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Abstract 

Applications that adapt to a particular end user often make 
inaccurate predictions during the early stages when training 
data is limited. Although an end user can improve the 
learning algorithm by labeling more training data, this 
process is time consuming and too ad hoc to target a 
particular area of inaccuracy. To solve this problem, we 
propose a new learning algorithm based on Locally 
Weighted Logistic Regression for feature labeling by end 
users, enabling them to point out which features are 
important for a class, rather than provide new training 
instances. In our user study, the first allowing ordinary end 
users to freely choose features to label directly from text 
documents, our algorithm was more effective than others at 
leveraging end users’ feature labels to improve the learning 
algorithm. Our results strongly suggest that allowing users 
to freely choose features to label is a promising method for 
allowing end users to improve learning algorithms 
effectively. 

 Introduction   
 Applications such as email classifiers, recommender 
systems, and intelligent desktop assistants customize 
themselves to a particular end user’s preferences. This 
customization cannot happen until after the system is 
deployed and training data from that specific end user is 
obtained. However, when the application is first deployed, 
there is often limited training data, resulting in poor 
predictions by the learning algorithm. To address this 
problem, the end user could label additional training 
instances, or an active learning algorithm (Settles 2009) 
could select informative instances to be labeled by the end 
user.  Labeling instances, however, is a tedious process and 
a substantial number of instances must often be labeled 
before a change to the learning algorithm is noticeable to 
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an end user. Secondly, if a rare group of instances is 
incorrectly classified, the learning algorithm cannot be 
“corrected” unless the user is fortuitously asked to label an 
instance with this particular combination of attributes.  
 To overcome these problems, in this paper we 
investigate the possibility of end-user feature labeling 
(Sindhwani et al. 2009), namely allowing end users to label 
features instead of instances. For example, rather than 
labeling entire documents, an end user could point out 
which words (features) in the document are most indicative 
of certain class labels.  Raghavan et al. (Raghavan et al. 
2006, Raghavan and Allan 2007) found that labeling a 
feature took roughly a fifth of the time to label than a 
document and the benefits of feature labeling were greatest 
when the training set sizes were small. However, their 
work did not statistically evaluate feature labeling when 
performed by actual end users.    
 Allowing end users, who are not likely to be educated in 
machine learning, to use feature labeling introduces new 
challenges to learning algorithms. End users’ choices of 
features may be noisy, inconsistent, and might vary greatly 
in ability to improve the predictive power of the machine 
learning algorithm. This paper therefore investigates 
algorithms able to stand up to these challenges. We present 
a new feature labeling algorithm based on Locally 
Weighted Logistic Regression. We then evaluate our 
algorithm, first under ideal conditions using feature labels 
obtained from an oracle, and second under more realistic 
conditions using feature labels from actual end users. Our 
results strongly suggest that feature labeling by end users is 
both viable and an effective solution for allowing end users 
to improve a learning algorithm. 

Related Work 
 Algorithms for feature labeling can roughly be divided 
into supervised and semi-supervised techniques. Raghavan 
and Allen (Raghavan and Allan 2007) present two 



supervised feature labeling methods based on Support 
Vector Machines (SVMs). Method 1 scales features 
indicated as relevant by the user by a constant a and the 
rest of the features by d (where a ! d). Method 2 introduces 
pseudo-documents which influence the position of the 
separating hyperplane.  In contrast to these two supervised 
feature labeling techniques, semi-supervised feature 
labeling methods (Druck et al. 2008, Method 3 of 
Raghavan and Allan 2007, Stumpf et al. 2009) also 
leverage information from a large pool of unlabeled data. 
In our work, we want to measure the gains from feature 
labeling using only the labeled instances in the training set. 
As such, we will only compare our work against 
supervised feature labeling algorithms. We do, however, 
intend to extend our algorithm to the semi-supervised 
setting for future work. Other work (Attenberg et al. 2010, 
Sindhwani et al. 2010) has also investigated dual 
supervision, which is used to describe the process of 
labeling both instances and features.  
 Almost all of the prior work in feature labeling evaluates 
algorithms under ideal conditions, such as feature labels 
obtained from an oracle (Raghavan et al. 2006, Attenberg 
et al. 2010, Sindhwani et al. 2010).  Our study investigates 
both the use of ideal oracle feature labels and feature labels 
provided by real end users. 

