg**
	Bar	Liquid	(kg/m ³)	\$Na20	\$K20	\$Na20eq	(kg/m ³)	\$Na ₂ 0	\$K20	%Na20eq	(kg/m ³)
2000	168	501	2230	0.094	0.234	0.248	5.53	0.024	0.075	0.073	1.62
2001	168	516	2070	0.074	0.201	0.207	4.27	0.027	0.077	0.077	1.60
2010P	168	440	2220	0.137	0.266	0.313	6.94	0.018	0.037	0.042	0.93
2011P	168	515	2060	0.144	0.253	0.311	6.40	0.022	0.042	0.049	1.02
2020P	168	466	2140	0.105	0.301	0.303	6.49	0.015	0.021	0.029	0.62
2021P	168	417	2090	0.179	0.284	0.366	7.66	0.016	0.023	0.031	0.65
2030P	168	468	2110	0.102	0.313	0.309	6.51	0.013	0.017	0.024	0.51
2031P	168	467	2000	0.088	0.301	0.286	5.72	0.011	0.014	0.020	0.40
2100	168	446	2250	0.115	0.308	0.317	7.14	0.015	0.046	0.046	1.03
2101	168	459	2150	0.097	0.294	0.290	6.24	0.019	0.051	0.053	1.20
2110P	168	468	2210	0.102	0.349	0.332	7.34	0.016	0.033	0.038	0.83
2111P	168	501	2140	0.144	0.306	0.346	7.39	0.023	0.049	0.056	1.19
2120P	168	437	2120	0.191	0.343	0.417	8.85	0.012	0.023	0.027	0.58
2121P	168	432	2070	0.177	0.329	0.393	8.13	0.018	0.034	0.041	0.84
2130P	168	524	2060	0.202	0.337	0.424	8.74		LIQUI	LOST	
2131P	168	461	2020	0.193	0.307	0.395	7.98	0.016	0.026	0.033	0.67
2200	168	453	2210	0.124	0.357	0.359	7.93	0.013	0.035	0.036	0.81
2201	168	452	2130	0.111	0.335	0.331	7.05	0.021	0.051	0.054	1.16
2210P	168	454	2140	0.143	0.343	0.369	7.89	0.015	0.034	0.037	0.80
2211P	168	431	2070	0.143	0.349	0.373	7.72	0.019	0.040	0.046	0.94
2220P	168	453	2120	0.167	0.345	0.394	8.35	0.016	0.028	0.034	0.72
2221P	168	439	2060	0.152	0.329	0.360	7.60	0.016	0.031	6,03¢	0.75
2230P	168	451	2030	0.190	0.332	0.409	8.30	0.014	0.024	0.030	0.61
2231P	168	446	2010	0.186	0.319	0.396	7.96	0.016	0.024	0.032	0.64
2300	168	515	2240	0.148	0.349	0.378	8.47	0.013	0.027	0.030	0.68
2301	168	508	2110	0.135	0.349	0.365	7.69	0.014	0.028	0.032	0.68
2310P	168	444	2170	0.146	0.311	0.350	7.60	0.008	0.019	0.021	0.45
2311P	168	452	2060	0.124	0.316	0.332	6.83	0.015	0.031	0.035	0.73
2320P	168	503	2110	0.175	0.361	0.413	8.71	0.013	0.022	0.027	0.58
2321P	168	440	2050	0.156	0.336	0.377	7.74	0.015	0.028	0.033	0.68
2330P	168	445	2040	0.183	0.316	0.391	7.98	0.011	0.019	0.023	0.47
2331P	168	503	1990	0.175	0.361	0.413	8.22	0.017	0.031	0.039	0.76

* by dilute hydrochloric acid extraction

TABLE J.2 SERIES 2 CHEMICAL ANALYSIS RESULTS - EXTRA PYREX MIXES

Mix Ref	Age of Bar when sample		Measured Density	^	NALYSIS	OF BAR *		ANALYSIS OF LIQUID FROM STORAGE CONTAINER			
No.	taker Bar	(days) Liquid	of bar (kg/m ³)	%Na20	% K20	%Na20eq	Na ₂ 0 _{eq} (kg/m ³)	\$Na20	\$K20	\$Na20eq	Na20eq** (kg/m ³)
2032P	169	421	2110	0.208	0.295	0.402	8.48	0.013	0.023	0.029	0.60
2033P	167	426	2100	0.210	0.296	0.405	8.51	0.014	0.021	0.027	0.57
2034P	167	418	2110	0.205	0.285	0.393	8.29	0.011	0.017	0.022	0.46
2035P	167	426	2030	0.194	0.269	0.371	7.53	0.015	0.021	0.029	0.58
2041P	168	419	2180	0.071	0.196	0.201	4.37	0.024	0.067	0.067	1.47
2051P	167	418	2190	0.074	0.194	0.202	4.42	0.023	0.064	0.065	1.42
2061P	169	421	2170	0.089	0.217	0.232	5.03	0.028	0.068	0.073	1.58
2071P	168	420	2150	0.084	0.206	0.219	4.71	0.024	0.058	0.062	1.34
2431P	168	427	2070	0.235	0.331	0.453	9.37	0.012	0.021	0.026	0.54
2531P	167	426	2060	0.221	0.348	0.450	9.27	0.016	0.028	0.035	0.72
2631P	168	420	2020	0.214	0.373	0.460	9.29	0.022	0.037	0.046	0.93
2731P	168	420	2010	0.212	0.379	0.461	9.27	0.021	0.037	0.045	0.91
3031P	167	418	1720	0.136	0.134	0.224	3.85	0.020	0.019	0.032	0.55
4031P	168	419	1800	0.140	0.152	0.240	4.32	0.013	0.014	0.022	0.40
5031P	169	421	1840	0.162	0.184	0.283	5.21	0.017	0.017	0.028	0.52
6031P	168	419	2010	0.182	0.230	0.333	6.70	0.018	0.019	0.030	0.61

* by dilute hydrochloric acid extraction

TABLE J.3 SERIES 2 CHEMICAL ANALYSIS RESULTS - BELTANE OPAL MIXES

Mix Ref	Age of Bar when sample		Measured Density	ANALYSIS OF BAR *				ANALYSIS OF LIQUID FROM STORAGE CONTAINER			
No.	taker Bar	(days) Liquid	of bar (kg/m ³)	%Na20	\$K20	%Na20eq	Na ₂ O _{eq} (kg/m ³)	%Na20	\$K20	%Na20eq	Na ₂ 0 _{eq} ** (kg/m ³)
2001	168	516	2070	0.074	0.201	0.207	4.27	0.0266	0.0771	0.0774	1.601
2011B	167	432	2070	0.113	0.314	0.320	6.63	0.0013	0.0051	0.0047	0.097
2021B	167	432	1980	0.109	0.295	0.303	6.01	0.0015	0.0043	0.0043	0.085
2031B	168	434	1910	0.098	0.285	0.286	5.47	0.0018	0.0067	0.0062	0.118
2041B	168	434	2180	0.089	0.251	0.254	5.53	0.0092	0.0253	0.0258	0.563
2051B	169	435	2180	0.098	0.279	0.282	6.15	0.0050	0.0141	0.0143	0.312
2061B	168	433	2170	0.102	0.275	0.283	6.14	0.0032	0.0085	0.0088	0.191
2071B	168	427	2160	0.105	0.292	0.297	6.41	0.0034	0.0086	0.0090	0.194
2301	168	508	2110	0.135	0.349	0.365	7.69	0.0139	0.0276	0.0320	0.676
2311B	168	427	2070	0.147	0.385	0.401	8.29	0.0039	0.0098	0.0104	0.215
2321B	168	433	1970	0.140	0.372	0.385	7.59	0.0026	0.0064	0.0068	0.134
2331B	167	432	1890	0.148	0.395	0.408	7.72	0.0017	0.0062	0.0058	0.109
2341B	169	435	2140	0.128	0.337	0.350	7.49	0.0090	0.0202	0.0223	0.476
2351B	168	433	2120	0.140	0.353	0.372	7.90	0.0054	0.0137	0.0145	0.307
2361B	169	435	2120	0.137	0.353	0.370	7.84	0.0056	0.0129	0.0140	0.297
2371B	168	434	2130	0.139	0.359	0.375	7.99	0.0046	0.0107	0.0117	0.249