Methodology   
 Locally Weighted Logistic Regression (LWLR) 
(Cleveland and Devlin 1988, Deng 1998) is a variant of 
Logistic Regression in which the logistic function is fit 
locally to a neighborhood around a query point to be 
classified. Intuitively, LWLR gives more weight to training 
points that are “closer” to the query point than those farther 
away.  Our approach, called LWLR-FL, modifies the 
distance function used by LWLR by incorporating 
information from feature labels. LWLR-FL assigns higher 
weights to training instances that are similar to the query 
point according to the feature label information.  
 We use cosine similarity ie. cosim(xq,xi) = 1 – cos(xq,xi) 
as the baseline distance function between a query point xq 
and a data instance xi. In order to incorporate feature 
labels, we modify cosim(xq,xi) by a multiplicative factor, 
which is determined by the class label of xi and the end 
user’s feature labels. The overall distance function is 
shown below: 

 

 We briefly provide an intuitive explanation of the 
formula above. For further details, we refer the reader to 
the extended version of this paper (Wong et al. 2011).  In 
the equation above, the term R(yi)T xq corresponds to the 
sum of feature values of xq for those features which are 
associated with label yi. The higher this value, the more 
similar xq will be to xi according to the labeled features. 
The term (U – R(yi))T xq corresponds to the sum of the 
feature values for xq for the features that are not associated 
with label yi. The higher this value, the more dissimilar xq 
will be to xi according to the labeled features. We divide 
this value by (M-1) to appropriately balance the difference 
since there are (M-1) class labels excluding yi. Note that 
the distance function needs to be smaller for more similar 
instances. We also introduce a max term to prevent the 
distance from becoming negative in certain cases. 

Experiments 

Oracle Study 
 In our oracle-based experiments, we used three common 
text classification datasets: 20 Newsgroups (Lang 1995) 
(2925 articles in comp.sys.ibm.pc.hardware, misc.forsale, 
sci.med, and sci.space), the Modapte split of the Reuters 
dataset (Lewis 2004) (1092 documents in earn, acq, 
negative_topic, and money-fx), and the Reuters Corpus 
Volume 1 (RCV1) dataset (Lewis et al. 2004) (6500 
documents in C15, CCAT, ECAT, GCAT, and MCAT). All 
documents were converted to a normalized TF-IDF  
representation with a vocabulary of unigrams and with 
stopwords removed.  
 We compared LWLR-FL against Method 1 (SVM-M1), 
Method 2 (SVM-M2) and their combination (SVM-
M1M2) from (Raghavan and Allan 2007). For the SVM-
based methods we only report results with linear kernels as 
these performed better than other kernels.  
 Because prior work (Raghavan and Allan 2007) showed 
that feature labeling is most effective with smaller training 
set sizes, we created training sets consisting of only six 
instances per class. The total training set sizes for our 
datasets were 24 for 20 Newsgroups, 24 for the Modapte 
split and 30 for RCV1. Having equal number of data 
instances from each class avoided biases due to class 
imbalance. A separate validation set, used for tuning 
algorithm parameters, was composed of 100 data points 
equally distributed among all the classes. The testing set 
consisted of the remaining data instances. For all datasets, 
the results were averaged over 30 random splits for 
training, validation and testing. 
 For simulated users in each dataset, the ten most 
predictive features were selected for each class ranked by 
information gain over the respective corpus, giving 40 ( )22 /)),(,0max(exp),(
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feature labels for 20 Newsgroups and Modapte, and 50 for 
RCV1. We experimented with adding these features 
incrementally in order of information gain (one per class, 
two per class, so on until ten.) By the nature of their 
selection and the order of addition, potential gains of these 
oracle features are bound to be optimistic.  

User Study 
 We also performed a user study in which actual end 
users labeled features on the same 20 Newsgroups dataset 
mentioned in Section 4.1. We used a smaller validation set 
of size 24 instead of 100 to reflect a real-world situation 
with limited labeled instances. Instead of restricting end 
users to only select features from a pre-computed list as in 
(Raghavan et al. 2006), we allowed users to identify any 
feature they considered predictive by freely highlighting 
text directly in the documents. Consequently, participants 
could also create and label new features by combining 
words and punctuation. 
 Our user study had 43 participants: 24 males and 19 
females, all of whom had no background in Computer 
Science, machine learning, or HCI. The application 
displayed 24 previously labeled documents in four 
newsgroups and then gave a participant 12 minutes to 
identify features that he/she believed would help the 
computer label future documents. 
 We used participant-provided feature labels to compare 
the performance of LWLR-FL, SVM-M1, SVM-M2 and 
SVM-M1M2. If a participant created a new feature, it was 
added to that participant’s document representation. We 
analyzed two variants of each algorithm: one variant used 
participants’ labels on existing features only, and the other 
used all features that participants provided. 