* by dilute hydrochloric acid extraction

- STANTON, T E. Expansion of concrete through reaction between cement and aggregate. Proceedings of the American Society for Civil Engineers. Vol.66, Dec. 1940, pp 1781-1811.
- (2) COOMBES, L.H. Val de la Mare Dam, Jersey, Channel Islands. Proceedings of the 3rd International Symposium on the Effect of Alkalis on the Properties of Concrete, London. Cement and Concrete Association, Slough, Sept. 1976, pp 357-370.
- (3) WINNEY, M. Alkali-aggregate threatens future of Val de la Mare Dam. New Civil Engineer. 29th May 1980, pp 14-15.
- (4) PALMER, D. Alkali-aggregate reaction, recent occurrences in the British Isles. Proceedings of the 4th International Conference on the Effects of Alkalis in Cement and Concrete, Purdue University, West Lafayette. Publication No. CE MAT 1-78, June 1978, pp 285-298.
- (5) GUTT, W and NIXON, P.J. Alkali aggregate reactions in concrete in the U.K. Concrete, Journal of the Concrete Society. May 1979, Vol.13, No. 5, pp 19-21.
- (6) ALLEN, R.T.L. Alkali-silica reaction in Great Britain a review. Proceedings of the 5th International Conference on Alkali-Aggregate Reaction in Concrete, Cape Town. National Building Research Institute, Pretoria, Paper S252/18, April 1981.

- (7) PALMER, D. Alkali-aggregate reaction in Great Britain the present position. Concrete - Journal of the Concrete Society. March 1981, Vol.15, No.3, pp 24-27.
- (8) JONES, F.E. Reactions between aggregates and cement. Part II, Alkali-aggregate interaction : British Portland cements and British aggregates. Department of Scientific and Industrial Research, Building Research Station. National Building Studies Research Paper No.15, H.M.S.O., London, 1952.
- (9) JONES, F.E. and TARLETON, R.D. Reactions between aggregates and cement. Part III, Alkali-aggregate interaction : The expansion bar test : Cements of medium alkali content. Department of Scientific and Industrial Research, Building Research Station. National Building Studies Research Paper No.17, H.M.S.O., London, 1952.
- (10) JONES, F.E. and TARLETON, R.D. Reactions between aggregates and cement. Part IV, Alkali-aggregate interaction : The expansion bar test and its application to the examination of some British aggregates for possible expansive reaction with Portland cements of high alkali content. Department of Scientific and Industrial Research, Building Research Station. National Building Studies Research Paper No.20, H.M.S.O., London, 1958.
- (11) CORISH, A.T. and JACKSON, P.J. Portland cement properties past and present. Concrete, Journal of the Concrete Society. July 1982, Vol.12, No.7, pp 16-18.

- (12) BUTTLER, F.G., MORGAN, S.R. and WALKER, E.J. Studies on the rate and extent of reaction between calcium hydroxide and pulverised fuel ash at 38°C. Proceedings of the 5th International Conference on Alkali-aggregate Reaction in Concrete, Cape Town. National Building Institute, Pretoria, Paper No.S252/38, April 1981.
- (13) AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard recommended practice for petrographic examination of aggregates for concrete. ASTM C295-65 (reapproved 1973), 1980.
- (14) JONES, F.E. and TARLETON, R.D. Reaction between aggregates and cement. Part V, Alkali-aggregate interaction : Effect on bending strength of mortars and the development of gelatinous reaction products and cracking. Part VI, Alkali-aggregate interaction : Experience with some forms of rapid and accelerated tests for alkali-aggregate reactivity : Recommended test procedures. Department of Scientific and Industrial Research, Building Research Station. National Building Studies Research Paper No.25, H.M.S.O., London, 1958.
- (15) AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard test method for potential reactivity of aggregates (chemical method). ASTM C289-71 (reapproved 1976), 1980. [new edition ASTM C289-81].
- (16) AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard test method for potential alkali reactivity of carbonate rocks for concrete aggregates (rock cylinder method). ASTM C586-69 (reapproved 1981).

- (17) CANADIAN STANDARDS ASSOCIATION CAN3-A23.3-M77. Methods of test for concrete. CSA A23.2-14A, Alkali aggregate reaction.
- (18) AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard test method for potential alkali reactivity of cement-aggregate combinations (mortar-bar method). ASTM C227-71 (reapproved 1976), 1980 [new edition ASTM C227-81]
- (19) NIXON, P.J., COLLINS, R.J. and RAYMENT, P.L. The concentration of alkalis by moisture migration in concrete - a factor influencing alkali aggregate reaction. Cement and Concrete Research. Vol.9, No.4, pp 417-423.
- (20) SIMS, I. The application and reliability of standard testing procedures for potential alkali-reactivity. Proceedings of the 5th International Conference on Alkali-Aggregate Reaction in Concrete, Cape Town. National Building Institute, Pretoria, Paper No.S252/13, April 1981.
- (21) HOBBS, D.W. Influence of mix proportions and cement alkali content upon expansion due to the alkali-silica reaction. Cement and Concrete Association, Slough. Technical Report No.534, June 1980.
- (22) JONES, F.E. Reactions between aggregates and cement. Part 1, Alkali-aggregate interaction : General. Department of Scientific and Industrial Research, Building Research Station. National Building Studies Research Paper No.14, H.M.S.O., London 1952.

- (23) SULLIVAN, P.J.E., NEWMAN, J.B. and McLEISH, A. The Durability of concrete in marine applications - a factorial approach to experimentation. Proceedings of the 2nd International Conference on the Behaviour of Off-Shore Structures (BOSS'79), Imperial College, London. Paper No.44, August 1979, pp 581-590.
- (24) AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard test method for effectiveness of mineral admixtures in preventing excessive expansion of concrete due to the alkali-aggregate reaction. ASTM C441-69 (reapproved 1975), 1980. [new edition ASTM C441-81]
- (25) COOMBES, L.H., COLE, R.G. and CLARKE, R.M. Remedial measures to Val de la Mare Dam, Jersey, Channel Islands, following alkaliaggregate reactivity. Paper presented at BNCOLD/Newcastle University Symposium, Newcastle-upon-Tyne. Paper No.3.3, September 1975.
- (26) COOMBES, L.H. Written contribution to Paper No.3.3 presented at BNCOLD/Newcastle University Symposium, Newcastle-upon-Tyne, September 1975. Unpublished.
- (27) COLE, R.G. Written contribution to Paper No.3.3 presented at BNCOLD/Newcastle University Symposium, Newcastle-upon-Tyne, September 1975. Unpublished.
- (28) FIGG, J.W. Quality decrease brings need for more caution. New Civil Engineer. 17th November 1977, pp 58-60.

- (29) NEWS : Concrete problems burst forth. New Civil Engineer. 24th April 1980, p 4.
- (30) NEWS : Devon viaduct faces early end to lifespan. New Civil Engineer. 31st March 1983, p 4.
- (31) NEWS : Alkali-aggregate hits Derbyshire bridges. New Civil
 Engineer. 12th February 1981, p 4.
- (32) NEWS : Authorities clam up on M1 repairs. New Civil Engineer.17th May 1984, p 6.
- (33) NEWS : Supports needed for AAR hit bridge. New Civil Engineer. 11th October 1984, p 7.
- (34) NEWS : Push for low alkali cement. New Civil Engineer. 13th September 1984, p 6.
- (35) WINNEY, M. Alkali-aggregate cracks up Plymouth car park. New Civil Engineer. 24th April 1980, pp 22-23.
- (36) NEWS : Alkali hit hospital awaits repair method. New Civil Engineer. 12th January 1984, p 6.
- (37) SHARP, R. Alkali-aggregate advice. New Civil Engineer. Letters to the Editor, 22nd May 1980, p 60.