Results 

Oracle Feature Labels 
 We evaluate the algorithms in terms of the macro-
average F1 score (abbreviated as macro-F1), averaged over 
30 random training/validation/testing splits. Figure 1 

shows that the average macro-F1 scores for the top two 
algorithms generally increased with addition of more 
oracle features for all algorithms. 
 The LWLR-FL algorithm’s effectiveness with feature 
labeling is compared against its baseline LWLR that uses 
pure cosine similarity as the distance metric. Likewise, a 
“plain” SVM can be considered as a baseline algorithm for 
the SVM-based algorithms. The improvement in macro-F1 
score, denoted by !baseline, over their respective baselines 
expresses the benefit of incorporating feature labels in all 
the algorithms.  The average !baseline was significant for 
LWLR-FL in all cases, and significant for the best SVM-
based methods in most cases (Wilcoxon signed-rank test, p 
< 0.05).  LWLR-FL produced larger average !baseline scores 
than SVM-M1M2 on the 20 Newsgroups and Modapte 
datasets, and was tied with SVM-M2 on the RCV1 dataset. 
Interestingly, on the Modapte dataset, LWLR lagged 
behind SVM but once more than five oracle feature labels 
per class were provided, LWLR-FL was able to use those 
features more effectively than any of the SVM-based 
methods and outperformed all of them.  
 LWLR-FL produced or matched the highest mean 
macro-F1 score on all three datasets; its effectiveness was 
significantly better than SVM-M1M2 on the 20 
Newsgroups dataset at 10 oracle feature labels per class 
(Wilcoxon signed-rank test, p < 0.05). 

End User Feature Labels 
 We now look at the effects of end user feature labels. In 
our analysis we show only results for SVM-M1M2 in 
Figure 2 because it consistently outperformed the other 
SVM methods. Since the participants provided eight 
feature labels per class on average, we chose the results of 
eight oracle feature labels per class as our reference 
(leftmost group in Figure 2). The middle group presents 
results when only feature labels on existing features were 
considered (feature labels on features created by 
participants were ignored). Finally, the rightmost group of 
results illustrates the macro-F1 scores when all feature 
labels are considered, including the new features created 
by the participants. 

 
Figure 1: Average Macro-F1 after adding oracle feature labels on (left) 20 Newsgroups, (middle) Modapte, and (right) RCV1. To 

avoid clutter on the graph, results for only the two best performing feature labeling algorithms are shown. 



 Figure 2 shows that features provided by participants 
were indeed useful as both algorithms outperformed their 
baselines by a statistically significant amount for the “all” 
features case (right). However, only LWLR-FL was 
significantly better than its baseline with “existing” 
(middle) features (Wilcoxon signed-rank test, p < 0.05). 
LWLR-FL was significantly better than SVM-M1M2 
(Wilcoxon signed-rank test, p < 0.05) for both existing and 
all features.  New features created by participants resulted 
in a slight increase in average macro-F1, indicating that 
end users can in fact create predictive features. 

Conclusion 
 This paper has shown the viability of feature labeling in 
real circumstances, with end users freely choosing features 
to label directly from text documents. Our results show that 
LWLR-FL outperformed or matched SVM-based methods 
under ideal conditions in an oracle study. More 
significantly, we evaluated feature labeling algorithms 
under more realistic conditions with actual end users. 
Although the gains were not as large as those under oracle 
conditions, they were still significant improvements over 
the baseline algorithms without feature labels.  In addition, 
the LWLR-FL algorithm outperformed the SVM-based 
methods in our user study. These results are promising, as 
they show that end users who know nothing about machine 
learning can use flexible feature labeling to significantly 
improve machine learning algorithms trained on small data 
sets. Feature labeling can be especially useful for learning 
algorithms that customize themselves to the preferences of 
a specific individual. 
 Our results point to promising future research directions. 
First, we will develop a semi-supervised version of the 
LWLR-FL algorithm. Second, we plan to investigate end-
user feature engineering, in which end users are able to 

interactively create features and update the learning 
algorithm’s representation of the data. Third, we will 
examine the design of suitable user interfaces to help end 
users choose and create features to label. Finally, we will 
apply feature labeling to domains other than text mining, 
such as image classification, which represent data instances 
with features that are not intuitively understood by end 
users. 
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Figure 2: Average macro-F1 scores for incorporating end user 

feature labels to the 20 Newsgroups dataset: (Left)  
incorporating 8 oracle feature labels per class, incorporating 
end-user feature labels only for existing features (Center) and 

for all end-user feature labels (Right).   