- (38) HOBBS, D.W. Influence of pulverized-fuel ash and granulated blastfurnace slag upon expansion caused by the alkali-silica reaction. Magazine of Concrete Research. Vol.34, No.119, June 1982, pp 83-94.
- (39) NEWS : AAR problem now feared widespread. New Civil Engineer.2nd August 1984, p 9.
- (40) NEWS : AAR problem now countrywide says DTp. New Civil Engineer.9th August 1984, p 6.
- (41) NIXON, P.J. CS working party comments on changes in ordinary Portland cement. Concrete, Journal of the Concrete Society. September 1984, Vol.18, No.9, pp 38-39.
- (42) CONCRETE SOCIETY WORKING PARTY Interim report on the changes in cement properties and their effects on concrete. Presented at a half-day seminar at the Royal Aeronautical Society, 4 Hamilton Place, London. 23rd October 1984, unpublished draft.
- (43) NEWS : Tarbela latest victim of concrete 'cancer'. New Civil Engineer. 26th April 1984, p 4.
- (44) DIAMOND, S. A review of alkali-silica reaction and expansion mechanisms. 1. Alkalis in cements and in concrete pore solutions. Cement and Concrete Research. Vol.5, No.4, 1975, pp 329-346.

- (45) HOBBS, D.W. Expansion of concrete due to alkali-silica reaction
 : an explanation. Magazine of Concrete Research. Vol.30,
 No.105, December 1978, pp 215-220.
- (46) DENT-GLASSER, L.S. and KATAOKA, N. The chemistry of alkaliaggregate reactions. Proceedings of the 5th International Conference on Alkali-Aggregate Reaction in Concrete, Cape Town. National Building Institute, Pretoria, Paper No.S252/23, April 1981.
- (47) FIGG, J.W. Concrete durability and alkali reactions. Concrete, Journal of the Concrete Society. August 1981, Vol.15, No.8, pp 18-22.
- (48) HAWKINS, M.R. et alia. Minimising the risk of alkali-silica reaction, Guidance Notes. Report of a Working Party, September 1983.
- (49) DIAMOND, S. On the physics and chemistry of alkali-silica reactions. Proceedings of the 5th International Conference on Alkali-Aggregate Reaction in Concrete, Cape Town. National Building Institute, Pretoria, Paper No.S252/22, April 1981.
- (50) DENT-GLASSER, L.S. Osmotic pressure and the swelling of gels. Cement and Concrete Research. Vol.9, No.4, 1979, pp 515-517.

- (51) OBERHOLSTER, R.E. and WESTRA, W.B. The effectiveness of mineral admixtures in reducing expansion due to alkali-aggregate reaction with Malmesbury group aggregates. Proceedings of the 5th International Conference on Alkali-Aggregate Reaction in Concrete, Cape Town. National Building Institute, Pretoria, Paper No.S252/31, April 1981.
- (52) DIAMOND, S. and THAULOW, N. A study of expansion due to alkalisilica reaction as conditioned by the grain size of the reactive aggregate. Cement and Concrete Research. Vol.4, No.4, 1979, pp 591-607.
- (53) HOBBS, D.W. and GUTTERIDGE, W.A. Particle size of aggregate and its influence upon the expansion caused by the alkali-silica reaction. Magazine of Concrete Research. Vol.31, No.109, December 1979, pp 235-242.
- (54) LUDWIG, U. Theoretical and practical research on the alkalisilica reaction. Proceedings of the 5th International Conference on Alkali-Aggregate Reaction in Concrete, Cape Town. National Building Institute, Pretoria, Paper No.S252/24, April 1981.
- (55) LENZNER, D. Influence of the amount of mixing water on the alkali-silica reaction. Proceedings of the 5th International Conference on Alkali-Aggregate Reaction in Concrete, Cape Town. National Building Institute, Pretoria, Paper No.S252/26, April 1981.

- (56) DAHMS, J. Influences on the alkali-aggregate reaction under field conditions. Proceedings of the 3rd International Symposium on the Effect of Alkalis on the Properties of Concrete, London. Cement and Concrete Association, Slough, September 1976, pp 277-290.
- (57) GUTTERIDGE, W.A. and HOBBS, D.W. Some chemical and physical properties of Beltane opal rock and its gelatinous alkali silica reaction product. Cement and Concrete Research. Vol.10, No.2, 1980, pp 183-193.
- (58) GAZE, M.E. and NIXON, P.J. The effect of p.f.a. upon alkaliaggregate reaction. Magazine of Concrete Research. Vol.35, No.123, June 1983, pp 107-110.
- (59) FIGG, J.W. Reaction between cement and artificial glass in concrete. Proceedings of the 5th International Conference on Alkali-Aggregate Reaction in Concrete, Cape Town. National Building Institute, Pretoria, Paper No.S252/7, April 1981.
- (60) NIXON, P.J. and GAZE, M.E. The use of flyash and granulated blastfurnace slag to reduce expansion due to alkali-aggregate reaction. Proceedings of the 5th International Conference on Alkali-Aggregate Reaction in Concrete, Cape Town. National Building Institute, Pretoria, Paper No.S252/32, April 1981.

- (61) HOBBS, D.W. Expansion due to alkali-silica reaction and the influence of pulverised fuel ash. Proceedings of the 5th International Conference on Alkali-Aggregate Reaction in Concrete, Cape Town. National Building Institute, Pretoria, Paper No.S252/30, April 1981.
- (62) GRATTAN-BELLEW, P.E. A review of test methods for alkaliexpansivity of concrete aggregates. Proceedings of the 5th International Conference on Alkali-Aggregate Reaction in Concrete, Cape Town. National Building Institute, Pretoria, Paper No.S252/9, April 1981.
- (63) FERGUSON, H. Shifting sand relieves site shortage. New Civil Engineer. 28th June 1984, pp 20-21.
- (64) NEWS : Silica fume may be concrete cureall. New Civil Engineer. 10th June 1982, p 4.
- (65) GUOMUNDSSON, G. and ASGEIRSSON, H. Parameters affecting alkali expansion in Icelandic concretes. Proceedings of the 6th International Conference on Alkalis in Concrete - Research and Practice, Copenhagen. Danish Concrete Association, June 1983, pp 217-221.
- (66) TANG MING-SHU, YE YU-FENG, YUAN MEI-QU and ZHEN SHI-HUA. The preventative effect of mineral admixtures on alkali-silica reaction and its mechanism. Cement and Concrete Research. Vol.13, No.2, 1983, pp 171-176.

-525-

- (67) SPRUNG, S. and ADABIAN, M. The effect of admixtures on alkaliaggregate reaction in concrete. Proceedings of the 3rd International Symposium on the Effect of Alkalis on the Properties of Concrete, London. Cement and Concrete Association, Slough, September 1976, pp 125-137.
- (68) OWENS, P.L. The use of pulverized fuel ash (p.f.a.) as a method of controlling alkali-silica reaction (ASR) Submission to B.S.I. committee CAB 1/3. July 1980, unpublished.
- (69) BUTTLER, F.G., NEWMAN, J.B. and OWENS, P.L. PFA and the alkalisilica reaction. Consulting Engineer. Vol.44, No.11, November 1980, pp 57-62.
- (70) HOBBS, D.W. The effect of pulverized-fuel ash upon the workability of cement paste and concrete. Magazine of Concrete Research. Vol.32, No.113, December 1980, pp 219-226.
- (71) HOBBS, D.W. Possible influence of small additions of pfa, gbfs and limestone flour upon expansion caused by the alkali-silica reaction. Magazine of Concrete Research. Vol.35, No.122, March 1983, pp 55-58.
- (72) B.R.E. DIGEST. Alkali-aggregate reactions in concrete. Building Research Establishment, Garston. Digest 258, February 1982.
- (73) CONFERENCE PROCEEDINGS. 6th International Conference on Alkalis in Concrete - Research and Practice, Copenhagen. Danish Concrete Association. June 1983.

- (74) OWENS, P.L. Fly ash and its usage in concrete. Concrete,
 Journal of the Concrete Society. July 1979, Vol.13, No.7, pp 21-26.
- (75) OWENS, P.L. Pulverised fuel ash Part 1,2 and 3. Concrete, Journal of the Concrete Society. Part 1, July 1980, Vol.10, No.7, pp 35-36. Part 2, October 1980, Vol.10, No.10, pp 33-34. Part 3, June 1982, Vol.12, No.6, pp 39-41.
- (76) BUTTLER, F.G. Effect of reaction between pulverised fuel ash and calcium hydroxide on concrete properties. Proceedings of Symposium N on the Effects of Flyash incorporation in Cement and Concrete, Boston. Materials Research Society, Annual Meeting, Nov 1981, pp 155-165.
- (77) WINER, B.J. Statistical Principles in Experimental Design. McGraw-Hill Book Company, 2nd edition, 1971.
- (78) JOHN, J.A. and QUENOUILLE, M.H. Experiments : Design and Analysis. Charles Griffin and Co. Ltd., London, 2nd edition, 1977.
- (79) COX, D.R. Planning of Experiments. John Wiley and Sons Ltd., London, 1958.
- (80) DAVIES, O.L. et alia. The Design and Analysis of Industrial Experiments. Longman Group Ltd. (for I.C.I. Ltd.), London, 2nd edition, 1979.

- (81) DEPARTMENT OF THE ENVIRONMENT. Design of Normal Concrete Mixes. H.M.S.O., London, 1975.
- (82) FISHER, R.A. The Design of Experiments. Oliver and Boyd Ltd.,London, 7th edition, 1960.
- (83) BRITISH STANDARDS INSTITUTION. Methods of testing cement. Part
 2, Chemical tests. BS 4550 : Part 2 : 1970.
- (84) BRITISH STANDARDS INSTITUTION. Methods of testing cement. Part
 3, Physical tests. BS 4550 : Part 3 : 1978.
- (85) BRITISH STANDARDS INSTITUTION. Methods of testing cement. Part
 2, Chemical tests. Draft amendment slip no.1, published to BS
 4550 : Part 2 : 1970, October 1979.
- (86) BRITISH STANDARDS INSTITUTION. Pulverised fuel ash for use in concrete. BS 3892 : 1965 (Now superseded by BS 3892 : Part 1 : 1982)
- (87) THE AGREMENT BOARD. Pozzolan A selected fly ash for use in concrete. Agrement Certificate No. 81/841.
- (88) BRITISH STANDARDS INSTITUTION. Methods for sampling and testing of mineral aggregates, sands and fillers. Part 2, Physical properties. BS 812 : Part 2 : 1975.

- (89) DIXON, W.J. and BROWN, M.B. Biomedical Computer Programs, P-Series. Developed at the Health Sciences Computing Facility, H.C.L.A. Sponsored by NIH Special Research Resources, Grant RR-3. University of California Press, Berkley, Los Angeles, 1979.
- (90) ROBERT, E.C. Alkali-silica reaction, Report on 3³ Full Factorial Programme. The City University, London. Unpublished progress report, March 1981.
- (91) BRITISH STANDARDS INSTITUTION. Specification for sulphate resisting Portland cement. BS 4027 : 1980.
- (92) HOBBS, D.W. The alkali-silica reaction a model for predicting expansion in mortar. Magazine of Concrete Research. Vol.33, No.117, December 1981, pp 208-219.
- (93) BRITISH STANDARDS INSTITUTION. Methods of testing mortars, screeds and plasters. BS 4551 : 1980.
- (94) BOSWELL, L.F., ROBERT, E.C., BUTTLER, F.G. and MORGAN, S.R. Alkali content and expansion of mortars containing pulverised fuel ash. Proceedings of the 6th International Conference on Alkalis in Concrete-Research and Practice, Copenhagen. Danish Concrete Association, June 1983.
- (95) CONCRETE SOCIETY WORKING PARTY. Alkali-silica reaction, new structures - specifying the answer, existing structures diagnosis and assessment. Papers presented at a one-day conference, London. 11th November 1985.

(96) HOBBS, D.W. Excerpts from paper entitled 'Deleterious expansion of concrete due to alkali-silica reaction : influence of pfa and slag'. Confidential submission to Concrete Society working party. Unpublished, July 1985.